WorldWideScience

Sample records for thermal insulating glass

  1. Construction method of foam glass thermal insulation material in sloping roof

    Science.gov (United States)

    Hu, Longwei; Bu, Fangming; Guo, Fenglu; Zhang, Zimeng

    2017-04-01

    Foam glass thermal insulation board has the characteristics of fireproof, waterproof, corrosion resistant, noncombustible, mothproof, non-toxic, non-aging, non-radioactive, high mechanical strength and good dimensional stability. Foam glass thermal insulation material in sloping roof construction method is an effective solution to large angle sloping roof construction operation difficulties.

  2. Development of New Generation of Thermally-Enhanced Fiber Glass Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Miller, William A [ORNL; Atchley, Jerald Allen [ORNL; Shrestha, Som S [ORNL

    2010-03-01

    This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

  3. Potential of Hollow Glass Microsphere as Cement Replacement for Lightweight Foam Concrete on Thermal Insulation Performance

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Global warming can be defined as a gradual increase in the overall temperature of the earth’s atmosphere. A lot of research work has been carried out to reduce that heat inside the residence such as the used of low density products which can reduce the self-weight, foundation size and construction costs. Foamed concrete it possesses high flow ability, low self-weight, minimal consumption of aggregate, controlled low strength and excellent thermal insulation properties. This study investigate the characteristics of lightweight foamed concrete where Portland cement (OPC was replaced by hollow glass microsphere (HGMs at 0%, 3%, 6%, 9% by weight. The density of wet concrete is 1000 kg/m3 were tested with a ratio of 0.55 for all water binder mixture. Lightweight foamed concrete hollow glass microsphere (HGMs produced were cured by air curing and water curing in tank for 7, 14 and 28 days. A total of 52 concrete cubes of size 100mm × 100mm × 100mm and 215mm × 102.5mm × 65mm were produced. Furthermore, Scanning Electron Microscope (SEM and X-ray fluorescence (XRF were carried out to study the chemical composition and physical properties of crystalline materials in hollow glass microspheres. The experiments involved in this study are compression strength, water absorption test, density and thermal insulation test. The results show that the compressive strength of foamed concrete has reached the highest in 3% of hollow glass microsphere with less water absorption and less of thermal insulation. As a conclusion, the quantity of hollow glass microsphere plays an important role in determining the strength and water absorption and also thermal insulation in foamed concrete and 3% hollow glass microspheres as a replacement for Portland cement (OPC showed an optimum value in this study as it presents a significant effect than other percentage.

  4. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  5. Peg supported thermal insulation panel

    Science.gov (United States)

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  6. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    Science.gov (United States)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  7. Retrospective Analysis of NIST Standard Reference Material 1450, Fibrous Glass Board, for Thermal Insulation Measurements.

    Science.gov (United States)

    Zarr, Robert R; Heckert, N Alan; Leigh, Stefan D

    2014-01-01

    Thermal conductivity data acquired previously for the establishment of Standard Reference Material (SRM) 1450, Fibrous Glass Board, as well as subsequent renewals 1450a, 1450b, 1450c, and 1450d, are re-analyzed collectively and as individual data sets. Additional data sets for proto-1450 material lots are also included in the analysis. The data cover 36 years of activity by the National Institute of Standards and Technology (NIST) in developing and providing thermal insulation SRMs, specifically high-density molded fibrous-glass board, to the public. Collectively, the data sets cover two nominal thicknesses of 13 mm and 25 mm, bulk densities from 60 kg·m(-3) to 180 kg·m(-3), and mean temperatures from 100 K to 340 K. The analysis repetitively fits six models to the individual data sets. The most general form of the nested set of multilinear models used is given in the following equation: [Formula: see text]where λ(ρ,T) is the predicted thermal conductivity (W·m(-1)·K(-1)), ρ is the bulk density (kg·m(-3)), T is the mean temperature (K) and ai (for i = 1, 2, … 6) are the regression coefficients. The least squares fit results for each model across all data sets are analyzed using both graphical and analytic techniques. The prevailing generic model for the majority of data sets is the bilinear model in ρ and T. [Formula: see text] One data set supports the inclusion of a cubic temperature term and two data sets with low-temperature data support the inclusion of an exponential term in T to improve the model predictions. Physical interpretations of the model function terms are described. Recommendations for future renewals of SRM 1450 are provided. An Addendum provides historical background on the origin of this SRM and the influence of the SRM on external measurement programs.

  8. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  9. Ceramic-Fibrous-Insulation Thermal-Protection System

    Science.gov (United States)

    Leiser, Daniel; Churchward, Rex; Katvala, Victor; Stewart, David; Balter, Aliza

    1992-01-01

    New composite thermal-protection system developed in which glass-ceramic impregnated into surface of fibrous insulation. Called TUFI for toughened unipiece fibrous insulation developed as replacement for tiles with reaction-cured-glass (RCG) coating. Impregnation of glass-ceramic results in thermal protection system with insulating properties comparable to existing system but with 20 to 100 times more resistance to impact.

  10. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation

    Directory of Open Access Journals (Sweden)

    A. C. P. Galvão

    2015-09-01

    Full Text Available AbstractThe beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste. The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD, SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation.

  11. Corrosion control under thermal insulation and fireproofing

    Energy Technology Data Exchange (ETDEWEB)

    Delahunt, J.F.

    1982-02-01

    Corrosion occurring on carbon steel which is protected by thermal insulation (mineral wool, fiberglass, foam glass, calcium silicate, phenolics, and polyurethanes) or by fireproofing material (concrete or gunite) is discussed. Examples are given and illustrated of corrosion in refineries, petrochemical plants, and pipelines which have been thermally insulated or fireproofed. Four corrosion mechanisms have been identified and are discussed. The promoting action of chlorides as well as the pH effect or corrosion are described and it is concluded that the corrosion under thermal insulation follows two patterns. Further, organic cellular foams (polyurethanes and phenolics) are shown to accelerate corrosive action. Stress corrosion cracking of stainless steel under thermal insulation is described and the effect of improper design/application is stressed. Specific measures to control corrosion are discussed for concrete fireproofing and thermal insulation. (MJJ)

  12. Better Thermal Insulation in Solar-Array Laminators

    Science.gov (United States)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  13. THERMAL INSULATION SYSTEMS

    Science.gov (United States)

    Augustynowicz, Stanislaw D. (Inventor); Fesmire, James E. (Inventor)

    2005-01-01

    Thermal insulation systems and with methods of their production. The thermal insulation systems incorporate at least one reflection layer and at least one spacer layer in an alternating pattern. Each spacer layer includes a fill layer and a carrier layer. The fill layer may be separate from the carrier layer, or it may be a part of the carrier layer, i.e., mechanically injected into the carrier layer or chemically formed in the carrier layer. Fill layers contain a powder having a high surface area and low bulk density. Movement of powder within a fill layer is restricted by electrostatic effects with the reflection layer combined with the presence of a carrier layer, or by containing the powder in the carrier layer. The powder in the spacer layer may be compressed from its bulk density. The thermal insulation systems may further contain an outer casing. Thermal insulation systems may further include strips and seams to form a matrix of sections. Such sections serve to limit loss of powder from a fill layer to a single section and reduce heat losses along the reflection layer.

  14. Perioperative thermal insulation.

    Science.gov (United States)

    Bräuer, Anselm; Perl, Thorsten; English, Michael J M; Quintel, Michael

    2007-01-01

    Perioperative hypothermia remains a common problem during anesthesia and surgery. Unfortunately, the implementation of new minimally invasive surgical procedures has not lead to a reduction of this problem. Heat losses from the skin can be reduced by thermal insulation to avoid perioperative hypothermia. However, only a small amount of information is available regarding the physical properties of insulating materials used in the Operating Room (OR). Therefore, several materials using validated manikins were tested. Heat loss from the surface of the manikin can be described as:"Q = h . DeltaT . A" where Q = heat flux, h = heat exchange coefficient, DeltaT = temperature gradient between the environment and surface, and A = covered area. Heat flux per unit area and surface temperature were measured with calibrated heat flux transducers. Environmental temperature was measured using a thermoanemometer. The temperature gradient between the surface and environment (DeltaT) was varied and "h" was determined by linear regression analysis as the slope of "DeltaT" versus heat flux per unit area. The reciprocal of the heat exchange coefficient defines the insulation. The insulation values of the materials varied between 0.01 Clo (plastic bag) to 2.79 Clo (2 layers of a hospital duvet). Given the range of insulating materials available for outdoor activities, significant improvement in insulation of patients in the OR is both possible and desirable.

  15. Assessment of Uncertainties for the NIST 1016 mm Guarded-Hot-Plate Apparatus: Extended Analysis for Low-Density Fibrous-Glass Thermal Insulation.

    Science.gov (United States)

    Zarr, Robert R

    2010-01-01

    An assessment of uncertainties for the National Institute of Standards and Technology (NIST) 1016 mm Guarded-Hot-Plate apparatus is presented. The uncertainties are reported in a format consistent with current NIST policy on the expression of measurement uncertainty. The report describes a procedure for determination of component uncertainties for thermal conductivity and thermal resistance for the apparatus under operation in either the double-sided or single-sided mode of operation. An extensive example for computation of uncertainties for the single-sided mode of operation is provided for a low-density fibrous-glass blanket thermal insulation. For this material, the relative expanded uncertainty for thermal resistance increases from 1 % for a thickness of 25.4 mm to 3 % for a thickness of 228.6 mm. Although these uncertainties have been developed for a particular insulation material, the procedure and, to a lesser extent, the results are applicable to other insulation materials measured at a mean temperature close to 297 K (23.9 °C, 75 °F). The analysis identifies dominant components of uncertainty and, thus, potential areas for future improvement in the measurement process. For the NIST 1016 mm Guarded-Hot-Plate apparatus, considerable improvement, especially at higher values of thermal resistance, may be realized by developing better control strategies for guarding that include better measurement techniques for the guard gap thermopile voltage and the temperature sensors.

  16. Variable pressure thermal insulating jacket

    Science.gov (United States)

    Nelson, Paul A.; Malecha, Richard F.; Chilenskas, Albert A.

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  17. Thermal Insulation Test Apparatuses

    Science.gov (United States)

    Berman, Brion

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.

  18. Industrial thermal insulation: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, R.G.; Tennery, V.J.; McElroy, D.L.; Godfrey, T.G.; Kolb, J.O.

    1976-03-01

    A large variety of thermal insulation materials is manufactured for application in various temperature ranges and environments. Additional and improved thermal insulation for steam systems is a key area with immediate energy conservation potential in several of the larger energy-consuming industries. Industrial thermal insulation technology was assessed by obtaining input from a variety of sources including insulation manufacturers, system designers, installers, users, consultants, measurement laboratories, open literature, and in-house knowledge. The assessment identified a number of factors relevant to insulation materials and usage that could contribute significantly to improved energy conservation.

  19. Handbook of Thermal Insulation Applications.

    Science.gov (United States)

    1983-01-01

    Transfer in Low-Density Insulation." Journal of Thermal Insulation. Technomic Publishing Co., Inc. Vol. 1, pp. 37-61. July 1979. Rockwool Industries...Inc. "Blowing Wool" Technical Rulletins #6, #8, #9, and #10. Englewood, CO. Aug. 1981. Rockwool Industries, Inc. "Facts About Home Insulation." No...78120. Denver, CO. 1981. Rockwool Industries, Inc. "Multi-layer Foil." Technical Bulletin #5. Englewood, CO. Aug. 1981. Roofing, Siding and Insulation

  20. Hybrid Multifoil Aerogel Thermal Insulation

    Science.gov (United States)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  1. An Insulating Glass Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data

  2. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    OpenAIRE

    Smajo Sulejmanovic; Suad Kunosic; Ema Hankic

    2014-01-01

    This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to r...

  3. Thermal Response Of Composite Insulation

    Science.gov (United States)

    Stewart, David A.; Leiser, Daniel B.; Smith, Marnell; Kolodziej, Paul

    1988-01-01

    Engineering model gives useful predictions. Pair of reports presents theoretical and experimental analyses of thermal responses of multiple-component, lightweight, porous, ceramic insulators. Particular materials examined destined for use in Space Shuttle thermal protection system, test methods and heat-transfer theory useful to chemical, metallurgical, and ceramic engineers needing to calculate transient thermal responses of refractory composites.

  4. Thermal Insulation Strips Conserve Energy

    Science.gov (United States)

    2009-01-01

    Launching the space shuttle involves an interesting paradox: While the temperatures inside the shuttle s main engines climb higher than 6,000 F hot enough to boil iron for fuel, the engines use liquid hydrogen, the second coldest liquid on Earth after liquid helium. Maintained below 20 K (-423 F), the liquid hydrogen is contained in the shuttle s rust-colored external tank. The external tank also contains liquid oxygen (kept below a somewhat less chilly 90 K or -297 F) that combines with the hydrogen to create an explosive mixture that along with the shuttle s two, powdered aluminum-fueled solid rocket boosters allows the shuttle to escape Earth s gravity. The cryogenic temperatures of the main engines liquid fuel can cause ice, frost, or liquefied air to build up on the external tank and other parts of the numerous launch fueling systems, posing a possible debris risk when the ice breaks off during launch and causing difficulties in the transfer and control of these cryogenic liquid propellants. Keeping the fuel at the necessary ultra-cold temperatures while minimizing ice buildup and other safety hazards, as well as reducing the operational maintenance costs, has required NASA to explore innovative ways for providing superior thermal insulation systems. To address the challenge, the Agency turned to an insulating technology so effective that, even though it is mostly air, a thin sheet can prevent a blowtorch from igniting a match. Aerogels were invented in 1931 and demonstrate properties that make them the most extraordinary insulating materials known; a 1-inch-thick piece of aerogel provides the same insulation as layering 15 panes of glass with air pockets in between. Derived from silica, aluminum oxide, or carbon gels using a supercritical drying process - resulting in a composition of almost 99-percent air - aerogels are the world s lightest solid (among 15 other titles they hold in the Guinness World Records), can float indefinitely on water if treated to be

  5. Characterization of the thermal insulating properties of vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Ng, N. [School of Physics, University of Sydney, New South Wales 2006 (Australia)]. E-mail: n.ng@Physics.usyd.edu.au; Collins, R.E. [School of Physics, University of Sydney, New South Wales 2006 (Australia); So, L. [School of Physics, University of Sydney, New South Wales 2006 (Australia)

    2007-03-25

    Methods are described for characterizing the thermal insulating properties of vacuum glazing-two flat sheets of glass, hermetically sealed together around the edges containing a highly evacuated space, and separated by small pillars. The small-area guarded hot plate apparatus gives absolute measurements of the different heat flows through the glazing due to radiation, gaseous conduction and thermal conduction through the pillars. In the transient technique, a step temperature increase is applied to one side of the glazing, and the resultant slow temperature rise of the other glass sheet is measured. This method can be used in ageing studies to characterize glazings at elevated temperatures. In the cool-down method, one glass sheet of a glazing that is initially at high temperature is insulated, the opposite glass sheet is rapidly cooled, and the rate of cooling of the thermally insulated sheet is then measured.

  6. Multipurpose Thermal Insulation Test Apparatus

    Science.gov (United States)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  7. Thermal Insulation from Hardwood Residues

    Science.gov (United States)

    Sable, I.; Grinfelds, U.; Vikele, L.; Rozenberga, L.; Zeps, M.; Luguza, S.

    2015-11-01

    Adequate heat is one of the prerequisites for human wellbeing; therefore, building insulation is required in places where the outside temperature is not suitable for living. The climate change, with its rising temperatures and longer dry periods, promotes enlargement of the regions with conditions more convenient for hardwood species than for softwood species. Birch (Betula pendula) is the most common hardwood species in Latvia. The aim of this work was to obtain birch fibres from wood residues of plywood production and to form low-density thermal insulation boards. Board formation and production was done in the presence of water; natural binder, fire retardant and fungicide were added in different concentrations. Board properties such as density, transportability or resistance to particulate loss, thermal conductivity and reaction to fire were investigated. This study included thermal insulation boards with the density of 102-120 kg/m3; a strong correlation between density and the binder amount was found. Transportability also improved with the addition of a binder, and 0.1-0.5% of the binder was the most appropriate amount for this purpose. The measured thermal conductivity was in the range of 0.040-0.043 W/(m·K). Fire resistance increased with adding the fire retardant. We concluded that birch fibres are applicable for thermal insulation board production, and it is possible to diversify board properties, changing the amount of different additives.

  8. Local Thermal Insulating Materials For Thermal Energy Storage

    African Journals Online (AJOL)

    Unknown User

    1. Introduction. It is necessary to use thermal insulating materials around thermal energy storage systems to minimize heat losses from the systems [1]. There are varieties of insulating materials which come in various forms like loose fill, rigid boards, pipe and foam. The thermal insulation is provided by embedding insulation ...

  9. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  10. Thermal shock resistance ceramic insulator

    Science.gov (United States)

    Morgan, Chester S.; Johnson, William R.

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  11. A Study on Insulation Characteristics of Glass Wool and Mineral Wool Coated with a Polysiloxane Agent

    Directory of Open Access Journals (Sweden)

    Chan-Ki Jeon

    2017-01-01

    Full Text Available The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulation materials which are made of Styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral wool and glass wool is very weak with moisture, while it is nonflammable, so that its usage is very limited. Therefore, this study developed moisture resistance applicable to mineral wool and glass wool and measured the thermal conductivity of the samples which are exposed to moisture by exposing the product coated with moisture resistance and without moisture resistance to moisture and evaluated how the moisture affects thermal conductivity by applying this to inorganic insulation.

  12. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  13. Flexible pile thermal barrier insulator

    Science.gov (United States)

    Anderson, G. E.; Fell, D. M.; Tesinsky, J. S. (Inventor)

    1978-01-01

    A flexible pile thermal barrier insulator included a plurality of upstanding pile yarns. A generally planar backing section supported the upstanding pile yarns. The backing section included a plurality of filler yarns forming a mesh in a first direction. A plurality of warp yarns were looped around said filler yarns and pile yarns in the backing section and formed a mesh in a second direction. A binder prevented separation of the yarns in the backing section.

  14. Improved Aerogel Vacuum Thermal Insulation

    Science.gov (United States)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  15. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure and...... improvement in the fraction of closed porosity could potentially decrease the thermal conductivity even further, and thus our approach has great potential in terms of a thermal insulation material....... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  16. On vacuum-insulated thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Benjamin [Georg-Simon-Ohm Univ. of Applied Sciences, Nuernberg (Germany); Technische Univ. Muenchen (Germany). Inst. of Resource and Energy Technology; Hofbeck, Klaus [Georg-Simon-Ohm Univ. of Applied Sciences, Nuernberg (Germany)

    2011-07-01

    Nowadays, the insulation for thermal energy storage (TES) is not as good as it should be. One reason for this is the higher investment cost for better insulation. Nevertheless, most of the recent studies show that the thermal losses of long-term storage have been underestimated. Therefore, recent research studies have focused on vacuum-insulated thermal storage. There are two common concepts with regard to the use of vacuum insulation for thermal storage. On the one hand, the Center for Applied Energy Research (ZAE) in Munich uses an evacuated double vessel filled with pearlite. On the other hand, the Ohm University uses vacuum insulation panels (VIP). Both the insulation concepts are based on the Knudsen effect. Thus, the thermal conductivity is lowered by a factor of 6-10, when compared with the conventional insulation materials, such as EPS, XPS, or mineral wool. Both the concepts are adoptions of the existing insulation applications. The filled double vessel tank is already being used for cryogenic storage for liquid gases. Furthermore, VIPs are being used to insulate passive houses. However, the use of vacuum insulation for thermal energy storage causes different problems due to higher temperatures and moisture. Nevertheless, vacuum insulations are a promising solution for small thermal long-tenn storage. This study presents the first state-of-the-art review on vacuum-insulated thermal tanks.

  17. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  18. Outgassing of solid material into vacuum thermal insulation spaces

    Science.gov (United States)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  19. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  20. Building ceramics with improved thermal insulation parameters

    OpenAIRE

    Rzepa Karol; Wons Wojciech; Reben Manuela

    2016-01-01

    One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used...

  1. Local Thermal Insulating Materials For Thermal Energy Storage ...

    African Journals Online (AJOL)

    Thermal insulation is one of the most important components of a thermal energy storage system. In this paper the thermal properties of selected potential local materials which can be used for high temperature insulation are presented. Thermal properties of seven different samples were measured. Samples consisted of: ...

  2. Sprayable Thermal Insulation for Cryogenic Tanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sprayable Thermal Insulation for Cryogenic Tanks (STICT) is a thermal management system applied by either an automated or manual spraying process with less...

  3. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  4. Vibration considerations for cryogenic tanks using glass bubbles insulation

    Science.gov (United States)

    Werlink, Rudy John; Fesmire, James; Sass, Jared P.

    2012-06-01

    The use of glass bubbles as an efficient and practical thermal insulation system hasbeen previously demonstrated in cryogenic storage tanks. One such example is a spherical,vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate hasbeen reduced by approximately 50 percent. Further applications may include non-stationarytanks such as mobile tankers and tanks with extreme duty cycles or exposed to significantvibration environments. Space rocket launch events and mobile tanker life cycles representtwo harsh cases of mechanical vibration exposure. A number of bulk fill insulationmaterials including glass bubbles, perlite powders, and aerogel granules were tested forvibration effects and mechanical behavior using a custom design holding fixture subjectedto random vibration on an Electrodynamic Shaker. The settling effects for mixtures ofinsulation materials were also investigated. The vibration test results and granular particleanalysis are presented with considerations and implications for future cryogenic tankapplications.

  5. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  6. Prediction of the Effective Thermal Conductivity of Powder Insulation

    Science.gov (United States)

    Jin, Lingxue; Park, Jiho; Lee, Cheonkyu; Jeong, Sangkwon

    The powder insulation method is widely used in structural and cryogenic systems such as transportation and storage tanks of cryogenic fluids. The powder insulation layer is constructed by small particle powder with light weight and some residual gas with high porosity. So far, many experiments have been carried out to test the thermal performance of various kinds of powder, including expanded perlite, glass microspheres, expanded polystyrene (EPS). However, it is still difficult to predict the thermal performance of powder insulation by calculation due to the complicated geometries, including various particle shapes, wide powder diameter distribution, and various pore sizes. In this paper, the effective thermal conductivity of powder insulation has been predicted based on an effective thermal conductivity calculationmodel of porous packed beds. The calculation methodology was applied to the insulation system with expanded perlite, glass microspheres and EPS beads at cryogenic temperature and various vacuum pressures. The calculation results were compared with previous experimental data. Moreover, additional tests were carried out at cryogenic temperature in this research. The fitting equations of the deformation factor of the area-contact model are presented for various powders. The calculation results show agood agreement with the experimental results.

  7. Apparent Thermal Conductivity Of Multilayer Insulation

    Science.gov (United States)

    Mcintosh, Glen E.

    1995-01-01

    Mathematical model of apparent or effective thermal conductivity between two successive layers of multilayer thermal insulation (MLI) offers potential for optimizing performance of insulation. One gains understanding of how each physical mechanism contributes to overall flow of heat through MLI blanket. Model helps analyze engineering tradeoffs among such parameters as number of layers, thicknesses of gaps between layers, types of spacers placed in gaps, weight, overall thickness, and effects of foregoing on apparent thermal conductivity through blanket.

  8. Low-thermal expansion infrared glass ceramics

    Science.gov (United States)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  9. Sprayable Thermal Insulation for Cryogenic Tanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation addressed in this proposal is Sprayable Thermal Insulation for Cryogenic Tanks, or STICT. This novel system could be applied in either an automated or...

  10. 14 CFR 25.856 - Thermal/Acoustic insulation materials.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Thermal/Acoustic insulation materials. 25....856 Thermal/Acoustic insulation materials. (a) Thermal/acoustic insulation material installed in the... requirement does not apply to thermal/acoustic insulation installations that the FAA finds would not...

  11. Thermal Performance Testing of Cryogenic Insulation Systems

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  12. Preparation and performance of thermal insulation energy saving coating materials for exterior wall.

    Science.gov (United States)

    Wang, Fei; Liang, Jinsheng; Tang, Qingguo; Chen, Gong; Chen, Yalei

    2014-05-01

    Nano zinc oxide with a high refractive index has good thermal reflection performance, hollow glass microspheres have good thermal reflection and insulation performance, and sepiolite nanofibers with many nanostructural pores have good thermal insulation performance. The dispensability of nano zinc oxide in coating materials was improved by optimizing surface silane coupling agent modification process, leading to the good thermal reflection performance. The thermal insulation performance was improved by hollow glass microspheres and sepiolite nanofibers. On this basis, the thermal insulation coating materials were prepared by exploring the effect of amount, complex mode, and other factors of the above three kinds of functional fillers on the thermal reflection and insulation performance of coating materials. The results showed that the surface modification effect of nano zinc oxide was the best when the silane coupling agent addition was 6%. The reflection and insulation performance of the coatings were the best when the additions of modified nano zinc oxide, hollow glass microspheres, and sepiolite nanofibers were 3%, 4%, and 4%, respectively. Compared with the control coating materials, the thermal insulation effect was improved obviously, which was evaluated by the -13.5 degrees C increase of maximum temperature difference between the upper and the lower surfaces.

  13. Evaluation of thermal insulation materials

    Science.gov (United States)

    Wilbers, O. J.; Conti, J. C.; Mcgee, J. V.; Mcpherson, J. I.

    1973-01-01

    Data was obtained on silicone-bonded fiberglass, isocyanurate foam, and two dozen other insulators. Materials were selected to withstand heat sterilization, outer space, and the Martian atmosphere. Significant environmental parameters were vibration, landing shock, and launch venting.

  14. Alternative Hybrid Core Material For Vacuum Insulation Panels Silica-Fly Ash-Glass Fiber

    Directory of Open Access Journals (Sweden)

    Desire Emefa Awuye

    2017-11-01

    Full Text Available Vacuum insulation panels one of the most promising insulation materials consisting of an evacuated core material an air tight envelope and in special cases an absorbent known as getter. However despite its outstanding properties it faces some challenges such as relatively high cost and quite a short service life which can be attributed to the core material used. In this paper Hybrid core materials HCM consisting of various percentages of fly ash fumed silica and glass fiber were used as a core material for vacuum insulation panels and the composition ratio vs thermal conductivity were investigated to ascertain the optimum composition ratio that showed the lowest thermal conductivity and best insulation properties. This was to produce VIPs at a relatively cheaper cost. The optimum ratio of the HCM that showed the best insulation properties including lower thermal conductivity is that of 65 fly ash FA 30 fumed silica FS and 5 glass fiber GF. The HCM produced exhibited similar qualities as that of silica powder core VIPs. Even though produced at a relatively lower cost the insulation properties were not compromised. Furthermore the thermal conductivity of each of the VIPs from the HCMs prepared were measured after undergoing a temperature stress of 60 C for 6 months.

  15. Aerogels for Thermal Insulation of Thermoelectric Devices

    Science.gov (United States)

    Sakamoto, Jeffrey; Fleurial, Jean-Pierre; Snyder, Jeffrey; Jones, Steven; Caillat, Thierry

    2006-01-01

    Silica aerogels have been shown to be attractive for use as thermal-insulation materials for thermoelectric devices. It is desirable to thermally insulate the legs of thermoelectric devices to suppress lateral heat leaks that degrade thermal efficiency. Aerogels offer not only high thermal- insulation effectiveness, but also a combination of other properties that are especially advantageous in thermoelectric- device applications. Aerogels are synthesized by means of sol-gel chemistry, which is ideal for casting insulation into place. As the scale of the devices to be insulated decreases, the castability from liquid solutions becomes increasingly advantageous: By virtue of castability, aerogel insulation can be made to encapsulate devices having any size from macroscopic down to nanoscopic and possibly having complex, three-dimensional shapes. Castable aerogels can permeate voids having characteristic dimensions as small as nanometers. Hence, practically all the void space surrounding the legs of thermoelectric devices could be filled with aerogel insulation, making the insulation highly effective. Because aerogels have the lowest densities of any known solid materials, they would add very little mass to the encapsulated devices. The thermal-conductivity values of aerogels are among the lowest reported for any material, even after taking account of the contributions of convection and radiation (in addition to true thermal conduction) to overall effective thermal conductivities. Even in ambient air, the contribution of convection to effective overall thermal conductivity of an aerogel is extremely low because of the highly tortuous nature of the flow paths through the porous aerogel structure. For applications that involve operating temperatures high enough to give rise to significant amounts of infrared radiation, opacifiers could be added to aerogels to reduce the radiative contributions to overall effective thermal conductivities. One example of an opacifier is

  16. Low-Density, Sprayable, Thermal Insulation

    Science.gov (United States)

    Mclemore, James P.; Norton, William E.; Lambert, Joe D.; Simpson, William G.; Echols, Sherman; Sharpe, Max H.; Hill, William E.

    1989-01-01

    Improved formulation prevents cracks. Low-density, thermally insulating material applied by spraying it onto surface to be protected. Material, called "MSA-2" improved version of similar material called "MSA-1". Useful as sprayed, lightweight insulation to cover large areas in terrestrial applications in which manual attachment too slow or impractical. Formulated to be more flexible and to prevent coats as thick as 1/2 in. from developing stress cracks as they cure.

  17. Relationship between clothing ventilation and thermal insulation.

    Science.gov (United States)

    Bouskill, L M; Havenith, G; Kuklane, K; Parsons, K C; Withey, W R

    2002-01-01

    Air layers trapped within a clothing microenvironment contribute to the thermal insulation afforded by the ensemble. Any exchange of air between the external environment and these trapped air layers results in a change in the ensemble's thermal insulation and water vapor resistance characteristics. These effects are seldom taken into account when considering the effects of clothing on human heat balance, the thermal characteristics usually being restricted to intrinsic insulation and intrinsic evaporative resistance measurements on static manikins. Environmental assessments based on these measurements alone may therefore lead to under-(or over-) estimation of thermal stress of the worker. The aim of this study was to quantify the relationship between clothing ventilation and thermal insulation properties. A one-layer, air-impermeable ensemble and a three-layer, air-permeable ensemble were tested using an articulated, thermal manikin in a controlled climate chamber (ta = tr = 10 degrees C, PaH2O = 0.73 kPa). The manikin, which was designed for thermal insulation measurements, was also equipped with a system to determine clothing ventilation. Baseline measurements of clothing ventilation (VT) and thermal insulation (total clothing insulation: I(T)--measured, intrinsic insulation: Icl--calculated) were made of the clothing with the manikin standing stationary in still air conditions. Increased clothing ventilation was induced when the manikin "walked" (walking speeds of 0.37 m/sec and 0.77 m/sec) and by increasing the environmental air speed (Va = 1.0 m/sec). These increases in VT reduced Icl, this being ascribed to the increased heat transfer from the manikin skin surface to the cooler external environment due to the exchange of air between the clothing microenvironment and the external environment. Measured air exchanges were shown to have a potential heat exchange capacity of up to 17 and 161 W/m2 for the one- and three-layer ensembles, respectively, emphasizing

  18. MAS Bulletin. Microtherm Thermal Insulation

    Science.gov (United States)

    1989-03-03

    nonstandard diameters and special wall thicknesses can be produced to order. The principal constituents of Microtherm MPS are microporous silicas ...by a cladding system. Most purpose-made 0 0: pire insulation coatings of resin, bitumen , etc., can be applied to Microtherm MPS, but for full

  19. Comparative study of hygrothermal properties of five thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Laure Ducoulombier

    2017-09-01

    Full Text Available The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three parts. The first part presents the phenomena of hygrothermal transfers in walls in order to understand the need for determining specific properties of the insulating materials. The second part describes in details the five studied insulating materials and the methods used for the characterization and identification of their main properties. Finally, the last part presents the experimental results and makes comparisons between materials. The differences between the insulating materials are brought out, such as the strong dependence of the thermal conductivity of polystyrene on temperature, or the good permeability of fibrous insulating materials to water vapor. A detailed analysis of the obtained results is presented.

  20. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  1. Soup Cooking by Thermal Insulation Method

    OpenAIRE

    佐藤, 辰江; 根本, 勢子; サトウ, タツエ; ネモト, セイコ; TATSUE, SATO; Seiko, Nemoto

    1992-01-01

    In order to examine the thermal insulation method of soup cooking, we cooked two kinds of soup. The soup cooked by thermal insulation method was compared with the soup cooked by standard boiling method. ln sensory test, it was more aromatic and palatable than the soup by boiling, and some panels commented that it was rather mild. The measured values of pH, specific gravity, acidity and amount of dry weight of souble solids, total-N, formal-N of the soup cooked by the two methods mentioned abo...

  2. Multilayer Impregnated Fibrous Thermal Insulation Tiles

    Science.gov (United States)

    Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.

    2007-01-01

    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.

  3. Perioperative thermal insulation: minimal clinically important differences?

    Science.gov (United States)

    Bräuer, A; Perl, T; Uyanik, Z; English, M J M; Weyland, W; Braun, U

    2004-06-01

    Reduction of heat losses from the skin by thermal insulation is used to avoid perioperative hypothermia. However, there is little information about the physical properties of various insulating materials used in the operating room. The following insulation materials were tested using a validated manikin: cotton surgical drape tested in two and four layers; Allegiance drape; 3M Steri-Drape; metallized plastic sheet; Thermadrape Barkey thermcare 1 tested in one and two layers; hospital duvet tested in one and two layers. Heat loss from the surface of the manikin can be described as: Q(*);= h.DeltaT.A where Q(*); is heat flux, h is the heat exchange coefficient, DeltaT is the temperature gradient between the environment and surface and A is the area covered. The heat flux per unit area (Q(*); A(-1)) and surface temperature were measured with nine calibrated heat-flux transducers. The environmental temperature was measured using a thermoanemometer. DeltaT was varied and h was determined by linear regression analysis as the slope of DeltaT vs Qdot; A(-1). The reciprocal of h defines the insulation. The insulation value of air was 0.61 Clo. The insulation values of the materials varied between 0.17 Clo (two layers of cotton surgical drapes) to 2.79 Clo (two layers of hospital duvet). There are relevant differences between various insulating materials. The best commercially available material designed for use in the operating room (Barkey thermcare 1) can reduce heat loss from the covered area by 45% when used in two layers. Given the range of insulating materials available for outdoor activities, significant improvement in insulation of patients in the operating room is both possible and desirable.

  4. Thermal insulation for preventing inadvertent perioperative hypothermia.

    Science.gov (United States)

    Alderson, Phil; Campbell, Gillian; Smith, Andrew F; Warttig, Sheryl; Nicholson, Amanda; Lewis, Sharon R

    2014-06-04

    Inadvertent perioperative hypothermia occurs because of interference with normal temperature regulation by anaesthetic drugs and exposure of skin for prolonged periods. A number of different interventions have been proposed to maintain body temperature by reducing heat loss. Thermal insulation, such as extra layers of insulating material or reflective blankets, should reduce heat loss through convection and radiation and potentially help avoid hypothermia. To assess the effects of pre- or intraoperative thermal insulation, or both, in preventing perioperative hypothermia and its complications during surgery in adults. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 2), MEDLINE, OvidSP (1956 to 4 February 2014), EMBASE, OvidSP (1982 to 4 February 2014), ISI Web of Science (1950 to 4 February 2014), and CINAHL, EBSCOhost (1980 to 4 February 2014), and reference lists of articles. We also searched Current Controlled Trials and ClinicalTrials.gov. Randomized controlled trials of thermal insulation compared to standard care or other interventions aiming to maintain normothermia. Two authors extracted data and assessed risk of bias for each included study, with a third author checking details. We contacted some authors to ask for additional details. We only collected adverse events if reported in the trials. We included 22 trials, with 16 trials providing data for some analyses. The trials varied widely in the type of patients and operations, the timing and measurement of temperature, and particularly in the types of co-interventions used. The risk of bias was largely unclear, but with a high risk of performance bias in most studies and a low risk of attrition bias. The largest comparison of extra insulation versus standard care had five trials with 353 patients at the end of surgery and showed a weighted mean difference (WMD) of 0.12 ºC (95% CI -0.07 to 0.31; low quality evidence). Comparing extra insulation

  5. Comparison Study of Thermal Insulation Characteristics from Oil Palm Fibre

    Directory of Open Access Journals (Sweden)

    Hassan S.

    2014-07-01

    Full Text Available In this study, investigation was conducted to study the use of solid biomass from palm oil mill as insulation material. The experimental study concentrates on using oil palm fiber to determine the unidirectional thermal conductivity, k. The experiment was conducted at different temperature ranges and packing density. The values of k obtained were found to be 0.2 W/m.K to 0.069 W/m.K for a packing density between 66 kg/m3 to 110 kg/m3, and at a temperature between 40ºC to 70ºC. Comparisons were made with others common insulating materials, and it was found that the experimental k values for oil palm waste insulation was lower by between 4 to 56 times for rockwool and between 7 to 57 times for glass fiber at low temperatures. The value k of oil palm fiber however showed an increase at higher temperatures and was lower at lower packing densities. Although not being able to match the k values of common insulators at higher temperatures, other factors such as cost and environmental benefits of using waste material should be taken into consideration and hence encouraging its use as at least a supplement to existing insulation materials

  6. Aerogel Beads as Cryogenic Thermal Insulation System

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  7. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  8. Thermal Insulation System for Large Flame Buckets

    Science.gov (United States)

    Callens, E. Eugene, Jr.; Gamblin, Tonya Pleshette

    1996-01-01

    The objective of this study is to investigate the use of thermal protection coatings, single tiles, and layered insulation systems to protect the walls of the flame buckets used in the testing of the Space Shuttle Main Engine, while reducing the cost and maintenance of the system. The physical behavior is modeled by a plane wall boundary value problem with a convective frontface condition and a backface condition designed to provide higher heat rates through the material.

  9. Smoldering combustion hazards of thermal insulation materials

    Energy Technology Data Exchange (ETDEWEB)

    Ohlemiller, T.J.; Rogers, F.E.

    1980-07-01

    Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

  10. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  11. Determination of the Thermal Resistance of Pipe Insulation Material from Thermal Conductivity of Flat Insulation Products

    OpenAIRE

    Koenen, Alain; Marquis, Damien M.

    2015-01-01

    New European product standards now include a mandatory requirement for manufacturers to declare the temperature-dependent thermal conductivity for each insulation used in building equipments and industrial installations. For pipe insulation systems, the measurement is usually performed by a standard pipe test method, in which the value on a large temperature range is integrated to reduce temperature range and improve temperature measurement control. The alternative proposed in this article co...

  12. Evaluation of Fire Test Methods for Aircraft Thermal Acoustical Insulation

    Science.gov (United States)

    1997-09-01

    This report presents the results of laboratory round robin flammability testing performed on thermal acoustical insulation blankets and the films used as insulation coverings. This work was requested by the aircraft industry as a result of actual inc...

  13. Verification of the thermal insulation properties and determination the optimal position of the reflective thermal insulation layer in the wood based envelope

    National Research Council Canada - National Science Library

    Martin Labovský; Martin Lopušniak

    2016-01-01

    To achieve thinner wood based envelope is necessary look for an alternative thermal insulation material, which will have the best possible thermal insulation properties while maintaining affordability...

  14. Thermal Kinetics of Glass Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, Louis R.; Du, Jincheng

    2005-08-01

    Different glass quenching algorithms are used to create simulated silica glass and their effect on the final glass structure is determined. The most distinct changes are seen to occur in the medium-range structure, specifically in the population of the different ring sizes. Some differences in the number of defects formed are also observed. The implications are that modified glass forming algorithms create glasses that are at least as good as traditional simulated glass forming methods. The objective of using modified glass forming algorithms are to understand quenching rates of simulations in comparison to quenching rates of macroscopic real systems.

  15. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  16. System for Testing Thermal Insulation of Pipes

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.; Nagy, Zoltan F.

    2003-01-01

    An apparatus and method have been developed for measuring the rates of leakage of heat into pipes carrying liquids, the purpose of the measurements being to quantify the thermal performance of the insulation system. The apparatus is designed primarily for testing pipes used to carry cryogenic liquids, but can also be used for measuring the thermal performance of other insulated pipes or piping systems. The basic measurement principle is straightforward: The outer surface of the pipe insulation is maintained at a fixed warmer temperature. The interior of the pipe is maintained in a narrow fixed lower-temperature range by means of a regular liquid (e.g., water) that is pumped through the pipe at a known flow rate or a cryogenic liquid (e.g., nitrogen) that is saturated at atmospheric pressure and replenished until steady-state conditions are achieved. In the case of water or another liquid pumped through, the inlet and outlet temperatures are measured and heat-leak power is calculated as the mass flow rate of the liquid multiplied by the specific heat of the liquid multiplied by the inlet-to-outlet temperature rise of the liquid. In the case of liquid nitrogen or another low-temperature boiling liquid, the heat-leak power is calculated as the rate of boil-off multiplied by the latent heat of vaporization of the liquid. Then the thermal-insulation performance of the pipe system can be calculated as a function of the measured heat-leak power, the inner and outer boundary temperatures, and the dimensions of the pipe. The apparatus can test as many as three pipes simultaneously. The pipes can have inner diameters up to .15 cm and outer diameters up to .20 cm. The lengths of the pipes may vary; typical lengths are of the order of 18 m. Two thermal guard boxes . one for each end of the pipe(s) under test . are used to make the inlet and outlet fluid connections to the pipe(s) (see figure). The connections include bellows that accommodate thermal expansion and contraction

  17. Analysis and Experimental on Aircraft Insulation Thermal Bridge Effect

    Directory of Open Access Journals (Sweden)

    XIA Tian

    2017-06-01

    Full Text Available Two kinds of typical aircraft insulation structures were designed for the heat bridge in the metal ribs of aircraft insulation structures. In order to study the influence of heat bridge effect on thermal insulation performance, each configuration was analyzed by the transient heat transfer FEA, check point temperature was obtained in the hot surface temperature of 100 ℃, 200 ℃, 300 ℃, 424 ℃ respectively, and the validity of FEA was proved by insulation performance experiment. The result showed that the thermal bridge has a great influence to the insulation performance of insulation structure, and the thermal bridge influence should be considered adequately when the insulation structure designed. Additionally, the blocking method for thermal bridge is also put forward.

  18. Polyimide/Glass Composite High-Temperature Insulation

    Science.gov (United States)

    Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon

    2009-01-01

    Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.

  19. Fiber glass plastic insulation of power transmission lines. Stekloplastikovaya izolyatsiya liniy elektroperedachi

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, G.N.; Ivanov, V.L.

    1983-01-01

    Results are described of comprehensive studies of electrophysical characteristics of polymer electrical insulation of external design under the main operating effects. The current state of the problem of creation, use and selection of polymer electrical insulation are presented. Fundamentals are presented of the technique of selecting the polymer electrical insulation taking into consideration the specific nature of the fiber glass plastic structure. A technique is developed for calculation and selection of screen fittings for fiber glass plastic electrical insulation designs for apparatus and overhead lines. Reference data are presented which can be used in calculating the fiber glass plastic electrical insulation.

  20. Treating Fibrous Insulation to Reduce Thermal Conductivity

    Science.gov (United States)

    Zinn, Alfred; Tarkanian, Ryan

    2009-01-01

    A chemical treatment reduces the convective and radiative contributions to the effective thermal conductivity of porous fibrous thermal-insulation tile. The net effect of the treatment is to coat the surfaces of fibers with a mixture of transition-metal oxides (TMOs) without filling the pores. The TMO coats reduce the cross-sectional areas available for convection while absorbing and scattering thermal radiation in the pores, thereby rendering the tile largely opaque to thermal radiation. The treatment involves a sol-gel process: A solution containing a mixture of transition-metal-oxide-precursor salts plus a gelling agent (e.g., tetraethylorthosilicate) is partially cured, then, before it visibly gels, is used to impregnate the tile. The solution in the tile is gelled, then dried, and then the tile is fired to convert the precursor salts to the desired mixed TMO phases. The amounts of the various TMOs ultimately incorporated into the tile can be tailored via the concentrations of salts in the solution, and the impregnation depth can be tailored via the viscosity of the solution and/or the volume of the solution relative to that of the tile. The amounts of the TMOs determine the absorption and scattering spectra.

  1. Prospect of Thermal Insulation by Silica Aerogel: A Brief Review

    Science.gov (United States)

    Hasan, Mohammed Adnan; Sangashetty, Rashmi; Esther, A. Carmel Mary; Patil, Sharanabasappa B.; Sherikar, Baburao N.; Dey, Arjun

    2017-10-01

    Silica aerogel is a unique ultra light weight nano porous material which offers superior thermal insulation property as compared to the conventional thermal insulating materials. It can be applied not only for ground and aerospace applications but also in low and high temperatures and pressure regimes. Aerogel granules and monolith are synthesized by the sol-gel route while aerogel based composites are fabricated by the reinforcement of fibers, particle and opacifiers. Due to the characteristic brittleness (i.e., poor mechanical properties) of monolith or bulk aerogel, it is restricted in several applications. To improve the mechanical integrity and flexibility, usually different fibers are reinforced with aerogel and hence it can be used as flexible thermal insulation blankets. Further, to achieve effective thermal insulation behaviour particularly at high temperature, often opacifiers are doped with silica aerogel. In the present brief review, the prospects of bulk aerogel and aerogel based composites are discussed for the application of thermal insulation and thermal stability.

  2. Preparation of a Novel Water-based Acrylic Multi-Thermal Insulation Coating

    OpenAIRE

    Xiufang YE; Dongchu CHEN; Chang, Menglei; Youtian MO; Wang, Qingxiang

    2017-01-01

    To efficiently improve the thermal insulation effect of coatings, a novel water-based acrylic multi-thermal insulation coating (multi-WATIC) combined with thermal obstruction, echo, and radiation was prepared. The category and ratio of thermal insulation functional fillers are crucial. First, water-based acrylic thermal insulation coating (WATIC) with single thermal insulation functional fillers was prepared, and the thermal insulation property tests were done. Thereafter, a novel multi-WATIC...

  3. Effects of thermal insulation on electrical connections and outlet boxes

    Science.gov (United States)

    Beausoliel, R. W.; Clifton, J. R.; Meese, W. J.

    1981-04-01

    When residential walls are retrofitted with foamed-in urea formaldehyde or blown-in cellulose thermal insulations, the insulation may enter electrical outlet and switch boxes. The effects of these thermal insulations on the durability of electrical components were studied. These studies were carried out at 44, 75, and 96 percent relative humidities with test periods between one and twelve months. Laboratory test methods were developed and tests performed to determine the electrical and corrosive effects of urea formaldehyde and cellulose thermal insulation contained in electrical outlet and switch boxes.

  4. Methods of Testing Thermal Insulation and Associated Test Apparatus

    Science.gov (United States)

    2004-01-01

    The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.

  5. Thermal insulation of steep roofs. Heat insulating effects of different systems; Daemmung in Steildaechern. Die waermeschutztechnischen Wirkung unterschiedlicher Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Gerd [Technische Univ. Muenchen (Germany). Lehrstuhl Bauphysik; Fraunhofer-Institut fuer Bauphysik, Stuttgart, Holzkirchen, Kassel (Germany); Schade, Almuth; Sinnesbichler, Herbert [Fraunhofer-Institut fuer Bauphysik, Holzkirchen (Germany). Arbeitsgruppe Fassadenkonzepte

    2009-06-29

    For thermal insulation of steep roofs, so-called infrared reflecting thermal insulation materials are now available in France and also in Germany in addition to traditional thermal insulation systems. The insulating effect of these systems results primarily from the IR-reflecting surface of foils spaced at short intervals. For a comparison of the two thermal insulation systems, the Fraunhofer Institute of Constructional Physics of Holzkirchen carried out field tests and analyzed them. (orig.)

  6. Verification of the thermal insulation properties and determination the optimal position of the reflective thermal insulation layer in the wood based envelope

    Directory of Open Access Journals (Sweden)

    Labovský Martin

    2016-06-01

    Full Text Available To achieve thinner wood based envelope is necessary look for an alternative thermal insulation material, which will have the best possible thermal insulation properties while maintaining affordability. One such material is also reflective thermal insulation layer, but it is necessary to verify the thermal insulation properties and determine the optimal position in the wood based envelope.

  7. THERMAL INSULATION EFFECTS ON ENERGY EFFICIENCY OF BUILDING STRUCTURES

    OpenAIRE

    M. Cvetkovska; Knezevic, M.; Rogac, M.

    2012-01-01

    This paper presents the use of Finite Element Method for heat transfer analysis. Connections wall-beam-floor structures with different positions of the thermal insulation have been analyzed and conclusions about energy efficiency and energy loss are made. Keywords: heat transfer, numerical analysis, finite elements, thermal insulation, energy efficiency.

  8. Effect of hydrophobic nano-silica on the thermal insulation of fibrous silica compacts

    Directory of Open Access Journals (Sweden)

    Tseng-Wen Lian

    2017-06-01

    Full Text Available The particle’s surface property plays an important role on controlling the thermal insulation performance of fibrous silica compacts. In the present study, the effect of addition of hydrophobic silica on the thermal conductivity of the fibrous silica compacts is investigated. The measurement was conducted using laser flash method and differential scanning calorimeter (DSC method. The thermal conductivity of fibrous silica compacts is only 0.042 W/m K. The addition of 5% hydrophobic silica further reduces the thermal conductivity of fibrous silica compacts to 0.033 W/m K. The thermal conductivity reaches a constant value with higher hydrophobic silica content. The flexural strength decreases with the increase of hydrophobic silica content. A compromise between the thermal insulation and strength is needed. The performance of fibrous silica compacts shows strong dependence on the surface structure of glass fibers.

  9. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...... that the variations of these types of insulation systems work for pipes with temperature above 0C and for ambient conditions within common ranges for industrial applications....

  10. Сombined Thermal Insulating Module of Mounted Vented Facades

    Directory of Open Access Journals (Sweden)

    Ryabukhina Svetlana

    2016-01-01

    Full Text Available In order to define an optimum type of mounted vented facades among the existing ones, comparative analysis of two façade modules has been conducted. The first module type is a widespread standard module of hinged vented facade and the second type is less applicable combined thermal insulating module. Those two technologies were compared thermal engineering and energy efficiency parameters. It was defined that the application of a thermal insulating module with combined insulation system improves thermal engineering parameters of the building as well as leads to a substantial savings. This article exposes innovative materials and structure of vented facades which can be applied in modern construction.

  11. Quantitative risk assessment for a glass fiber insulation product.

    Science.gov (United States)

    Fayerweather, W E; Bender, J R; Hadley, J G; Eastes, W

    1997-04-01

    California Proposition 65 (Prop65) provides a mechanism by which the manufacturer may perform a quantitative risk assessment to be used in determining the need for cancer warning labels. This paper presents a risk assessment under this regulation for professional and do-it-yourself insulation installers. It determines the level of insulation glass fiber exposure (specifically Owens Corning's R-25 PinkPlus with Miraflex) that, assuming a working lifetime exposure, poses no significant cancer risk under Prop65's regulations. "No significant risk" is defined under Prop65 as a lifetime risk of no more than one additional cancer case per 100,000 exposed persons, and nonsignificant exposure is defined as a working lifetime exposure associated with "no significant risk." This determination can be carried out despite the fact that the relevant underlying studies (i.e., chronic inhalation bioassays) of comparable glass wool fibers do not show tumorigenic activity. Nonsignificant exposures are estimated from (1) the most recent RCC chronic inhalation bioassay of nondurable fiberglass in rats; (2) intraperitoneal fiberglass injection studies in rats; (3) a distributional, decision analysis approach applied to four chronic inhalation rat bioassays of conventional fiberglass; (4) an extrapolation from the RCC chronic rat inhalation bioassay of durable refractory ceramic fibers; and (5) an extrapolation from the IOM chronic rat inhalation bioassay of durable E glass microfibers. When the EPA linear nonthreshold model is used, central estimates of nonsignificant exposure range from 0.36 fibers/cc (for the RCC chronic inhalation bioassay of fiberglass) through 21 fibers/cc (for the i.p. fiberglass injection studies). Lower 95% confidence bounds on these estimates vary from 0.17 fibers/cc through 13 fibers/cc. Estimates derived from the distributional approach or from applying the EPA linear nonthreshold model to chronic bioassays of durable fibers such as refractory ceramic fiber

  12. Review on thermal insulation performance in various type of concrete

    Science.gov (United States)

    Shahedan, Noor Fifinatasha; Abdullah, Mohd Mustafa Al Bakri; Mahmed, Norsuria; Kusbiantoro, Andri; Binhussain, Mohammed; Zailan, Siti Norsaffirah

    2017-04-01

    Thermal insulation concrete building plays an important role in environment sustainability especially energy saving buildings. Buildings are one of the largest consumers of energy worldwide. Therefore, significant energy saving can be realized by buildings with proper materials, design and operation. Thermal insulation systems are nowadays mostly applied for such building envelopes where the materials of load bearing structure such as concrete do not have a substantial thermal insulation capability. Thermal insulation in concrete are materials or combinations of materials that are used to provide resistance to heat flow, should have low conductivity for building application in order to represence of a temperature gradient, has an important effect on the heat exchange between the building interior and the ambiance. The aim of this paper is to review the thermal properties include thermal conductivity and specific heat on various types of concrete.

  13. Thermal insulation testing method and apparatus

    Science.gov (United States)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2004-01-01

    A test apparatus and method of its use for evaluating various performance aspects of a test specimen is disclosed. A chamber within a housing contains a cold mass tank with a contact surface in contact with a first surface of a test specimen. The first surface of the test specimen is spaced from the second surface of the test specimen by a thickness. The second surface of the test specimen is maintained at a desired warm temperature. The first surface is maintained at a constant temperature by a liquid disposed within the cold mass tank. A boil-off flow rate of the gas is monitored and provided to a processor along with the temperature of the first and second surfaces of the test specimen. The processor calculates thermal insulation values of the test specimen including comparative values for heat flux and apparent thermal conductivity (k-value). The test specimen may be placed in any vacuum pressure level ranging from about 0.01 millitorr to 1,000,000 millitorr with different residual gases as desired. The test specimen may be placed under a mechanical load with the cold mass tank and another factors may be imposed upon the test specimen so as to simulate the actual use conditions.

  14. Integrated Thermal Insulation System for Spacecraft

    Science.gov (United States)

    Kolodziej, Paul (Inventor); Bull, Jeff (Inventor); Kowalski, Thomas (Inventor); Switzer, Matthew (Inventor)

    1998-01-01

    An integrated thermal protection system (TPS) for a spacecraft includes a grid that is bonded to skin of the spacecraft, e.g., to support the structural loads of the spacecraft. A plurality of thermally insulative, relatively large panels are positioned on the grid to cover the skin of the spacecraft to which the grid has been bonded. Each panel includes a rounded front edge and a front flange depending downwardly from the front edge. Also, each panel includes a rear edge formed with a rounded socket for receiving the rounded front edge of another panel therein, and a respective rear flange depends downwardly from each rear edge. Pins are formed on the front flanges, and pin receptacles are formed on the rear flanges, such that the pins of a panel mechanically interlock with the receptacles of the immediately forward panel. To reduce the transfer to the skin of heat which happens to leak through the panels to the grid, the grid includes stringers that are chair-shaped in cross-section.

  15. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  16. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.

  17. High performance thermal insulation systems - HLWD; Hochleistungs-Waermedaemmung HLWD

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Erb, M. [Eicher und Pauli AG, Liestal (Switzerland); Binz, A.; Moosmann, A. [Fachhochschule beider Basel, Institut fuer Energie, Muttenz (Switzerland)

    2000-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) by the research program concerning the efficient use of energy in buildings takes a look at high-performance thermal insulation systems (HLWD). Work done on three applications - internal insulation used in the refurbishment of buildings, insulation of hot-water storage tanks and outside doors - is reported on. Economic feasibility is discussed and a number of demonstration projects are reported on. Apart from the above mentioned, the insulation of a terrace, the insulation of a roller-blind housing and the insulation of a deep-freeze cubicle are reviewed. The construction of vacuum insulation panels (VIP) and their manufacture are looked at. Economic aspects are looked at and the use of VIP in practice is discussed.

  18. Estimating Clothing Thermal Insulation Using an Infrared Camera

    OpenAIRE

    Jeong-Hoon Lee; Young-Keun Kim; Kyung-Soo Kim; Soohyun Kim

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal cloth...

  19. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    OpenAIRE

    Fadzil M. A.; Norliyati M. A.; Hilmi M. A.; Ridzuan A. R.; Wan Ibrahim M. H.; Assrul R. Z.

    2017-01-01

    Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insula...

  20. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  1. Composite flexible insulation for thermal protection of space vehicles

    Science.gov (United States)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1992-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the Aeroassist Space Transfer Vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this system are also described. Analytical modeling describing the thermal performance of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  2. Electrostatic Separation Of Layers In Thermal Insulation

    Science.gov (United States)

    Bhandari, Pradeep

    1995-01-01

    Layers in multilayer insulation charged to keep them separated by electrostatic repulsion, eliminating need for spacer nets. Removal of spacer nets reduces conduction of heat between layers. Insulation in question type used to slow leakage of heat into Dewar flasks containing liquid helium. Proposal originally applied to insulation in cryogenic cooling subsystems of infrared-detector systems in outer space, also appears applicable to small panels of insulation for terrestrial cryogenic equipment, provided layers contained in evacuated spaces and weight of each layer small fraction of electrostatic force upon it.

  3. Thermal transmittance of a cellulose loose-fill insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Nicolajsen, A. [Danish Building and Urban Research, Hoersholm (Denmark). Department of Building Technology and Productivity

    2005-07-15

    The thermal performance of cellulose insulation material was investigated and compared with the thermal performance of stone wool batts. The moisture content in selected facade elements insulated with cellulose loose-fill insulation material and stone wool, was investigated as well as the influence of the moisture content on thermal transmittance. The investigation was carried out as a full-scale test under normal climate conditions in a moisture test house facility. Facade elements were built as timber frame constructions. Heat flow through the facade elements was measured with built-in heat flowmeters and the moisture content in the thermal insulation behind the wind barrier was measured with moisture measuring dowels. The test showed that the thermal performance of the tested type of cellulose loose-fill insulation material was significantly lower than the thermal performance of stone wool batts. The maximum moisture content of the insulation material was below, what in Denmark is considered critical for the onset of rot and growth of wood decaying fungi. The thermal transmittance did not change with changes in the moisture content within the investigated hygroscopic range. (author)

  4. Wrapped-IMLI: Thermal Insulation for Cryogenic Feed Lines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Exploration vehicles require improved technologies for passive thermal insulation for zero boil-off of cryopropellants during extended LEO and lunar surface...

  5. Estimating Clothing Thermal Insulation Using an Infrared Camera

    National Research Council Canada - National Science Library

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera...

  6. Thermal properties of simulated Hanford waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington USA; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington USA; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington USA; Canfield, Nathan L. [Pacific Northwest National Laboratory, Richland Washington USA; Rönnebro, Ewa C. E. [Pacific Northwest National Laboratory, Richland Washington USA; Vienna, John D. [Pacific Northwest National Laboratory, Richland Washington USA; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington

    2017-03-20

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flash diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.

  7. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  8. Thermal conductivity of disperse insulation materials and their mixtures

    Science.gov (United States)

    Geža, V.; Jakovičs, A.; Gendelis, S.; Usiļonoks, I.; Timofejevs, J.

    2017-10-01

    Development of new, more efficient thermal insulation materials is a key to reduction of heat losses and contribution to greenhouse gas emissions. Two innovative materials developed at Thermeko LLC are Izoprok and Izopearl. This research is devoted to experimental study of thermal insulation properties of both materials as well as their mixture. Results show that mixture of 40% Izoprok and 60% of Izopearl has lower thermal conductivity than pure materials. In this work, material thermal conductivity dependence temperature is also measured. Novel modelling approach is used to model spatial distribution of disperse insulation material. Computational fluid dynamics approach is also used to estimate role of different heat transfer phenomena in such porous mixture. Modelling results show that thermal convection plays small role in heat transfer despite large fraction of air within material pores.

  9. Effective Thermal Conductivity of Insulating Material made from Recycled Newspapers

    Science.gov (United States)

    Yamada, Etsuro; Takahashi, Kaneko; Sato, Mitsuo; Ishii, Yukihiro

    In this paper, the experimental results are represented on the effective thermal conductivity of cellulose insulation powder which is made from recycled newspapers. This insulating material is useful for energy and resources saving. The steady state cylindrical absolute method is employed by considering the accuracy of measurement. The experimental results are compared with the ones measured previously by other methods. The main results obtained are as follows (1) The effective thermal conductivity of this insulating material increases with increasing temperature and effective specific density, respectively. But, these increasing rate is not so large. (2) The effective thermal conductivity is about 0.04-0.06[W/mK] at the range of the effective specific density less than 100 [kg/m3]. This value is comparable with other industrial insulating materials.

  10. Thin-layer thermal insulation coatings based on high-filled spheroplastics with polyorganosiloxane binder

    Science.gov (United States)

    Chukhlanov, V. Yu; Selivanov, O. G.; Trifonova, T. A.; Ilina, M. E.; Chukhlanova, N. V.

    2017-10-01

    Thermal insulation coatings, based on polyorganosiloxane as a binder and hollow glass microspheres, have been studied in this research. The developed materials are widely applied in various branches of science and engineering basically in construction. Components interaction processes are comprehensively studied. Spraying production methods of thin layer thermal insulation coatings have been researched. Ideal technological parameters for polyorganosiloxane coatings hardening depending on components ratio, ambient temperature, solvent and curative concentration have been determined. Stress related characteristics of constructional energy saving materials containing polyorganosiloxane have been researched. Components structure and ratio concerning compound extension strength properties have been revealed. Substantiation of Danneberg model application for the strength characteristics enhancing, when hollow microspheres are introduced, has been suggested. Thermal properties of coating thermal insulation have been studied. To research these characteristics standard methods applying devices IT-S-400 and IT-λ-400 have been chosen. Filler concentration increase was stated to decrease the composition heat conductivity coefficient and to the reduction of temperature dependence of this index. The authors suggested to employ the developed thermal insulation materials for construction and power engineering facilities operating under high temperature and other unfavorable environment.

  11. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  12. Evidence for thermal activation in the glassy dynamics of insulating granular aluminum conductance

    Science.gov (United States)

    Grenet, T.; Delahaye, J.

    2017-11-01

    Insulating granular aluminum is one of the proto-typical disordered insulators whose low temperature electrical conductance exhibits ubiquitous non-equilibrium phenomena. These include slow responses to temperature or gate voltage changes, characteristic field effect anomalies and ageing phenomena typical of a glass. In this system the influence of temperature on the glassy dynamics has remained elusive. A similar situation was met in insulating indium oxide and it was concluded that in high carrier density Anderson insulators, electronic slow relaxations essentially proceed via activationless processes. In this work we experimentally demonstrate that thermal effects do play a role and that the slow dynamics in granular aluminum is subject to thermal activation. We show how its signatures can be revealed and activation energy distributions can be extracted, providing a promising grasp on the nature of the microscopic mechanism at work in glassy Anderson insulators. We explain why some of the experimental protocols previously used in the literature fail to reveal thermal activation in these systems. Our results and analyses call for a reassessment of the emblematic case of indium oxide, and question the existence of purely activationless dynamics in any of the systems studied so far.

  13. Insulation materials. Cellulose fiber and Expanded polystyrene Insulations

    OpenAIRE

    Viladot Bel, Cèlia

    2017-01-01

    The main role of thermal insulation materials in a building envelope are to prevent heat loss and provide thermal comfort for a building's interior. The factor that characterizes an insulation material's effectiveness is its thermal conductivity λ (measured in W/mK). The lower a material's thermal conductivity, the more effective it is as an insulator. Traditional insulation materials include glass fibre, stone wool, expanded polystyrene, and polyurethane foam. While these materials are effic...

  14. Insulation materials. Cellulose fiber and expanded polystyrene insulations

    OpenAIRE

    Viladot Bel, Cèlia

    2017-01-01

    The main role of thermal insulation materials in a building envelope are to prevent heat loss and provide thermal comfort for a building's interior. The factor that characterizes an insulation material's effectiveness is its thermal conductivity λ (measured in W/mK). The lower a material's thermal conductivity, the more effective it is as an insulator. Traditional insulation materials include glass fibre, stone wool, expanded polystyrene, and polyurethane foam. While these materials are effic...

  15. Comparative study of thermal insulation boards from leaf and bark ...

    African Journals Online (AJOL)

    The aim of this study was to compare the performance of insulation boards made from leave and bark fibres of Pilios tigma thonningii L.in terms of density, water absorption, apparent thermal conductivity, specific heat and thermal diffusivity. The leave and the bark fibres were prepared in form of squared boards of 200 mm x ...

  16. Thin Thermal-Insulation Blankets for Very High Temperatures

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately.

  17. 24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.

    Science.gov (United States)

    2010-04-01

    ... mineral fiber insulation or an equivalent thermal barrier; or (3) The foam plastic insulating material has... thermal insulating materials. 3280.207 Section 3280.207 Housing and Urban Development Regulations Relating... SAFETY STANDARDS Fire Safety § 3280.207 Requirements for foam plastic thermal insulating materials. (a...

  18. Experimental study on manufacturing of insulation vacuum glazing and measurement of the thermal conductance

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Ho; Yoon, Il Seob [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kwak, Ho Sang [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Lee, Bo Hwa [Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2006-08-15

    Window is a critical component in the design of energy-efficient buildings. To minimize the heat loss, insulation performance of the glazing has to be improved. Manufacturing of vacuum glazing has been motivated by the possibility of making windows of very good thermal insulation properties for such applications. It is made by maintaining vacuum in the gap between two glass panes. Pillars are placed between them to withstand the atmospheric pressure. Edge covers are applied to reduce conduction through the edge. Accurate measurements have been made of the radiative heat transfer, the pillar conduction and the gas conduction using a guarded hot plate apparatus. Vacuum glazing is found to have low thermal conductance roughly below 1W/m{sup 2}K. Among the heat transfer modes of residual gas conduction, conduction through support pillar and the radiative heat transfer between the glass panes, the last one is the most dominant to the overall thermal conductance. Vacuum glazing using very low emittance Al-coated glass has an overall thermal conductance of about 0.7W/m{sup 2}K.

  19. Influence of gamma ray irradiation on thermal conductivity of bismaleimide-triazine-based insulation tape at cryogenic temperature

    Science.gov (United States)

    Yang, Y.; Yoshida, M.; Idesaki, A.; Ogitsu, T.

    2018-01-01

    Recent accelerator-based experiments for particle physics require the superconducting magnets that can be operated under high radiation environment. An electrical insulation tape, which is composed of polyimide film and a boron free glass fabric pre-impregnated with epoxy resin blended with bismaleimide-triazine resin, is developed to enhance the radiation tolerance for superconducting magnets. Since the thermal conductivity of insulation tape is one of key parameters that affects the coil temperature during the operation, the influence of gamma-ray irradiation on the thermal conductivity of the insulation tape is investigated with a maximum dose of 5 MGy. The thermal conductivity is measured at cryogenic temperature from 5 K to 20 K cooled by a Gifford-McMahon cryocooler. By comparing the thermal conductivity before and after the gamma ray irradiation, no significant degradation on the thermal conductivity has been observed.

  20. Possibility of Using Metakaolin as Thermal Insulation Material

    Science.gov (United States)

    Rashad, Alaa M.

    2017-08-01

    The use of energy in the building sector accounts a significant part of the world's total energy and greenhouse gas emissions. In order to meet the demands of improved energy efficiency, thermal insulation of buildings plays an important role. To attain the highest possible thermal insulation, new insulation plaster types with low thermal conductivity values have been investigated and developed. In the current investigation, the possibility of using new plaster types based on metakaolin (MK) as heat insulation material and elevated temperature resistance has been studied and compared with that of traditional Portland cement plaster. Either cement or gypsum was used as a binder material. Three different plaster types containing MK were investigated as well as the traditional cement plaster (TC), which was used as a reference. Density and thermal conductivity values were measured. The compressive strength values before and after exposure to 600°C for 2 h were identified. The results showed that it is possible to produce different plaster types based on MK as heat insulation materials as well as elevated temperature resistance. MK plaster types exhibited approximately 65.7 % to 72 % lower thermal conductivity than that of TC plaster.

  1. Preparation of Thermal Insulation Plaster with FGD Gypsum

    Directory of Open Access Journals (Sweden)

    Yi-Chao Zhang

    2016-05-01

    Full Text Available Thermal insulation gypsum plaster was prepared from flue gas desulphurization (FGD gypsum. K12 is more recommendable as foaming agent, when the mass fraction of K12 is around 0.1 %, the setting time and compressive strength meet the requirements of gypsum-based construction materials. In the meanwhile, the thermal conductivity is 0.18 W m–1 K–1, which can be used as a thermal insulation material. The hemihydrate mixtures obtained, allow the design of a new wall structure, which is more efficient as a thermal insulation system. The wall heat transfer coefficient test was carried out to compare thermal performance of two different thermal insulation systems. Compared with the thermal performance of a conventional system, the heat transfer coefficient of the new system was reduced by 5.6 %. Finally, energy-saving analysis of a building was carried out to compare the energy-saving effect of the conventional and new systems of building. The energy-savings of the building with the new system increased by almost 2 %, thus resulting in low energy consumption of the building.

  2. Thermal insulation of wet shielded metal arc welds

    Science.gov (United States)

    Keenan, Patrick J.

    1993-06-01

    Computational and experimental studies were performed to determine the effect of static thermal insulation on the quality of wet shielded metal arc welds (SMAW). A commercially available heat flow and fluid dynamics spectral-element computer program was used to model a wet SMAW and to determine the potential effect on the weld cooling rate of placing thermal insulation adjacent to the weld line. Experimental manual welds were made on a low carbon equivalent (0.285) mild steel and on a higher carbon equivalent (0.410) high tensile strength steel, using woven fabrics of alumina-boria-silica fibers to insulate the surface of the plate being welded. The effect of the insulation on weld quality was evaluated through the use of post-weld Rockwell Scale hardness measurements on the surface of the weld heat affected zones (HAZ's) and by visual inspection of sectioned welds at 10 X magnification. The computational simulation demonstrated a 150% increase in surface HAZ peak temperature and a significant decrease in weld cooling rate with respect to uninsulated welds, for welds in which ideal insulation had been placed on the base plate surface adjacent to the weld line. Experimental mild steel welds showed a reduction in surface HAZ hardness attributable to insulation at a 77% significance level. A visual comparison of the cross-sections of two welds made in 0.410 carbon equivalent steel-with approximately equivalent heat input-revealed underbead cracking in the uninsulated weld but not in the insulated weld.

  3. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    Science.gov (United States)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  4. Lightweight High-Temperature Thermal Insulation

    Science.gov (United States)

    Wagner, W. R.; Fasheh, J. I.

    1985-01-01

    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  5. Heat conductivity of high-temperature thermal insulators

    Science.gov (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  6. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    Directory of Open Access Journals (Sweden)

    Fadzil M. A.

    2017-01-01

    Full Text Available Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insulate a space from heat and sound. Fiberglass is flammable insulation material with R Value rated of R-2.9 to R-3.8 which meets the requirement in minimizing heat transfer. Finite element software, ABAQUS v6.13 employed for analyze non insulated wall and other insulated wall with different wall thicknesses. The several calculations related to overall heat movement, total energy consumption per unit area of wall, life cycle cost analysis and determination of optimal insulation thickness is calculated due to show the potential of the implementation in minimize heat transfer and generate potential energy saving in building operation. It is hoped that the study can contribute to better understanding on the potential building wall retrofitting works in increasing building serviceability and creating potential benefits for building owner.

  7. Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    The increasing focus on better building insulation is important to lower energy consumption. Development of new and improved insulation materials can contribute to solving this problem. Foam glass has a good insulating effect due to its large gas volume (porosity >90 %). It can be produced...... with open or closed pores. If only open pores exist, air is the dominating medium for the insulating effect. However, closed pores make it possible to trap gases inside the foam. The gas can be introduced either chemically, through foaming agents, or physically, by gas compression-decompression at high...... temperatures. By introducing the gas physically it is possible to control composition of both the gas phase and the solid phase of the foam glass. In this work we have prepared foam glasses by physical foaming. Panel glass powder from obsolete televisions was first sintered under a gas pressure of 5-25 MPa...

  8. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  9. Channel microstructure and thermal insulation mechanism of sepiolite mineral nanofibers.

    Science.gov (United States)

    Wang, Fei; Liang, Jinsheng; Tang, Qingguo; Chen, Cong; Chen, Yalei

    2014-05-01

    The longitudinal and cross sectional TEM images of sepiolite mineral nanofibers were prepared by cutting in the direction parallel and perpendicular to nanofibers, and the channel microstructure of sepiolite nanofibers was studied. The thermal insulation mechanism of sepiolite nanofibers was analyzed according to the diagrammatic sketch obtained from the above experimental method. The results showed that many discontinuously connected bending shape channels with about 23-26 nm in diameter existed in the center region of nanofibers, and many discontinuously connected irregular micropores and mesopores with the size of about 1-9 nm existed on the wall of nanofibers. The main reasons for the formation of channel microstructure in sepiolite nanofibers were their minerogenetic conditions and the interaction between acid and high-speed airflow in the process of nanofibers preparation, and bubbles in the hydrotherm played a significant role in the microstructure formation. The thermal insulation performance of sepiolite nanofibers could be attributed to obstructive and infrared radiative thermal insulation.

  10. Reusable surface insulation thermal protection systems test evaluation status

    Science.gov (United States)

    Strouhal, G.; Tillian, D. J.

    1973-01-01

    Changes in coating morphology of mullite, silica, and ceramic mullite fiber at two heating rates are described followed by a discussion of the changes in surface chemistry that occur during convective heating tests. Subsequently, the surface chemistry changes observed are compared to similar data obtained from radiantly heated coatings and the significance of the difference between the results is discussed. Finally, the changes in chemistry of the coatings in cross section before and after convectively heated cyclic testing are discussed and the significance of surface chemistry changes are described. Results indicate that the thermal conductivity of mullite surface insulation is higher than that of silica insulation, based on thermal response data. Acoustic excitation of cracked silica tiles does not lead to catastrophic failure such as spallation or tile loss. Cracks in mullite material after thermal exposure lead to fracturing of the coating and surface insulation material after acoustic excitation.

  11. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    Science.gov (United States)

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  12. Thermal shock testing of lapped optical glass

    Science.gov (United States)

    Zhang, Yingrui; Wu, Yuansun; Liu, Han; Lambropoulos, John C.

    2007-09-01

    We have measured and modeled the thermal shock fracture of the commercially available BK-7 borosilicate crown optical glass as a function of surface finish prior to thermal shock testing. For surfaces lapped with alumina abrasives in the range 5 μm to 40 μm, the critical temperature drop for fracture in thin disk samples increases with diminishing abrasive size, and changes from 123.7+/-1.1 °C (for surfaces lapped with 40 μm abrasives) to 140.2+/-2.8 °C (for surfaces lapped with 5 μm abrasives.) We correlate the measured thermal shock (critical) temperature drop with the glass thermal and mechanical properties, including the fracture toughness, and the depth of surface cracks induced by the lapping process. We distinguish between "severe" and "mild" thermal shock conditions in terms of the applicable heat transfer coefficient and Biot number. We estimate that the depth of the strength controlling cracks on the edge of the disk samples was about 55-70 μm.

  13. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    Science.gov (United States)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  14. A REVIEW OF COMPARATIVE EVALUATION OF THERMAL INSULATION MATERIALS FOR BUILDING WALL APPLICATIONS

    OpenAIRE

    Dr. RK. Jain *, Chouhan Balaji, Dhananjay Singh

    2016-01-01

    Attention towards the thermal performance of building materials, particularly thermal insulation systems for buildings, has grown in recent years. Thermal insulation of building walls has a significant effect on the reduction of thermal energy consumption in buildings Making a thermal insulation of a building external wall can in terms of economic aspects be approached as an investment. In this investment the cost is related to the purchase, transport and laying the insulation, whereas the pr...

  15. Estimating Clothing Thermal Insulation Using an Infrared Camera

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Lee

    2016-03-01

    Full Text Available In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively.

  16. Estimating Clothing Thermal Insulation Using an Infrared Camera

    Science.gov (United States)

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively. PMID:27005625

  17. Estimating Clothing Thermal Insulation Using an Infrared Camera.

    Science.gov (United States)

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-03-09

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing's temperature is more accurate within 3% error and lower clothing's temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively.

  18. Waterproof Silicone Coatings of Thermal Insulation and Vaporization Method

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor)

    1999-01-01

    Thermal insulation composed of porous ceramic material can be waterproofed by producing a thin silicone film on the surface of the insulation by exposing it to volatile silicone precursors at ambient conditions. When the silicone precursor reactants are multi-functional siloxanes or silanes containing alkenes or alkynes carbon groups higher molecular weight films can be produced. Catalyst are usually required for the silicone precursors to react at room temperature to form the films. The catalyst are particularly useful in the single component system e.g. dimethylethoxysilane (DNMS) to accelerate the reaction and decrease the time to waterproof and protect the insulation. In comparison to other methods, the chemical vapor technique assures better control over the quantity and location of the film being deposited on the ceramic insulation to improve the waterproof coating.

  19. Status of reusable surface insulation thermal protection system technology programs

    Science.gov (United States)

    Greenshields, D. H.; Meyer, A. J.; Tillian, D. J.

    1972-01-01

    The development of three low-density rigidized insulation materials for the shuttle TPS application is reported. These materials consist of one high purity silica system and two systems based on mullite, an aluminum silicate. Both systems consist of fibers joined together with appropriate binders to obtain a rigidized insulation composite. Both material systems require the application of a glassy coating to provide a wear resistant, high emittance surface and to prevent the absorption of water by the fiber matrix. The technology program has addressed the development of water impervious coatings, methods of assembling the materials in design concepts while minimizing the thermal stress in the insulation, achieving compatibility between the RSI material and the structural system, and test evaluations to demonstrate the feasibility of the surface insulation concept.

  20. Preparation of a Novel Water-based Acrylic Multi-Thermal Insulation Coating

    Directory of Open Access Journals (Sweden)

    Xiufang YE

    2017-08-01

    Full Text Available To efficiently improve the thermal insulation effect of coatings, a novel water-based acrylic multi-thermal insulation coating (multi-WATIC combined with thermal obstruction, echo, and radiation was prepared. The category and ratio of thermal insulation functional fillers are crucial. First, water-based acrylic thermal insulation coating (WATIC with single thermal insulation functional fillers was prepared, and the thermal insulation property tests were done. Thereafter, a novel multi-WATIC was prepared combined with the 3 thermal insulation functional fillers together, and the formula of the novel multi-WATIC was optimized based on single factor experiments by response surface methodology (RSM. Test results showed that multi-WATIC has excellent thermal insulation property, and the fitting result obtained by RSM is in good agreement with test data.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16090

  1. Environmental impact of thermal insulations: How do natural insulation products differ from synthetic ones?

    Science.gov (United States)

    Dovjak, M.; Košir, M.; Pajek, L.; Iglič, N.; Božiček, D.; Kunič, R.

    2017-10-01

    As the environmental awareness of the public is rising and at the same time contemporary buildings are becoming more and more energy efficient, the focus is shifting towards the usage of environmentally friendly building products. Human decisions are often driven by emotions and perceptions. Consequently, there exists a strong tendency towards preferring “natural” constructional products to the synthetic ones, especially in the case of thermal insulations. Life cycle assessment (LCA) has enabled an opportunity to widen the meaning of the word “environmentally friendly”, giving researchers and building designers an objective decision making tool to determine the environmental impact of building products, building components and buildings as a whole. The purpose of this study was to compare the environmental impact of various thermal insulations for the cradle to gate life cycle stages, based on a unified functional unit. Overall, 15 most commonly used thermal insulation products were analysed and classified into natural and synthetic groups. Based on the differentiation, we compared the impact in the selected environmental categories and identified the most influential environmental drivers. The results show that in some environmental categoriesnatural thermal insulations perform better (i.e. global warming potential), whilein others (i.e. eutrophication potential) they underperform. However, environmental impact trends can be identified, specifically for the natural and the synthetic materials.

  2. Multilayer insulation thermal protection systems technology

    Science.gov (United States)

    Hyde, E. H.

    1971-01-01

    A summary is presented of the work performed by Marshall Space Flight Center (MSFC) and industry toward the development of flight-type multilayer insulation(MLI) systems. The MSFC MLI program is divided into three large categories: (1) the generation and compilation of MLI composite test data; (2) the analysis, design, and testing of heat flow through MLI applied to ducting, seams, electrical feedthroughs, structural supports, and the tank sidewall; and (3) the development, modification, and utilization of new testing procedures, tanks, and the test facilities. Numerous data have been generated, analyzed, and documented on different MLI composites.

  3. Molecular Dynamic Simulations of Glass Transition Temperature and Mechanical Properties in the Amorphous Region of Oil-Immersed Transformer Insulation Paper

    Science.gov (United States)

    Wang, You-Yuan; Yang, Tao; Liao, Rui-Jin

    2012-07-01

    The glass transition temperature (Tg) in the amorphous region of an insulation paper is one of the most important characteristics for thermal stability. Molecular dynamic simulations have been performed on three micro-structural models, namely, amorphous pure cellulose, amorphous cellulose with water and amorphous cellulose with oil, to study the microscopic mechanism of the glass transition process for oil-immersed transformer insulation paper. Using the method of specific volume versus temperature curve, the Tg of amorphous pure cellulose, cellulose with water, and cellulose with oil was determined as 448, 418 and 440 K, respectively. The current study may provide some information for thermal aging. The simulation results show that during the glass transition process, both the chain motion and mechanical properties of cellulose changes significantly. Relative to the oil molecules, water molecules immersed in the amorphous region of insulation paper can disrupt hydrogen bonds between cellulose chains. This phenomenon results in a significant reduction in the glass transition temperature and affects the thermal stability of the insulation paper.

  4. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using......, to get an indication of the effect of important model parameters on the thermal conductivity of an insulation coating. With relevant data available for service life exposure conditions and raw material costs, the model can also be used as an optimization algorithm....... and experimental data with shell thickness and/or thermal conductivity of the shell as adjustable parameters. However, the experimental data was not sufficiently detailed to allow a separation of the effects of the two parameters. In the ideal case of no aerogel binder intrusion, a comparison with a coating...

  5. Improvement of thermal stability of insulation paper cellulose by modified polysiloxane grafting

    Science.gov (United States)

    Zhang, Song; Tang, Chao; Xie, Jingyu; Zhou, Qu

    2016-10-01

    We present a method for improving the thermal stability of insulation paper cellulose. A polysiloxane was grafted to the hydroxyl group connected to the C6 atom in the cellulose chain. The effects of the mass fraction of polysiloxane on the mechanical properties and glass-transition temperatures of model cellulose samples modified by polysiloxane grafting were investigated using molecular dynamics simulations. The results show that for four models, with polysiloxane mass fractions of 0%, 3.3%, 6.5%, and 12.2%, the best chain performance was achieved using a mass fraction of 6.5%. The glass-transition temperature of the modified cellulose with a 6.5% mass fraction of polysiloxane was 48 K higher than that of unmodified cellulose, which shows that modification improved the thermal stability of the cellulose.

  6. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    Science.gov (United States)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  7. Parametric fuselage design : Integration of mechanics and acoustic & thermal insulation

    NARCIS (Netherlands)

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design

  8. Closed-pore Insulation Thermal Protection System Design Concept Development

    Science.gov (United States)

    Varisco, A.; Harris, H. G.

    1973-01-01

    The development of a unique closed-pore ceramic foam insulation (CPI) produced from low cost fly ash cenospheres is reported for space shuttle external thermal protection. Two basic design approaches were developed: bonded and mechanically fastened. A description of the concepts is presented in addition to fabrication and test results.

  9. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  10. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  11. Thermal Stability of Modified Insulation Paper Cellulose Based on Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2017-03-01

    Full Text Available In this paper, polysiloxane is used to modify insulation paper cellulose, and molecular dynamics methods are used to evaluate the glass transition temperature and mechanical properties of the paper before and after the modification. Analysis of the static mechanical performance of the model shows that, with increasing temperature, the elastic modulus of both the modified and unmodified cellulose models decreases gradually. However, the elastic modulus of the modified model is greater than that of the unmodified model. Using the specific volume method and calculation of the mean square displacement of the models, the glass transition temperature of the modified cellulose model is found to be 48 K higher than that of the unmodified model. Finally, the changes in the mechanical properties and glass transition temperature of the model are analyzed by energy and free volume theory. The glass transition temperatures of the unmodified and modified cellulose models are approximately 400 K and 450 K, respectively. These results are consistent with the conclusions obtained from the specific volume method and the calculation of the mean square displacement. It can be concluded that the modification of insulation paper cellulose with polysiloxane will effectively improve its thermal stability.

  12. The advantage of selection of mineral thermal insulation materials with the structural properties for thermal insulation in buildings

    Directory of Open Access Journals (Sweden)

    Janžekovič Ines M.

    2014-01-01

    Full Text Available The paper deals with the problem of energy efficiency in Serbia. It gives a general overview of the energy losses and focuses on energy losses in buildings, which is recognized as one of the most problematic sectors as the energy losses concerns. By the very fact there is a need for more efficient implementation of measures to reduce energy losses through education and increased awareness of citizens about the proper ways of performing thermal protection of buildings. The paper points out the problems that arise when selecting the inadequate solutions of performing thermal insulation of buildings and suggests some solutions for the proper selection of materials for thermal insulation and in setting the appropriate requirements for thermal envelope for buildings.

  13. Thermal Performance of Insulating Cryogenic Pin Spacers

    CERN Document Server

    Darve, C

    1998-01-01

    Following the proposal to introduce an actively cooled radiation screen (5-10 K) for the LHC machine, the design of the LHC cryostat foresees the need for spacers between the cold mass and the radiati on screen. The thermal impedance of the chosen material should be very high and the shape selected to withstrand the contact stress due to the displacements induced by the coll-down and warm-up transi ent. A cryogenic experiment dedicated to studying the thermal behaviour of several proposed spacers was performed at the cryogenics laboratory of CERN before choosing the one to be used for further i nvestigation on the LHC full-scale Cryostat Thermal Model [1] [2]. This paper describes a quantitative analysis leading to the choice of the spacer.

  14. Aluminized fiberglass insulation conforms to curved surfaces

    Science.gov (United States)

    1966-01-01

    Layers of fiber glass with outer reflective films of vacuum-deposited aluminum or other reflective metal, provide thermal insulation which conforms to curved surfaces. This insulation has good potential for cryogenic systems.

  15. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine

    2016-01-01

    We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...... conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids...... and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition...

  16. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  17. Investigation of thermo-physical properties of thermal insulation coating

    Science.gov (United States)

    Kopčok, Michal; Lukovičová, Jozefa; Kačur, Jozef; Pavlendová, Gabriela

    2017-07-01

    This paper examines the thermal properties of thermal insulation coating applied to the building materials surfaces. The main objective is to determine the insulation coating impact on the heat flux transfer. The heat flux is modelled in terms of the heat transfer coefficient on the surface of a solid body. The thermal conductivity and heat transfer coefficient are obtained from the solution of the inverse heat conduction problem in 3D, based on the temperature measurements. The real temperature evolution is perturbed due to intrinsic properties of the measuring apparatus. We correct this situation via modelling a thermocouple function. Afterwards the determination procedure of the heat flux transfer parameters is a standard solution of the inverse problem based on the minimization of discrepancy between corrected measured data and computed temperature data.

  18. Aspects of corrosion testing of thermal-insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, K.G.; Weil, R.

    1983-01-01

    The literature dealing with corrosion by thermal-insulating materials in residential buildings is reviewed. Current corrosiveness test methods are discussed. In view of their shortcomings, the need for a new procedure is evident. Possible methods applicable to various types of insulation are considered. The program for developing the new procedure is outlined. Preliminary test results indicate relationships between existing coupon and rapidly executable electrochemical tests. Field data, which are beginning to be collected, are needed to establish the validity of the new test and its ability to predict behavior under service conditions.

  19. Investigation on Thermal Properties of Composite of Rice Husk, Corncob and Baggasse for Building Thermal Insulation

    OpenAIRE

    Kyauta E.E. Dauda D.M; Justin E

    2014-01-01

    The thermal properties of some Agricultural waste ( Rice Husk, Bagasse and Corncob) was investigated with the purpose of determining their use as insulators. Using varied composite percentages of each sample wastes at increasing and decreasing quantities to determine best mixtures has assisted in accurate recommendation. The work has explored the potentials for using composite samples of Rice Husk, Bagasse and Corncob as materials for thermal insulation, a solution which offers a reduction...

  20. Reusable Thermal Barrier for Insulation Gaps

    Science.gov (United States)

    Saladee, C. E.

    1985-01-01

    Filler composed of resilient, heat-resistant materials. Thermal barrier nestles snugly in gap between two tiles with minimal protrusion beyond faces of surrounding tiles. When removed from gap, barrier springs back to nearly original shape. Developed for filling spaces between tiles on Space Shuttle, also used in furnaces and kilns.

  1. Ternary binder based plasters with improved thermal insulating ability

    Science.gov (United States)

    Čáchová, M.; Koňáková, D.; Vejmelková, E.; Vyšvařil, M.

    2017-10-01

    New kind of plasters with improved thermal insulating ability are presented in this article. Improvement was reached by utilization of lightweight expanded perlite with high porosity. The second used aggregate was silica sand. Regarding the binder, three kind were combined for the reason of better plaster performance. Pure lime, Portland cement and pozzolanic ceramic powder were employed. Basic physical properties and thermal characteristics were determined. The porosity of plasters reached desired higher value about 50% and the thermal conductivity in dry state was lower than 0.16 Wm‑1K‑1.

  2. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (pthermal swimsuit than with a normal swimsuit in both water temperatures (pinsulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (pinsulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (pthermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  3. Evaluation of Structure Influence on Thermal Conductivity of Thermal Insulating Materials from Renewable Resources

    Directory of Open Access Journals (Sweden)

    Jolanta VĖJELIENĖ

    2011-07-01

    Full Text Available The development of new thermal insulation materials needs to evaluate properties and structure of raw material, technological factors that make influence on the thermal conductivity of material. One of the most promising raw materials for production of insulation material is straw. The use of natural fibres in insulation is closely linked to the ecological building sector, where selection of materials is based on factors including recyclable, renewable raw materials and low resource production techniques In current work results of research on structure and thermal conductivity of renewable resources for production thermal insulating materials are presented. Due to the high abundance of renewable resources and a good its structure as raw material for thermal insulation materials barley straw, reeds, cattails and bent grass stalks are used. Macro- and micro structure analysis of these substances is performed. Straw bales of these materials are used for determining thermal conductivity. It was found that the macrostructure has the greatest effect on thermal conductivity of materials. Thermal conductivity of material is determined by the formation of a bale due to the large amount of pores among the stalks of the plant, inside the stalk and inside the stalk wall.http://dx.doi.org/10.5755/j01.ms.17.2.494

  4. Thermal conductivity of wool and wool-hemp insulation

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Wells, C.M.; Carrington, C.G. [University of Otago, Dunedin (New Zealand). Dept. of Physics; Hewitt, N.J. [University of Ulster, Jordanstown (United Kingdom). Centre for Sustainable Technologies

    2006-01-15

    Measurements have been obtained for the thermal resistance of sheep-wool insulation and wool-hemp mixtures, both in the form of bonded insulation batts, using a calibrated guarded hot-box. The density was 9.6-25.9 kg m{sup -3} for the wool and 9.9-18.1 kg m{sup -3} for the wool-hemp mixtures. The measurements were made at a mean sample temperature of 13.3{sup o}C using a calibrated guarded hot-box. The estimated uncertainly in the resistance measurements was of the order of {+-}7%. The thermal conductivity of the samples, derived from the thermal resistance measurements on the basis of the measured thickness, was well correlated with the density, although the variation with density was larger than that obtained in previous studies. The conductivity of the wool-hemp samples was not significantly different from that of the wool samples at the same density. Moisture uptake produced an increase of less than 5% in the conductivity of the bonded wool insulation for an increase in absorbed moisture content of 20%. The thermal resistance was 1.6% lower on average for samples oriented in the horizontal plane rather than the vertical plane, but this difference is not significant. (author)

  5. Study on Thermal Insulation Zeolite by Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Huiping Song

    2014-01-01

    Full Text Available This paper takes the coal fly ash as the material and makes zeolite with low thermal conductivity under a two-step synthesis for the purpose of thermal insulation. It studies main factors affecting zeolite such as the different concentration of NaOH, the solid-liquid ratio, the silica-alumina ratio, and the crystallization temperature. The optimal conditions were obtained that the NaOH concentration was 3 mol/L, the solid-liquid ratio was 10 : 1, the silica-alumina ratio was 2, and the crystallization temperature was 12°C. Zeolites have multiple pores and skeletal structures under SEM observation. The mean particle size was 2.78 um of concentrated distribution. The pore volume was 0.148 m3/g measured by BET analysis, the specific surface was 118.6 m2/g, and the thermal conductivity was 0.153 W/(m·K. Zeolite was proved to be a qualified insulation material which can be used in thermal insulation coating as a new material of energy conservation.

  6. Thin Thermal-Insulation Blankets for Very High Temperatures

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).

  7. Repeatability Measurements of Apparent Thermal Conductivity of Multilayer Insulation (MLI)

    Science.gov (United States)

    Vanderlaan, M.; Stubbs, D.; Ledeboer, K.; Ross, J.; Van Sciver, S.; Guo, W.

    2017-12-01

    This report presents and discusses the results of repeatability experiments gathered from the multi-layer insulation thermal conductivity experiment (MIKE) for the measurement of the apparent thermal conductivity of multi-layer insulation (MLI) at variable boundary temperatures. Our apparatus uses a calibrated thermal link between the lower temperature shield of a concentric cylinder insulation assembly and the cold head of a cryocooler to measure the heat leak. In addition, thermocouple readings are taken in-between the MLI layers. These measurements are part of a multi-phase NASA-Yetispace-FSU collaboration to better understand the repeatability of thermal conductivity measurements of MLI. NASA provided five 25 layer coupons and requested boundary temperatures of 20 K and 300 K. Yetispace provided ten 12-layer coupons and requested boundary temperatures of 77 K and 293 K. Test conditions must be met for a duration of four hours at a steady state variance of less than 0.1 K/hr on both cylinders. Temperatures from three Cernox® temperature sensors on each of the two cylinders are averaged to determine the boundary temperatures. A high vacuum, less than 10-5 torr, is maintained for the duration of testing. Layer density varied from 17.98 – 26.36 layers/cm for Yetispace coupons and 13.05 – 17.45 layers/cm for the NASA coupons. The average measured heat load for the Yetispace coupons was 2.40 W for phase-one and 2.92 W for phase-two. The average measured heat load for the NASA coupons was 1.10 W. This suggests there is still unknown variance of MLI performance. It has been concluded, variations in the insulation installation heavy effect the apparent thermal conductivity and are not solely dependent on layer density.

  8. THERMAL INSULATION PROPERTIES RESEARCH OF THE COMPOSITE MATERIAL WATER GLASS–GRAPHITE MICROPARTICLES

    Directory of Open Access Journals (Sweden)

    V. A. Gostev

    2014-05-01

    Full Text Available Research results for the composite material (CM water glass–graphite microparticles with high thermal stability and thermal insulation properties are given. A composition consisting of graphite (42 % by weight, water glass Na2O(SiO2n (50% by weight and the hardener - sodium silicofluoric Na2SiF6 (8% by weight. Technology of such composition receipt is suggested. Experimental samples of the CM with filler particles (graphite and a few microns in size were obtained. This is confirmed by a study of samples by X-ray diffraction and electron microscopy. The qualitative and quantitative phase analysis of the CM structure is done. Load limit values leading to the destruction of CM are identified. The character of the rupture surface is detected. Numerical values of specific heat and thermal conductivity are defined. Dependence of the specific heat capacity and thermal conductivity on temperature at monotonic heating is obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. CM with such characteristics can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  9. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  10. Lightweight Thermal Insulation for a Liquid-Oxygen Tank

    Science.gov (United States)

    Willen, G. Scott; Lock, Jennifer; Nieczkoski, Steve

    2005-01-01

    A proposed lightweight, reusable thermal-insulation blanket has been designed for application to a tank containing liquid oxygen, in place of a non-reusable spray-on insulating foam. The blanket would be of the multilayer-insulation (MLI) type and equipped with a pressure-regulated nitrogen purge system. The blanket would contain 16 layers in two 8-layer sub-blankets. Double-aluminized polyimide 0.3 mil (.0.008 mm) thick was selected as a reflective shield material because of its compatibility with oxygen and its ability to withstand ionizing radiation and high temperature. The inner and outer sub-blanket layers, 1 mil (approximately equals 0.025 mm) and 3 mils (approximately equals 0.076 mm) thick, respectively, would be made of the double-aluminized polyimide reinforced with aramid. The inner and outer layers would provide structural support for the more fragile layers between them and would bear the insulation-to-tank attachment loads. The layers would be spaced apart by lightweight, low-thermal-conductance netting made from polyethylene terephthalate.

  11. Dynamic Thermal Features of Insulated Blocks: Actual Behavior and Myths

    Directory of Open Access Journals (Sweden)

    Marta Cianfrini

    2017-11-01

    Full Text Available The latest updates in the European directive on energy performance of buildings have introduced the fundamental “nearly zero-energy building (NZEB” concept. Thus, a special focus needs to be addressed to the thermal performance of building envelopes, especially concerning the role played by thermal inertia in the energy requirements for cooling applications. In fact, a high thermal inertia of the outer walls results in a mitigation of the daily heat wave, which reduces the cooling peak load and the related energy demand. The common assumption that high mass means high thermal inertia typically leads to the use of high-mass blocks. Numerical and experimental studies on thermal inertia of hollow envelope components have not confirmed this general assumption, even though no systematic analysis is readily available in the open literature. Yet, the usually employed methods for the calculation of unsteady heat transfer through walls are based on the hypothesis that such walls are composed of homogeneous layers. In this framework, a study of the dynamic thermal performance of insulated blocks is brought forth in the present paper. A finite-volume method is used to solve the two-dimensional equation of conduction heat transfer, using a triangular-pulse temperature excitation to analyze the heat flux response. The effects of both the type of clay and the insulating filler are investigated and discussed at length. The results obtained show that the wall front mass is not the basic independent variable, since clay and insulating filler thermal diffusivities are more important controlling parameters.

  12. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high.

  13. Phonon thermal transport in metallic glasses below 100 K

    Energy Technology Data Exchange (ETDEWEB)

    Matey, James Regis [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    Measurements of the phonon thermal conductivity of a variety of metallic glasses were made. In each case, the temperature dependence and magnitude of the phonon thermal conductivity of the glassy metal was very similar to that characteristic of nonmetallic glasses. Variation of sound velocity measurements were made on a glassy palladium silicon alloy and a qualitative similarity was found between its behavior and the behavior of nonmetallic glasses. These findings and results from other laboratories have led to the conclusion that the localized excitations responsible for the anomalous behavior of nonmetallic glasses are also present in the metallic glasses.

  14. Thermal coupon testing of Load-Bearing Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Heckle, K. W.; Hurd, J.

    2014-01-01

    Advanced liquid hydrogen storage concepts being considered for long duration space travel incorporate refrigeration systems and cryocoolers to lower the heat load. Using a refrigeration loop to intercept the energy flowing through MLI to a liquid hydrogen tank at a temperature between the environment and the liquid hydrogen can lower the heat load on the propellant system by as much as 50%. However, the refrigeration loop requires structural integration into the MLI. Use of a more traditional concept of MLI underneath this refrigeration loop requires that a structural system be put in place to support the loop. Such structures, even when thermally optimized, present a relatively large parasitic heat load into the tank. Through NASA small business innovation research funding, Quest Thermal Group and Ball Aerospace have been developing a structural MLI based insulation system. These systems are designed with discrete polymeric spacers between reflective layers instead of either dacron or silk netting. The spacers (or posts) have an intrinsic structural capability that is beyond that of just supporting the internal insulation mechanical loads. This new MLI variant called Load Bearing MLI (LB-MLI) has been developed specifically for the application of supporting thermal shields within the insulation system. Test articles (coupons) of the new LB-MLI product were fabricated for thermal performance testing using liquid nitrogen at Kennedy Space Center (KSC) and using cryocooler based calorimetry at Florida State University. The test results and analysis are presented. Thermal models developed for correlation with the thermal testing results both at KSC and testing that was performed at Florida State University are also discussed.

  15. Study on Thermal Insulation Zeolite by Coal Fly Ash

    OpenAIRE

    Huiping Song; Nan Zheng; Fangbin Xue; Fangqin Cheng

    2014-01-01

    This paper takes the coal fly ash as the material and makes zeolite with low thermal conductivity under a two-step synthesis for the purpose of thermal insulation. It studies main factors affecting zeolite such as the different concentration of NaOH, the solid-liquid ratio, the silica-alumina ratio, and the crystallization temperature. The optimal conditions were obtained that the NaOH concentration was 3 mol/L, the solid-liquid ratio was 10 : 1, the silica-alumina ratio was 2, and the crysta...

  16. Structural design aspects of reusable surface insulation thermal protection systems.

    Science.gov (United States)

    Michalak, R. J.; Hess, T. E.; Gluck, R. L.

    1972-01-01

    Low density fiber ceramic materials coated with refractory ceramics meet the requirements of reusable low weight thermal protection systems. The structural characteristics of this class of material impose unique design and analysis requirements on the application to spacecraft structural elements. Finite element type stress analysis techniques are required to adequately predict the structural response of the system. Parametric analyses have been performed to determine the response of the system to variations in geometry, and to thermal and structural load conditions. Sensitivity of coating, insulation and attachment stresses are presented and critical failure modes are identified.

  17. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    Science.gov (United States)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  18. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  19. Comparative Analysis of the Thermal Insulation of Traditional and Newly Designed Protective Clothing for Foundry Workers

    Directory of Open Access Journals (Sweden)

    Iwona Frydrych

    2016-09-01

    Full Text Available An objective of the undertaken research was checking the applicability of aluminized basalt fabrics for the production of clothing for foundry workers. The results of flammability, the resistance to contact, convective and radiation heat, as well as the resistance to big molten metal splashes confirmed the thesis of applicability of the packages with the use of aluminized basalt fabric content for the assumed purpose; therefore, such protective clothing was produced. Thermal comfort of foundry workers is very important and related to many factors, i.e., the structure of the protective clothing package, the number of layers, their thickness, the distance between the body and appropriate underwear. In the paper, a comparison of the results of thermal insulation measurement of two kinds of protective clothing is presented: the traditional one made of aluminized glass fabrics and the new one made of aluminized basalt fabrics. Measurements of clothing thermal insulation were conducted using a thermal manikin dressed in the protective clothing and three kinds of underwear products covering the upper and lower part of the manikin.

  20. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... agents can be partially dissolved into the glass structure. We investigate the influence of incorporation of residues from foaming agents (MnO2 and Fe2O3) on the solid conductivity of cathode ray-tube (CRT) panel glass. We have prepared samples by sintering and melt-quenching technique to obtain samples...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...

  1. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  2. Characterization of systems for external insulation and retrofitting with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus; Rose, Jørgen

    1999-01-01

    or unsatisfactory architectural look. One way of solving these problems is by adding a retrofitting system with thermal insulation to the existing building envelope. If external insulation systems are used, a new rain screen is applied on the outside of the insulation. Insulation can be applied either on the inside...... to include the effect of thermal bridges by performing simple calculations, a task which normally requires the use of numerical models. The results show that thermal bridges in external insulation systems may decrease their thermal resistance by more than 25%.Key parameters was calculated by the use...... or the outside of the existing building envelope, but internal insulation has many disadvantages compared to external insulation. Several external insulation systems exist, each with different properties making it difficult for building designers to choose between systems in an objective manner.To help...

  3. Low conductive support for thermal insulation of a sample holder of a variable temperature scanning tunneling microscope.

    Science.gov (United States)

    Hanzelka, Pavel; Vonka, Jakub; Musilova, Vera

    2013-08-01

    We have designed a supporting system to fix a sample holder of a scanning tunneling microscope in an UHV chamber at room temperature. The microscope will operate down to a temperature of 20 K. Low thermal conductance, high mechanical stiffness, and small dimensions are the main features of the supporting system. Three sets of four glass balls placed in vertices of a tetrahedron are used for thermal insulation based on small contact areas between the glass balls. We have analyzed the thermal conductivity of the contacts between the balls mutually and between a ball and a metallic plate while the results have been applied to the entire support. The calculation based on a simple model of the setup has been verified with some experimental measurements. In comparison with other feasible supporting structures, the designed support has the lowest thermal conductance.

  4. Effect of composition on thermal conductivity of silica insulation media.

    Science.gov (United States)

    Park, Sung; Kwon, Young-Pil; Kwon, Hyuk-Chon; Lee, Hae-Weon; Lee, Jae Chun

    2008-10-01

    Nano-sized fumed silica-based insulation media were prepared by adding TiO2 powders and ceramic fibers as opacifiers and structural integrity improvers, respectively. The high temperature thermal conductivities of the fumed silica-based insulation media were investigated using different types of TiO2 opacifier and by varying its content. The opacifying effects of nanostructured TiO2 powders produced by homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial TiO2 powder. The nanostructured HPPLT TiO2 powder with a mean particle size of 1.8 microm was more effective to reduce radiative heat transfer than the commercial one with a similar mean particle size. The insulation samples with the HPPLT TiO2 powder showed about 46% lower thermal conductivity at temperatures of about 820 degrees C than those with the commercial one. This interesting result might be due to the more effective radiation scattering efficiency of the nanostructured HPPLT TiO2 powder which has better gap filling and coating capability in nano-sized composite compacts.

  5. Thermal Analysis of Low Layer Density Multilayer Insulation Test Results

    Science.gov (United States)

    Johnson, Wesley L.

    2011-01-01

    Investigation of the thermal performance of low layer density multilayer insulations is important for designing long-duration space exploration missions involving the storage of cryogenic propellants. Theoretical calculations show an analytical optimal layer density, as widely reported in the literature. However, the appropriate test data by which to evaluate these calculations have been only recently obtained. As part of a recent research project, NASA procured several multilayer insulation test coupons for calorimeter testing. These coupons were configured to allow for the layer density to be varied from 0.5 to 2.6 layer/mm. The coupon testing was completed using the cylindrical Cryostat-l00 apparatus by the Cryogenics Test Laboratory at Kennedy Space Center. The results show the properties of the insulation as a function of layer density for multiple points. Overlaying these new results with data from the literature reveals a minimum layer density; however, the value is higher than predicted. Additionally, the data show that the transition region between high vacuum and no vacuum is dependent on the spacing of the reflective layers. Historically this spacing has not been taken into account as thermal performance was calculated as a function of pressure and temperature only; however the recent testing shows that the data is dependent on the Knudsen number which takes into account pressure, temperature, and layer spacing. These results aid in the understanding of the performance parameters of MLI and help to complete the body of literature on the topic.

  6. THERMAL INSULATION FROM LIGNIN-DERIVED CARBON FIBERS

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Tracy [GrafTech International; Chen, Chong [GrafTech International; Eberle, Cliff [ORNL; Webb, Daniel C [ORNL

    2014-01-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International Holdings Inc. (GrafTech) have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers (LBCF). This was the first reported production of LBCF or resulting products at scale > 1 kg. The results will potentially lead to the first commercial application of LBCF. The goal of the commercial application is to replace expensive, foreign-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help resolve supply chain vulnerability and reduce the production cost for high temperature thermal insulation as well as create US jobs. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, the project team demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production.

  7. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atchley, Jerald Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  8. Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults

    OpenAIRE

    Chenmeng Xiang; Quan Zhou; Jian Li; Qingdan Huang; Haoyong Song; Zhaotao Zhang

    2016-01-01

    Dissolved gas analysis (DGA) is attracting greater and greater interest from researchers as a fault diagnostic tool for power transformers filled with vegetable insulating oils. This paper presents experimental results of dissolved gases in insulating oils under typical electrical and thermal faults in transformers. The tests covered three types of insulating oils, including two types of vegetable oil, which are camellia insulating oil, Envirotemp FR3, and a type of mineral insulating oil, to...

  9. Thermal insulating concrete wall panel design for sustainable built environment.

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  10. Low-Density, Aerogel-Filled Thermal-Insulation Tiles

    Science.gov (United States)

    Santos, Maryann; Heng, Vann; Barney, Andrea; Oka, Kris; Droege, Michael

    2005-01-01

    Aerogel fillings have been investigated in a continuing effort to develop low-density thermal-insulation tiles that, relative to prior such tiles, have greater dimensional stability (especially less shrinkage), equal or lower thermal conductivity, and greater strength and durability. In preparation for laboratory tests of dimensional and thermal stability, prototypes of aerogel-filled versions of recently developed low-density tiles have been fabricated by impregnating such tiles to various depths with aerogel formations ranging in density from 1.5 to 5.6 lb/ft3 (about 53 to 200 kg/cu m). Results available at the time of reporting the information for this article showed that the thermal-insulation properties of the partially or fully aerogel- impregnated tiles were equivalent or superior to those of the corresponding non-impregnated tiles and that the partially impregnated tiles exhibited minimal (<1.5 percent) shrinkage after multiple exposures at a temperature of 2,300 F (1,260 C). Latest developments have shown that tiles containing aerogels at the higher end of the density range are stable after multiple exposures at the said temperature.

  11. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Directory of Open Access Journals (Sweden)

    Ao Zhou

    2014-01-01

    Full Text Available Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  12. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  13. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    Science.gov (United States)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  14. Dynamic clothing insulation. Measurements with a thermal manikin operating under the thermal comfort regulation mode.

    Science.gov (United States)

    Oliveira, A Virgílio M; Gaspar, Adélio R; Quintela, Divo A

    2011-11-01

    The main objective of the present work is the assessment of the thermal insulation of clothing ensembles, both in static conditions and considering the effect of body movements. The different equations used to calculate the equivalent thermal resistance of the whole body, namely the serial, the global and the parallel methods, are considered and the results are presented and discussed for the basic, the effective and the total clothing insulations. The results show that the dynamic thermal insulation values are always lower than the corresponding static ones. The highest mean relative difference [(static-dynamic)/static] was obtained with the parallel method and the lowest with the serial. For I(cl) the mean relative differences varied from 0.5 to 13.4% with the serial method, from 5.6 to 14.6% with the global and from 7.2 to 17.7% with the parallel method. In addition, the dynamic tests presents the higher mean relative differences between the calculation methods. The results also show that the serial method always presents the higher values and the parallel method the lowest ones. The relative differences between the calculation methods {[(serial-global)/global] and [(parallel-global)/global]} were sometimes significant and associated to the non-uniform distribution of the clothing insulation. In fact, the ensembles with the highest thermal insulation values present the highest differences between the calculation methods. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    Science.gov (United States)

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths.

  16. Performance of sealed evacuated panels as thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Brodt, K.H.; Bart, G.C.J. (Technische Hogeschool Delft (Netherlands))

    1994-05-01

    The CFC-blown polyurethane foam currently used as thermal insulation will be banned in the future because of the environmental impact of chlorofluorocarbons. This requires the use of other blowing agents, which often do not possess the same low thermal conductivity as, for example, CFC11. Evacuated panels avoid these environmental problems and can possesses lower conductivity than rigid foams. It is believed that they are a promising option in spite of the major problem of maintaining the vacuum for a decade or longer. They require: (a) a leak-free sealing and a covering with an extremely low gas permeability; (b) a low and stable inner pressure; (c) an infra-red absorbing filler which withstands outside pressure. The foils used for sealing these panels will influence the overall thermal conductivity, especially if they are, for reason of vacuum tightness, metal coated. (Author)

  17. Dependence of Glass Mechanical Properties on Thermal and Pressure History

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauchy, Mathieu

    Predicting the properties of new glasses prior to manufacturing is a topic attracting great industrial and scientific interest. Mechanical properties are currently of particular interest given the increasing demand for stronger, thinner, and more flexible glasses in recent years. However, as a non......-equilibrium material, the structure and properties of glass depend not only on its composition, but also on its thermal and pressure histories. Here we review our recent findings regarding the thermal and pressure history dependence of indentation-derived mechanical properties of oxide glasses....

  18. A Thermally Insulating Textile Inspired by Polar Bear Hair.

    Science.gov (United States)

    Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao

    2018-02-14

    Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analysis of thermal performance of penetrated multi-layer insulation

    Science.gov (United States)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Yoo, Chai H.; Barrett, William E.

    1988-01-01

    Results of research performed for the purpose of studying the sensitivity of multi-layer insulation blanket performance caused by penetrations through the blanket are presented. The work described in this paper presents the experimental data obtained from thermal vacuum tests of various penetration geometries similar to those present on the Hubble Space Telescope. The data obtained from these tests is presented in terms of electrical power required sensitivity factors referenced to a multi-layer blanket without a penetration. The results of these experiments indicate that a significant increase in electrical power is required to overcome the radiation heat losses in the vicinity of the penetrations.

  20. Study of thermal insulation for airborne liquid hydrogen fuel tanks

    Science.gov (United States)

    Ruccia, F. E.; Lindstrom, R. S.; Lucas, R. M.

    1978-01-01

    A concept for a fail-safe thermal protection system was developed. From screening tests, approximately 30 foams, adhesives, and reinforcing fibers using 0.3-meter square liquid nitrogen cold plate, CPR 452 and Stafoam AA1602, both reinforced with 10 percent by weight of 1/16 inch milled OCF Style 701 Fiberglas, were selected for further tests. Cyclic tests with these materials in 2-inch thicknesses bonded on a 0.6-meter square cold plate with Crest 7410 adhesive systems, were successful. Zero permeability gas barriers were identified and found to be compatible with the insulating concept.

  1. Enhanced RF Behavior Multi-Layer Thermal Insulation.

    Science.gov (United States)

    Mazzinghi, A; Sabbadini, M; Freni, A

    2018-01-08

    This paper shows that it is possible to exploit the modulated metasurface concept to control the unwanted coupling between antennas that are installed on the same satellite. The metasurface is combined with a Multi-Layer thermal Insulation blanket to reduce its specular reflection by spreading the energy incoherently in the surrounding space. In the design, sub-wavelength radiating elements printed on thin substrate have been used to make the metasurface response azimuthally independent, and to keep the weight of blanket down. The comparison between simulations and measurements confirms the validity of the idea.

  2. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation

    OpenAIRE

    Fan, Bitao; Chen, Shujun; Yao, Qiufang; Sun, Qingfeng; Jin, Chunde

    2017-01-01

    Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation propertie...

  3. Determination of physical properties of fibrous thermal insulation

    Directory of Open Access Journals (Sweden)

    Jeandel G.

    2012-10-01

    Full Text Available The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  4. Load Responsive MLI: Thermal Insulation with High In-Atmosphere and On-Orbit Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high performance thermal insulation is critical to NASA's next generation Exploration spacecraft. Zero or low cryogenic propellant boiloff is required...

  5. Radiation Abating Highly Flexible Multifunctional Polyimide Cryogenic and Thermal Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of highly flexible thermal insulation materials with multifunctional properties based in polyimide polymers and designed to provide significant...

  6. Integrated MLI: Advanced Thermal Insulation Using Micro-Molding Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high performance thermal insulation is critical to NASA's next generation Exploration spacecraft. Zero or low cryogenic propellant boiloff is required...

  7. SPONTANEOUS FRACTURE IN THERMALLY STRENGTHENED GLASS - A REVIEW AND OUTLOOK

    OpenAIRE

    Stefan Karlsson

    2017-01-01

    Thermal strengthening of glass is common for many different purposes including architecture, automotive, glasses for solar energy, tableware and occasionally also containers. It is an easy and relatively cheap method to make glasses stronger, however, with an Achilles heel that it can spontaneously fracture without the slightest applied external force. Though, fracture due to applied external force is the most common case, spontaneous fracture is rare. The current paper reviews the literature...

  8. Applying infrared measurements in a measuring system for determining thermal parameters of thermal insulation materials

    Science.gov (United States)

    Chudzik, S.

    2017-03-01

    The paper presents results of research on an innovative method for determining thermal parameters of thermal insulating materials. The method is based on harmonic thermal excitations. Temperature measurements at selected points of a specimen under test are performed by means of semiconductor infrared sensors. The study also employs a 3D model of thermal diffusion. To obtain a solution of the coefficient inverse problem a method based on an artificial neural network is presented. The heat transfer coefficient on the specimen surface is estimated on the basis of a reference specimen. The validity of the adopted model of heat diffusion and the usefulness of the method proposed are verified experimentally.

  9. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings

    Science.gov (United States)

    Johnson, Wesley Louis

    2010-01-01

    Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be

  10. SIMULATION OF THERMAL DECOMPOSITION OF MINERAL INSULATING OIL

    Directory of Open Access Journals (Sweden)

    V. G. M. Cruz

    2015-09-01

    Full Text Available AbstractDissolved gas analysis (DGA has been applied for decades as the main predictive maintenance technique for diagnosing incipient faults in power transformers since the decomposition of the mineral insulating oil (MIO produces gases that remain dissolved in the liquid phase. Nevertheless, the most known diagnostic methods are based on findings of simplified thermodynamic and compositional models for the thermal decomposition of MIO, in addition to empirical data. The simulation results obtained from these models do not satisfactorily reproduce the empirical data. This paper proposes a flexible thermodynamic model enhanced with a kinetic approach and selects, among four compositional models, the one offering the best performance for the simulation of thermal decomposition of MIO. The simulation results obtained from the proposed model showed better adequacy to reported data than the results obtained from the classical models. The proposed models may be applied in the development of a phenomenologically-based diagnostic method.

  11. Thermal insulation. Non-utilized energy need not be generated. Four rules for a successful thermal insulation by means of building insulation; Waermedaemmung. Energie, die nicht gebraucht wird, muss man nicht erzeugen. Vier Regeln fuer erfolgreichen Waermeschutz durch Gebaeudedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Patschke, Markus [3E-Consult, Nordkirchen (Germany); Drewer, Arnold [IpeG-Institut, Paderborn (Germany)

    2011-07-15

    The heat supply of buildings causes nearly one third of the energy consumption of an industrialized country. In 2006, the climate-adjusted heat consumption of private households in Germany amounted nearly 600 billion kWh. This consumption caused more than 167 million tons of CO{sub 2}. Heat insulation measures in buildings are required for all heat-transferring enveloping surface. Under this aspect, the contribution under consideration reports on four fundamental rules for a cost-efficient building insulation: (a) Only heated rooms should be insulated thermally; (b) Location and thermal insulation of cavities; (c) Selection of a suitable insulating material; (d) Consideration of an economic sustainability.

  12. Thermal Stability of Modified Insulation Paper Cellulose Based on Molecular Dynamics Simulation

    National Research Council Canada - National Science Library

    Chao Tang; Song Zhang; Qian Wang; Xiaobo Wang; Jian Hao

    2017-01-01

    In this paper, polysiloxane is used to modify insulation paper cellulose, and molecular dynamics methods are used to evaluate the glass transition temperature and mechanical properties of the paper...

  13. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation.

    Science.gov (United States)

    Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Shi, Wen; Zhang, Chengjiao

    2015-10-01

    In this serial study, 486 thermal manikin tests were carried out to examine the effects of air velocity and walking speed on both total and local clothing thermal insulations. Seventeen clothing ensembles with different layers (i.e., one, two, or three layers) were selected for the study. Three different wind speeds (0.15, 1.55, 4.0 m/s) and three levels of walking speed (0, 0.75, 1.2 m/s) were chosen. Thus, there are totally nine different testing conditions. The clothing total insulation and local clothing insulation at different body parts under those nine conditions were determined. In part I, empirical equations for estimating total resultant clothing insulation as a function of the static thermal insulation, relative air velocity, and walking speed were developed. In part II, the local thermal insulation of various garments was analyzed and correction equations on local resultant insulation for each body part were developed. This study provides critical database for potential applications in thermal comfort study, modeling of human thermal strain, and functional clothing design and engineering.

  14. High performance thermal insulation systems (HiPTI). Vacuum insulated products (VIP). Proceedings of the international conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.; Bertschinger, H.

    2001-07-01

    These are the proceedings of the International Conference and Workshop held at EMPA Duebendorf, Switzerland, in January 2001. The papers presented at the conference's first day included contributions on the role of high-performance insulation in energy efficiency - providing an overview of available technologies and reviewing physical aspects of heat transfer and the development of thermal insulation as well as the state of the art of glazing technologies such as high-performance and vacuum glazing. Also, vacuum-insulated products (VIP) with fumed silica, applications of VIP systems in technical building systems, nanogels, VIP packaging materials and technologies, measurement of physical properties, VIP for advanced retrofit solutions for buildings and existing and future applications for advanced low energy building are discussed. Finally, research and development concerning VIP for buildings are reported on. The workshops held on the second day covered a preliminary study on high-performance thermal insulation materials with gastight porosity, flexible pipes with high performance thermal insulation, evaluation of modern insulation systems by simulation methods as well as the development of vacuum insulation panels with a stainless steel envelope.

  15. Cryogenic Shrouds for Testing Thermal-Insulation Panels

    Science.gov (United States)

    Norris, Jeffrey; Carroll, Robert; Kirch, Charles

    2007-01-01

    Cryogenic shrouds have been designed and built for use in thermomechanical testing of samples of thermalinsulation panels on cryogenic vessels. In the original application for which these shrouds were specifically designed, the samples are representative of the large-area thermal-insulation panels on the space-shuttle external tanks that hold liquid hydrogen and liquid oxygen, and the purpose of the testing is to demonstrate the ability of bonded layers in the panels to resist delamination under a combination of applied uniaxial mechanical loads and realistic operational temperatures. Presumably, the shrouds and the tests performed by use of them could be modified to enable similar evaluation of thermomechanical properties of thermal-insulation panels for cryogenic vessels other than the external tanks of the space shuttles. The shrouds are required to enable maintenance of required temperatures on the inner and outer surfaces of the thermal-insulation-panel samples, to enable visual observation of the outer surfaces of the samples, and not to introduce any measurable loads into the panels. For each panel sample, there are two shrouds: one to be mounted on the inner surface (the surface that would be in contact with a tank containing a cryogenic liquid during normal use) and one to be mounted on the outer surface (the surface that would be exposed to ambient air or other warmer environment during normal use). The shrouds for testing specimens of thermal-insulation- panels for the liquid-hydrogen tank are made largely of titanium; the shrouds for testing specimens of thermal- insulation-panels for the liquid-oxygen tank are made largely of an aluminum- lithium alloy. The specific temperature requirements are the following: The inner shroud must make it possible to maintain a temperature of 321 degrees F (196 degrees C) [the approximate temperature of liquid nitrogen] or 453 F (about 269 C) [the approximate temperature of liquid helium] on the inner face of the

  16. A-thermal elastic behavior of silicate glasses

    Science.gov (United States)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-01

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm-1 in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si4+ ions by Al3+ and Na+ ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  17. Characterisation of net type thermal insulators at 1.8 K low boundary temperature

    CERN Document Server

    Peón-Hernández, G; Szeless, Balázs

    1997-01-01

    The Large Hadron Collider's superconducting magnets are cooled by superfluid helium at 1.8 K and housed in cryostats that minimise the heat inleak to this temperature level by extracting heat at 70 and 5 K. In the first generation of prototype cryostats, the radiative heat to the 1.8 K temperature level accounted for 70 % of the total heat inleak. An alternative to enhance the cryostat thermal performance incorporates a thermalised radiation screen at 5 K. In order to avoid contact between the 5 K radiation screen and the cold mass, insulators are placed between both surfaces. Sets of commercial fibre glass nets are insulator candidates to minimise the heat inleak caused by a accidental contact between the two temperature levels. A model to estimate their performance is presented. A set-up to thermally characterise them has been designed and is also described in the paper. Finally, results as a function of the number of the spacer nets, the boundary temperatures and the compressive force in the spacer are pre...

  18. Thermal-performance study of liquid metal fast breeder reactor insulation

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Kelvin K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

  19. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  20. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    Science.gov (United States)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  1. Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation

    Science.gov (United States)

    Evans, Owen; Rhine, Wendell; Coutinho, Decio

    2010-01-01

    This work has shown that the use of SOC-A35 leads to aerogel materials containing a significant concentration of carbidic species and limited amorphous free carbon. Substitution of the divalent oxide species in silica with tetravalent carbidic carbon has directly led to materials that exhibit increased network viscosity, reduced sintering, and limited densification. The SiOC aerogels produced in this work have the highest carbide content of any dense or porous SiOC glass reported in the literature at that time, and exhibit tremendous long-term thermal stability.

  2. Thermal Insulating Properties of Straw-Filled Environmentally Friendly Building Materials

    Science.gov (United States)

    Petkova-Slipets, Rositsa; Zlateva, Penka

    2017-06-01

    The paper presents results of a research for determination of a few general thermal-physical properties of environmentally friendly building materials made by clay, sand and straw. The aim of this study is to establish their heat insulating and energy-efficient capacity. All specific measurements were carried out by using the newest generation thermal conductivity analyser Mathis TCi. The results showed that the studied composite materials are good thermal insulators with thermal conductivity less than 0.5 W/m.K, which depends on the straw amount. Even less than 0.5 wt.% straw reflects on the insulating properties by decreasing the thermal conductivity coefficient with nearly 50 %.

  3. Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat

    Directory of Open Access Journals (Sweden)

    Kirpluks Mikelis

    2014-12-01

    Full Text Available One of the biggest disadvantages of rigid polyurethane (PU foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ, which at 18-28 mW/(m•K is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K. This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.

  4. Apparatus for Testing Flat Specimens of Thermal Insulation

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2005-01-01

    An apparatus has been developed to implement an improved method of testing flat-plate specimens of thermal-insulation materials for cryogenic application. The method includes testing under realistic use conditions that could include vacuum and mechanical loading at a pressure up to 70 psi (=0.48 MPa). The apparatus can accommodate a rigid or flexible specimen having thickness up to 1.25 in. (=3.2 cm) and diameters between 6 and 10 in. (about 15.2 and 25.4 cm, respectively). Typical test conditions include boundary temperatures between 77 K and 373 K and vacuum/interstitial gas filling at a pressure between 10(exp -6) torr (=1.3 x 10(exp -4) Pa) and 760 torr (atmospheric pressure =0.1 MPa). The interstitial gas could be N2, He, CO2, or any other suitable gas to which the insulation is expected to be exposed in use. Relative to prior apparatuses and testing methods, this apparatus and the testing method that it implements offer advantages of relative simplicity and ease of use. The basic principle of operation of the apparatus is that of boil-off calorimetry, using liquid nitrogen or any other suitable liquid that boils at a desired temperature below ambient temperature. Comparative rates of flow of heat through the thicknesses of the specimens (heat-leak rates) and apparent-thermal-conductivity values are obtained from tests of specimens. Absolute values of heat-leak rates and apparent thermal conductivities are computed from a combination of (1) the aforementioned comparative values and (2) calibration factors obtained by testing reference specimens of materials that have known thermal-insulation properties. The apparatus includes a full complement of temperature sensors, a vacuum pump and chamber, a monitoring and control system, and tools and fixtures that enable rapid and reliable installation and removal of specimens. A specimen is installed at the bottom of the vacuum chamber, and a cold-mass assembly that includes a tank is lowered into position above and

  5. Arranging insulation for better thermal resistance in concrete and maonry wall systems

    OpenAIRE

    Urban, B; P. Engelmann; Kossecka, E.; Kosny, J.

    2011-01-01

    This paper investigates how the spatial arrangement of thermal insulation influences the overall thermal resistance of concrete and masonry wall systems. Multi-dimensional finite difference modeling was used for this purpose. Concrete masonry units (CMUs) are commercially produced in various geometries and with different weight concretes. Although insulation inserts can increase a CMUs thermal performance, thermal bridging through the solid webbing of the CMUs can greatly reduce the effective...

  6. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  7. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    Science.gov (United States)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  8. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  9. Economical analysis of determination thermal insulation thickness for different external walls

    Directory of Open Access Journals (Sweden)

    Ali Etem Gürel

    2011-06-01

    Full Text Available In the countries which supply big amount of their energy needs by import like Turkey using the energy economically is important. Thermal insulation technologies in buildings are the main method for using energy economically. But choosing the thickness of the insulation material redundant causes high insulation costs. For this reason, an optimum point which provides the highest price in insulation applications is the subject. In this study, different building materials (horizontal perforated brick and gas concrete, and isolated forms of insulation (exterior insulation and insulation sandwich was a model of a building exterior wall. The study determined that the wall and the heat loss through the life-cost analysis, according to the present calculations (LCCA, the optimum thickness of insulation, energy savings and payback periods were determined.

  10. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    Recycling of materials from obsolete equipment has become an important part of global waste management. With responsible collecting, dismantling and materials separation, majority of materials can be recycled. Cathode ray tube (CRT) glass represents as much as two-thirds of the weight of a TV...

  11. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    Science.gov (United States)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  12. THERMAL CONDUCTIVITY OF THE REGENERATION WASTE TEXTILES USED TO THERMAL INSULATION

    OpenAIRE

    Gheorghe Horga; Mihaela Horga; Ioan Hossu; Dorin Avram; Florin Breaban

    2013-01-01

    This paper presents theoretical and experimental studies on the behavior thermal conductivity of textiles made from regeneration fiber used to make the shells for insulation of pipelines. Was investigated the behavior of textile fibers regeneration at densities, temperatures and different layer thickness, in two structures: material in the form of fibers in the form of flock, named blanket and textile material in the form of fiber layer consolidated named, no woven material.Measurements were ...

  13. A simultaneous characterization and uncertainty analysis of thermal conductivity and diffusivity of bio-insulate material "Palm date Wood" obtained from a periodic method

    Science.gov (United States)

    Tlijani, M.; Ben Younes, R.; Durastanti, J. F.; Boudenne, A.

    2010-11-01

    A periodic method is used to determine simultaneously both thermal conductivity and diffusivity of various insulate materials at room temperature. The sample is placed between two metallic plates and temperature modulation is applied on the front side of one of the metallic plates. The temperature at the front and rear sides of both plates is measured and the experimental transfer function is calculated. The theoretical thermal heat transfer function is calculated by the quadripole method. Thermal conductivity and diffusivity are simultaneously identified from both real and imaginary parts of the experimental transfer function. The thermophysical parameters of several wood scale samples obtained from palm wood trees and common trees with unknown thermal properties (E) with different thicknesses were studied. The value identified for the thermal conductivity 0.03 Wm-1 K-1 compared with different insulate solid material such as glass, glass-wool and PVC is much better and close to the air conductivity, It allowed us to consider the wood scale extracted from palm wood trees, bio and renewable material as good heat insulator aiming in the future as a use for lightness applications, insulating or as a reinforcement in a given matrix. These potentialities still unknown are stengthened by the enormous quantity of such kind of wood gathered annually from palm trees and considered as wastes.

  14. Thermally Insulated Flexible Composite Cores for Aerospace Applications

    National Research Council Canada - National Science Library

    Johnson, William

    1998-01-01

    IMP has developed a very unusual and unique flexible ceramic insulation. The original research was oriented toward the incorporation of an insulation material into the open cells of a honeycomb core inside a CFRP composite sandwich...

  15. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai, China.

    Science.gov (United States)

    Jiao, Yu; Yu, Hang; Wang, Tian; An, Yusong; Yu, Yifan

    2017-12-01

    The relationship between thermal environmental parameters and clothing insulation is an important element in improving thermal comfort for the elderly. A field study was conducted on the indoor, transition space, and outdoor thermal environments of 17 elderly facilities in Shanghai, China. A random questionnaire survey was used to gather data from 672 valid samples. A statistical analysis of the data was conducted, and multiple linear regression models were established to quantify the relationships between clothing insulation, respondent age, indoor air temperature, and indoor relative humidity. Results indicated that the average thermal insulation of winter and summer clothing is 1.38 clo and 0.44 clo, respectively, for elderly men and 1.39 clo and 0.45 clo, respectively, for elderly women. It was also found that the thermal insulation of winter clothing is linearly correlated with age, and that there were seasonal differences in the relationship between clothing insulation and the environment. During winter, the clothing insulation is negatively correlated only with indoor temperature parameters (air temperature and operative temperature) for elderly males, while it is negatively correlated with indoor temperature parameters as well as transition space and outdoor air temperature for elderly females. In summer, clothing insulation for both elderly males and females is negatively correlated with outdoor temperature, as well as indoor temperature parameters (air temperature and operative temperature). The thermal insulation of summer clothing is also negatively correlated with transitional space temperature for males. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Thermal insulation, antibacterial and mold properties of breathable nanofiber-laminated wallpapers.

    Science.gov (United States)

    Kim, Byoung-Suhk; Kimura, Naotaka; Kim, Han-Ki; Watanabe, Kei; Kim, Ick-Soo

    2011-06-01

    We studied the thermal insulation, antibacterial and mold properties of the nanofiber laminated wallpapers prepared by laminate-coating using electrospinning method. The thermal insulation capability of the nanofiber laminated wallpapers was evaluated by using a home-made insulated environmental chamber under different environmental conditions. It was found that the nanofiber laminated wallpapers exhibited better thermal insulation performance than the conventional silk wallpaper, which was commercialized silk wallpapers prepared by polyacrylic resin, suggesting that the laminate-coated nanofiber layer played an effective role in thermal insulation. Compared to the normal silk wallpaper, the nanofiber laminated wallpaper also exhibited good moisture vapor transmission rate (MVTR) due to excellent vapor permeability. In addition, TiO2-containing nanofiber laminated wallpapers exhibited good antibacterial activity against both E. Coli and P. Aeruginosa.

  17. Structural analysis of a thermal insulation retainer assembly

    Science.gov (United States)

    Greene, William H.; Gray, Carl E., Jr.

    1989-01-01

    In January 1989 an accident occurred in the National Transonic Facility wind tunnel at NASA Langley Research Center that was believed to be caused by the failure of a thermal insulation retainer. A structural analysis of this retainer assembly was performed in order to understand the possible failure mechanisms. Two loading conditions are important and were considered in the analysis. The first is the centrifugal force due to the fact that this retainer is located on the fan drive shaft. The second loading is a differential temperature between the retainer assembly and the underlying shaft. Geometrically nonlinear analysis is required to predict the stiffness of this component and to account for varying contact regions between various components in the assembly. High, local stresses develop in the band part of the assembly near discontinuities under both the centrifugal and thermal loadings. The presence of an aluminum ring during a portion of the part's operating life was found to increase the stresses in other regions of the band. Under the centrifugal load, high bending stresses develop near the intersection of the band with joints in the assembly. These high bending stresses are believed to be the most likely cause for failure of the assembly.

  18. Influence of foaming agents on both the structure and the thermal conductivity of silicate glasses

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    such as metal carbonates, or oxidizing transition metal oxides combined with carbonaceous sources. In this work, we mix CRT panel glass powder with different foaming agents: CaCO3 (0-4 wt%), Fe2O3 (0-6 wt%), and MnxOy (0-10 wt%). The powder mixtures are sintered in the range between the glass transition......Foam glass is one of the most promising insulation materials for constructions since it has low thermal conductivity, high compressive strength, non-water permeability, and high fire resistance. They can be produced using cullet sources, e.g., cathode ray tubes (CRT) panel glass, and foaming agents...... temperature (Tg) and the foaming temperature (corresponding to the viscosity range of 1012-106 Pa s) at 10 K/min and cool down to 773 K (below Tg) at 30 K/min and naturally down to room temperature. Upon sintering, the foaming agents are partially incorporated into the glass structure. Afterwards we measure...

  19. A Facile Approach to Evaluate Thermal Insulation Performance of Paper Cups

    OpenAIRE

    Yudi Kuang; Gang Chen; Zhiqiang Fang

    2015-01-01

    Paper cups are ubiquitous in daily life for serving water, soup, coffee, tea, and milk due to their convenience, biodegradability, recyclability, and sustainability. The thermal insulation performance of paper cups is of significance because they are used to supply hot food or drinks. Using an effective thermal conductivity to accurately evaluate the thermal insulation performance of paper cups is complex due to the inclusion of complicated components and a multilayer structure. Moreover, an ...

  20. Thermal response of rigid and flexible insulations and reflective coating in an aeroconvective heating environment

    Science.gov (United States)

    Kourtides, D. A.; Chiu, S. A.; Iverson, D. J.; Lowe, D. M.

    1992-01-01

    Described here is the thermal performance of rigid and flexible thermal protection systems considered for potential use in future Aeroassist Space Transfer Vehicles. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is described. Properties that were measured included the thermal conductivity of both rigid and flexible insulations at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The results from computerized thermal analysis models describing the thermal response of these materials subjected to flight conditions are included.

  1. Theory of low-temperature thermal expansion of glasses

    Science.gov (United States)

    Galperin, Yu. M.; Gurevich, V. L.; Parshin, D. A.

    1985-11-01

    We have developed a theory of low-temperature thermal expansion of glasses explaining a number of existing experimental data. We assume that thermal expansion, like many other low-temperature properties of glasses, is determined by associated two-level systems (TLS's) this concept has been introduced to explain these properties by Anderson, Halperin, and Varma and by Phillips. Our theory is based on the Karpov-Klinger-Ignat'ev model of two-level systems in glasses. The deformation potential of the TLS's is calculated. We have shown that it consists of two parts: The larger part (of the order of 0.3 eV) is responsible for the observed transport properties of glasses; however, it does not contribute to the thermal expansion of glasses. The latter is caused by a relatively small second part of the deformation potential which is, within logarithmic accuracy, proportional to the TLS's interlevel spacing E. This is why at low temperatures the coefficient of thermal expansion of glasses is approximately a linear function of the temperature. Its sign is determined by a microscopic structure of the TLS. We have calculated the Grüneisen parameter Γ. It appears to be of the order of (scrEa/ħωD)2/3~=100, where scrEa is an energy of the order of 30 eV and ωD is the Debye frequency. Such large values of Γ are connected with the softness of local anharmonic potentials that produce the TLS's in glasses. Our principal result is the dependence of the coefficient of thermal expansion α on the time of experiment, τexpt. It is shown that if α<0, then after heating glass it is at first contracted and afterwards, after the time about 10-8 sec (at T=0.3 K), a slow expansion begins. At τexpt~=1 sec the parameter Γ can have the absolute value of about (1/3) of that at τexpt~=10-8 sec. Such behavior of the thermal expansion coefficient is due to the fact that the contribution of the TLS's with large relative tunnel splitting (Δ0/E~=1) is negative while that of the TLS's with

  2. Thermal spray coating for corrosion under insulation (CUI) prevention

    Science.gov (United States)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  3. Evaluation of the thermal insulation of clothing of infants sleeping outdoors in Northern winter.

    Science.gov (United States)

    Tourula, Marjo; Fukazawa, Takako; Isola, Arja; Hassi, Juhani; Tochihara, Yutaka; Rintamäki, Hannu

    2011-04-01

    It is a common practice in Northern countries that children aged about 2 weeks to 2 years take their daytime sleep outdoors in prams in winter. The aim was to evaluate the thermal insulation of clothing of infants sleeping outdoors in winter. Clothing data of infants aged 3.5 months was collected, and sleep duration, skin and microclimate temperatures, humidity inside middle wear, air temperature and velocity of the outdoor environment were recorded during sleep taken outdoors (n = 34) and indoors (n = 33) in families' homes. The insulation of clothing ensembles was measured by using a baby-size thermal manikin, and the values were used for defining clothing insulation of the observed infants. Required clothing insulation for each condition was estimated according to ISO 11079. Clothing insulation did not correlate with ambient air temperature. The observed and required insulation of the study group was equal at about -5 °C, but overdressing existed in warmer and deficiency in thermal insulation in colder temperatures (r (s) 0.739, p insulation increased, the cooling rate of T (sk) increased linearly (r (s) 0.605, p thermal insulation for outdoor sleeping infants during northern winter. Therefore, the necessity for guidelines is obvious. The study provides information for adequate cold protection of infants sleeping in cold conditions.

  4. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Science.gov (United States)

    Ahmad, Faiz; Ullah, Sami; Aziz, Hammad; Omar, Nor Sharifah

    2015-07-01

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  5. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Ullah, Sami; Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Omar, Nor Sharifah [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750 Perak (Malaysia)

    2015-07-22

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  6. Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults

    Directory of Open Access Journals (Sweden)

    Chenmeng Xiang

    2016-04-01

    Full Text Available Dissolved gas analysis (DGA is attracting greater and greater interest from researchers as a fault diagnostic tool for power transformers filled with vegetable insulating oils. This paper presents experimental results of dissolved gases in insulating oils under typical electrical and thermal faults in transformers. The tests covered three types of insulating oils, including two types of vegetable oil, which are camellia insulating oil, Envirotemp FR3, and a type of mineral insulating oil, to simulate thermal faults in oils from 90 °C to 800 °C and electrical faults including breakdown and partial discharges in oils. The experimental results reveal that the content and proportion of dissolved gases in different types of insulating oils under the same fault condition are different, especially under thermal faults due to the obvious differences of their chemical compositions. Four different classic diagnosis methods were applied: ratio method, graphic method, and Duval’s triangle and Duval’s pentagon method. These confirmed that the diagnosis methods developed for mineral oil were not fully appropriate for diagnosis of electrical and thermal faults in vegetable insulating oils and needs some modification. Therefore, some modification aiming at different types of vegetable oils based on Duval Triangle 3 were proposed in this paper and obtained a good diagnostic result. Furthermore, gas formation mechanisms of different types of vegetable insulating oils under thermal stress are interpreted by means of unimolecular pyrolysis simulation and reaction enthalpies calculation.

  7. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation.

    Science.gov (United States)

    Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Zhang, Chengjiao; Shi, Wen

    2015-10-01

    Part II of this two-part series study was focused on examining the effects of wind and body movement on local clothing thermal insulation. Seventeen clothing ensembles with different layers (i.e., 1, 2, or 3 layers) were selected for this study. Local thermal insulation with different air velocities (0.15, 1.55, and 4.0 m/s) and walking speeds (0, 0.75, and 1.17 m/s) were investigated on a thermal manikin. Empirical equations for estimating local resultant clothing insulation as a function of local insulation, air velocity, and walking speed were developed. The results showed that the effects of wind and body movement on local resultant thermal resistance are complex and differ distinctively among different body parts. In general, the reductions of local insulation with wind at the chest, abdomen, and pelvis were greater than those at the lower leg and back, and the changes at the body extremity such as the forearm, thigh, and lower leg were higher than such immobile body parts as the chest and back. In addition, the wind effect interacted with the walking effect. This study may have important applications in human local thermal comfort modeling and functional clothing design.

  8. Thermal Performance of a Customized Multilayer Insulation (MLI). Design and Fabrication of Test Facility Hardware

    Science.gov (United States)

    Leonhard, K. E.

    1975-01-01

    The design, fabrication, and assembly of hardware for testing the performance of a customized multilayer insulation are discussed. System components described include the thermal payload simulator, the modified cryoshroud, and a tank back pressure control device designed to maintain a constant liquid boiling point during the thermal evaluation of the multilayer insulation. The thermal payload simulator will provide a constant temperature surface in the range of 20.5 to 417K (37 to 750R) for the insulated tank to view. The cryoshroud was modified to establish a low temperature black body cavity while limiting liquid hydrogen usage to a minimum feasible rate.

  9. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation.

    Science.gov (United States)

    Fan, Bitao; Chen, Shujun; Yao, Qiufang; Sun, Qingfeng; Jin, Chunde

    2017-03-17

    Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials.

  10. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation

    Science.gov (United States)

    Fan, Bitao; Chen, Shujun; Yao, Qiufang; Sun, Qingfeng; Jin, Chunde

    2017-01-01

    Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials. PMID:28772670

  11. Lighter touch keeps in the heat. [Advantages of low-thermal-mass insulation

    Energy Technology Data Exchange (ETDEWEB)

    Pipes, A.

    1979-04-01

    Low-thermal-mass insulation of ceramic fibers and light refractory materials is more suitable to applications with intermittent processes and lower-temperature melting and retreating, where the heat-retention requirements do not require traditional furnace design. Old furnaces can be retrofitted by replacing bricks with insulation or by veneering. Insulating materials include ceramic, alumina, and quartz fibers, and microtherm in the form of blocks, blankets and other shapes. 4 figures. (DCK)

  12. Comparison of thermal insulation performance of fibrous materials for the advanced space suit.

    Science.gov (United States)

    Paul, Heather L; Diller, Kenneth R

    2003-10-01

    The current multi-layer insulation used in the extravehicular mobility unit (EMU) will not be effective in the atmosphere of Mars due to the presence of interstitial gases. Alternative thermal insulation means have been subjected to preliminary evaluation by NASA to attempt to identify a material that will meet the target conductivity of 0.005 W/m-K. This study analyzes numerically the thermal conductivity performance for three of these candidate insulating fiber materials in terms of various denier (size), interstitial void fractions, interstitial void media, and orientations to the applied temperature gradient to evaluate their applicability for the new Mars suit insulation. The results demonstrate that the best conductive insulation is achieved for a high-void-fraction configuration with a grooved fiber cross section, aerogel void medium, and the fibers oriented normal to the heat flux vector. However, this configuration still exceeds the target thermal conductivity by a factor of 1.5.

  13. Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.

    Science.gov (United States)

    Stegmaier, Thomas; Linke, Michael; Planck, Heinrich

    2009-05-13

    Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.

  14. Glass ceramics for sealing to high-thermal-expansion metals

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, Jr., J. A.

    1980-10-01

    Glass ceramics were studied, formulated in the Na/sub 2/O CaO.P/sub 2/O/sub 5/, Na/sub 2/O.BaOP/sub 2/O/sub 5/, Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/, and Li/sub 2/O.BaO.P/sub 2/O/sub 5/ systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na/sub 2/O.CaO.P/sub 2/O/sub 5/ and Na/sub 2/O.BaO.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion in the range 140 x 10/sup -1/ per /sup 0/C less than or equal to ..cap alpha.. less than or equal to 225 x 10/sup -7/ per /sup 0/C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo/sub 3/, (NaPO/sub 3/)/sub 3/, NaBa(PO/sub 3/)/sub 3/, and NaCa(PO/sub 3/)/sub 3/. Glass ceramics formed in the Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion greater than 240 x 10/sup -7/ per /sup 0/C, but they have extensive microcracking. Due to their low thermal expansion values (..cap alpha.. less than or equal to 120 x 10/sup -7/ per /sup 0/C), glass ceramics in the Li/sub 2/O.BaO.P/sub 2/O/sub 5/ system are unsuitable for sealing to high thermal expansion metals.

  15. High-Temperature Properties of Ceramic Fibers and Insulations for Thermal Protection of Atmospheric Entry and Hypersonic Cruise Vehicles

    Science.gov (United States)

    Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.

    1988-01-01

    Multilayer insulations which will operate in the 500C to 1000C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described in this paper consist of ceramic fabrics, insulations, and metal foils quilted together using ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics of these insulations must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of multilayer insulations and are compared to the baseline Advanced Flexible Reusable Surface Insulation

  16. NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

    2003-10-01

    A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

  17. MODERN TECHNOLOGIES FOR APPLYING THE THERMAL INSULATIONS BASED ON CELLULOSE FLAKES

    Directory of Open Access Journals (Sweden)

    Daniela FIAT

    2013-05-01

    Full Text Available The paper presents cellulose thermal insulations based on cellulose flakes applied "in situ", by blowoutunder pressure. This mechanized method is using pneumatic systems with complex adjustments in order toobtain different densities and flow rates, when spraying the cellulose fibbers into the spaces to be insulated.

  18.  Thermal Insulation System Made of Wood and Paper for Use in Residential Construction

    Science.gov (United States)

    Zoltán Pásztory; Tibor Horváth; Samuel V. Glass; Samuel L. Zelinka

    2015-01-01

    This article introduces an insulation system that takes advantage of the low thermal conductivity of still air and is made of wood and paper. The insulation, called the Mirrorpanel, is constructed as a panel of closely spaced layers of coated paper and held together in a frame of wood or fiberboard. Panels have been fabricated and tested at the laboratory scale, whole...

  19. Modelling and Characterization of Effective Thermal Conductivity of Single Hollow Glass Microsphere and Its Powder.

    Science.gov (United States)

    Liu, Bing; Wang, Hui; Qin, Qing-Hua

    2018-01-14

    Tiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically. The experimental investigation of thermal conductivity of HGM powder is performed by the transient plane source (TPS) technique to provide a reference to numerical results, which are obtained by a developed three-dimensional two-step hierarchical computational method. In the present method, three heterogeneous HGM stacking elements representing different distributions of HGMs in the powder are assumed. Each stacking element and its equivalent homogeneous solid counterpart are, respectively, embedded into a fictitious matrix material as fillers to form two equivalent composite systems at different levels, and then the overall thermal conductivity of each stacking element can be numerically determined through the equivalence of the two systems. The comparison of experimental and computational results indicates the present computational modeling can be used for effectively predicting the overall thermal conductivity of single HGM and its powder in a flexible way. Besides, it is necessary to note that the influence of thermal interfacial resistance cannot be removed from the experimental results in the TPS measurement.

  20. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability

    NARCIS (Netherlands)

    Bröde, P.; Kuklane, K.; Candas, V.; Hartog, E.A. den; Griefahn, B.; Holmér, I.; Meinander, H.; Nocker, W.; Richards, M.; Havenith, G.

    2010-01-01

    The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were

  1. Study on the Microscopic Figures of Power Transformer Insulation Paper Under Electrical and Thermal Stresses

    Science.gov (United States)

    Liao, Rui-Jin; Tang, Chao; Yang, Li-Jun

    In this paper, Atomic Force Microscope (AFM) was used to observe the microscopic figure of aged insulation paper in order to analyze the microscopic ageing mechanism of power transformer insulation paper under electrical and thermal stresses. The results indicate that there are obvious concaves and convexes on the surface of aged insulation paper, and the paper samples are punctured because of chain scission and the flow of discharge current, which destroyed the compact cellulose chains structures and the diameter of punctures is about 0.5 nm. In addition, this paper analyzed the influence to the physical chemistry characteristics of insulation paper caused by partial discharge and paper ageing.

  2. Applicability test of new nanotechnology thermal insulation material Spacloft into building constructions

    OpenAIRE

    Zrim, Grega

    2009-01-01

    The subject of the thesis is influence analysis of aerogel thermal insulation material implementation into constructional complexes. The work is separated into three modules, each of them represents a different scale of observation. First one is dedicated to technical characteristics of the material and a short comparison with the characteristics of two other insulation materials. Second module introduces a more vast stationary thermal analysis of the constructional complexes with different c...

  3. THERMAL SHOCK RESISTANCE OF A SODA LIME GLASS

    Directory of Open Access Journals (Sweden)

    Z. MALOU

    2013-03-01

    Full Text Available We studied the thermal shock of a three millimeters thickness soda lime glass using the hot-cold thermal shock technique. The cooling was made by ambient air jet on previously warmed samples. The heat transfer coefficient was about 600 W/°C.m2 (Biot number β = 0.3. The thermal shock duration was fixed at 6 seconds. The hot temperature was taken between 100°C and 550°C while the cold temperature of the air flux was kept constant at 20°C. The acoustic emission technique was used for determining the failure time and the critical temperature difference (ΔTC. By referring to experimental results, thermal shock modelling computations are conducted. Our aim is especially focused on the fracture initiation moments during the cooling process and on the crack initiation sites. The used modeling is based on the local approach of the thermal shock during the experimental data treatment. For each test, the temperature profile and the transient stress state through the samples thickness are determined. By applying the linear superposition property of the stress intensity factors, evolution of the stress intensity factor KI in function of the pre-existing natural flaws in the glass surface is established. The size of the critical flaw is determined by the linear fracture mechanics laws. Computation results confirm the experimental values of the critical difference temperature obtained that is the source of the glass degradation.

  4. Glasses, Stress, Attenuation and Thermal Conductivity

    Science.gov (United States)

    Wu, Jiansheng; Yu, Clare

    2011-03-01

    A wide variety of amorphous materials exhibit similar behavior in their thermal properties. Examples include universal features in the specific heat,thermal conductivity, and ultrasonic attenuation. Recent experiments from the Parpia group at Cornell find that high stress silicon nitride thin film resonators exhibit a remarkably high Q factor, exceeding that of amorphous Si O2 by 2 to 3 orders of magnitude over a broad range of temperatures, and even exceeding that of single crystal silicon at room temperature. We present a model of why the stress reduces the attenuation. The basic assumption is that high stress increases the potential barriers of the excitations of defects that produce the loss, thus reducing the effective density of lossy fluctuators. We predict that high stress could lead to high thermal conductivity and low dielectric loss, making high stress SiN an excellent candidate as a substrate for integrated circuits. This work was supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office.

  5. Thermal degradation of multilayer insulation due to the presence of penetrations

    Science.gov (United States)

    Johnson, W. L.; Kelly, A. O.; Fesmire, J. E.

    2014-01-01

    Invented in the 1950s, cryogenic multilayer insulation (MLI) continues to be studied, tested, and analyzed as it represents a complex system that is integral with the total system to be insulated. Numerous tank and calorimeter tests have been performed using many different insulation approaches. Many different variables have been tested and documented, mainly within the insulation system itself. There are several factors in insulation application that can drive up the heat load on the entire system. These include the treatment of insulation seams, instrumentation wires running through the insulation, and the integration of the insulation with the structures and fluids. Several attempts have been made to identify the performance losses due to structural integration with a real system. Due to the nature of MLI, these were tied to specific programs and configuration dependent. In an effort to understand the complex heat transfer mechanisms surrounding such systems, a series of calorimeter testing coupled with thermal modeling of the calorimeter tests was put into place. Testing showed that a buffer of micro-fiberglass material such as Cryolite is a robust method of closing out MLI penetrations. Additionally, a validated thermal model was used to develop parametric analysis far beyond the limitations of the calorimeter testing. This paper presents the methodology and approach, with experimental data providing the basis for developing the thermal model and its results for applicability to future design cases.

  6. Radiative contribution to thermal conductance in animal furs and other woolly insulators.

    Science.gov (United States)

    Simonis, Priscilla; Rattal, Mourad; Oualim, El Mostafa; Mouhse, Azeddine; Vigneron, Jean-Pol

    2014-01-27

    This paper deals with radiation's contribution to thermal insulation. The mechanism by which a stack of absorbers limits radiative heat transfer is examined in detail both for black-body shields and grey-body shields. It shows that radiation energy transfer rates should be much faster than conduction rates. It demonstrates that, for opaque screens, increased reflectivity will dramatically reduce the rate of heat transfer, improving thermal insulation. This simple model is thought to contribute to the understanding of how animal furs, human clothes, rockwool insulators, thermo-protective containers, and many other passive energy-saving devices operate.

  7. Tests of thermal resistance of simulated walls with the reflective insulation

    Directory of Open Access Journals (Sweden)

    Piotrowski Jerzy Zb.

    2014-03-01

    Full Text Available The paper presents the thermal resistance characteristics of walls with multilayer reflective insulation. The tests have been performed using a heat flow meter to determine the resistivity of the layers simulating partition walls in buildings. A modification of the structure has also been proposed and analysed with a view to increase the thermal resistance and, consequently, reduce the heat flux transferred through the walls. Consequently, walls produced with layers that ensure higher thermal insulation lead to better thermal performance properties of the whole buildings, which reduce heating/cooling costs throughout the year.

  8. Thermal highly porous insulation materials made of mineral raw materials

    Science.gov (United States)

    Mestnikov, A.

    2015-01-01

    The main objective of the study is to create insulating foam based on modified mineral binders with rapid hardening. The results of experimental studies of the composition and properties of insulating foam on the basis of rapidly hardening Portland cement (PC) and gypsum binder composite are presented in the article. The article proposes technological methods of production of insulating foamed concrete and its placement to the permanent shuttering wall enclosures in monolithic-frame construction and individual energy-efficient residential buildings, thus reducing foam shrinkage and improving crack-resistance.

  9. Partial Insulation of Aerated Concrete Wall in its Thermal Bridge Regions

    Science.gov (United States)

    Li, Baochang; Guo, Lirong; Li, Yubao; Zhang, Tiantian; Tan, Yufei

    2018-01-01

    As a self-insulating building material which can meet the 65 percent energy-efficiency requirements in cold region of China, aerated concrete blocks often go moldy, frost heaving, or cause plaster layer hollowing at thermal bridge parts in the extremely cold regions due to the restrictions of environmental climate and construction technique. In this paper, partial insulation measures of the thermal-bridge position of these parts of aerated concrete walls are designed to weaken or even eliminate thermal bridge effect and improve the temperature of thermal-bridge position. A heat transfer calculation model for L-shaped wall and T-shaped wall is developed. Based on the simulation result, the influence of the thickness on the temperature field is analyzed. Consequently, the condensation inside self-thermal-insulating wall and frost heaving caused by condensation and low temperature will be reduced, avoiding damage to the wall body from condensation..

  10. The use of footwear insulation values measured on a thermal foot model.

    Science.gov (United States)

    Kuklane, Kalev

    2004-01-01

    The use of physiological data from human tests in modelling should consider background data, such as activity, environmental factors and clothing insulation on the whole body. The present paper focuses on local thermal comfort of feet with special attention on the effects of physical changes of footwear thermal properties. An alternative test method is available for footwear thermal testing besides the standard method. The possibility to use insulation values acquired on a thermal foot model in practice is shown here. The paper describes the correlation between cold and pain sensations, and foot skin temperatures of the subjects and relates these to insulation measured on a thermal foot model. Recommendations are made for footwear choice according to environmental temperature.

  11. Thermal comfort and clothing insulation of resting tent occupants at high altitude.

    Science.gov (United States)

    Cena, Krzysztof; Davey, Nicole; Erlandson, Tamara

    2003-11-01

    Thirty-nine males and 18 females, in six groups, participated in six high altitude treks (each lasting 3-4 weeks and climbing up to 5500m) in the Himalaya and Karakoram. Inverse relationships between mean overnight total insulation (sleeping bag plus clothing) and air temperature in tents were recorded for all treks. Average overnight thermal sensations varied little with air temperature as the subjects modified their clothing insulation to maintain thermal sensations warmer than 'neutral' for all treks. For combined treks, subjects adjusted their mean overnight total insulation up to 7clo for thermal sensations of between 0 ('neutral') and +1 ('slightly warm') on average, measured on the standard seven-point thermal sensation scale developed for everyday low-altitude conditions. Very few subjects (3% of all daily responses, on average) reported 'cool' or 'cold' sensations. General tent discomfort increased with altitude suggesting that subjects interpreted tent comfort predominantly in terms of thermal outdoor conditions.

  12. Comparison of floating and thermalized multilayer insulation systems at low boundary temperature

    CERN Document Server

    Ferlin, G; Lebrun, P; Peón-Hernández, G; Riddone, G; Szeless, Balázs

    1997-01-01

    The Large Hadron Collider (LHC) is 26.7 km circumference particle collider using high-field superconducting magnets operating in superfluid helium. An efficient and robust thermal insulation system is therefore required to minimize the residual heat in leak to the large surface area at 1.9 K constituted by the stainless steel wall of the helium enclosure. The baseline solution uses "floating" multilayer reflective insulation. Moreover, an alternative consists of a combination of multilayer reflective films and a soft screen, partially thermalized to the 5 K level and supported away from the cold wall by net-type insulating spacers. This chapter establishes the improvement potential of the alternative over the baseline solution, and compares their insulation performance on the basis of measured characteristics of thermal contacts and spacers.

  13. A Facile Approach to Evaluate Thermal Insulation Performance of Paper Cups

    Directory of Open Access Journals (Sweden)

    Yudi Kuang

    2015-01-01

    Full Text Available Paper cups are ubiquitous in daily life for serving water, soup, coffee, tea, and milk due to their convenience, biodegradability, recyclability, and sustainability. The thermal insulation performance of paper cups is of significance because they are used to supply hot food or drinks. Using an effective thermal conductivity to accurately evaluate the thermal insulation performance of paper cups is complex due to the inclusion of complicated components and a multilayer structure. Moreover, an effective thermal conductivity is unsuitable for evaluating thermal insulation performance of paper cups in the case of fluctuating temperature. In this work, we propose a facile approach to precisely analyze the thermal insulation performance of paper cups in a particular range of temperature by using an evaluation model based on the MISO (Multiple-Input Single-Output technical theory, which includes a characterization parameter (temperature factor and a measurement apparatus. A series of experiments was conducted according to this evaluation model, and the results show that this evaluation model enables accurate characterization of the thermal insulation performance of paper cups and provides an efficient theoretical basis for selecting paper materials for paper cups.

  14. SPONTANEOUS FRACTURE IN THERMALLY STRENGTHENED GLASS - A REVIEW AND OUTLOOK

    Directory of Open Access Journals (Sweden)

    Stefan Karlsson

    2017-07-01

    Full Text Available Thermal strengthening of glass is common for many different purposes including architecture, automotive, glasses for solar energy, tableware and occasionally also containers. It is an easy and relatively cheap method to make glasses stronger, however, with an Achilles heel that it can spontaneously fracture without the slightest applied external force. Though, fracture due to applied external force is the most common case, spontaneous fracture is rare. The current paper reviews the literature of spontaneous fracture and NiS inclusions and what kind of mitigation measures that have been done in order to reduce the frequency of spontaneous fracture. Finally is also an outlook for the alternative mitigation measures and their advantages as well as disadvantages. A personal perspective is given in discussions and gives an outlook to the most promising alternative methods to reduce and hopefully eliminate the NiS inclusions. These include multi-functional methods where not only the NiS inclusion issue is solved.

  15. Thermal, structural and electrical studies of bismuth zinc borate glasses

    Science.gov (United States)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.

    2013-06-01

    Bismuth Zinc Borate glasses with compositions xBi2O3-30ZnO-(70 - x)B2O3 (where x = 30, 35, 40 and 45 mol %) have been prepared by melt quenching method. These glasses were characterized by X-ray diffraction (XRD), Differential Thermal Analysis (DTA), Fourier Transform Infrared Spectrometer (FTIR) and Broad Band Dielectric Spectrometer (BDS). DTA and FTIR analysis reveals that Non-Bridging Oxygens (NBOs) increase with increase of bismuth content in the glass. Electrical data have been analyzed in the framework of impedance and modulus formalisms. The activation energy for dc conductivity decreases with increase of bismuth concentration. The imaginary part of modulus spectra has been fitted to non-exponential Kohlrausch-Williams-Watts (KWW) function and the value of the stretched exponent (β) is found to be almost independent of temperature but slightly dependent on composition.

  16. Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate

    Directory of Open Access Journals (Sweden)

    Takayoshi Katase

    2017-05-01

    Full Text Available Infrared (IR transmittance tunable metal-insulator conversion was demonstrated on a glass substrate by using thermochromic vanadium dioxide (VO2 as the active layer in a three-terminal thin-film-transistor-type device with water-infiltrated glass as the gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of a VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in an all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as an advanced smart window.

  17. Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate

    Science.gov (United States)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2017-05-01

    Infrared (IR) transmittance tunable metal-insulator conversion was demonstrated on a glass substrate by using thermochromic vanadium dioxide (VO2) as the active layer in a three-terminal thin-film-transistor-type device with water-infiltrated glass as the gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of a VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in an all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as an advanced smart window.

  18. The influence of thermal insulation position in building exterior walls on indoor thermal comfort and energy consumption of residential buildings in Chongqing

    Science.gov (United States)

    Wang, D.; Yu, W.; Zhao, X.; Dai, W.; Ruan, Y.

    2016-08-01

    This paper focused on the influence of using position of thermal insulation materials in exterior walls on the indoor thermal comfort and building energy consumption of residential building in Chongqing. In this study, four (4) typical residential building models in Chongqing were established, which have different usage of thermal insulation layer position in exterior walls. Indoor thermal comfort hours, cooling and heating energy consumption of each model were obtained by using a simulation tool, Energyplus. Based on the simulation data, the influence of thermal insulation position on indoor thermal comfort and building energy consumption in each season was analyzed. The results showed that building with internal insulation had the highest indoor thermal comfort hours and least cooling and heating energy consumption in summer and winter. In transitional season, the highest indoor thermal comfort hours are obtained when thermal insulation is located on the exterior side.

  19. Thermal Forming of Glass — Experiment vs. Simulation

    Directory of Open Access Journals (Sweden)

    L. Švéda

    2011-01-01

    Full Text Available Thermal forming is a technique for forming glass foils precisely into a desired shape. It is widely used in the automotive industry. It can also be used for shaping X-ray mirror substrates for space missions, as in our case. This paper presents the initial results of methods used for automatic data processing of in-situ measurements of the thermal shaping process and a comparison of measured and simulatated values. It also briefly describes improvements of the overall experimental setup currently being made in order to obtain better and more precise results.

  20. Thermal Insulating Properties of Straw-Filled Environmentally Friendly Building Materials

    Directory of Open Access Journals (Sweden)

    Petkova-Slipets Rositsa

    2017-06-01

    Full Text Available The paper presents results of a research for determination of a few general thermal-physical properties of environmentally friendly building materials made by clay, sand and straw. The aim of this study is to establish their heat insulating and energy-efficient capacity. All specific measurements were carried out by using the newest generation thermal conductivity analyser Mathis TCi.

  1. An apparatus to measure the thermal conductivity of insulation panels at sub-ambient temperature

    NARCIS (Netherlands)

    Vanapalli, Srinivas; Klünder, T.; Hegeman, I.; Tolboom, A.H.; ter Brake, Hermanus J.M.

    2017-01-01

    A single-sided guarded-plate apparatus has been developed to measure the thermal conductivity of insulation panels of sub-meter size at sub-ambient temperatures ranging from 250 to 300 K. This apparatus allows thermal conductivity measurements to be performed at large temperature differences

  2. Transient thermal sensation and comfort resulting from adjustment of clothing insulation

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; Fanger, Povl Ole

    2003-01-01

    This study investigated the transient effects on human thermal responses of clothing adjustments. Two different levels of activity were tested, and the temperature was set to result in a warm or cool thermal sensation at each activity level. The subjects (12 females and 12 males) wore identical...... minutes after both an increase and a decrease of clothing insulation, independent of the activity level....

  3. Molecular sieves control contamination and and insulate in thermal regenerators - A concept

    Science.gov (United States)

    Gasser, M. G.

    1970-01-01

    Zeolitic molecular sieves prolong the lives of cryogenic engines by preventing contamination of the thermal regenerators on the cold ends of closed-cycle engines. Sieves also serve as thermal insulators by preventing conduction of heat along regenerators through contiguous disks of mesh.

  4. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.

    Science.gov (United States)

    Qian, Xiaoming; Fan, Jintu

    2006-11-01

    Clothing thermal insulation and moisture vapour resistance are the two most important parameters in thermal environmental engineering, functional clothing design and end use of clothing ensembles. In this study, clothing thermal insulation and moisture vapour resistance of various types of clothing ensembles were measured using the walking-able sweating manikin, Walter, under various environmental conditions and walking speeds. Based on an extensive experimental investigation and an improved understanding of the effects of body activities and environmental conditions, a simple but effective direct regression model has been established, for predicting the clothing thermal insulation and moisture vapour resistance under wind and walking motion, from those when the manikin was standing in still air. The model has been validated by using experimental data reported in the previous literature. It has shown that the new models have advantages and provide very accurate prediction.

  5. Influence on Occupant Responses of Behavioral Modification of Clothing Insulation in Nonsteady Thermal Environments (RP-1269)

    DEFF Research Database (Denmark)

    Toftum, Jørn; Kolarik, Jakub; Belkowska, D.

    2010-01-01

    This paper presents climate chamber experiment results in which subjects were exposed to increasing and decreasing dynamic temperature drifts while being allowed to adjust their clothing insulation as desired. The objective of the study was to substantiate the scientific basis of the recommendati......This paper presents climate chamber experiment results in which subjects were exposed to increasing and decreasing dynamic temperature drifts while being allowed to adjust their clothing insulation as desired. The objective of the study was to substantiate the scientific basis....../h) condition when it was 2 h. Thermal sensation responses observed with adjustable clothing insulation did not differ from those observed with fixed clothing insulation, which were reported in an earlier paper. However, with fired clothing insulation, longer exposures (>4 h) seemed to aggravate general sick...

  6. Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation

    Science.gov (United States)

    Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran

    2007-01-01

    Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.

  7. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  8. Thermal insulation and clothing area factors of typical Arabian Gulf clothing ensembles for males and females: measurements using thermal manikins.

    Science.gov (United States)

    Al-ajmi, F F; Loveday, D L; Bedwell, K H; Havenith, G

    2008-05-01

    The thermal insulation of clothing is one of the most important parameters used in the thermal comfort model adopted by the International Standards Organisation (ISO) [BS EN ISO 7730, 2005. Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Standardisation Organisation, Geneva.] and by ASHRAE [ASHRAE Handbook, 2005. Fundamentals. Chapter 8. American Society of Heating Refrigeration and Air-conditioning Engineers, Inc., 1791 Tullie Circle N.E., Atlanta, GA.]. To date, thermal insulation values of mainly Western clothing have been published with only minimal data being available for non-Western clothing. Thus, the objective of the present study is to measure and present the thermal insulation (clo) values of a number of Arabian Gulf garments as worn by males and females. The clothing ensembles and garments of Arabian Gulf males and females presented in this study are representative of those typically worn in the region during both summer and winter seasons. Measurements of total thermal insulation values (clo) were obtained using a male and a female shape thermal manikin in accordance with the definition of insulation as given in ISO 9920. In addition, the clothing area factors (f cl) determined in two different ways were compared. The first method used a photographic technique and the second a regression equation as proposed in ISO 9920, based on the insulation values of Arabian Gulf male and female garments and ensembles as they were determined in this study. In addition, fibre content, descriptions and weights of Arabian Gulf clothing have been recorded and tabulated in this study. The findings of this study are presented as additions to the existing knowledge base of clothing insulation, and provide for the first time data for Arabian Gulf clothing. The analysis showed that for these non-Western clothing designs, the

  9. Calculating thermal insulation thickness and embedment depth of underground heat supply pipeline for permafrost soils

    OpenAIRE

    M.P. Akimov; S.D. Mordovskoy; N.P. Starostin

    2014-01-01

    In this work the authors considered a freezing-and-melting process of soils under the polyurethane-insulated polyethylene heating pipeline, which is used in the regions with permafrost soils. Temperature field dynamics of the “pipeline – soil” system is determined by heat conductivity equation in polar coordinate system. The corresponding two-dimensional Stefan problem is solved by the finite differences method. The authors propose to determine the thickness of pipeline thermal insulation...

  10. Incorporation of Polymers into Calcined Clays as Improved Thermal Insulating Materials for Construction

    Directory of Open Access Journals (Sweden)

    Serina Ng

    2017-01-01

    Full Text Available Calcined clay is a Type Q supplementary cementing material according to EN197-1:2000. It possesses lower thermal conductivity than cement. To further improve its thermal insulation property, polymer-calcined clay complexes (PCCs were produced in a one-pot synthesis. Two contrasting polymers, polystyrene (PS and polyethylene glycol (PEG, were employed. The hydrophilicity of the polymers influenced the thermal conductivity of PCC. Hydrophilic PEG entrapped more water molecules on clay layers than the hydrophobic PS, making PEG-PCC more thermally conducting than PS-PCC. Contaminants in calcined clays played a role in affecting the overall thermal conductivity. PCC can improve thermal insulation properties for future construction applications.

  11. Local thermal energy as a structural indicator in glasses

    Science.gov (United States)

    Zylberg, Jacques; Lerner, Edan; Bar-Sinai, Yohai; Bouchbinder, Eran

    2017-07-01

    Identifying heterogeneous structures in glasses—such as localized soft spots—and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses—an intrinsic signature of glassy frustration—anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal ω4ω4 density of states of quasilocalized low-frequency vibrational modes. When the spatial thermal energy field—a “softness field”—is considered, this power law tail manifests itself by highly localized spots, which are significantly softer than their surroundings. These soft spots are shown to be susceptible to plastic rearrangements under external driving forces, having predictive powers that surpass those of the normal modes-based approach. These results offer a general, system/model-independent, physical/observable-based approach to identify structural properties of quiescent glasses and relate them to glassy dynamics.

  12. Transient analysis and improvement of indoor thermal comfort for an air-conditioned room with thermal insulations

    Directory of Open Access Journals (Sweden)

    D. Prakash

    2015-09-01

    Full Text Available Thermal insulations over the building envelop reduce the heat gain due to solar radiation and may enhance good and uniform indoor thermal comfort for the occupants. In this paper, the insulation layer-wood wool is laid over the roof and exposed wall of an air-conditioned room and its performance on indoor thermal comfort is studied by computational fluid dynamics (CFD technique. From this study, 3% of indoor thermal comfort index-predicted mean vote (PMV is improved by providing wood wool layer. In addition, the optimum supply air temperature of air-conditioning unit for good thermal comfort is predicted as in the range of 299–300 K (26–27 °C.

  13. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  14. Measuring Thermal Conductivity and Moisture Absorption of Cryo-Insulation Materials

    Science.gov (United States)

    Lambert, Michael A.

    1998-01-01

    NASA is seeking to develop thermal insulation material systems suitable for withstanding both extremely high temperatures encountered during atmospheric re-entry heating and aero- braking maneuvers, as well as extremely low temperatures existing in liquid fuel storage tanks. Currently, materials used for the high temperature insulation or Thermal Protection System (TPS) are different from the low temperature, or cryogenic insulation. Dual purpose materials are necessary to the development of reusable launch vehicles (RLV). The present Space Shuttle (or Space Transportation System, STS) employs TPS materials on the orbiter and cryo-insulation materials on the large fuel tank slung under the orbiter. The expensive fuel tank is jettisoned just before orbit is achieved and it burns up while re-entering over the Indian Ocean. A truly completely reusable launch vehicle must store aR cryogenic fuel internally. The fuel tanks will be located close to the outer surface. In fact the outer skin of the craft will probably also serve as the fuel tank enclosure, as in jet airliners. During a normal launch the combined TPS/cryo-insulation system will serve only as a low temperature insulator, since aerodynamic heating is relatively minimal during ascent to orbit. During re-entry, the combined TPS/cryo-insulation system will serve only as a high temperature insulator, since all the cryogenic fuel will have been expended in orbit. However, in the event of an.aborted launch or a forced/emergency early re-entry, the tanks will still contain fuel, and the TPS/cryo-insulation will have to serve as both low and high temperature insulation. Also, on long duration missions, such as to Mars, very effective cryo-insulation materials are needed to reduce bod off of liquid propellants, thereby reducing necessary tankage volume, weight, and cost. The conventional approach to obtaining both low and high temperature insulation, such as is employed for the X-33 and X-34 spacecraft, is to use

  15. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  16. Thermal paint production: the techno-economic evaluation of muscovite as insulating additive.

    Directory of Open Access Journals (Sweden)

    Gabriela Fernandes Ribas

    2016-09-01

    Full Text Available Muscovite is known by its thermal and electrical insulating properties. Based on this, it was hypothesized that its addition on paints should increase the thermal resistance. The use of muscovite as mineral insulating is pointed out as advantageous due to its low cost compared to other materials used for this purpose, such as the ceramic microsphere. The use of a low cost material could open the access to the medium and low income families, implying two aspects: the life quality increase by thermal comfort and the increase of energy saving. Thus, this part of the population could open a new market to thermal paints. Aiming to contribute to this issue, this work evaluated the thermal insulation performance of commercial paints containing muscovite additions and determined the economic evaluation for its industrial production. The thermal paint was formulated by adding 10%, 20% and 40% of muscovite to the commercial paint. This was applied on steel reinforced mortar boards. Thermal insulation tests were carried out in bench scale using an adapted box. The economic evaluation of the industrial production of muscovite-based thermal paint was conducted, considering the Brazilian economic market in this activity. The results showed its ability as an insulating agent due to a reduction of 0.667 °C/mm board by the addition of 40% muscovite. The economic analysis also demonstrated the feasibility of the thermal paint industrial production. The payback is favorable to 5 years when compared to the Selic short-term lending rate, with 21.53% of internal rate return and a net present value of US$ 15,085.76.

  17. STATISTICAL ANALYSIS OF A SODA LIME GLASS THERMAL SHOCK RESISTANCE

    Directory of Open Access Journals (Sweden)

    Gilbert FANTOZZI

    2011-09-01

    Full Text Available Comparatively to the as received soda lime glass samples, the strength distribution after thermal shocks showed the appearance of a second branch in the Weibull curves. This branch is observed for temperature differences (ΔT equal or higher than the critical temperature difference (ΔTc for both water and motor oil cooling baths. The dispersion is more spread out in these two baths in comparison with the olive oil bath probably because of more pronounced slow crack growth effect. The Weibull modulus varies according to the used cooling bath and the considered temperature difference. In the case of thermal shock caused by air blast cooling at T = 20°C, a bimodal distribution is observed for only the critical state. The initial cracking time, obtained by acoustic emission, corresponds to the unstable propagation of the most critical defect. The number of cracks induced by thermal shock is proportional to the number of acoustic events.

  18. Glass-ceramic hermetic seals to high thermal expansion metals

    Science.gov (United States)

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  19. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Bitao Fan

    2017-03-01

    Full Text Available Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials.

  20. A quasi-physical model for predicting the thermal insulation and moisture vapour resistance of clothing.

    Science.gov (United States)

    Qian, Xiaoming; Fan, Jintu

    2009-07-01

    Based on the improved understanding of the effects of wind and walking motion on the thermal insulation and moisture vapour resistance of clothing induced by air ventilation in the clothing system, a new model has been derived based on fundamental mechanisms of heat and mass transfer, which include conduction, diffusion, radiation and natural convection, wind penetration and air ventilation. The model predicts thermal insulation of clothing under body movement and windy conditions from the thermal insulation of clothing measured when the person is standing in the still air. The effects of clothing characteristics such as fabric air permeability, garment style, garment fitting and construction have been considered in the model through the key prediction parameters. With the new model, an improved prediction accuracy is achieved with a percentage of fit being as high as 0.96.

  1. Thermal insulation for high temperature microwave sintering operations and method thereof

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  2. Method of preparing thermal insulation for high temperature microwave sintering operations

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  3. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    Science.gov (United States)

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  4. Effect of hygric and thermal properties of connecting layers on the performance of interior thermal insulation systems

    Science.gov (United States)

    Kočí, Václav; Jerman, Miloš; Fiala, Lukáš; Černý, Robert

    2017-11-01

    Interior thermal insulation systems represent often the only way of thermal protection, especially when historical buildings are taken into account. Since these systems face distrust due to frequent moisture failures, alternative solutions substituting the common water vapor barrier are being sought. In this paper, an assessment of hygrothermal performance of interior thermal insulation systems with purposely developed connecting layers is presented. Two types of mineral wools are connected to a sandstone masonry using two different connecting materials. The hygrothermal performance of the wall is obtained as a result of computational modelling with experimentally determined material parameters. Dynamic boundary conditions in the form of climatic data for Prague are used. The results indicate that the combination of permeable thermal insulation materials with investigated connecting layers have a positive influence on hygrothermal performance of the system as the moisture content is kept on very low level during a reference year. On the other hand, an increased attention should be paid to the protection of the masonry against excessive weather straining due to the absence of exterior thermal insulation.

  5. Vacuum Insulation Panels: Analysis of the Thermal Performance of Both Single Panel and Multilayer Boards

    Directory of Open Access Journals (Sweden)

    Alfonso Capozzoli

    2015-03-01

    Full Text Available The requirements for improvement in the energy efficiency of buildings, mandatory in many EU countries, entail a high level of thermal insulation of the building envelope. In recent years, super-insulation materials with very low thermal conductivity have been developed. These materials provide satisfactory thermal insulation, but allow the total thickness of the envelope components to be kept below a certain thickness. Nevertheless, in order to penetrate the building construction market, some barriers have to be overcome. One of the main issues is that testing procedures and useful data that are able to give a reliable picture of their performance when applied to real buildings have to be provided. Vacuum Insulation Panels (VIPs are one of the most promising high performing technologies. The overall, effective, performance of a panel under actual working conditions is influenced by thermal bridging, due to the edge of the panel envelope and to the type of joint. In this paper, a study on the critical issues related to the laboratory measurement of the equivalent thermal conductivity of VIPs and their performance degradation due to vacuum loss has been carried out utilizing guarded heat flux meter apparatus. A numerical analysis has also been developed to study thermal bridging effect when VIP panels are adopted to create multilayer boards for building applications.

  6. Retrofitting of compound systems of thermal insulation. Mantle on the jacket; Sanierung von WDVS durch Aufdoppelung. Mantel ueber der Jacke

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Klaus

    2011-03-15

    More than thirty years ago the era of compound systems of thermal insulation started - using five to eight centimetres thin polystyrene insulation panels, in the 1970ies the pioneers of the facade insulation responded to the dictation of the oil sheik and set thereby the course for the development of an energy efficient design for the first time. In the meantime the thermoskins of the first hour lost some of its shine and also correspond no more to the today's insulation standard. Their retrofitting lines up. Thus the question arises: Demolition, disposal and assembly of a new compound system of thermal insulation? Or are panels the better solution?.

  7. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo [Toyota Central Research and Development Labs, Nagakute, Aichi 480-1192 (Japan)

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  8. Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Mohamad Irfan Fathurrohman

    2015-07-01

    Full Text Available The vulcanization kinetics of Ethylene-propylene diene monomer (EPDM rubber thermal insulation was studied by using rheometer under isothermal condition at different temperatures. The rheometry analysis was used to determining the cure kinetic parameters and predicting the cure time of EPDM thermal insulation. The experimental results revealed that the curing curves of EPDM thermal insulation were marching and the optimum curing time decreased with increasing the temperature. The kinetic parameters were determined from the autocatalytic model showed close fitting with the experimental results, indicating suitability of autocatalytic model in characterizing the cure kinetics. The activation energy was determined from the autocatalytic model is 46.3661 kJ mol-1. The cure time were predicted from autocatalytic model and the obtained kinetic parameter by using the relationship among degree of conversion, cure temperature, and cure time. The predictions of cure time provide information for the actual curing characteristic of EPDM thermal insulation. The mechanical properties of EPDM thermal insulation with different vulcanization temperatures showed the same hardness, tensile strength and modulus at 300%, except at temperature 70 °C, while the elongation at breaking point decreased with increasing temperature of vulcanization. © 2015 BCREC UNDIP. All rights reservedReceived: 8th April 2014; Revised: 7th January 2015; Accepted: 16th January 2015How to Cite: Fathurrohman, M.I., Maspanger, D.R., Sutrisno, S. (2015. Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation. Bulletin of Chemi-cal Reaction Engineering & Catalysis, 10 (2, 104-110. (doi:10.9767/bcrec.10.2.6682.104-110Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.6682.104-110 

  9. Thermal insulation and SIDS-an investigation of selected 'Eastern' and 'Western' infant bedding combinations.

    Science.gov (United States)

    Wilson, C A; Chu, M S

    2005-08-01

    Differences in the incidence of SIDS between 'Western' and 'Eastern' countries has been attributed to cultural practices, which may affect the infants care and thermal environment. The purpose of this work was to estimate for selected 'commonly' used bedding, sleep positions and practices in Japan, Korea and New Zealand, the intrinsic 'dry' thermal resistance of bedding. Insulation levels are also discussed in the context of published information about the thermal environment in which the bedding is likely to be used. Selected Japanese, Korean and New Zealand bedding was loosely tucked over an infant manikin in the lateral, prone and supine sleep positions. Thickness in use was measured, and intrinsic 'dry' thermal resistance estimated using the Wilson Laing model which accommodates the effect on insulation of the three-dimensional arrangement of bedding combinations during use. Thickness of under- and upper-bedding varied among countries with thickness and estimated 'dry' thermal resistance of the upper-bedding affected by the type/combination of bedding and the infants sleep position. Insulation levels are discussed in relation to environmental conditions within and among countries and between seasons. Further information on thermal environments, bedding combinations used and care practices within both Asian and Western countries is needed. 'Eastern' infants appear likely to be generally covered in bedding combinations of greater insulation than those used to cover 'Western' infants in comparable seasons. Differences existed between insulation of the Japanese and Korean bedding combinations investigated. Lower rates of SIDS apparent in 'Asian' populations do not appear attributable to use of lower levels of bedding insulation only.

  10. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  11. Thermal blanket insulation for advanced space transportation systems

    Science.gov (United States)

    Pusch, Richard H.

    1985-01-01

    The feasibility of weaving Nextel ceramic and Nicalon silicon carbide yarns into integrally woven, three dimensional fluted core fabrics was demonstrated. Parallel face fabrics joined with woven fabric ribs to form triangular cross section flutes between the faces were woven into three single and one double layer configuration. High warp yarn density in the double layer configuration caused considerable yarn breakage during weaving. The flutes of all four fabrics were filled with mandrels made from Q-Fiber Felt and FRCI-20-12 to form candidate insulation panels for advanced Space Transportation Systems. Procedures for preparing and inserting the mandrels were developed. Recommendations are made on investigating alternate methods for filling the flutes with insulation, and for improving the weaving of these types of fabrics.

  12. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature

    CERN Document Server

    Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B

    2012-01-01

    In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb3Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9.6±5...

  13. Cellulose loose-fill insulation material. Thermal transmittance determined by means of heat flow meters; Papirisolering. Varmeisoleringsevne maalt med varmestroemsmaaler

    Energy Technology Data Exchange (ETDEWEB)

    Nicolajsen, Asta

    2001-07-01

    Determination of design values of thermal conductivity, {lambda}{sub p}, for insulation materials is based on the laboratory measured {lambda}-value ((lampbda){sub 10}) of dry materials and experience gained over many years. Only limited documentation regarding cellulose loose-fill insulation is available, as this type of insulation has only been used in Denmark for comparatively few years. By og Byg has received a grant to investigate the insulating properties of cellulose insulation materials in a number of facade elements, including the dependency of insulating properties on the moisture content. The insulating properties also depends on other parameters, e.g. workmanship in connection with the actual insulation and any subsequent settling of the insulation material. These aspects has not been investigated in this project. (au)

  14. Smoldering combustion hazards of thermal-insulation materials

    Energy Technology Data Exchange (ETDEWEB)

    Ohlemiller, J.

    1981-08-01

    The smoldering combustion hazards of cellulosic loose fill insulation materials fall into three categories: smolder initiation, smolder propagation, and transition from smoldering into flaming. Previous findings on the initiation problem are summarized briefly. They serve as the basis for recommendations on an improved smolder ignition test method which is designed to give ignition temperatures comparable to those in practice. The proposed test method requires checking against full-scale mock-up results before it can be considered for implementation. Smolder propagation, driven by buoyant convection, through a thick (18 cm) layer of cellulosic insulation has been extensively examined. A heavy (25% add-on) loading of boric acid (a widely used smolder retardant) cuts the propagation rate in half (from approx. 0.3 to 0.15 cm/min) but does not come close to stopping this process. Analysis of experimental profiles for temperature, oxygen level, and remaining organic fraction strongly indicates that the smolder wave is oxygen-supply controlled and that it involves both first and second stages of oxidative heat release from the insulation material. The balance of involvement of the two stages varies with depth in the layer. It appears that efforts to develop improved means of suppressing smolder propagation must be directed at the entire oxidation process. However, since boric acid is fairly effective at slowing the second stage of oxidation, most new efforts should be aimed at the first stage of oxidation (which also is responsible for smolder initiation).

  15. Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    SINTEF Building and Infrastructure; Norwegian University of Science and Technology (NTNU); Bergh, Sofie Van Den; Hart, Robert; Jelle, Bjrn Petter; Gustavsen, Arild

    2013-01-31

    Insulating glass (IG) units typically consist of multiple glass panes that are sealed and held together structurally along their perimeters. This report describes a study of edge seals in IG units. First, we summarize the components, requirements, and desired properties of edge construction in IG units, based on a survey of the available literature. Second, we review commercially available window edge seals and describe their properties, to provide an easily accessible reference for research and commercial purposes. Finally, based on the literature survey and review of current commercial edge seal systems, we identify research opportunities for future edge seal improvements and solutions.

  16. Anisotropic fibrous thermal insulator of relatively thick cross section and method for making same

    Science.gov (United States)

    Reynolds, Carl D.; Ardary, Zane L.

    1979-01-01

    The present invention is directed to an anisotropic thermal insulator formed of carbon-bonded organic or inorganic fibers and having a thickness or cross section greater than about 3 centimeters. Delaminations and deleterious internal stresses generated during binder curing and carbonizing operations employed in the fabrication of thick fibrous insulation of thicknesses greater than 3 centimeters are essentially obviated by the method of the present invention. A slurry of fibers, thermosetting resin binder and water is vacuum molded into the selected insulator configuration with the total thickness of the molded slurry being less than about 3 centimeters, the binder is thermoset to join the fibers together at their nexaes, and then the binder is carbonized to form the carbon bond. A second slurry of the fibers, binder and water is then applied over the carbonized body with the vacuum molding, binder thermosetting and carbonizing steps being repeated to form a layered insulator with the binder providing a carbon bond between the layers. The molding, thermosetting and carbonizing steps may be repeated with additional slurries until the thermal insulator is of the desired final thickness. An additional feature of the present invention is provided by incorporating opacifying materials in any of the desired layers so as to provide different insulating properties at various temperatures. Concentration and/or type of additive can be varied from layer-to-layer.

  17. Method of producing a barrier in a thermally insulated container

    Energy Technology Data Exchange (ETDEWEB)

    Collins, M.H.; Le Hardy Guiton, J.D.

    1978-10-17

    The Netherlands' Shell Internationale Research Maatschappij B.V. has developed an essentially pinhole-free barrier for LNG storage/transport tanks. The barrier consists of layers of an expoxy-resin formulation and a glass-fiber material, applied in a special sequence to produce a barrier of superior quality.

  18. Thermally Enhanced Cable Insulation for the Nb-Ti High Luminosity LHC Inner Triplet Model

    CERN Document Server

    Granieri, P P; Richter, D; Tommasini, D

    2012-01-01

    A new concept of polyimide electrical insulation for superconducting cables of accelerator magnets was developed in the last years. Its enhanced He II permeability allows a significant improvement of the heat extraction from the coil. This cable insulation concept is used for the quadrupole magnet prototype for the insertion region of the High Luminosity - Large Hadron Collider project. It aims at pushing the limits of the Nb Ti technology to withstand high heat deposition. Cable samples wrapped with the new insulation scheme were characterized from the thermal standpoint, as well as from the electrical and mechanical ones. In particular, heat transfer measurements from insulated cables towards the helium cooling bath were performed in a coil-like configuration. Various wrapping schemes were tested in different mechanical conditions, and a model was developed to explain the experimental results. The paper summarizes the main results of all these investigations.

  19. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide.

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K(-1), which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  20. A Method to have Multi-Layer Thermal Insulation Provide Damage Detection

    Science.gov (United States)

    Woodward, Stanley E.; Taylor, Bryant D.; Jones, Thomas W.; Shams, Qamar A.; Lyons, Frankel; Henderson, Donald

    2007-01-01

    Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented.

  1. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  2. Benefits of the use of thermal insulation in a naturally ventilated residential building in Brazilian temperate climate

    OpenAIRE

    Vinícius Linczuk; Fernando Simon Westphal

    2016-01-01

    The use of thermal insulation is not a common practice in civil construction in Brazil. The national standard for thermal performance and the energy efficiency labeling program do not require the use of thermal insulation in the building envelope, even for the hottest and for the coldest regions of the country. Brazil has a temperate climate region that covers 7.2% of its territory and contains important and populous cities. This paper explores the benefits of the use of thermal i...

  3. Mineral purity command. Thermal insulation and design using a rockwool system; Mineralisches Reinheitsgebot. Daemmen und Gestalten mit Steinwolle im System

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-10-15

    A former brewery was converted into exhibition rooms for high-quality office furniture. The historical building was maintained, and the thermal insulation and fire protection concepts were modernized. Rockwool was used for the project as it combines the advantages of efficient thermal insulation with those of a wide and well-matched product range.

  4. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment

    Science.gov (United States)

    Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673

  5. Design parameters for single pipe thermal insulation systems for offshore flow assurance

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam; Johnsen, Erik; Kopystynski, Adam; Simonsen, Eirik; Boye-Hansen, Allan [Bredero Shaw (Thermotite), Orkanger (Norway)

    2005-07-01

    Limit state design of subsea thermal insulation systems has been shown to be feasible and robust. This requires careful implementation of extensive long-term laboratory data and property models into verified FEA / FDA tools. Such simulations allow for the determination of not only the steady state response, but also the transient response of the system as a function of temperature, hydrostatic loading, ageing, water ingress and time. This departure from the traditional use of monolithic thermal conductivities, heat capacities and water absorption values can allow in some cases for a reduction in the thickness of insulation, whilst simultaneously enabling control of conservatism. The current paper discusses the important influences affecting the performance of insulant systems and the results of verification testing along with design examples where the generally accepted design method is compared to the limit state approach. (author)

  6. Effect of 25 cycles of launch pad exposure and simulated mission heating on space shuttle reusable surface insulation coated with reaction cured glass

    Science.gov (United States)

    Ransone, P. O.; Morrison, J. D.; Minster, J. E.

    1979-01-01

    Tiles of space shuttle reusable surface insulation coated with reaction cured glass were subjected to 25 cycles of launch pad exposure and simulated mission heating. The coating could not withstand the environment without cracking. Water absorption after cracking reached as high as 150 weight percent. Exposure of insulation fibers beneath the coating to contaminants dissolved in absorbed water initiated fiber degradation.

  7. Thermal Jacket Design Using Cellulose Aerogels for Heat Insulation Application of Water Bottles

    Directory of Open Access Journals (Sweden)

    Hai M. Duong

    2017-11-01

    Full Text Available Thermal jacket design using eco-friendly cellulose fibers from recycled paper waste is developed in this report. Neoprene as an outmost layer, cellulose aerogels in the middle and Nylon as an innermost layer can form the best sandwiched laminate using the zigzag stitching method for thermal jacket development. The temperature of the ice slurry inside the water bottle covered with the designed thermal jackets remains at 0.1 °C even after 4 h, which is the average duration of an outfield exercise. Interestingly, the insulation performance of the designed thermal jackets is much better than the commercial insulated water bottles like FLOE bottles and is very competition to that of vacuum flasks for a same period of 4 h and ambient conditions.

  8. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    of glass fibers are dependent on the thermal history (measured as fictive temperature), tension, chemical composition and redox state. However, the fictive temperature affects the hardness of bulk glass in a complicated manner, i.e., the effect does not exhibit a clear regularity in the range......Mechanical properties are a key factor to be considered when designing new glass compositions, optimizing glass processing parameters and defining the glass application fields. However, mechanical properties of glasses are complex values since they are influenced by many factors such as structure......, surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness...

  9. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process.

    Science.gov (United States)

    Xing, Mingfei; Fu, Zegang; Wang, Yaping; Wang, Jingyu; Zhang, Zhiyuan

    2017-01-15

    In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B2O3 in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na2O, K2O, Al2O3, BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5mol/L HNO3. The lead removal rate was 99.80% and high silica glass powder (SiO2 purity >95wt%) was obtained by setting the temperature, B2O3 added amount and holding time at 1000°C, 20% and 30mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Literature Review of Sealed and Insulated Attics—Thermal, Moisture and Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-01

    In this literature review and analysis, we focus on the thermal, moisture and energy performance of sealed and insulated attics in California climates. Thermal. Sealed and insulated attics are expected to maintain attic air temperatures that are similar to those in the house within +/- 10°F. Thermal stress on the assembly, namely high shingle and sheathing temperatures, are of minimal concern. In the past, many sealed and insulated attics were constructed with insufficient insulation levels (~R-20) and with too much air leakage to outside, leading to poor thermal performance. To ensure high performance, sealed and insulated attics in new California homes should be insulated at levels at least equivalent to the flat ceiling requirements in the code, and attic envelopes and ducts should be airtight. We expect that duct systems in well-constructed sealed and insulated attics should have less than 2% HVAC system leakage to outside. Moisture. Moisture risk in sealed and insulated California attics will increase with colder climate regions and more humid outside air in marine zones. Risk is considered low in the hot-dry, highly populated regions of the state, where most new home construction occurs. Indoor humidity levels should be controlled by following code requirements for continuous whole-house ventilation and local exhaust. Pending development of further guidance, we recommend that the air impermeable insulation requirements of the International Residential Code (2012) be used, as they vary with IECC climate region and roof finish. Energy. Sealed and insulated attics provide energy benefits only if HVAC equipment is located in the attic volume, and the benefits depend strongly on the insulation and airtightness of the attic and ducts. Existing homes with leaky, uninsulated ducts in the attic should have major savings. When compared with modern, airtight duct systems in a vented attic, sealed and insulated attics in California may still provide substantial benefit

  11. Thermal Insulation Performance of Textile Structures for Spacesuit Applications at Martian Pressure and Temperature

    Science.gov (United States)

    Orndoff, Evelyne; Trevino, Luis A.

    2000-01-01

    Protection of astronauts from the extreme temperatures in the space environment has been provided in the past using multi-layer insulation in ultra-high vacuum environments of low earth orbit and the lunar surface. For planetary environments with residual gas atmospheres such as Mars with ambient pressures between 8 to 14 hPa (8 to 14 mbar), new protection techniques are required because of the dominating effect of the ambient gas on heat loss through the insulation. At Mars ambient pressure levels, the heat loss can be excessive at expected suit external temperatures of 172 K with state-of-the-art suit insulation, requiring an active heat source and its accompanying weight and volume penalties. Micro-fibers have been identified as one potential structure to reduce the heat losses, but existing fundamental data on fiber heat transfer at low pressure is lacking for integrated fabric structures. This baseline study presents insulation performance test data at different pressures and fabric loads for selected polyesters and aramids as a function of fiber density, fiber diameter, fabric density, and fabric construction. A set of trend data of thermal conductivity versus ambient pressure is presented for each fiber and fabric construction design to identify the design effects on thermal conductivity at various ambient pressures, and to select a fiber and fabric design for further development as a suit insulation. The trend data also shows the pressure level at which thermal conductivity approaches a minimum, below which no further improvement is possible for a given fiber and fabric design. The pressure levels and resulting thermal conductivities from the trend data can then be compared to the ambient pressure at a planetary surface, Mars for example, to determine if a particular fiber and fabric design has potential as a suit insulation.

  12. STS-40 Columbia, OV-102, payload bay aft firewall and thermal insulation

    Science.gov (United States)

    1991-01-01

    STS-40 Columbia, Orbiter Vehicle (OV) 102, payload bay (PLB) aft firewall is documented to show a loose piece of thermal insulation. The crew discovered the loose blanket soon after opening the PLB doors on 06-05-91. The vertical tail and the left orbital maneuvering system (OMS) pod are visible above the bulkhead.

  13. Thermal properties of a sandwich construction insulated with Polyurethane (DC-System)

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Dreau, Jerome Le

    conductivity: + 50% for expanded polystyrene (λ ≈ 30 mW/m.K), + 75% for mineral wools (λ ≈ 35 mW/m.K), etc. Despite its low thermal conductivity, polyurethane foam (PUR) is not much used as insulation material for walls because of its low resistance to fire. The most common PUR boards are classified C-s2-d0...

  14. Use of XPS thermal insulator boards in design of educational spaces

    African Journals Online (AJOL)

    Heating and cooling equipment capacity becomes smaller than half after proper implementation of thermal insulation. As air conditioning equipment becomes small, implementation of optimization not only becomes free but also reduces the overall cost of construction. Keywords: School, modern materials, Building and ...

  15. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    conducted exploring the effects of the following parameters: pigment (hollow spheres) volume concentration (PVC), average sphere size or sphere size distribution, thermal conductivities of binder and sphere wall material, and sphere wall thickness. All the parameters affected the thermal conductivity...... of an epoxy coating, but simulations revealed that the most important parameters are the PVC, the sphere wall thickness, and the sphere wall material. The model can be used, qualitatively, to get an indication of the effect of important model parameters on the thermal conductivity of an HS-based coating...

  16. Foamed glass insulating block ends costly baghouse corrosion and protects new steel stack

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    A secondary smelter company on the West Coast, that reclaims certain metals from scrap products such as wet cell batteries, was spending hundreds of thousands of dollars each year to replace corroded metal in the baghouses at one of its installations. Various types of protective coatings and special steels had been tried, but the maximum life of each unit was about a year due to condensation of flue gas corrosives on the inside surface of the metal walls. In 1979, at one of its sites, the company decided to test an acid/corrosion protection system specifically designed for stack, duct, and breeching installations and related equipment. The system consists of totally inorganic formed borosilicate glass block that can handle temperatures to 960/sup 0/F and is resistant to atttack by most acids and corrosives except fluorides and strong alkalis. The closed-cell structure provides a strong, lightweight product that reduces installation costs, and has extremely low thermal conductivity for an efficient heat barrier. The 12 X 18'' block is directly bonded to a clean metal surface by an 1/8'' thick layer of urethane asphalt that forms a virtually impervious flexible membrane to further protect the metal from corrosive attack. The flexible bond also absorbs expansion and contraction due to thermal changes, and reduces the probability of cracked blocks and dropoff. The protection provided by the foamed glass block and adhesive membrane system has eliminated the very expensive annual replacement of corroded baghouse walls. The performance of the lining system in the baghouses was so successful that the smelter decided to use it in a new metal stack that is 165' high.

  17. Effect of posture positions on the evaporative resistance and thermal insulation of clothing.

    Science.gov (United States)

    Wu, Y S; Fan, J T; Yu, W

    2011-03-01

    Evaporative resistance and thermal insulation of clothing are important parameters in the design and engineering of thermal environments and functional clothing. Past work on the measurement of evaporative resistance of clothing was, however, limited to the standing posture with or without body motion. Information on the evaporative resistance of clothing when the wearer is in a sedentary or supine posture and how it is related to that when the wearer is in a standing posture is lacking. This paper presents original data on the effect of postures on the evaporative resistance of clothing, thermal insulation and permeability index, based on the measurements under three postures, viz. standing, sedentary and supine, using the sweating fabric manikin-Walter. Regression models are also established to relate the evaporative resistance and thermal insulation of clothing under sedentary and supine postures to those under the standing posture. The study further shows that the apparent evaporated resistances of standing and sedentary postures measured in the non-isothermal condition are much lower than those in the isothermal condition. The apparent evaporative resistances measured using the mass loss method are generally lower than those measured using the heat loss method due to moisture absorption or condensation within clothing. STATEMENT OF RELEVANCE: The thermal insulation and evaporative resistance values of clothing ensembles under different postures are essential data for the ergonomics design of thermal environments (e.g. indoors or a vehicle's interior environment) and functional clothing. They are also necessary for the prediction of thermal comfort or duration of exposure in different environmental conditions.

  18. Total heat loss coefficient of flat roof constructions with external insulation in tapered layers including the effects of thermal bridges

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    In order to achieve durability of flat roofs with external insulation, it is necessary to secure proper drainage of the roof, i.e. to avoid water leaking into the insulation. The design of the tapered insulation of the roof is quite difficult as requirements with respect to both drainage and insu...... for design of flat roofs and a pc-program that can be used for calculating the total heat loss coefficient of externally insulated roofs with insulation in tapered layers, taking into account thermal bridges in the roof construction....

  19. Insulation commonality assessment (phase 1). Volume 2: Section 7.0 through 16.0. [evaluation of materials used for spacecraft thermal insulation

    Science.gov (United States)

    1973-01-01

    The heat transfer characteristics of various materials used for the thermal insulation of spacecraft are discussed. Techniques for conducting thermal performance analysis, structural performance analysis, and dynamic analysis are described. Processes for producing and finishing the materials are explained. The methods for determining reliability, system safety, materials tests, and design effectiveness are explained.

  20. Tubular House - Form Follows Technology, Concrete Shell Structure with Inner Thermal Insulation

    Science.gov (United States)

    Idem, Robert; Kleczek, Paweł; Pawłowski, Krzysztof; Chudoba, Piotr

    2017-10-01

    The aim of this paper is the theoretical analysis of the possibilities and limitations of using an unconventional technology and the original architectural form stemming from it – the building with external construction and internal insulation. In Central European climatic conditions, the traditional solution for the walls of heated buildings relies on using external thermal insulation. This stems from building physics: it prevents interstitial condensation of water vapour in the wall. Internal insulation is used exceptionally. This is done e.g. in historical buildings undergoing thermal modernization (due to the impossibility of interfering with facade). In such cases, a thermal insulation layer is used on the internal wall surface, along with an additional layer of vapour barrier. The concept of building concerns the intentional usage of an internal insulation. In this case, the construction is a tight external reinforced concrete shell. The architectural form of such building is strongly interrelated with the technology, which was used to build it. The paper presents the essence of this concept in descriptive and drawing form. The basic elements of such building are described (the external construction, the internal insulation and ventilation). As a case study, authors present a project of a residential building along with the description of the applied materials and installation solutions, and the results obtained from thermal, humidity and energetic calculations. The discussion presents the advantages and disadvantages of the proposed concept. The basic advantage of this solution is potentially low building cost. This stems from minimizing the ground works, the simplicity of the joints and the outer finish, as well as from the possibility of prefabrication of the elements. The continuity of the thermal insulation allows to reduce the amount of thermal bridges. The applied technology and form are applicable most of all for small buildings, due to limited

  1. NUMERICAL MODELING OF CONJUGATE HEAT TRANSFER IN AN INSULATED GLASS UNIT (IGU WITH ACCOUNT FOR ITS DEFORMATION

    Directory of Open Access Journals (Sweden)

    Golubev Stanislav Sergeevich

    2012-12-01

    The effects of different climatic impacts lead to the deformation of glasses within an IGU (and its vertical cavity, respectively. Deformation of glasses and vertical cavities reduces the thermal resistance of an IGU. A numerical simulation of conjugate heat transfer within an IGU was implemented as part of the research into this phenomenon. Calculations were performed in ANSYS FLUENT CFD package. Basic equations describing the conservation of mass, conservation of momentum (in the Boussinesq approximation, conservation of energy were solved. Also, the radiation of the cavity wall was taken into account. Vertical walls were considered as non-isothermal, while horizontal walls were adiabatic. Calculations were made for several patterns of glass deformations. Calculation results demonstrate that the heat flow over vertical walls intensifies as the distance between centres of IGU glasses is reduced. The temperature in the central area of the hot glass drops.

  2. Evaluation of thermal insulation and mechanical properties of waste rubber/natural rubber composite

    Directory of Open Access Journals (Sweden)

    M.M. Abdel Kader

    2012-04-01

    Full Text Available The influences of waste rubber loading on mechanical and thermal conductivity properties were investigated for NR composite. An experimental investigation was carried out to obtain low cost construction material with desirable mechanical and thermal insulation properties. Natural rubber was loaded with different concentrations of waste rubber (200, 400, 600, 800, and 1000 phr. The addition of waste rubber leads to a slight increase in thermal conductivity values of composites but it still lies around range of thermal insulating materials. Also addition of waste rubber leads to improvement of mechanical properties of composites. The crosslink density of NR composite increases with the increase of waste rubber loading until 600 phr and after that it decreases due to the stronger the rubber–filler interaction. This leads to the decrease of the swelling index that has the opposite trend of crosslink density. So, the sample with 600 phr waste rubber is considered the optimum concentration from the swelling measurement. Filler loading results in pronounced increase in the tensile modulus and decease in the elongation at fracture which reflects the reinforcement effect of the filler. The yield stress increases with waste rubber loading increment. This delays the permanent disruption of matrix morphology. So, the optimum concentration which is 600 phr waste rubber loading agrees with the swelling and mechanical measurements which has desirable thermal insulation and high mechanical properties and decreases the cost of materials to 82% of the NR cost.

  3. Nanoporous Silica Thermal Insulation for Space Shuttle Cryogenic Tanks: A Case Study

    Science.gov (United States)

    Noever, David A.

    1999-01-01

    Nanoporous silica (with typical 10-50 nm porous radii) has been benchmarked for thermal insulators capable of maintaining a 150 K/cm temperature gradient. For cryogenic use in aerospace applications, the combined features for low-density, high thermal insulation factors, and low temperature compatibility are demonstrated in a prototype sandwich structure between two propulsion tanks. Theoretical modelling based on a nanoscale fractal structure suggest that the thermal conductivity scales proportionally (exponent, 1.7) with the material density-lower density increases the thermal insulation rating. Computer simulations, however, support the optimization tradeoff between material strength (Young moduli, proportional to density with exponent, 3.7), the characteristic (colloidal silica, less than 5 nm) particle size, and the thermal rating. The results of these simulations indicate that as nanosized particles are incorporated into the silica backbone, the resulting physical properties will be tailored by the smallest characteristic length and their fractal interconnections (dimension and fractal size). The application specifies a prototype panel which takes advantage of the processing flexibility inherent in sol-gel chemistry.

  4. Production of thermal insulation blocks from bottom ash of fluidized bed combustion system.

    Science.gov (United States)

    Mandal, A K; Sinha, O P

    2017-08-01

    The issues of disposal and environmental problems are increased by the generation of bottom ash from the thermal power plants day by day; hence, its recycling is required. The present study aimed to make thermal insulation blocks using as raw material bottom ash and iron ore slime as a binder and to characterize their engineering properties. Two different fineness values of bottom ash were considered with varying amounts of iron ore slime (0-10%) to make the blocks. Blocks were dried followed by firing at 1000, 1100 and 1200°C, respectively. Cold crushing strength, density and thermal conductivity of these fired blocks showed increasing behaviour with firing temperature, fineness of bottom ash and iron ore slime content. In contrast, a reverse trend was observed in the case of porosity. With increasing firing temperature, the formation of lower melting phases like iron silicate followed by iron aluminium silicate was observed, which imparts the strength inside the blocks. The coarser particles of bottom ash increase the interparticle spaces, which enhances the apparent porosity, resulting in higher thermal insulation property in the blocks. Blocks having better thermal insulation property could be possible to make effectively from coarse bottom ash by adding iron ore slime as a binder.

  5. Thermal transmittance of reed-insulated walls in a purpose-built test house

    Directory of Open Access Journals (Sweden)

    M. Miljan

    2014-03-01

    Full Text Available We studied the construction and thermal properties of walls insulated with reed, to enable comparisons with other wall structures that are widely used in building. In 2010 we built a test house insulated with reed adjacent to the Estonian University of Life Sciences in Tartu. The load-bearing structure of the house was a timber frame, and four different technologies were used to place reed insulation in its external walls. The thickness of the reed layer was 450 mm in all cases, and both sides (inside and outside of the walls were rendered with clay plaster. Records were kept of time spent and materials used in construction of the different types of walls, and these data were used to calculate unit (m-2 requirements of time and materials for each wall type to enable direct comparisons. From October 2010 to March 2012, heat flow plates were used to measure the thermal transmittance of the walls of the completed house and the results were compared with the thermal transmittance requirements set by Estonian legislation. Only one of the test walls met the Estonian standard. This was insulated with compressed loose reed, placed horizontally in the wall.

  6. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  7. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  8. Transparent thermal insulation for prefabricated school buildings; Einsatz transparenter Waermedaemmung an Schulgebaeuden in praefabrizierter Bauweise

    Energy Technology Data Exchange (ETDEWEB)

    Russ, C. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen; Buchmann, R. [Leipzigprojekt GmbH, Leipzig (Germany); Duesterhoeft, A. [Holz- und Leichtmetallbau GmbH, Leipzig (Germany)

    1997-12-31

    The existing schools in the new federal states built from prefabricated elements need to be modernized in order to reduce their energy demand. Fitting some 300 square metres of transparent thermal insulation to the south side of a house front may lead to a cut in its thermal energy demand by 74 per cent. This energy consumption is by 12 kWh per square metre lower than the one obtained with opaque thermal insulation. The results of the first demonstration project are described. (MSK) [Deutsch] Die in den neuen Bundeslaendern vorhandenen Schulen in vorgefertigter Bauweise sind energetisch sanierungsbeduerftig. Werden im Rahmen einer Sanierung ca. 300qm transparente Waermedaemmung an der suedorientierten Fassade eingesetzt, so kann der Heizwaermebedarf um 74% herabgesetzt werden. Das sind 12 kWh/qm weniger als bei dem vergleichsweisen Einsatz einer opaken Waermedaemmung. Im Folgenden werden die Ergebnisse des ersten Demonstrationsprojekts beschrieben.

  9. Data on anti-insulation detection via Point of Thermal Inflexion (PTI in 1248 cases; 13 climates, four occupancy profiles, six wall configurations and four insulation levels

    Directory of Open Access Journals (Sweden)

    Yasin M. Idris

    2017-06-01

    Full Text Available The data in this article are the simulation results of 1248 cases that were carried out to detect anti-insulation behaviour in the article titled “Anti-insulation mitigation by altering the envelope layers’ configuration” (Idris and Mae, 2017 [1]. These cases are generated by a matrix of 13 climates, 6 envelope layer configurations, 4 occupancy profiles and 4 levels of insulation thickness. The data are concerned with the annual cooling and heating loads of these cases. In addition, the data include the Point of Thermal Inflexion (PTI values and their anti-insulation pattern, when PTI is found. The PTI values are compiled in a single summary file and supplied as well. All These data are shared via this article where they can be reused in different ways, but mainly for serving researchers that intend to approach anti-insulation behaviour from different points of view.

  10. Data on anti-insulation detection via Point of Thermal Inflexion (PTI) in 1248 cases; 13 climates, four occupancy profiles, six wall configurations and four insulation levels.

    Science.gov (United States)

    Idris, Yasin M; Mae, Masayuki

    2017-06-01

    The data in this article are the simulation results of 1248 cases that were carried out to detect anti-insulation behaviour in the article titled "Anti-insulation mitigation by altering the envelope layers' configuration" (Idris and Mae, 2017) [1]. These cases are generated by a matrix of 13 climates, 6 envelope layer configurations, 4 occupancy profiles and 4 levels of insulation thickness. The data are concerned with the annual cooling and heating loads of these cases. In addition, the data include the Point of Thermal Inflexion (PTI) values and their anti-insulation pattern, when PTI is found. The PTI values are compiled in a single summary file and supplied as well. All These data are shared via this article where they can be reused in different ways, but mainly for serving researchers that intend to approach anti-insulation behaviour from different points of view.

  11. Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation

    Science.gov (United States)

    Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.

    2012-01-01

    Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data

  12. Flat-plate boiloff calorimeters for testing of thermal insulation systems

    Science.gov (United States)

    Fesmire, J. E.; Johnson, W. L.; Kelly, A. O.; Meneghelli, B. J.; Swanger, A. M.

    2015-12-01

    Cryostats have been developed and standardized for laboratory testing of thermal insulation systems in a flat-plate configuration. Boiloff calorimetry is the measurement principle for determining the effective thermal conductivity (ke) and heat flux (q) of test specimens under a wide range of actual conditions. Cryostat-500 is thermally guarded to measure absolute thermal performance when calibrated with a known reference via an adjustable-edge guard ring. With liquid nitrogen as the energy meter, the cold boundary temperature can be adjusted to any temperature between 77 K and approximately 300 K by the interposition of a thermal resistance layer between the cold mass and the specimen. A low thermal conductivity suspension system has compliance rods that adjust for specimen thickness and compression force. Material type, thickness, density, flatness, compliance, outgassing, and temperature sensor placement are important test considerations, and edge effects and calibration techniques for the apparatus are crucial. Over the full vacuum pressure range, the thermal performance capability is nearly four orders of magnitude. The horizontal configuration provides key advantages over the vertical cylindrical cryostats for testing at ambient pressure conditions. Cryostat-500’s design and test methods, other flat-plate boiloff calorimeters, and results for select thermal insulation materials (composites, foams, aerogels) are discussed.

  13. Memory versus irreversibility in the thermal densification of amorphous glasses

    Science.gov (United States)

    Ovadyahu, Z.

    2017-06-01

    We report on dynamic effects associated with thermally annealing amorphous indium-oxide films. In this process, the resistance of a given sample may decrease by several orders of magnitude at room temperatures, while its amorphous structure is preserved. The main effect of the process is densification, i.e., increased system density. The study includes the evolution of the system resistivity during and after the thermal treatment, the changes in the conductance noise, and the accompanying changes in the optical properties. The sample resistance is used to monitor the system dynamics during the annealing period as well as the relaxation that ensues after its termination. These reveal slow processes that fit well with a stretched-exponential law, a behavior that is commonly observed in structural glasses. There is an intriguing similarity between these effects and those obtained in high-pressure densification experiments. Both protocols exhibit the "slow spring-back" effect, a familiar response of memory foams. A heuristic picture based on a modified Lennard-Jones potential for the effective interparticle interaction is argued to qualitatively account for these densification-rarefaction phenomena in amorphous materials, whether affected by thermal treatment or by application of high pressure.

  14. Adiabatic and thermally insulated: should they have the same meaning?

    Science.gov (United States)

    Anacleto, Joaquim; Ferreira, J. M.

    2018-01-01

    Symmetries regarding system-surroundings interchange are used to propose the attribution of different meanings to the terms ‘adiabatic’ and ‘thermally insulated’ and address the resulting implications. It is also shown that entropy generation can be interpreted as the ratio of lost work by the temperature at which such loss occurs, and that it occurs always in the system.

  15. Reducing thermal mismatch stress in anodically bonded silicon-glass wafers: theoretical estimation

    Science.gov (United States)

    Sinev, Leonid S.; Ryabov, Vladimir T.

    2017-01-01

    This paper reports the theoretical study and estimations of thermal mismatch stress reduction in anodically bonded silicon-glass stacks by justifiable selection of bonding temperature and glass thickness. This can be done only after prior thorough study of temperature dependence of the linear thermal expansion coefficient of the glass and silicon to be used. We show by analyzing such a dependence of several glass brands that the usual idea of decreasing the bonding process temperature as a solution to the thermal mismatch stress problem can be a failure. Interchanging glass brands during device design is shown to produce very contrasting changes in residual stresses. These results are in good agreement with finite-element modeling. This paper reports there is proportion between glass and silicon wafer thicknesses minimizing thermal mismatch stress at unbonded side of the silicon independently of the bonding or working temperatures chosen.

  16. Effect of resin infiltration on the thermal and mechanical properties of nano-sized silica-based thermal insulation.

    Science.gov (United States)

    Lee, Jae Chun; Kim, Yun-Il; Lee, Dong-Hun; Kim, Won-Jun; Park, Sung; Lee, Dong Bok

    2011-08-01

    Several kinds of nano-sized silica-based thermal insulation were prepared by dry processing of mixtures consisting of fumed silica, ceramic fiber, and a SiC opacifier. Infiltration of phenolic resin solution into the insulation, followed by hot-pressing, was attempted to improve the mechanical strength of the insulation. More than 22% resin content was necessary to increase the strength of the insulation by a factor of two or more. The structural integrity of the resin-infiltrated samples could be maintained, even after resin burn-out, presumably due to reinforcement from ceramic fibers. For all temperature ranges and similar sample bulk density values, the thermal conductivities of the samples after resin burn-out were consistently higher than those of the samples obtained from the dry process. Mercury intrusion curves indicated that the median size of the nanopores formed by primary silica aggregates in the samples after resin burn-out is consistently larger than that of the sample without resin infiltration.

  17. Assessment of thermal insulation materials and systems for building applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The primary goal of the study was to provide a proper foundation for decision making by the federal government, industry, and consumer. The report may be used to identify areas where new test methods and standards are needed to establish new programs for improving thermal performance of buildings, and as a basis for setting new or improved standards after the recommended test programs have been completed.

  18. Thermal stress analysis of reusable surface insulation for shuttle

    Science.gov (United States)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1974-01-01

    An iterative procedure for accurately determining tile stresses associated with static mechanical and thermally induced internal loads is presented. The necessary conditions for convergence of the method are derived. An user-oriented computer program based upon the present method of analysis was developed. The program is capable of analyzing multi-tiled panels and determining the associated stresses. Typical numerical results from this computer program are presented.

  19. Application of Nanofiber Technology to Nonwoven Thermal Insulation

    OpenAIRE

    Phillip W. Gibson, Ph.D; Calvin Lee, Ph.D; Frank Ko, Ph.D.; Darrell Reneker, Ph.D.

    2007-01-01

    Nanofiber technology (fiber diameter less than 1 micrometer) is under development for future Army lightweight protective clothing systems. Nanofiber applications for ballistic and chemical/biological protection are being actively investigated, but the thermal properties of nanofibers and their potential protection against cold environments are relatively unknown. Previous studies have shown that radiative heat transfer in fibrous battings is minimized at fiber diameters between 5 and 10 micro...

  20. Environmental cycling of cellulosic thermal insulation and its influence on fire performance

    Science.gov (United States)

    Lawson, J. R.

    1984-08-01

    A study was conducted on climatological data for eleven cities located throughout the United States. Findings from this environmental study were used to develop conditioning cycles for a research project on the influence of environments on the fire performance of loose-fill cellulosic thermal insulation. Six cellulosic insulation materials with different compositions of fire retardant chemicals at an add-on level of 25% by weight were specially manufactured for this study. These materials were tested for fire performance using the smoldering combustion test and the attic flooring radiant panel test to establish a baseline. After the materials were exposed to the various environmental cycles, they were tested for fire performance. Results from these tests show that environmental exposure can have a significant effect on the fire performance of cellulosic insulation materials and indicates that long term fire protection provided by fire retardant compounds may be limited.

  1. Utilization of Baggase Waste Based Materials as Improvement for Thermal Insulation of Cement Brick

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2017-01-01

    Full Text Available Building materials having low thermal load and low thermal conductivity will provide thermal comforts to the occupants in building. In an effort to reduce the use of high energy and waste products from the agricultural industry, sugarcane bagasse and banana bagasse has been utilize as an additive in the manufacture of cement brick. The aim of this study is to investigate the insulation and mechanical properties of brick that has been mixed with bagasse and its effectiveness as thermal insulation using heat flow meter. Waste bagasse is being treated using sodium hydroxide (NaOH and is characterized using SEM and XRF. The samples produced with two different dimensions of 50 mm × 50 mm × 50 mm and 215mm × 102.5mm × 65mm for thermal conductivity test. Next, the sample varies from 0% (control sample, 2%, 4%, 6%, 8% and 10% in order to determine the best mix proportion. The compressive strength is being tested for 7, 14 and 28 days of water curing. Results showed that banana bagasse has lower thermal conductivity compared to sugarcane bagasse used, with compressive strength of 15.6MPa with thermal conductivity 0.6W/m.K.

  2. RESEARCHES REGARDING USE OF TEXTILE MATERIALS FOR THERMAL INSULATION AT NEGATIVE TEMPERATURES

    Directory of Open Access Journals (Sweden)

    IOSUB Andrei

    2014-05-01

    Full Text Available Using thermal insulation in negative temperature acts to reduce heat flow to the cooled space or to objects that have a temperature below ambient temperature. To achieve economic operation of the space to be cooled insulation thickness and quality is an important factor. In this article we want to compare three products used in thermal insulation at negative temperatures: expanded polystyrene, non-woven and wool coats. The materials will be tested with a mechanical vapor compression refrigerator capable of producing temperatures in the range +4 .. -35 ° C, managed by a programmer Dixel capable of recording values between +40. .. -60 °C. Refrigeration insulation enclosure was made with 100 mm expanded polystyrene. On one side of the enclosure will be a cut of 250 * 250 mm, chosen in a central position where the material will be introduced to be tested. The dimensions of the samples are 250 * 250 * 60 mm. To check the insulation properties of materials it will be used a temperature logger capable of recording with two probes temperatures between +125...-40° C. One of the probes will be inserted inside the refrigerator and the second probe will be positioned to the outside of the test material adhered to an aluminum plate, in order to read a average temperature. The difference in thickness of the insulation shall be filled with non-woven material. Hardening the assembly will be made using a 6 mm thick OSB board. The materials will be tested in an identical ambient temperature and humidity.

  3. Experimental Study on Hygrothermal Deformation of External Thermal Insulation Cladding Systems with Glazed Hollow Bead

    Directory of Open Access Journals (Sweden)

    Houren Xiong

    2016-01-01

    Full Text Available This research analyzes the thermal and strain behavior of external thermal insulation cladding systems (ETICS with Glazed Hollow Beads (GHB thermal insulation mortar under hygrothermal cycles weather test in order to measure its durability under extreme weather (i.e., sunlight and rain. Thermometers and strain gauges are placed into different wall layers to gather thermal and strain data and another instrument measures the crack dimensions after every 4 cycles. The results showed that the finishing coat shrank at early stage (elastic deformation and then the finishing coat tends to expand and become damaged at later stage (plastic deformation. The deformation of insulation layer is similar to that of the finishing coat but its variation amplitude is smaller. Deformation of substrate expanded with heat and contracted with cold due to the small temperature variation. The length and width of cracks on the finishing coat grew as the experiment progressed but with a decreasing growth rate and the cracks stopped growing around 70 cycles.

  4. ONE-DIMENSIONAL NUMERICAL ANALYSIS OF THE TRANSIENT THERMAL RESPONSE OF MULTILAYER INSULATIVE SYSTEMS

    Science.gov (United States)

    Pittman, C. M.

    1994-01-01

    This program performs a one-dimensional numerical analysis of the transient thermal response of multi-layer insulative systems. The analysis can determine the temperature distribution through a system consisting of from one to four layers, one of which can be an air gap. Concentrated heat sinks at any interface can be included. The computer program based on the analysis will determine the thickness of a specified layer that will satisfy a temperature limit criterion at any point in the insulative system. The program will also automatically calculate the thickness at several points on a system and determine the total system mass. This program was developed as a tool for designing thermal protection systems for high-speed aerospace vehicles but could be adapted to many areas of industry involved in thermal insulation systems. In this package, the equations describing the transient thermal response of a system are developed. The governing differential equation for each layer and boundary condition are put in finite-difference form using a Taylor's series expansion. These equations yield an essentially tridiagonal matrix of unknown temperatures. A procedure based on Gauss' elimination method is used to solve the matrix. This program is written in FORTRAN IV for the CDC RUN compiler and has been implemented on a CDC 6000 series machine operating under SCOPE 3.0. This program requires a minimum of 44K (octal) of 60 bit words of memory.

  5. Modeling thermal performance of exterior walls retrofitted from insulation and modified laterite based bricks materials

    Science.gov (United States)

    Wati, Elvis; Meukam, Pierre; Damfeu, Jean Claude

    2017-12-01

    Uninsulated concrete block walls commonly found in tropical region have to be retrofitted to save energy. The thickness of insulation layer used can be reduced with the help of modified laterite based bricks layer (with the considerably lower thermal conductivity than that of concrete block layer) during the retrofit building fabrics. The aim of this study is to determine the optimum location and distribution of different materials. The investigation is carried out under steady periodic conditions under the climatic conditions of Garoua in Cameroon using a Simulink model constructed from H-Tools (the library of Simulink models). Results showed that for the continuous air-conditioned space, the best wall configuration from the maximum time lag, minimum decrement factor and peak cooling transmission load perspective, is dividing the insulation layer into two layers and placing one at the exterior surface and the other layer between the two different massive layers with the modified laterite based bricks layer at the interior surface. For intermittent cooling space, the best wall configuration from the minimum energy consumption depends on total insulation thickness. For the total insulation thickness less than 8 cm approximately, the best wall configuration is placing the half layer of insulation material at the interior surface and the other half between the two different massive layers with the modified earthen material at the exterior surface. Results also showed that, the optimum insulation thickness calculated from the yearly cooling transmission (estimated only during the occupied period) and some economic considerations slightly depends on the location of that insulation.

  6. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  7. High-performance, non-CFC-based thermal insulation: Gas filled panels

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.T.; Arasteh, D.; Selkowitz, S.

    1992-04-01

    Because of the forthcoming phase-out of CFCs and to comply with the more stringent building and appliance energy-use standards, researchers in industry and in the public sector are pursuing the development of non-CFC-based, high-performance insulation materials. This report describes the results of research and development of one alternative insulation material: highly insulating GFPs. GFPs insulate in two ways: by using a gas barrier envelope to encapsulate a low-thermal-conductivity gas or gas mixture (at atmospheric pressure), and by using low-emissivity baffles to effectively eliminate convective and radiative heat transfer. This approach has been used successfully to produce superinsulated windows. Unlike foams or fibrous insulations, GFPs are not a homogeneous material but rather an assembly of specialized components. The wide range of potential applications of GFPs (appliances, manufactured housing, site-built buildings, refrigerated transport, and so on) leads to several alternative embodiments. While the materials used for prototype GFPs are commercially available, further development of components may be necessary for commercial products. With the exception of a description of the panels that were independently tested, specific information concerning panel designs and materials is omitted for patent reasons; this material is the subject of a patent application by Lawrence Berkeley Laboratory.

  8. Water vapor flow and high thermal resistance insulation systems for metal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, R.M.

    1983-01-01

    In response to increasing energy costs, high thermal resistance insulation systems are being marketed for pre-engineered metal buildings. Historically, blanket insulation has been installed between the skin and the structure of these buildings. The new insulation systems generally are installed inside the structure; thus the structure is colder and, unless an effective retarder is included, water vapor condensation problems can result. While the vapor permeance of various insulation facing materials is documented, the effect of such field conditions as seams and penetrations is less well known. Permeance tests were performed on samples of foil-kraft paper insulation facing with two seams and two penetration configurations. The tests show that seams can multiply the permeance of the vapor retarder by factors of 1.2 or more and penetrations can multiply the permeance by 3 or more. The theory of vapor flow analysis is reviewed and compared with the test results and presented graphically. Possible applications and suggestions for further investigation are discussed.

  9. Water vapor flow and high thermal resistance insulation systems for metal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, R.M.

    1981-12-01

    In response to increasing energy costs, high thermal resistance insulation systems are being marketed for pre-engineered metal buildings. Historically, blanket insulation has been installed between the skin and the structure of these buildings. The new insulation systems generally are installed inside the structure; thus the structure is colder and, unless an effective retarder is included, water vapor condensation problems can result. While the vapor permeance of various insulation facing materials is documented, the effect of such field conditions as seams and penetrations is less well known. Permeance tests were performed on samples of foil-kraft paper insulation facing with two seams and two penetration configurations. The tests show that seams can multiply the permeance of the vapor retarder by factors of 1.2 or more and penetrations can multiply the permeance by 3 or more. The theory of vapor flow analysis is reviewed and compared with the test results and presented graphically. Possible applications and suggestions for further investigation are discussed.

  10. A comparison of methods for assessing the thermal insulation value of children's schoolwear in Kuwait.

    Science.gov (United States)

    Al-Rashidi, Khaled; Loveday, Dennis; Al-Mutawa, Nawaf; Havenith, George

    2012-01-01

    In this study, three methods were used to determine the thermal insulation values of different school clothing worn by 6 to 17 year old girls and boys in Kuwait classrooms for both summer and winter seasons. The different clothing ensembles' insulations were determined by 1: measurement using adult-sized versions of the clothing on thermal manikins, 2: estimations from adult clothing data obtained from the standards tables in ISO 9920 and ASHRAE 55, and 3: calculations using a regression equation from McCullough et al. (1985) that was adapted to accommodate children's sizes for ages 6-17 years. Values for the clothing area factor, f(cl), were also determined by measurement and by using a prediction equation from ISO 9920. Results in this study suggested that the clothing insulation values found from the measured and adapted data were similar to the adult's data in standards tables for the same summer and winter seasons. Further, the effect of the insulation values on the different scholars' age groups were investigated using the clothing temperature rating technique and compared to the scholars' comfort temperature found in recent field studies. Results showed that the temperature ratings of the clothing using the three methods described above are close and in agreement with the scholars' comfort temperature. Though estimated and measured f(cl) data differed, the impact on the temperature ratings was limited. An observed secular change in the children's heights and weights in the last few decades implies that, for adolescents, the children's body surface areas are similar to those of adults, making the use of adult clothing tables even more acceptable. In conclusion, this study gives some evidence to support the applicability of using adults' data in ASHRAE 55 and ISO 9920 standards to assess the thermal insulation values of different children's clothing ensembles, provided that careful selection of the garments, ensembles material and design takes place. Copyright

  11. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    Science.gov (United States)

    Johnson, W. L.; Frank, D. J.; Nast, T. C.; Fesmire, J. E.

    2015-12-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system.

  12. The empirical evaluation of thermal conduction coefficient of some liquid composite heat insulating materials

    Science.gov (United States)

    Anisimov, M. V.; Rekunov, V. S.; Babuta, M. N.; Bach Lien, Nguyen Thi Hong

    2016-02-01

    We experimentally determined the coefficients of thermal conductivity of some ultra thin liquid composite heat insulating coatings, for sample #1 λ = 0.086 W/(m·°C), for sample #2 λ = 0.091 W/(m·°C). We performed the measurement error calculation. The actual thermal conduction coefficient of the studied samples was higher than the declared one. The manufactures of liquid coatings might have used some "ideal" conditions when defining heat conductivity in the laboratory or the coefficient was obtained by means of theoretical solution of heat conduction problem in liquid composite insulating media. However, liquid insulating coatings are of great interest to builders, because they allow to warm objects of complex geometric shapes (valve chambers, complex assemblies, etc.), which makes them virtually irreplaceable. The proper accounting of heating qualities of paints will allow to avoid heat loss increase above the specified limits in insulated pipes with heat transfer materials or building structures, as well as protect them from possible thawing in the period of subzero weather.

  13. The empirical definition of total emissivity of modern superthin liquid composite thermal insulators

    Science.gov (United States)

    Anisimov, M. V.; Rekunov, V. S.; Babuta, M. N.; Lychagin, D. V.; Kuznetsova, U. N.; Bach Lien, Nguyen Thi Hong; Ivanova, E. V.; Taalaybekov, Z. T.

    2016-11-01

    Modern world trends in the field of energy and mineral resources preservation policy involves the need for a more cost-efficient use of the Earth's natural resources, including in the field of construction industry. Using insulation modern materials would largely solve this problem. The acceptability appraisal of various advanced heat-insulating blankets is a crucial task, which requires experimental verification of total emissivity empirical definition of modern super-thin liquid composite thermal insulators and their real value definition. Method of investigation is as follows: an empirical definition of blankets emissivity using the proposed laboratory equipment, which comprises a system of "gray" bodies, thermocouple probe and a source of continuous heat flux. Total emissivity of modern super-thin liquid composite thermal insulators is experimentally determined. It amounted e = 0.89 for sample # 1, and e = 0.87 for sample # 2 at a temperature of 35-65 °C. It was found that the actual emissivity of the samples was higher than it had been declared.

  14. Investigation on creeping discharges propagating over epoxy resin and glass insulators in the presence of different gases and mixtures

    Science.gov (United States)

    Beroual, A.; Coulibaly, M. L.; Aitken, O.; Girodet, A.

    2011-12-01

    This paper deals with the experimental characterization of discharges propagating over insulators of epoxy and glass, immersed in a gas or a gaseous mixture, under lightning impulse voltages (1.2/50 μs), using a point-plane electrode arrangement. The gases and mixtures we considered are SF6, N2, CO2, SF6-N2 and SF6-CO2. The morphology of creeping discharges and their final lengths are investigated versus the kind of insulator material, the amplitude and polarity of the voltage, the type of the gas (resp. mixture) and its pressure. It is shown that the shape of discharges and their final (stopping) lengths Lf depend significantly on the solid insulator and the type of gas. For given solid and gas, Lf increases quasi-linearly with the voltage and decreases when the gas pressure increases. The discharges do not always present a radial structure as reported in the literature. For given voltage and pressure, Lf is longer when the point electrode is positive than when it is negative while the initiation voltage of discharges is higher with a negative point than with a positive one; and Lf is longer with glass than with epoxy. Lf is shorter in SF6 than in CO2 or N2. On the other hand, the increase of SF6 content in SF6-CO2 mixture leads to a significant decrease of Lf. Therefore, the addition of small concentration of SF6 in a given gas mixture improves the dielectric strength of insulating structure.

  15. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    Science.gov (United States)

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-08

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

  16. Thermal and electrical properties of thermal-grease-insulated REBCO superconducting coils with respect to winding tension

    Science.gov (United States)

    Song, Jung-Bin; Choi, Yoon Hyuck; Yang, Dong Gyu; Kim, Young-Gyun; Kim, Seong-Gyeom; Choi, Yeon Suk; Lee, Haigun

    2017-09-01

    This study investigates the thermal and electrical characteristics of a silicon-based grease insulation (GI) GdBCO coil with respect to the winding tension through charge, sudden discharge, and over-current tests. Charge and sudden discharge test results demonstrate that the charging/discharging delay time increases as the winding tension increases; this is because the characteristic resistance of the coil decreases due to the reduced contact resistance. The over-current test results confirm that the thermal/electrical stabilities of the GI coil are considerably enhanced with an increased winding tension resulting from improved thermal contact and the decrease in the electrical contact resistance between the turn-to-turn layers of the coil. Thus, as the winding tension increases, the charging/discharging rates decrease whereas the thermal/electrical stabilities improve. Overall, selecting the appropriate winding tension for a GI coil is critical for achieving thermal/electrical stabilities, as well as ameliorating the charging/discharging delay phenomenon generally observed in a no-insulation coil.

  17. Influence of Textile Structure and Silica Based Finishing on Thermal Insulation Properties of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    G. Rosace

    2016-01-01

    Full Text Available The aim of this work is to investigate the influence of weave structures and silica coatings obtained via sol-gel process on the thermal insulation properties of cotton samples. For this reason three main weave structures (plain, satin, and piqué of cotton fabric were selected with different yarn count, threads per cm, and mass per square meter values. Thereafter, only for the plain weave, the samples were padded using silica sol formed by hydrolysis and subsequent condensation of 3-glycidoxypropyltrimethoxysilane under acidic conditions. The silanized plain weave samples were characterized by TGA and FT-IR techniques. The thermal properties were measured with a home-made apparatus in order to calculate thermal conductivity, resistance, and absorption of all the treated fabric samples. The relationship between the thermal insulation properties of the plain weave fabrics and the concentration of sol solutions has been investigated. Fabrics weave and density were found to strongly influence the thermal properties: piqué always shows the lowest values and satin shows the highest values while plain weave lies in between. The thermal properties of treated high-density cotton plain weave fabric were proved to be strongly influenced by finishing agent concentration.

  18. Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and Flame Retardancy.

    Science.gov (United States)

    Zhang, Qiangqiang; Hao, Menglong; Xu, Xiang; Xiong, Guoping; Li, Hui; Fisher, Timothy S

    2017-04-26

    In this article, flyweight three-dimensional (3D) graphene scaffolds (GSs) have been demonstrated with a microinterface barrier-derived thermal insulation and flame retardancy characteristics. Such 3D GSs were fabricated by a modified hydrothermal method and a unidirectional freeze-casting process with hierarchical porous microstructures. Because of high porosity (99.9%), significant phonon scattering, and strong π-π interaction at the interface barriers of multilayer graphene cellular walls, the GSs demonstrate a sequence of multifunctional properties simultaneously, such as lightweight density, thermal insulating characteristics, and outstanding mechanical robustness. At 100 °C, oxidized GSs exhibit a thermal conductivity of 0.0126 ± 0.0010 W/(m K) in vacuum. The thermal conductivity of oxidized GSs remains relatively unaffected despite large-scale deformation-induced densification of the microstructures, as compared to the behavior of reduced GSs (rGSs) whose thermal conductivity increases dramatically under compression. The contrasting behavior of oxidized GSs and rGSs appears to derive from large differences in the intersheet contact resistance and varying intrinsic thermal conductivity between reduced and oxidized graphene sheets. The oxidized GSs also exhibit excellent flame retardant behavior and mechanical robustness, with only 2% strength decay after flame treatment. In a broader context, this work demonstrates a useful strategy to design porous nanomaterials with a tunable heat conduction behavior through interface engineering at the nanoscale.

  19. Vacuum insulation - Panel properties and building applications. HiPTI - High Performance Thermal Insulation - IEA/ECBCS Annex 39 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. (ed.)

    2005-12-15

    This paper takes a look at the properties of vacuum insulation panels (VIP) that have already been developed some time ago for use in appliances such as refrigerators and deep-freezers. Their insulation performance is a factor of five to ten times better than that of conventional insulation. The paper discusses the use of such panels in buildings to provide thin, highly-insulating constructions for walls, roofs and floors. The motivation for examining the applicability of high performance thermal insulation in buildings is discussed, including solutions where severe space limitations and other technical and aesthetic considerations exist. The use of nano-structured materials and laminated foils is examined and discussed. The questions arising from the use of such panels in buildings is discussed and the open questions and risks involved are examined. Finally, an outlook on the introduction of VIP technology is presented and quality assurance aspects are examined. This work was done within the framework of the Task 39 'High Performance Thermal Insulation' of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA.

  20. Needle-Bonded Electromagnetic Shielding Thermally Insulating Nonwoven Composite Boards: Property Evaluations

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2016-10-01

    Full Text Available Complicated environmental problems inevitably arise when technology advances. One major environmental problem is the presence of electromagnetic radiation. Long-term exposure to electromagnetic radiation can damage people’s health in many ways. Therefore, this study proposes producing composite boards with electromagnetic shielding effectiveness and thermal insulation by utilizing the structures and properties of materials. Different combinations of flame-retardant polyester fiber (FR fiber, recycled far-infrared polyester fiber (FI fiber, and 4D low-melting-point fibers (LM fiber were made into flame-retardant and thermally insulating matrices. The matrices and carbon fiber (CF woven fabric in a sandwich-structure were needle-punched in order to be tightly compact, and then circularly heat dried in order to have a heat set and reinforced structure. The test results indicate that Polyester (PET/CF composite boards are mechanically strong and have thermal insulation and electromagnetic shielding effectiveness at a frequency between 0.6 MHz and 3 GHz.

  1. EVALUATION OF THERMAL INSULATION FOR THREE DIFFERENT MATERIALS USED IN CONSTRUCTION AND COMPLETION OF EXTERNAL WALLS

    Directory of Open Access Journals (Sweden)

    Marcio Carlos Navroski

    2010-05-01

    Full Text Available Summers increasingly hot are bringing large thermal problems within homes and businesses, leading to increased demand for installation of air conditioners and the consequent high energy consumption. Constructions with thermal insulation on its external walls thatcould reduce energy use or even supply the use of such equipment. Due to these factors the present study was to evaluate the insulation in three boxes built with different materials, one made of wooden boards with plain walls, and two built with plywood, wall insulation andinterior walls filled with rice husk and Styrofoam®. The boxes were built after placed in drying oven at 40 °C, then noted the temperature inside the same interval every five minutes using a digital thermometer. The box with inner Styrofoam® showed the lowest variation among the three evaluated, followed by the box of rice husk. These two materials also showed good thermal initial, unlike the box built only with wood, which showed a large interiorheating, lay in a drying oven.

  2. Surface Thermal Insulation and Pipe Cooling of Spillways during Concrete Construction Period

    Directory of Open Access Journals (Sweden)

    Wang Zhenhong

    2014-01-01

    Full Text Available Given that spillways adopt a hydraulic thin concrete plate structure, this structure is difficult to protect from cracks. The mechanism of the cracks in spillways shows that temperature stress is the major reason for cracks. Therefore, an effective way of preventing cracks is a timely and reasonable temperature-control program. Studies show that one effective prevention method is surface thermal insulation combined with internal pipe cooling. The major factors influencing temperature control effects are the time of performing thermal insulation and the ways of internal pipe cooling. To solve this problem, a spillway is taken as an example and a three-dimensional finite element program and pipe cooling calculation method are adopted to conduct simulation calculation and analysis on the temperature fields and stress fields of concretes subject to different temperature-control programs. The temperature-control effects are then compared. Optimization results show that timely and reasonable surface thermal insulation and water-flowing mode can ensure good temperature-control and anticrack effects. The method has reference value for similar projects.

  3. Rational use of energy by thermal insulation of residential buildings. Rationelle Energienutzung durch Waermeschutz von Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Feist, W. (Inst. Wohnen und Umwelt, Darmstadt (Germany))

    1992-01-01

    Processes in buildings need to be studied in detail to determine the technical potential of energy savings. Simulation models for thermal behaviour and simulation calculations prove that the technologies available today and the building input justifiable for the central-European climate will allow so-called passive-systems buildings to be built. Such a passive-systems building was built in Darmstadt Kranichstein. The heart of these passive-systems buildings is an excellent thermal insulation, its meticulous execution and the reduction of heat losses by ventilation. (BWI)

  4. Reduction in the thermal resistance (R-value) of loose-fill insulation and fiberglass batts due to compression

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, D.W.; Wright, J.H.

    1981-04-01

    A method is presented for calculating the thickness reduction of loose-fill insulations and fiberglass batts that result from compressive forces exerted by additional insulation. The thickness reduction is accompanied by an increase in density and a reduction in the R value of the compressed layer. Calculations for thermal resistance of two layers of insulation are given. Information in 4 appendices includes: identification of products tested (products from 3 companies); experimental values for thickness as a function of loading; Fortran programs and output; and calculated R values for stacked insulations. (MCW)

  5. Quick quality inspection of thermal parameters of heat-insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Stanislaw, C.; Waldemar, M. [Technical Univ. of Czestochowa (Poland). Div. of Microprocessor Systems, Automatic Control and Heat Measurements

    2001-07-01

    Methods used in practice to determine thermal parameters of materials are based mainly on stationary heat transfer conditions or are applied to regular conditions of nonstationary heat transfer. In the case of determining thermal parameters of thick heat-insulating plates, the time period required to obtain regular conditions of heat transfer is relatively long. Therefore, it is proposed to measure the thermal parameters from an instant at which a thermal input is applied to the body edge. For the sake of implementation simplicity and better modeling possibilities of considered phenomena, we decided to employ several numerical algorithms that are presented in the paper. Because a one-dimensional model of the heat conduction is assumed, it is necessary to consider a sample, whose thickness is many times smaller than its lateral dimensions as well as lateral dimensions of the heater plate. The dynamic method presented in the work together with the portable measuring system, is intended for fast (1-2 minutes) determining thermal parameters of heat-insulating materials used in the building engineering and industry, like e.g. foamed polystyrene or mineral wool. A portable measuring system could control online the quality of materials at the production line output in terms of their thermophysical parameters. (orig.)

  6. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods.

    Science.gov (United States)

    Oliveira, A Virgílio M; Gaspar, Adélio R; Quintela, Divo A

    2008-11-01

    The present work is dedicated to a comparative analysis of calculation methods about clothing insulation with a thermal manikin operating under the thermal comfort regulation mode. The serial, global, and parallel calculation methods are considered and the thermal insulation results for garments (30) and ensembles (9) are discussed. The serial and parallel methods presents the higher and lower values, respectively, and the differences were sometimes significant. Considering the results for the effective thermal insulation, the mean values of the relative differences between the serial and global methods were 25.7% for the daily wear garments, 45.2% for the cold protective garments and 38.5% for the ensembles. The corresponding mean values for the global and parallel methods were 8.7, 15.8, and 10.5%, respectively. Since any uneven clothing insulation is to be expected as a source of error, particular care must be required when the calculation methods deal with cold protective clothing.

  7. Evaluation of mechanical and thermal properties of insulation materials for HTS power devices at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyung Seop; Diaz, Mark Angelo [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of)

    2017-06-15

    In superconducting power devices including power cables in which high temperature superconducting (HTS) tapes are utilized, a reliable electrical insulation should be achieved for its maximum performance. For an efficient design of HTS superconducting devices, a comparative evaluation of the mechanical and thermal propperties for various insulation materials at cryogenic temperatures is required. Especially, in the process of the property evaluation of the sheet-shaped insulation materials, anisotropy according to the machining direction should be considered because the mechanical and thermal properties are significantly influenced by the sample orientation. In this study, the cryogenic thermal and mechanical properties of various insulation material sheets such as PPLP, Cryoflex, Teflon, and Kapton were determined considering sample orientation. All samples tested at cryogenic temperature showed significantly higher tensile strength as compared with that of room temperature. The ultimate tensile strength at both temperature conditions significantly depended upon the sample orientation. The thermal properties of the insulation materials exhibited a slight difference among samples depending on the orientation: for the PPLP and Cryoflex, the CD orientation showed larger thermal contraction up to 77 K as compared to the MD one. MD samples in PPLP and Cryoflex showed a lower CTE and thermal contraction which made it more promising as an insulation material due to its comparable CTE with HTS CC tapes.

  8. High temperature properties of ceramic fibers and insulations for thermal protection of atmospheric entry and hypersonic cruise vehicles

    Science.gov (United States)

    Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.

    1988-01-01

    Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.

  9. Reentrant Superspin Glass Phase in a La_{0.82}Ca_{0.18}MnO_{3} Ferromagnetic Insulator

    Directory of Open Access Journals (Sweden)

    P. Anil Kumar

    2014-03-01

    Full Text Available We report results of the magnetization and ac susceptibility measurements down to very low fields on a single crystal of the perovskite manganite, La_{0.82}Ca_{0.18}MnO_{3}. This composition falls in the intriguing ferromagnetic insulator region of the manganite phase diagram. In contrast to earlier beliefs, our investigations reveal that magnetically (and in every other sense, this is a single-phase system with a ferromagnetic ordering temperature of around 170 K. However, this ferromagnetic state is magnetically frustrated, and the system exhibits pronounced glassy dynamics below 90 K. Based on measured dynamical properties, we propose that this quasi-long-ranged ferromagnetic phase, and the associated superspin glass behavior, is the true magnetic state of the system, rather than being a macroscopic mixture of ferromagnetic and antiferromagnetic phases, as often suggested. Our results provide an understanding of the quantum phase transition from an antiferromagnetic insulator to a ferromagnetic metal via this ferromagnetic insulating state as a function of x in La_{1−x}Ca_{x}MnO_{3}, in terms of the possible formation of magnetic polarons.

  10. Linear thermal bridges in vacuum insulated constructions.; Lineare Waermebruecken in vakuumgedaemmten Konstruktionen

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Wolfgang; Skottke, Tanja [Technische Universitaet Dortmund, Fakultaet Bauwesen, Lehrstuhl fuer Bauphysik und Technische Gebaeudeausruestung, Dortmund (Germany)

    2008-12-15

    Continuously rising demands on the structural thermal insulation of heated buildings lead under certain conditions to high efficient insulation materials, which achieve its efficiency by using the vacuum technology. Inside these elements there is a medium vacuum that has to be durable to guarantee the excellent heat insulating characteristic. For that purpose a non-permeable enveloping of the core material is essential, which breeds around the element edges increased heat losses, especially referring to the element joints concerning large vacuum insulated areas. This paper quantifies these additional heat losses for different constructions based on measurements. (Abstract Copyright [2008], Wiley Periodicals, Inc.) [German] Die konsequent ansteigenden Anforderungen an den baulichen Waermeschutz beheizter Gebaeude fuehren unter bestimmten Randbedingungen zum Einsatz hochleistungsfaehiger Waermedaemmelemente, deren Leistungsfaehigkeit auf dem Einsatz der Vakuumtechnologie basiert. Das in den Elementen erzeugte Feinvakuum muss dauerhaft erhalten bleiben, um die exzellenten Waermedaemmeigenschaften gewaehrleisten zu koennen. Die dazu erforderliche permeationsdichte Einhuellung des Stuetzkernmaterials fuehrt naturgemaess im Bereich der Elementkanten - und hier besonders im Bereich der bei groesseren gedaemmten Flaechen erforderlichen Elementstoesse - zu erhoehten Waermeverlusten. Die vorliegende Arbeit quantifiziert diese zusaetzlichen Waermeverluste fuer unterschiedliche Konstruktionen auf der Basis von Messungen. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  11. Thermally conductive and electrically insulating EVA composite encapsulant for solar photovoltaic (PV cell

    Directory of Open Access Journals (Sweden)

    2008-05-01

    Full Text Available A new way of improving the heat dissipating ability and PV efficiency of the solar cells by enhancing the thermal conductivity of the rear EVA layer was reported. The thermal conductivity, electrical resistivity, degree of curing of the EVA encapsulating composites and the PV efficiency of the solar cells are investigated. Filling with the thermal conductive fillers enhances the thermal conductivity of the composites effectively. The thermal conductivity of the filler influences significantly the thermal conductivity of the composite at high filler loading (greater than 20 vol%. Thermal conductivities of the composites filled with SiC, ZnO or BN reach respectively 2.85, 2.26 and 2.08 W/m•K at filler content of 60 vol%. The composites filled with ZnO or BN exhibit superior electrical insulation to those filled with SiC or Al2O3. ZnO can promote the cross-linking reaction of the EVA matrix. The test results indicated that the EVA composite encapsulating rear films filled with thermal conductive fillers are able to improve the PV efficiency and the heat dissipating ability of the solar cell effectively.

  12. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    Science.gov (United States)

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  13. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Thermal analysis and luminescence of phospho-tellurite glass doped with NdF3

    Science.gov (United States)

    Iwanowicz, Kamil; Dorosz, Dominik; Żmojda, Jacek; Kochanowicz, Marcin

    2015-09-01

    In the paper thermal and luminescence properties of phospho-tellurite glass and glass after thermal treatment doped with NdF3 were presented. The crystallization kinetic of the main crystallization peaks of glass was investigated using differential scanning calorimetry (DSC). The value of the activation energy for crystalline phase (Ec 54,21 +/- 5 kJ mol-1) was calculated using Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), Starink and Tang methods. The glass-ceramic was obtained by heat treatment method. The luminescence transitions from levels 4F5/2 --> 4I9/2 (878 nm), 4F3/2-->4I11/2 (1058 nm), and 4F3/2 --> 4I13/2 (1330 nm) in glass and glass-ceramic doped NdF3 were compered.

  15. A lime based mortar for thermal insulation of medieval church vaults

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Larsen, Poul Klenz; Hansen, Kurt Kielsgaard

    was measured to 0.08 W/mK, which is twice the value for mineral wool. It has 1/3 of the resistance to water vapour diffusion as brick, and a high capacity for liquid water absorption. This is a benefit in the case of rain leaking from the roof, because the water does not penetrate further down into the bricks.......There are 1700 medieval churches in Denmark, and many of these have brick vaults. The thickness is only 12 – 15 cm, and the heat loss through this building component is large. Thermal insulation has not been permitted until now in respect for the antiquarian values and doubts about the effect...... on water vapour transport through the vault, and the risk of condensation inside the insulation. A new mortar was developed for thermal insulation of bricks vaults, consisting mainly of expanded perlite, mixed with slaked lime. These materials are compatible with the fired clay bricks and the lime mortar...

  16. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Mingfei [Henan Key Laboratory Cultivation Base of Mine Environmental Protection and Ecological Remediation, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Fu, Zegang [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Wang, Yaping, E-mail: wangyp326@163.com [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China (China); Wang, Jingyu [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Zhang, Zhiyuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2017-01-15

    Highlights: • CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. • A part of PbO was reduced into Pb and detached from the glass phase. • The rest of PbO and other metal oxides were mainly concentrated in the B{sub 2}O{sub 3} phase. • PbO enriched in the interconnected B{sub 2}O{sub 3} phase can be completely leached out by HNO{sub 3}. • High silica glass powder(SiO{sub 2} purity >95%) was obtained after the leaching process. - Abstract: In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na{sub 2}O, K{sub 2}O, Al{sub 2}O{sub 3,} BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5 mol/L HNO{sub 3}. The lead removal rate was 99.80% and high silica glass powder (SiO{sub 2} purity >95 wt%) was obtained by setting the temperature, B{sub 2}O{sub 3} added amount and holding time at 1000 °C, 20% and 30 mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

  17. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments

    Science.gov (United States)

    E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.

    2017-12-01

    Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer – solid conduction, radiation, gas conduction, and convection – are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.

  18. The influence of insulation materials on corrosion under insulation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.; Evans, O. [Aspen Aerogels Inc., Northborough, MA (United States)

    2010-07-01

    This paper discussed the ways in which insulation materials influence corrosion under insulation (CUI) behaviour. Laboratory and field tests of 7 industrial insulation materials and 1 composite system were conducted to identify metrics for improving insulation system designs and determine insulation degradation mechanisms. The tested materials included calcium silicate; expanded perlite; cellular glass; mineral wool; and 2 types of aerogel blanket material. Twelve-week accelerated corrosion tests were conducted to gauge the level of corrosion that occurred beneath the materials on uncoated carbon steel pipe. Drying rate curves for porous materials were also established. A series of aqueous extraction studies was conducted to characterize the durability of various inhibitors on the pipe samples. Results of the study showed that the use of corrosion inhibitors and ensuring the thermal stability of hydrophobing agents will help to prevent CUI. 16 refs., 7 tabs., 17 figs.

  19. Influence of Fuzzy Parameters on the Modeling Quality of XLPE Insulation Properties under Thermal Aging

    Directory of Open Access Journals (Sweden)

    Lakhdar Bessissa

    2016-03-01

    Full Text Available In this work, we have used the fuzzy logic approach to predict mechanical properties (hot set test of cross-linked polyethylene (XLPE used as insulation in high voltage cables. The studied property presents non linear variations according to the aging time under high temperatures. So it is very difficult to find a theoretical or experimental model of the properties evolution under thermal aging. For that reason, several factors have been considered such as aging time and applied temperature. The obtained results are very encouraging and pointed out that the fuzzy logic is a powerful tool to predict the insulation proprieties. In other words, the obtained results are in good accordance with the experimental results with an acceptable error margin.

  20. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability.

    Science.gov (United States)

    Bröde, Peter; Kuklane, Kalev; Candas, Victor; Den Hartog, Emiel A; Griefahn, Barbara; Holmér, Ingvar; Meinander, Harriet; Nocker, Wolfgang; Richards, Mark; Havenith, George

    2010-01-01

    The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were considered. Garments with different outer materials and colours and additionally an aluminised reflective suit were combined with different number and types of dry and pre-wetted underwear layers. Under radiant stress, whole body heat loss decreased, i.e., heat gain occurred compared to the reference. This heat gain increased with radiation intensity, and decreased with air velocity and clothing insulation. Except for the reflective outer layer that showed only minimal heat gain over the whole range of radiation intensities, the influence of the outer garments' material and colour was small with dry clothing. Wetting the underclothing for simulating sweat accumulation, however, caused differing effects with higher heat gain in less permeable garments.

  1. Optical and thermal properties of a new Nd-doped phosphate laser glass

    Science.gov (United States)

    Li, Weiwei; He, Dongbing; Li, Shunguang; Chen, Wei; Chen, Shubin; Hu, Lili

    2013-07-01

    In this paper, we report the optical and thermal properties of a new Nd-doped phosphate laser glass. Glass samples with 0.5-3.7 wt% Nd-doping concentrations were prepared, annealed, cut and polished for different measurements, including glass density and refractive index, absorption spectra and emission cross section, as well as laser properties. A Mach- Zehnder interferometer was used to measure the temperature coefficient of refractive index (dn/dT) and optical path length (dS/dT) in the temperature range of 30-100 °C. Moreover, by increasing the glass temperature up to 500 °C, the thermal expansion of this new glass was also measured. On the basis of these optical, thermal and thermo-optic parameters, we calculated and analyzed some of glass parameters, such as the electronic polarizability of oxygen ions, the optical basicity of this phosphate-based glass, and especially discussed their thermal shock resistance properties. It is suggested that this new Nd-doped phosphate laser glass is an excellent candidate for high energy and high repetition rate laser applications.

  2. Unified approach for determining the enthalpic fictive temperature of glasses with arbitrary thermal history

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Potuzak, M.; Mauro, J. C.

    2011-01-01

    We propose a unified routine to determine the enthalpic fictive temperature of a glass with arbitrary thermal history under isobaric conditions. The technique is validated both experimentally and numerically using a novel approach for modeling of glass relaxation behavior. The technique is applic...

  3. Formation of a metallic glass by thermal decomposition of Fe(CO)5

    DEFF Research Database (Denmark)

    Wonterghem, Jacques van; Mørup, Steen; Charles, Stuart W.

    1985-01-01

    Iron pentacarbonyl has been thermally decomposed in an organic liquid. Mössbauer spectroscopy and x-ray diffraction studies show that the sample contains small particles of a metallic glass. Annealing of the particles at 523 K results in crystallization of the particles into a mixture of α-Fe and......-Fe5C2. The mechanism of glass formation is discussed....

  4. Dependence of Hardness of Silicate Glasses on Composition and Thermal History

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    The prediction of hardness is possible for crystalline materials, but so far not possible for glasses. In this work, several important factors that should be used for predicting the hardness of glasses are discussed. To do so, we have studied the influences of thermal history and chemical...... composition on hardness of silicate glasses. E-glasses of different compositions are subjected to various degrees of annealing to obtain various fictive temperatures in the glasses. It is found that hardness decreases with the fictive temperature. Addition of Na2O to a SiO2-Al2O3-Na2O glass system causes...... a decrease in hardness. However, hardness cannot solely be determined from the degree of polymerisation of the glass network. It is also determined by the effect of ionic radius on hardness. However, this effect has opposite trend for alkali and alkaline earth ions. The hardness increases with ionic radius...

  5. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity.

    Science.gov (United States)

    Hayase, Gen; Kanamori, Kazuyoshi; Abe, Kentaro; Yano, Hiroyuki; Maeno, Ayaka; Kaji, Hironori; Nakanishi, Kazuki

    2014-06-25

    Polymethylsilsesquioxane-cellulose nanofiber (PMSQ-CNF) composite aerogels have been prepared through sol-gel in a solvent containing a small amount of CNFs as suspension. Since these composite aerogels do not show excessive aggregation of PMSQ and CNF, the original PMSQ networks are not disturbed. Composite aerogels with low density (0.020 g cm(-3) at lowest), low thermal conductivity (15 mW m(-1) K(-1)), visible light translucency, bending flexibility, and superhydrophobicity thus have been successfully obtained. In particular, the lowest density and bending flexibility have been achieved with the aid of the physical supporting effect of CNFs, and the lowest thermal conductivity is comparable with the original PMSQ aerogels and standard silica aerogels. The PMSQ-CNF composite aerogels would be a candidate to practical high-performance thermal insulating materials.

  6. Numerical Calculation of Transient Thermal Characteristics in Gas-Insulated Transmission Lines

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-11-01

    Full Text Available For further knowledge of the thermal characteristics in gas-insulated transmission lines (GILs installed above ground, a finite-element model coupling fluid field and thermal field is established, in which the corresponding assumptions and boundary conditions are given.  Transient temperature rise processes of the GIL under the conditions of variable ambient temperature, wind velocity and solar radiation are respectively investigated. Equivalent surface convective heat transfer coefficient and heat flux boundary conditions are updated in the analysis process. Unlike the traditional finite element methods (FEM, the variability of the thermal properties with temperature is considered. The calculation results are validated by the tests results reported in the literature. The conclusion provides method and theory basis for the knowledge of transient temperature rise characteristics of GILs in open environment.

  7. Efficient Thermal Insulation of Passive House with Curved Façades in Cold Climate

    Directory of Open Access Journals (Sweden)

    Aznabaev Askar

    2016-01-01

    Full Text Available In this paper there is exploration of the possibility of creating effective sealed building envelope in zero energy building (ZEB with unique façades. This article describes passive and active measures of decrease of thermal loss through enclosure structures, usage of modern insulation materials; positive effect of rationalization of the façade orientation and form of a building in a plan; on the base of existing architecture concept structural solutions of building envelope are suggested. Using thermal FEA the enclosure structure was optimized. The results of modeling of units and elements of building envelope are: heat transfer coefficient U-value for heterogeneous multilayer structure, picture of temperature distribution and magnitude of the thermal conductivity and temperature of internal wall surface.

  8. Thermal Predictions of the Cooling of Waste Glass Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  9. Thermal properties of Ba3Ti3B2O12 glasses

    OpenAIRE

    Vaish, Rahul; K. B. R. Varma

    2010-01-01

    Transparent glasses in the system 3BaO-3TiO2-B2O3 (BTBO) were fabricated via the conventional melt-quenching technique. The as-quenched samples were confirmed to be glassy by differential thermal analysis (DTA) technique. The thermal parameters were evaluated using non-isothermal DTA experiments. Kauzmann temperature was found to be 759 K based on heating rate dependent glass transition and crystallization temperatures. Theoretical relation for temperature dependent viscosity was proposed for...

  10. Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method

    Science.gov (United States)

    Jannot, Yves; Degiovanni, Alain; Félix, Vincent; Bal, Harouna

    2011-03-01

    This paper presents a method dedicated to the thermal conductivity measurement of thin insulating anisotropic materials. The method is based on three hot-strip-type experiments in which the stationary temperature is measured at the center of the hot strip. A 3D model of the heat transfer in the system is established and simulated to determine the validity of a 2D transfer hypothesis at the center of the hot strip. A simplified 2D model is then developed leading to the definition of a geometrical factor calculable from a polynomial expression. A very simple calculation method enabling the estimation of the directional thermal conductivities from the three stationary temperature measurements and from the geometrical factor is presented. The uncertainties on each conductivity are estimated. The method is then validated by measurements on polyethylene foam and Ayous (anistropic low-density tropical wood); the estimated values of the thermal conductivities are in good agreement with the values estimated using the hot plate and the flash method. The method is finally applied on a thin super-insulating fibrous material for which no other method is able to measure the in-plane conductivity.

  11. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    Science.gov (United States)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  12. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow.

    Science.gov (United States)

    Hu, Juejun; Feng, Ning-Ning; Carlie, Nathan; Petit, Laeticia; Agarwal, Anu; Richardson, Kathleen; Kimerling, Lionel

    2010-01-18

    A thermal reflow technique is applied to high-index-contrast, sub-micron waveguides in As(2)S(3) chalcogenide glass to reduce the sidewall roughness and associated optical scattering loss. We show that the reflow process effectively decreases sidewall roughness of chalcogenide glass waveguides. A kinetic model is presented to quantitatively explain the sidewall roughness evolution during thermal reflow. Further, we develop a technique to calculate waveguide optical loss using the roughness evolution model, and predict the ultimate low loss limit in reflowed high-index-contrast glass waveguides. Up to 50% optical loss reduction after reflow treatment is experimentally observed, and the practical loss limiting factors are discussed.

  13. Thermal recycling and re-manufacturing of glass fibre thermosetting composites

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Beauson, Justine; Brøndsted, Povl

    2016-01-01

    The impact of using thermally recycled glass fibre in re-manufactured composites was investigated. A unidirectional glass fibre thermosetting composite laminate was manufactured. The matrix in one part of the laminate was burnt off to recover the glass fibres. These recycled glass fibres were used...... was observed in the composites with the pristine and the recycled fibres, which lead to a lower fibre volume fraction in the latter one. The Young's modulus of the composites was not changed by the recycling process, if the lower fibre volume fraction is taken into account. However, a marked drop...

  14. Thermally Activated Motion of Sodium Cations in Insulating Parent Low-Silica X Zeolite

    Science.gov (United States)

    Igarashi, Mutsuo; Jeglič, Peter; Mežnaršič, Tadej; Nakano, Takehito; Nozue, Yasuo; Watanabe, Naohiro; Arčon, Denis

    2017-07-01

    We report a 23Na spin-lattice relaxation rate, T1 - 1, in low-silica X zeolite. T1 - 1 follows multiple BPP-type behavior as a result of thermal motion of sodium cations in insulating material. The estimated lowest activation energy of 15 meV is much lower than 100 meV observed previously for sodium motion in heavily Na-loaded samples and is most likely attributed to short-distance jumps of sodium cations between sites within the same supercage.

  15. Thermal insulation research plan for the Energy Conversion and Utilization Technologies (ECUT) materials program

    Energy Technology Data Exchange (ETDEWEB)

    Fine, H.A.

    1986-08-01

    This report documents both the process and the output of the process of establishing a peer review panel primarily from the private sector to suggest research and development activities appropriate for government sponsorship through the US Department of Energy (DOE) Energy Conversion and Utilization Technologies (ECUT) Program on the subject of thermal insulation. We expect to use information and guidance from the document during the federal budgetary process to allow more informed decision making. All related results of that budgetary decision making will affect what the DOE or Oak Ridge National Laboratory (ORNL) can and will sponsor during this or subsequent years through detailed decisions of DOE and ORNL program managers.

  16. THE INFLUENCE OF ECOLOGICAL MATERIALS EMBEDDED INTO COMPOSITES UPON THE THERMAL INSULATING CAPACITY

    Directory of Open Access Journals (Sweden)

    Luminiţa-Maria BRENCI

    2014-12-01

    Full Text Available The paper presents the results of a research performed in order to design and manufacture composites that embed in their structure ecological raw materials, such as wood chips and hemp hurds. The thermal conductivity was determined for a temperature difference (ΔT of 200 C between the cold plate and warm plate and the measurements were done in eight points. The results showed that the best insulating composite material was obtained for the structure containing equal shares of wood chips and chopped hemp

  17. Thermal resistant efficiency of Nb-doped TiO2 thin film based glass window

    Directory of Open Access Journals (Sweden)

    Luu Manh Quynh

    2017-09-01

    Full Text Available The proportional relationship between the infrared (IR transmittance of a transparent material and its IR-induced heat transfer can be explained via a simple model. An agreement between the theory and the experimental work was examined by measuring the temperature rising inside a heat-insulated box with glass windows under IR irradiation, where the material of the glass windows was modified from corning glass (CG to 9 at% Nb-doped TiO2 (TNO fabricated by sputtering deposition. The fabricated TNO thin film was mostly transparent in a visible region and had a low transparency in the IR region, which, in turn, produced the self-cooling effect inside the insulated box. In comparison to the window glass made by CG, the temperature increase inside the box would be 24% less if the window was made by CG coated by TNO (TNO on CG. This suggests the possibility of manufacturing products with desirable features in the energy-cut cooling. The energy-cut was found to decline proportionally to the decrease of the glass window area.

  18. The production line of bio-fibre based thermal insulation materials. Feasibility study; Kasvikuitueristeiden tuotantoketjun toteutettavuus

    Energy Technology Data Exchange (ETDEWEB)

    Rissanen, R. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Structural Engineering and Building Physics; Pasila, A.; Kymaelaeinen, H.R. [Helsinki Univ. (Finland). Faculty of Agriculture and Forestry

    1998-10-01

    The alternatives of the production line of bio-fibre based thermal insulation materials and the preconditions for economical Finnish production were estimated in a feasibility study. On the basis of existing results, the quality and the competitiveness of the bio-fibre based thermal insulation materials were compared with the other thermal insulation materials on the market. The acceptance procedure of authorities and the quality control were also examined. Compared with the mineral wool product, the strongest competitive advantages of bio-fibre based thermal insulation are the natural raw materials and an environmentally friendly image. With the Finnish bio-fibre insulation production, we can meet the growing demand for ecological building materials. The constructions used in Germany and the experience derived from them cannot be applied directly to Finnish conditions. The behaviour of the biofibres must be known so that they can be used in building constructions. Types and quantities of additives and adhesives used in insulation must be determined within the production design part In the beginning of the production line the method of growing, harvesting, storing and drying can be similar to any article. The aim of the development of the growing and harvesting technique is to create the most fluent and economical production of raw material. The so called dry-line method must be developed in order to reduce the production costs of short flax fibre. The principal aim in choosing the storing and drying methods is to make sure that the raw material will stay in good condition and be homogeneous. The moulding risk must be taken into account during the whole production line. The pre-processing of bio-fibres can be carried out either in farms or in a production unit. A rather big preprocessing terminal or a mobile grinding unit could be constructed for farms situated close to each other. The unit could be transferred between farms. In these cases the transport costs

  19. Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass

    Directory of Open Access Journals (Sweden)

    Mouritz N. Svenson

    2016-03-01

    Full Text Available Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+ are replaced by larger ions from a salt bath (e.g., K+. This develops a compressive stress (CS on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.

  20. Synthesis, thermal and photoluminescent properties of ZnSe- based oxyfluoride glasses doped with samarium

    Science.gov (United States)

    Kostova, I.; Okada, G.; Pashova, T.; Tonchev, D.; Kasap, S.

    2014-12-01

    Rare earth (RE) doped glasses and glass ceramic materials have recently received considerable attention because of their potential or realized applications as X-ray intensifying screens, phosphors, detectors, waveguides, lasers etc. [1]. In this work, we present a new RE doped ZnO-ZnSe-SrF2-P2O5-B2O3-Sm2O3-SmF3 (ZSPB) glass system synthesized by melt quenching technique. The resulting glasses were visually fully transparent and stable with glass the transition temperatures around 530°C. The thermal properties of this glass system were characterized by Modulated Differential Scanning Calorimetry (MDSC) measurements before and after annealing at 650°C. We have characterized these glasses by Raman spectroscopy and photoluminescence (PL) measurements over the UV-VIS range using light emitting diodes (LED) and laser diodes (LD) excitation sources. We have also irradiated thermally treated and non-treated glass samples by X-rays and have studied the resulting PL. We discuss the results in terms of previously reported models for Sm-doped Zn-borophosphate oxide, oxyfluoride and oxyselenide glasses.

  1. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles...... was determined for different solar heating systems. Three systems were investigated: solar domestic hot water systems, solar heating systems for combined space heating demand and domestic hot water supply, and large solar heating plants. The yearly thermal performance of the systems was calculated by detailed...... simulation models with collectors with a normal glass cover and with a glass cover with antireflection surfaces. The calculations were carried out for different solar fractions and temperature levels of the solar heating systems. These parameters influence greatly the thermal performance associated...

  2. Investigation of thermal and electrical stabilities of a GdBCO coil using grease as an insulation material for practical superconducting applications.

    Science.gov (United States)

    Kang, D H; Kim, K L; Kim, Y G; Park, Y J; Kim, W J; Kim, S H; Lee, H G

    2014-09-01

    This paper presents the effects of thermal grease on the electrical and thermal characteristics of GdBCO pancake coils, observed through charge-discharge, sudden discharge, over-current, and thermal quench testing. In charge-discharge and sudden discharge tests, a coil using thermal grease as an insulation material demonstrated faster charging/discharging rates compared to a coil without turn-to-turn insulation. In the case of over-current tests, the coil using thermal grease exhibited the highest electrical stability. Furthermore, thermal quench testing showed the coil employing thermal grease to possess superior thermal characteristics, with rapid cooling and low temperature rise. Overall, the use of thermal grease as an insulation material may be a potential solution to the problems observed with the existing insulation materials, possessing fast charging/discharging rates with superior thermal and electrical stabilities.

  3. CO2 Insulation for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Karlmann, Paul; Anderson, Kevin; Novak, Keith

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is sending a large (>850 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars in 2011. The rover's primary power source is a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) that generates roughly 2000 W of heat, which is converted to approximately 110 W of electrical power for use by the rover electronics, science instruments, and mechanism-actuators. The large rover size and extreme thermal environments (cold and hot) for which the rover is designed for led to a sophisticated thermal control system to keep it within allowable temperature limits. The pre-existing Martian atmosphere of low thermal conductivity CO2 gas (8 Torr) is used to thermally protect the rover and its components from the extremely cold Martian environment (temperatures as low as -130 deg C). Conventional vacuum based insulation like Multi Layer Insulation (MLI) is not effective in a gaseous atmosphere, so engineered gaps between the warm rover internal components and the cold rover external structure were employed to implement this thermal isolation. Large gaps would lead to more thermal isolation, but would also require more of the precious volume available within the rover. Therefore, a balance of the degree of thermal isolation achieved vs. the volume of rover utilized is required to reach an acceptable design. The temperature differences between the controlled components and the rover structure vary from location to location so each gap has to be evaluated on a case-by-case basis to arrive at an optimal thickness. For every configuration and temperature difference, there is a critical thickness below which the heat transfer mechanism is dominated by simple gaseous thermal conduction. For larger gaps, the mechanism is dominated by natural convection. In general, convection leads to a poorer level of thermal isolation as compared to conduction. All these considerations play important roles in the

  4. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  5. Comparative Study on Accelerated Thermal Ageing of Vegetable Insulating Oil-paperboard and Mineral Oil-paperboard

    Science.gov (United States)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Yang, Jun; Wang, Xuan; Fang, Fu-Xin; Kong, Hai-Yang; Qian, Hang

    2016-05-01

    To comparatively study the insulation ageing life of vegetable insulating oil-paperboard and mineral oil-paperboard, we conducted accelerated thermal ageing experiments at 170°C. Then according to the temperature rise of vegetable insulating oil transformer, we conducted accelerated thermal ageing experiments at 150°C for vegetable insulating oil-paperboard and at 140°C for mineral oil-paperboard. The appearance, polymerization degree, and SEM microstructure of the paperboard after different ageing experiments were comparative analyzed. The results show that after the oil-paperboard system is accelerated ageing for 1 000 h at 170°C, that is equivalent to 20 years natural ageing, the structure of paperboard in vegetable insulating oil is damaged severely, which indicates that the lifetime of transformer are in the late stage; while the structure of paperboard in mineral oil maintain complete, and the polymerization degree is still above 500, which indicate that the lifetime of transformer are in the middle stage. The accelerated ageing rate of the vegetable insulating oil-paperboard system at 150°C is slower than that of the mineral oil-paperboard system, which indicates that the lifetime of the vegetable insulating oil-paperboard is longer than that of the mineral oil-paperboard.

  6. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (thermal transfer, the total resultant insulation value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations

  7. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2015-04-01

    Full Text Available In this paper, air plasmas spray (APS was used to prepare YSZ and Sc2O3–YSZ (ScYSZ coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2 aerogel are 0.553, 0.539 and 0.2097×10−6 m2/s, respectively. Then, the thermal insulation performances of three kinds of coating were investigated from 20 °C to 400 °C using high infrared radiation heat flux technology. The experimental results indicated that the corresponding temperature difference between the top TC4 alloy (400 °C and the bottom surface of YSZ is 41.5 °C for 0.6 mm thickness coating. For 1 mm thickness coating, the corresponding temperature difference between the top TC4 alloys (400 °C and the bottom surface of YSZ, ScYSZ, SiO2 aerogel three specimens is 54, 54.6 and 208 °C, respectively. The coating thickness and species were found to influence the heat insulation ability. In these materials, YSZ and ScYSZ exhibited a little difference for heat insulation behavior. However, SiO2 aerogel was the best one among them and it can be taken as protection material on TC4 alloys. In outer space, SiO2 aerogel can meet the need of thermal insulation of TC4 of high-speed aircraft.

  8. An application of vacuum insulated tubing (VIT) in a SAGD thermal completion at Surmont

    Energy Technology Data Exchange (ETDEWEB)

    Handfield, T.C.; Martin, W.; Spenceley, N. [ConocoPhillips (Canada); Banman, R.M. [Total EandP (Canada)

    2011-07-01

    In the oil sands industry, steam assisted gravity drainage (SAGD) is a thermal recovery method. During the preheating of an SAGD well pair, high quality steam is injected down hole through the long string while return fluids are returned to the surface through the short string; this situation leads to unwanted heat exchanges between the two. The aim of the study is to determine the possible benefits of using acuum insulated tubing (VIT), a technology which manages downhole temperature successfully, in the SAGD process. A theoretical analysis and a field test were conducted on 2 injection wells in an in-situ oil sands project in Surmont in the Athabasca area. Results showed that the use of VIT improves heat transfer efficiency, leading to lower steam injection requirements and a reduction of concerns relating to thermal expansion and well integrity. This paper demonstrated that the application of VIT to the SAGD process is beneficial.

  9. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... by XRD analysis. The thermal stability and compressive strength of the calcium silicates are seriously influenced by the changes of their crystal structure. Linear shrinkage of the reference sample is 1.3% at 1050°C, whereas the sample with Fe/Si =1.0% does by 30.4%. In conclusion, the presence of Fe3......+ modifies the crystal structure of porous calcium silicates, leading to a significant shrinkage in these materials....

  10. Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications.

    Science.gov (United States)

    Su, Li Fen; Miao, Lei; Tanemura, Sakae; Xu, Gang

    2012-06-01

    Nanoporous silica cryogels with a high specific surface area of 1095 m2 g-1 were fabricated using tert-butyl alcohol as a reaction solvent, via a cost-effective sol-gel process followed by vacuum freeze drying. The total time of cryogel production was reduced markedly to one day. The molar ratio of solvent/precursor, which was varied from 5 to 13, significantly affected the porous structure and thermal insulating properties of the cryogels. The silica cryogels with low densities in the range of 0.08-0.18 g cm-3 and thermal conductivities as low as 6.7 mW (m·K)-1 at 100 Pa and 28.3 mW (m·K)-1 at 105 Pa were obtained using this new technique.

  11. Synthesis of Hollow Silica Nanospheres by Sacrificial Polystyrene Templates for Thermal Insulation Applications

    Directory of Open Access Journals (Sweden)

    Linn Ingunn C. Sandberg

    2013-01-01

    Full Text Available Monodisperse polystyrene (PS spheres with controllable size have been synthesized by a straight forward and simple procedure. The as-synthesized PS spheres have a typical diameter ranging from ~180 nm to ~900 nm, where a reduced sphere size is obtained by increasing the polyvinylpyrrolidone (PVP/styrene weight ratio. The PS spheres function as sacrificial templates for the fabrication of hollow silica nanospheres (HSNSs for thermal insulation applications. By modifying the silica coating process, HSNSs with different surface roughness are obtained. All resulting HSNSs show typically a thermal conductivity of about 20 mW/(mK, indicating that the surface phonon scattering is probably not significant in these HSNS samples.

  12. Development of fly ash boards with thermal, acoustic and fire insulation properties.

    Science.gov (United States)

    Leiva, C; Arenas, C; Vilches, L F; Alonso-Fariñas, B; Rodriguez-Galán, M

    2015-12-01

    This paper presents an experimental analysis on a new board composed of gypsum and fly ashes from coal combustion, which are mutually compatible. Physical and mechanical properties, sound absorption coefficient, thermal properties and leaching test have been obtained. The mechanical properties showed similar values to other commercial products. As far as the acoustic insulation characteristics are concerned, sound absorption coefficients of 0.3 and 0.8 were found. The board presents a low thermal conductivity and a fire resistance higher than 50 min (for 4 cm of thickness). The leaching of trace elements was below the leaching limit values. These boards can be considered as suitable to be used in building applications as partitions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications

    Directory of Open Access Journals (Sweden)

    Li Fen Su, Lei Miao, Sakae Tanemura and Gang Xu

    2012-01-01

    Full Text Available Nanoporous silica cryogels with a high specific surface area of 1095 m2 g−1 were fabricated using tert-butyl alcohol as a reaction solvent, via a cost-effective sol–gel process followed by vacuum freeze drying. The total time of cryogel production was reduced markedly to one day. The molar ratio of solvent/precursor, which was varied from 5 to 13, significantly affected the porous structure and thermal insulating properties of the cryogels. The silica cryogels with low densities in the range of 0.08–0.18 g cm−3 and thermal conductivities as low as 6.7 mW (mcenterdotK−1 at 100 Pa and 28.3 mW (mcenterdotK−1 at 105 Pa were obtained using this new technique.

  14. Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles for Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Huijun Wu

    2013-01-01

    Full Text Available Flexible silica aerogel composites in intact monolith of 12 cm were successfully fabricated by reinforcing SiO2 aerogel with electrospun polyvinylidene fluoride (PVDF webs via electrospinning and sol-gel processing. Three electrospun PVDF webs with different microstructures (e.g., nanofibers, microparticles, and combined nanofibers and microparticles were fabricated by regulating electrospinning parameters. The as-electrospun PVDF webs with various microstructures were impregnated into the silica sol to synthesize the PVDF/SiO2 composites followed by solvent exchange, surface modification, and drying at ambient atmosphere. The morphologies of the PVDF/SiO2 aerogel composites were characterized and the thermal and mechanical properties were measured. The effects of electrospun PVDF on the thermal and mechanical properties of the aerogel composites were evaluated. The aerogel composites reinforced with electrospun PVDF nanofibers showed intact monolith, improved strength, and perfect flexibility and hydrophobicity. Moreover, the aerogel composites reinforced with the electrospun PVDF nanofibers had the lowest thermal conductivity (0.028 W·m−1·K−1. It indicates that the electrospun PVDF nanofibers could greatly improve the mechanical strength and flexibility of the SiO2 aerogels while maintaining a lower thermal conductivity, which provides increasing potential for thermal insulation applications.

  15. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  16. CRYSTALLIZATION KINETICS OF GLASS-CERAMICS BY DIFFERENTIAL THERMAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. NOZAD

    2011-06-01

    Full Text Available The crystallization behavior of fluorphlogopite, a glass-ceramic in the MgO–SiO2–Al2O3–K2O–B2O3–F system, was studied by substitution of Li2O for K2O in the glass composition. DTA, XRD and SEM were used for the study of crystallization behavior, formed phases and microstructure of the resulting glass-ceramics. Crystallization kinetics of the glass was investigated under non-isothermal conditions, using the formal theory of transformations for heterogeneous nucleation. The crystallization results were analyzed, and both the activation energy of crystallization process as well as the crystallization mechanism were characterized. Calculated kinetic parameters indicated that the appropriate crystallization mechanism was bulk crystallization for base glass and the sample with addition of Li2O. Non-isothermal DTA experiments showed that the crystallization activation energies of base glasses was in the range of 234-246 KJ/mol and in the samples with addition of Li2O was changed to the range of 317-322 KJ/mol.

  17. Study on mechanical and ablative properties of EPDM/OMMT thermal insulating nanocomposites.

    Science.gov (United States)

    Gao, Guoxin; Zhang, Zhicheng; Li, Xuefei; Meng, Qingjie; Zheng, Yuansuo; Jin, Zhihao

    2010-11-01

    In order to enhance the elongation at break, the ablation resistant properties as well as the tensile strength of the thermal insulating materials, organo-montmorillonite (OMMT) was introduced into the short aramid fibers reinforced Ethylene-Propylene-Diene Monomer (EPDM) based nanocomposites. The effects of OMMT content on the mechanical and ablative properties of the nanocomposites were investigated systematically. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirm that EPDM-matrix has been intercalated into OMMT interlayers after a mixing process on a two-roll mill. The brittle fracture of nanocomposites also indicates that OMMT can lubricate aramid fiber to weaken the interfacial adhesive strength between the fibers and the matrix. As a result, the tensile strength and elongation at break are both improved sharply with OMMT content increasing from 1 phr to 7 phr. However, thanks to the inevitable agglomeration of OMMT with high loading inside the nanocomposites, the tensile strength and elongation at break reduce gently once OMMT is over 7 phr. Furthermore, the ablation resistant properties are improved greatly by increasing OMMT from 1 phr to 11 phr. Therefore, the optimal content of OMMT is 7-11 phr for the thermal insulating nanocomposites with big elongation and excellent ablation resistant properties.

  18. Effect of ZnO on the Thermal Properties of Tellurite Glass

    Directory of Open Access Journals (Sweden)

    H. A. A. Sidek

    2013-01-01

    Full Text Available Systematic series of binary zinc tellurite glasses in the form (ZnOx(TeO2 (where x=0 to 0.4 with an interval of 0.05 mole fraction have been successfully prepared via conventional melt cast-quenching technique. Their density was determined by Archimedes method with acetone as buoyant liquid. The thermal expansion coefficient of each zinc tellurite glasses was measured using L75D1250 dilatometer, while their glass transition temperature (Tg was determined by the SETARAM Labsys DTA/6 differential thermogravimetric analysis at a heating rate of 20 K min−1. The acoustic Debye temperature and the softening temperature (Ts were estimated based on the longitudinal (VL and shear ultrasonic (Vs wave velocities propagated in each glass sample. For ultrasonic velocity measurement of the glass sample, MATEC MBS 8000 Ultrasonic Data Acquisition System was used. All measurements were taken at 10 MHz frequency and at room temperature. All the thermal properties of such binary tellurite glasses were measured as a function of ZnO composition. The composition dependence was discussed in terms of ZnO modifiers that were expected to change the thermal properties of tellurite glasses. Experimental results show their density, and the thermal expansion coefficient increases as more ZnO content is added to the tellurite glass network, while their glass transition, Debye temperature, and the softening temperature decrease due to a change in the coordination number (CN of the network forming atoms and the destruction of the network structure brought about by the formation of some nonbridging oxygen (NBO atoms.

  19. Development, testing and application of extruded polystyrene foam (XPS) insulation with improved thermal properties; Polystyrol-Extruderschaum mit verbesserten waermetechnischen Eigenschaften - Entwicklung, Pruefung und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, Friedhelm [Forschung und Entwicklung Dow Building Solutions, Horgen (Switzerland); Merkel, Holger [Anwendungstechnik Dow Building Solutions, Schwalbach (Germany)

    2011-02-15

    Improved extruded polystyrene foam (XPS) insulation with lower thermal conductivity has been developed. This enables meeting the increased requirements for sustainable building insulation with better material efficiency. The proven mechanical and hygro-thermal properties of XPS insulation are maintained. This first product generation has been developed primarily for external perimeter insulation of basement walls and floors as well as for the insulation of cavity walls. The CO{sub 2} foaming technology meets the sustainability requirements for building products. (Copyright copyright 2011 Ernst and Sohn Verlag fuer Architektur und technische Wissenschaften GmbH and Co. KG, Berlin)

  20. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  1. Recycle Glass in Foam Glass Production

    OpenAIRE

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2014-01-01

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses in foam glass industry and the supply sources and capacity of recycle glass.

  2. Defect Detection of Adhesive Layer of Thermal Insulation Materials Based on Improved Particle Swarm Optimization of ECT

    Directory of Open Access Journals (Sweden)

    Yintang Wen

    2017-10-01

    Full Text Available This paper studies the defect detection problem of adhesive layer of thermal insulation materials. A novel detection method based on an improved particle swarm optimization (PSO algorithm of Electrical Capacitance Tomography (ECT is presented. Firstly, a least squares support vector machine is applied for data processing of measured capacitance values. Then, the improved PSO algorithm is proposed and applied for image reconstruction. Finally, some experiments are provided to verify the effectiveness of the proposed method in defect detection for adhesive layer of thermal insulation materials. The performance comparisons demonstrate that the proposed method has higher precision by comparing with traditional ECT algorithms.

  3. Defect Detection of Adhesive Layer of Thermal Insulation Materials Based on Improved Particle Swarm Optimization of ECT.

    Science.gov (United States)

    Wen, Yintang; Jia, Yao; Zhang, Yuyan; Luo, Xiaoyuan; Wang, Hongrui

    2017-10-25

    This paper studies the defect detection problem of adhesive layer of thermal insulation materials. A novel detection method based on an improved particle swarm optimization (PSO) algorithm of Electrical Capacitance Tomography (ECT) is presented. Firstly, a least squares support vector machine is applied for data processing of measured capacitance values. Then, the improved PSO algorithm is proposed and applied for image reconstruction. Finally, some experiments are provided to verify the effectiveness of the proposed method in defect detection for adhesive layer of thermal insulation materials. The performance comparisons demonstrate that the proposed method has higher precision by comparing with traditional ECT algorithms.

  4. Properties of Agro-Industrial Aerated Concrete as Potential Thermal Insulation for Building

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2016-01-01

    Full Text Available The present paper is aiming to provide an actual state of the development of non autoclaved Agro-Industrial aerated concrete by using multiple ashes as improvement of thermal behavior for building. The feasibility of Agro-Industrial wastes as lightweight concrete by utilizing the Palm Oil Fuel Ash (POFA as binder replacement and bottom ash as fine aggregate was investigated in this paper. Portland cement, bottom ash, aluminum powder and lime (Ca(OH2 were used in this study. The POFA was used to replace Portland cement and Hydrated Lime at 0%, 5%, 10% and 15% by weight and aluminum powder was added at 0.75% dry weight in order to form bubbles. The compressive strength, water absorption, porosity and the thermal conductivity test were carried out after the concrete were water cured for 7 days and later being exposed to the air and water until 28days. The results show that the 20% replacements give the optimum strength of 7.143MPa and 30% give the best thermal conductivity with 0.48W/mK. Hence, this study aim, was to develop an agro-industrial aerated concrete good in insulation but having an optimum strength. Hence, it has been found that the more the percentage of POFA is added the lower the thermal conductivity since the pore structure is increasing and by the optimization done, 30% replacement has been chosen as the best mix design for Agro-Industrial Aerated Concrete.

  5. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.

    Science.gov (United States)

    Carriço, Camila S; Fraga, Thaís; Carvalho, Vagner E; Pasa, Vânya M D

    2017-07-02

    Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young's modulus, which indicates that the increment of CO₂ production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young's modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23-41 kg·m-3), thermal conductivity (0.0128-0.0207 W·m-1·K-1), compressive strength (45-188 kPa), and Young's modulus (3-28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.

  6. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols

    Directory of Open Access Journals (Sweden)

    Camila S. Carriço

    2017-07-01

    Full Text Available Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL content and blowing agents in the foams’ properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water. The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young’s modulus, which indicates that the increment of CO2 production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young’s modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23–41 kg·m−3, thermal conductivity (0.0128–0.0207 W·m−1·K−1, compressive strength (45–188 kPa, and Young’s modulus (3–28 kPa. These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.

  7. Radiation and Thermal Ageing of Nuclear Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  8. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  9. Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass.

    Science.gov (United States)

    Ravagli, Andrea; Craig, Christopher; Alzaidy, Ghada A; Bastock, Paul; Hewak, Daniel W

    2017-07-01

    Gallium lanthanum sulfide glass (GLS) has been widely studied in the last 40 years for middle-infrared applications. In this work, the results of the substitution of selenium for sulphur in GLS glass are described. The samples are prepared via melt-quench method in an argon-purged atmosphere. A wide range of compositional substitutions are studied to define the glass-forming region of the modified material. The complete substitution of Ga2 S3 by Ga2 Se3 is achieved by involving new higher quenching rate techniques compared to those containing only sulfides. The samples exhibiting glassy characteristics are further characterized. In particular, the optical and thermal properties of the sample are investigated in order to understand the role of selenium in the formation of the glass. The addition of selenium to GLS glass generally results in a lower glass transition temperature and an extended transmission window. Particularly, the IR edge is found to be extended from about 9 µm for GLS glass to about 15 µm for Se-added GLS glass defined by the 50% transmission point. Furthermore, the addition of selenium does not affect the UV edge dramatically. The role of selenium is hypothesized in the glass formation to explain these changes. © 2017 University of Southampton. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication of Al2O3/glass/Cf Composite Substrate with High Thermal Conductivity

    Science.gov (United States)

    Wang, S. X.; Liu, G. S.; Ouyang, X. Q.; Wang, Y. D.; Zhang, D.

    2016-02-01

    In this paper, carbon fiber with high thermal conductivity was introduced into the alumina-based composites. To avoid oriented alignment of carbon fibers (Cf) and carbothermal reactions during the sintering process, the Al2O3/glass/Cf substrate was hot-pressed under a segmental-pressure procedure at 1123 K. Experimental results show that carbon fibers randomly distribute and form a bridging structure in the matrix. The three-dimensional network of Cf in Al2O3/glass/Cf substrate brings excellent heat conducting performance due to the heat conduction by electrons. The thermal conductivity of Al2O3/30%glass/30%Cf is as high as 28.98 W mK-1, which is 4.56 times larger than that of Al2O3/30%glass.

  11. Thermal forming of glass microsheets for x-ray telescope mirror segments

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Hailey, C.J.; Craig, W.W.

    2003-01-01

    develop a viscodynamic model for the glass strain as the forming proceeds to find the conditions for repeatability. Thermal forming preserves the x-ray reflectance and scattering properties of the raw glass. The imaging resolution is driven by a large wavelength figure. We discuss the sources of figure......We describe a technology to mass-produce ultrathin mirror substrates for x-ray telescopes of near Wolter-I geometry. Thermal glass forming is a low-cost method to produce high-throughput, spaceborne x-ray mirrors for the 0.1-200-keV energy band. These substrates can provide the collecting area...... envisioned for future x-ray observatories. The glass microsheets are shaped into mirror segments at high temperature by use of a guiding mandrel, without polishing. We determine the physical properties and mechanisms that elucidate the formation process and that are crucial to improve surface quality. We...

  12. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  13. Experimental Evaluation and Comparison of Thermal Conductivity of High-Voltage Insulation Materials for Vacuum Electronic Devices

    Science.gov (United States)

    Suresh, C.; Srikrishna, P.

    2017-07-01

    Vacuum electronic devices operate with very high voltage differences between their sub-assemblies which are separated by very small distances. These devices also emit large amounts of heat that needs to be dissipated. Hence, there exists a requirement for high-voltage insulators with good thermal conductivity for voltage isolation and efficient heat dissipation. However, these voltage insulators are generally poor conductors of heat. In the present work, an effort has been made to obtain good high-voltage insulation materials with substantial improvement in their thermal conductivity. New mixtures of composites were formed by blending varying percentages (by volumes) of aluminum nitride powders with that of neat room-temperature vulcanizing (RTV) silicone elastomer compound. In this work, a thermal conductivity test setup has been devised for the quantification of the thermal conductivity of the insulators. The thermal conductivities and high-voltage isolation capabilities of various blended composites were quantified and were compared with that of neat RTV to evaluate the relative improvement.

  14. Mechanical and thermal properties of water glass coated sisal fibre-reinforced polypropylene composite

    CSIR Research Space (South Africa)

    Phiri, G

    2012-10-01

    Full Text Available ?C). Figure 1 shows the processing steps followed to produce composite samples. Up to 15% fibre loading could be achieved and the sisal fibres were coated with water glass to improve fire resistance. In order to improve the adhesion between sisal... preparation process: (A) WG coated fibre, (B) High speed granulator, (C) Composite granules, (D) Single screw extruder, (E) Injection moulder and (F) Composite samples (dumbbells) Mechanical and thermal properties of water glass coated sisal fi bre...

  15. Thermal and fragility aspects of microwave synthesized glasses containing transition metal ions and heavy metal ions

    Science.gov (United States)

    Renuka, C.; Viswanatha, R.; Reddy, C. Narayana

    2017-02-01

    A simple, clean and energy efficient microwave heating route is used to prepare glasses in the systems xMnO-33(0.09PbCl2:0.91PbO)-(67-x) NaPO3 and xPbCl2-33PbO-(67-x) NaPO3 where 0.1 ≤ x ≤ 4 (mol%). Thermal data extracted from differential scanning calorimetry (DSC) thermograms are used to study the composition dependence of glass transition temperature (Tg), heat capacity, thermal stability and fragility. The decrease in glass transition temperature with modifier oxide (Na2O + MnO) content can be ascribed to network degradation and the volume increasing effect caused by PbCl2. The change in heat capacity of MnPb glass being greater than that of PbNP glass, suggests that MnPb glasses are more covalent than PbNP glasses. DSC thermograms taken at different heating rates (φ) reveal the dependence of Tg on φ, and the thermal stability of the glass increases due to MnO addition. Fragility aspects have also been studied by calculating the fragility functions ( {{Δ {{C}}_{{p}} }/{{{C}_{{pl}} }}{{and}}{[ {{NBO}} ]}/{{{V}_{{m}}3 {{T}}_{{g}} }}} ). Results obtained from both the fragility functions compare well and reveal the dependence of fragility functions on modifier content and PbCl2 mol%. Further, the decrease in Tg and Hv are suggested to be due to the increase in the number of non-bridging oxygens, which results in the lowering of stiffness and rigidity of the glass network. Analysis of the infrared spectra confirms that the glassy matrix is composed of P-O-P, P-O-Pb, P=O and P-O- bonding.

  16. Elastomeric Thermal Insulation Design Considerations in Long, Aluminized Solid Rocket Motors

    Science.gov (United States)

    Martin, Heath T.

    2017-01-01

    An all-new sounding rocket was designed at NASA's Marshall Space Flight Center that featured an aft finocyl, aluminized solid propellant grain and silica-filled ethylene-propylene-diene monomer (SFEPDM) internal insulation. Upon the initial static firing of the first of this new design, the solid rocket motor (SRM) case failed thermally just upstream of the aft closure early in the burn time. Subsequent fluid modeling indicated that the high-velocity combustion-product jets emanating from the fin-slots in the propellant grain were likely inducing a strongly swirling flow, thus substantially increasing the severity of the convective environment on the exposed portion of the SFEPDM insulation in this region. The aft portion of the fin-slots in another of the motors were filled with propellant to eliminate the possibility of both direct jet impingement on the exposed SFEPDM and the appearance of strongly swirling flow in the aft region of the motor. When static-fired, this motor's case still failed in the same axial location, and, though somewhat later than for the first static firing, still in less than 1/3rd of the desired burn duration. These results indicate that the extreme material decomposition rates of the SFEPDM in this application are not due to gas-phase convection or shear but rather to interactions with burning aluminum or alumina slag. Further comparisons with between SFEPDM performance in this design and that in other hot-fire tests provide insight into the mechanisms of SFEPDM decomposition in SRM aft domes that can guide the upcoming redesign effort, as well as other future SRM designs. These data also highlight the current limitations of modeling elastomeric insulators solely with diffusion-controlled, gas-phase thermochemistry in SRM regions with significant viscous shear and/or condense-phase impingement or flow.

  17. Unique effects of thermal and pressure histories on glass hardness: Structural and topological origin

    Science.gov (United States)

    Smedskjaer, Morten M.; Bauchy, Mathieu; Mauro, John C.; Rzoska, Sylwester J.; Bockowski, Michal

    2015-10-01

    The properties of glass are determined not only by temperature, pressure, and composition, but also by their complete thermal and pressure histories. Here, we show that glasses of identical composition produced through thermal annealing and through quenching from elevated pressure can result in samples with identical density and mean interatomic distances, yet different bond angle distributions, medium-range structures, and, thus, macroscopic properties. We demonstrate that hardness is higher when the density increase is obtained through thermal annealing rather than through pressure-quenching. Molecular dynamics simulations reveal that this arises because pressure-quenching has a larger effect on medium-range order, while annealing has a larger effect on short-range structures (sharper bond angle distribution), which ultimately determine hardness according to bond constraint theory. Our work could open a new avenue towards industrially useful glasses that are identical in terms of composition and density, but with differences in thermodynamic, mechanical, and rheological properties due to unique structural characteristics.

  18. Thermal stress in the edge cladding of Nova glass laser disks

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, J.H.; Kong, M.K.; Gerhard, M.A.

    1987-09-28

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 ..mu..m across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm/sup -1/. This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm/sup 2/. We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm/sup -1/. Recent experiments show that this reduced absorption coefficient is satisfactory.

  19. The influence of the thermo-phono-insulating glazing structure configuration of some PVC profile windows on the airborne sound insulation – case study

    Directory of Open Access Journals (Sweden)

    Marta Cristina ZAHARIA

    2012-12-01

    Full Text Available After conducting laboratory acoustic measurements of airborne sound insulation for several windows with the same type of PVC profiles, equipped with different types of phono- and thermal - insulating glazings, the influence of the window’s glazed part (glass structure configuration on airborne sound insulation was analyzed. The configuration of the structure’s glazed part requires its composition of glass sheets with different thicknesses or intermediate layers of air with different thicknesses. This configuration has an important influence on the acoustic response of windows, namely on the index of air noise sound insulation, Rw, and on the behavior of the entire measurement frequency range.

  20. Study on the Thermal Properties of Hollow Shale Blocks as Self-Insulating Wall Materials

    Directory of Open Access Journals (Sweden)

    Guo-liang Bai

    2017-01-01

    Full Text Available To reduce energy consumption and protect the environment, a type of hollow shale block with 29 rows of holes was designed and produced. This paper investigated the thermal properties of hollow shale blocks and walls. First, the guarding heat-box method was used to obtain the heat transfer coefficient of the hollow shale block walls. The experimental heat transfer coefficient is 0.726 W/m2·K, which would save energy compared to traditional wall materials. Then, the theoretical value of the heat transfer coefficient was calculated to be 0.546 W/m2·K. Furthermore, the one-dimensional steady heat conduction process for the block and walls was simulated using the finite element analysis software ANSYS. The predicted heat transfer coefficient for the walls was 0.671 W/m2·K, which was in good agreement with the test results. With the outstanding self-insulation properties, this type of hollow shale block could be used as a wall material without any additional insulation measures in masonry structures.

  1. A Novel Environmental Route to Ambient Pressure Dried Thermal Insulating Silica Aerogel via Recycled Coal Gangue

    Directory of Open Access Journals (Sweden)

    Pinghua Zhu

    2016-01-01

    Full Text Available Coal gangue, one of the main hazardous emissions of purifying coal from coalmine industry, is rich in silica and alumina. However, the recycling of the waste is normally restricted by less efficient techniques and low attractive output; the utilization of such waste is still staying lower than 15%. In this work, the silica aerogel materials were synthesized by using a precursor extracted from recycled silicon-rich coal gangue, followed by a single-step surface silylation and ambient pressure drying. A low density (~0.19 g/cm3 nanostructured aerogel with a 3D open porous microstructure and high surface area (~690 m2/g was synthesized, which presents a superior thermal insulation performance (~26.5 mW·m−1·K−1 of a plane packed of 4-5 mm granules which was confirmed by transient hot-wire method. This study offers a new facile route to the synthesis of insulating aerogel material by recycling solid waste coal gangue and presents a potential cost reduction of industrial production of silica aerogels.

  2. Foam nests provide context-dependent thermal insulation to embryos of three leptodactylid frogs.

    Science.gov (United States)

    Méndez-Narváez, J; Flechas, S V; Amézquita, A

    2015-01-01

    The choice of adequate breeding habitat and its associated thermoregulatory conditions are thought to be important in the evolution of amphibian reproductive strategies. Among leptodactylid frogs, there is a terrestrial cline in the oviposition sites chosen to build foam nests for eggs. Although several functions have been attributed to foam nests, their role in temperature regulation for embryos is unclear. Here we tested the hypothesis that foam nests buffer embryos from variation in air temperature. We examined the degree of terrestrial nest sites in three species, finding a terrestrial cline of sites in terms of distance from water. We tested whether this nest-insulation effect varied among these species that differ in the degree of terrestrial nest sites and whether translocating nests impacted embryonic mortality. Our results demonstrate a negative effect of translocating aquatic nests to land, inferred from the highest hatching success in natural nests sites. All nests attenuated environmental thermal variation, but more terrestrial nests buffered embryos from a greater range of temperatures than did aquatic ones. Altogether, our data indicate that foam nests insulate embryos from daily temperature fluctuations among leptodactylid frogs with different degrees of terrestrial nests, which may well have contributed to the evolution of this reproductive strategy.

  3. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    Science.gov (United States)

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  5. Aeroelastic analysis of versatile thermal insulation (VTI) panels with pinched boundary conditions

    Science.gov (United States)

    Carrera, Erasmo; Zappino, Enrico; Patočka, Karel; Komarek, Martin; Ferrarese, Adriano; Montabone, Mauro; Kotzias, Bernhard; Huermann, Brian; Schwane, Richard

    2014-03-01

    Launch vehicle design and analysis is a crucial problem in space engineering. The large range of external conditions and the complexity of space vehicles make the solution of the problem really challenging. The problem considered in the present work deals with the versatile thermal insulation (VTI) panel. This thermal protection system is designed to reduce heat fluxes on the LH2 tank during the long coasting phases. Because of the unconventional boundary conditions and the large-scale geometry of the panel, the aeroelastic behaviour of VTI is investigated in the present work. Known available results from literature related to similar problem, are reviewed by considering the effect of various Mach regimes, including boundary layer thickness effects, in-plane mechanical and thermal loads, non-linear effects and amplitude of limit cycle oscillations. A dedicated finite element model is developed for the supersonic regime. The models used for coupling the orthotropic layered structural model with Piston Theory aerodynamic models allow the calculations of flutter conditions in case of curved panels supported in a discrete number of points. An advanced computational aeroelasticity tool is developed using various dedicated commercial softwares (CFX, ZAERO, EDGE). A wind tunnel test campaign is carried out to assess the computational tool in the analysis of this type of problem.

  6. Guar gum benzoate nanoparticle reinforced gelatin films for enhanced thermal insulation, mechanical and antimicrobial properties.

    Science.gov (United States)

    Kundu, Sonia; Das, Aatrayee; Basu, Aalok; Abdullah, Md Farooque; Mukherjee, Arup

    2017-08-15

    This work relates to guar gum benzoate self assembly nanoparticles synthesis and nano composite films development with gelatin. Guar gum benzoate was synthesized in a Hofmeister cation guided homogeneous phase reaction. Self assembly polysaccharide nanoparticles were prepared in solvent displacement technique. Electron microscopy and DLS study confirmed uniform quasi spherical nanoparticles with ζ-potential - 28.7mV. Nanocomposite films were further developed in gelatin matrix. The film capacity augmenting due to nanoparticles incorporation was noteworthy. Superior barrier properties, reinforcing and thermal insulation effects were observed in films dispersed with 20% w/w nanoparticles. Detailed FTIR studies and thermal analysis confirmed nanoparticles interactions in the film matrix. The nanocomposite film water vapour permeability was at 0.75gmm-1kPa-1h-1, thermal conductivity 0.39Wm-1K-1 and the tensile strength were recorded at 3.87MPa. The final film expressed excellent antimicrobial properties against water born gram negative and gram positive bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  8. Thermal Insulation System Analysis Tool (TISTool) User's Manual. Version 1.0.0

    Science.gov (United States)

    Johnson, Wesley; Fesmire, James; Leucht, Kurt; Demko, Jonathan

    2010-01-01

    The Thermal Insulation System Analysis Tool (TISTool) was developed starting in 2004 by Jonathan Demko and James Fesmire. The first edition was written in Excel and Visual BasIc as macros. It included the basic shapes such as a flat plate, cylinder, dished head, and sphere. The data was from several KSC tests that were already in the public literature realm as well as data from NIST and other highly respectable sources. More recently, the tool has been updated with more test data from the Cryogenics Test Laboratory and the tank shape was added. Additionally, the tool was converted to FORTRAN 95 to allow for easier distribution of the material and tool. This document reviews the user instructions for the operation of this system.

  9. Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator

    Science.gov (United States)

    Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad

    2017-11-01

    In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.

  10. A vacuum system for the thermal insulation of the SciFi distribution lines and manifolds

    CERN Document Server

    Joram, Christian

    2017-01-01

    This note describes some calculations and estimates for the layout, technology choice and performance of a vacuum system which shall ensure thermal insulation of the distribution lines and manifolds of the SiPM cooling system of the LHCb SciFi detector. We estimate the heat losses in concentric corrugated stainless steel pipes which leads to the conclusion that the pipes need to be evacuated to a pressure of about 1·10$^{-4}$ mbar. We then estimate the pumping conductance of the pipes and find that it will dominate over the effective pumping speed of any pump. We therefore conclude that a turbo molecular pump of small nominal pumping speed, which can easily achieve end pressures below 10$^{-5}$ mbar is adequate for this purpose. A preliminary layout of the vacuum system is being discussed at the end of the document.

  11. Investigation of energy efficiency of innovate thermal insulating materials and their influence on the building heat regime

    Directory of Open Access Journals (Sweden)

    Morozov Maxim N.

    2015-01-01

    Full Text Available A complex model of heat supply system of building was developed by using Matlab. The model allows conducting for a wide range of research related to improving the energy efficiency of buildings. In this work the investigations of energy efficiency of several advanced insulation materials, which is characterized by different thermal characteristics, were carried out. Conclusions about the impact of the thermal protective envelope on the room thermal regime were made. Prognostic heat consumptions values of rooms with different characteristics of thermal insulation materials and main base-load envelopes were determined. Researches were conducted for the winter climatic conditions of Western Siberia: the average daily outdoor temperature is -22 °C, the amplitude of temperature oscillation is 8 °C.

  12. Dynamic thermal expansivity of liquids near the glass transition

    DEFF Research Database (Denmark)

    Niss, Kristine; Gundermann, Ditte; Christensen, Tage Emil

    2012-01-01

    ) in the ultraviscous regime. Compared to the method of Bauer et al., the dynamical range has been extended by making time-domain experiments and by making very small and fast temperature steps. The modeling of the experiment presented in this paper includes the situation in which the capacitor is not full because......Based on previous works on polymers by Bauer et al. [ Phys. Rev. E 61 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704...... the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer....

  13. Thermal and structural properties of zinc modified tellurite based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, R. S., E-mail: rskundu2007@gmail.com; Dhankhar, Sunil; Dult, Meenakshi [Department of Applied Physics, G.J.University of Science & Technology,Hisar-125001, Haryana (India); Punia, R. [Department of Physics, Indira Gandhi University, Meerpur-123401, Rewari, Haryana (India); Kishore, N. [Department of Physics, Central University of Haryana, Mahendergarh-123029, Haryana (India)

    2016-05-23

    Glass system 60 TeO{sub 2} – 10 B{sub 2}O{sub 3}-(30-x) Bi{sub 2}O{sub 3}-x ZnO with mole fraction x = 10, 15, 20, 25 and 30 were synthesized by conventional melt quenching technique under controlled atmospheric conditions. The glass transition temperature (T{sub g}) has been determined using differential scanning Calorimetry (DSC) and its value is observed to increase with increase in ZnO content. This increase may be due to the increase in the concentration of the bridging oxygen (BO) atoms. IR and Raman spectra of the present glass system indicate that ZnO acts as network modifier and exists in ZnO{sub 4} units. TeO{sub 2} exists as TeO{sub 3}, TeO{sub 4}, and TeO{sub 3+1} structural units. Bismuth plays the role of network modifier with BiO{sub 6} octahedral structural units whereas B{sub 2}O{sub 3} exists in the form of BO{sub 3} trigonal and BO{sub 4} tetrahedral structural units.

  14. A Study on Variation of Thermal Characteristics of Insulation Materials for Buildings According to Actual Long-Term Annual Aging Variation

    Science.gov (United States)

    Choi, Hyun-Jung; Kang, Jae-Sik; Huh, Jung-Ho

    2018-01-01

    Insulation materials used for buildings are broadly classified as organic insulation materials or inorganic insulation materials. Foam gas is used for producing organic insulation materials. The thermal conductivity of foam gas is generally lower than that of air. As a result, foam gas is discharged over time and replaced by outside air that has relatively less thermal resistance. The gas composition ratio in air bubbles inside the insulation materials changes rapidly, causing the performance degradation of insulation materials. Such performance degradation can be classified into different stages. Stage 1 appears to have a duration of 5 years, and Stage 2 takes a period of over 10 years. In this study, two insulation materials that are most frequently used in South Korea were analyzed, focusing on the changes thermal resistance for the period of over 5000 days. The measurement result indicated that the thermal resistance of expanded polystyrene fell below the KS performance standards after about 80-150 days from its production date. After about 5000 days, its thermal resistance decreased by 25.7 % to 42.7 % in comparison with the initial thermal resistance. In the case of rigid polyurethane, a pattern of rapid performance degradation appeared about 100 days post-production, and the thermal resistance fell below the KS performance standards after about 1000 days. The thermal resistance decreased by 22.5 % to 27.4 % in comparison with the initial thermal resistance after about 5000 days.

  15. Greenhouse concept with high insulating cover by combination of glass and film

    NARCIS (Netherlands)

    Kempkes, F.L.K.; Janse, J.; Hemming, S.

    2017-01-01

    Dutch greenhouse horticulture puts a lot of effort in reduction of energy demand. Using (multiple) thermal screens, mainly during night, is the most common way to reduce heat losses in practice. In winter, even during daytime, transparent screens are closed, which saves energy, but results in

  16. High Voltage Resistive Divider Based on Cast Microwire in Glass Insulation on 6–24 kV Alternating Current of Commercial Frequency.

    Directory of Open Access Journals (Sweden)

    Juravleov A.

    2008-12-01

    Full Text Available It is presented the analysis and description of the construction of the high voltage resistive divider on the base of cast microwire in glass insulation on 6–24 kV alternating current of commercial frequency. It is presented the procedure of compensation of frequency error during the process of fabrication of divides and results of tests of the sample model of the divider as well.

  17. Thermal and Gamma-ray induced relaxation in As-S glasses: modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Pierre; King, Ellyn A.; Erdmann, Robert G.; Riley, Brian J.; Sundaram, S. K.; McCloy, John S.

    2011-09-09

    Enthalpy relaxation is measured in a series of As-S glasses irradiated with gamma rays and these samples are compared with a set of identical control samples kept in the dark. It is shown that gamma irradiation lifts the kinetic barrier for relaxation at room temperature and speeds up the enthalpy release. The measured values of thermal relaxation in the dark agree closely with modeling results obtained by fitting differential scanning calorimetry curves with the TNM equations. The measured values of activation energy for enthalpy relaxation are also in close agreement with that predicted by the TNM model therefore lending credence to the fitting results. These measurements permit extraction of the effect of gamma irradiation on the glass structure for a series of As-S glasses with increasing structural coordination, and gamma irradiation is shown to reduce the structural relaxation time. It is also shown that lower coordination glasses exhibit greater radiation sensitivity but also greater thermal relaxation due to their lower Tg. On the other end, over-coordinated glasses show lower relaxation and almost no radiation sensitivity. This behavior is similar to the glass response under sub-bandgap light irradiation.

  18. Thermal and gamma-ray induced relaxation in As-S glasses: modelling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Pierre; King, Ellyn A; Erdmann, Robert G [Department of Materials Science and Engineering, University of Arizona, Tucson AZ 85721 (United States); Riley, Brian J; Sundaram, S K; McCloy, John S, E-mail: Pierre@u.arizona.edu [Pacific Northwest National Laboratory, 902 Battelle Boulevard, PO Box 999, Richland, WA 99352 (United States)

    2011-10-05

    Enthalpy relaxation was measured in a series of As-S glasses irradiated with gamma rays and these samples are compared with a set of identical control samples kept in the dark. It is shown that gamma irradiation lifts the kinetic barrier for relaxation at room temperature and speeds up the enthalpy release. The measured values of thermal relaxation in the dark agree closely with modelling results obtained by fitting differential scanning calorimetry curves with the Tool-Narayanaswamy-Moynihan (TNM) equations. The measured values of activation energy for enthalpy relaxation are also in close agreement with that predicted by the TNM model, therefore lending credence to the fitting results. These measurements permit extraction of the effect of gamma irradiation on the glass structure for a series of As-S glasses with increasing structural coordination, and gamma irradiation is shown to reduce the structural relaxation time. It is also shown that lower coordination glasses exhibit greater radiation sensitivity but also greater thermal relaxation due to their lower T{sub g}. On the other end, over-coordinated glasses show lower relaxation and almost no radiation sensitivity. This behaviour is similar to the glass response under sub-bandgap light irradiation.

  19. MARCKO thermal insulation layers. Life predictions for thermal insulation and antioxidant layers. Final report; MARCKO-Waermedaemmschichten. Methoden zur Lebensdauervorhersage von Waermedaemm- und Oxidationsschutzschichten. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schuetze, M.

    2003-07-01

    The project was carried out by MTU, Rolls-Royce and Siemens as industrial partners and FZ-Juelich, DLR and DECHEMA as institutes for the purpose of developing a life model for monocrystalline gas turbine blades with metal coatings. This model was to provide reliable information on the life of the ceramic and coupling agent layers. This report describes the activities of the Karl-Winnacker Institute of DECHEMA e.V.: Isothermal oxidation experiments were carried out in the laboratory at 950-1100 degrees centigrade, followed by a characterisation of the oxidation characteristics on the basis of metallographic sections. Particular interest was taken in the development of the TGO (thermally grown oxide) layers, aluminium depletion in the bond coat on the oxide side, and physical defects in the form of pores, pore populations and microcracks within the TGO or in its immediate vicinity. For the first time ever, these microcracks were classified post-experimentally using SEM pictures, and the maximum dimensions of the cracks were quantified as a function of ageing. Kinetics were established for all these parameters. Growth-induced lateral stresses in the TGO were assessed on the basis of the bending of a thin metal foil of pure bond coat material. In the framework of a sub-project carried out by Rolls-Royce, the mechanical characteristics of APS-sprayed thermal insulation layers was investigated in uniaxial pressure experiments on free, hollow cylindrical annular probes. On the one hand, their thermoelastic characteristics were established using path-controlled cyclic load tests; on the other hand, the thermoplastic characteristics were established using load-controlled creep experiments. Samples were used both in the initial and the sintered state in order to assess the effect of sintering, which was described on the basis of porosity as measured in ceramographic sections. The methods and results are presented in this report. [German] In diesem Verbundprojekt, an dem MTU

  20. Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass

    Science.gov (United States)

    Robinson, David; Rodini, Benjamin

    2012-01-01

    The International X-ray Observatory project seeks to make an X-ray telescope assembly with 14,000 flexible glass segments. The glass used is commercially available SCHOTT D263 glass. Thermal expansion causes the mirror to distort out of alignment. A housing material is needed that has a matching coefficient of thermal expansion (CTE) so that when temperatures change in the X-ray mirror assembly, the glass and housing pieces expand equally, thus reducing or eliminating distortion. Desirable characteristics of this material include a high stiffness/weight ratio, and low density. Some metal alloys show promise in matching the CTE of D263 glass, but their density is high compared to aluminum, and their stiffness/weight ratio is not favorable. A laminate made from carbon fiber reinforced plastic (CFRP) should provide more favorable characteristics, but there has not been any made with the CTE matching D263 Glass. It is common to create CFRP laminates of various CTEs by stacking layers of prepreg material at various angles. However, the CTE of D263 glass is 6.3 ppm/ C at 20 C, which is quite high, and actually unachievable solely with carbon fiber and resin. A composite laminate has been developed that has a coefficient of thermal expansion identical to that of SCHOTT D263 glass. The laminate is made of a combination of T300 carbon fiber, Eglass, and RS3C resin. The laminate has 50% uni-T300 plies and 50% uni-E-glass plies, with each fiber-layer type laid up in a quasi-isotropic laminate for a total of 16 plies. The fiber volume (percent of fiber compared to the resin) controls the CTE to a great extent. Tests have confirmed that a fiber volume around 48% gives a CTE of 6.3 ppm/ C. This is a fairly simple composite laminate, following well established industry procedures. The unique feature of this laminate is a somewhat unusual combination of carbon fiber with E-glass (fiberglass). The advantage is that the resulting CTE comes out to 6.3 ppm/ C at 20 C, which matches D

  1. Load Responsive MLI: Thermal Insulation with High In-Atmosphere and On-Orbit Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long term storage of cryopropellants with minimal loss is required for new Exploration spacecraft. Multi-Layer Insulation (MLI) is used to insulate cryotanks, but is...

  2. Studies on Mechanical, Thermal, and Morphological Properties of Glass Fibre Reinforced Polyoxymethylene Nanocomposite

    Directory of Open Access Journals (Sweden)

    K. Mohan Babu

    2014-01-01

    Full Text Available Polyoxymethylene is a material which has excellent mechanical properties similar to Nylon-6 filled with 30% GF. 75% POM and 25% glass fibre (POMGF were blended with nanoclay to increase the tensile and flexural properties. Samples were extruded in twin screw extruder to blend POMGF and (1%, 3%, and 5% Cloisite 25A nanoclay and specimens were prepared by injection moulding process. The tensile properties, flexural properties, impact strength, and hardness were investigated for the nanocomposites. The fibre pull-outs, fibre matrix adhesion, and cracks in composites were investigated by using scanning electron microscopy. 1% POMGF nanocomposite has low water absorption property. Addition of nanoclay improves the mechanical properties and thermal properties marginally. Improper blending of glass fibre and nanoclay gives low tensile strength and impact strength. SEM image shows the mixing of glass fibre and nanoclay among which 1% POMGF nanocomposite shows better properties compared to others. The thermal stability decreased marginally only with the addition of nanoclay.

  3. Thermal Modeling of the Injection of Standard and Thermally Insulated Cored Wire

    Science.gov (United States)

    Castro-Cedeno, E.-I.; Jardy, A.; Carré, A.; Gerardin, S.; Bellot, J. P.

    2017-09-01

    Cored wire injection is a widespread method used to perform alloying additions during ferrous and non-ferrous liquid metal treatment. The wire consists of a metal casing that is tightly wrapped around a core of material; the casing delays the release of the material as the wire is immersed into the melt. This method of addition presents advantages such as higher repeatability and yield of cored material with respect to bulk additions. Experimental and numerical work has been performed by several authors on the subject of alloy additions, spherical and cylindrical geometries being mainly considered. Surprisingly this has not been the case for cored wire, where the reported experimental or numerical studies are scarce. This work presents a 1-D finite volume numerical model aimed for the simulation of the thermal phenomena which occurs when the wire is injected into a liquid metal bath. It is currently being used as a design tool for the conception of new types of cored wire. A parametric study on the effect of injection velocity and steel casing thickness for an Al cored wire immersed into a steel melt at 1863 K (1590 °C) is presented. The standard single casing wire is further compared against a wire with multiple casings. Numerical results show that over a certain range of injection velocities, the core contents' release is delayed in the multiple casing when compared to a single casing wire.

  4. Thermal Modeling of the Injection of Standard and Thermally Insulated Cored Wire

    Science.gov (United States)

    Castro-Cedeno, E.-I.; Jardy, A.; Carré, A.; Gerardin, S.; Bellot, J. P.

    2017-12-01

    Cored wire injection is a widespread method used to perform alloying additions during ferrous and non-ferrous liquid metal treatment. The wire consists of a metal casing that is tightly wrapped around a core of material; the casing delays the release of the material as the wire is immersed into the melt. This method of addition presents advantages such as higher repeatability and yield of cored material with respect to bulk additions. Experimental and numerical work has been performed by several authors on the subject of alloy additions, spherical and cylindrical geometries being mainly considered. Surprisingly this has not been the case for cored wire, where the reported experimental or numerical studies are scarce. This work presents a 1-D finite volume numerical model aimed for the simulation of the thermal phenomena which occurs when the wire is injected into a liquid metal bath. It is currently being used as a design tool for the conception of new types of cored wire. A parametric study on the effect of injection velocity and steel casing thickness for an Al cored wire immersed into a steel melt at 1863 K (1590 °C) is presented. The standard single casing wire is further compared against a wire with multiple casings. Numerical results show that over a certain range of injection velocities, the core contents' release is delayed in the multiple casing when compared to a single casing wire.

  5. Reducing heat stress under thermal insulation in protective clothing: microclimate cooling by a 'physiological' method.

    Science.gov (United States)

    Glitz, K J; Seibel, U; Rohde, U; Gorges, W; Witzki, A; Piekarski, C; Leyk, D

    2015-01-01

    Heat stress caused by protective clothing limits work time. Performance improvement of a microclimate cooling method that enhances evaporative and to a minor extent convective heat loss was tested. Ten male volunteers in protective overalls completed a work-rest schedule (130 min; treadmill: 3 × 30 min, 3 km/h, 5% incline) with or without an additional air-diffusing garment (climatic chamber: 25°C, 50% RH, 0.2 m/s wind). Heat loss was supported by ventilating the garment with dry air (600 l/min, ≪5% RH, 25°C). Ventilation leads (M ± SD, n = 10, ventilated vs. non-ventilated) to substantial strain reduction (max. HR: 123 ± 12 b/min vs. 149 ± 24 b/min) by thermal relief (max. core temperature: 37.8 ± 0.3°C vs. 38.4 ± 0.4°C, max. mean skin temperature: 34.7 ± 0.8°C vs. 37.1 ± 0.3°C) and offers essential extensions in performance and work time under thermal insulation. Heat stress caused by protective clothing limits work time. Performance can be improved by a microclimate cooling method that supports evaporative and to a minor extent convective heat loss. Sweat evaporation is the most effective thermoregulatory mechanism for heat dissipation and can be enhanced by insufflating dry air into clothing.

  6. Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator

    Science.gov (United States)

    Xiaogang, Tong; Jun, Liu; Chenyang, Xue

    2017-07-01

    In this paper, all-optical switching in silicon-on-insulator (SOI) serially coupled ring resonator based on thermal nonlinear effect is proposed. The radii of the silicon microring resonator are 10 μm. In experiment, firstly measured by single pump injection technology with vertical coupling surface grating coupler method, the highest notch of serially coupled ring resonator is 17 dB. The strong transverse light-confinement nature of the resonator induces nonlinear optical response with low pump power. Thermal nonlinear effect is achieved by controlling the power of the continuous-wave (CW) pump with very low tuning threshold (0.33 nm). And the slop of resonant wavelength as a function of injected pump is 220 pm/mw. Secondly, switching time measured by two pump injection technology is 3.01 μs and 1.03 μs, respectively. Which could be used in integrated photonic communication circuits based optical logic and slow-light structure.

  7. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  8. Response to fire, thermal insulation and acoustic performance of rigid polyurethane agglomerates with addition of natural fiber

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Rizzo

    2015-03-01

    Full Text Available This paper aims to reuse rigid polyurethane waste in the preparation of composites with the addition of banana fibers and cellulose in order to qualify the acoustic performance, thermal insulation and reaction to fire the material with the addition of 7% of polysulfone. Agglomerated with 100% of polyurethane and either with 20% of banana fiber or 20% of cellulose were characterized in the sound transmission loss, thermal conductivity and reaction to fire, take into account variations in the granulometry of the solid polyurethane and type of pressing. Natural fiber composites had lower thermal conductivity, higher acoustic insulation in medium frequencies and the addition of polysulfone delayed the total time of firing the material.

  9. Thermal annealing of femtosecond laser written structures in silica glass

    NARCIS (Netherlands)

    Witcher, J.J.; Reichman, W.B.; Fletcher, L.B.; Troy, N.W.; Krol, D.M.

    2013-01-01

    We have investigated the thermal stability of femtosecond laser modification inside fused silica. Raman and FL spectroscopy show that fs-laser induced non-bridging oxygen hole center (NBOHC) defects completely disappear at 300 °C, whereas changes in Si-O ring structures only anneal out after heat

  10. Mathematical Simulation of Porous Glass Thermal Processes at Annealing Stage

    Science.gov (United States)

    Grushko, I. S.

    2017-11-01

    The mathematical model of the porous glass heat field under conditions of complex heat exchange in the process of the technological stage of annealing is presented. The model includes calculations of the radiation, convective and molecular components. The mathematical model is based on the finite element method. The model is realised in the software Ansys. The statement of the problem is given. The object under study, i.e., model structural features, is presented. The method of model structure obtaining, the initials and boundary conditions are given. The theoretical basis of the methods, approaches and of the optimal calculation parameters choice principles are presented. The estimation of the model adequacy by means of the experimental verification is given. The comparison of the obtained data with the experimental results is performed. The relative error of calculation using the developed model does not exceed 15%.

  11. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  12. Thermal transport in topological-insulator-based superconducting hybrid structures with mixed singlet and triplet pairing states

    Science.gov (United States)

    Li, Hai; Zhao, Yuan Yuan

    2017-11-01

    In the framework of the Bogoliubov–de Gennes equation, we investigate the thermal transport properties in topological-insulator-based superconducting hybrid structures with mixed spin-singlet and spin-triplet pairing states, and emphasize the different manifestations of the spin-singlet and spin-triplet pairing states in the thermal transport signatures. It is revealed that the temperature-dependent differential thermal conductance strongly depends on the components of the pairing state, and the negative differential thermal conductance only occurs in the spin-singlet pairing state dominated regime. It is also found that the thermal conductance is profoundly sensitive to the components of the pairing state. In the spin-singlet pairing state controlled regime, the thermal conductance obviously oscillates with the phase difference and junction length. With increasing the proportion of the spin-triplet pairing state, the oscillating characteristic of the thermal conductance fades out distinctly. These results suggest an alternative route for distinguishing the components of pairing states in topological-insulator-based superconducting hybrid structures.

  13. Thermal implications of interactions between insulation, solar reflectance, and fur structure in the summer coats of diverse species of kangaroo.

    Science.gov (United States)

    Dawson, Terence J; Maloney, Shane K

    2017-04-01

    Not all of the solar radiation that impinges on a mammalian coat is absorbed and converted into thermal energy at the coat surface. Some is reflected back to the environment, while another portion is reflected further into the coat where it is absorbed and manifested as heat at differing levels. Substantial insulation in a coat limits the thermal impact at the skin of solar radiation, irrespective where in the coat it is absorbed. In coats with low insulation, the zone where solar radiation is absorbed may govern the consequent heat load on the skin (HL-SR). Thin summer furs of four species of kangaroo from differing climatic zones were used to determine how variation in insulation and in coat spectral and structural characteristics influence the HL-SR. Coat depth, structure, and solar reflectance varied between body regions, as well as between species. The modulation of solar radiation and resultant heat flows in these coats were measured at low (1 m s-1) and high (6 m s-1) wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum similar to solar radiation was used as a proxy for the sun. We established that coat insulation was largely determined by coat depth at natural fur lie, despite large variations in fibre density, fibre diameter, and fur mass. Higher wind speed decreased coat insulation, but depth still determined the overall level. A multiple regression analysis that included coat depth (insulation), fibre diameter, fibre density, and solar reflectance was used to determine the best predictors of HL-SR. Only depth and reflectance had significant impacts and both factors had negative weights, so, as either insulation or reflectance increased, HL-SR declined, the larger impact coming from coat reflectance. This reverses the pattern observed in deep coats where insulation dominates over effects of reflectance. Across all coats, as insulation declined, reflectance increased. An

  14. Study of the Impact of Initial Moisture Content in Oil Impregnated Insulation Paper on Thermal Aging Rate of Condenser Bushing

    Directory of Open Access Journals (Sweden)

    Youyuan Wang

    2015-12-01

    Full Text Available This paper studied the impact of moisture on the correlated characteristics of the condenser bushings oil-paper insulation system. The oil-impregnated paper samples underwent accelerated thermal aging at 130 °C after preparation at different initial moisture contents (1%, 3%, 5% and 7%. All the samples were extracted periodically for the measurement of the moisture content, the degree of polymerization (DP and frequency domain dielectric spectroscopy (FDS. Next, the measurement results of samples were compared to the related research results of transformer oil-paper insulation, offering a theoretical basis of the parameter analysis. The obtained results show that the moisture fluctuation amplitude can reflect the different initial moisture contents of insulating paper and the mass ratio of oil and paper has little impact on the moisture content fluctuation pattern in oil-paper but has a great impact on moisture fluctuation amplitude; reduction of DP presents an accelerating trend with the increase of initial moisture content, and the aging rate of test samples is higher under low moisture content but lower under high moisture content compared to the insulation paper in transformers. Two obvious “deceleration zones” appeared in the dielectric spectrum with the decrease of frequency, and not only does the integral value of dielectric dissipation factor (tan δ reflect the aging degree, but it reflects the moisture content in solid insulation. These types of research in this paper can be applied to evaluate the condition of humidified insulation and the aging state of solid insulation for condenser bushings.

  15. Compositional dependence of thermal, optical and mechanical properties of oxyfluoride glass

    Science.gov (United States)

    Hager, I. Z.; Othman, H. A.; Valiev, D. T.

    2017-05-01

    Tungsten oxyfluoride glasses are characterized by low phonon energy. This is due to the presence of fluoride ions that have low phonon energy and formation of low phonon energy WO6 units. Oxyfluoride glasses based on WO3-BaF2-RF, where RF = LiF, NaF or mixed (LiF-NaF) have been prepared by melt quenching technique. The density and molar volume of the prepared glasses show a decrease with the increase of RF instead of WO3 content. The glass transition temperature Tg is found to decrease with increasing RF content. The refractive index increases with the addition of heavy polarizable fluorides. The decrease of the elastic moduli and microhardness of these glasses may be due to the decrease in density and the depolymrization effect. The Poisson’s ratio increases with increasing RF content due to the structural changes and formation of (NBOs) and (NBF) units. The aim of this work is to prepare a glass host with low phonon energy to be an efficient host with good luminescence properties, when doped with rare earth ions, and to study its structural, thermal, optical and mechanical properties.

  16. Thermal shock removal of defective glass-enamel coating from cast-iron products

    OpenAIRE

    Aleutdinov, Alexander Dmitrievich; Gyngazov, Sergey Anatolievich; Mylnikova, Tatyana Stepanovna; Luchnikov, P. A.

    2015-01-01

    A setup for light beam exposure has been developed. The setup was used to consider the technology of thermal shock destruction of the coating by pulsed-periodic exposure to powerful focused light from the xenon arc lamp DKsShRB-10000. It is shown that this type of exposure can effectively remove the glass-enamel coating from iron products. The optimal mode of setup operation to efficiently remove the defective glass-enamel coating is found: the diameter of the focused light beams is 2.5-3.5 c...

  17. The mechanism of foaming and thermal conductivity of glasses foamed with MnO2

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2015-01-01

    bubbles and subsequent growth. We discuss evolution of pore morphology in terms of pore number density, pore size and closed porosity. The thermal conductivity of the foam glasses is linearly dependent on density. The heat transfer mechanism is revealed by comparing the experimental data with structural...... reduce, causing further formation of O2 gas and foaming of the glass melt. Increasing the treatment temperature and time enhances foam expansion, Mn2O3 dissolution, and lowers the closed porosity. Once the foam reaches a percolated stage, the foam continues to grow. This is caused by nucleation of new...

  18. Insulation and body temperature of prepubescent children wearing a thermal swimsuit during moderate-intensity water exercise.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Kaneda, Koichi; Okura, Masashi; Nomura, Takeo

    2007-03-01

    This study investigated thermal swimsuits (TSS) effects on body temperature and thermal insulation of prepubescent children during moderate-intensity water exercise. Nine prepubescent children (11.0+/-0.7 yrs) were immersed in water (23 degrees C) and pedalled on an underwater cycle-ergometer for 30 min with TSS or normal swimsuits (NSS). The rectal temperature (Tre) was maintained slightly higher with TSS than with NSS. The total insulation (Itotal) was significantly higher with TSS. The DeltaTre, Deltamean body temperature (Tb), and tissue insulation (Itissue) in the NSS condition were correlated with % body fat, which indicated that the insulation layer of subjects with low body fat was thinner than that of obese subjects, and tended to decrease body temperature. Wearing TSS increased Itotal, thereby reducing heat loss from subjects' skin to the water. Consequently, subjects with TSS were able to maintain higher body temperatures. In addition, TSS is especially advantageous for subjects with low body fat to compensate for the smaller Itissue.

  19. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  20. Three-dimensional thermal aging and dimensional stability of cellular plastic insulation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Youchen; Kokko, E. [VTT Building Technology, Espoo (Finland). Building Physics, Puilding Services and Fire Technology

    1996-12-31

    The requirement of producing environmental-friendly plastic foam results in the replacement of the traditional blowing agents, CFCs (chlorofluorocarbons), with zero ozone depletion potential (ODP) alternatives. The tool which is able to evaluate the quality of the new generation of plastic foams becomes practically important. A 3-dimensional (3-D) heat and mass (gases) transfer model with respect to rigid closed-cell cellular plastics has been carefully deduced and furnished based on our previous understanding of such problems. To solve the 3-D parabolic partial differential equations subject to the third type of boundary conditions, a modified alternative direction implicit (AD I) finite difference method was developed by using the natural laws. To predict the long-term dimensional stability of a plastic foam insulation in air, a simplified mechanical model has been presented. In addition, to closure the prediction of foam dimensional stability, we have deduced a general relationship between the elastic modulus (Young`s modulus) of a rigid closed-cell cellular plastic, E{sub f} and its density, {phi}{sub p}. In comparison to the published measurements and other two well-known E{sub f} - {phi}{sub p} models, it is found that our E{sub f} - up relationship gives better prediction and is valid over the entire rigid plastic foam density range. Thermal aging and average volume change of zero ODP foams with different facing will be addressed. In addition, the application of the model shows the effects of foam dimension and facing on its thermal aging and deformation. (orig.) (13 refs.)