WorldWideScience

Sample records for thermal infrared remote

  1. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  2. Thermal Infrared Remote Sensing of the Yellowstone Geothermal System

    Science.gov (United States)

    Vaughan, R. G.; Keszthelyi, L. P.; Heasler, H.; Jaworowski, C.; Lowenstern, J. B.; Schneider, D. J.

    2009-12-01

    The Yellowstone National Park (YNP) geothermal system is one of the largest in the world, with thousands of individual thermal features ranging in size from a few centimeters to tens of meters across, (e.g., fumaroles, geysers, mud pots and hot spring pools). Together, large concentrations of these thermal features make up dozens of distinct thermal areas, characterized by sparse vegetation, hydrothermally altered rocks, and usually either sinter, travertine, or acid sulfate alteration. The temperature of these thermal features generally ranges from ~30 to ~93 oC, which is the boiling temperature of water at the elevation of Yellowstone. In-situ temperature measurements of various thermal features are sparse in both space and time, but they show a dynamic time-temperature relationship. For example, as geysers erupt and send pulses of warm water down slope, the warm water cools rapidly and is then followed by another pulse of warm water, on time scales of minutes. The total heat flux from the Park’s thermal features has been indirectly estimated from chemical analysis of Cl- flux in water flowing from Yellowstone’s rivers. We are working to provide a more direct measurement, as well as estimates of time variability, of the total heat flux using satellite multispectral thermal infrared (TIR) remote sensing data. Over the last 10 years, NASA’s orbiting ASTER and MODIS instruments have acquired hundreds and thousands of multispectral TIR images, respectively, over the YNP area. Compared with some volcanoes, Yellowstone is a relatively low-temperature geothermal system, with low thermal contrast to the non-geothermal surrounding areas; therefore we are refining existing techniques to extract surface temperature and thermal flux information. This task is complicated by issues such as, during the day, solar heated surfaces may be warmer than nearby geothermal features; and there is some topographic (elevation) influence on surface temperatures, even at night. Still

  3. [Monitoring method of underground coal fire based on night thermal infrared remote sensing technology].

    Science.gov (United States)

    Jiang, Wei-Guo; Wu, Jian-Jun; Gu, Lei; Yang, Bo; Chen, Qiang; Liu, Xiao-Chen

    2011-02-01

    Land surface temperature is higher in the zones of underground coal fire than in their surroundings areas. It is possible to monitor the coal fire and the heat anomalies using the remote sensing technology of thermal infrared. By taking the coal fire of Wuda in Inner Mongolia Autonomous Region as an example, the monitoring methods of underground coal fire were explored based on different seasons night ASTER thermal infrared images. By employing the TES-ADE algorithm and threshold segmentation method, land surface temperature was retrieved and coal fire areas were extracted. Finally the seasonal variation of surface temperature, the surface temperature differences between night and day, and the change and distribution of coal fire area were analyzed. The results showed that (1) it is effective to retrieve land surface temperature and to avoid the interference of sand, bare land and building based on the remote sensing of thermal infrared at night; (2) it is best time to extract the coal fire areas based on the winter night images of thermal infrared; (3) it is effective to monitor the change and distribution of coal fire areas based on the winter night images of thermal infrared.

  4. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  5. Thermal infrared remote sensing of water temperature in riverine landscapes

    Science.gov (United States)

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  6. Mid and thermal infrared remote sensing at the Jet Propulsion Laboratory

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.

    2016-05-01

    The mid and thermal infrared (MTIR) for the Earth surface is defined between 3 and 14µm. In the outer solar system, objects are colder and their Planck response shifts towards longer wavelengths. Hence for these objects (e.g. icy moons, polar caps, comets, Europa), the thermal IR definition usually stretches out to 50µm and beyond. Spectroscopy has been a key part of this scientific exploration because of its ability to remotely determine elemental and mineralogical composition. Many key gas species such as methane, ammonia, sulfur, etc. also have vibrational bands which show up in the thermal infrared spectrum above the background response. Over the past few decades, the Jet Propulsion Laboratory has been building up a portfolio of technology to capture the MTIR for various scientific applications. Three recent sensors are briefly reviewed: The airborne Hyperspectral thermal emission spectrometer (HyTES), the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Mars Climate Sounder (MCS)/DIVINER. Each of these sensors utilize a different technology to provide a remote sensing product based on MTIR science. For example, HyTES is a push-brooming hyperspectral imager which utilizes a large format quantum well infrared photodetector (QWIP). The goal is to transition this to a new complementary barrier infrared photodetector (CBIRD) with a similar long wave cut-off and increased sensitivity. ECOSTRESS is a push-whisk Mercury Cadmium Telluride (MCT) based high speed, multi-band, imager which will eventually observe and characterize plant/vegetation functionality and stress index from the International Space Station (ISS) across the contiguous United States (CONUS). MCS/DIVINER utilizes thermopile technology to capture the thermal emission from the polar caps and shadow regions of the moon. Each sensor utilizes specific JPL technology to capture unique science.

  7. Developing a thermal characteristic index for lithology identification using thermal infrared remote sensing data

    Science.gov (United States)

    Wei, Jiali; Liu, Xiangnan; Ding, Chao; Liu, Meiling; Jin, Ming; Li, Dongdong

    2017-01-01

    In remote sensing petrology fields, studies have mainly concentrated on spectroscopy remote sensing research, and methods to identify minerals and rocks are mainly based on the analysis and enhancement of spectral features. Few studies have reported the application of thermodynamics for lithology identification. This paper aims to establish a thermal characteristic index (TCI) to explore rock thermal behavior responding to defined environmental systems. The study area is located in the northern Qinghai Province, China, on the northern edge of the Qinghai-Tibet Plateau, where mafic-ultramafic rock, quartz-rich rock, alkali granite rock and carbonate rock are well exposed; the pixel samples of these rocks and vegetation were obtained based on relevant indices and geological maps. The scatter plots of TCI indicate that mafic-ultramafic rock and quartz-rich rock can be well extracted from other surface objects when interference from vegetation is lower. On account of the complexity of environmental systems, three periods of TCI were used to construct a three-dimensional scatter plot, named the multi-temporal thermal feature space (MTTFS) model. Then, the Bayes discriminant analysis algorithm was applied to the MTTFS model to extract rocks quantitatively. The classification accuracy of mafic-ultramafic rock is more than 75% in both training data and test data, which suggests TCI can act as a sensitive indicator to distinguish rocks and the MTTFS model can accurately extract mafic-ultramafic rock from other surface objects. We deduce that the use of thermodynamics is promising in lithology identification when an effective index is constructed and an appropriated model is selected.

  8. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    Science.gov (United States)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  9. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  10. Compositional and textural information from the dual inversion of visible, near and thermal infrared remotely sensed data

    Science.gov (United States)

    Brackett, Robert A.; Arvidson, Raymond E.

    1993-01-01

    A technique is presented that allows extraction of compositional and textural information from visible, near and thermal infrared remotely sensed data. Using a library of both emissivity and reflectance spectra, endmember abundances and endmember thermal inertias are extracted from AVIRIS (Airborne Visible and Infrared Imaging Spectrometer) and TIMS (Thermal Infrared Mapping Spectrometer) data over Lunar Crater Volcanic Field, Nevada, using a dual inversion. The inversion technique is motivated by upcoming Mars Observer data and the need for separation of composition and texture parameters from sub pixel mixtures of bedrock and dust. The model employed offers the opportunity to extract compositional and textural information for a variety of endmembers within a given pixel. Geologic inferences concerning grain size, abundance, and source of endmembers can be made directly from the inverted data. These parameters are of direct relevance to Mars exploration, both for Mars Observer and for follow-on missions.

  11. Thermal infrared spectroscopy of experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of Mars

    Science.gov (United States)

    Johnson, J. R.; Horz, F.; Lucey, P.G.; Christensen, P.R.

    2002-01-01

    The feldspar and pyroxene mineralogies on Mars revealed by the Thermal Emission Spectrometer (TES) on Mars Global Surveyor likely record a variety of shock effects, as suggested by petrologic analyses of the Martian meteorites and the abundance of impact craters on the planet's surface. To study the effects of shock pressures on thermal infrared spectra of these minerals, we performed shock recovery experiments on orthopyroxenite and anorthosite samples from the Stillwater Complex (Montana) over peak pressures from 17 to 63 GPa. We acquired emissivity and hemispherical reflectance spectra (350-1400 cm-1; ???7-29 ??m) of both coherent chips and fine-grained powders of shocked and unshocked samples. These spectra are more directly comparable to remotely sensed data of Mars (e.g., TES) than previously acquired absorption or transmission spectra of shocked minerals. The spectra of experimentally shocked feldspar show systematic changes with increasing pressure due to depolymerization of the silica tetrahedra. For the spectra of chips, this includes the disappearance of small bands in the 500-650 cm-1 region and a strong band at 1115 cm-1, and changes in positions of a strong band near 940 cm-1 and the Christiansen feature near 1250 cm-1. Spectra of the shocked powders show the gradual disappearance of a transparency feature near 830 cm-1. Fewer changes are observed in the pyroxene spectra at pressures as high as 63 GPa. Spectra of experimentally shocked minerals will help identify more precisely the mineralogy of rocks and soils not only from TES but also from Mars instruments such as miniTES and THEMIS.

  12. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  13. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  14. Preliminary determination of geothermal working area based on Thermal Infrared and Synthetic Aperture Radar (SAR) remote sensing

    Science.gov (United States)

    Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager – Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.

  15. Interactive Radiative Transfer Modeling Tools to Map Volcanic Emissions with Thermal Infrared Remote Sensing

    Science.gov (United States)

    Realmuto, V. J.

    2012-12-01

    The estimation of plume composition from thermal infrared (TIR) radiance measurements is based in radiative transfer (RT) modeling. To model the observed spectra we must consider the temperature, emissivity, and elevation of the surface beneath the plume, plume altitude and thickness, and the local atmospheric temperature and humidity. Our knowledge of these parameters is never perfect, and interactive RT modeling allows us to evaluate the impact of these uncertainties on our estimates of plume composition. Interactive RT modeling has three main components: retrieval procedures for plume components, an engine for RT calculations, and a graphic user interface (GUI) to input radiance data, modify model parameters, launch retrievals, and visualize the resulting estimates of plume composition. The Jet Propulsion Laboratory (JPL), in collaboration with Spectral Sciences, Inc. (SSI), is developing a new class of tools for interactive RT modeling. We will implement RT modeling on graphics processors (GPU) to achieve a 100-fold increase in processing speed, relative to conventional CPU-based processing, and thus enable fully-interactive estimation and visualization of plume composition. The heritage for our new tools is based on the Plume Tracker toolkit, developed at JPL, and MODTRAN RT model, developed by SSI. Plume Tracker integrates retrieval procedures, interactive visualization tools, and an interface to a modified version of MODTRAN under a single GUI. Our new tools will incorporate refinements from a recent adaptation of MODTRAN to optimize modeling the radiative properties of chemical clouds. This presentation will include a review of the foundations of plume mapping in the TIR and examples of the application of Plume Tracker to ASTER, MODIS, and AIRS data. We will present an overview of our tool development effort and discuss the application of these tools to data from new and future instruments, such as the airborne Hyperspectral Thermal Emission Spectrometer

  16. [Error analysis of the land surface temperature retrieval using HJ-1B thermal infrared remote sensing data].

    Science.gov (United States)

    Zhao, Li-Min; Yu, Tao; Tian, Qing-Jiu; Gu, Xing-Fa; Li, Jia-Guo; Wan, Wei

    2010-12-01

    Error analysis is playing an important role in the application of the remote sensing data and model. A theoretical analysis of error sensitivities in land surface temperature (LST) retrieval using radiance transfer model (RT) is introduced, which was applied to a new thermal infrared remote sensing data of HJ-1B satellite(IRS4). The modification of the RT model with MODTRAN 4 for IRS4 data is mentioned. Error sensitivities of the model are exhibited by analyzing the derivatives of parameters. It is shown that the greater the water vapor content and smaller the emissivity and temperature, the greater the LST retrieval error. The main error origin is from equivalent noise, uncertainty of water vapor content and emissivity, which lead to an error of 0.7, 0.6 and 0.5 K on LST in typical condition, respectively. Hence, a total error of 1 K for LST has been found. It is confirmed that the LST retrieved from HJ-1B data is incredible when application requirement is more than 1K, unless more accurate in situ measurements for atmospheric parameters and emissivity are applied.

  17. Thermal signatures of urban land cover types: High-resolution thermal infrared remote sensing of urban heat island in Huntsville, AL

    Science.gov (United States)

    Lo, Chor Pang

    1996-01-01

    The main objective of this research is to apply airborne high-resolution thermal infrared imagery for urban heat island studies, using Huntsville, AL, a medium-sized American city, as the study area. The occurrence of urban heat islands represents human-induced urban/rural contrast, which is caused by deforestation and the replacement of the land surface by non-evaporating and non-porous materials such as asphalt and concrete. The result is reduced evapotranspiration and more rapid runoff of rain water. The urban landscape forms a canopy acting as a transitional zone between the atmosphere and the land surface. The composition and structure of this canopy have a significant impact on the thermal behavior of the urban environment. Research on the trends of surface temperature at rapidly growing urban sites in the United States during the last 30 to 50 years suggests that significant urban heat island effects have caused the temperatures at these sites to rise by 1 to 2 C. Urban heat islands have caused changes in urban precipitation and temperature that are at least similar to, if not greater than, those predicted to develop over the next 100 years by global change models. Satellite remote sensing, particularly NOAA AVHRR thermal data, has been used in the study of urban heat islands. Because of the low spatial resolution (1.1 km at nadir) of the AVHRR data, these studies can only examine and map the phenomenon at the macro-level. The present research provides the rare opportunity to utilize 5-meter thermal infrared data acquired from an airplane to characterize more accurately the thermal responses of different land cover types in the urban landscape as input to urban heat island studies.

  18. Thermal Infrared Anomalies of Several Strong Earthquakes

    OpenAIRE

    Congxin Wei; Yuansheng Zhang; Xiao Guo; Shaoxing Hui; Manzhong Qin; Ying Zhang

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method...

  19. Thermal infrared remote sensing in assessing groundwater and surface-water resources related to Hannukainen mining development site, northern Finland

    Science.gov (United States)

    Rautio, Anne B.; Korkka-Niemi, Kirsti I.; Salonen, Veli-Pekka

    2018-02-01

    Mining development sites occasionally host complicated aquifer systems with notable connections to natural surface water (SW) bodies. A low-altitude thermal infrared (TIR) imaging survey was conducted to identify hydraulic connections between aquifers and rivers and to map spatial surface temperature patterns along the subarctic rivers in the proximity of the Hannukainen mining development area, northern Finland. In addition to TIR data, stable isotopic compositions ( δ 18O, δD) and dissolved silica concentrations were used as tracers to verify the observed groundwater (GW) discharge into the river system. Based on the TIR survey, notable GW discharge into the main river channel and its tributaries (61 km altogether) was observed and over 500 GW discharge sites were located. On the basis of the survey, the longitudinal temperature patterns of the studied rivers were found to be highly variable. Hydrological and hydrogeological information is crucial in planning and siting essential mining operations, such as tailing areas, in order to prevent any undesirable environmental impacts. The observed notable GW discharge was taken into consideration in the planning of the Hannukainen mining development area. The results of this study support the use of TIR imagery in GW-SW interaction and environmental studies in extensive and remote areas with special concerns for water-related issues but lacking the baseline research.

  20. Thermal infrared remote sensing in assessing groundwater and surface-water resources related to Hannukainen mining development site, northern Finland

    Science.gov (United States)

    Rautio, Anne B.; Korkka-Niemi, Kirsti I.; Salonen, Veli-Pekka

    2017-07-01

    Mining development sites occasionally host complicated aquifer systems with notable connections to natural surface water (SW) bodies. A low-altitude thermal infrared (TIR) imaging survey was conducted to identify hydraulic connections between aquifers and rivers and to map spatial surface temperature patterns along the subarctic rivers in the proximity of the Hannukainen mining development area, northern Finland. In addition to TIR data, stable isotopic compositions (δ 18O, δD) and dissolved silica concentrations were used as tracers to verify the observed groundwater (GW) discharge into the river system. Based on the TIR survey, notable GW discharge into the main river channel and its tributaries (61 km altogether) was observed and over 500 GW discharge sites were located. On the basis of the survey, the longitudinal temperature patterns of the studied rivers were found to be highly variable. Hydrological and hydrogeological information is crucial in planning and siting essential mining operations, such as tailing areas, in order to prevent any undesirable environmental impacts. The observed notable GW discharge was taken into consideration in the planning of the Hannukainen mining development area. The results of this study support the use of TIR imagery in GW-SW interaction and environmental studies in extensive and remote areas with special concerns for water-related issues but lacking the baseline research.

  1. Potential of the Thermal Infrared Wavelength Region to predict semi-arid Soil Surface Properties for Remote Sensing Monitoring

    Science.gov (United States)

    Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann

    2014-05-01

    Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models

  2. Use of thermal infrared remote sensing data for fisheries, environmental monitoring, oil and gas exploration, and ship routing.

    Science.gov (United States)

    Roffer, M. A.; Gawlikowski, G.; Muller-Karger, F.; Schaudt, K.; Upton, M.; Wall, C.; Westhaver, D.

    2006-12-01

    Thermal infrared (TIR) and ocean color remote sensing data (1.1 - 4.0 km) are being used as the primary data source in decision making systems for fisheries management, commercial and recreational fishing advisory services, fisheries research, environmental monitoring, oil and gas operations, and ship routing. Experience over the last 30 years suggests that while ocean color and other remote sensing data (e.g. altimetry) are important data sources, TIR presently yields the most useful data for studying ocean surface circulation synoptically on a daily basis. This is due primarily to the greater temporal resolution, but also due to one's better understanding of the dynamics of sea surface temperature compared with variations in ocean color and the spatial limitations of altimeter data. Information derived from commercial operations and research is being used to improve the operational efficiency of fishing vessels (e.g. reduce search time and increase catch rate) and to improve our understanding of the variations in catch distribution and rate needed to properly manage fisheries. This information is also being used by the oil and gas industry to minimize transit time and thus, save costs (e.g., tug charter, insurance), to increase production and revenue up to 500K dollars a day. The data are also be used to reduce the risk of equipment loss, loss of time and revenue to sudden and unexpected currents such as eddies. Sequential image analysis integrating TIR and ocean color provided near-real time, synoptic visualization of the rapid and wide dispersal of coastal waters from the northern Gulf of Mexico following Hurricanes Katrina and Rita in September 2005. The satellite data and analysis techniques have also been used to monitor the effects and movement of other potential environmentally damaging substances, such as dispersing nutrient enriched waste water offshore. A review of our experience in several commercial applications and research efforts will reinforce the

  3. Thermal Infrared Spectrometer for Earth Science Remote Sensing Applications—Instrument Modifications and Measurement Procedures

    Directory of Open Access Journals (Sweden)

    Freek van der Meer

    2011-11-01

    Full Text Available In this article we describe a new instrumental setup at the University of Twente Faculty ITC with an optimized processing chain to measure absolute directional-hemispherical reflectance values of typical earth science samples in the 2.5 to 16 µm range. A Bruker Vertex 70 FTIR spectrometer was chosen as the base instrument. It was modified with an external integrating sphere with a 30 mm sampling port to allow measuring large, inhomogeneous samples and quantitatively compare the laboratory results to airborne and spaceborne remote sensing data. During the processing to directional-hemispherical reflectance values, a background radiation subtraction is performed, removing the effect of radiance not reflected from the sample itself on the detector. This provides more accurate reflectance values for low-reflecting samples. Repeat measurements taken over a 20 month period on a quartz sand standard show that the repeatability of the system is very high, with a standard deviation ranging between 0.001 and 0.006 reflectance units depending on wavelength. This high level of repeatability is achieved even after replacing optical components, re-aligning mirrors and placement of sample port reducers. Absolute reflectance values of measurements taken by the instrument here presented compare very favorably to measurements of other leading laboratories taken on identical sample standards.

  4. Infrared thermal remote sensing for soil salinity assessment on landscape scale

    Science.gov (United States)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2017-04-01

    Soil salinity is considered as one of the most severe land degradation aspects. An increased soil salt level inhibits growth and development of crops. Therefore, up to date soil salinity information is vital for appropriate management practices and reclamation strategies. This information is required at increasing spatial and temporal resolution for appropriate management adaptations. Conventional soil sampling and associated laboratory analyses are slow, expensive, and often cannot deliver the temporal and spatial resolution required. The change of canopy temperature is one of the stress indicators in plants. Its behaviour in response to salt stress on individual plant level is well studied in laboratory and greenhouse experiments, but its potential for landscape scale studies using remote sensing techniques is not investigated yet. In our study, possibilities of satellite thermography for landscape scale soil salinity assessment of cropped areas were studied. The performance of satellite thermography is compared with other approaches that have been used before, like Normalised Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The study areas were Syrdarya province of Uzbekistan and four study areas in four Australian states namely, Western Australia, South Australia, Queensland and New South Wales. The diversity of the study areas allowed us to analyse behaviour of canopy temperature of different crops (wheat, cotton, barley) and different agriculture practices (rain fed and irrigated). MODIS and Landsat TM multiannual satellite images were used to measure canopy temperature. As ground truth for Uzbekistan study area we used a provincial soil salinity map. For the Australian study areas we used the EC map for the whole country. ANOVA was used to analyse relations between the soil salinity maps and canopy temperature, NDVI, EVI. Time series graphs were created to analyse the dynamics of the indicators during the growing season. The results

  5. Application of High-Resolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect

    Science.gov (United States)

    Lo, C. P.; Quattrochi, D. A.; Luvall, J. C.

    1997-01-01

    Day and night airborne thermal infrared image data at 5 m spatial resolution acquired with the 15-channel (0.45 micron - 12.2 micron) Advanced Thermal and Land Applications Sensor (ATLAS) over Alabama, Huntsville on 7 September, 1994 were used to study changes in the thermal signatures of urban land cover types between day and night. Thermal channel number 13 (9.6 micron - 10.2 micron) data with the best noise-equivalent temperature change (NEAT) of 0.25 C after atmospheric corrections and temperature calibration were selected for use in this analysis. This research also examined the relation between land cover irradiance and vegetation amount, using the Normalized Difference Vegetation Index (NDVI), obtained by ratioing the difference and the sum of the red (channel number 3: 0.60-0.63 micron) and reflected infrared (channel number 6: 0.76-0.90 micron) ATLAS data. Based on the mean radiance values, standard deviations, and NDVI extracted from 351 pairs of polygons of day and night channel number 13 images for the city of Huntsville, a spatial model of warming and cooling characteristics of commercial, residential, agricultural, vegetation, and water features was developed using a GIS approach. There is a strong negative correlation between NDVI and irradiance of residential, agricultural, and vacant/transitional land cover types, indicating that the irradiance of a land cover type is greatly influenced by the amount of vegetation present. The predominance of forests, agricultural, and residential uses associated with varying degrees of tree cover showed great contrasts with commercial and services land cover types in the center of the city, and favors the development of urban heat islands. The high-resolution thermal infrared images match the complexity of the urban environment, and are capable of characterizing accurately the urban land cover types for the spatial modeling of the urban heat island effect using a GIS approach.

  6. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI

    Directory of Open Access Journals (Sweden)

    L. Klüser

    2011-05-01

    Full Text Available From the high spectral resolution thermal infrared observations of the Infrared Atmospheric Sounding Interferometer (IASI mineral dust AOD (transferred from thermal infrared to 0.5 μm is retrieved using a Singular Vector Decomposition of brightness temperature spectra. As infrared retrieval based on 8–12 μm observations, dust observation with IASI is independent from solar illumination. Through the linear combinations of suitable independent singular vectors weighted by their contribution to the observed signal, and a projection of different a-priori dust spectra on the resulting signal the dust can be well distinguished from the influence of surface emissivity and gas absorption. In contrast to lookup-table based single-channel retrievals this method takes advantage of the spectral shape of dust extinction and surface and atmosphere influence over the total 8–12 μm window band. Using different a-priori spectra for dust extinction allows also for an estimation of dust particle size in terms of effective radius based on the respective dust model size distributions. These dust models are also used for the transfer of infrared AOD to 0.5 μm. Four months of IASI observations covering Northern Africa and Arabia are used for evaluation. Two large scale dust events, one covering the Arabian Peninsula and adjacent parts of the Indian Ocean, the other over the Atlantic Ocean off the coast of West-Africa, are analysed and compared with other satellite images. They also show the good suitability of IASI data for dust observation at day and night. Monthly means derived from IASI observations represent well the known seasonal cycles of dust activity over Northern Africa and Arabia. IASI Dust AOD0.5 μm and AERONET coarse mode AOD0.5 μm are reasonably well (linearly correlated with ρ=0.623. Moreover, comparison of time series of AERONET and IASI observations shows that the evolution of dust events is very well covered by the

  7. Calibration of low light/near infrared cameras with satellite remote sensing to measure incandescence and thermal signatures for source parameter estimation

    Science.gov (United States)

    Harrild, M.; Webley, P.; Dehn, J.

    2013-12-01

    Volcanic activity ranges from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Knowledge and understanding of precursory activity and thermal signatures are vital for monitoring volcanogenic processes. For many years, satellite remote sensing has been used to determine effusion rates and expensive ground based thermal cameras can calibrate these measurements. However, this investigation explores the use of webcams to image volcanic activity in the visible to near-infrared (NIR) portion of the spectrum, by comparison of webcam pixel brightness to temperatures obtained from co-located FLIR cameras. By determining this relationship, webcam imagery can be used to approximate volcanic eruption temperatures, indicating changes in activity. A field campaign, presented here, to Stromboli, June 2013, demonstrates the use of co-located cameras to determine temperatures from pixel brightness resulting from various Type 1, 2a and 2b eruptions. This method is ideal for monitoring (particularly in remote locations) as the cameras are cheap, consume little power, are easily replaced, provide near real-time data and the images can be compared to satellite observations. A plethora of webcam imagery also exists for past eruptions, that will be analyzed and initial results are presented. Preliminary investigations were conducted in laboratory settings to determine saturation levels of each camera (wavelength dependent) and the required temporal resolution to accurately detect thermal signatures and calculate rise rates. Combined together and coupled with other observations such as seismic, infrasonic and space-borne, this data analysis will provide an increased understanding into volcanogenic processes. Two pairs of time co-incidental images showing the progression of an eruption from Stromboli's southwest crater on June 23rd 2013 at 20:52:15 and 20:52:19 UTC. a) and c) show thermal infrared images taken using a

  8. Wenatchee River, Washington, Water Temperature Modeling and Assessment Using Remotely Sensed Thermal Infrared and Instream Recorded Data

    Science.gov (United States)

    Cristea, N. C.; Burges, S. J.

    2004-12-01

    The stream water spatial and temporal temperature patterns of the Wenatchee River, WA are assessed based on temperature data recorded by instream data loggers in the dry season of 2002 and thermal infrared imagery from August 16th 2002. To gain insights into the possible thermal behavior of the river, the stream temperature model Qual2K (Chapra and Pelletier, 2003) is extended beyond its calibration (10-16 August 2002) and confirmation (9-11 September 2002) periods for use with different meteorological, shade and flow conditions. The temperature longitudinal profile of the Wenatchee River is influenced by the temperature regime in Lake Wenatchee, the source of the Wenatchee River. Model simulations performed at 7-day average with 2-year return period flow conditions show that the potential (maximum average across all reaches) temperature (the temperature that would occur under natural conditions) is about 19.8 deg. C. For the 7-day average with 10-year return period flow conditions the potential temperature increases to about 21.2 deg. C. The simulation results show that under normal flow and meteorological conditions the water temperature exceeds the current water quality standards. Model simulations performed under the 7-day average with 10-year return period flow conditions and a climate change scenario show that the average potential temperature across all reaches can increase by as much as 1.3 deg. C compared to the case where climate change impact is not taken into account. Thermal infrared (TIR) derived stream temperature data were useful for describing spatial distribution patterns of the Wenatchee River water temperature. The TIR and visible band images are effective tools to map cold water refugia for fish and to detect regions that can be improved for fish survival. The images collected during the TIR survey and the TIR derived stream temperature longitudinal profile helps pinpoint additional instream monitoring locations that avoid regions of backwater

  9. Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared Imagery Acquired from AN Unmanned Aerial Vehicle (uav)

    Science.gov (United States)

    Chrétien, L.-P.; Théau, J.; Ménard, P.

    2015-08-01

    Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.

  10. Thermal infrared spectra of surface rocks. Comparison of in the laboratory, in situ, and remote sensing data; Chihyo ganseki no netsusekigaiiki bunko tokusei. Chijo sokutei data to remote sensing data no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Y.; Matsunaga, T. [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    An ASTER (advanced spaceborne thermal emission and reflection radiometer) is one of the image sensors. It is to be installed in an earth survey polar orbit platform satellite, EOS-AM1, which is to be launched in 1998, and it is going to start its operation. Data observed by the thermal infrared remote sensing of ASTER include the spectral emissivity, and the spectral emission reflectivity which is expressed by the function of temperature. It is required to overcome technical problems how to extract the spectral emissivity from the observed data. The spectral emissivity extracted from the remote sensing data by the MMD method, measured for samples collected in Cuprite area, Nevada, and/or measured at sampled points were compared to each other and discussed. The hemisphere spectral reflectivity, which is indirect spectral emissivity, agreed well with the direct spectral emissivity. Data suggesting the establishment of Kirchhoff`s law were obtained even for the weathered samples. The spectral emissivity derived from the remote sensing data by the MMD method was in harmony with the spectral characteristics measured strictly on the ground. 14 refs., 3 figs.

  11. Multispectral Thermal Infrared Remote Sensing of Volcanic SO2 Plumes with NASA’s Earth Observing System

    Science.gov (United States)

    Realmuto, V. J.

    2009-12-01

    The instruments aboard NASA’s series of Earth Observing System satellites provide a rich suite of measurements for the mapping of volcanic plumes and clouds. This presentation will focus on applications of thermal multispectral infrared (TIR) data acquired with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate-Resolution Imaging Spectrometer (MODIS), and Atmospheric Infrared Sounder (AIRS) to the recent eruptions of Augustine and Sarychev volcanoes in Alaska and the Russian Kuril Islands, respectively. ASTER, MODIS, and AIRS provide complimentary information on the quantity and distribution of sulfur dioxide (SO2), silicate ash, and sulfate (SO4) aerosols within plumes. In addition, data from the Multi-angle Imaging SpectroRadiometer (MISR) are used to derive estimates of aerosol loading, cloud-top altitude, wind direction, and wind speed. MODIS is our workhorse for plume mapping projects. There are MODIS instruments on the Terra and Aqua platforms, ensuring at least two MODIS passes per day over most volcanoes and four passes per day over many volcanoes. The spatial resolution of MODIS TIR radiance measurements is 1 km (at nadir) over a ground swath of 2330 km. MODIS can detect both the 7.3 and 8.5 μm bands of SO2, although the 7.3 μm band is often obscured by water vapor absorption when plumes are altitudes below ~ 4 km. ASTER has five channels in the TIR, and can detect the 8.5 μm SO2 band. The high spatial resolution (90 m) of ASTER TIR radiance measurements results in high sensitivity to SO2 within a narrow ground swath (60 km). AIRS has over 2700 spectral channels between 3.7 and 15.4 μm, allowing us to make unambiguous identifications of SO2, SO4 aerosols, and ash over a ground swath of ~2330 km. AIRS can detect the 7.3 μm SO2 band, and the strength of this band partially offsets the coarse spatial resolution of this instrument (~17 km at nadir). The key to multi-sensor mapping is the availability of a standard set

  12. Landsat and Thermal Infrared Imaging

    Science.gov (United States)

    Arvidson, Terry; Barsi, Julia; Jhabvala, Murzy; Reuter, Dennis

    2012-01-01

    The purpose of this chapter is to describe the collection of thermal images by Landsat sensors already on orbit and to introduce the new thermal sensor to be launched in 2013. The chapter describes the thematic mapper (TM) and enhanced thematic mapper plus (ETM+) sensors, the calibration of their thermal bands, and the design and prelaunch calibration of the new thermal infrared sensor (TIRS).

  13. Thermal Infrared Anomalies of Several Strong Earthquakes

    Directory of Open Access Journals (Sweden)

    Congxin Wei

    2013-01-01

    Full Text Available In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1 There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2 There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3 Thermal radiation anomalies are closely related to the geological structure. (4 Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  14. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  15. Infrared thermal imaging in medicine.

    Science.gov (United States)

    Ring, E F J; Ammer, K

    2012-03-01

    This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

  16. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    Science.gov (United States)

    Spackman, Ryan; Dickerson, Russell; Schoeberl, Mark; Bloom, Hal; Gordley, Larry; McHugh, Martin; Thompson, Anne; Burrows, John; Zeng, Ning; Marshall, Tom; Fish, Chad; Kim, Jhoon; Park, Rokjin; Warner, Juying; Bhartia, Pawan; Kollonige, Debra

    2013-04-01

    Climate change and air quality are the most pressing environmental issues of the 21st century for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  17. Remote infrared audible signage (RIAS) pilot program report.

    Science.gov (United States)

    2011-07-01

    The Remote Infrared Audible Sign Model Accessibility Program (RIAS MAP) is a program funded by the Federal Transit Administration (FTA) to evaluate the effectiveness of remote infrared audible sign systems in enabling persons with visual and cognitiv...

  18. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    Science.gov (United States)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  19. Low-thermal expansion infrared glass ceramics

    Science.gov (United States)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  20. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  1. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    Science.gov (United States)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  2. Temperature monitoring along the Rhine River based on airborne thermal infrared remote sensing: qualitative results compared to satellite data and validation with in situ measurements

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2014-10-01

    Water temperature is an important parameter of water quality and influences other physical and chemical parameters. It also directly influences the survival and growth of animal and plant species in river ecosystems. In situ measurements do not allow for a total spatial coverage of water bodies and rivers that is necessary for monitoring and research at the Federal Institute of Hydrology (BfG), Germany. Hence, the ability of different remote sensing products to identify and investigate water inflows and water temperatures in Federal waterways is evaluated within the research project 'Remote sensing of water surface temperature'. The research area for a case study is the Upper and Middle Rhine River from the barrage in Iffezheim to Koblenz. Satellite products (e. g. Landsat and ASTER imagery) can only be used for rivers at least twice as wide as the spatial resolution of the satellite images. They can help to identify different water bodies only at tributaries with larger inflow volume (Main and Mosel) or larger temperature differences between the inflow (e. g. from power plants working with high capacity) and the river water. To identify and investigate also smaller water inflows and temperature differences, thermal data with better ground and thermal resolution is required. An aerial survey of the research area was conducted in late October 2013. Data of the surface was acquired with two camera systems, a digital camera with R, G, B, and Near-IR channels, and a thermal imaging camera measuring the brightness temperature in the 8-12 m wavelength region (TIR). The resolution of the TIR camera allowed for a ground resolution of 4 m, covering the whole width of the main stream and larger branches. The RGB and NIR data allowed to eliminate land surface temperatures from the analysis and to identify clouds and shadows present during the data acquisition. By degrading the spatial resolution and adding sensor noise, artificial Landsat ETM+ and TIRS datasets were created

  3. High Spatial Resolution Thermal Infrared Remote Sensing Data for Analysis of the Atlanta, Georgia, Urban Heat Island Effect and Its Impacts on the Environment

    Science.gov (United States)

    Quattrochi, Dale A.

    2007-01-01

    the impact of increased urban heating on air quality. The urban landscape impacts surface thermal energy exchanges that determine development of the UHI. This paper will illustrate how we are using high spatial remote sensing data collected over the Atlanta, Georgia metropolitan area in conjunction with other geographic information, to perform a detailed urban land cover classification and to determine the contribution of these land covers to the urban heat island effect. Also, the spatial arrangement of the land covers and the impact on urban heating from these selected patterns of development are evaluated. Additionally, this paper will show how these data are being used as inputs to improve air quality modeling for Atlanta, including potential benefits from UHI mitigation.

  4. Face recognition in the thermal infrared domain

    Science.gov (United States)

    Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.

    2017-10-01

    Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.

  5. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  6. Remote Infrared Audible Signage (RIAS) Pilot Program : evaluation report

    Science.gov (United States)

    2009-09-01

    This report presents evaluation findings on the Remote Infrared Audible Signage (RIAS) Pilot Program in the Puget Sound Region of Washington. The installation, demonstration and evaluation of RIAS were required by a provision in the Safe, Accountable...

  7. Infrared remote sensing of Earth degassing - Ground study

    Directory of Open Access Journals (Sweden)

    P. Strobl

    2005-06-01

    Full Text Available Geodynamical processes e.g., volcanoes, often cause degassing at the Earth surface. The geogas emanates via mineral springs, water mofettes, or dry mofettes. It is assumed that the emerging gas influences the temperature of the spring or mofette water, respectively and the surface temperature of the soil at and around the dry gas vents. This causes a thermal anomaly in comparison to the close vicinity. Under specific conditions this effect should be extractable from remotely acquired infrared images allowing detection, mapping and monitoring of gas vents/springs within large areas and short times. This article describes preparatory investigations for which emanating Earth gas was simulated by leading compressed air into the ground and releasing it in some depth via a metal lance. The thermal effect at the surface was observed from a nearby thermovision camera in summer and winter under varying meteorological conditions. A procedure was developed to reliably identify gas release areas within the recorded thermal images of the scene. The investigations are aiming at studies to be performed later in the Western Bohemia (Czech Republic earthquake swarm region where especially CO2 of magmatic origin from European SubContinental Mantle (ESCM emanates.

  8. Infrared thermal imaging in connective tissue diseases.

    Science.gov (United States)

    Chojnowski, Marek

    2017-01-01

    Infrared thermal imaging (IRT) is a non-invasive, non-contact technique which allows one to measure and visualize infrared radiation. In medicine, thermal imaging has been used for more than 50 years in various clinical settings, including Raynaud's phenomenon and systemic sclerosis. Imaging and quantification of surface body temperature provides an indirect measure of the microcirculation's overall performance. As such, IRT is capable of confirming the diagnosis of Raynaud's phenomenon, and, with additional cold or heat challenge, of differentiating between the primary and secondary condition. In systemic sclerosis IRT has a potential role in assessing disease activity and monitoring treatment response. Despite certain limitations, thermal imaging can find a place in clinical practice, and with the introduction of small, low-cost infrared cameras, possibly become a part of routine rheumatological evaluation.

  9. The thermal infrared continuum in solar flares

    Science.gov (United States)

    Fletcher, Lyndsay; Simoes, Paulo; Kerr, Graham Stewart; Hudson, Hugh S.; Gimenez de Castro, C. Guillermo; Penn, Matthew J.

    2017-08-01

    Observations of the Sun with the Atacama Large Millimeter Array have now started, and the thermal infrared will regularly be accessible from the NSF’s Daniel K. Inouye Solar Telescope. Motivated by the prospect of these new observations, and by recent flare detections in the mid infrared, we set out here to model and understand the source of the infrared continuum in flares, and to explore its diagnostic capability for the physical conditions in the flare atmosphere. We use the 1D radiation hydrodynamics code RADYN to calculate mid-infrared continuum emission from model atmospheres undergoing sudden deposition of energy by non-thermal electrons. We identify and characterise the main continuum thermal emission processes relevant to flare intensity enhancement in the mid- to far-infrared (2-200 micron) spectral range as free-free emission on neutrals and ions. We find that the infrared intensity evolution tracks the energy input to within a second, albeit with a lingering intensity enhancement, and provides a very direct indication of the evolution of the atmospheric ionization. The prediction of highly impulsive emission means that, on these timescales, the atmospheric hydrodynamics need not be considered in analysing the mid-IR signatures.

  10. Visible and Infrared Remote Imaging of Hazardous Waste: A Review

    Directory of Open Access Journals (Sweden)

    Barry Haack

    2010-11-01

    Full Text Available One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  11. A primary study on finding hot groundwater using infrared remote sensing

    Science.gov (United States)

    Qiao, Y.; Wu, Q.

    Hot groundwater is a kind of valuable natural resources to be explored utilized. Shanxi Province, located in the eastern Loess Plateau of China, is rich in geothermal resources, most of which was found in irrigation well drilling or geological survey. Basic study is weak. Now new developed Remote Sensing technique provides geothermal study with an advanced way. Air-RS information of thermal infrared and dada from thermal channel of Meteorological Landset AVHRR has been used widely. A thermal infrared channel (TM6) was installed in the U. S. second Landset, Its resolving power of space is as high as 120 m, 10 times more t an one ofh AVHRR. A Landset earth recourses launched by China and Brazil (CBERS-1) in 1999, including a spectrum of thermal infrared. It is paid a great interested and attention to survey geothermal resources using thermal infrared. This article is a brief introduction of finding hot groundwater with on the bases of differences of thermal radiation of objects reflected by thermal infrared in the Landset, and treated with HIS colors changes. This study provides an advanced way widely used to exploit hot groundwater and to promote the development of tourism and geothermal medical in China.

  12. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  13. Development of models for thermal infrared radiation above and within plant canopies

    Science.gov (United States)

    Paw u, Kyaw T.

    1992-01-01

    Any significant angular dependence of the emitted longwave radiation could result in errors in remotely estimated energy budgets or evapotranspiration. Empirical data and thermal infrared radiation models are reviewed in reference to anisotropic emissions from the plant canopy. The biometeorological aspects of linking longwave models with plant canopy energy budgets and micrometeorology are discussed. A new soil plant atmosphere model applied to anisotropic longwave emissions from a canopy is presented. Time variation of thermal infrared emission measurements is discussed.

  14. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    National Research Council Canada - National Science Library

    Wang, Fei; Qin, Zhihao; Song, Caiying; Tu, Lili; Karnieli, Arnon; Zhao, Shuhe

    2015-01-01

      The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST...

  15. The Improvement of Land Cover Classification by Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Liya Sun

    2015-06-01

    Full Text Available Land cover classification has been widely investigated in remote sensing for agricultural, ecological and hydrological applications. Landsat images with multispectral bands are commonly used to study the numerous classification methods in order to improve the classification accuracy. Thermal remote sensing provides valuable information to investigate the effectiveness of the thermal bands in extracting land cover patterns. k-NN and Random Forest algorithms were applied to both the single Landsat 8 image and the time series Landsat 4/5 images for the Attert catchment in the Grand Duchy of Luxembourg, trained and validated by the ground-truth reference data considering the three level classification scheme from COoRdination of INformation on the Environment (CORINE using the 10-fold cross validation method. The accuracy assessment showed that compared to the visible and near infrared (VIS/NIR bands, the time series of thermal images alone can produce comparatively reliable land cover maps with the best overall accuracy of 98.7% to 99.1% for Level 1 classification and 93.9% to 96.3% for the Level 2 classification. In addition, the combination with the thermal band improves the overall accuracy by 5% and 6% for the single Landsat 8 image in Level 2 and Level 3 category and provides the best classified results with all seven bands for the time series of Landsat TM images.

  16. Impact of atmospheric water vapor on the thermal infrared remote sensing of volcanic sufur dioxide emmisions: A case study from Pu'u 'O'o vent of Kilauea volcano, Hawaii

    Science.gov (United States)

    Realmuto, V. J.; Worden, H. M.

    2000-01-01

    The December 18, 1999, launch of NASA's Terra satellite put two multispectral thermal infrared imaging instruments into Earth orbit. Experiments with airborne instruments have demonstrated that the data from such instruments can be used to detect volcanic SO2 plumes and clouds.

  17. Teaching physics and understanding infrared thermal imaging

    Science.gov (United States)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2017-08-01

    Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.

  18. Terrestrial Applications of the Thermal Infrared Sensor, TIRS

    Science.gov (United States)

    Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis

    2009-01-01

    Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.

  19. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  20. Infrared thermal models for Saturn's ring

    Science.gov (United States)

    Price, M. J.

    1976-01-01

    Infrared (10 and 20 microns) thermal emission data for Saturn's rings are discussed in terms of simple isothermal radiative transfer models of finite optical thickness. Recent brightness temperature measurements, corresponding to essentially maximum ring tilt, indicate that optical single scattering albedos less than 0.75 are required to provide sufficient heating of the ring material. Reconciliation with analyses of the optical scattering properties of the ring requires the backscattering efficiency to be even higher than for a macroscopic sphere. Historical brightness temperature measurements are used to show that no unique isothermal ring model exists. Instead, a temperature gradient perpendicular to the ring plane appears to be present.

  1. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  2. Detection of Oil Product on the Water Surface with Thermal Infrared Camera

    Directory of Open Access Journals (Sweden)

    Kristina Pilžis

    2017-09-01

    Full Text Available From all existing remote detectors infrared sensors are the cheapest and most widely used. In this article described experiment was done to determine if it is possible to detected oil products on the water surface using thermal infrared camera. This hypothesis was confirmed – thickest layer of used oil product appeared hotter than water. Also, it was found that temperatures of oil product on the surface directly depend on the air temperature. However, clouds have a significant effect on efficiency of this remote sensing method.

  3. Atmospheric water vapor retrieval from Landsat 8 thermal infrared images

    Science.gov (United States)

    Ren, Huazhong; Du, Chen; Liu, Rongyuan; Qin, Qiming; Yan, Guangjian; Li, Zhao-Liang; Meng, Jinjie

    2015-03-01

    Atmospheric water vapor (wv) is required for the accurate retrieval of the land surface temperature from remote sensing data and other applications. This work aims to estimate wv from Landsat 8 Thermal InfraRed Sensor (TIRS) images using a new modified split-window covariance-variance ratio (MSWCVR) method on the basis of the brightness temperatures of two thermal infrared bands. Results show that the MSWCVR method can theoretically retrieve wv with an accuracy better than 0.3 g/cm2 for dry atmosphere (wv Robotic Network) ground-measured data and MODIS (Moderate Resolution Imaging Spectroradiometer) products. The results show that the retrieved wv from the TIRS data is highly correlated with the wv of AERONET and MODIS but is generally larger. This difference was probably attributed to the uncertainty of radiometric calibration and stray light coming outside from field of view of TIRS instrument in the current images. Consequently, the data quality and radiometric calibration of the TIRS data should be improved in the future.

  4. The new airborne Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Kahle, A. B.

    1983-01-01

    A new airborne Thermal Infrared Multispectral Scanner (TIMS) with six bands between 8 and 12 microns is briefly characterized, and some results of remote sensing experiments are reported. The instrument has an instantaneous field of view of 2.5 milliradians, a total field of view of 80 deg, and a NE Delta T of approximately 0.1-0.3 C depending on the band. In the TIMS image of Death Valley, silica-rich rocks were easily separable from the nonsilicates. The Eureka Quartzite stood out in sharp contrast to other Ordovician and Cambrian metasediments, and Tertiary volcanic rocks were easily separable from both. Also distinguishable were various units in the fan gravels.

  5. Thermal infrared research: Where are we now?

    Science.gov (United States)

    Hatfield, J. L.; Jackson, R. D.

    1982-01-01

    The use of infrared temperatures in agriculture and hydrology is based on the energy balance equation which is used to estimate evapotranspiration and crop stress over small areas within a field as well as large areas. For its full utilization, this measurement must be combined with other spectral data collected at a time resolution sufficient to detect changes in the agricultural or hydrological systems and at a spatial resolution with enough detail to sample within individual fields. The most stringent requirement is that the data be readily available to the user. The spatial resolution necessary for IR measurements to be incorporated into evapotranspiration models to accurately estimate field and regional transpiration or measure crop stress; methods to estimate crop stress and yield over large areas and different cultivars within a species; the temporal resolution adequate for detecting crop stress or inclusion in evapotranspiration models; and ancillary parameters for estimating thermal IR measurements must be investigated.

  6. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  7. Introduction to the Special Session on Thermal Remote Sensing Data for Earth Science Research: The Critical Need for Continued Data Collection and Development of Future Thermal Satellite Sensors

    Science.gov (United States)

    Quattrochi, Dale a.; Luvall, Jeffrey C.; Anderson, Martha; Hook, Simon

    2006-01-01

    There is a rich and long history of thermal infrared (TIR) remote sensing data for multidisciplinary Earth science research. The continuity of TIR data collection, however, is now in jeopardy given there are no planned future Earth observing TIR remote sensing satellite systems with moderately high spatial resolutions to replace those currently in orbit on NASA's Terra suite of sensors. This session will convene researchers who have actively worked in the field of TIR remote sensing to present results that elucidate the importance of thermal remote sensing to the wider Earth science research community. Additionally, this session will also exist as a forum for presenting concepts and ideas for new thermal sensing systems with high spatial resolutions for future Earth science satellite missions, as opposed to planned systems such as the Visible/Infrared Imager/Radiometer (VIIRS) suite of sensors on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that will collect TIR data at very coarse iairesolutions.

  8. Assessment of Infrared Remote Chemical Sensing Systems with Numeric Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fry, H.; McVey, B.; Schmitt, M.

    1998-11-01

    A general approach to the evaluation of remote chemical sensors is described that can be used to provide evaluation of the chemical detection in a particular chemical scenario. It will be used to make comparisons of a CO{sub 2} laser differential absorption lidar sensor and a passive thermal FTIR sensor. The focus of the study will be to evaluate the advantage of the FTIR sensor's increased spectral coverage and number of frequency channels.

  9. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review

    Science.gov (United States)

    Zhang, Dianjun; Zhou, Guoqing

    2016-01-01

    As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research. PMID:27548168

  10. Infrared landmine detection and thermal model analysis

    NARCIS (Netherlands)

    Schwering, P.B.W.; Kokonozi, A.; Carter, L.J.; Lensen, H.A.; Franken, E.M.

    2001-01-01

    Infrared imagers are capable of the detection of surface laid mines. Several sensor fused land mine detection systems make use of metal detectors, ground penetrating radar and infrared imagers. Infrared detection systems are sensitive to apparent temperature contrasts and their detection

  11. Thermal and Visible Satellite Image Fusion Using Wavelet in Remote Sensing and Satellite Image Processing

    Science.gov (United States)

    Ahrari, A. H.; Kiavarz, M.; Hasanlou, M.; Marofi, M.

    2017-09-01

    Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar) and different decomposition filters (mean.linear,ma,min and rand) for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative) must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  12. Proposal of novel measurement method for thermal diffusivity from infrared thermal movie

    Science.gov (United States)

    Okamoto, Yoichi; Watanabe, Shin; Ogata, Kento; Hiramatsu, Koji; Miyazaki, Hisashi; Morimoto, Jun

    2017-05-01

    A brand new thermal diffusivity measurement method was developed. In this new noncontact and absolute measurement method, thermal diffusivity was measured from infrared movie data. The model of one-dimensional thermal conduction was constructed by taking into account the thermal flow other than one-dimensional thermal conduction in the sample. On the basis of this thermal conduction model, the analytical equation for calculating thermal diffusivity was derived. A single-crystal sapphire plate was used as a test specimen for the new method. The test specimen was arranged to cause one-dimensional heat conduction. Infrared movies were taken by using an infrared camera at room temperature. Then, thermal diffusivity was numerically calculated from the acquired movie data using the analytical equation. It was experimentally demonstrated that thermal diffusivity was measured with an accuracy of around 10% error, from an infrared movie of a single-crystal sapphire sample.

  13. 3D Temperature Distribution Model Based on Thermal Infrared Image

    Directory of Open Access Journals (Sweden)

    Tong Jia

    2017-01-01

    Full Text Available This paper aims to study the construction of 3D temperature distribution reconstruction system based on binocular vision technology. Initially, a traditional calibration method cannot be directly used, because the thermal infrared camera is only sensitive to temperature. Therefore, the thermal infrared camera is calibrated separately. Belief propagation algorithm is also investigated and its smooth model is improved in terms of stereo matching to optimize mismatching rate. Finally, the 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model and has strong robustness.

  14. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  15. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  16. Infrared thermography: A non-invasive window into thermal physiology.

    Science.gov (United States)

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  18. Estimating Clothing Thermal Insulation Using an Infrared Camera

    National Research Council Canada - National Science Library

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera...

  19. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    Science.gov (United States)

    Luvall, J. C.; Rickman, D.; Fraser, R.

    2013-12-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner- Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his co-workers have documented ecosystem energy budgets, including tropical forests, mid-latitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  20. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    Science.gov (United States)

    Luvall, Jeffrey C.; Rickman, Doug.; Fraser, Roydon F.

    2013-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner- Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his coworkers have documented ecosystem energy budgets, including tropical forests, midlatitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  1. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing

    NARCIS (Netherlands)

    Sobrino, J.; Oltra-Carrio, R; Jimenez-Munoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera Albentosa, M.R.; Gomez, J.A.; de Miguel, E.; Bianchi, R.; Paganini, M.

    2013-01-01

    The surface urban heat island (SUHI) effect is defined as the increased surface temperatures in urban areas in contrast to cooler surrounding rural areas. In this article, the evaluation of the SUHI effect in the city of Madrid (Spain) from thermal infrared (TIR) remote-sensing data is presented.

  2. Validating an infrared thermal switch as a novel access technology.

    Science.gov (United States)

    Memarian, Negar; Venetsanopoulos, Anastasios N; Chau, Tom

    2010-08-05

    Recently, a novel single-switch access technology based on infrared thermography was proposed. The technology exploits the temperature differences between the inside and surrounding areas of the mouth as a switch trigger, thereby allowing voluntary switch activation upon mouth opening. However, for this technology to be clinically viable, it must be validated against a gold standard switch, such as a chin switch, that taps into the same voluntary motion. In this study, we report an experiment designed to gauge the concurrent validity of the infrared thermal switch. Ten able-bodied adults participated in a series of 3 test sessions where they simultaneously used both an infrared thermal and conventional chin switch to perform multiple trials of a number identification task with visual, auditory and audiovisual stimuli. Participants also provided qualitative feedback about switch use. User performance with the two switches was quantified using an efficiency measure based on mutual information. User performance (p = 0.16) and response time (p = 0.25) with the infrared thermal switch were comparable to those of the gold standard. Users reported preference for the infrared thermal switch given its non-contact nature and robustness to changes in user posture. Thermal infrared access technology appears to be a valid single switch alternative for individuals with disabilities who retain voluntary mouth opening and closing.

  3. Validating an infrared thermal switch as a novel access technology

    Directory of Open Access Journals (Sweden)

    Memarian Negar

    2010-08-01

    Full Text Available Abstract Background Recently, a novel single-switch access technology based on infrared thermography was proposed. The technology exploits the temperature differences between the inside and surrounding areas of the mouth as a switch trigger, thereby allowing voluntary switch activation upon mouth opening. However, for this technology to be clinically viable, it must be validated against a gold standard switch, such as a chin switch, that taps into the same voluntary motion. Methods In this study, we report an experiment designed to gauge the concurrent validity of the infrared thermal switch. Ten able-bodied adults participated in a series of 3 test sessions where they simultaneously used both an infrared thermal and conventional chin switch to perform multiple trials of a number identification task with visual, auditory and audiovisual stimuli. Participants also provided qualitative feedback about switch use. User performance with the two switches was quantified using an efficiency measure based on mutual information. Results User performance (p = 0.16 and response time (p = 0.25 with the infrared thermal switch were comparable to those of the gold standard. Users reported preference for the infrared thermal switch given its non-contact nature and robustness to changes in user posture. Conclusions Thermal infrared access technology appears to be a valid single switch alternative for individuals with disabilities who retain voluntary mouth opening and closing.

  4. Factors affecting thermal infrared images at selected field sites

    Energy Technology Data Exchange (ETDEWEB)

    Sisson, J.B.; Ferguson, J.S.

    1993-07-01

    A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL.

  5. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics

    Directory of Open Access Journals (Sweden)

    Daniela Cardone

    2015-01-01

    Full Text Available Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  6. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    Science.gov (United States)

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  7. Retrieval of ice cloud properties with visible/near-/shortwave-infrared (VNIR/SWIR) and thermal-infrared (TIR) obaservations

    Science.gov (United States)

    Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Yang, P.; Ding, J.

    2016-12-01

    An optical-estimation (OE) based ice cloud retrieval algorithm is developed with visible/near-/shortwave-infrared (VNIR/SWIR) and thermal-infrared (TIR) observations. It is known that VNIR/SWIR observations are more sensitive to optically thick clouds, while TIR observations are more sensitive to optically thin clouds. The combination of both VNIR/SWIR and TIR observations is expected to improve the overall ice cloud retrieval performance. In this study, we develop an optimal method to select different bands for retrieving different types of ice clouds (e.g., thin cirrus or deep convective cloud). With the optimally selected bands, retrieval uncertainties are minimized and information content are maximized. The retrieval algorithm is based on a clear-sky transmittance module and a radiative transfer model that cover the VNIR/SWIR and TIR regions. The forward model is computational efficiency and therefore can be used to a wide variaty of remote sensing applications.

  8. Thermal infrared emissivity spectrum and its characteristics of crude oil slick covered seawater.

    Science.gov (United States)

    Xiong, Pan; Gu, Xing-Fai; Yu, Taol; Meng, Qing-Yan; Li, Jia-Guoi; Shi, Ji-xiang; Cheng, Yang; Wang, Liang; Liu, Wen-Song; Liu, Qi-Yuei; Zhao, Li-Min

    2014-11-01

    Detecting oil slick covered seawater surface using the thermal infrared remote sensing technology exists the advantages such as: oil spill detection with thermal infrared spectrum can be performed in the nighttime which is superior to visible spectrum, the thermal infrared spectrum is superior to detect the radiation characteristics of both the oil slick and the seawater compared to the mid-wavelength infrared spectrum and which have great potential to detect the oil slick thickness. And the emissivity is the ratio of the radiation of an object at a given temperature in normal range of the temperature (260-320 K) and the blackbody radiation under the same temperature , the emissivity of an object is unrelated to the temperature, but only is dependent with the wavelength and material properties. Using the seawater taken from Bohai Bay and crude oil taken from Gudao oil production plant of Shengli Oilfield in Dongying city of Shandong Province, an experiment was designed to study the characteristics and mechanism of thermal infrared emissivity spectrum of artificial crude oil slick covered seawater surface with its thickness. During the experiment, crude oil was continuously dropped into the seawater to generate artificial oil slick with different thicknesses. By adding each drop of crude oil, we measured the reflectivity of the oil slick in the thermal infrared spectrum with the Fourier transform infrared spectrometer (102F) and then calculated its thermal infrared emissivity. The results show that the thermal infrared emissivity of oil slick changes significantly with its thickness when oil slick is relatively thin (20-120 μm), which provides an effective means for detecting the existence of offshore thin oil slick In the spectrum ranges from 8 to 10 μm and from 13. 2 to 14 μm, there is a steady emissivity difference between the seawater and thin oil slick with thickness of 20 μm. The emissivity of oil slick changes marginally with oil slick thickness and

  9. IREXF: Data Exfiltration from Air-gapped Networks by Infrared Remote Control Signals

    OpenAIRE

    Zhou, Zheng; Zhang, Weiming; Yu, Nenghai

    2018-01-01

    he technology on infrared remote control is widely applied in human daily life. It is also applied in the place with a top security level. Infrared remote control signal is regarded as a simple, safe and clean resource that can help us control the electrical appliances nearby. In this paper, we build IREXF, a novel infrared optical covert channel from a well-protected air-gapped network via a malicious infrared module implanted previously into a keyboard. A malware preinstalled in the air-gap...

  10. Formation of the thermal infrared continuum in solar flares

    Science.gov (United States)

    Simões, Paulo J. A.; Kerr, Graham S.; Fletcher, Lyndsay; Hudson, Hugh S.; Giménez de Castro, C. Guillermo; Penn, Matt

    2017-09-01

    Aims: Observations of the Sun with the Atacama Large Millimeter Array have now started, and the thermal infrared will regularly be accessible from the NSF's Daniel K. Inouye Solar Telescope. Motivated by the prospect of these new data, and by recent flare observations in the mid infrared, we set out here to model and understand the source of the infrared continuum in flares, and to explore its diagnostic capability for the physical conditions in the flare atmosphere. Methods: We use the one-dimensional (1D) radiation hydrodynamics code RADYN to calculate mid-infrared continuum emission from model atmospheres undergoing sudden deposition of energy by non-thermal electrons. Results: We identify and characterise the main continuum thermal emission processes relevant to flare intensity enhancement in the mid- to far-infrared (2-200 μm) spectral range as free-free emission on neutrals and ions. We find that the infrared intensity evolution tracks the energy input to within a second, albeit with a lingering intensity enhancement, and provides a very direct indication of the evolution of the atmospheric ionisation. The prediction of highly impulsive emission means that, on these timescales, the atmospheric hydrodynamics need not be considered in analysing the mid-IR signatures.

  11. Fourier domain target transformation analysis in the thermal infrared

    Science.gov (United States)

    Anderson, D. L.

    1993-01-01

    Remote sensing uses of principal component analysis (PCA) of multispectral images include band selection and optimal color selection for display of information content. PCA has also been used for quantitative determination of mineral types and abundances given end member spectra. The preliminary results of the investigation of target transformation PCA (TTPCA) in the fourier domain to both identify end member spectra in an unknown spectrum, and to then calculate the relative concentrations of these selected end members are presented. Identification of endmember spectra in an unknown sample has previously been performed through bandmatching, expert systems, and binary classifiers. Both bandmatching and expert system techniques require the analyst to select bands or combinations of bands unique to each endmember. Thermal infrared mineral spectra have broad spectral features which vary subtly with composition. This makes identification of unique features difficult. Alternatively, whole spectra can be used in the classification process, in which case there is not need for an expert to identify unique spectra. Use of binary classifiers on whole spectra to identify endmember components has met with some success. These techniques can be used, along with a least squares fit approach on the endmembers identified, to derive compositional information. An alternative to the approach outlined above usese target transformation in conjunction with PCA to both identify and quantify the composition of unknown spectra. Preprocessing of the library and unknown spectra into the fourier domain, and using only a specific number of the components, allows for significant data volume reduction while maintaining a linear relationship in a Beer's Law sense. The approach taken here is to iteratively calculate concentrations, reducing the number of endmember components until only non-negative concentrations remain.

  12. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  13. Thermal remote sensing data for estimating evapotranspiration on a ...

    African Journals Online (AJOL)

    As an alternative to in-situ hydro -physical measurements, theoretical and computer-based models, a method that applies thermal infrared band (6) of Landsat TM data for the estimation of ET on a basin-wide scale is presented. Journal of Applied Science and Technology (JAST) , Vol. 5, Nos. 1 & 2, 2000, pp. 98 - 107 ...

  14. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-12-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  15. Remote Sensing of Rock Type in the Visible and Near-Infrared,

    Science.gov (United States)

    Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral

  16. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    Science.gov (United States)

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  17. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    Science.gov (United States)

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  18. Infrared scanners detect thermal gradients in building walls

    Science.gov (United States)

    Kantsios, A. G.

    1979-01-01

    Presents study on ability of infrared scanner used to detect thermal gradients in outside walls of two homes in Virginia Beach, Virginia under joint effort of Langley Research Center, Virginia Energy Office and Virginia Beach Energy Conservation Pilot Project. Details how study can be used to help minimize energy loss.

  19. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  20. Thermal infrared sensors for postharvest deficit irrigation of peach

    Science.gov (United States)

    California has been in a historic drought and the lack of water has been a major problem for agriculture especially for crops that depend on irrigation. A multi-year field study was carried out to demonstrate the feasibility of applying thermal infrared sensors for managing deficit irrigation in an ...

  1. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2013-01-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability

  2. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, C.; van der Heijden, Ferdinand; Bus, Sicco A.

    Background: Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the

  3. Infrared lens thermal effect: equivalent focal shift and calculating model

    Science.gov (United States)

    Zhang, Cheng-shuo; Shi, Zelin; Feng, Bin; Xu, Bao-shu

    2014-11-01

    It's well-know that the focal shift of infrared lens is the major factor in degeneration of imaging quality when temperature change. In order to figure out the connection between temperature change and focal shift, partial differential equations of thermal effect on light path are obtained by raytrace method, to begin with. The approximately solution of the PDEs show that focal shift is proportional to temperature change. And a formula to compute the proportional factor is given. In order to understand infrared lens thermal effect deeply, we use defocus by image plane shift at constant temperature to equivalently represent thermal effect on infrared lens. So equivalent focal shift (EFS) is defined and its calculating model is proposed at last. In order to verify EFS and its calculating model, Physical experimental platform including a motorized linear stage with built-in controller, blackbody, target, collimator, IR detector, computer and other devices is developed. The experimental results indicate that EFS make the image plane shift at constant temperature have the same influence on infrared lens as thermal effect and its calculating model is correct.

  4. Thermal Infrared Spectroscopy of Saturn and Titan from Cassini

    Science.gov (United States)

    Jennings, Donald E.; Brasunas, J. C.; Carlson, R. C.; Flasar, F. M.; Kunde, V. G.; Mamoutkine, A. A.; Nixon, A.; Pearl, J. C.; Romani, P. N.; Simon-Miller, A. A.; hide

    2009-01-01

    The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.

  5. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    Science.gov (United States)

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.

  6. Agricultural applications for thermal infrared multispectral scanner data

    Science.gov (United States)

    Pelletier, R. E.; Ochoa, M. C.; Hajek, B. F.

    1985-01-01

    The use of the Thermal Infrared Multispectral Scanner (TIMS) data in agricultural landscapes is discussed. The TIMS allows for narrow-band analysis in the 8.2-11.6 micron range at spatial resolutions down to 5 meters in cell size. A coastal plain region in SE Alabama was studied using the TIMS. The crop/plant vigor, canopy density, and thermal response changes for soils obtained from thermal imagery are examined. The application of TIMS data to hydrologic and topographic issues, inventory and conservation monitoring, and the enhancement and extraction of cartographic features is described.

  7. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  8. Infrared characterization of thermal gradients on disc brakes

    Science.gov (United States)

    Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre

    2003-04-01

    The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.

  9. Thermal analysis of nanofluids in microfluidics using an infrared camera.

    Science.gov (United States)

    Yi, Pyshar; Kayani, Aminuddin A; Chrimes, Adam F; Ghorbani, Kamran; Nahavandi, Saeid; Kalantar-zadeh, Kourosh; Khoshmanesh, Khashayar

    2012-07-21

    We present the thermal analysis of liquid containing Al(2)O(3) nanoparticles in a microfluidic platform using an infrared camera. The small dimensions of the microchannel along with the low flow rates (less than 120 μl min(-1)) provide very low Reynolds numbers of less than 17.5, reflecting practical parameters for a microfluidic cooling platform. The heat analysis of nanofluids has never been investigated in such a regime, due to the deficiencies of conventional thermal measurement systems. The infrared camera allows non-contact, three dimensional and high resolution capability for temperature profiling. The system was studied at different w/w concentrations of thermally conductive Al(2)O(3) nanoparticles and the experiments were in excellent agreement with the computational fluid dynamics (CFD) simulations.

  10. Progress in Analysis to Remote Sensed Thermal Abnormity with Fault Activity and Seismogenic Process

    Directory of Open Access Journals (Sweden)

    WU Lixin

    2017-10-01

    Full Text Available Research to the remote sensed thermal abnormity with fault activity and seismogenic process is a vital topic of the Earth observation and remote sensing application. It is presented that a systematic review on the international researches on the topic during the past 30 years, in the respects of remote sensing data applications, anomaly analysis methods, and mechanism understanding. Firstly, the outlines of remote sensing data applications are given including infrared brightness temperature, microwave brightness temperature, outgoing longwave radiation, and assimilated data from multiple earth observations. Secondly, three development phases are summarized as qualitative analysis based on visual interpretation, quantitative analysis based on image processing, and multi-parameter spatio-temporal correlation analysis. Thirdly, the theoretical hypotheses presented for the mechanism understanding are introduced including earth degassing, stress-induced heat, crustal rock battery conversion, latent heat release due to radon decay as well as multi-spheres coupling effect. Finally, three key directions of future research on this topic are proposed:anomaly recognizing by remote sensing monitoring and data analysis for typical tectonic activity areas; anomaly mechanism understanding based on earthquake-related earth system responses; spatio-temporal correlation analysis of air-based, space-based and ground-based stereoscopic observations.

  11. Multi-channel thermal infrared communications using engineered blackbody radiation for security applications

    Science.gov (United States)

    Hu, F.; Liang, X.; Lucyszyn, S.

    2014-10-01

    The thermal (emitted) infrared frequency bands, typically from 20-40 THz and 60-100 THz, are best known for applications in thermography, such as target acquisition, surveillance, night vision, and remote sensing. This unregulated part of the spectral range offers opportunities for the development of short-range secure communications. The `THz Torch' concept was recently demonstrated by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels. The energy in each channel is then independently pulse-modulated, transmitted and detected, creating a robust form of short-range secure communications in the far/mid infrared. In this paper, recent progress for the `THz Torch' technology will be presented; the physical level integrity for multichannel proof-of-concept working demonstrators will be evaluated. By exploring a diverse range of methods, significant enhancements to both data rate and distance can be expected. Our thermodynamics-based approach represents a new paradigm in the sense that 19th century physics can be exploited with 20th century multiplexing concepts for low-cost 21st century ubiquitous security and defence applications in the thermal infrared range.

  12. Infrared Thermal Imaging System on a Mobile Phone

    Directory of Open Access Journals (Sweden)

    Fu-Feng Lee

    2015-04-01

    Full Text Available A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM and mobile phone with embedded exclusive software (IRAPP was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time.

  13. Infrared thermal facial image sequence registration analysis and verification

    Science.gov (United States)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  14. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    Science.gov (United States)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  15. Thermal remote sensing of estuarine spatial dynamics: Effects of bottom-generated vertical mixing

    Science.gov (United States)

    Marmorino, G. O.; Smith, G. B.

    2008-07-01

    In a recent paper, Hedger, R.D., Malthus, T.J., Folkard, A.M., Atkinson, P.M. [2007. Spatial dynamics of estuarine water surface temperature from airborne remote sensing. Estuarine, Coastal and Shelf Science 71, 608-615] demonstrate that airborne thermal remote sensing shows great potential for monitoring estuarine dynamics and surface currents. One aspect needing further attention is the impact of bottom-generated vertical mixing as this can create both stationary thermal features as well as thermal patterns that advect with the flow. This dual effect is illustrated using airborne infrared imagery of a mixing front having an embedded pattern of thermal boils. The boils are several meters in diameter (in water less than 4 m deep) and are ˜0.2 °C cooler than the ambient water surface. Time sequential imagery that captures the movement of individual boils as well as their growth rate can be used to deduce both the near-surface current and the intensity of turbulent mixing.

  16. INTERPRETATION OF THERMAL-INFRARED MULTISPECTRAL SCANNER IMAGES OF THE OSGOOD MOUNTAINS, NEVADA.

    Science.gov (United States)

    Krohn, M. Dennis

    1984-01-01

    Data from the Thermal-Infrared Multispectral Scanner (TIMS) were collected over the Osgood Mountains in northern Nevada midmorning on 27 August 1983. The area includes gold-producing properties of the Getchell Mine, the Prinson Mine, and a prospect being developed near Preble, Nevada. Tungsten-bearing tactite deposits, barite deposits, and some minor lead-zinc deposits are also present. The area was surveyed to determine if multichannel, mid-infrared data could detect the effects of hydrothermal alteration in the sediment-hosted disseminated gold deposits. Because the gold in the deposits is generally microscopic and the effects of alteration are difficult to observe, the deposits present a difficult challenge for geological remote sensing.

  17. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  18. Thermal Infrared Imaging Spectrometer - An advanced optics technology instrument

    Science.gov (United States)

    Mahoney, Colin; Labaw, Clayton; Sobel, Harold; Kahle, Anne

    1990-01-01

    Through the use of a special optical filter, the Thermal Infrared Imaging Spectrometer, an airborne multispectral IR imaging instrument operating in the thermal emission region (7.5-14 microns), will achieve signal-to-noise ratios greater than 600 with ambient temperature optics. This instrument will be used to do compositional surface mapping of the terrain, and will refine the ability to categorize rock families and types by providing much higher spectral resolution in the emission region than was previously available. Details of the optical system, the detector, the cooler system, and the support electronics are described.

  19. Estimating Clothing Thermal Insulation Using an Infrared Camera

    OpenAIRE

    Jeong-Hoon Lee; Young-Keun Kim; Kyung-Soo Kim; Soohyun Kim

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal cloth...

  20. The Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Reuter, Dennis; Richardson, Cathy; Irons, James; Allen, Rick; Anderson, Martha; Budinoff, Jason; Casto, Gordon; Coltharp, Craig; Finneran, Paul; Forsbacka, Betsy; hide

    2010-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and USGS mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC} under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper outlines the design of the TIRS instrument and gives an example of its application to monitoring water consumption by measuring evapotranspiration.

  1. Systems Analysis for Thermal Infrared ` THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Sun, Jingye; Brindley, Helen E.; Liang, Xiaoxin; Lucyszyn, Stepan

    2015-05-01

    The ` THz Torch' concept was recently introduced by the authors for providing secure wireless communications over short distances within the thermal infrared (10-100 THz). Unlike conventional systems, thermal infrared can exploit front-end thermodynamics with engineered blackbody radiation. For the first time, a detailed power link budget analysis is given for this new form of wireless link. The mathematical modeling of a short end-to-end link is provided, which integrates thermodynamics into conventional signal and noise power analysis. As expected from the Friis formula for noise, it is found that the noise contribution from the pyroelectric detector dominates intrinsic noise. From output signal and noise voltage measurements, experimental values for signal-to-noise ratio (SNR) are obtained and compared with calculated predictions. As with conventional communications systems, it is shown for the first time that the measured SNR and measured bit error rate found with this thermodynamics-based system resembles classical empirical models. Our system analysis can serve as an invaluable tool for the development of thermal infrared systems, accurately characterizing each individual channel and, thus, enables the performance of multi-channel ` THz Torch' systems to be optimized.

  2. Thermal remote sensing of ice-debris landforms using ASTER

    Science.gov (United States)

    Brenning, A.; Peña, M. A.; Long, S.; Soliman, A.

    2011-10-01

    Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potentials of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions

  3. Applying infrared measurements in a measuring system for determining thermal parameters of thermal insulation materials

    Science.gov (United States)

    Chudzik, S.

    2017-03-01

    The paper presents results of research on an innovative method for determining thermal parameters of thermal insulating materials. The method is based on harmonic thermal excitations. Temperature measurements at selected points of a specimen under test are performed by means of semiconductor infrared sensors. The study also employs a 3D model of thermal diffusion. To obtain a solution of the coefficient inverse problem a method based on an artificial neural network is presented. The heat transfer coefficient on the specimen surface is estimated on the basis of a reference specimen. The validity of the adopted model of heat diffusion and the usefulness of the method proposed are verified experimentally.

  4. Advances in photo-thermal infrared imaging microspectroscopy

    Science.gov (United States)

    Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew

    2013-05-01

    There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.

  5. Shape memory nanocomposite of poly(L-lactic acid/graphene nanoplatelets triggered by infrared light and thermal heating

    Directory of Open Access Journals (Sweden)

    S. Lashgari

    2016-04-01

    Full Text Available In this study, the effect of graphene nanoplatelets (GNPs on the shape memory properties of poly(L-lactic acid (PLLA was studied. In addition to thermal activation, the possibility of infrared actuating of thermo-responsive shape memory PLLA/GNPs nanocomposite was investigated. The incorporated GNPs were expected to absorb infrared wave’s energy and activate shape memory PLLA/GNPs. Different techniques such as differential scanning calorimetry (DSC, wide-angle X-ray diffraction (WAXD, field emission gun scanning electron microscope (FEG-SEM and dynamic mechanical thermal analysis (DMTA were used to characterize samples. DSC and WAXD results indicated that GNPs augmented crystallinity due to nucleating effect of graphene particles. GNPs improved both thermal and infrared activating shape memory properties along with faster response. Pure shape memory PLLA was slightly responsive to infrared light and its infrared actuated shape recovery ratio was 86% which increased to more than 95% with loading of GNPs. Drastic improvement in the crystallinity was obtained in nanocomposites with lower GNPs contents (0.5 and 1 wt% due to finer dispersion of graphene which resulted in more prominent mechanical and shape memory properties enhancement. Infrared activated shape memory PLLA/GNPs nanocomposites can be developed for wireless remote shape control of smart medical and bio-systems.

  6. Thermal characteristics of mountain desert terrain derived from thermal infrared multispectral scanner measurements

    Science.gov (United States)

    Astling, E. G.; Quattrochi, D. A.

    1989-01-01

    The spatial and temporal variability of mountain-desert territory thermal is examined with an airborne thermal infrared multispectral scanner (TIMS). The purpose of the study is to demonstrate that inhomogeneities of the surface temperatures in the area can be adequately large to influence mesoscale circulations and the turbulence characteristics of boundary-layer flow. Ground truth measurements are compared to the TIMS imagery, with focus placed on the thermal infrared sensitivity to wet and dry soils, terrain elevation, and soil type. The results indicate that variations in the thermal features are dependent on soil type and soil moisture, and that the dependence on surface radiative temperatures on terrain elevation is apparent in daytime measurements.

  7. Thermal infrared imaging in psychophysiology: potentialities and limits.

    Science.gov (United States)

    Ioannou, Stephanos; Gallese, Vittorio; Merla, Arcangelo

    2014-10-01

    Functional infrared thermal imaging (fITI) is considered an upcoming, promising methodology in the emotional arena. Driven by sympathetic nerves, observations of affective nature derive from muscular activity subcutaneous blood flow as well as perspiration patterns in specific body parts. A review of 23 experimental procedures that employed fITI for investigations of affective nature is provided, along with the adopted experimental protocol and the thermal changes that took place on selected regions of interest in human and nonhuman subjects. Discussion is provided regarding the selection of an appropriate baseline, the autonomic nature of the thermal print, the experimental setup, methodological issues, limitations, and considerations, as well as future directions. © 2014 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  8. THERMAL REMOTE SENSING WITH UAV-BASED WORKFLOWS

    Directory of Open Access Journals (Sweden)

    R. Boesch

    2017-08-01

    Full Text Available Climate change will have a significant influence on vegetation health and growth. Predictions of higher mean summer temperatures and prolonged summer draughts may pose a threat to agriculture areas and forest canopies. Rising canopy temperatures can be an indicator of plant stress because of the closure of stomata and a decrease in the transpiration rate. Thermal cameras are available for decades, but still often used for single image analysis, only in oblique view manner or with visual evaluations of video sequences. Therefore remote sensing using a thermal camera can be an important data source to understand transpiration processes. Photogrammetric workflows allow to process thermal images similar to RGB data. But low spatial resolution of thermal cameras, significant optical distortion and typically low contrast require an adapted workflow. Temperature distribution in forest canopies is typically completely unknown and less distinct than for urban or industrial areas, where metal constructions and surfaces yield high contrast and sharp edge information. The aim of this paper is to investigate the influence of interior camera orientation, tie point matching and ground control points on the resulting accuracy of bundle adjustment and dense cloud generation with a typically used photogrammetric workflow for UAVbased thermal imagery in natural environments.

  9. Thermal Remote Sensing with Uav-Based Workflows

    Science.gov (United States)

    Boesch, R.

    2017-08-01

    Climate change will have a significant influence on vegetation health and growth. Predictions of higher mean summer temperatures and prolonged summer draughts may pose a threat to agriculture areas and forest canopies. Rising canopy temperatures can be an indicator of plant stress because of the closure of stomata and a decrease in the transpiration rate. Thermal cameras are available for decades, but still often used for single image analysis, only in oblique view manner or with visual evaluations of video sequences. Therefore remote sensing using a thermal camera can be an important data source to understand transpiration processes. Photogrammetric workflows allow to process thermal images similar to RGB data. But low spatial resolution of thermal cameras, significant optical distortion and typically low contrast require an adapted workflow. Temperature distribution in forest canopies is typically completely unknown and less distinct than for urban or industrial areas, where metal constructions and surfaces yield high contrast and sharp edge information. The aim of this paper is to investigate the influence of interior camera orientation, tie point matching and ground control points on the resulting accuracy of bundle adjustment and dense cloud generation with a typically used photogrammetric workflow for UAVbased thermal imagery in natural environments.

  10. Human ear detection in the thermal infrared spectrum

    Science.gov (United States)

    Abaza, Ayman; Bourlai, Thirimachos

    2012-06-01

    In this paper the problem of human ear detection in the thermal infrared (IR) spectrum is studied in order to illustrate the advantages and limitations of the most important steps of ear-based biometrics that can operate in day and night time environments. The main contributions of this work are two-fold: First, a dual-band database is assembled that consists of visible and thermal profile face images. The thermal data was collected using a high definition middle-wave infrared (3-5 microns) camera that is capable of acquiring thermal imprints of human skin. Second, a fully automated, thermal imaging based ear detection method is developed for real-time segmentation of human ears in either day or night time environments. The proposed method is based on Haar features forming a cascaded AdaBoost classifier (our modified version of the original Viola-Jones approach1 that was designed to be applied mainly in visible band images). The main advantage of the proposed method, applied on our profile face image data set collected in the thermal-band, is that it is designed to reduce the learning time required by the original Viola-Jones method from several weeks to several hours. Unlike other approaches reported in the literature, which have been tested but not designed to operate in the thermal band, our method yields a high detection accuracy that reaches ~ 91.5%. Further analysis on our data set yielded that: (a) photometric normalization techniques do not directly improve ear detection performance. However, when using a certain photometric normalization technique (CLAHE) on falsely detected images, the detection rate improved by ~ 4%; (b) the high detection accuracy of our method did not degrade when we lowered down the original spatial resolution of thermal ear images. For example, even after using one third of the original spatial resolution (i.e. ~ 20% of the original computational time) of the thermal profile face images, the high ear detection accuracy of our method

  11. Page 1 Optical infrared remote sensors 125 the surface locally ...

    Indian Academy of Sciences (India)

    survey is the return beam widicon used in the LANDSAT series (NASA 1976). Essential characteristics of the LANDSAT camera are given in table 1. The Indian experimental remote sensing satellite Bhaskara-I and II carried a two- band television camera system. Of the two bands one operated in the 0.54–0.66 p. region and ...

  12. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  13. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Science.gov (United States)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  14. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    ... (mesosphere and thermosphere) in terms of the structure of the underlying medium. Advances in non-LTE radiative transfer and atmospheric waves and localized excitations are detailed, as well as analysis and modeling of the databases resulting from two groundbreaking space infrared experiments, DoD MSX/SPIRIT III and NASA TIMED/SABER.

  15. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  16. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    1994-08-01

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  17. Infrared thermal imaging for automated detection of diabetic foot complications.

    Science.gov (United States)

    van Netten, Jaap J; van Baal, Jeff G; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A

    2013-09-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. © 2013 Diabetes Technology Society.

  18. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    Science.gov (United States)

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  19. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    Science.gov (United States)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  20. Thermal infrared exploration in the Carlin trend, northern Nevada

    Science.gov (United States)

    Watson, K.; Kruse, F.A.; Hummer-Miller, S.

    1990-01-01

    Experimental Thermal Infrared Multispectral Scanner (TIMS) aircraft data have been acquired for the Rodeo Creek NE 7 1/2 minute quadrangle, Eureka County, northern Nevada, covering the Carlin gold mine. A simple model has been developed to extract spectral emissivities for mapping surface lithology and alteration based on the physical properties of geologic materials. Emissivity-ratio images were prepared that allow generalized lithologic discrimination, identification of areas with high silica content, and the first reported detection of the carbonate secondary rest-strahlen feature. -from Authors

  1. Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs)

    Science.gov (United States)

    Hatfield, M. C.; Webley, P.; Saiet, E., II

    2014-12-01

    Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.

  2. Identification of catchment functional units by time series of thermal remote sensing images

    Science.gov (United States)

    Müller, Benjamin; Bernhardt, Matthias; Schulz, Karsten

    2014-05-01

    The objective of this study is to demonstrate an approach, based on thermal infrared (TIR) time series data from remote sensing to identify hydrological response units (HRUs) concerning the land surface temperature (LST) within a given catchment without additional input data. For the meso-scale Attert catchment in midwestern Luxembourg, a time series of TIR images from ASTER is used to retrieve, identify and classify possible process based HRUs with mathematical-statistical pattern analysis techniques. These techniques comprise the use of coefficients of correlation and variation, as well as behavioural measures and principal component analysis. This new method will be compared to standard GIS based spatial information for HRU identification. The results highlight the capability of multi-temporal thermal remote sensing data to provide information that are time consuming to retrieve in sparsely monitored regions. Also, we demonstrate how multi-temporal temperature information is related to land cover or geology. Finally, we outline how this approach might support the planning of sensor networks within a catchment or the conceptualisation of a hydrological model.

  3. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Science.gov (United States)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2017-07-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  4. Remote spectral identification of surface aggregates by thermal imaging techniques - Progress report

    Science.gov (United States)

    Scholen, Douglas E.; Clerke, William H.; Burns, Gregory S.

    1991-01-01

    The NASA Thermal Infrared Multispectral Scanner (TIMS) has been successfully used for the remote identification of a variety of soil and aggregate deposits in vegetated areas of two states. Over three million cubic meters of gravel deposits were identified from the imagery during a two year period. Verification was accomplished by ground reconnaissance using drilling machinery and by ground instrumentation. The method has been used to differentiate between fine and coarse grained soils, and gravel deposits. The deposits were found to have been naturally sorted according to grain size by depositional processes, providing each deposit with distinct spectral qualities. It was found that the masking effects of relatively dense vegetation were largely overcome by using imagery acquired at higher altitudes above terrain than 9000 meters, due to loss of resolution of the finer detail. The mechanics of image resolution are discussed, a method of data analysis used is described, and sample spectral signatures are illustrated.

  5. Landsat 8 Thermal Infrared Sensor Geometric Characterization and Calibration

    Directory of Open Access Journals (Sweden)

    James Storey

    2014-11-01

    Full Text Available The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI and the Thermal Infrared Sensor (TIRS. The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  6. Multispectral, thermal infrared satellite data for geologic applications

    Science.gov (United States)

    Blodget, H. W.; Andre, C. G.; Marcell, R.; Minor, T. B.

    1985-01-01

    The value of multispectral thermal infrared satellite data for geologic mapping was assessed, applying the principal component and canonical analysis techniques to the images of the central part of the Arabian Peninsula (a 200 x 300 km area). Low resolution thermal infrared (TIR) data from the Nimbus 5 Surface Composition Mapping Radiometer (SCMR) and the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) were used. Color images included an 8.8 micrometer (SCMR) and 3.7 and 10.8 micrometer (AVHRR-night) data, ratioed AVHRR day/night TIR data, ratioed AVHRR reflected radiation data, and transformed 8- and 10-band TIR plus reflected radiation data. The results clearly demonstrated the potential geologic value of multispectral TIR data. Igneous and metamorphic units could be separated as a class (although not from each other except for young calc-alkaline granites). Some previously unmapped extensions of mapped faults below thick sedimentary units could be delineated. No single enhancement technique displayed all the potential information, implying that they should be used together.

  7. Secure thermal infrared communications using engineered blackbody radiation.

    Science.gov (United States)

    Liang, Xiaoxin; Hu, Fangjing; Yan, Yuepeng; Lucyszyn, Stepan

    2014-06-10

    The thermal (emitted) infrared frequency bands, from 20-40 THz and 60-100 THz, are best known for applications in thermography. This underused and unregulated part of the spectral range offers opportunities for the development of secure communications. The 'THz Torch' concept was recently presented by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels; the energy in each channel is then independently pulsed modulated and multiplexing schemes are introduced to create a robust form of short-range secure communications in the far/mid infrared. To date, octave bandwidth (25-50 THz) single-channel links have been demonstrated with 380 bps speeds. Multi-channel 'THz Torch' frequency division multiplexing (FDM) and frequency-hopping spread-spectrum (FHSS) schemes have been proposed, but only a slow 40 bps FDM scheme has been demonstrated experimentally. Here, we report a much faster 1,280 bps FDM implementation. In addition, an experimental proof-of-concept FHSS scheme is demonstrated for the first time, having a 320 bps data rate. With both 4-channel multiplexing schemes, measured bit error rates (BERs) of < 10(-6) are achieved over a distance of 2.5 cm. Our approach represents a new paradigm in the way niche secure communications can be established over short links.

  8. Landsat 8 thermal infrared sensor geometric characterization and calibration

    Science.gov (United States)

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  9. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: a systematic review and meta-analysis.

    Science.gov (United States)

    Sanchis-Sánchez, Enrique; Vergara-Hernández, Carlos; Cibrián, Rosa M; Salvador, Rosario; Sanchis, Enrique; Codoñer-Franch, Pilar

    2014-10-01

    Musculoskeletal injuries occur frequently. Diagnostic tests using ionizing radiation can lead to problems for patients, and infrared thermal imaging could be useful when diagnosing these injuries. A systematic review was performed to determine the diagnostic accuracy of infrared thermal imaging in patients with musculoskeletal injuries. A meta-analysis of three studies evaluating stress fractures was performed and found a lack of support for the usefulness of infrared thermal imaging in musculoskeletal injuries diagnosis.

  10. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences].

    Science.gov (United States)

    Liu, Li; Fu, Qiao-yan; Shi, Ting-ting; Wang, Ai-chun; Zhang, Xue-wen

    2014-08-01

    Since HJ-1B was launched, 7 sets of blackbody data have been used to calculate onboard calibration coefficients, but the research work on the validation of coefficients is rare. According to the onboard calibration principle, calibration coefficients of HJ-1B thermal infrared channel on Sep 14th, 2009 were calculated with the half-width, moments and look-up table methods. MODIS was selected for the reference sensor, and algorithms of spectral match were improved between the HJ-1B thermal infrared channel and MODIS 31, 32 channels based on the spectral response divergence. The relationship of top of atmosphere (TOA) radiance between the remote sensors was calculated, based on which the surface leaving brightness temperature was calculated by Planck function to validate the brightness temperature calculated through the onboard calibration coefficients. The equivalent brightness temperature calculated by spectral response divergence method is 285.97 K, and the inversion brightness temperature calculated by half-width, moments and look-up table methods is 288.77, 274.52 and 285.97 K respectively. The difference between the inversion brightness temperature and the equivalent brightness temperature is 2.8, -11.46 and 0.02 K, respectively, which demonstrate that onboard calibration coefficients calculated by the look-up table method has better precision and feasibility.

  11. Evaluation of Radiometric Performance for the Thermal Infrared Sensor Onboard Landsat 8

    Directory of Open Access Journals (Sweden)

    Huazhong Ren

    2014-12-01

    Full Text Available The radiometric performance of remotely-sensed images is important for the applications of such data in monitoring land surface, ocean and atmospheric status. One requirement placed on the Thermal Infrared Sensor (TIRS onboard Landsat 8 was that the noise-equivalent change in temperature (NEΔT should be ≤0.4 K at 300 K for its two thermal infrared bands. In order to optimize the use of TIRS data, this study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over uniform ground surfaces, including lake, deep ocean, snow, desert and Gobi, as well as dense vegetation. Results showed that the NEΔTs of the two bands were 0.051 and 0.06 K at 300 K, which exceeded the design specification by an order of magnitude. The effect of NEΔT on the land surface temperature (LST retrieval using a split window algorithm was discussed, and the estimated NEΔT could contribute only 3.5% to the final LST error in theory, whereas the required NEΔT could contribute up to 26.4%. Low NEΔT could improve the application of TIRS images. However, efforts are needed in the future to remove the effects of unwanted stray light that appears in the current TIRS images.

  12. Remote Electric Power Transfer Between Spacecrafts by Infrared Beamed Energy

    Science.gov (United States)

    Chertok, Boris E.; Evdokimov, Roman A.; Legostaev, Victor P.; Lopota, Vitaliy A.; Sokolov, Boris A.; Tugaenko, Vjacheslav Yu.

    2011-11-01

    High efficient wireless electric energy transmission (WET) technology between spacecrafts by laser channel is proposed. WET systems could be used for remote power supplying of different consumers in space. First of all, there are autonomous technology modules for microgravity experiments, micro and nano satellites, different equipment for explorations of planetary surfaces, space transport vehicles with electric rocket propulsion systems. The main components of the WET technology consist of radiation sources on the base of semiconductor IR laser diodes; systems for narrow laser beam creation; special photovoltaic receivers for conversion of monochromatic IR radiation with high energy density to electric power. The multistage space experiment for WET technology testing is described. During this experiment energy will be transmitted from International Space Station to another spacecrafts like cargo transport vehicles (Progress or/and ATV) and micro satellites.

  13. The facial expression of schizophrenic patients applied with infrared thermal facial image sequence

    National Research Council Canada - National Science Library

    Bo-Lin Jian; Chieh-Li Chen; Wen-Lin Chu; Min-Wei Huang

    2017-01-01

    .... Thus, this study used non-contact infrared thermal facial images (ITFIs) to analyze facial temperature changes evoked by different emotions in moderately and markedly ill schizophrenia patients...

  14. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    Science.gov (United States)

    Jaggi, S.

    1993-01-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  15. Thermal surveillance of active volcanoes. [infrared scanner recordings of thermal anomalies of Mt. Baker volcano

    Science.gov (United States)

    Friedman, J. D. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.

  16. The MAMBA Thermal Infrared All-Sky Camera

    Science.gov (United States)

    Pier, Edward Alan; Tinn Chee Jim, Kevin; Lewis, Peter

    2015-08-01

    We are developing a system to continually and simultaneously monitor infrared atmospheric extinction along all lines of sight. This system combines a next generation radiometrically calibrated thermal all-sky camera, a weather station, and a neural net trained on historic Radiosonde profiles. Oceanit Laboratories, Inc. will market this system as an off the shelf unit. Custom-built thermal all sky cameras have previously been used on Haleakala, Cerro Tololo, and elsewhere. Except for RASICAM on Cerro Tololo, they have not been radiometrically calibrated and have been used only for qualitative cloud monitoring. The new system will have improved sky coverage, resolution, and noise properties with respect to RASICAM, and simulations show it will be able to infer atmospheric transmittance to within a few percent. The all sky camera will combine an equiresolution optical design with an off-the-shelf thermal detector and in field blackbody calibration sources to provide uniform sensitivity and radiometric accuracy across the sky at relatively low cost. Our goal is to make such systems ubiqitous at observatories around the world.

  17. PHyTIR - A Prototype Thermal Infrared Radiometer

    Science.gov (United States)

    Jau, Bruno M.; Hook, Simon J.; Johnson, William R.; Foote, Marc C.; Paine, Christopher G.; Pannell, Zack W.; Smythe, Robert F.; Kuan, Gary M.; Jakoboski, Julie K.; Eng, Bjorn T.

    2013-01-01

    This paper describes the PHyTIR (Prototype HyspIRI Thermal Infrared Radiometer) instrument, which is the engineering model for the proposed HyspIRI (Hyperspectral Infrared Imager) earth observing instrument. The HyspIRI mission would be comprised of the HyspIRI TIR (Thermal Infrared Imager), and a VSWIR (Visible Short-Wave Infra-Red Imaging Spectrometer). Both instruments would be used to address key science questions related to the earth's carbon cycle, ecosystems, climate, and solid earth properties. Data gathering of volcanic activities, earthquakes, wildfires, water use and availability, urbanization, and land surface compositions and changes, would aid the predictions and evaluations of such events and the impact they create. Even though the proposed technology for the HyspIRI imager is mature, the PHyTIR prototype is needed to advance the technology levels for several of the instrument's key components, and to reduce risks, in particular to validate 1) the higher sensitivity, spatial resolution, and higher throughput required for this focal plane array, 2) the pointing accuracy, 2) the characteristics of several spectral channels, and 4) the use of ambient temperature optics. The PHyTIR telescope consists of the focal plane assembly that is housed within a cold housing located inside a vacuum enclosure; all mounted to a bulkhead, and an optical train that consists of 3 powered mirrors; extending to both sides of the bulkhead. A yoke connects the telescope to a scan mirror. The rotating mirror enables to scan- a large track on the ground. This structure is supported by kinematic mounts, linking the telescope assembly to a base plate that would also become the spacecraft interface for HyspIRI. The focal plane's cooling units are also mounted to the base plate, as is an overall enclosure that has two viewing ports with large exterior baffles, shielding the focal plane from incoming stray light. PHyTIR's electronics is distributed inside and near the vacuum

  18. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  19. A remote controllable fiber-type near-infrared light-responsive actuator.

    Science.gov (United States)

    Shi, Qiuwei; Li, Jiahui; Hou, Chengyi; Shao, Yuanlong; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2017-10-10

    A novel near-infrared (NIR) light-responsive sodium polyacrylate (PAAS)/graphene oxide (GO) fiber with a torsional pre-deformation structure is reported to realize remote control actuation. The torsional pre-deformed PAAS/GO fiber exhibited various actuation phenomena, under the control of a low powered near-infrared light (50 mW cm(-2)), such as rotating in a low-temperature range (<25 °C), rolling a distance of 10 times of its diameter within 10 s, and even driving the shape change of a fabric (the weight is as high as 20 times of the fiber itself).

  20. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  1. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  2. Using Thermal Infrared Absorption and Emission to Determine Trace Gases

    Science.gov (United States)

    Clerbaux, Cathy; Drummond, James R.; Flaud, Jean-Marie; Orphal, Johannes

    The light emerging from the top of the atmosphere in the greater part of the infrared region is thermal radiation from the Earth's surface. The resultant spectra obtained depend on the temperature difference between the emitting feature and absorbing gas. In this region the greenhouse gases, carbon dioxide, CO2, methane, CH4, ozone, O3, and water, H2O, are observed as well as carbon monoxide, CO, a product indicative of fossil fuel combustion, methanol, CH3OH, from biomass burning, and ammonia, NH3, from agriclulture. Chapter 3 describes the techniques for retrieving atmospheric abundances of these and other species from a number of satellite instruments, and concludes with suggestions for future developments.

  3. An infrared radiation based thermal biosensor for enzymatic biochemical reactions.

    Science.gov (United States)

    Zhang, Lei; Dong, Tao; Zhao, Xinyan; Yang, Zhaochu; Pires, Nuno M M

    2012-01-01

    In this paper, a thermal biosensor based on the infrared radiation energy is proposed for calorimetric measurement of biochemical reactions. Having a good structure design combined with MEMS technology as well as employing the Si /SiGe quantum well sensing material with a high TCR and low 1/f noise, the sensor shows potentials to be high sensitive and real-time. The urea enzymatic reaction was tested to verify the performance of sensor, which demonstrates a linear detection range from 0.5mM to 150mM and a relative standard deviation less than 1%. For the sensor fabrication, wafer-level transfer bonding is a key process, which makes the integration of quantum well material and a free standing structure possible. It reduces the heat loss from the sensor to the surrounding environment.

  4. A method for accurate temperature measurement using infrared thermal camera.

    Science.gov (United States)

    Tokunaga, Tomoharu; Narushima, Takashi; Yonezawa, Tetsu; Sudo, Takayuki; Okubo, Shuichi; Komatsubara, Shigeyuki; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2012-08-01

    The temperature distribution on a centre-holed thin foil of molybdenum, used as a sample and heated using a sample-heating holder for electron microscopy, was measured using an infrared thermal camera. The temperature on the heated foil area located near the heating stage of the heating holder is almost equal to the temperature on the heating stage. However, during the measurement of the temperature at the edge of the hole of the foil located farthest from the heating stage, a drop in temperature should be taken into consideration; however, so far, no method has been developed to locally measure the temperature distribution on the heated sample. In this study, a method for the accurate measurement of temperature distribution on heated samples for electron microscopy is discussed.

  5. Multilayer cloud detection and retrieval of cloud physical and optical properties from thermal infrared measurements

    Science.gov (United States)

    Iwabuchi, H.; Tokoro, Y.; Saito, M.; Putri, N. S.; Katagiri, S.; Sekiguchi, M.

    2015-12-01

    Recent studies using active remote sensing have revealed significant occurrence of multi-layer cloud. Detection of multi-layer cloud is important in passive remote sensing for quality assessment of cloud property retrieval and identification of uncertain retrievals. An algorithm using several thermal infrared (TIR) bands at 6-13.5 micron wavelengths to detect multilayer cloud and retrieve cloud physical and optical properties including cloud thermodynamic phase is developed. This significantly extends applicability of passive remote sensing and improves accuracy of cloud property retrieval. The method uses the split window bands as well as the carbon dioxide and water vapor absorption bands. The forward model uses the two-stream approximation to solve radiative transfer with gaseous absorption treated by the correlated-k distribution method. Brightness temperature errors are evaluated by model-to-model and model-to-measurement comparisons. Top pressure of lower cloud in multi-layer cloud column can be retrieved if the upper cloud optical thickness is less than 6. The optimal estimation method is used to simultaneously infer several cloud properties including water path, effective particle radius and cloud-top pressure. The method is applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) using 10 TIR bands and compared to MODIS operational product and active remote sensing measurements, showing promising results. The TIR method well detects optically thin clouds and retrieve their properties with relatively high accuracy. Particularly, cloud-top of optically thin cloud is estimated well. Multi-layer cloud detection works usually, while the TIR measurements miss very thin cloud that appears near the tropopause. The algorithm will be applied to frequent observation data from a new Japanese geostationary satellite, Himawari-8.

  6. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  7. Development of Thermal Infrared Sensor to Supplement Operational Land Imager

    Science.gov (United States)

    Shu, Peter; Waczynski, Augustyn; Kan, Emily; Wen, Yiting; Rosenberry, Robert

    2012-01-01

    The thermal infrared sensor (TIRS) is a quantum well infrared photodetector (QWIP)-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 m. The focal plane will contain three 640 512 QWIP arrays mounted onto a silicon substrate. The readout integrated circuit (ROIC) addresses each pixel on the QWIP arrays and reads out the pixel value (signal). The ROIC is controlled by the focal plane electronics (FPE) by means of clock signals and bias voltage value. The means of how the FPE is designed to control and interact with the TIRS focal plane assembly (FPA) is the basis for this work. The technology developed under the FPE is for the TIRS focal plane assembly (FPA). The FPE must interact with the FPA to command and control the FPA, extract analog signals from the FPA, and then convert the analog signals to digital format and send them via a serial link (USB) to a computer. The FPE accomplishes the described functions by converting electrical power from generic power supplies to the required bias power that is needed by the FPA. The FPE also generates digital clocking signals and shifts the typical transistor-to-transistor logic (TTL) to }5 V required by the FPA. The FPE also uses an application- specific integrated circuit (ASIC) named System Image, Digitizing, Enhancing, Controlling, And Retrieving (SIDECAR) from Teledyne Corp. to generate the clocking patterns commanded by the user. The uniqueness of the FPE for TIRS lies in that the TIRS FPA has three QWIP detector arrays, and all three detector arrays must be in synchronization while in operation. This is to avoid data skewing while observing Earth flying in space. The observing scenario may be customized by uploading new control software to the SIDECAR.

  8. Optical properties of mineral dust aerosol in the thermal infrared

    Science.gov (United States)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  9. Analytical tools for thermal infrared engineerig: a thermal sensor simulation package

    Science.gov (United States)

    Jaggi, Sandeep

    1992-09-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration. To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering'--ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as SNR, NER, NETD etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters. In addition, ATTIRE can be used as a tutorial for understanding the distribution of thermal flux or solar irradiance over selected bandwidths of the spectrum. This spectrally distributed incident flux can then be analyzed as it propagates through the subsystems that constitute the entire sensor. ATTIRE provides a variety of functions ranging from plotting black-body curves for varying bandwidths and computing the integral flux, to performing transfer function analysis of the sensor system. The package runs from a menu- driven interface in a PC-DOS environment. Each sub-system of the sensor is represented by windows and icons. A user-friendly mouse-controlled point-and-click interface allows the user to simulate various aspects of a sensor. The package can simulate a theoretical sensor system. Trade-off studies can be easily done by changing the appropriate parameters and monitoring the effect of the system performance. The package can provide plots of system performance versus any system parameter. A parameter (such as the entrance aperture of the optics) could be varied and its effect on another parameter (e.g., NETD) can be plotted. A third parameter (e.g., the

  10. Use of Near Infrared Spectroscopy to Asses Remote Ischemic Preconditioning in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Jana Ambrozic

    2013-01-01

    Full Text Available Remote ischemic preconditioning (IPC is a procedure during which brief periods of ischemia protect distant organ from ischemia-reperfusion injury. Appling IPC on an upper arm, this phenomenon has been demonstrated in several studies. Skeletal muscle tissue oxygenation at rest (StO2 and StO2 deoxygenation rate during vascular occlusion can be measured using near infrared spectroscopy (NIRS. We aimed to investigate the effects of remote upper arm IPC on StO2 and flow-mediated dilatation (FMD in healthy male volunteers. In a randomized controlled crossover trial, resting StO2, StO2 deoxygenation rate, and FMD were measured on testing arm at baseline and after 60 minutes. After basal measurements IPC protocol on a contralateral arm was performed. StO2 deoxygenation rate was significantly lower after remote, the IPC cycles in comparison to deoxygenation rate at baseline (9.7±2.6 versus 7.5±2.5%, P=0.002. Comparison of deoxygenation rates showed a significant difference between the IPC and the control protocol (F=5.512, P=0.003. No differences were observed in FMD before and after remote IPC and in the control protocol. In healthy young adults, remote IPC reduces StO2 deoxygenation rate but has no significant impact on FMD. NIRS technique offers a novel approach to asses skeletal muscle adaptation in response to remote ischemic stimuli.

  11. ARIEL: Atmospheric Remote-Sensing Infrared Exoplanet Large-survey

    Science.gov (United States)

    Tinetti, Giovanna

    2015-11-01

    More than 1,000 extrasolar systems have been discovered, hosting nearly 2,000 exoplanets. Ongoing and planned ESA and NASA missions from space such as GAIA, Cheops, PLATO, K2 and TESS will increase the number of known systems to tens of thousands.Of all these exoplanets we know very little, i.e. their orbital data and, for some of these, their physical parameters such as their size and mass. In the past decade, pioneering results have been obtained using transit spectroscopy with Hubble, Spitzer and ground-based facilities, enabling the detection of a few of the most abundant ionic, atomic and molecular species and to constrain the planet’s thermal structure. Future general purpose facilities with large collecting areas will allow the acquisition of better exoplanet spectra, compared to the currently available, especially from fainter targets. A few tens of planets will be observed with JWST and E-ELT in great detail.A breakthrough in our understanding of planet formation and evolution mechanisms will only happen through the observation of the planetary bulk and atmospheric composition of a statistically large sample of planets. This requires conducting spectroscopic observations covering simultaneously a broad spectral region from the visible to the mid-IR. It also requires a dedicated space mission with the necessary photometric stability to perform these challenging measurements and sufficient agility to observe multiple times ~500 exoplanets over mission life-time.The ESA-M4 mission candidate ARIEL is designed to accomplish this goal and will provide a complete, statistically significant sample of gas-giants, Neptunes and super-Earths with temperatures hotter than 600K, as these types of planets will allow direct observation of their bulk properties, enabling us to constrain models of planet formation and evolution.The ARIEL consortium currently includes academic institutes and industry from eleven countries in Europe; the consortium is open and invites new

  12. Using thermal infrared imagery produced by unmanned air vehicles to evaluate locations of ecological road structures

    Directory of Open Access Journals (Sweden)

    Sercan Gülci

    2016-07-01

    Full Text Available The aerial photos and satellite images are widely used and cost efficient data for monitoring and analysis of large areas in forestry activities. Nowadays, accurate and high resolution remote sensing data can be generated for large areas by using Unmanned Aerial Vehicles (UAV integrated with sensors working in various spectral bands. Besides, the UAV systems (UAVs have been used in interdisciplinary studies to produce data of large scale forested areas for desired time periods (i.e. in different seasons or different times of a day. In recent years, it has become more important to conduct studies on determination of wildlife corridors for controlling and planning of habitat fragmentation of wild animals that need vast living areas. The wildlife corridors are a very important base for the determination of a road network planning and placement of ecological road structures (passages, as well as for the assessment of special and sensitive areas such as riparian zones within the forest. It is possible to evaluate wildlife corridors for large areas within a shorter time by using data produced by ground measurements, and remote sensing and viewer systems (i.e. photo-trap, radar and etc., as well as by using remote sensing data generated by UAVs. Ecological behaviors and activities (i.e. sheltering, feeding, mating, etc. of wild animals vary spatially and temporally. Some species are active in their habitats at day time, while some species are active during the night time. One of the most effective methods for evaluation of night time animals is utilizing heat sensitive thermal cameras that can be used to collect thermal infrared images with the night vision feature. When the weather conditions are suitable for a flight, UAVs assist for determining location of corridors effectively and accurately for moving wild animals at any time of the day. Then, the most suitable locations for ecological road structures can be determined based on wildlife corridor

  13. Thermal comfort of seats as visualized by infrared thermography.

    Science.gov (United States)

    Sales, Rosemary Bom Conselho; Pereira, Romeu Rodrigues; Aguilar, Maria Teresa Paulino; Cardoso, Antônio Valadão

    2017-07-01

    Published studies that deal with the question of how the temperature of chair seats influences human activities are few, but the studies considering such a factor, a function of the type of material, could contribute to improvements in the design of chairs. This study evaluates seat temperatures of 8 types of chairs made of different materials. The parts of the furniture that people come into contact with, and the thermal response of the material to heating and cooling have been evaluated. Infrared thermography was used for this, as it is a non-contact technique that does not present any type of risk in the measurement of temperatures. Seats made of synthetic leather (leatherette), wood and polyester fabric were found to have the highest temperatures, and the plywood seat showed the lowest. The study has also revealed that thermography can contribute to studies of thermal comfort of chair seats in addition to determining the most suitable material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Subsurface thermal coagulation of tissues using near infrared lasers

    Science.gov (United States)

    Chang, Chun-Hung Jack

    Noninvasive laser therapy is currently limited primarily to cosmetic dermatological applications such as skin resurfacing, hair removal, tattoo removal and treatment of vascular birthmarks. In order to expand applications of noninvasive laser therapy, deeper optical penetration of laser radiation in tissue as well as more aggressive cooling of the tissue surface is necessary. The near-infrared laser wavelength of 1075 nm was found to be the optimal laser wavelength for creation of deep subsurface thermal lesions in liver tissue, ex vivo, with contact cooling, preserving a surface tissue layer of 2 mm. Monte Carlo light transport, heat transfer, and Arrhenius integral thermal damage simulations were conducted at this wavelength, showing good agreement between experiment and simulations. Building on the initial results, our goal is to develop new noninvasive laser therapies for application in urology, specifically for treatment of female stress urinary incontinence (SUI). Various laser balloon probes including side-firing and diffusing fibers were designed and tested for both transvaginal and transurethral approaches to treatment. The transvaginal approach showed the highest feasibility. To further increase optical penetration depth, various types and concentrations of optical clearing agents were also explored. Three cadavers studies were performed to investigate and demonstrate the feasibility of laser treatment for SUI.

  15. Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data.

    Science.gov (United States)

    Qian, Yong-Gang; Wang, Ning; Ma, Ling-Ling; Liu, Yao-Kai; Wu, Hua; Tang, Bo-Hui; Tang, Ling-Li; Li, Chuan-Rong

    2016-01-25

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes at local/global scales. In this paper, a LST retrieval method was proposed from airborne multispectral scanner data comparing one mid-infrared (MIR) channel and one thermal infrared (TIR) channel with the land surface emissivity given as a priori knowledge. To remove the influence of the direct solar radiance efficiently, a relationship between the direct solar radiance and water vapor content and the view zenith angle and solar zenith angle was established. Then, LST could be retrieved with a split-window algorithm from MIR/TIR data. Finally, the proposed algorithm was applied to the actual airborne flight data and validated with in situ measurements of land surface types in the Baotou site in China on 17 October 2014. The results demonstrate that the difference between the retrieved and in situ LST was less than 1.5 K. The bais, RMSE, and standard deviation of the retrieved LST were 0.156 K, 0.883 K, and 0.869 K, respectively, for samples.

  16. Tree health monitoring: perspectives from the visible and near infrared remote sensing

    Directory of Open Access Journals (Sweden)

    Gonthier P

    2012-05-01

    Full Text Available Based on a comprehensive literature analysis, we present a critical review of those optical remote sensing techniques operating with the visible (VIS and near infrared (NIR bands for the assessment of health in forest trees. Physical, biological and physio-pathological issues of VIS-NIR reflectance of leaves are described pointing out that a decrease of NIR reflectance is highly influenced by stress conditions on tree caused by abiotic and biotic factors. In many cases the NIR spectral band is more sensitive than the VIS one, allowing to detect plant stress long before the appearance of visible symptoms. A description of the main remote sensing methods is provided, including radiometric measurements and multispectral imaging approaches. False colour infrared (FCIR images collection and their photointerpretation and processing are shown as they represent the most relevant means to acquire information of canopy from its reflectance properties. The amount and the quality of the obtainable data depend on: (i field conditions; (ii the type of the adopted instrument (camera, radiometer; (iii the recording system position (ground platforms, aircraft, satellite; (iv the format of the data (analogical, digitalised or digital; and (v the photointerpretation technique. Results from literature are discussed stressing the limits of remote sensing methods. Remote sensing in VIS and NIR spectral bands is generally a powerful classification tool to detect and score tree stress. Nevertheless, it is not a diagnostic tool in that it does not provide information on the cause of stress. Moreover, the method should be adequately tested at single tree level for many important pathogens, in particular root rot, butt rot and stem rot fungi. In perspective, new high spatial resolution satellite images and their GIS software elaboration might be suitable to improve remote sensing analysis.

  17. Applications of thermal infrared imagery for energy conservation and environmental surveys

    Science.gov (United States)

    Carney, J. R.; Vogel, T. C.; Howard, G. E., Jr.; Love, E. R.

    1977-01-01

    The survey procedures, developed during the winter and summer of 1976, employ color and color infrared aerial photography, thermal infrared imagery, and a handheld infrared imaging device. The resulting imagery was used to detect building heat losses, deteriorated insulation in built-up type building roofs, and defective underground steam lines. The handheld thermal infrared device, used in conjunction with the aerial thermal infrared imagery, provided a method for detecting and locating those roof areas that were underlain with wet insulation. In addition, the handheld infrared device was employed to conduct a survey of a U.S. Army installation's electrical distribution system under full operating loads. This survey proved to be cost effective procedure for detecting faulty electrical insulators and connections that if allowed to persist could have resulted in both safety hazards and loss in production.

  18. Thermal Infrared Sensor (TIRS) Instrument Thermal Subsystem Design and Lessons Learned

    Science.gov (United States)

    Otero, Veronica; Mosier, Carol; Neuberger, David

    2013-01-01

    The Thermal Infrared Sensor (TIRS) is one of two instruments on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in February of 2013. The TIRS instrument was officially added to the mission later in the flow, which led to a highly aggressive schedule that became one of the main drivers during instrument development. The thermal subsystem design of the TIRS Sensor Unit is comprised of five thermal zones which range in temperature from less than 43 Kelvin to 330 Kelvin. Most zones are proportional heater controlled, and all are within a volume of 35 cu.ft. A two-stage cryocooler is used to cool the "cold stage" including three QWIP detectors to less than 43 Kelvin, and cool the "warm stage" to 105 Kelvin. The excess power dissipation from the cryocooler is rejected via ammonia transport heat pipes to a dedicated Cryocooler Radiator with embedded ammonia heat pipes. The cryogenic subsystem includes a series of shells used to radiatively and conductively isolate the cold stage from the warmer surroundings. The Optical System (telescope) is passively cooled to 180-190 Kelvin using a "thermal link" (comprised of a Flexible Conductive Thermal Strap and an APG Bar) which couples the telescope stage to a dedicated radiator with embedded ethane heat pipes. The Scene Select Mechanism, which is responsible for moving the Scene Select Mirror to three distinct positions (including Nadir, Space, and On-board Black Body Calibrator pointing), runs nominally at 278 Kelvin and is thermally isolated from the cryogenic thermal zones. The On-board Black Body Calibrator requires a dedicated radiator which allows for a temperature range of 260-330 Kelvin at the Source. The detectors are powered by the FPE Box, which is mounted to the nadir external surface of the composite honeycomb structure. There are two additional electronics boxes which are wet-mounted directly to the spacecraft shear panel, the Main Electronics Box and Cryocooler Electronics Box; thermal

  19. On-orbit Validation and Testing of Thermal Infrared Radiance Accuracy for Spaceborne CO2 Measurements

    Science.gov (United States)

    Gero, P.; Knuteson, R. O.; Best, F. A.; Adler, D. A.; Pettersen, C.; Revercomb, H. E.; Taylor, J. K.; Tobin, D.; Shiomi, K.

    2013-12-01

    Measurements of spectrally resolved thermal infrared (TIR) radiance contain signatures of carbon dioxide that can provide information about its distribution that is complementary to shortwave infrared measurements. In addition, simultaneous retrievals of temperature, water vapor, and other atmospheric constituents can be performed, which provide further insight into scientific questions about the carbon cycle. These measurements of spectral TIR radiance, however, must be made with demonstrable high-accuracy. The University of Wisconsin Space Science and Engineering Center, with support from the NASA Instrument Incubator Program (IIP), has developed the On-orbit Absolute Radiance Standard (OARS), an integrated subsystem that provides on-orbit end-to-end radiometric accuracy validation for infrared remote sensing instruments. The OARS constitutes a high-emissivity (>0.999) blackbody cavity, with an on-board emissivity monitor with uncertainty better than 0.06%, as well as embedded phase change cells that provide on-orbit absolute temperature determination with uncertainties better than 5 mK (k=3). The combined uncertainty of the subsystem is 0.045 K (k=3) in the effective brightness temperature of the blackbody cavity. The OARS was designed to meet the stringent requirements of climate benchmark missions, which require measurement uncertainties better than 0.1 K (k=3) in brightness temperature for the detection of spectral climate signatures. In this paper, we show the sensitivity of TIR radiation to perturbations in atmospheric carbon dioxide concentration, and we present a feasibility study for validating the measurements made by a TIR sensor using the OARS concept in order to make spaceborne measurements of CO2 with demonstrable on-orbit accuracy.

  20. Estimating Clothing Thermal Insulation Using an Infrared Camera

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Lee

    2016-03-01

    Full Text Available In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively.

  1. A Thermal Infrared Radiation Parameterization for Atmospheric Studies

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)

    2001-01-01

    This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.

  2. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    Science.gov (United States)

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  3. Estimating Clothing Thermal Insulation Using an Infrared Camera

    Science.gov (United States)

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively. PMID:27005625

  4. Estimating Clothing Thermal Insulation Using an Infrared Camera.

    Science.gov (United States)

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-03-09

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing's temperature is more accurate within 3% error and lower clothing's temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively.

  5. Thermal consequences of colour and near-infrared reflectance.

    Science.gov (United States)

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  6. Using the thermal infrared multispectral scanner (TIMS) to estimate surface thermal responses

    Science.gov (United States)

    Luvall, J. C.; Holbo, H. R.

    1987-01-01

    A series of measurements was conducted over the H.J. Andrews, Oregon, experimental coniferous forest, using airborne thermal infrared multispectral scanner (TIMS). Flight lines overlapped, with a 28-min time difference between flight lines. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture were used for atmospheric radiance corrections of the TIMS data. Surface temperature differences over time between flight lines were used to develop thermal response numbers (TRNs) which characterized the thermal response (in KJ/sq m/C, where K is the measured incoming solar radiation) of the different surface types. The surface types included a mature forest (canopy dominated by dense crowns of Pseudosuga menziesii, with a secondary canopy of dense Tsuga heterophylla, and also a tall shrub layer of Acer circinatum) and a two-year-old clear-cut. The temperature distribution, within TIMS thermal images was found to reflect the surface type examined. The clear-cut surface had the lowest TRN, while mature Douglas fir the highest.

  7. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration

    Science.gov (United States)

    Barsi, Julia A.; Shott, John R.; Raqueno, Nina G.; Markham, Brian L.; Radocinski, Robert G.

    2014-01-01

    Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq m·sr·micrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq m·sr·micrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have

  8. Landsat-8 Thermal Infrared Sensor (TIRS Vicarious Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Julia A. Barsi

    2014-11-01

    Full Text Available Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS, a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively. They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI, also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL and the Rochester Institute of Technology (RIT, both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 and 1.67 K at 300 K. Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed

  9. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Directory of Open Access Journals (Sweden)

    Frize Monique

    2004-06-01

    Full Text Available Abstract Background The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. Methods This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. Results The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure

  10. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Science.gov (United States)

    Herry, Christophe L; Frize, Monique

    2004-01-01

    Background The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. Methods This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. Results The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs) delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure of distance between

  11. Study of coal mine fire in Damodar River basin,India using thermal remote sensing technique

    Science.gov (United States)

    Chatterjee, Alokesh; Bhattacharya, Asis

    Coal mine fires are a serious socio-economic problem because of hazards to health and the environment including toxic fumes, and subsidence of surface infrastructures. Globally, thou-sands of inextinguishable mine fires are burning today, especially in China and India. In India, Damodar River basin is the repository of the 46The entire Damodar River basin exhibits in an almost linear fashion in the central part of the Jharkhand and western part of West Bengal States of India. The coal fields are adjacent to the Damodar River or its tributaries. The general trends of coalfields are nearly east-west and showing gentle dip towards south. The area is bounded within Latitude 2330 -2350N and Longitude 8456 -8648E. Since all the coal deposits of Damodar River basin were formed in almost similar sedimentary environmental condition and are of equivalent geologic age; and the coal grades are more or less comparable, it is highly probable that the other coal fields in this region are also vulnerable to mine fires. Aerial and Space borne Thermal Infra-Red Remote Sensing method has been proved to be the most cost effective and time saving method to find out the thermal anomalies present in an area. Here, an attempt has been made to find out the presence of coalmine fire and their aerial extent in Damodar River basin including the well known Jharia and Raniganj coalfields using Space borne single band thermal IR data of Landsat 7 Enhanced Thematic Mapper (ETM+) sensor. Two daytime Landsat ETM+ images (path / row:140/44), acquired on 07.03.2001 and 24.01.2003, covering visible, one near Infrared (NIR), two short wave infrared (SWIR), one thermal infrared (TIR) and a panchromatic band, were used for the present study. Standard procedure of calculating surface temperature from band 6 of Landsat ETM+ data was followed. These include atmospheric corrections, data normalization for sun elevation angle, conversion of image DN values to spectral radiance and spectral radiance to radiant

  12. Feasibility and Accuracy of Thermophysical Estimation of Asteroid 162173 Ryugu (1999 JU3) from the Hayabusa2 Thermal Infrared Imager

    Science.gov (United States)

    Takita, Jun; Senshu, Hiroki; Tanaka, Satoshi

    2017-07-01

    We present the results of a numerical study to prepare for the remote sensing of asteroid 162173 Ryugu (1999 JU3) using the Hayabusa2 thermal infrared imager (TIR). We simulated the thermal characteristics of the asteroid with a thermophysical model (TPM) using an ideal body with a smooth and spherical surface, and investigated its feasibility to determine the thermophysical properties of the asteroid under two possible spin vectors; (λ_{ecl}, β_{ecl}) = (73°, -62°) and (331°, 20°). Each of the simulated snapshots taken at various local times during the 1.5-year proximity phase was analyzed to estimate uncertainties of the diurnal thermal phase delay to infer the thermal inertia of Ryugu. The temperature in a pixel was simulated based on the specification of the imager and the observing geometry. Moreover, we carried out a regression analysis to estimate albedo and thermal emissivity from the time variation of surface temperature. We also investigated the feasibility of determining thermal phase delay in a first attempt using realistic rough surfaces. We found that precise determination of the thermal phase delay would be difficult in the (331°, 20°) spin type unless the surface was nearly smooth. In contrast, the thermal phase delay is likely to be observable even if the surface topography is moderately rough in the other spin type. From the smooth-surface model, we obtained a less than 20% error of thermal inertia on observation opportunities under the likely range of thermal inertia ≤ 1000 J m^{-2} s^{-1/2} K^{-1}. The error of thermal inertia exceeded 50% under a realistic surface with roughness.

  13. Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository

    Science.gov (United States)

    So, Stephen; Jeng, Evan; Smith, Clinton; Krueger, David; Wysocki, Gerard

    2010-09-01

    We describe our novel instrumentation architectures for infrared laser spectrometers. Compact, power efficient, low noise modules allow for optimized implementation of cell phone sized sensors using VCSELs, diode, and quantum cascade laser sources. These sensors can consume as little as 0.3W with full laser temperature (adapted to new optical configurations and applications. Such modules allow the development of flexible sensors, whether implementing closed path spectrometers, open path perimeter monitoring, or remote backscatter based sensors. This work is also the enabling technology for wireless sensor networks (WSN) of precision sensors, a desirable sensing paradigm for long term, wide area, precision, temporally and spatially resolved studies. This approach can complement existing remote sensing and mapping technologies including satellite observations and sparse networks of flux towers.

  14. Prospects for near-infrared technology in remotely triggered drug delivery.

    Science.gov (United States)

    Timko, Brian P; Kohane, Daniel S

    2014-11-01

    Remotely triggered drug delivery devices have recently been realized as injectable or implantable formulations that enable the patient or physician to control the timing and dose of drug release over an extended period. Such devices could increase patient compliance, maximize therapeutic effectiveness and minimize side effects. They can be triggered by near-infrared (NIR) light, which can harmlessly and painlessly pass through tissue at controlled doses and exposure times. We discuss the use of NIR-triggered devices and materials, with examples. Safety issues and future prospects are also addressed.

  15. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park

    Science.gov (United States)

    Vaughan, R. Greg; Keszthelyi, Laszlo P.; Lowenstern, Jacob B.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The overarching aim of this study was to use satellite thermal infrared (TIR) remote sensing to monitor geothermal activity within the Yellowstone geothermal area to meet the missions of both the U.S. Geological Survey and the Yellowstone National Park Geology Program. Specific goals were to: 1) address the challenges of monitoring the surface thermal characteristics of the > 10,000 spatially and temporally dynamic thermal features in the Park (including hot springs, pools, geysers, fumaroles, and mud pots) that are spread out over ~ 5000 km2, by using satellite TIR remote sensing tools (e.g., ASTER and MODIS), 2) to estimate the radiant geothermal heat flux (GHF) for Yellowstone's thermal areas, and 3) to identify normal, background thermal changes so that significant, abnormal changes can be recognized, should they ever occur (e.g., changes related to tectonic, hydrothermal, impending volcanic processes, or human activities, such as nearby geothermal development). ASTER TIR data (90-m pixels) were used to estimate the radiant GHF from all of Yellowstone's thermal features and update maps of thermal areas. MODIS TIR data (1-km pixels) were used to record background thermal radiance variations from March 2000 through December 2010 and establish thermal change detection limits. A lower limit for the radiant GHF estimated from ASTER TIR temperature data was established at ~ 2.0 GW, which is ~ 30–45% of the heat flux estimated through geochemical thermometry. Also, about 5 km2 of thermal areas was added to the geodatabase of mapped thermal areas. A decade-long time-series of MODIS TIR radiance data was dominated by seasonal cycles. A background subtraction technique was used in an attempt to isolate variations due to geothermal changes. Several statistically significant perturbations were noted in the time-series from Norris Geyser Basin, however many of these did not correspond to documented thermal disturbances. This study provides concrete examples of the

  16. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Directory of Open Access Journals (Sweden)

    Ran Liu

    2015-07-01

    Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  17. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  18. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Science.gov (United States)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  19. Use of UAV or remotely piloted aircraft and forward-looking infrared in forest, rural and wildland fire management: evaluation using simple economic analysis

    National Research Council Canada - National Science Library

    Christensen, B R

    2015-01-01

    .... This investigation looked at the potential incorporation of a newly emerging remote sensing technology, remotely piloted aircraft and forward-looking infrared investigated using a cost-benefit analysis...

  20. VO1/VO2 MARS INFRARED THERMAL MAPPER RESAMPLED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the Infrared Thermal Mapping (IRTM) data of Mars acquired by the Viking orbiters. The database contains the time, geometry, and radiative...

  1. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  2. In-Flight Calibration of the Thermal Infrared Sensor (TIRS) on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K.; Reuter, D.; Montanaro, M.; Hook, S.; Markham, B.

    2011-01-01

    Describe in-flight calibration for the Thermal Infrared Sensor (TIRS) (1) Overview of TIRS (2) On-orbit radiometric calibration (2a) Onboard calibrator (2b) Terrestrial sites (3) On-orbit geometric and spatial calibration

  3. Phase Retrieval on Undersampled Data from the Thermal Infrared Sensor (TIRS)

    Science.gov (United States)

    Bolcar, Matthew R.; Mentzell, Eric

    2011-01-01

    Phase retrieval was applied to under-sampled data from a thermal infrared imaging system to estimate defocus across the field of view (FOV). We compare phase retrieval estimated values to those obtained using an independent technique.

  4. Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    Science.gov (United States)

    Palluconi, F. D.; Meeks, G. R.

    1985-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction.

  5. Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: a case study

    Science.gov (United States)

    Effective and efficient methods are needed to map agricultural subsurface drainage systems. Visible (VIS), near infrared (NIR), and/or thermal infrared (TIR) imagery obtained by unmanned aircraft systems (UAS) may provide a means for determining drainage pipe locations. Preliminary UAS surveys wit...

  6. Comparison of three temperature control systems applications for a special homemade shortwave infrared spatial remote sensor

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band ranging from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper compares three different kinds of methods to control temperature of the sensor. First design uses a temperature control chip Max1978 from Maxim Company. Second design uses ADN8830 from ANALOG Company. Third design is based on FPGA device APA300. Experiment shows that MAX1978 has driving mosfet inside its chip which makes the stability is not appropriate for this homemade shortwave sensor. While the ADN8830 the supply power is limited to 5V, which also limits the driving power of the chip, experiments show that ADN8830 works very well when the voltage is below 5V, but the result is not acceptable when sensor demand more driving current. The FPGA design covers all the disadvantages above, but it introduced a new problem, the electrical circuit takes much more board resources than MAX1978 and ADN8830.

  7. Mineral Classification of Makhtesh Ramon in Israel Using Hyperspectral Longwave Infrared (LWIR Remote-Sensing Data

    Directory of Open Access Journals (Sweden)

    Gila Notesco

    2015-09-01

    Full Text Available Hyperspectral remote-sensing techniques offer an efficient procedure for mineral mapping, with a unique hyperspectral remote-sensing fingerprint in the longwave infrared spectral region enabling identification of the most abundant minerals in the continental crust—quartz and feldspars. This ability was examined by acquiring airborne data with the AisaOWL sensor over the Makhtesh Ramon area in Israel. The at-sensor radiance measured from each pixel in a longwave infrared image represents the emissivity, expressing chemical and physical properties such as surface mineralogy, and the atmospheric contribution which is expressed differently during the day and at night. Therefore, identifying similar features in day and night radiance enabled identifying the major minerals in the surface—quartz, silicates (feldspars and clay minerals, gypsum and carbonates—and mapping their spatial distribution. Mineral identification was improved by applying the radiance of an in situ surface that is featureless for minerals but distinctive for the atmospheric contribution as a gain spectrum to each pixel in the image, reducing the atmospheric contribution and emphasizing the mineralogical features. The results were in agreement with the mineralogy of selected rock samples collected from the study area as derived from laboratory X-ray diffraction analysis. The resulting mineral map of the major minerals in the surface was in agreement with the geological map of the area.

  8. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels

    Directory of Open Access Journals (Sweden)

    Na Xu

    2014-03-01

    Full Text Available FengYun-3 (FY-3 Visible Infrared Radiometer (VIRR, along with its predecessor, Multispectral Visible Infrared Scanning Radiometer (MVISR, onboard FY-1C&D have had continuous global observation more than 14 years. This data record is valuable for weather prediction, climate monitoring, and environment research. Data quality is vital for satellite data assimilations in Numerical Weather Prediction (NWP and quantitative remote sensing applications. In this paper, the accuracies of radiometric calibration for VIRR onboard FY-3A and FY-3B, in thermal infrared (TIR channels, are evaluated using the Low Earth Orbit (LEO-LEO simultaneous nadir overpass intercalibration method. Hyperspectral and high-quality observations from Infrared Atmosphere Sounding Instrument (IASI onboard METOP-A are used as reference. The biases of VIRR measurements with respect to IASI over one-and-a-half years indicate that the TIR calibration accuracy of FY-3B VIRR is better than that of FY-3A VIRR. The brightness temperature (BT measured by FY-3A/VIRR is cooler than that measured by IASI with monthly mean biases ranging from −2 K to −1 K for channel 4 and −1 K to 0.2 K for channel 5. Measurements from FY-3B/VIRR are more consistent with that from IASI, and the annual mean biases are 0.84 ± 0.16 K and −0.66 ± 0.18 K for channels 4 and 5, respectively. The BT biases of FY-3A/VIRR show scene temperature-dependence and seasonal variation, which are not found from FY-3B/VIRR BT biases. The temperature-dependent biases are shown to be attributed to the nonlinearity of detectors. New nonlinear correction coefficients of FY-3A/VIRR TIR channels are reevaluated using various collocation samples. Verification results indicate that the use of the new nonlinear correction can greatly correct the scene temperature-dependent and systematic biases.

  9. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    Science.gov (United States)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  10. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner

    Science.gov (United States)

    Ondrusek, Jaime; Christensen, Philip R.; Fink, Jonathan H.

    1993-01-01

    To investigate the effect of vesicularity on TIMS (Thermal Infrared Multispectral Scanner) imagery independent of chemical variations, we studied a large rhyolitic flow of uniform composition but textural heterogeneity. The imagery was recalibrated so that the digital number values for a lake in the scene matched a calculated ideal spectrum for water. TIMS spectra for the lava show useful differences in coarsely and finely vesicular pumice data, particularly in TIMS bands 3 and 4. Images generated by ratioing these bands accurately map out those areas known from field studies to be coarsely vesicular pumice. These texture-related emissivity variations are probably due to the larger vesicles being relatively deeper and separated by smaller septa leaving less smooth glass available to give the characteristic emission of the lava. In studies of inaccessible lava flows (as on Mars) areas of coarsely vesicular pumice must be identified and avoided before chemical variations can be interpreted. Remotely determined distributions of vesicular and glassy textures can also be related to the volatile contents and potential hazards associated with the emplacement of silicic lava flows on Earth.

  11. Simulation of Image Performance Characteristics of the Landsat Data Continuity Mission (LDCM) Thermal Infrared Sensor (TIRS)

    Science.gov (United States)

    Schott, John; Gerace, Aaron; Brown, Scott; Gartley, Michael; Montanaro, Matthew; Reuter, Dennis C.

    2012-01-01

    The next Landsat satellite, which is scheduled for launch in early 2013, will carry two instruments: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). Significant design changes over previous Landsat instruments have been made to these sensors to potentially enhance the quality of Landsat image data. TIRS, which is the focus of this study, is a dual-band instrument that uses a push-broom style architecture to collect data. To help understand the impact of design trades during instrument build, an effort was initiated to model TIRS imagery. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool was used to produce synthetic "on-orbit" TIRS data with detailed radiometric, geometric, and digital image characteristics. This work presents several studies that used DIRSIG simulated TIRS data to test the impact of engineering performance data on image quality in an effort to determine if the image data meet specifications or, in the event that they do not, to determine if the resulting image data are still acceptable.

  12. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2009-08-01

    Full Text Available Atmospheric remote sounding from satellites is an essential component of the observational strategy deployed to monitor atmospheric pollution and changing composition. The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage. This paper gives an overview of the instrument's capability for measuring atmospheric composition in the perspective of chemistry and air quality. The assessment is made in terms of species, accuracy and vertical information. Global distributions are presented for CO, CH4, O3 (total and tropospheric, HNO3, NH3, and volcanic SO2. Local distributions of organic species measured during fire events, such as C2H4, CH3OH, HCOOH, and PAN are also shown. For each species or process, the link is made to specialized papers in this issue.

  13. Agricultural Applications and Requirements for Thermal Infrared Scanners

    Science.gov (United States)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  14. On the remote sensing of cloud properties from satellite infrared sounder data

    Science.gov (United States)

    Yeh, H. Y. M.

    1984-01-01

    A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.

  15. A unified approach to infrared aerosol remote sensing and type specification

    Directory of Open Access Journals (Sweden)

    L. Clarisse

    2013-02-01

    Full Text Available Atmospheric aerosols impact air quality and global climate. Space based measurements are the best way to observe their spatial and temporal distributions, and can also be used to gain better understanding of their chemical, physical and optical properties. Aerosol composition is the key parameter affecting the refractive index, which determines how much radiation is scattered and absorbed. Composition of aerosols is unfortunately not measured by state of the art satellite remote sounders. Here we use high resolution infrared measurements for aerosol type differentiation, exploiting, in that part of spectrum, the dependency of their refractive index on wavelength. We review existing detection methods and present a unified detection method based on linear discrimination analysis. We demonstrate this method on measurements of the Infrared Atmospheric Sounding Interferometer (IASI and five different aerosol types, namely volcanic ash, windblown sand, sulfuric acid droplets, ammonium sulfate and smoke particles. We compare these with traditional MODIS AOD measurements. The detection of the last three types is unprecedented in the infrared in nadir mode, but is very promising, especially for sulfuric acid droplets which are detected in the lower troposphere and up to 6 months after injection in the upper troposphere/lower stratosphere.

  16. Active Mode Remote Infrared Spectroscopy Detection of TNT and PETN on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    John R. Castro-Suarez

    2017-01-01

    Full Text Available Two standoff detection systems were assembled using an infrared telescope coupled to a Fourier transform infrared spectrometer, a cryocooled mercury-cadmium telluride detector, and a telescope-coupled midinfrared excitation source. Samples of the highly energetic materials (HEMs 2,4,6-trinitrotoluene (TNT and pentaerythritol tetranitrate (PETN were deposited on aluminum plates and detected at several source-target distances by carrying out remote infrared spectroscopy (RIRS measurements on the aluminum substrates in active mode. The samples tested were placed at 1–30 m for the RIRS detection experiments. The effect of the angle of incidence/collection of the IR beams on the vibrational band intensities and the signal-to-noise ratios (S/N were investigated. Experiments were performed at ambient temperature. Surface concentrations from 50 to 400 μg/cm2 were studied. Partial least squares regression analysis was applied to the spectra obtained. Overall, RIRS detection in active mode was useful for quantifying the HEMs deposited on the aluminum plates with a high confidence level up to the target-collector distances of 1–25 m.

  17. Method of remotely characterizing thermal properties of a sample

    Science.gov (United States)

    Heyman, Joseph S. (Inventor); Heath, D. Michele (Inventor); Welch, Christopher (Inventor); Winfree, William P. (Inventor); Miller, William E. (Inventor)

    1992-01-01

    A sample in a wind tunnel is radiated from a thermal energy source outside of the wind tunnel. A thermal imager system, also located outside of the wind tunnel, reads surface radiations from the sample as a function of time. The produced thermal images are characteristic of the heat transferred from the sample to the flow across the sample. In turn, the measured rates of heat loss of the sample are characteristic of the flow and the sample.

  18. Producing Mosaiced Infrared Data on Natural Hazards for Real-time Emergency Management using UAS and Thermal Infrared Cameras

    Science.gov (United States)

    Hatfield, M. C.; Webley, P. W.; Saiet, E., II

    2015-12-01

    Unmanned aerial systems (UAS) provide a unique capability for emergency management and real-time hazard assessment with access to hazardous environments that maybe off limits for manned aircraft while reducing the risk to personnel and loss of ground assets. When dealing with hazards, such as forest fires and volcanic eruptions, there is a need to assess the location of the fire/flow front and where best to assign ground personnel to reduce the risk to local populations and infrastructure. Thermal infrared cameras provide the ideal tool to detect subtle changes in the developing fire/flow front while providing data 24/7. There are limits to the detecting capabilities of these cameras given the wavelengths used and image resolution available. Given the large thermal contrast between the hot flow front and surrounding landscape then the data can be used to map out the location and changes seen as the front of the flow/fire advances. To map the complete hazard then either the UAS has to be flown at an altitude to capture the event in one image or the data has to be mosaiced together. Higher altitudes lead to coarser resolution imagery and therefore we will show how thermal infrared data can be mosaiced to provide the highest spatial resolution map of the hazard. We will present results using different UAS and thermal cameras including adding neutral density filters to detect hotter thermal targets. Timely generation of these mosaiced maps in a real-time environment is critical for those assessing the ongoing event and we will show how these maps can be generated quickly with the necessary spatial and thermal accuracy while discussing the requirements needed to generate thermal infrared maps of the hazardous events that are both useful for quick real-time assessment and also for further investigation in research projects.

  19. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences.

    Science.gov (United States)

    Cardone, Daniela; Merla, Arcangelo

    2017-05-05

    Thermal infrared imaging has been proposed, and is now used, as a tool for the non-contact and non-invasive computational assessment of human autonomic nervous activity and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal detectors and the development of computational models of the autonomic control of the facial cutaneous temperature, several autonomic variables can be computed through thermal infrared imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor and stress responses. In fact, all of these parameters impact on the control of the cutaneous temperature. The physiological information obtained through this approach, could then be used to infer about a variety of psychophysiological or emotional states, as proved by the increasing number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper presents a review of the principal achievements of thermal infrared imaging in computational psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired monitoring of psychophysiological activity and affective states. It also presents a summary on the modern, up-to-date infrared sensors technology.

  20. The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization

    Science.gov (United States)

    The Thermal InfraRed Sensor (TIRS) on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single channel sensors, TIRS uses two channels to cover the 10-12 micron band. It is also a pushbroom imager; a departure from the previous whiskbroom approach. Nevertheles...

  1. Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing.

    Science.gov (United States)

    Gong, Yongkang; Wang, Zuobin; Li, Kang; Uggalla, Leshan; Huang, Jungang; Copner, Nigel; Zhou, Yang; Qiao, Dun; Zhu, Jiuyuan

    2017-11-01

    Development of a novel, cost-effective, and highly efficient mid-infrared light source has been identified as a major scientific and technological goal within the area of optical gas sensing. We have proposed and investigated a mid-infrared metamaterial thermal emitter based on micro-structured chromium thin film. The results demonstrate that the proposed thermal light source supports broadband and wide angular absorption of both TE- and TM-polarized light, giving rise to broadband thermal radiation with averaged emissivity of ∼0.94 in a mid-infrared atmospheric window of 8-14 μm. The proposed microphotonic concept provides a promising alternative mid-infrared source and paves the way towards novel optical gas sensing platforms for many applications.

  2. Infrared radiative properties and thermal modeling of ceramic-embedded textile fabrics.

    Science.gov (United States)

    Anderson, David M; Fessler, John R; Pooley, Matthew A; Seidel, Scott; Hamblin, Michael R; Beckham, Haskell W; Brennan, James F

    2017-03-01

    The infrared optical properties of textiles are of great importance in numerous applications, including infrared therapy and body thermoregulation. Tuning the spectral response of fabrics by the engineering of composite textile materials can produce fabrics targeted for use in these applications. We present spectroscopic data for engineered polyester fabric containing varying amounts of ceramic microparticles within the fiber core and report a spectrally-dependent shift in infrared reflectance, transmittance and absorptance. A thermal transport model is subsequently implemented to study the effect of these modified properties on the spectral distribution of infrared radiation incident upon the wearer of a garment constructed of this fabric.

  3. Research of Registration Approaches of Thermal Infrared Images and Intensity Images of Point Cloud

    Science.gov (United States)

    Liu, L.; Wei, Z.; Liu, X.; Yang, Z.

    2017-09-01

    In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner) point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  4. RESEARCH OF REGISTRATION APPROACHES OF THERMAL INFRARED IMAGES AND INTENSITY IMAGES OF POINT CLOUD

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-09-01

    Full Text Available In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  5. Diamond fly cutting of aluminum thermal infrared flat mirrors for the OSIRIS-REx Thermal Emission Spectrometer (OTES) instrument

    Science.gov (United States)

    Groppi, Christopher E.; Underhill, Matthew; Farkas, Zoltan; Pelham, Daniel

    2016-07-01

    We present the fabrication and measurement of monolithic aluminum flat mirrors designed to operate in the thermal infrared for the OSIRIS-Rex Thermal Emission Spectrometer (OTES) space instrument. The mirrors were cut using a conventional fly cutter with a large radius diamond cutting tool on a high precision Kern Evo 3-axis CNC milling machine. The mirrors were measured to have less than 150 angstroms RMS surface error.

  6. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater

    Directory of Open Access Journals (Sweden)

    Fabio Sansivero

    2013-11-01

    Full Text Available Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano.

  7. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  8. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems II. Extension to the thermal infrared: equations and methods

    Science.gov (United States)

    Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.

    2011-10-01

    In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.

  9. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico

    Science.gov (United States)

    Gomez, Valle R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J.

    1970-01-01

    New techniques, involving interpretation of panchromatic, ektachrome and ektachrome infrared aerographic photogaphs and thermographic infrared imagery recording emission from the earth's surface in middle and far infrared wavelengths (3-5??m and 8-14??m), are being introduced in geothermal investigations in Mexico to identify outstanding structural and geologic features in a rapid and economical manner. The object of this work is to evaluate the new airborne infrared techniques and equipment as a complement to the data obtained from panchromatic aerial photography. This project is part of the Mexican remote sensing program of natural resources carried out under the auspices of the Comision Nacional del Espacio Exterior and in which the Research Institute (Instituto de Investigaciones de la Industria Electrica) is actively participating. The present study was made cooperatively with the U.S. National Aeronautics and Space Administration and the U.S. Geological Survey. The Los Negritos-Ixtlan de los Hervores geothermal fields are located east of Lake Chapala at the intersection of the Sierra Madre occidental and the west-central segment of the neovolcanic axis of Mexico. The two principal zones of hydrothermal activity occur in a tectonic trench filled with lake sediments of the Quaternary intercalated with Quaternary and Holocene volcanic rocks and characterized by an intricate system of block-fault tectonics, part of the Chapala-Acambay tectonic system, along which there has been volcanic activity in modern time. Surface manifestations of geothermal activity consist of relatively high heat flow and hot springs, small geysers and small steam vents aligned along an E-W axis at Ixtlan, possibly at the intersection of major fault trends and mud volcanoes and hot pools aligned NE-SW at Los Negritos. More than 20 exit points of thermal waters are shown on infrared imagery to be aligned along an extension of the Ixtlan fault between Ixtlan and El Salitre. A narrow zone of

  10. Huanglongbing (Citrus Greening Detection Using Visible, Near Infrared and Thermal Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Reza Ehsani

    2013-02-01

    Full Text Available This study demonstrates the applicability of visible-near infrared and thermal imaging for detection of Huanglongbing (HLB disease in citrus trees. Visible-near infrared (440–900 nm and thermal infrared spectral reflectance data were collected from individual healthy and HLB-infected trees. Data analysis revealed that the average reflectance values of the healthy trees in the visible region were lower than those in the near infrared region, while the opposite was the case for HLB-infected trees. Moreover, 560 nm, 710 nm, and thermal band showed maximum class separability between healthy and HLB-infected groups among the evaluated visible-infrared bands. Similarly, analysis of several vegetation indices indicated that the normalized difference vegetation index (NDVI, Vogelmann red-edge index (VOG and modified red-edge simple ratio (mSR demonstrated good class separability between the two groups. Classification studies using average spectral reflectance values from the visible, near infrared, and thermal bands (13 spectral features as input features indicated that an average overall classification accuracy of about 87%, with 89% specificity and 85% sensitivity could be achieved with classification models such as support vector machine for trees with symptomatic leaves.

  11. Thermal remote sensing for reservoir modelling and management

    OpenAIRE

    Martí-Cardona, B.; Arbat-Bofill, M; Prats-Rodríguez, J.; Pipia, L.

    2016-01-01

    ASTER and Landsat images were used for mapping the water surface temperature in the Sobrón, Mequinenza and Ribarroja reservoirs in the Ebro River, Spain. The spatially continuous information in these maps reveals the impact of the reservoir on the river natural thermal gradient in two different periods of the year. It also evidences the thermal impact intensity and extent of the refrigeration flow discharge from a nuclear power plant located on the river bank. The high spatial resolution i...

  12. Thermal remote sensing for reservoir modelling and management

    OpenAIRE

    2016-01-01

    ASTER and Landsat images were used for mapping the water surface temperature in the Sobrón, Mequinenza and Ribarroja reservoirs in the Ebro River, Spain. The spatially continuous information in these maps reveals the impact of the reservoir on the river natural thermal gradient in two different periods of the year. It also evidences the thermal impact intensity and extent of the refrigeration flow discharge from a nuclear power plant located on the river bank. The high spatial resolution imag...

  13. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].

    Science.gov (United States)

    Zhu, Li; Zhao, Li-Min; Wang, Qiao; Zhang, Ai-Ling; Wu, Chuan-Qing; Li, Jia-Guo; Shi, Ji-Xiang

    2014-11-01

    Thermal plume from coastal nuclear power plant is a small-scale human activity, mornitoring of which requires high-frequency and high-spatial remote sensing data. The infrared scanner (IRS), on board of HJ-1B, has an infrared channel IRS4 with 300 m and 4-days as its spatial and temporal resolution. Remote sensing data aquired using IRS4 is an available source for mornitoring thermal plume. Retrieval pattern for coastal sea surface temperature (SST) was built to monitor the thermal plume from nuclear power plant. The research area is located near Guangdong Daya Bay Nuclear Power Station (GNPS), where synchronized validations were also implemented. The National Centers for Environmental Prediction (NCEP) data was interpolated spatially and temporally. The interpolated data as well as surface weather conditions were subsequently employed into radiative transfer model for the atmospheric correction of IRS4 thermal image. A look-up-table (LUT) was built for the inversion between IRS4 channel radiance and radiometric temperature, and a fitted function was also built from the LUT data for the same purpose. The SST was finally retrieved based on those preprocessing procedures mentioned above. The bulk temperature (BT) of 84 samples distributed near GNPS was shipboard collected synchronically using salinity-temperature-deepness (CTD) instruments. The discrete sample data was surface interpolated and compared with the satellite retrieved SST. Results show that the average BT over the study area is 0.47 degrees C higher than the retrieved skin temperature (ST). For areas far away from outfall, the ST is higher than BT, with differences less than 1.0 degrees C. The main driving force for temperature variations in these regions is solar radiation. For areas near outfall, on the contrary, the retrieved ST is lower than BT, and greater differences between the two (meaning > 1.0 degrees C) happen when it gets closer to the outfall. Unlike the former case, the convective heat

  14. Airborne passive Fourier transform infrared remote sensing of methanol vapor from industrial emissions.

    Science.gov (United States)

    Wan, Boyong; Small, Gary W

    2008-12-01

    Passive Fourier transform infrared (FT-IR) remote sensing measurements are applied to the detection of methanol vapor plumes released from a chemical manufacturing facility. With the spectrometer mounted in a downward-looking mode on a fixed-wing aircraft, overflights of the facility are made during the methanol release. Signal processing and pattern recognition methods are applied to the acquired data for the purpose of constructing an automated classification algorithm for the methanol detection. The analysis is based on the use of short, digitally filtered segments of the raw interferogram data collected by the spectrometer. The classifiers are trained with data collected on the ground by use of an experimental protocol designed to simulate background conditions observed from the air. Optimization of the digital filtering and interferogram segment parameters leads to successful classifiers based on 100 or 120 interferogram points. The optimal interferogram segment location is found to be 95-points displaced from the centerburst, and the best performing digital filters are centered on the methanol C-O stretching band at 1036 cm(-1) and have a passband full-width at half-maximum of 100 to 160 cm(-1). The best classifiers achieve classification errors of less than 1% and are observed to be resistant to possible interference effects from species such as ethanol and ozone. This work demonstrates the utility of airborne passive FT-IR remote sensing measurements of volatile organic compounds under complex background conditions such as those encountered while monitoring an operating industrial facility.

  15. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  16. Novel use of infrared thermal imaging to predict arteriovenous fistula patency and maturation.

    Science.gov (United States)

    Al Shakarchi, Julien; Hodson, James; Field, Melanie; Inston, Nicholas

    2017-07-14

    The arteriovenous fistula (AVF) is the preferred method of long-term haemodialysis. However, it has been shown to have a substantial rate of maturation failure. The formation of an AVF creates haemodynamic changes to blood flow in the arm with diversion of blood away from the distal circulation into the low pressure venous system, in turn, leading to thermal changes distally. In this study, we aimed to assess the novel use of infrared thermal imaging as a predictor of arteriovenous maturation. A prospective cohort study was conducted on 100 consecutive patients who had AVF formation from December 2015 to June 2016. Infrared thermal imaging was undertaken pre- and post-operatively on the day of surgery to assess thermal changes to the arms and to assess them as predictors of clinical patency and functional maturation. For clinical patency, infrared thermal imaging was found to have a positive predictive value of 88% and a negative predictive value of 86%. For functional maturation, it was found to have a positive predictive value of 84%, a negative predictive value of 95%. In addition, it was shown to have superiority to the commonly used intra-operative predictor of thrill as well as other independent pre-operative patient factors. Infrared thermal imaging has been found to be a very useful tool in accurately predicting fistula patency and maturation.

  17. Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup

    Directory of Open Access Journals (Sweden)

    Francesco Bianchi

    2014-10-01

    Full Text Available Thermal infrared imaging is a valuable tool to perform non-destructive qualitative tests and to investigate buildings envelope thermal-energy behavior. The assessment of envelope thermal insulation, ventilation, air leakages, and HVAC performance can be implemented through the analysis of each thermogram corresponding to an object surface temperature. Thermography also allows the identification of thermal bridges in buildings’ envelope that, together with windows and doors, constitute one of the weakest component increasing thermal losses. A quantitative methodology was proposed in previous researches by the authors in order to evaluate the effect of such weak point on the energy balance of the whole building. In the present work, in-field experimental measurements were carried out with the purpose of evaluating the energy losses through the envelope of a test room experimental field. In-situ thermal transmittance of walls, ceiling and roof were continuously monitored and each element was characterized by its own thermal insulation capability. Infrared thermography and the proposed quantitative methodology were applied to assess the energy losses due to thermal bridges. The main results show that the procedure confirms to be a reliable tool to quantify the incidence of thermal bridges in the envelope thermal losses.

  18. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    2012-01-01

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  19. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  20. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  1. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis

    Science.gov (United States)

    Lee, Zhongping

    1994-01-01

    Remote sensing has become important in the ocean sciences, especially for research involving large spatial scales. To estimate the in-water constituents through remote sensing, whether carried out by satellite or airplane, the signal emitted from beneath the sea surface, the so called water-leaving radiance (L(w)), is of prime importance. The magnitude of L(w) depends on two terms: one is the intensity of the solar input, and the other is the reflectance of the in-water constituents. The ratio of the water-leaving radiance to the downwelling irradiance (E(d)) above the sear surface (remote-sensing reflectance, R(sub rs)) is independent of the intensity of the irradiance input, and is largely a function of the optical properties of the in-water constituents. In this work, a model is developed to interpret r(sub rs) for ocean water in the visible-infrared range. In addition to terms for the radiance scattered from molecules and particles, the model includes terms that describe contributions from bottom reflectance, fluorescence of gelbstoff or colored dissolved organic matter (CDOM), and water Raman scattering. By using this model, the measured R(sub rs) of waters from the West Florida Shelf to the Mississippi River plume, which covered a (concentration of chlorophyll a) range of 0.07 - 50 mg/cu m, were well interpreted. The average percentage difference (a.p.d.) between the measured and modeled R(sub rs) is 3.4%, and, for the shallow waters, the model-required water depth is within 10% of the chart depth. Simple mathematical simulations for the phytoplankton pigment absorption coefficient (a(sub theta)) are suggested for using the R(sub rs) model. The inverse problem of R(sub rs), which is to analytically derive the in-water constituents from R(sub rs) data alone, can be solved using the a(sub theta) functions without prior knowledge of the in-water optical properties. More importantly, this method avoids problems associated with a need for knowledge of the shape

  2. The TUBIN nanosatellite mission for wildfire detection in thermal infrared

    Science.gov (United States)

    Barschke, Merlin F.; Bartholomäus, Julian; Gordon, Karsten; Lehmann, Marc; Brieß, Klaus

    2017-06-01

    The increasing number of wildfires has significant impact on the Earth's climate system. Furthermore, they cause severe economic damage in many parts of the world. While different land and airborne wildfire detection and observation systems are in use in some areas of the world already, spaceborne systems offer great potential regarding global and continuous observation. TUBIN is a proof-of-concept mission to demonstrate the capabilities of a nanosatellite carrying lightweight infrared microbolometer arrays for spaceborne detection of wildfires and other high-temperature events. To this end, TUBIN carries two infrared microbolometers complemented by a CMOS imager. The TUBIN space segment is based on the TUBiX20 nanosatellite platform of Technische Universität Berlin and is the first mission that implements the full-scale attitude determination and control system of TUBiX20. Thereby, the TUBIN mission will demonstrate the platform's ability to support a challenging Earth observation mission.

  3. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces

    Science.gov (United States)

    Yang, Yue; Taylor, Sydney; Alshehri, Hassan; Wang, Liping

    2017-07-01

    In the present study, we experimentally demonstrate the spectrally coherent and diffuse thermal emission by exciting magnetic polaritons in SiC metasurfaces fabricated by the focused ion beam technique. Spectral emittance characterized by using an infrared microscope coupled to a Fourier transform spectrometer clearly shows a wavelength-selective emission peak as high as 0.8. Numerical simulations including emittance spectra and contour plot of electromagnetic field distribution were carried out to verify and understand the underlying mechanism of magnetic polaritons. The metasurfaces were further shown to be direction and polarization independent. The results would facilitate metasurfaces for applications like radiative thermal management and infrared sensing.

  4. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    Science.gov (United States)

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  5. Thermal remote sensing of active vegetation fires and biomass burning events [Chapter 18

    Science.gov (United States)

    Martin J. Wooster; Gareth Roberts; Alistair M.S. Smith; Joshua Johnston; Patrick Freeborn; Stefania Amici; Andrew T. Hudak

    2013-01-01

    Thermal remote sensing is widely used in the detection, study, and management of biomass burning occurring in open vegetation fires. Such fires may be planned for land management purposes, may occur as a result of a malicious or accidental ignition by humans, or may result from lightning or other natural phenomena. Under suitable conditions, fires may spread rapidly...

  6. A Thermal-Electrically Cooled Quantum-Dot Middle-Wave Infrared Photodetector with High Quantum Efficiency and Photodetectivity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Middle-wave infrared (LWIR, 3.2-3.6 m) photodetectors with a high specific photodetectivity (D) are of great importance in NASAslidar and remote sensing...

  7. FUSION OF LANDSAT- 8 THERMAL INFRARED AND VISIBLE BANDS WITH MULTI-RESOLUTION ANALYSIS CONTOURLET METHODS

    Directory of Open Access Journals (Sweden)

    F. Farhanj

    2017-09-01

    Full Text Available Land surface temperature image is an important product in many lithosphere and atmosphere applications. This image is retrieved from the thermal infrared bands. These bands have lower spatial resolution than the visible and near infrared data. Therefore, the details of temperature variation can't be clearly identified in land surface temperature images. The aim of this study is to enhance spatial information in thermal infrared bands. Image fusion is one of the efficient methods that are employed to enhance spatial resolution of the thermal bands by fusing these data with high spatial resolution visible bands. Multi-resolution analysis is an effective pixel level image fusion approach. In this paper, we use contourlet, non-subsampled contourlet and sharp frequency localization contourlet transform in fusion due to their advantages, high directionality and anisotropy. The absolute average difference and RMSE values show that with small distortion in the thermal content, the spatial information of the thermal infrared and the land surface temperature images is enhanced.

  8. Fusion of - 8 Thermal Infrared and Visible Bands with Multi-Resolution Analysis Contourlet Methods

    Science.gov (United States)

    Farhanj, F.; Akhoondzadeh, M.

    2017-09-01

    Land surface temperature image is an important product in many lithosphere and atmosphere applications. This image is retrieved from the thermal infrared bands. These bands have lower spatial resolution than the visible and near infrared data. Therefore, the details of temperature variation can't be clearly identified in land surface temperature images. The aim of this study is to enhance spatial information in thermal infrared bands. Image fusion is one of the efficient methods that are employed to enhance spatial resolution of the thermal bands by fusing these data with high spatial resolution visible bands. Multi-resolution analysis is an effective pixel level image fusion approach. In this paper, we use contourlet, non-subsampled contourlet and sharp frequency localization contourlet transform in fusion due to their advantages, high directionality and anisotropy. The absolute average difference and RMSE values show that with small distortion in the thermal content, the spatial information of the thermal infrared and the land surface temperature images is enhanced.

  9. [Using infrared thermal asymmetry analysis for objective assessment of the lesion of facial nerve function].

    Science.gov (United States)

    Liu, Xu-long; Hong, Wen-xue; Song, Jia-lin; Wu, Zhen-ying

    2012-03-01

    The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some lesions of facial nerve function are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to capture the alteration of the infrared thermal distribution. This paper presents a new method of analysis of the thermal asymmetry named effective thermal area ratio, which is a product of two variables. The first variable is mean temperature difference between the specific facial region and its contralateral region. The second variable is a ratio, which is equal to the area of the abnormal region divided by the total area. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results show: that the mean specificity and sensitivity of this method are 0.90 and 0.87 respectively, improved by 7% and 26% compared with conventional methods. Spearman correlation coefficient between effective thermal area ratio and the degree of facial nerve function is an average of 0.664. Hence, concerning the diagnosis and assessment of facial nerve function, infrared thermography is a powerful tool; while the effective ther mal area ratio is an efficient clinical indicator.

  10. [Anomaly of infrared thermal radiation intensity on unilateral mild to moderate Bell's palsy].

    Science.gov (United States)

    Liu, Xu-long; Hong, Wen-xue; Zhang, Tao; Wu, Zhen-ying; Zhang, Dong

    2011-05-01

    Bell's palsy is a kind of facial nerve diseases with a high incidence, and the patients who get the disease the first time predominate in the patients who suffer mildly or moderately. The aim of the present study is to explore a novel assessment for Bell's palsy objectively and noninvasively based on infrared thermal image. As the acupoints on the face are approximately bilateral symmetric, the acupoints on the affected side were chosen as the experimental group, while the same ones on the other side as the control group. Their infrared thermal radiations were researched separately and the results were as follows: on acute stage, the differences of infrared thermal radiation intensity of the same points were significant between the healthy and affected sides, indicating significant temperature difference (over 0.3 degrees C). The acupoints on the affected side with its surrounding tissue formed an irregular abnormal region on the infrared thermal image. Its pseudocolor was obviously different from that of the healthy side. At the same time, the more serious the Bell's palsy, the more evident the temperature differences of the same acupoints on bilateral sides. It was positive correlation (r=0.676, r=0.498, r=0.506, r=0.545, r=0.518, all Pinfrared thermal image could be used to objectively assess the severity of Bell' palsy.

  11. Warping-based co-registration of thermal infrared images: Study of factors influencing its applicability

    Science.gov (United States)

    Cardone, D.; Pinti, P.; Di Donato, L.; Merla, A.

    2017-06-01

    A relevant issue for processing biomedical thermal imaging data is the availability of tools for objective and quantitative comparison of images across different conditions or subjects. To this goal, a solution can be offered by projecting the thermal distribution data onto a fictitious template to obtain a common reference for comparison across cases or subjects. In this preliminary study, we tested the feasibility of applying a warping procedure on infrared thermal images. Fifteen thermal images of checkerboard were recorded at three different distances and five different angles in order to evaluate which factor mostly influences the warping accuracy. The accuracy of three different warping transformation models (local weighted mean (LWM), polynomial, affine) was tested by comparing the positioning error between users' selected fiduciary points on each thermal image and their corresponding reference position assigned on the template image. Fifteen users, divided into three groups upon on their experience in thermal imaging processing, participated in this study in order to evaluate the effect of experience in applying a warping procedure to the analysis of thermal infrared images. The most relevant factor influencing the positioning and thermal errors is the acquisition distance, while the users' level of experience and the inclination angle do not seem to play the same importance. Comparing the three transformations, the LWM seems to be the best in terms of minimizing the two categories of errors. This preliminary work helps to understand the limits and the possibilities of applying warping techniques for objective, quantitative and automatic thermal image comparisons.

  12. Thermal Remote Sensing for Reservoir Modelling and Management

    Science.gov (United States)

    Marti-Cardona, Belen; Arbat-Bofill, Marina; Prats-Rodriquez, Jordi; Pipia, Luca

    2016-08-01

    ASTER and Landsat images were used for mapping the water surface temperature in the Sobrón, Mequinenza and Ribarroja reservoirs in the Ebro River, Spain. The spatially continuous information in these maps reveals the impact of the reservoir on the river natural thermal gradient in two different periods of the year. It also evidences the thermal impact intensity and extent of the refrigeration flow discharge from a nuclear power plant located on the river bank.The high spatial resolution images of the Ribarroja reservoir, acquired by the airborne hyperspectral TASI sensor, show spatial patterns which complemented the in-situ point measurements and contributed valuable data for validating the three-dimensional thermo- hydrodynamic model of the reservoir.

  13. Noninvasive determination of burn depth in children by digital infrared thermal imaging

    Science.gov (United States)

    Medina-Preciado, Jose David; Kolosovas-Machuca, Eleazar Samuel; Velez-Gomez, Ezequiel; Miranda-Altamirano, Ariel; González, Francisco Javier

    2013-06-01

    Digital infrared thermal imaging is used to assess noninvasively the severity of burn wounds in 13 pediatric patients. A delta-T (ΔT) parameter obtained by subtracting the temperature of a healthy contralateral region from the temperature of the burn wound is compared with the burn depth measured histopathologically. Thermal imaging results show that superficial dermal burns (IIa) show increased temperature compared with their contralateral healthy region, while deep dermal burns (IIb) show a lower temperature than their contralateral healthy region. This difference in temperature is statistically significant (pburns. These results show that digital infrared thermal imaging could be used as a noninvasive procedure to assess burn wounds. An additional advantage of using thermal imaging, which can image a large skin surface area, is that it can be used to identify regions with different burn depths and estimate the size of the grafts needed for deep dermal burns.

  14. Foliar Temperature Gradients as Drivers of Budburst in Douglas-fir: New Applications of Thermal Infrared Imagery

    Science.gov (United States)

    Miller, R.; Lintz, H. E.; Thomas, C. K.; Salino-Hugg, M. J.; Niemeier, J. J.; Kruger, A.

    2014-12-01

    Budburst, the initiation of annual growth in plants, is sensitive to climate and is used to monitor physiological responses to climate change. Accurately forecasting budburst response to these changes demands an understanding of the drivers of budburst. Current research and predictive models focus on population or landscape-level drivers, yet fundamental questions regarding drivers of budburst diversity within an individual tree remain unanswered. We hypothesize that foliar temperature, an important physiological property, may be a dominant driver of differences in the timing of budburst within a single tree. Studying these differences facilitates development of high throughput phenotyping technology used to improve predictive budburst models. We present spatial and temporal variation in foliar temperature as a function of physical drivers culminating in a single-tree budburst model based on foliar temperature. We use a novel remote sensing approach, combined with on-site meteorological measurements, to demonstrate important intra-canopy differences between air and foliar temperature. We mounted a thermal infrared camera within an old-growth canopy at the H.J. Andrews LTER forest and imaged an 8m by 10.6m section of a Douglas-fir crown. Sampling one image per minute, approximately 30,000 thermal infrared images were collected over a one-month period to approximate foliar temperature before, during and after budburst. Using time-lapse photography in the visible spectrum, we documented budburst at fifteen-minute intervals with eight cameras stratified across the thermal infrared camera's field of view. Within the imaged tree's crown, we installed a pyranometer, 2D sonic anemometer and fan-aspirated thermohygrometer and collected 3,000 measurements of net shortwave radiation, wind speed, air temperature and relative humidity. We documented a difference of several days in the timing of budburst across both vertical and horizontal gradients. We also observed clear

  15. Verification of Rapid Focused-Recharge in Depressions of Kuwait and the Arabian Peninsula Using Thermal and VNIR Remote Sensing

    Science.gov (United States)

    Rotz, R. R.; Milewski, A.

    2013-12-01

    In the Arabian Peninsula, freshwater recharge from rainfall is infrequent. Recharge is typically focused in small depressions that fill with seasonal runoff and potentially form freshwater lenses. This phenomenon has been verified in the Raudhatain watershed in Kuwait. This study aims to substantiate previously hypothesized lens locations and detect water in the subsurface by using thermal remote sensing and rainfall data. Potential freshwater lenses (~142) have been previously postulated throughout Kuwait and Saudi Arabia, but lack verification due to inadequate monitoring networks. We hypothesize that due to water's unique heat capacity, recharge zones can be detected by identifying areas with lower changes in surface radiance values than neighboring dry areas between day and night after peak or sustained rainfall. If successful, recharge zones and freshwater lenses can be identified and verified in remote hyper-arid regions. We collected 320 high-resolution (15m - 90m), low cloud cover (images in the visible near-infrared (VNIR) and thermal infrared (TIR) wavelengths obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer sensor (ASTER) between 2004 and 2012. Overlapping day and night images were subtracted from each other to show surface radiance fluctuations and difference images were compared with rainfall data from Daily TRMM_3B42v7a between 2004 and 2012. Several lens locations, runoff channels, agricultural regions, and wetlands were detected in areas where radiance values change between 0.067 - 2.25 Wsr-1m-2 from day to night scenes and verified by Google Earth (15m), Landsat (30m), and ASTER VNIR (15m) images. Additionally, two seasonal peak rainfall (~35mm/day) events positively correlate with the surface radiance difference values. Surface radiance values for dry areas adjacent to the postulated lens locations range between 2.25 - 12.2 Wsr-1m-2. Results demonstrate the potential for shallow groundwater detection through the

  16. Mapping surface flow in low gradient areas with thermal remote sensing

    DEFF Research Database (Denmark)

    Prinds, Christian; Petersen, Rasmus Jes; Greve, Mogens Humlekrog

    Thermal infrared (TIR) imagery has long been used for mapping groundwater-surface water interactions and mainly for locating areas of groundwater seepage in lakes and shorelines (Rundquist et al. 1985, Banks et al. 1996). In this study, we used the method for locating discharge from tile drains i...

  17. Electrical Energy Harvesting from Thermal Energy with Converged Infrared Light

    Science.gov (United States)

    Goh, S. Y.; Kok, S. L.

    2017-06-01

    Photovoltaics (PV) cell is a common energy harvester that had been used to harvest solar energy and convert it into electrical energy. However, the vast energy from the spectrum of sunlight is not fully harvested. Therefore, thermoelectric (TE) module that harvest electrical energy from heat is being proposed in this paper. Generally, the part of the sunlight spectrum that induce heat is in the spectrum band of infrared (IR). For the experimental set-up in this paper, infrared (IR) light bulb was being used to simulate the IR spectrum band of the sunlight. In order to maximize the heat energy collection, a convex lens was being used to converge the IR light and therefore focused the heat on an aluminium sheet and heat sink which was placed on top of the hot side of the TE module. The distance between convex lens and IR light bulb is varying in between 10cm and 55cm and the reading was taken at an interval of 5cm. Firstly, the temperature of the IR light and converged IR light were recorded and plotted in graph. The graph showed that the temperature of the converged IR light bulb is higher than the IR light bulb. Lastly, the voltage and power output of the TE module with different heat source was compared. The output voltage and power of the TE module increased inverse proportional to the distance between IR light bulb and TE module.

  18. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  19. RST analysis of thermal infrared satellite data for a continuous oil spill detection and monitoring

    Science.gov (United States)

    Grimaldi, C. S. L.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2012-04-01

    Oil spills is one of the main sea pollution sources causing remarkable ecological impact on maritime and coastal environments. Oil spills can derive both from natural phenomena (hurricanes, landslides, earthquakes) and "human errors" (tankers collisions, shipwrecks, platform accidents), even if the main contribution to this kind of technological hazard comes from operational discharge from tankers (i.e. oil dumped during cleaning operations) representing 45% of total hydrocarbons marine pollution. Mainly for this reason, the developing of systems able to provide a high frequent sampling and observation of sea surface is fundamental. Satellite remote sensing, thanks to global coverage and continuity of observations, might effectively contribute to mitigate oil spill environmental impact, provided that reliable and effective detection techniques are developed and that relevant information and products are timely delivered and made available. In particular, satellite remote sensing by passive optical sensors on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), can give a significant opportunity in this field. Unfortunately, up to now, optical satellite data found a poor application in oil spill alert system mainly for the lack of data analysis techniques suitable for an automatic oil spill detection. The few methods up to now proposed are only able to manually and interactively localize the presence of an already known oil spill, mainly for "a posteriori" mapping purpose, often requiring the intervention of an expert operator. In particular, techniques based on Thermal Infrared (TIR) records exploit oil and water different thermal inertia in order to map spill sea pollution. Oil thermal inertia, in fact, is lower than sea water one, so that oil polluted areas usually show Brightness Temperature (BT) higher than sea water in TIR images collected in daytime

  20. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrare...

  1. Retrieval of leaf water content spanning the visible to thermal infrared spectra

    CSIR Research Space (South Africa)

    Ullah, S

    2014-05-01

    Full Text Available The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390 µm -14.0 µm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band...

  2. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  3. Amplitude of the diurnal temperature cycle as observed by thermal infrared and microwave radiometers

    Science.gov (United States)

    Land surface temperature (LST) is a key input to physically-based retrieval algorithms of hydrological states and fluxes, and global measurements of LST are provided by many satellite platforms. Passive microwave (MW) observations offer an alternative to conventional thermal infrared (TIR) LST retri...

  4. Detection of heat inleaks in cryogenic enclosures by infrared thermal imaging

    CERN Document Server

    Lebrun, P

    1982-01-01

    Localized heat inleaks in cryogenic enclosures can be detected by the ‘cool spots’ they produce on the ambient temperature surface of the vessel outer walls. Infrared thermography, a simple technique permitting detailed thermal mapping of surfaces, has been successfully used for locating such ‘cool spots’ on cryogenic vessels and transfer lines.

  5. Clinical trial on the characteristics of zheng classification of pulmonary diseases based on infrared thermal imaging technology.

    Science.gov (United States)

    Ni, Jin-Xia; Gao, Si-Hua; Li, Yu-Hang; Ma, Shi-Lei; Tian, Tian; Mo, Fang-Fang; Wang, Liu-Qing; Zhu, Wen-Zeng

    2013-01-01

    Zheng classification study based on infrared thermal imaging technology has not been reported before. To detect the relative temperature of viscera and bowels of different syndromes patients with pulmonary disease and to summarize the characteristics of different Zheng classifications, the infrared thermal imaging technology was used in the clinical trial. The results showed that the infrared thermal images characteristics of different Zheng classifications of pulmonary disease were distinctly different. The influence on viscera and bowels was deeper in phlegm-heat obstructing lung syndrome group than in cold-phlegm obstructing lung syndrome group. It is helpful to diagnose Zheng classification and to improve the diagnosis rate by analyzing the infrared thermal images of patients. The application of infrared thermal imaging technology provided objective measures for medical diagnosis and treatment in the field of Zheng studies and provided a new methodology for Zheng classification.

  6. AT89S52 Microcontroller Based Remote Room Monitoring System Using Passive Infrared Sensor

    Directory of Open Access Journals (Sweden)

    Albert Gifson

    2009-12-01

    Full Text Available This research describes about the design of the room detection system using a Passive Infrared sensors (PIR controlled by Microcontroller AT89S52 for remote control application. The output of the PIR is a low logic when it captures the heat waves of the human body. The output PIR is connected to the port 1.7 on Microcontroller in high logic. The maximum distance is 5 meters for the sensor to detect an object. When there is a signal sent by PIR, the Microcontroller processes the data and activates the buzzer to beep and the stepper motor to stop. Microcontroller also sends data through the RS-232 that continues a signal to the personal mobile phone. In order that the message is able to be sent, then first, messages must be programmed and stored in the Microcontroller AT89S52. The average message delivery time is 8.8 seconds. The recipient can turn the alarm of system on or off by a missed call.

  7. Calibration of high resolution remote sensing instruments in the visible and near infrared

    Science.gov (United States)

    Schüller, L.; Fischer, J.; Armbruster, W.; Bartsch, B.

    1997-05-01

    Measurements of the reflected solar radiation with high spectral resolution airborne instruments are usually used to develop new remote sensing techniques. The observed spectral features in the signals provide the possibility to define useful band settings for future satellite instruments. A precise wavelength and radiometric calibration is a prerequisite for such tasks. In this paper, a calibration procedure for the airborne spectrometer OVID is presented. The Optical Visible and near Infrared Detector consists of two similar detector systems, (600 - 1100 nm = VIS and 900 - 1700 nm = NIR). The spectral resolution is ~1.7 nm for the VIS-system and ~6 nm for the IR-system. This instrument is applied for the retrieval of water vapour content, aerosol and cloud properties. Besides the spectral and intensity calibration, also corrections for the dark current signals and for defective pixels have been performed. An indirect verification of the calibration procedure by the comparison of OVID measurements in cloudy and cloud free atmospheres with radiative transfer simulations is discussed in this paper. The used radiation transfer model MOMO is based on the matrix operator method.

  8. Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing

    Science.gov (United States)

    Emengini, Ebele Josephine; Blackburn, George Alan; Theobald, Julian Charles

    2013-01-01

    Remote sensing of plant stress holds promise for detecting environmental pollution by oil. However, in oil-rich delta regions, waterlogging is a frequent source of plant stress that has similar physiological effects to oil pollution. This study investigated the capabilities of remote sensing for discriminating between these two sources of plant stress. Bean plants were subjected to oil pollution, waterlogging, and combined oil and waterlogging treatments. Canopy physiological, hyperspectral, and thermal measurements were taken every two to three days after treatment to follow the stress responses. For plants treated with oil, spectral and thermal responses were evident six days before symptoms could be observed visually. In waterlogged plants, only spectral responses were observed, but these were present up to eight days before visual symptoms. A narrowband reflectance ratio was efficient in detecting stress caused by oil and waterlogging. Canopy temperature and a thermal index were good indicators of oil and combined oil and waterlogging stress, but insensitive to waterlogging alone. Hence, this study provides evidence that combined hyperspectral and thermal remote sensing of vegetation has potential for monitoring oil pollution in environments that are also subjected to waterlogging.

  9. A Decision Support Information System for Urban Landscape Management Using Thermal Infrared Data

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Estes, Maurice G., Jr.; Laymon, Charles A.; Howell, Burgess F.

    2000-01-01

    In this paper, we describe efforts to use remote sensing data within the purview of an information support system, to assess urban thermal landscape characteristics as a means for developing more robust models of the Urban Heat Island (UHI) effect. We also present a rationale on how we have successfully translated the results from the study of urban thermal heating and cooling regimes as identified from remote sensing data, to decision-makers, planners, government officials, and the public at large in several US cities to facilitate better understanding of how the UHI affects air quality. Additionally, through the assessment of the spatial distribution of urban thermal landscape characteristics using remote sensing data, it is possible to develop strategies to mitigate the UHI that hopefully will in turn, drive down ozone levels and improve overall urban air quality. Four US cities have been the foci for intensive analysis as part of our studies: Atlanta, GA, Baton Rouge, LA, Salt Lake City, UT, and Sacramento, CA. The remote sensing data for each of these cities has been used to generate a number of products for use by "stakeholder" working groups to convey information on what the effects are of the UHI and what measures can be taken to mitigate it. In turn, these data products are used to both educate and inform policy-makers, planners, and the general public about what kinds of UHI mitigation strategies are available.

  10. Uncooled infrared thermal imaging systems for law enforcement

    Science.gov (United States)

    Kyle, Robert J. S.; Van Dover, Douglas K.

    1995-05-01

    For over 18 years, Texas Instruments (TI) has been developing low cost uncooled thermal imaging technology for night vision applications. Using technology developed with support from several government agencies, TI is offering this dual-use technology in a low cost system for police cruisers and other surveillance applications. TI has teamed with Highes Aircraft to provide NIGHTSIGHTTM, now being marketed jointly. Because NIGHSIGHT is a passive thermal image, it gives law enforcement officers the ability to see in total darkness. This capability gives the uncooled system distinct advantages over image intensifiers which require some degree of visible light. It also differs from typical cryogenic or cooled IR systems because it does not contain a cryogenic cooler mechanism or a scanner which lowers the complexity, costs, size, weight, and power consumption. Police across the US have tested prototype sensors with positive results. Police officers often praise the ability to see in total darkness and report the many advantages of the system and how it changes their perspective on law enforcement. Systems have also been provided to the Drug Enforcement Agency, INS border patrol, prison security staff, Baltimore-Washington International Airport security, Texas Parks and Wildlife Service and the Los Angeles Harbor Patrol and have been used in a variety of security and surveillance situations. The paper will address the implementation of the technology; discuss barriers to use such as cost, awareness, and system understanding, and examine the impact of the technology on the effectiveness of law enforcement at night.

  11. Thermal diffusivity measurement of ring specimens by infrared thermography

    Science.gov (United States)

    Ferrarini, G.; Bison, P.; Bortolin, A.; Cadelano, G.; Rossi, S.

    2017-05-01

    The thermal diffusivity of solid materials is usually measured with the well-known flash method. In the traditional setup, the tested specimens have the shape of a small disc. However, several industrial applications need to test different typologies of samples. This work is focused on ring specimens, that are widely used as joints or sealants in various applications. The goal is investigating the possibilities and limitations of the flash method, applying minimum adjustments to the traditional experimental setup. A preliminary numerical study is conducted with the creation of a finite element model. Firstly, the model is checked with the standard case of a full disk. Then the simulation investigates the case of an aluminum oxide ring, that is taken as the reference case to determine the reliability of the proposed technique. After the simulation, an experimental measurement is performed on the aluminum oxide ring reference case. Several samples are tested and useful information on the practical feasibility of the experimental setup are collected. The obtained thermal diffusivity values fall into the expected range for the material, confirming the validity of the suggested method.

  12. Time calibration of thermal rolling shutter infrared cameras

    Science.gov (United States)

    Peeters, J.; Louarroudi, E.; De Greef, D.; Vanlanduit, S.; Dirckx, J. J. J.; Steenackers, G.

    2017-01-01

    The working principle of nearly all uncooled microbolometer thermal imaging systems is based on the rolling shutter principle. This results in time delays between rows giving rise to distorted and blurred images which are difficult to correlate with, for example instantaneous numerical simulation results for nondestructive evaluation. Until today high-end and high-cost thermal cameras need to be used for instantaneous measurements. Furthermore, quantitative defect evaluation on average conductive materials is difficult to perform as a result of the rolling shutter blur of the uncooled cameras. In this contribution, a time delay compensation method is designed. The developed algorithm is described and a measurement routine is elaborated to measure the inter- and intra-frame delays between two pixels. Finally, an artificial global shutter image sequence is developed using linear interpolation between the original fluctuating frames. We will show that by applying our proposed method, the intra-frame delay can be predicted and compensated with an accuracy of 16 μs . Besides, there is only made use of low-cost equipment to provide a straight-forward methodology which makes it applicable for the further integration of low-cost microbolometers in industry. This means that we have made the application of low-cost microbolometers feasible for instantaneous measurements.

  13. Acidic weathering of basalt and basaltic glass: 1. Near-infrared spectra, thermal infrared spectra, and implications for Mars

    Science.gov (United States)

    Horgan, Briony H. N.; Smith, Rebecca J.; Cloutis, Edward A.; Mann, Paul; Christensen, Philip R.

    2017-01-01

    Acid-leached rinds and coatings occur in volcanic environments on Earth and have been identified using orbital spectroscopy on Mars, but their development is poorly understood. We simulated long-term open-system acidic weathering in a laboratory by repeatedly rinsing and submerging crystalline and glassy basalts in pH 1 and pH 3 acidic solutions for 213 days and compared their visible/near-infrared (0.3-2.5 µm) and thermal infrared (5-50 µm) spectral characteristics to their microscopic physical and chemical properties from scanning electron microscopy (SEM). We find that while alteration at moderately low pH ( 3) can produce mineral precipitates from solution, it has very little spectral or physical effect on the underlying parent material. In contrast, alteration at very low pH ( 1) results in clear silica spectral signatures for all crystalline samples while glasses exhibit strong blue concave-up near-infrared slopes. SEM indicates that these spectral differences correspond to different modes of alteration. In glass, alteration occurs only at the surface and produces a silica-enriched leached rind, while in more crystalline samples, alteration penetrates the interior to cause dissolution and replacement by silica. We confirm that glass is more stable than crystalline basalt under long-term acidic leaching, suggesting that glass could be enriched and common in terrains on Mars that have been exposed to acidic weathering. Leached glasses are consistent with both OMEGA and Thermal Emission Spectrometer (TES) spectra of the Martian northern lowlands and may contribute to the high-silica phases detected globally in TES Surface Type 2. Thus, both glass-rich deposits and acidic weathering may have been widespread on Mars.

  14. Seeking phyllosilicates in thermal infrared data: A laboratory and Martian data case study

    Science.gov (United States)

    McDowell, Meryl L.; Hamilton, Victoria E.

    2009-06-01

    Previous analyses of Thermal Emission Spectrometer (TES) data produce results that could suggest a widespread distribution of phyllosilicate minerals over the surface of Mars, whereas studies of visible to near-infrared (VNIR) data indicate a more limited distribution. We use VNIR detections of phyllosilicates in the vicinity of the Nili Fossae to determine the spectral characteristics of phyllosilicate-bearing material in the thermal infrared (TIR). By investigating areas of VNIR phyllosilicate detection in more detail, we find that the phyllosilicate-bearing material corresponds to spectral variation in Thermal Emission Imaging System decorrelation-stretched TIR images and differences in infrared spectral shape that are consistent with, but not uniquely attributable to, mixtures of phyllosilicates and basalt. Phyllosilicate phases are modeled from TES data at abundances that average 5% over the region and at abundances near the 10-15% detection limit in our specific regions of interest. Deconvolution of numerical mixtures of phyllosilicate and basalt spectra indicates that these low abundances of phyllosilicates likely are not influenced by uncertainties greater than the 10-15% uncertainty of the method. TES spectra and modeled abundances vary between the phyllosilicate-bearing material and the surrounding region, but this difference in composition cannot be attributed solely to the presence of phyllosilicates. We believe the inconsistencies in phyllosilicate occurrence between TES and VNIR analyses may be explained by the inclusion of phyllosilicates in the models of TES data as substitutes for poorly crystalline phases (e.g., allophane) not currently available in public infrared spectral libraries.

  15. MERTIS: geometrical calibration of thermal infrared optical system by applying diffractive optical elements

    Science.gov (United States)

    Bauer, M.; Baumbach, D.; Buder, M.; Börner, A.; Grießbach, D.; Peter, G.; Santier, E.; Säuberlich, T.; Schischmanow, A.; Schrader, S.; Walter, I.

    2015-09-01

    Geometrical sensor calibration is essential for space applications based on high accuracy optical measurements, in this case for the thermal infrared push-broom imaging spectrometer MERTIS. The goal is the determination of the interior sensor orientation. A conventional method is to measure the line of sight for a subset of pixels by single pixel illumination with collimated light. To adjust angles, which define the line of sight of a pixel, a manipulator construction is used. A new method for geometrical sensor calibration is using Diffractive Optical Elements (DOE) in connection with laser beam equipment. Diffractive optical elements (DOE) are optical microstructures, which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the resulting image is invariant against translation. This particular characteristic allows a complete geometrical sensor calibration with only one taken image avoiding complex adjustment procedures, resulting in a significant reduction of calibration effort. We present a new method for geometrical calibration of a thermal infrared optical system, including an thermal infrared test optics and the MERTIS spectrometer bolometer detector. The fundamentals of this new approach for geometrical infrared optical systems calibration by applying diffractive optical elements and the test equipment are shown.

  16. Optimized mid-infrared thermal emitters for applications in aircraft countermeasures

    Directory of Open Access Journals (Sweden)

    Simón G. Lorenzo

    2017-12-01

    Full Text Available We introduce an optimized aperiodic multilayer structure capable of broad angle and high temperature thermal emission over the 3 μm to 5 μm atmospheric transmission band. This aperiodic multilayer structure composed of alternating layers of silicon carbide and graphite on top of a tungsten substrate exhibits near maximal emittance in a 2 μm wavelength range centered in the mid-wavelength infrared band traditionally utilized for atmospheric transmission. We optimize the layer thicknesses using a hybrid optimization algorithm coupled to a transfer matrix code to maximize the power emitted in this mid-infrared range normal to the structure’s surface. We investigate possible applications for these structures in mimicking 800–1000 K aircraft engine thermal emission signatures and in improving countermeasure effectiveness against hyperspectral imagers. We find these structures capable of matching the Planck blackbody curve in the selected infrared range with relatively sharp cutoffs on either side, leading to increased overall efficiency of the structures. Appropriately optimized multilayer structures with this design could lead to matching a variety of mid-infrared thermal emissions. For aircraft countermeasure applications, this method could yield a flare design capable of mimicking engine spectra and breaking the lock of hyperspectral imaging systems.

  17. Gold nanorods with phase-changing polymer corona for remotely near-infrared-triggered drug release.

    Science.gov (United States)

    Liu, Ji; Detrembleur, Christophe; Grignard, Bruno; De Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Treguer-Delapierre, Mona; Petit, Yannick; Jérôme, Christine; Duguet, Etienne

    2014-01-01

    Herein, we report a new drug-delivery system (DDS) that is comprised of a near-infrared (NIR)-light-sensitive gold-nanorod (GNR) core and a phase-changing poly(ε-caprolactone)-b-poly(ethylene glycol) polymer corona (GNR@PCL-b-PEG). The underlying mechanism of the drug-loading and triggered-release behaviors involves the entrapment of drug payloads among the PCL crystallites and a heat-induced phase change, respectively. A low premature release of the pre-loaded doxorubicin was observed in PBS buffer (pH 7.4) at 37 °C (<10% of the entire payload after 48 h). However, release could be activated within 30 min by conventional heating at 50 °C, above the Tm of the crystalline PCL domain (43.5 °C), with about 60% release over the subsequent 42 h at 37 °C. The NIR-induced heating of an aqueous suspension of GNR@PCL-b-PEG under NIR irradiation (802 nm) was investigated in terms of the irradiation period, power, and concentration-dependent heating behavior, as well as the NIR-induced shape-transformation of the GNR cores. Remotely NIR-triggered release was also explored upon NIR irradiation for 30 min and about 70% release was achieved in the following 42 h at 37 °C, with a mild warming (<4 °C) of the surroundings. The cytotoxicity of GNR@PCL-b-PEG against the mouse fibroblastic-like L929 cell-line was assessed by MTS assay and good compatibility was confirmed with a cell viability of over 90% after incubation for 72 h. The cellular uptake of GNR@PCL-b-PEG by melanoma MEL-5 cells was also confirmed, with an averaged uptake of 1250(±110) particles cell(-1) after incubation for 12 h (50 μg mL(-1)). This GNR@PCL-b-PEG DDS is aimed at addressing the different requirements for therapeutic treatments and is envisaged to provide new insights into DDS targeting for remotely triggered release by NIR activation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare.

    Science.gov (United States)

    Stewart, M; Wilson, M T; Schaefer, A L; Huddart, F; Sutherland, M A

    2017-05-01

    Increasing reliance on automated systems on-farm has led to a need for remote monitoring of health and welfare. We aimed to validate 2 methods that could be integrated into automated systems currently in use: infrared thermography (IRT) to measure respiration rate (RR), and accelerometers to measure the flinch, step, kick (FSK) response and assessing stress and discomfort. We monitored 22 multiparous, nonlactating, Friesian and Friesian × Jersey cows (average 5.1 yr of age) during a baseline period (2 min), a restraint in a crush (2 min), and then a recovery period after exposure to a startle (2 min). We measured RR with continuous IRT imaging of airflow through the nostrils and by counting flank movements from video and live recordings. We recorded heart rate (HR) and HR variability using HR monitors, and we recorded FSK from continuous video analysis of leg movements and indirectly using accelerometers attached to both hind legs. The FSK response was scored between 1 and 4 based on the height and direction of each leg movement. We observed no change in RR, HR variability, or FSK in response to the startle; however, HR increased briefly by 10 bpm. Bland-Altman plots indicated good agreement between the different methods of measuring RR, with average differences of -0.01 ± 0.87, 0.83 ± 0.57, and 0.37 ± 1.02 breaths/min for video versus live, IRT versus live and IRT versus video, respectively. Acceleration was also highly correlated with FSK scores of ≤3 (R2 = 0.96) and ≤2 (R2 = 0.89) and moderately correlated with FSK scores of 1 (R2 = 0.66) over the 4-min sampling period. The results show that accelerometers can provide an indirect measure of the FSK response, and IRT can be used reliably to measure RR. With further development, both technologies could be integrated into existing systems for remote monitoring of dairy cows' health and welfare on-farm. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Multisensor Fusion of Landsat Images for High-Resolution Thermal Infrared Images Using Sparse Representations

    Directory of Open Access Journals (Sweden)

    Hong Sung Jin

    2017-01-01

    Full Text Available Land surface temperature (LST is an important parameter in the analysis of climate and human-environment interactions. Landsat Earth observation satellite data including a thermal band have been used for environmental research and applications; however, the spatial resolution of this thermal band is relatively low. This study investigates an efficient method of fusing Landsat panchromatic and thermal infrared images using a sparse representation (SR technique. The application of SR is used for the estimation of missing details of the available thermal infrared (TIR image to enhance its spatial features. First, we propose a method of building a proper dictionary considering the spatial resolution of the original thermal image. Second, a sparse representation relation between low- and high-resolution images is constructed in terms of the Landsat spectral response. We then compare the fused images created with different sampling factors and patch sizes. The results of both qualitative and quantitative evaluation show that the proposed method improves spatial resolution and preserves the thermal properties of basic LST data for use with environmental problems.

  20. Thermal removal from near-infrared imaging spectroscopy data of the Moon

    Science.gov (United States)

    Clark, Roger N.; Pieters, Carle M.; Green, Robert O.; Boardman, J.W.; Petro, Noah E.

    2011-01-01

    In the near-infrared from about 2 μm to beyond 3 μm, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 μm pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon.

  1. A debugging method of the Quadrotor UAV based on infrared thermal imaging

    Science.gov (United States)

    Cui, Guangjie; Hao, Qian; Yang, Jianguo; Chen, Lizhi; Hu, Hongkang; Zhang, Lijun

    2018-01-01

    High-performance UAV has been popular and in great need in recent years. The paper introduces a new method in debugging Quadrotor UAVs. Based on the infrared thermal technology and heat transfer theory, a UAV is under debugging above a hot-wire grid which is composed of 14 heated nichrome wires. And the air flow propelled by the rotating rotors has an influence on the temperature distribution of the hot-wire grid. An infrared thermal imager below observes the distribution and gets thermal images of the hot-wire grid. With the assistance of mathematic model and some experiments, the paper discusses the relationship between thermal images and the speed of rotors. By means of getting debugged UAVs into test, the standard information and thermal images can be acquired. The paper demonstrates that comparing to the standard thermal images, a UAV being debugging in the same test can draw some critical data directly or after interpolation. The results are shown in the paper and the advantages are discussed.

  2. Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor

    Science.gov (United States)

    Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.

    2011-01-01

    Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.

  3. Experimental study on water content detection of traditional masonry based on infrared thermal image

    Science.gov (United States)

    Zhang, Baoqing; Lei, Zukang

    2017-10-01

    Based on infrared thermal imaging technology for seepage test of two kinds of brick masonry, find out the relationship between the distribution of one-dimensional two brick surface temperature distribution and one-dimensional surface moisture content were determined after seepage brick masonry minimum temperature zone and water content determination method of the highest point of the regression equation, the relationship between temperature and moisture content of the brick masonry reflected the quantitative and establish the initial wet masonry building disease analysis method, then the infrared technology is applied to the protection of historic buildings in.

  4. Mineralogic information from a new airborne thermal infrared multispectral scanner

    Science.gov (United States)

    Kahle, A. B.; Goetz, A. F. H.

    1983-01-01

    The thermal IR multispectral scanner (TIMS) has been developed for airborne geologic surveys. The resststrahlen band between 8-11 microns is exhibited by interatomic stretching vibrations of Si and oxygen bound up in the crystal lattice of silicate rocks. The crystal structure of the component minerals influence the depth and position of the detected band. The TIMS has six channels, an 80 deg field of view, and a sensitivity sufficient to detect a noise equivalent change in spectral emissivity of 0.002-0.006. The six bands measured are 8.2-8.6, 8.6-9.0, 9.4-10.2, 10.2-11.2, and 11.2-12.2 microns, using HgCdTe detectors. The data are analyzed with respect to emissivity variations as a function of wavelength, using the component transformation technique called a decorrelation stretch, with spectral differences being displayed as different colors. Sample scenes from Death Valley and the Nevada Cuprite mining district are compared with visible and near-IR color composites of the same areas, revealing the superior distinctions that are available with the TIMS.

  5. Measurement of thermal radiation using regular glass optics and short-wave infrared detectors.

    Science.gov (United States)

    Yoon, H W; Eppeldauer, G P

    2008-01-21

    The measurement of thermal radiation from ambient-temperature objects using short-wave infrared detectors and regular glass optics is described. The detectors are chosen to operate in the 2.0 microm to 2.5 microm atmospheric window. Selection of detectors with high shunt resistance along with the 4-stage thermo-electric cooling of the detectors to -85 degrees C results in detectivity, D*, of 4 x 10(13) cm Hz(1/2)/W which is near the background limited performance at 295 K. Furthermore, the use of regular-glass commercial optics to collect the thermal radiation results in diffraction-limited imaging. The use of a radiation thermometer constructed with these elements for the measurement of a blackbody from 20 degrees C to 50 degrees C results in noise-equivalent temperature difference (NETD) of thermal sensors also leads to lower sensitivity to the emissivity of the object in determining the temperature of the object. These elements are used to construct a calibrator for an infrared collimator, and such a system demonstrates noise-equivalent irradiances of thermal infrared detectors.

  6. Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data

    Science.gov (United States)

    Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher

    2017-05-01

    Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance

  7. Remote sensing of multiple vital signs using a CMOS camera-equipped infrared thermography system and its clinical application in rapidly screening patients with suspected infectious diseases.

    Science.gov (United States)

    Sun, Guanghao; Nakayama, Yosuke; Dagdanpurev, Sumiyakhand; Abe, Shigeto; Nishimura, Hidekazu; Kirimoto, Tetsuo; Matsui, Takemi

    2017-02-01

    Infrared thermography (IRT) is used to screen febrile passengers at international airports, but it suffers from low sensitivity. This study explored the application of a combined visible and thermal image processing approach that uses a CMOS camera equipped with IRT to remotely sense multiple vital signs and screen patients with suspected infectious diseases. An IRT system that produced visible and thermal images was used for image acquisition. The subjects' respiration rates were measured by monitoring temperature changes around the nasal areas on thermal images; facial skin temperatures were measured simultaneously. Facial blood circulation causes tiny color changes in visible facial images that enable the determination of the heart rate. A logistic regression discriminant function predicted the likelihood of infection within 10s, based on the measured vital signs. Sixteen patients with an influenza-like illness and 22 control subjects participated in a clinical test at a clinic in Fukushima, Japan. The vital-sign-based IRT screening system had a sensitivity of 87.5% and a negative predictive value of 91.7%; these values are higher than those of conventional fever-based screening approaches. Multiple vital-sign-based screening efficiently detected patients with suspected infectious diseases. It offers a promising alternative to conventional fever-based screening. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Modelling of thermal-IR spectra of forsterite: application on remote sensing for Mercury

    Science.gov (United States)

    Stangarone, C.; Helbert, J.; Maturilli, A.; Tribaudino, M.; Prencipe, M.

    2017-09-01

    In this work, we study experimental thermal emissivity spectra with an innovative approach: we calculate IR spectra, with ab initio methods, of the main mineral families that presumably compose the surface of Mercury and we compare them with high temperature laboratory measurements. The measurements will be carried out at the Institute of Planetary Research, Deutschen Zentrums für Luft und Raumfahrt (DLR) Planetary Spectroscopy Laboratory (PSL). The laboratory has the unique capability to obtain emissivity measurement of samples at temperature up to 1000K, by means of a planetary emissivity chamber. The goal is to interpret the high temperature infrared (HT-IR) emissivity spectra that will be collected by the Mercury Radiometer and Thermal infrared Imaging Spectrometer (MERTIS), the spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO)

  9. Near-infrared remotely triggered drug-release strategies for cancer treatment

    Science.gov (United States)

    Goodman, Amanda M.; Neumann, Oara; Nørregaard, Kamilla; Henderson, Luke; Choi, Mi-Ran; Clare, Susan E.; Halas, Naomi J.

    2017-11-01

    Remotely controlled, localized drug delivery is highly desirable for potentially minimizing the systemic toxicity induced by the administration of typically hydrophobic chemotherapy drugs by conventional means. Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery, and are an emerging field of interest in cancer treatment. Here, we demonstrate near-IR light-triggered release of two drug molecules from both DNA-based and protein-based hosts that have been conjugated to near-infrared-absorbing Au nanoshells (SiO2 core, Au shell), each forming a light-responsive drug delivery complex. We show that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release can be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells. Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex showed increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods provide spatially and temporally localized drug-release strategies that can facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.

  10. A compact high power Er:Yb:glass eyesafe laser for infrared remote sensing applications

    Science.gov (United States)

    Vitiello, Marco; Pizzarulli, Andrea; Ruffini, Andrea

    2010-10-01

    The key features and performances of a compact, lightweight, high power Er3+:Yb3+ glass laser transmitter are reported on. The theory employed to get an optimal design of the device is also described. In free running regime high energies of about 15mJ in 3ms long pulses were obtained, with an optical efficiency close to 85%. When q-switched by a Co: MALO crystal of carefully selected initial transmittivity, a high peak power in excess of 500 kW was obtained in about 9ns pulse duration, with an optical efficiency of 60%. The laser was successfully run with no significant power losses at repetition rates up to 5Hz due to a carefully designed heat sink which allowed an efficient conduction cooling of both the diode bars and the phosphate glass. The transmitter emits at a wavelength of 1535nm in the so-called "eyesafe" region of the light spectrum thus being highly attractive for any application involving the risk of human injury as is typically the case in remote sensing activities. Moreover, the spectral band around 1,5mm corresponds to a peak in the athmospheric transmittance thus being more effective in adverse weather conditions with respect to other wavelengths. Actually, the device has been successfully integrated into a rangefinder system allowing a reliable and precise detection of small targets at distances up to 20Km. Moreover, the transmitter capabilities were used into a state of the art infrared laser illuminator for night vision allowing even the recognition of a human being at distances in excess of 5Km.

  11. TIRCIS: Hyperspectral Thermal Infrared Imaging Using a Small-Satellite Compliant Fourier-Transform Imaging Spectrometer, for Natural Hazard Applications

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.

    2015-12-01

    Many natural hazards, including wildfires, volcanic eruptions, and, from the perspective of climate-related hazards, urban heat islands, could be better quantified via the routine availability of hyperspectral thermal infrared remote sensing data from orbit. However, no sensors are currently in operation that provide such data at high-to-moderate spatial resolution (e.g. Landsat-class resolution). In this presentation we will describe a prototype instrument, developed using funding provided by NASA's Instrument Incubator Program, that can make these important measurements. Significantly, the instrument has been designed such that its size, mass, power, and cost are consistent with its integration into small satellite platforms, or deployment as part of small satellite constellations. The instrument, TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data cubes. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. Neither the focal plane nor the optics need to be cooled, and the instrument has a mass of <10 kg and dimensions of 53 cm × 25 cm × 22 cm. Although the prototype has four moving parts, this can easily be reduced to one. The current optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 90 spectral samples are possible, by varying the physical design of the interferometer. Our performance model indicates signal-to-noise ratios of the order of about 200 to 300:1. In this presentation we will provide an overview of the instrument design, fabrication, results from our initial laboratory characterization, and some of the application areas in which small-satellite-ready instruments such as TIRCIS could make a valuable contribution to the study of natural hazards.

  12. Remote sensing of the mountain cryosphere using texture filters and apparent thermal inertia

    Science.gov (United States)

    Brenning, A.; Fieguth, P.; Long, S.; Peña, M. A.; Soliman, A. S.

    2011-12-01

    Rock glaciers and debris-covered glaciers on Earth, and analog landforms on Mars, constitute hidden water resources and components of the cryosphere that are difficult to map or characterize using remote sensors. We utilize two innovative approaches in this field, (1) texture filters and (2) thermal features, in particular apparent thermal inertia (ATI), in order to investigate ice-debris landforms and in particular rock glaciers in the semi-arid Andes. Even though the ridge-and-furrow surface patterns are probably the most characteristic morphological features of rock glaciers, our study is the first to apply texture filters to the problem of remotely-sensed rock glacier detection. Gabor filters are designed to detect zebra-like patterns and are therefore an obvious choice for this study. Texture features derived from a Gabor filterbank were calculated from panchromatic IKONOS orthoimagery and used to discriminate rock glacier and other debris surfaces utilizing four classification methods of varying complexity: generalized linear model (GLM), generalized additive model (GAM), support vector machine (SVM), and tree ensembles (Bundling). Bundling outperformed the other methods in most situations studied, achieving an area under the ROC curve (AUROC) of 0.72-0.80 in different spatial cross-validation scenarios. This study focused on a narrow area of interest that cannot be easily identified as non-rock glacier area based on topographic criteria, and therefore significantly better results are expected in practical mapping situations in combination with terrain attributes as predictors. Thermal remote sensing has been of limited use in mountain cryospheric studies. In addition to land surface temperature (LST), ATI is of particular interest in this context. Thermal inertia is a single thermophysical material property that determines the amplitude of temperature variations at the surface of a periodically heated half-space, and shows promise in discriminating different

  13. A System Trade Study of Remote Infrared Imaging for Space Shuttle Reentry

    Science.gov (United States)

    Schwartz, Richard J.; Ross, Martin N.; Baize, Rosemary; Horvath, Thomas J.; Berry, Scott A.; Krasa, Paul W.

    2008-01-01

    A trade study reviewing the primary operational parameters concerning the deployment of imaging assets in support of the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was undertaken. The objective was to determine key variables and constraints for obtaining thermal images of the Space Shuttle orbiter during reentry. The trade study investigated the performance characteristics and operating environment of optical instrumentation that may be deployed during a HYTHIRM data collection mission, and specified contributions to the Point Spread Function. It also investigated the constraints that have to be considered in order to optimize deployment through the use of mission planning tools. These tools simulate the radiance modeling of the vehicle as well as the expected spatial resolution based on the Orbiter trajectory and placement of land based or airborne optical sensors for given Mach numbers. Lastly, this report focused on the tools and methodology that have to be in place for real-time mission planning in order to handle the myriad of variables such as trajectory ground track, weather, and instrumentation availability that may only be known in the hours prior to landing.

  14. Don't get burned: thermal monitoring of vessel sealing using a miniature infrared camera

    Science.gov (United States)

    Lin, Shan; Fichera, Loris; Fulton, Mitchell J.; Webster, Robert J.

    2017-03-01

    Miniature infrared cameras have recently come to market in a form factor that facilitates packaging in endoscopic or other minimally invasive surgical instruments. If absolute temperature measurements can be made with these cameras, they may be useful for non-contact monitoring of electrocautery-based vessel sealing, or other thermal surgical processes like thermal ablation of tumors. As a first step in evaluating the feasibility of optical medical thermometry with these new cameras, in this paper we explore how well thermal measurements can be made with them. These cameras measure the raw flux of incoming IR radiation, and we perform a calibration procedure to map their readings to absolute temperature values in the range between 40 and 150 °C. Furthermore, we propose and validate a method to estimate the spatial extent of heat spread created by a cautery tool based on the thermal images.

  15. New Insights for Detecting and Deriving Thermal Properties of Lava Flow Using Infrared Satellite during 2014–2015 Effusive Eruption at Holuhraun, Iceland

    Directory of Open Access Journals (Sweden)

    Muhammad Aufaristama

    2018-01-01

    Full Text Available A new lava field was formed at Holuhraun in the Icelandic Highlands, north of Vatnajökull glacier, in 2014–2015. It was the largest effusive eruption in Iceland for 230 years, with an estimated lava bulk volume of ~1.44 km3 covering an area of ~84 km2. Satellite-based remote sensing is commonly used as preliminary assessment of large scale eruptions since it is relatively efficient for collecting and processing the data. Landsat-8 infrared datasets were used in this study, and we used dual-band technique to determine the subpixel temperature (Th of the lava. We developed a new spectral index called the thermal eruption index (TEI based on the shortwave infrared (SWIR and thermal infrared (TIR bands allowing us to differentiate thermal domain within the lava flow field. Lava surface roughness effects are accounted by using the Hurst coefficient (H for deriving the radiant flux ( Φ rad and the crust thickness (Δh. Here, we compare the results derived from satellite images with field measurements. The result from 2 December 2014 shows that a temperature estimate (1096 °C; occupying area of 3.05 m2 from a lava breakout has a close correspondence with a thermal camera measurement (1047 °C; occupying area of 4.52 m2. We also found that the crust thickness estimate in the lava channel during 6 September 2014 (~3.4–7.7 m compares closely with the lava height measurement from the field (~2.6–6.6 m; meanwhile, the total radiant flux peak is underestimated (~8 GW compared to other studies (~25 GW, although the trend shows good agreement with both field observation and other studies. This study provides new insights for monitoring future effusive eruption using infrared satellite images.

  16. Research of thermal conditions over high-temperature gas-fired infrared emitters

    Directory of Open Access Journals (Sweden)

    Ermolaev Anton N.

    2017-01-01

    Full Text Available The paper presents the study results of the thermal conditions in the area above high-temperature gas-fired infrared emitter. A number of bench tests and experiments were made on the basis of production facilities to control the distribution of temperatures above emitter in different heating system operating modes. Impact of the thermal characteristics in the area above high-temperature gas-fired infrared emitter on the heating system performance was estimated. Comparison of the bench tests results with existing experimental data has shown a good result convergence for both efficiency and accuracy. The obtained results can be used in the emitter development phase and in the construction phase of modern gas-fired radiant heating systems.

  17. The use of infrared thermal imaging in the diagnosis of deep vein thrombosis

    Science.gov (United States)

    Kacmaz, Seydi; Ercelebi, Ergun; Zengin, Suat; Cindoruk, Sener

    2017-11-01

    The diagnosis of Deep Vein Thrombosis is of vital importance, especially in emergency situations where there is a lack of time and the patient's condition is critical. Late diagnosis causes cost increase, long waiting time, and improper treatment. Today, with the rapidly developing technology, the cost of thermal cameras is gradually decreasing day by day. Studies have shown that many diseases are associated with heat. As a result, infrared images are thought to be a tool for diagnosing various diseases. In this study, it has been shown that infrared thermal imaging can be used as a pre-screening test in the diagnosis of Deep Vein Thrombosis with the developed computer aided software. In addition, a sample combination is shown for applications that utilize emergency services to perform diagnosis and treatment of Deep Vein Thrombosis as soon as possible.

  18. Fourier Transform Infrared Spectroscopic Study of Thermal and Electrical Aging in Polyurethane

    Science.gov (United States)

    1987-03-20

    allophanate, biuret , and aromatic groups, while the soft segments co01sist of the flexible polyether, polyester, and polyalkyl groups from the polyols...results in Fig. 3a, it is a rea- sonable working hypothesis that these aging methods are achieving substantial- ly the same result by different means...formative stage of Uralane 5753 degradation via physical, thermal, and electrical methods . The changes in infrared absorbance noted in Tables 1 and 2 were

  19. Prototype of microbolometer thermal infrared camera for forest fire detection from space

    Science.gov (United States)

    Guerin, Francois; Dantes, Didier; Bouzou, Nathalie; Chorier, Philippe; Bouchardy, Anne-Marie; Rollin, Joël.

    2017-11-01

    The contribution of the thermal infrared (TIR) camera to the Earth observation FUEGO mission is to participate; to discriminate the clouds and smoke; to detect the false alarms of forest fires; to monitor the forest fires. Consequently, the camera needs a large dynamic range of detectable radiances. A small volume, low mass and power are required by the small FUEGO payload. These specifications can be attractive for other similar missions.

  20. Measurement of thermal properties of magnetic nanoparticles using infrared thermal microscopy

    DEFF Research Database (Denmark)

    Kim, Jae Young; Chang, Ki Soo; Kook, Myung Ho

    2013-01-01

    Magnetic nanoparticles (MNPs) are considered promising for biomedical applications such as hyperthermia treatment and disease diagnosis owing to their distinctive thermal properties. For these applications, it is essential to screen the temperature distribution in the targeted disease site...

  1. Objective assessment of biomagnetic devices and alternative clinical therapies using infrared thermal imaging

    Science.gov (United States)

    Rockley, Graham J.

    2001-03-01

    The overwhelming introduction of magnetic devices and other alternative therapies into the health care market prompts the need for objective evaluation of these techniques through the use of infrared thermal imaging. Many of these therapies are reported to promote the stimulation of blood flow or the relief of pain conditions. Infrared imaging is an efficient tool to assess such changes in the physiological state. Therefore, a thermal imager can help document and substantiate whether these therapies are in fact providing an effective change to the local circulation. Thermal images may also indicate whether the change is temporary or sustained. As a specific case example, preliminary findings will be presented concerning the use of magnets and the effect they have on peripheral circulation. This will include a discussion of the recommended protocols for this type of infrared testing. This test model can be applied to the evaluation of other devices and therapeutic procedures which are reputed to affect circulation such as electro acupuncture, orthopedic footwear and topical ointments designed to relieve pain or inflammation.

  2. Thermal remote sensing of ice-debris landforms using ASTER: an example from the Chilean Andes

    Science.gov (United States)

    Brenning, A.; Peña, M. A.; Long, S.; Soliman, A.

    2012-03-01

    Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potential of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions.

  3. An Efficient Algorithm for Server Thermal Fault Diagnosis Based on Infrared Image

    Science.gov (United States)

    Liu, Hang; Xie, Ting; Ran, Jian; Gao, Shan

    2017-10-01

    It is essential for a data center to maintain server security and stability. Long-time overload operation or high room temperature may cause service disruption even a server crash, which would result in great economic loss for business. Currently, the methods to avoid server outages are monitoring and forecasting. Thermal camera can provide fine texture information for monitoring and intelligent thermal management in large data center. This paper presents an efficient method for server thermal fault monitoring and diagnosis based on infrared image. Initially thermal distribution of server is standardized and the interest regions of the image are segmented manually. Then the texture feature, Hu moments feature as well as modified entropy feature are extracted from the segmented regions. These characteristics are applied to analyze and classify thermal faults, and then make efficient energy-saving thermal management decisions such as job migration. For the larger feature space, the principal component analysis is employed to reduce the feature dimensions, and guarantee high processing speed without losing the fault feature information. Finally, different feature vectors are taken as input for SVM training, and do the thermal fault diagnosis after getting the optimized SVM classifier. This method supports suggestions for optimizing data center management, it can improve air conditioning efficiency and reduce the energy consumption of the data center. The experimental results show that the maximum detection accuracy is 81.5%.

  4. Feature Selection for Intelligent Firefighting Robot Classification of Fire, Smoke, and Thermal Reflections Using Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Kim

    2016-01-01

    Full Text Available Locating a fire inside of a structure that is not in the direct field of view of the robot has been researched for intelligent firefighting robots. By classifying fire, smoke, and their thermal reflections, firefighting robots can assess local conditions, decide a proper heading, and autonomously navigate toward a fire. Long-wavelength infrared camera images were used to capture the scene due to the camera’s ability to image through zero visibility smoke. This paper analyzes motion and statistical texture features acquired from thermal images to discover the suitable features for accurate classification. Bayesian classifier is implemented to probabilistically classify multiple classes, and a multiobjective genetic algorithm optimization is performed to investigate the appropriate combination of the features that have the lowest errors and the highest performance. The distributions of multiple feature combinations that have 6.70% or less error were analyzed and the best solution for the classification of fire and smoke was identified.

  5. Active infrared thermal imaging technology to detect the corrosion defects in aircraft cargo door

    Science.gov (United States)

    Chen, Dapeng; Zhang, Cunlin; Zeng, Zhi; Xing, Chunfei; Li, Yanhong

    2009-11-01

    Aircraft fuselage material corrosion problems have been major aviation security issues, which hinder the development of aviation industry. How can we use non-destructive testing methods to detect the internal corrosion defects from the outside of the fuselage, to find the hidden safety problems in advance and update the defective equipment and materials, has great significance for the prevention of accidents. Nowadays, the active infrared thermal imaging technology as a new nondestructive technology has been gradually used on a wide variety of materials, such as composite, metal and so on. This article makes use of this technology on an aircraft cargo door specimen to detect the corrosion defects. Firstly, use High-energy flash pulse to excite the specimen, and use the thermal image processing software to splice the thermal images, so the thermal images of the overall specimen can be showed. Then, heat the defects by ultrasonic excitation, this will cause vibration and friction or thermoelastic effects in the places of defects, so the ultrasonic energy will dissipate into heat and manifested in the uneven temperature of surface. An Infrared camera to capture the changes of temperature of material surface, send data to the computer and records the thermal information of the defects. Finally, extracting data and drawing infrared radiation-time curve of some selected points of interest to analyze the signal changes in heat of defects further more. The results of the experiments show that both of the two ways of heat excitation show a clear position and shape of defects, and the ultrasonic method has more obvious effect of excitation to the defects, and a higher signal to noise ratio than the flash pulse excitation, but flash pulse method do not contact the specimen in the process of excitation, and shows the location and shape of defects in the overall of the specimen has its advantages.

  6. Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test

    Science.gov (United States)

    Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel

    2015-01-01

    NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.

  7. A protocol for analysing thermal stress in insects using infrared thermography.

    Science.gov (United States)

    Gallego, Belén; Verdú, José R; Carrascal, Luis M; Lobo, Jorge M

    2016-02-01

    The study of insect responses to thermal stress has involved a variety of protocols and methodologies that hamper the ability to compare results between studies. For that reason, the development of a protocol to standardize thermal assays is necessary. In this sense, infrared thermography solves some of the problems allowing us to take continuous temperature measurements without handling the individuals, an important fact in cold-blooded organisms like insects. Here, we present a working protocol based on infrared thermography to estimate both cold and heat thermal stress in insects. We analyse both the change in the body temperature of individuals and their behavioural response. In addition, we used partial least squares regression for the statistical analysis of our data, a technique that solves the problem of having a large number of variables and few individuals, allowing us to work with rare or endemic species. To test our protocol, we chose two species of congeneric, narrowly distributed dung beetles that are endemic to the southeastern part of the Iberian Peninsula. With our protocol we have obtained five variables in the response to cold and twelve in the response to heat. With this methodology we discriminate between the two flightless species of Jekelius through their thermal response. In response to cold, Jekelius hernandezi showed a higher rate of cooling and reached higher temperatures of stupor and haemolymph freezing than Jekelius punctatolineatus. Both species displayed similar thermoregulation ranges before reaching lethal body temperature with heat stress. Overall, we have demonstrated that infrared thermography is a suitable method to assess insect thermal responses with a high degree of sensitivity, allowing for the discrimination between closely related species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In-Flight Wavelength Calibration of Thermal Infrared Multispectral Scanner (TIMS) Data Acquired from the ER-2

    Science.gov (United States)

    Hook, S.; Okada, K.

    1994-01-01

    In 1991 one flightline of Thermal Infrared Multispectral Scanner (TIMS) data was acquired over Castaic Lake, California and in 1992 four flightlines of TIMS data were acquired over Death Valley, California.

  9. Infrared remote sensing of atmospheric aerosols; Apports du sondage infrarouge a l'etude des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Pierangelo, C.

    2005-09-15

    The 2001 report from the Intergovernmental Panel on Climate Change emphasized the very low level of understanding of atmospheric aerosol effects on climate. These particles originate either from natural sources (dust, volcanic aerosols...) or from anthropogenic sources (sulfates, soot...). They are one of the main sources of uncertainty on climate change, partly because they show a very high spatio-temporal variability. Observation from space, being global and quasi-continuous, is therefore a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain a better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the infrared domain still remains marginal. Yet, not only the knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing, but also infrared remote sensing provides a way to retrieve other aerosol characteristics (observations are possible at night and day, over land and sea). In this PhD dissertation, we show that aerosol optical depth, altitude and size can be retrieved from infrared sounder observations. We first study the sensitivity of aerosol optical properties to their micro-physical properties, we then develop a radiative transfer code for scattering medium adapted to the very high spectral resolution of the new generation sounder NASA-Aqua/AIRS, and we finally focus on the inverse problem. The applications shown here deal with Pinatubo stratospheric volcanic aerosol, observed with NOAA/HIRS, and with the building of an 8 year climatology of dust over sea and land from this sounder. Finally, from AIRS observations, we retrieve the optical depth at 10 {mu}m, the average altitude and the coarse mode effective radius of mineral dust over sea. (author)

  10. Thermal Breakdown Kinetics of 1-Ethyl-3-Methylimidazolium Ethylsulfate Measured Using Quantitative Infrared Spectroscopy.

    Science.gov (United States)

    Wheeler, Jeffrey L; Pugh, McKinley; Atkins, S Jake; Porter, Jason M

    2017-12-01

    In this work, the thermal stability of the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4]) is investigated using infrared (IR) spectroscopy. Quantitative IR absorption spectral data are measured for heated [EMIM][EtSO4]. Spectra have been collected between 25 ℃ and 100 ℃ using a heated optical cell. Multiple samples and cell pathlengths are used to determine quantitative values for the molar absorptivity of [EMIM][EtSO4]. These results are compared to previous computational models of the ion pair. These quantitative spectra are used to measure the rate of thermal decomposition of [EMIM][EtSO4] at elevated temperatures. The spectroscopic measurements of the rate of decomposition show that thermogravimetric methods overestimate the thermal stability of [EMIM][EtSO4].

  11. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide

    Science.gov (United States)

    Ventura, M.; Silva, J. R.; Andrade, L. H. C.; Scorza Júnior, R. P.; Lima, S. M.

    2018-01-01

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations ( 2 ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH) + 1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH) + 1δ(CH) combination band at 960 nm can be used as a marker for SFZ in methanol.

  12. Analysis of effective radiant temperatures in a Pacific Northwest forest using Thermal Infrared Multispectral Scanner data

    Science.gov (United States)

    Sader, S. A.

    1986-01-01

    Analysis of Thermal Infrared Multispectral Scanner data collected over H. J. Andrews experimental forest in western Oregon indicated that aspect and slope gradient had a greater effect on the thermal emission of younger reforested clearcuts than of older stands. Older forest stands (older than 25 years) with greater amounts of green biomass and closed canopies, had lower effective radiant temperatures than younger, less dense stands. Aspect and slope had little effect on the effective radiant temperature of these older stands. Canopy temperature recorded at approximately 1:30 pm local time July 29, 1983 were nearly equal to maximum daily air temperature recorded at eight reference stands. The investigation provided some insights into the utility of the thermal sensor for detecting surface temperature differences related to forest composition and green biomass amounts in mountain terrain.

  13. Extraction of Curcumin Pigment from Indonesian Local Turmeric with Its Infrared Spectra and Thermal Decomposition Properties

    Science.gov (United States)

    Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Ana; Widiaty, I.; Hurriyati, R.

    2017-03-01

    Curcumin is one of the pigments which is used as a spice in Asian cuisine, traditional cosmetic, and medicine. Therefore, process for getting curcumin has been widely studied. Here, the purpose of this study was to demonstrate the simple method for extracting curcumin from Indonesian local turmeric and investigate the infrared spectra and thermal decomposition properties. In the experimental procedure, the washed turmeric was dissolved into an ethanol solution, and then put into a rotary evaporator to enrich curcumin concentration. The result showed that the present method is effective to isolate curcumin compound from Indonesian local turmeric. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.

  14. Assessing Consistency in Radiated Thermal Output of Beef Steers by Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-07-01

    Full Text Available Measurements of radiated thermal output are claimed to reflect the metabolic efficiency of mammals. This is important in food-producing animals because a measure of metabolic efficiency may translate to desirable characteristics, such as growth efficiency or residual feed intake, and permit the grouping of animals by metabolic characteristics that can be more precisely managed. This study addresses the question of whether radiated thermal parameters are characteristic of individual animals under normal and metabolically-challenging conditions. Consistency in radiated thermal output was demonstrated over a period of four weeks on condition that a sufficiently representative sample of measurements could be made on individual animals. The study provided evidence that infrared thermography could be used as an automated, rapid, and reliable tool for assessing thermoregulatory processes.

  15. Persistent Luminescent Nanocarrier as an Accurate Tracker in Vivo for Near Infrared-Remote Selectively Triggered Photothermal Therapy.

    Science.gov (United States)

    Zheng, Bin; Chen, Hong-Bin; Zhao, Pei-Qi; Pan, Hui-Zhuo; Wu, Xiao-Li; Gong, Xiao-Qun; Wang, Han-Jie; Chang, Jin

    2016-08-24

    Optical imaging-guidance of indocyanine green (ICG) for photothermal therapy (PTT) has great latent capacity in cancer therapy. However, the conventional optical image-guidance mode has caused strong tissue autofluorescence of the living tissue, which leads to the accurate infrared light irradiation cannot be conducted. In this article, ICG and persistent luminescence phosphors (PLPs) coloaded mesoporous silica nanocarriers ((ICG+PLPs)@mSiO2) were first designed and prepared for persistent luminescent imaging-guided PTT. The (ICG+PLPs)@mSiO2 nanocarriers could significantly improve signal-to-noise ratio during luminescence imaging-guided PTT, making the PLP promising for improving the accuracy of the tumor site for photothermal therapy in vivo. This paper is likely to develop a new way for accurately regulating cancer cell death based on luminescence imaging-guided PTT selectively triggered by near-infrared (NIR)-remote.

  16. Combination of Well-Logging Temperature and Thermal Remote Sensing for Characterization of Geothermal Resources in Hokkaido, Northern Japan

    Directory of Open Access Journals (Sweden)

    Bingwei Tian

    2015-03-01

    Full Text Available Geothermal resources have become an increasingly important source of renewable energy for electrical power generation worldwide. Combined Three Dimension (3D Subsurface Temperature (SST and Land Surface Temperature (LST measurements are essential for accurate assessment of geothermal resources. In this study, subsurface and surface temperature distributions were combined using a dataset comprised of well logs and Thermal Infrared Remote sensing (TIR images from Hokkaido island, northern Japan. Using 28,476 temperature data points from 433 boreholes sites and a method of Kriging with External Drift or trend (KED, SST distribution model from depths of 100 to 1500 m was produced. Regional LST was estimated from 13 scenes of Landsat 8 images. Resultant SST ranged from around 50 °C to 300 °C at a depth of 1500 m. Most of western and part of the eastern Hokkaido are characterized by high temperature gradients, while low temperatures were found in the central region. Higher temperatures in shallower crust imply the western region and part of the eastern region have high geothermal potential. Moreover, several LST zones considered to have high geothermal potential were identified upon clarification of the underground heat distribution according to 3D SST. LST in these zones showed the anomalies, 3 to 9 °C higher than the surrounding areas. These results demonstrate that our combination of TIR and 3D temperature modeling using well logging and geostatistics is an efficient and promising approach to geothermal resource exploration.

  17. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  18. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  19. Evaluation of the cellulite using a thermal infra-red camera.

    Science.gov (United States)

    Nkengne, A; Papillon, A; Bertin, C

    2013-02-01

    Cellulite is usually related to alterations of the microcirculation. Measuring the skin temperature is a mean to assess the skin microvascular plexus. A three-step clinical study was performed in order to develop and to validate the use of an infrared thermal camera for measuring cellulite severity. Thermal images of the thigh were recorded and processed to quantify the thermal homogeneity. The proposed protocol was then validated in three steps. Firstly, the parameters which could influence the skin temperature were identified throw a design of experiment. Secondly, the repeatability and reproducibility of the method was estimated (five subjects, four investigators and five experiments). Finally, thermal images and clinical grading of cellulite was performed on 39 women (21-68 years old), and the correlation between these methods was assessed. All parameters describing the thermal homogeneity were found repeatable and reproducible. The strongest correlation between thermal results and the clinical assessment were observed for Sa (R = 0.53, P cellulite. © 2012 John Wiley & Sons A/S.

  20. Thermal signature analysis of human face during jogging activity using infrared thermography technique

    Science.gov (United States)

    Budiarti, Putria W.; Kusumawardhani, Apriani; Setijono, Heru

    2016-11-01

    Thermal imaging has been widely used for many applications. Thermal camera is used to measure object's temperature above absolute temperature of 0 Kelvin using infrared radiation emitted by the object. Thermal imaging is color mapping taken using false color that represents temperature. Human body is one of the objects that emits infrared radiation. Human infrared radiations vary according to the activity that is being done. Physical activities such as jogging is among ones that is commonly done. Therefore this experiment will investigate the thermal signature profile of jogging activity in human body, especially in the face parts. The results show that the significant increase is found in periorbital area that is near eyes and forehand by the number of 7.5%. Graphical temperature distributions show that all region, eyes, nose, cheeks, and chin at the temperature of 28.5 - 30.2°C the pixel area tends to be constant since it is the surrounding temperature. At the temperature of 30.2 - 34.7°C the pixel area tends to increase, while at the temperature of 34.7 - 37.1°C the pixel area tends to decrease because pixels at temperature of 34.7 - 37.1°C after jogging activity change into temperature of 30.2 - 34.7°C so that the pixel area increases. The trendline of jogging activity during 10 minutes period also shows the increasing of temperature. The results of each person also show variations due to physiological nature of each person, such as sweat production during physical activities.

  1. MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII

    Energy Technology Data Exchange (ETDEWEB)

    L. BALICK; A. GILLESPIE; ET AL

    2001-03-01

    Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation

  2. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (I) using a catalogue of confirmed clusters detected in Planck data; (II) using an all-sky tSZ map built from Planck frequency maps; and (III) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (I) 6σ; (II) 3σ; and (III) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.

  3. Infrared absorption spectroscopy of carbon monoxide on nickel films: a low temperature thermal detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.B.

    1978-11-01

    Sensitive vibrational spectra of carbon monoxide molecules adsorbed on evaporated nickel films have been measured by attaching a thermometer to the sample, cooling the assembly to liquid helium temperatures, and recording the temperature changes which occur when infrared radiation is absorbed. The measurements are made in an ultrahigh vacuum chamber in which the sample surface can be cleaned, heated, exposed to gas molecules and cooled to 1.6 K for the infrared measurements. The spectra of chemisorbed CO molecules are interpreted in terms of the linear and bridge adsorption sites on the nickel surface, and they show how the distribution of molecules among these sites changes when the CO coverage increases and intermolecular forces become important. The spectra of physically adsorbed molecules in both monolayer and multilayer films are also reported. Absorptions as small as five parts in 10/sup 5/ of the incident radiation can presently be detected in spectra covering broad bands of infrared frequencies with a resolution of 2 cm/sup -1/. This high sensitivity is attributable to the low noise and reduced background signal of the thermal detection scheme, to the stability of the rapid scan Fourier transform infrared spectrometer, and to the automated computerized data acquisition electronics. Better performance is expected in future experiments on single crystal samples as well as evaporated films. This will make it possible to study molecules with weaker absorptions than CO and to look for evidence of chemical reactions between different adsorbed molecules.

  4. Quantitative thermal imperfection definition using non-destructive infrared thermography on an advanced DEMO divertor concept

    Science.gov (United States)

    Gallay, F.; Richou, M.; Vignal, N.; Lenci, M.; Roccella, S.; Kermouche, G.; Visca, E.; You, J. H.

    2017-12-01

    The future DEMO divertor is currently under conceptual design within the European Consortium. In this regard, several concepts have been proposed and mock-ups have been fabricated to investigate their thermo-mechanical behaviour. Indeed, as a key plasma facing component, the divertor will have to withstand extreme thermal loads (up to 20 MW m-2 during slow transient events) and will have to be able to exhaust a large amount of heat. The presence of structural defects in the component may significantly affect the thermal response and must therefore be considered. A non-destructive technique based on infrared thermography is proposed here to detect defects in mock-ups where graded material was used as an interlayer between the heatsink material and the armor material. Two methods to characterize the size and location of such defects are presented. It was shown that finite element analysis combined with experimental data from infrared thermography, provides accurate means to assess quantitatively the size and position of thermal imperfections.

  5. Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview

    NARCIS (Netherlands)

    Sobrino, J.A.; Jimenez-Munoz, J.C.; Zarco-Tejada, P.J.; Sepulcre-Canto, G.; Miguel, de E.; Soria, G.; Romaguera, M.; Julien, Y.; Cuenca, J.; Hidalgo, V.; Franch, B.; Mattar, C.; Morales, L.; Gillespie, A.; Sabol, D.; Balick, L.; Su, Z.; Jia, L.; Gieske, A.; Timmermans, W.; Olioso, A.; Nerry, F.; Guanter, L.; Moreno, J.; Shen, Q.

    2009-01-01

    The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de T,cnica Aerospacial (INTA), and it

  6. Ultraviolet radiation effects on the infrared damage rate of a thermal control coating

    Science.gov (United States)

    Bass, J. A.

    1972-01-01

    The effects of ultraviolet radiation on the infrared reflectance of ZnO silicone white thermal coatings were investigated. Narrow band ultraviolet radiation for wavelengths in the 2200A to 3500A range by a monochromator and a high pressure, 150-W Eimac xenon lamp. The sample was irradiated while in a vacuum of at least 0.000001 torr, and infrared reflectance was measured in situ with a spectroreflectometer at 19,500A. Reflectance degradation was studied as a function of wavelength, time, intensity, and dose. Damage was wavelength dependent at constant exposure, but no maximum was evident above the shortest wavelength investigated here. The degradation rate at constant intensity was an exponential function of time and varies with intensity.

  7. Radiative transfer and remote sensing

    Science.gov (United States)

    Conrath, B. J.

    1982-01-01

    Radiative transfer, the basic theoretical tool for the quantitative interpretation of planetary infrared spectra, is discussed. The function it plays in linking the remotely sensed data to the properties of the atmosphere (composition, thermal structure, dynamics, etc.), is inferred. A brief overview of the remote sensing problem as it pertains to the interpretation of planetary spectra is presented. The presentation is tutorial rather than exhaustive.

  8. Application of combined Landsat thematic mapper and airborne thermal infrared multispectral scanner data to lithologic mapping in Nevada

    Science.gov (United States)

    Podwysocki, M.H.; Ehmann, W.J.; Brickey, D.W.

    1987-01-01

    Future Landsat satellites are to include the Thematic Mapper (TM) and also may incorporate additional multispectral scanners. One such scanner being considered for geologic and other applications is a four-channel thermal-infrared multispectral scanner having 60-m spatial resolution. This paper discusses the results of studies using combined Landsat TM and airborne Thermal Infrared Multispectral Scanner (TIMS) digital data for lithologic discrimination, identification, and geologic mapping in two areas within the Basin and Range province of Nevada. Field and laboratory reflectance spectra in the visible and reflective-infrared and laboratory spectra in the thermal-infrared parts of the spectrum were used to verify distinctions made between rock types in the image data sets.

  9. Proximity and Gaze Influences Facial Temperature: A Thermal Infrared Imaging Study.

    Directory of Open Access Journals (Sweden)

    Stephanos eIoannou

    2014-08-01

    Full Text Available Direct gaze and interpersonal proximity are known to lead to changes in psycho-physiology, behaviour and brain function. We know little, however, about subtler facial reactions such as rise and fall in temperature, which may be sensitive to contextual effects and functional in social interactions. Using thermal infrared imaging cameras 18 female adult participants were filmed at two interpersonal distances (intimate and social and two gaze conditions (averted and direct. The order of variation in distance was counterbalanced: half the participants experienced a female experimenter’s gaze at the social distance first before the intimate distance (a socially ‘normal’ order and half experienced the intimate distance first and then the social distance (an odd social order. At both distances averted gaze always preceded direct gaze. We found strong correlations in thermal changes between six areas of the face (forehead, chin, cheeks, nose, maxilliary and periorbital regions for all experimental conditions and developed a composite measure of thermal shifts for all analyses. Interpersonal proximity led to a thermal rise, but only in the ‘normal’ social order. Direct gaze, compared to averted gaze, led to a thermal increase at both distances with a stronger effect at intimate distance, in both orders of distance variation. Participants reported direct gaze as more intrusive than averted gaze, especially at the intimate distance. These results demonstrate the powerful effects of another person’s gaze on psycho-physiological responses, even at a distance and independent of context.

  10. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  11. Spatiotemporal Evaluation of Nocturnal Cold Air Drainage Over a Simple Slope Using Thermal Infrared Imagery

    Science.gov (United States)

    Ikani, V.; Chokmani, K.; Fathollahi, L.; Granberg, H.; Fournier, R.

    2016-06-01

    Measurements of climatic processes such as cold air drainage flows are problematic over mountainous areas. Observation of cold air drainage is not available in the existing observation network and it requires a special methodology. The main objective of this study was to characterize the cold air drainage over regions with a slope. A high resolution infrared camera, a meteorological station and Digital Elevation Model (DEM) were used. The specific objective was to derive nocturnal cold air drainage velocity over the slope. To address these objectives, a number of infrared measurement campaigns were conducted during calm and clear sky conditions over an agricultural zone (blackcurrant farm) in Canada. Using thermal infrared images, the nocturnal surface temperature gradient were computed in hourly basis. The largest gradient magnitudes were found between 17h -20h. The cooling rates at basin area were two times higher in comparison to the magnitudes observed within slope area. The image analysis illustrated this considerable temperature gradient of the basin may be partly due to transport of cold air drainage into the basin from the slope. The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  12. Modulation of thermal somatosensory thresholds within local and remote spinal dermatomes following cervical repetitive magnetic stimulation.

    Science.gov (United States)

    Albu, Sergiu; Gómez-Soriano, Julio; Bravo-Esteban, Elisabeth; Palazon, Ramiro; Kumru, Hatice; Avila-Martin, Gerardo; Galán-Arriero, Iriana; Taylor, Julian

    2013-10-25

    Repetitive magnetic stimulation (rMS) modulates thermal somatosensory function at both low (0.2-1.0Hz) and high (5.0-20.0Hz) frequencies within the conditioned dermatome. However the effects of 1Hz and 20Hz cervical (C6-C7) rMS on thermosensory thresholds and contact heat evoked potentials (CHEPs) tested within local and remote spinal dermatomes are not known. Thirty healthy subjects participated in the study. Warm and cold detection threshold, heat and cold pain thresholds, and Cz/Fz CHEPs were evaluated within the C6, T10 and extrasegmental V3 control dermatome, before and after random assignment of subjects to sham, 1 or 20Hz C6-C7 rMS. Following both 1 and 20Hz cervical rMS, warm detection threshold increased within the local C6 dermatome. Furthermore 1Hz cervical rMS increased warm detection threshold within the remote T10 dermatome, but not within the V3-trigeminal control area. Cervical rMS failed to modulate cold detection threshold, heat and cold pain threshold or Cz/Fz CHEP amplitude from the dermatomal test sites. Both 1 and 20Hz cervical rMS modulated warm detection threshold within the locally conditioned C6 dermatome. The concomitant increase in warm detection threshold within the T10 dermatome following 1Hz rMS provides evidence for remote neuromodulation of thermosensory function via intraspinal control mechanisms. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Remote-Sensing Reflectance (RRS) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  14. Detection of moderate regional ischemia in pig hearts in vivo by near-infrared and thermal imaging: effects of dipyridamole.

    Science.gov (United States)

    Kupriyanov, Valery V; Manley, Darren M; Xiang, Bo

    2008-01-01

    Effects of coronary vasodilator, dipyridamole, on epicardial oxygenation and flow were investigated under conditions of moderate coronary occlusion using near-infrared spectroscopic (NIRS) and thermal imaging. In anesthetized open chest pigs an inflatable occluder and flow probe were placed around the left anterior descending artery (LAD). In the ischemic group (n = 11) LAD occlusion (50% flow, 80 min) was followed by complete occlusion (10 min, n = 4), and reflow. Dipyridamole was infused (0.14 mg/min/kg/4 min) intravenously during 50% occlusion. In the control group (n = 6) LAD flow was temporarily increased (hyperemic response) by two 2-min periods of complete LAD occlusion applied 120 min apart, with a 4-min period of dipyridamole infusion between the two occlusions. NIRS and thermal images were acquired throughout the protocol. Maps of subepicardial oxygen saturation parameter (OSP), and epicardial temperature (T) were obtained. Partial occlusion reduced OSP and the temperature by 0.23 +/- 0.08 and 0.88 +/- 0.39 degrees C versus remote region, respectively. Dipyridamole decreased systolic blood pressure by 36%, which caused further decline in the LAD flow to 18% and OSP and T by 0.37 +/- 0.01 and 2.46 +/- 0.32 degrees C, respectively. Reflow restored OSP and T to their baseline levels. In control group dipyridamole and hyperemia increased LAD flow 2-4-fold associated with moderate increase in OSP and T. OSP and T showed linear dependence on the flow below 100%, which is leveled-off at flows above normal. Dipyridamole increases differences in the epicardial oxygenation and T between normal and moderately ischemic areas due to enhancement of disparity in perfusion of these areas.

  15. A model for μ-biomimetic thermal infrared sensors based on the infrared receptors of Melanophila acuminata.

    Science.gov (United States)

    Siebke, Georg; Holik, Peter; Schmitz, Sam; Schmitz, Helmut; Lacher, Manfred; Steltenkamp, Siegfried

    2014-09-01

    Beetles of the genus Melanophila acuminata detect forest fires from distances as far as 130 km with infrared-sensing organs. Inspired by this extremely sensitive biological device, we are developing an IR sensor that operates at ambient temperature using MEMS technology. The sensor consists of two liquid-filled chambers that are connected by a micro-fluidic system. Absorption of IR radiation by one of these chambers leads to heating and expansion of a liquid. The increasing pressure deflects a membrane covered by one electrode of a plate capacitor. The micro-fluidic system and the second chamber represent a fluidic low-pass filter, preventing slow, but large pressure changes. However, the strong frequency dependence of the filter demands a precise characterization of its properties. Here, we present a theoretical model that describes the frequency-dependent response of the sensor based on material properties and geometrical dimensions. Our model is divided into four distinct parts that address different aspects of the sensor. The model describes the frequency-dependent behaviour of the fluidic filter and a thermal low-pass filter as well as saturation effects at low frequencies. This model allows the calculation of optimal design parameters, and thereby provides the foundation for the development of such a sensor.

  16. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material.

    Science.gov (United States)

    Kats, Mikhail A; Blanchard, Romain; Genevet, Patrice; Yang, Zheng; Qazilbash, M Mumtaz; Basov, D N; Ramanathan, Shriram; Capasso, Federico

    2013-02-01

    We demonstrate that the resonances of infrared plasmonic antennas can be tuned or switched on/off by taking advantage of the thermally driven insulator-to-metal phase transition in vanadium dioxide (VO(2)). Y-shaped antennas were fabricated on a 180 nm film of VO(2) deposited on a sapphire substrate, and their resonances were shown to depend on the temperature of the VO(2) film in proximity of its phase transition, in good agreement with full-wave simulations. We achieved tunability of the resonance wavelength of approximately 10% (>1 μm at λ~10 μm).

  17. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    Science.gov (United States)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  18. Determination of water surface temperature based on the use of Thermal Infrared Multispectral Scanner data

    Science.gov (United States)

    Anderson, James E.

    1992-01-01

    A straightforward method for compensating Thermal Infrared Multispectral Scanner (TIMS) digital data for the influence of atmospheric path radiance and the attenuation of target energy by the atmosphere is presented. A band ratioing model useful for estimating water surface temperatures, which requires no ground truth measurements, is included. A study conducted to test the potential of the model and the magnitudes of the corrections for atmosphere encountered is presented. Results of the study, which was based on data collected during an engineering evaluation flight of TIMS, indicate errors in the estimate of the surface temperature of the water fall from +/- 1.0 C for uncorrected data to +/- 0.4 C when data have been corrected according to the model presented. This value approaches the noise-limited thermal resolution of the sensor at the time of the flight.

  19. Evaluation of the infrared test method for the olympus thermal balance tests

    Science.gov (United States)

    Donato, M.; Stpierre, D.; Green, J.; Reeves, M.

    1986-01-01

    The performance of the infrared (IR) rig used for the thermal balance testing of the Olympus S/C thermal model is discussed. Included in this evaluation are the rig effects themselves, the IRFLUX computer code used to predict the radiation inputs, the Monitored Background Radiometers (MBR's) developed to measure the absorbed radiation flux intensity, the Uniform Temperature Reference (UTR) based temperature measurement system and the data acquisition system. A preliminary set of verification tests were performed on a 1 m x 1 m zone to assess the performance of the IR lamps, calrods, MBR's and aluminized baffles. The results were used, in part, to obtain some empirical data required for the IRFLUX code. This data included lamp and calrod characteristics, the absorptance function for various surface types, and the baffle reflectivities.

  20. Bone ablation without thermal or acoustic mechanical injury via a novel picosecond infrared laser (PIRL).

    Science.gov (United States)

    Jowett, Nathan; Wöllmer, Wolfgang; Reimer, Rudolph; Zustin, Jozef; Schumacher, Udo; Wiseman, Paul W; Mlynarek, Alex M; Böttcher, Arne; Dalchow, Carsten V; Lörincz, Balazs B; Knecht, Rainald; Miller, R J Dwayne

    2014-03-01

    A precise means to cut bone without significant thermal or mechanical injury has thus far remained elusive. A novel non-ionizing ultrafast pulsed picosecond infrared laser (PIRL) may provide the solution. Tissue ablation with the PIRL occurs via a photothermal process with thermal and stress confinement, resulting in efficient material ejection greatly enhanced through front surface spallation photomechanical effects. By comparison, the Er:YAG laser (EYL) ablates via photothermal and cavitation-induced photomechanical effects without thermal or acoustic confinement, leading to significant collateral tissue injury. This study compared PIRL and EYL bone ablation by infrared thermography (IRT), environmental scanning electron microscopy (ESEM), and histology. Prospective, comparative, ex vivo animal model. Optics laboratory. Ten circular area defects were ablated in ex vivo chicken humeral cortex using PIRL and EYL at similar average power (~70 mW) under IRT. Following fixation, ESEM and undecalcified light microscopy images were obtained and examined for signs of cellular injury. Peak rise in surface temperature was negligible and lower for PIRL (1.56 °C; 95% CI, 0.762-2.366) compared to EYL ablation (12.99 °C; 95% CI, 12.189-13.792) (P < .001). ESEM and light microscopy demonstrated preserved cortical microstructure following PIRL ablation in contrast to diffuse thermal injury seen with EYL ablation. Microfractures were not observed. Ablation of cortical bone using the PIRL generates negligible and significantly less heat than EYL ablation while preserving cortical microstructure. This novel laser has great potential in advancing surgical techniques where precision osseous manipulation is required.

  1. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies

    Science.gov (United States)

    Cilip, Christopher M.; Rosenbury, Sarah B.; Giglio, Nicholas; Hutchens, Thomas C.; Schweinsberger, Gino R.; Kerr, Duane; Latimer, Cassandra; Nau, William H.; Fried, Nathaniel M.

    2013-05-01

    Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578±154, 530±171, and 426±174 mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0±0.4 mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4 mm outer diameter).

  2. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  3. Characterization of optical and micro-physical properties of cirrus clouds using a wideband thermal infrared spectrometer

    Science.gov (United States)

    Palchetti, Luca; Di Natale, Gianluca; Bianchini, Giovanni

    2014-05-01

    High-altitude ice clouds such as cirrus clouds play a key role in the Earth's radiation budget since they cover permanently about 20-30% of the surface of the planet, reaching even to 60-70% in the tropics. The modulation of the incoming solar radiation and the outgoing Earth's thermal emission due to cirrus can contribute to heat or to cool the atmosphere, according to their optical properties, which must be characterised with great accuracy and over the whole spectral range involved in the scattering and emission processes. Here we present the infrared measurements over the wide spectral range from 9 to 50 micron performed by the Fourier transform spectrometer REFIR-PAD (Radiation Explorer in Far InfraRed - Prototype for Application and Development) during many field campaigns that have taken place since 2007 from different high-altitude ground-based stations: Testa Grigia Station, Cervinia-Italy, (3480 m asl), Cerro Toco, Atacama-Chile, (5380 m asl), Concordia Base, Dome C-Antarctica (3230 m asl). These measurements show for the first time the spectral effect of cirrus clouds in the long-wave part of the emission spectrum above 15 micron of wavelength. To characterise these measurements over the wide spectral range as a function of the optical properties of ice particles, a model of the radiative transfer, that integrates the well known numerical code LBLRTM, which simulates the radiative transfer in the atmosphere, with a specific code which simulates the propagation of the radiation through the cloud, was developed. The optical properties of clouds have been modelled using the δ-scaled Eddington approximation for a single layer and the Ping Yang's database for the single-scattering properties of ice crystals. The preliminary results of the fit procedure used for the determination of the micro-physical parameters of ice crystals, such as the effective diameter, ice water path, effective temperature and optical thickness will be shown in the presentation. The

  4. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-04-01

    Full Text Available The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST. However, calibration notices issued by the United States Geological Survey (USGS indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial

  5. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    Science.gov (United States)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  6. Infrared detection of moist areas in monumental buildings based on thermal inertia analysis

    Science.gov (United States)

    Grinzato, Ermanno G.; Mazzoldi, Andrea

    1991-03-01

    This paper presents a technique to detect the moisture conditions of walls supporting frescoes in order to detach its in case and to understand causes of the surface wetting. An important feature of the testing procedure is to be nondestructive and appropriate to analyze large surfaces as it is based on thermographic image processing. The goal is to classify the wall surface on the basis of its moisture condition. We choose the thermal inertia as the most suitable parameter for this purpose, because the heat capacity of a porous body increases to a great extent by varying its water content. The test works modifying the wall inner thermal conditions and detecting temperature variations of the fresco, in time and space domain. For this purpose a convective thermal flux is uniformly applied to the surface while an infrared camera views it. In such a way temperature gradients appear, whose maximum directional variation curves are used to segment the surface and the mean temperature time difference is used to label each area. The key point of the proposed procedure is the freedom from the knowledge of the wall composition and its thermal and hydrologic dynamic status, depending on weather history. Other topics as the environmental radiometric reflection and emission, the 'Narcissus effect' in thermograms mosaic composition and the perspective distortions are considered. Experimental results on a XVI century church at Padua, Italy) are presented.

  7. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-19

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  8. Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging

    Science.gov (United States)

    Ahuja, Sanjay; Ellingson, William A.; Stuckey, J. B.; Koehl, E. R.

    1996-03-01

    Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber- reinforced-silicon-carbide (SiC(f)/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC(f)/Si3N4), aluminum-oxide-reinforced-alumina (Al2O3(f)/Al2O3, etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly affect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for full-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full array of test specimens.

  9. Non-destructive evaluation of polyolefin thermal aging using infrared spectroscopy

    Science.gov (United States)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-01

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for nondestructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  10. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    Science.gov (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  11. Infrared Active Phonons in the Negative Thermal Expanding Compound, ZrW2O8

    Science.gov (United States)

    Turpen, Chandra; Hancock, Jason N.; Schlesinger, Zack; Kowach, Glen

    2003-03-01

    ZrW_2O8 is unusual in that it contracts as it is heated, a phenomenon known as negative thermal expansion. We will present studies of infrared reflectivity and conductivity vs. frequency for a pressed pellet sample of ZrW_2O_8, a compound with cubic lattice structure. Our measurements range from 20 K up to room temperature and from 12 cm-1 to 5000 cm-1 encompassing the entire range of the infrared active phonons in ZrW_2O_8. The phonon spectra exhibit considerable temperature dependence, particularly at low frequency. It is of interest to note that our infrared measurements show two regions of strong absorption in frequency ranges where the phonon density-of-states inferred from time-of-flight neutron scattering is very low. We will compare IR results with other measurements and discuss implications for understanding the nature of this unusual compound. This material is based upon work supported by the National Science Foundation under Grant No. DMR-0071949.

  12. Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks

    Science.gov (United States)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin

    2017-10-01

    There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.

  13. First Use of an Airborne Thermal Infrared Hyperspectral Scanner for Compositional Mapping

    Science.gov (United States)

    Kirkland, Laurel; Herr, Kenneth; Keim, Eric; Adams, Paul; Salisbury, John; Hackwell, John; Treiman, Allan

    2002-01-01

    In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mon-non Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25 microns band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.

  14. Dark and background response stability for the Landsat 8 Thermal Infrared Sensor

    Science.gov (United States)

    Vanderwerff, Kelly; Montanaro, Matthew

    2012-01-01

    The Thermal Infrared Sensor (TIRS) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM), which is a joint mission between NASA and the USGS. The TIRS instrument will continue to collect the thermal infrared data that are currently being collected by the Thematic Mapper and the Enhanced Thematic Mapper Plus on Landsats 5 and 7, respectively. One of the key requirements of the new sensor is that the dark and background response be stable to ensure proper data continuity from the legacy Landsat instruments. Pre launch testing of the instrument has recently been completed at the NASA Goddard Space Flight Center (GSFC), which included calibration collects that mimic those that will be performed on orbit. These collects include images of a cold plate meant to simulate the deep space calibration source as viewed by the instrument in flight. The data from these collects give insight into the stability of the instrument’s dark and background response, as well as factors that may cause these responses to vary. This paper quantifies the measured background and dark response of TIRS as well as its stability.

  15. Integrated optics for nulling interferometry in the thermal infrared: progress and recent achievements

    Science.gov (United States)

    Barillot, M.; Barthelemy, E.; Bastard, L.; Broquin, J.-E.; Hawkins, G.; Kirschner, V.; Ménard, S.; Parent, G.; Poinsot, C.; Pradel, A.; Vigreux, C.; Zhang, S.; Zhang, X.

    2017-11-01

    The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively [1]. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering [2] takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.

  16. Investigation of the influence of spatial degrees of freedom on thermal infrared measurement

    Science.gov (United States)

    Fleuret, Julien R.; Yousefi, Bardia; Lei, Lei; Djupkep Dizeu, Frank Billy; Zhang, Hai; Sfarra, Stefano; Ouellet, Denis; Maldague, Xavier P. V.

    2017-05-01

    Long Wavelength Infrared (LWIR) cameras can provide a representation of a part of the light spectrum that is sensitive to temperature. These cameras also named Thermal Infrared (TIR) cameras are powerful tools to detect features that cannot be seen by other imaging technologies. For instance they enable defect detection in material, fever and anxiety in mammals and many other features for numerous applications. However, the accuracy of thermal cameras can be affected by many parameters; the most critical involves the relative position of the camera with respect to the object of interest. Several models have been proposed in order to minimize the influence of some of the parameters but they are mostly related to specific applications. Because such models are based on some prior informations related to context, their applicability to other contexts cannot be easily assessed. The few models remaining are mostly associated with a specific device. In this paper the authors studied the influence of the camera position on the measurement accuracy. Modeling of the position of the camera from the object of interest depends on many parameters. In order to propose a study which is as accurate as possible, the position of the camera will be represented as a five dimensions model. The aim of this study is to investigate and attempt to introduce a model which is as independent from the device as possible.

  17. A review on the application of medical infrared thermal imaging in hands

    Science.gov (United States)

    Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António

    2017-09-01

    Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.

  18. Remotely Sensed Density Measurements of Volcanic Sulfur Dioxide Plumes Using a Spectral Long Wave Infrared Imager

    Science.gov (United States)

    2002-09-01

    Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget , Paperwork Reduction Project (0704-0188) Washington DC 20503. 1......Remote Sensing Environment, v.42, pp. 147-155, 1992. Greenland, P., Rose, W., and Stokes, J., 1985, “An estimate of gas emissions and magmatic gas

  19. Evaluation of thermal remote sensing as a low-cost regional geothermal exploration technique in New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, M.; Budge, T.K.

    1985-03-01

    Airborne and satellite borne thermal infrared scanner data were analyzed for application in the exploration of geothermal resources in New Mexico. The location for this study was the East Mesa Geothermal Field near Las Cruces, New Mexico. Primary sensor was the Thermal Infrared Multispectral Scanner (TIMS) which obtained data at 10-meter resolution. Additional data for comparison came from the Heat Capacity Mapping Mission (HCMM) satellite which provided data at 600-meter resolution. These data were compared to the soils, vegetation, and geology of the area, as well as borehole temperature data in an attempt to explain temperature patterns and anomalies. Thermal infrared scanner data were found to be too sensitive to solar-induced temperature anomalies to directly reflect the presence of subsurface geothermal anomalies but may provide valuable supporting information for a geothermal exploration program. 15 refs., 16 figs., 3 tabs.

  20. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  1. NEAR-INFRARED THERMAL EMISSION DETECTIONS OF A NUMBER OF HOT JUPITERS AND THE SYSTEMATICS OF GROUND-BASED NEAR-INFRARED PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Croll, Bryce [5525 Olund Road, Abbotsford, B.C. (Canada); Albert, Loic; Lafreniere, David [Département de physique, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7 (Canada); Jayawardhana, Ray [Department of Physics and Astronomy, York University, Toronto, ON L3T 3R1 (Canada); Cushing, Michael [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Moutou, Claire [Canada-France-Hawaii Telescope Corporation, 65-1238 Mamalahoa Highway, Kamuela, HI 96743 (United States); Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden St, MS-51, Cambridge, MA 02138 (United States); Bonomo, Aldo S. [INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Deleuil, Magali [Aix Marseille University, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), UMR 7326, F-13388 Marseille cedex 13 (France); Fortney, Jonathan, E-mail: croll@space.mit.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-20

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.

  2. Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor

    Directory of Open Access Journals (Sweden)

    Brian N. Wenny

    2015-02-01

    Full Text Available The Thermal Infrared Sensor (TIRS for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC. TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. The two-band (10.9 and 12.0 μm pushbroom sensor with a 185 km-wide swath uses a staggered arrangement of quantum well infrared photodetector (QWIPs arrays. The required spatial resolution is 100 m for TIRS, with the assessment of crop moisture and water resources being science drivers for that resolution. The evaluation of spatial resolution typically relies on a straight knife-edge technique to determine the spatial edge response of a detector system, and such an approach was implemented for TIRS. Flexibility in the ground calibration equipment used for TIRS thermal-vacuum chamber testing also made possible an alternate strategy that implemented a circular target moved in precise sub-pixel increments across the detectors to derive the edge response. On-orbit, coastline targets were developed to evaluate the spatial response performance. Multiple targets were identified that produced similar results to one another. Even though there may be a slight bias in the point spread function (PSF/modulation transfer function (MTF estimates towards poorer performance using this approach, it does have the ability to track relative changes for monitoring long-term instrument status. The results for both pre- and post-launch response analysis show general good agreement and consistency with edge slope along-track values of 0.53 and 0.58 pre- and post-launch and across-track values 0f 0.59 and 0.55 pre- and post-launch.

  3. Thin-layer infrared spectroscopic study on thermal behavior of non-phospholipid lipids and nanovesicles

    Science.gov (United States)

    Bista, Rajan K.; Bruch, Reinhard F.; Covington, Aaron M.

    2009-02-01

    °The investigation of thermal behaviors and subsequent changes in the conformational order of lipids and liposomes is of importance in understanding various phenomena such as the formation and fusion of vesicles, trans-membrane diffusion and membrane interactions with drugs and proteins. In this work, the thermal behavior of a suite of newly developed self-forming synthetic non-phospholipid (PEGylated) lipids and its nanovesicles in buffer suspensions were investigated by variable-temperature thin-layered Fourier Transform Infrared (FTIR) transmission spectroscopy. The temperature-induced infrared spectra of such lipids composed of 1,2-dimyristoyl-rac-glycerol-3-dodecaethylene glycol (GDM-12) and 1,2-distearoyl-rac-glycerol-3-triicosaethylene glycol (GDS-23) were acquired by using FTIR spectrometer in conjunction with a custom built temperature-controlled demountable liquid cell. In contrast to conventional phospholipids, these novel lipids form liposomes spontaneously upon hydration, without the supply of external activation energy. It was found that the thermal stability of the PEGylated lipids defer greatly depending upon the acyl chain-lengths as well as number of associated head group units. Particularly, GDM-12 (saturated 14 hydrocarbon chains) shows one sharp order-disorder transition with temperature increasing from 3 to 5 °C. Similarly, GDS-23 (saturated 18 hydrocarbon chains) exhibits comparatively broad order-disorder transition profiles between temperature 17 and 22 °C. However, the phase transition temperature becomes significantly higher for lipid nanovesicles formed in aqueous suspensions. The results obtained in this study may find applications in various areas including the development of lipid based substance and drug delivery systems.

  4. Evidence of hydrocarbon contamination from the Burgan oil field, Kuwait: interpretations from thermal remote sensing data.

    Science.gov (United States)

    ud Din, Saif; Al Dousari, Ahmad; Literathy, Peter

    2008-03-01

    The paper presents the application of thermal remote sensing for mapping hydrocarbon polluted sites. This has been achieved by mono-window algorithm for land surface temperature (LST) measurements, using multi-date band 6 data of Landsat Thematic Mapper (TM). The emissivity, transmittance and mean atmospheric temperature were used as critical factors to estimate LST. The changes in the surface emissivity due to oil pollution alter the apparent temperature, which was used as a recognition element to map out oil polluted surfaces. The LST contrast was successfully used to map spatial distribution of hydrocarbon pollution in the Burgan Oil field area of Kuwait. The methodology can be positively used to detect waste dumping, oil spills in oceans and ports, besides environmental management of oil pollution at or near the land surface.

  5. Thermal territories of the abdomen after caesarean section birth: infrared thermography and analysis.

    Science.gov (United States)

    Childs, C; Siraj, M R; Fair, F J; Selvan, A N; Soltani, H; Wilmott, J; Farrell, T

    2016-09-01

    To develop and refine qualitative mapping and quantitative analysis techniques to define 'thermal territories' of the post-partum abdomen, the caesarean section site and the infected surgical wound. In addition, to explore women's perspectives on thermal imaging and acceptability as a method for infection screening. Prospective feasibility study undertaken at a large University teaching hospital, Sheffield UK. Infrared thermal imaging of the abdomen was undertaken at the bedside on the first two days after elective caesarean section. Target recruitment: six women in each of three body mass index (BMI) categories (normal, 18.5-24.9 kg/m²; overweight 25-29.9 kg/m²; obese ≥30 kg/m²). Additionally, women presenting to the ward with wound infection were eligible for inclusion in the study. Perspectives on the use of thermal imaging and its practicality were also explored via semi-structured interviews and analysed using thematic content analysis. We recruited 20 women who had all undergone caesarean section. From the booking BMI, eight women were obese (including two women with infected wounds), seven women were overweight and five women had a normal BMI. Temperature (ºC) profiling and pixel clustering segmentation (hierarchical clustering-based segmentation, HCS) revealed characteristic features of thermal territories between scar and adjacent regions. Differences in scar thermal intensity profiles exist between healthy scars and infected wounds; features that have potential for wound surveillance. The maximum temperature differences (∆T) between healthy skin and the wound site exceed 2º C in women with established wound infection. At day two, two women had a scar thermogram with features observed in the 'infected' wound thermogram. Thermal imaging at early and later times after caesarean birth is feasible and acceptable. Women reported potential benefits of the technique for future wound infection screening. Thermal intensity profiling and HCS for pixel

  6. Mineralogic variability of the Kelso Dunes, Mojave Desert, California derived from Thermal Infrared Multispectral Scanner (TIMS) data

    Science.gov (United States)

    Ramsey, Michael S.; Howard, Douglas A.; Christensen, Philip R.; Lancaster, Nicholas

    1993-01-01

    Mineral identification and mapping of alluvial material using thermal infrared (TIR) remote sensing is extremely useful for tracking sediment transport, assessing the degree of weathering and locating sediment sources. As a result of the linear relation between a mineral's percentage in a given area (image pixel) and the depth of its diagnostic spectral features, TIR spectra can be deconvolved in order to ascertain mineralogic percentages. Typical complications such as vegetation, particle size and thermal shadowing are minimized upon examination of dunes. Actively saltating dunes contain little to no vegetation, are very well sorted and lack the thermal shadows that arise from rocky terrain. The primary focus of this work was to use the Kelso Dunes as a test location for an accuracy analysis of temperature/emissivity separation and linear unmixing algorithms. Accurate determination of ground temperature and component discrimination will become key products of future ASTER data. A decorrelation stretch of the TIMS image showed clear color variations within the active dunes. Samples collected from these color units were analyzed for mineralogy, grain size, and separated into endmembers. This analysis not only revealed that the dunes contained significant mineralogic variation, but were more immature (low quartz percentage) than previously reported. Unmixing of the TIMS data using the primary mineral endmembers produced unique variations within the dunes and may indicate near, rather than far, source locales for the dunes. The Kelso Dunes lie in the eastern Mojave Desert, California, approximately 95 km west of the Colorado River. The primary dune field is contained within a topographic basin bounded by the Providence, Granite Mountains, with the active region marked by three northeast trending linear ridges. Although active, the dunes appear to lie at an opposing regional wind boundary which produces little net movement of the crests. Previous studies have estimated

  7. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  8. A STUDY FOR REMOTE DETECTION OF INDUSTRIAL EFFLUENTS’ EFFECT ON RICE USING THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    S. Dehnavi

    2015-12-01

    Full Text Available Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory’s effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant’s product and its f-cover value, also some changes in radiant temperature.

  9. a Study for Remote Detection of Industrial Effluents' Effect on Rice Using Thermal Images

    Science.gov (United States)

    Dehnavi, S.; Abkar, A. A.; Maghsoudi, Y.; Dehnavi, E.

    2015-12-01

    Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images) useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory's effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant's product and its f-cover value, also some changes in radiant temperature.

  10. Study on infrared differential thermal non-destructive testing technology of the permeability of hot mix asphalt pavements

    Science.gov (United States)

    Wang, Duanyi; Shi, Jicun

    2017-06-01

    In order to non-destructive test (NDT) the permeability coefficient of hot mix asphalt (HMA) pavements fast, A methodology for assessing the permeability coefficient was proposed by infrared differential thermal testing of pavement after rain. The relationship between permeability coefficient and air voids of HMA specimen deter-mined. Finite element method (FEM) models were built to calculate the surface temperature difference with different exposure time after precipitation. Simulated solar radiation source and fully saturated plate specimens were set in laboratory, tests verify that the different exposure time the specimen surface temperature difference. Infrared differential thermal detection permeable pavement hardware and corresponding software developed. Based on many test results, the evaluation index and criteria of permeability coefficient of HMA pavements tested by infrared differential thermal were developed. The results showed that: There is correlation between air voids and permeability coefficient of HMA specimen. Permeability coefficient of HMA pavements can be determined by different surface temperature at different exposure time. 9:00 am - 14:00 pm is the best time to detect permeability coefficient by infrared differential thermal NDT. Permeable asphalt pavement permeability can be achieved by infrared detector quickly and continuously, a lane testing; Per the permeable assessment criteria, in-place pavements permeability coefficients can be accurately evaluated.

  11. Preliminary on-orbit performance of the Thermal Infrared Sensor (TIRS) on board Landsat 8

    Science.gov (United States)

    Montanaro, Matthew; Tesfaye, Zelalem; Lunsford, Allen; Wenny, Brian; Reuter, Dennis; Markham, Brian; Smith, Ramsey; Thome, Kurtis

    2013-09-01

    The Thermal Infrared Sensor (TIRS) on board Landsat 8 continues thermal band measurements of the Earth for the Landsat program. TIRS improves on previous Landsat designs by making use of a pushbroom sensor layout to collect data from the Earth in two spectral channels. The radiometric performance requirements of each detector were set to ensure the proper radiometric integrity of the instrument. The performance of TIRS was characterized during pre-flight thermal-vacuum testing. Calibration methods and algorithms were developed to translate the raw signal from the detectors into an accurate at-aperture spectral radiance. The TIRS instrument has the ability to view an on-board variable-temperature blackbody and a deep space view port for calibration purposes while operating on-orbit. After TIRS was successfully activated on-orbit, checks were performed on the instrument data to determine its image quality. These checkouts included an assessment of the on-board blackbody and deep space views as well as normal Earth scene collects. The calibration parameters that were determined pre-launch were updated by utilizing data from these preliminary on-orbit assessments. The TIRS on-orbit radiometric performance was then characterized using the updated calibration parameters. Although the characterization of the instrument is continually assessed over the lifetime of the mission, the preliminary results indicate that TIRS is meeting the noise and stability requirements while the pixel-to-pixel uniformity performance and the absolute radiometric performance require further study.

  12. An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

    Directory of Open Access Journals (Sweden)

    Dong Huilong

    2016-03-01

    Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

  13. Estimation of surface energy fluxes in the Arctic tundra using the remote sensing thermal-based Two-Source Energy Balance model

    Science.gov (United States)

    Cristóbal, Jordi; Prakash, Anupma; Anderson, Martha C.; Kustas, William P.; Euskirchen, Eugénie S.; Kane, Douglas L.

    2017-03-01

    The Arctic has become generally a warmer place over the past decades leading to earlier snow melt, permafrost degradation and changing plant communities. Increases in precipitation and local evaporation in the Arctic, known as the acceleration components of the hydrologic cycle, coupled with land cover changes, have resulted in significant changes in the regional surface energy budget. Quantifying spatiotemporal trends in surface energy flux partitioning is key to forecasting ecological responses to changing climate conditions in the Arctic. An extensive local evaluation of the Two-Source Energy Balance model (TSEB) - a remote-sensing-based model using thermal infrared retrievals of land surface temperature - was performed using tower measurements collected over different tundra types in Alaska in all sky conditions over the full growing season from 2008 to 2012. Based on comparisons with flux tower observations, refinements in the original TSEB net radiation, soil heat flux and canopy transpiration parameterizations were identified for Arctic tundra. In particular, a revised method for estimating soil heat flux based on relationships with soil temperature was developed, resulting in significantly improved performance. These refinements result in mean turbulent flux errors generally less than 50 W m-2 at half-hourly time steps, similar to errors typically reported in surface energy balance modeling studies conducted in more temperate climatic regimes. The MODIS leaf area index (LAI) remote sensing product proved to be useful for estimating energy fluxes in Arctic tundra in the absence of field data on the local biomass amount. Model refinements found in this work at the local scale build toward a regional implementation of the TSEB model over Arctic tundra ecosystems, using thermal satellite remote sensing to assess response of surface fluxes to changing vegetation and climate conditions.

  14. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  15. Nintendo Wii remote controllers for head posture measurement: accuracy, validity, and reliability of the infrared optical head tracker.

    Science.gov (United States)

    Kim, Jongshin; Nam, Kyoung Won; Jang, Ik Gyu; Yang, Hee Kyung; Kim, Kwang Gi; Hwang, Jeong-Min

    2012-03-15

    To evaluate the accuracy, validity, and reliability of a newly developed infrared optical head tracker (IOHT) using Nintendo Wii remote controllers (WiiMote; Nintendo Co. Ltd., Kyoto, Japan) for measurement of the angle of head posture. The IOHT consists of two infrared (IR) receivers (WiiMote) that are fixed to a mechanical frame and connected to a monitoring computer via a Bluetooth communication channel and an IR beacon that consists of four IR light-emitting diodes (LEDs). With the use of the Cervical Range of Motion (CROM; Performance Attainment Associates, St. Paul, MN) as a reference, one- and three-dimensional (1- and 3-D) head postures of 20 normal adult subjects (20-37 years of age; 9 women and 11 men) were recorded with the IOHT. In comparison with the data from the CROM, the IOHT-derived results showed high consistency. The measurements of 1- and 3-D positions of the human head with the IOHT were very close to those of the CROM. The correlation coefficients of 1- and 3-D positions between the IOHT and the CROM were more than 0.99 and 0.96 (P posture-measuring device. Considering its high performance, ease of use, and low cost, the IOHT has the potential to be widely used as a head-posture-measuring device in clinical practice.

  16. Sensitivity analysis of radiative transfer for atmospheric remote sensing in thermal IR: atmospheric weighting functions and surface partials

    Science.gov (United States)

    Ustinov, E. A.

    2003-01-01

    In this presentation, we apply the adjoint sensitivity analysis of radiative transfer in thermal IR to the general case of the analytic evaluation of the weighting functions of atmospheric parameters together with the partial derivatives for the surface parameters. Applications to remote sensing of atmospheres of Mars and Venus are discussed.

  17. ANALYSIS OF COMBINED UAV-BASED RGB AND THERMAL REMOTE SENSING DATA: A NEW APPROACH TO CROWD MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schulte

    2017-08-01

    Full Text Available Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring regarding the detection of crowd movement.

  18. Analysis of Combined Uav-Based RGB and Thermal Remote Sensing Data: a New Approach to Crowd Monitoring

    Science.gov (United States)

    Schulte, S.; Hillen, F.; Prinz, T.

    2017-08-01

    Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring regarding the detection of crowd movement.

  19. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    Science.gov (United States)

    Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-01-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  20. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    Science.gov (United States)

    Legleiter, Carl J.; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-11-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  1. Characterization of the deformation and thermal behavior of granitic exfoliation sheets with LiDAR and infrared thermography (Yosemite Valley, USA)

    Science.gov (United States)

    Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Collins, Brian D.; Stock, Greg M.

    2017-04-01

    than 9 cm, confirming the results of Collins and Stock (2016). Then, the LiDAR - infrared thermography coupling allowed us to establish a link between the contraction - expansion cycles observed and daily thermal variations: the cycles of contraction (crack closure) occur between 3:00 p.m. and 8:00 a.m. and are associated with cooling, whereas the opposite is true for the expansion cycles (crack opening). In addition, in the case of experiment (i), we observe a delay of about 40 minutes between the time when surface temperatures are minimum and the maximum closure of the crack (-5.33 +/- 0.01 mm), which occurs a little before 8:00 a.m. Concerning the thermal behavior of the exfoliation sheets, the experiments (i) and (ii) show that the exfoliation sheets are almost always colder than surrounding stable areas, except during the hottest hours of the day when the temperatures are similar. At the end of the night, the temperature deviation between an exfoliation sheet and a stable part can reach 5 to 6 Celsius degrees (values valid for October) and this thermal contrast makes it possible to remotely detect the presence of exfoliation sheets in a rockwall. This result was then confirmed by the experiment (iii) which shows that a whole series of exfoliation sheets could be detected at a distance of 1 km, by means of thermal comparisons. Coupled to the LiDAR, infrared thermography can thus be useful for drawing a 3D map of exfoliation sheets in a cliff of several hundred meters high.

  2. Synergistic use of Thermal Infrared Satellite and Field-Based Data to Understand Silicic Lava Emplacement Processes

    Science.gov (United States)

    Ramsey, M. S.

    2004-05-01

    Intermediate to silicic lava domes commonly found capping active volcanic conduits can preserve an enormous quantity of information on the system's activity state. Such data could include the pressure, temperature, flow rate, and degassing state of the lava as it is extruded. Further, similar lavas found on inactive systems can serve as analogs for active domes thereby mitigating potentially hazardous field work while validating models. The clear objective is to collect data and refine models/techniques at the inactive sites so as to better understand the data from active systems, which reveal the potential hazard state of the volcano. However, in order to study both systems under similar conditions, a set of data collection techniques must be equally applicable to both. One obvious choice is remote sensing, which mitigates hazards to scientists in the field, can be collected relatively cheaply under most conditions, and can be an effective monitoring tool. In the past several years, new airborne and space-based instruments have provided data in multiple wavelength regions never before collected over volcanic flows and domes. One of the most promising satellite instruments for volcanology is the ASTER instrument launched by NASA in late 1999. Because it is the first spaceborne sensor to acquire high spatial resolution data from the visible to thermal infrared (TIR) wavelength region and has the ability to generate digital elevation models, it is particularly useful for numerous aspects of volcanic remote sensing. For example, its multispectral TIR capability is critical for monitoring low temperature anomalies and mapping both chemical and textural variations on the dome surfaces. However, the ability to derive this level of quantitative information currently relies on accurate field based data collection, laboratory modeling, and the development of new computer-based tools. Over the past three years, ASTER data acquired over the active dome-forming eruptions of

  3. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  4. Galactic Latitude Dependence of Near-infrared Diffuse Galactic Light: Thermal Emission or Scattered Light?

    Science.gov (United States)

    Sano, K.; Matsuura, S.

    2017-11-01

    Near-infrared (IR) diffuse Galactic light (DGL) consists of scattered light and thermal emission from interstellar dust grains illuminated by the interstellar radiation field (ISRF). At 1.25 and 2.2 μ {{m}}, a recent observational study shows that intensity ratios of the DGL to interstellar 100 μ {{m}} dust emission steeply decrease toward high Galactic latitudes (b). In this paper, we investigate the origin(s) of the b-dependence on the basis of models of thermal emission and scattered light. Combining a thermal emission model with the regional variation of the polycyclic aromatic hydrocarbon abundance observed with Planck, we show that the contribution of the near-IR thermal emission component to the observed DGL is lower than ∼ 20 % . We also examine the b-dependence of the scattered light, assuming a plane–parallel Galaxy with smooth distributions of the ISRF and dust density along the vertical direction, and assuming a scattering phase function according to a recently developed model of interstellar dust. We normalize the scattered light intensity to the 100 μ {{m}} intensity corrected for deviation from the cosecant-b law according to the Planck observation. As the result, the present model that considers the b-dependence of dust and the ISRF properties can account for the observed b-dependence of the near-IR DGL. However, the uncertainty in the correction for the 100 μ {{m}} emission is large, and other normalizing quantities may be appropriate for a more robust analysis of the DGL.

  5. Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars

    Science.gov (United States)

    Johnson, J. R.; Christensen, P.R.; Lucey, P.G.

    2002-01-01

    Thin coatings of atmospherically deposited dust can mask the spectral characteristics of underlying surfaces on Mars from the visible to thermal infrared wavelengths, making identification of substrate and coating mineralogy difficult from lander and orbiter spectrometer data. To study the spectral effects of dust coatings, we acquired thermal emission and hemispherical reflectance spectra (5-25 μm; 2000-400 cm-1) of basaltic andesite coated with different thicknesses of air fall-deposited palagonitic soils, fine-grained ceramic clay powders, and terrestrial loess. The results show that thin coatings (10-20 μm) reduce the spectral contrast of the rock substrate substantially, consistent with previous work. This contrast reduction continues linearly with increasing coating thickness until a "saturation thickness" is reached, after which little further change is observed. The saturation thickness of the spectrally flat palagonite coatings is ~100-120 μm, whereas that for coatings with higher spectral contrast is only ~50-75 μm. Spectral differences among coated and uncoated samples correlate with measured coating thicknesses in a quadratic manner, whereas correlations with estimated surface area coverage are better fit by linear functions. Linear mixture modeling of coated samples using the rock substrate and coating materials as end-members is also consistent with their measured coating thicknesses and areal coverage. A comparison of ratios of Thermal Emission Spectrometer (TES) spectra of dark and bright intracrater and windstreak deposits associated with Radau crater suggests that the dark windstreak material may be coated with as much as 90% areal coverage of palagonitic dust. The data presented here also will help improve interpretations of upcoming mini-TES and Thermal Emission Imaging System (THEMIS) observations of coated Mars surface materials.

  6. Calibration of the Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K; Reuter, D.; Lunsford, D.; Montanaro, M.; Smith, J.; Tesfaye, Z.; Wenny, B.

    2011-01-01

    The Landsat series of satellites provides the longest running continuous data set of moderate-spatial-resolution imagery beginning with the launch of Landsat 1 in 1972 and continuing with the 1999 launch of Landsat 7 and current operation of Landsats 5 and 7. The Landsat Data Continuity Mission (LDCM) will continue this program into a fourth decade providing data that are keys to understanding changes in land-use changes and resource management. LDCM consists of a two-sensor platform comprised of the Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS). A description of the applications and design of the TIRS instrument is given as well as the plans for calibration and characterization. Included are early results from preflight calibration and a description of the inflight validation.

  7. Mapping the Piute Mountains, CA with Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Hook, S. J.; Karlstrom, K. E.; Miller, C. F.; McCaffrey, K. J. W.

    1993-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired in 1990 over the PiuteMountains, California to evaluate their usefulness for lithologic mapping in an area ofmetamorphosed, structurally complex, igneous and sedimentary rocks. The data were calibrated,atmospherically corrected, and emissivity variations extracted from them. There was an excellentvisual correlation between the units revealed in the TIMS data and the recent mapping in the easternside of the area. It was also possible to correct, improve and extend the recent map. For example,several areas of amphibolite were identified in the TIMS data that had been incorrectly mapped asgranodioritic gneiss, and the presence of a swarm of mafic dikes, of which only a few had previouslybeen identified, was revealed...

  8. These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnos

    Science.gov (United States)

    2002-01-01

    These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnostic of physical phenomena The 7.85-micron image in the upper left shows stratospheric temperatures which are elevated in the region of the A fragment impact (to the left of bottom). Temperatures deeper in the atmosphere near 150-mbar are shown by the 17.2-micron image in the upper right. There is a small elevation of temperatures at this depth, indicated by the arrow, and confirmed by other measurements near this wavelength. This indicates that the influence of the impact of fragment A on the troposphere has been minimal. The two images in the bottom row show no readily apparent perturbation of the ammmonia condensate cloud field near 600 mbar, as diagnosed by 8.57-micron radiation, and deeper cloud layers which are diagnosed by 5-micron radiation.

  9. Modeling of a single red blood cell thermal reaction exposed to infrared laser tweezers

    Science.gov (United States)

    Seteikin, A.; Krasnikov, I.; Bernhardt, I.

    2013-02-01

    Continuous-wave laser micro-beams are generally used as diagnostic tools in laser scanning microscopes or in the case of near-infrared (NIR) micro-beams, as optical traps for cell manipulation and force characterization. Because single beam traps are created with objectives of high numerical aperture, typical trapping intensities and photon flux densities are in the order of 106 W/cm2 and 103 cm-2s-1, respectively. The main idea of our theoretical study was to investigate the thermal reaction of RBCs irradiated by laser micro-beam. The study is supported by the fact that many experiments have been carried out with RBCs in laser NIR tweezers. In the present work it has been identified that the laser affects a RBC with a density of absorbed energy at approximately 107 J/cm3, which causes a temperature rise in the cell of about 7 - 12 °C.

  10. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    Science.gov (United States)

    Langran, Kenneth J.

    1986-01-01

    The Mount St. Helens 1980 eruption offers an opportunity to study vegetation recovery rates and patterns in a perturbed ecosystem. The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. It was observed that during maximum daytime solar heating, surface temperatures of vegetated areas are cooler than surrounding nonvegetated areas, and that surface temperature varies with percent vegetation cover. A method of measuring the relationship between effective radiant temperature (ERT) and percent vegetation cover in the thermal infrared (8 to 12 microns) region of the electromagnetic spectrum was investigated.

  11. A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features

    Science.gov (United States)

    Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.

    2012-01-01

    Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.

  12. New Asia Dust Storm Detection Method Based on the Thermal Infrared Spectral Signature

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2014-12-01

    Full Text Available As hyperspectral instruments can provide the detailed spectral information, a new spectral similarity method for detecting and differentiating dust from non-dust scenes using the Atmospheric Infrared Sounder (AIRS observations has been developed. The detection is based on a pre-defined Dust Spectral Similarity Index (DSSI, which was calculated from the accumulated brightness temperature differences between selected 16 AIRS observation channels, in the thermal infrared region of 800–1250 cm−1. It has been demonstrated that DSSI can effectively separate the dust from non-dust by elevating dust signals. For underlying surface covered with dust, the DSSI tends to show values close to 1.0. However, the values of DSSI for clear sky surfaces or clouds (ice and water are basically lower than those of dust, as their spectrums have significant differences with dust. To evaluate this new simple DSSI dust detection algorithm, several Asia dust events observed in northern China were analyzed, and the results agree favorably with those from the Moderate resolution Imaging Spectro radiometer (MODIS and Cloud Aerosol LiDAR with Orthogonal Polarization (CALIOP observations.

  13. Hydrolysis of Baltic amber during thermal ageing--an infrared spectroscopic approach.

    Science.gov (United States)

    Pastorelli, Gianluca; Shashoua, Yvonne; Richter, Jane

    2013-04-01

    To enable conservation of amber in museums, understanding of chemical changes is crucial. While oxidation has been investigated particularly well for this natural polymer, further degradation phenomena in relation to humidity and pollutants are poorly studied or still unknown. Attenuated total reflectance-Fourier transform infrared spectroscopy was explored with regard to Baltic amber. A systematic spectroscopic survey of a wide range of thermally aged model amber samples, exposed to different microclimatic conditions, showed significant changes in their spectra. Samples aged in a humid and acidic environment or exposed to a humid and alkaline atmosphere generally exhibited a higher absorbance intensity of carbonyl groups at frequencies assigned to acids than unaged samples, samples aged in drier conditions and samples immersed in an alkaline solution. Baltic amber comprises succinate ester, which may be hydrolysed into communol and succinic acid. The survey thus provided evidence about the progress of hydrolytic reactions during degradation of Baltic amber. Infrared spectroscopy was shown to have significant potential for providing qualitative and quantitative chemical information on hydrolysis of amber, which will be of interest for the development of preventive conservation techniques for museum collections of amber objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes

    Science.gov (United States)

    Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.

    2016-12-01

    Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.

  15. High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines

    Directory of Open Access Journals (Sweden)

    Carlos Zúñiga Espinoza

    2017-09-01

    Full Text Available Precision irrigation management is based on the accuracy and feasibility of sensor data assessing the plant water status. Multispectral and thermal infrared images acquired from an unmanned aerial vehicle (UAV were analyzed to evaluate the applicability of the data in the assessment of variants of subsurface irrigation configurations. The study was carried out in a Cabernet Sauvignon orchard located near Benton City, Washington. Plants were subsurface irrigated at a 30, 60, and 90 cm depth, with 15%, 30%, and 60% irrigation of the standard irrigation level as determined by the grower in commercial production management. Half of the plots were irrigated using pulse irrigation and the other half using continuous irrigation techniques. The treatments were compared to the control plots that received standard surface irrigation at a continuous rate. The results showed differences in fruit yield when the control was compared to deficit irrigated treatments (15%, 30%, 60% of standard irrigation, while no differences were found for comparisons of the techniques (pulse, continuous or depths of irrigation (30, 60, 90 cm. Leaf stomatal conductance of control and 60% irrigation treatments were statistically different compared to treatments receiving 30% and 15% irrigation. The normalized difference vegetation index (NDVI, green normalized difference vegetation index (GNDVI, and canopy temperature were correlated to fruit yield and leaf stomatal conductance. Significant correlations (p < 0.01 were observed between NDVI, GNDVI, and canopy temperature with fruit yield (Pearson’s correlation coefficient, r = 0.68, 0.73, and −0.83, respectively, and with leaf stomatal conductance (r = 0.56, 0.65, and −0.63, respectively at 44 days before harvest. This study demonstrates the potential of using low-altitude multispectral and thermal imagery data in the assessment of irrigation techniques and relative degree of plant water stress. In addition, results provide

  16. Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Daanen, H.A.M.

    2011-01-01

    Several studies suggest that the temperature of the inner canthus of the eye (Tca), determined with infrared thermal imaging, is an appropriate method for core temperature estimation in mass screening of fever. However, these studies used the error prone tympanic temperature as a reference.

  17. EVALUATION OF THE THERMAL INFRARED SATELLITE IMAGES APPLIANCE FOR VEGETATION INTERPRETATION (CASE STUDY OF BERING AND KUNASHIR ISLANDS

    Directory of Open Access Journals (Sweden)

    M. Yu. Grishchenko

    2017-01-01

    Full Text Available Thermal infrared satellite images are a promising source of information about geographic objects; many of their interpretive features have not been fully examined yet. In this paper we study the possibility of revealing the vegetation cover and certain vegetation communities using thermal infrared satellite images acquired by resource satellites-images characterized by spatial resolution of 30-150 m. These images allow us to study geosystems at the regional level, where the significant part of geographical research is focused. As the study areas selected two sites on Kunashir Island (caldera of the Golovnin volcano and Rogachiov and Gemmerling capes environs and one site on Bering Island (Buyan river valley and its watershed. The area is characterized by high heterogeneity of vegetation cover; in addition, an important factor in this choice was a large number of geobotanical descriptions made up by employees and trainees of the Kurilsky and S.V. Marakov Komandorsky nature reserves. In total, there were processed 37 satellite images that were grouped into multispectral files. The results of interpretation of multispectral images with a thermal infrared channel and without it have been compared. As a result, the work showed a high efficiency of using thermal infrared images to reveal some vegetation communities, particularly dwarf pine brushwood and floodplain willow shrub.

  18. Estimation of soil and vegetation temperatures with multiangular thermal infrared observations: IMGRASS, HEIFE, and SGP 1997 experiments

    NARCIS (Netherlands)

    Menenti, M.; Jia, L.; Li, Z.L.; Djepa, V.; Wang, J.; Stoll, M.P.; Su, Z.; Rast, M.

    2001-01-01

    The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of

  19. Mid-infrared tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  20. Mid-infrared tunable metamaterials

    Science.gov (United States)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  1. Multi-Sensor Fusion of Landsat 8 Thermal Infrared (TIR and Panchromatic (PAN Images

    Directory of Open Access Journals (Sweden)

    Hyung-Sup Jung

    2014-12-01

    Full Text Available Data fusion is defined as the combination of data from multiple sensors such that the resulting information is better than would be possible when the sensors are used individually. The multi-sensor fusion of panchromatic (PAN and thermal infrared (TIR images is a good example of this data fusion. While a PAN image has higher spatial resolution, a TIR one has lower spatial resolution. In this study, we have proposed an efficient method to fuse Landsat 8 PAN and TIR images using an optimal scaling factor in order to control the trade-off between the spatial details and the thermal information. We have compared the fused images created from different scaling factors and then tested the performance of the proposed method at urban and rural test areas. The test results show that the proposed method merges the spatial resolution of PAN image and the temperature information of TIR image efficiently. The proposed method may be applied to detect lava flows of volcanic activity, radioactive exposure of nuclear power plants, and surface temperature change with respect to land-use change.

  2. Modelling Miniature Incandescent Light Bulbs for Thermal Infrared `THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Lucyszyn, Stepan

    2015-04-01

    The ` THz Torch' concept is an emerging technology that was recently introduced by the authors for implementing secure wireless communications over short distances within the thermal infrared (20-100 THz, 15 μm to 3 μm). In order to predict the band-limited output radiated power from ` THz Torch' transmitters, for the first time, this paper reports on a detailed investigation into the radiation mechanisms associated with the basic thermal transducer. We demonstrate how both primary and secondary sources of radiation emitted from miniature incandescent light bulbs contribute to the total band-limited output power. The former is generated by the heated tungsten filament within the bulb, while the latter is due to the increased temperature of its glass envelope. Using analytical thermodynamic modelling, the band-limited output radiated power is calculated, showing good agreement with experimental results. Finally, the output radiated power to input DC power conversion efficiency for this transducer is determined, as a function of bias current and operation within different spectral ranges. This modelling approach can serve as an invaluable tool for engineering solutions that can achieve optimal performances with both single and multi-channel ` THz Torch' systems.

  3. Development and qualification of the conveyable thermal infrared field radiometer CLIMAT

    Science.gov (United States)

    Pietras, Christophe M.; Haeffelin, Martial P.; Legrand, Michel; Brogniez, Gerard; Abuhassan, Nader K.; Buis, Jean P.

    1995-12-01

    The radiometer CLIMAT is a highly sensitive field instrument designed for multispectral thermal infrared measurements. Ground-based measurements can be performed. but the instrument has capabilities for operating from aircraft or balloon. The optics consist of an objective lens and a condenser mounted according to the Koehler principle to provide uniform irradiation over the detector surface. The radiometric signal is treated by a fast thermopile detector characterized by a low noise and a very weak temperature dependence of its responsivity. The managing system allows either manual or automated measurements. The energy consumption of the instrument is optimized for a maximum autonomy. The optical and electrical units of the instrument are described. Different experimental studies for measuring the sensitivity accuracy, spectral characteristics, thermal behavior and, field of view of the instrument are described. The instrument is dedicated to ground and vegetation on the one hand. and on the other hand, clouds and atmospheric soundings. The radiometer is also designed for calibrations or analyses of satellite radiometry data. Some atmospheric measurements obtained with a prototype are presented. Prospects are the development and the qualification of a narrow field-of-view instrument adapted to inhomogeneous targets such as cirrus clouds. A 3.7-tim channel and an internal blackbody are under study.

  4. Multi-sensor fusion of Landsat 8 thermal infrared (TIR) and panchromatic (PAN) images.

    Science.gov (United States)

    Jung, Hyung-Sup; Park, Sung-Whan

    2014-12-18

    Data fusion is defined as the combination of data from multiple sensors such that the resulting information is better than would be possible when the sensors are used individually. The multi-sensor fusion of panchromatic (PAN) and thermal infrared (TIR) images is a good example of this data fusion. While a PAN image has higher spatial resolution, a TIR one has lower spatial resolution. In this study, we have proposed an efficient method to fuse Landsat 8 PAN and TIR images using an optimal scaling factor in order to control the trade-off between the spatial details and the thermal information. We have compared the fused images created from different scaling factors and then tested the performance of the proposed method at urban and rural test areas. The test results show that the proposed method merges the spatial resolution of PAN image and the temperature information of TIR image efficiently. The proposed method may be applied to detect lava flows of volcanic activity, radioactive exposure of nuclear power plants, and surface temperature change with respect to land-use change.

  5. A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Songhan Wang

    2015-08-01

    Full Text Available On-board the Landsat-8 satellite, the Thermal Infrared Sensor (TIRS, which has two adjacent thermal channels centered roughly at 10.9 and 12.0 μm, has a great benefit for the land surface temperature (LST retrieval. The single-channel algorithm (SC and split-window algorithm (SW have been applied to retrieve the LST from TIRS data, which need the land surface emissivity (LSE as prior knowledge. Due to the big challenge of determining the LSE, this study develops a temperature and emissivity separation algorithm which can simultaneously retrieve the LST and LSE. Based on the laboratory emissivity spectrum data, the minimum-maximum emissivity difference module (MMD module for TIRS data is developed. Then, an emissivity log difference method (ELD method is developed to maintain the emissivity spectrum shape in the iterative process, which is based on the modified Wien’s approximation. Simulation results show that the root-mean-square-errors (RMSEs are below 0.7 K for the LST and below 0.015 for the LSE. Based on the SURFRAD ground measurements, further evaluation demonstrates that the average absolute error of the LST is about 1.7 K, which indicated that the algorithm is capable of retrieving the LST and LSE simultaneously from TIRS data with fairly good results.

  6. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  7. Thermal energy harvesting near-infrared radiation and accessing low temperatures with plasmonic sensors.

    Science.gov (United States)

    Karker, Nicholas A; Dharmalingam, Gnanaprakash; Carpenter, Michael A

    2015-11-14

    Near-infrared (NIR) thermal energy harvesting has been demonstrated for gold nanorods (AuNRs), allowing concentration dependent, ppm-level, gas detection of H2, CO, and NO2 at 500 °C without using a white light source. Part-per-million detection capabilities of the gold nanorods are demonstrated with a factor of 11 reduction in collection times in the NIR as compared to measurements made in the visible light region. Decreased collection times are enabled by an increase in S : N ratio, which allowed a demonstration of selectivity through the use of both full spectral and a reduced spectral-based principal component analysis. Furthermore, low temperature thermal imaging spectra have been obtained at sample temperatures ranging from 275-500 °C, showing the possibility of energy harvested gas sensing at lower temperatures. These findings are promising in the area of miniaturizing plasmonic gas sensing technology and integration in areas such as gas turbines.

  8. MERTIS: the thermal infrared imaging spectrometer onboard of the Mercury Planetary Orbiter

    Science.gov (United States)

    Zeh, T.; Peter, G.; Walter, I.; Kopp, E.; Knollenberg, J.; Helbert, J.; Gebhardt, A.; Weber, I.; Hiesinger, Harry

    2017-11-01

    The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS has four goals: the study of Mercury's surface composition, identification of rock-forming minerals, mapping of the surface mineralogy, and the study of the surface temperature variations and thermal inertia. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm at high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. The MERTIS detector is based on an uncooled micro-bolometer array providing spectral separation and spatial resolution according to its 2-dimensional shape. The operation principle is characterized by intermediate scanning of the planet surface and three different calibration targets - free space view and two on-board black body sources. In the current project phase, the MERTIS Qualification Model (QM) is under a rigorous testing program. Besides a general overview of the instrument principles, the papers addresses major aspects of the instrument design, manufacturing and verification.

  9. Experimental investigation of thermal loading of a horizontal thin plate using infrared camera

    Directory of Open Access Journals (Sweden)

    M.Y. Abdollahzadeh Jamalabadi

    2014-07-01

    Full Text Available This study reports the results of experimental investigations of the characteristics of thermal loading of a thin plate by discrete radiative heat sources. The carbon–steel thin plate is horizontally located above the heat sources. Temperature distribution of the plate is measured using an infrared camera. The effects of various parameters, such as the Rayleigh number, from 107 to 1011, the aspect ratio, from 0.05 to 0.2, the distance ratio, from 0.05 to 0.2, the number of heaters, from 1 to 24, the thickness ratio, from 0.003 to 0.005, and the thermal radiative emissivity, from 0.567 to 0.889 on the maximum temperature and the length of uniform temperature region on a thin plate are explored. The results indicate that the most effective parameters on the order of impact on the maximum temperature is Rayleigh number, the number of heat sources, the distance ratio, the aspect ratio, the surface emissivity, and the plate thickness ratio. Finally, the results demonstrated that there is an optimal distance ratio to maximize the region of uniform temperature on the plate.

  10. Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

    Directory of Open Access Journals (Sweden)

    Singhal Mayank

    2017-01-01

    Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

  11. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    Science.gov (United States)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators for supercomputers. Finally, the dielectric constant and loss tangent of MAPTMS sol

  12. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Saleem, E-mail: ullah19488@itc.nl [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Skidmore, Andrew K. [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Naeem, Mohammad [Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK (Pakistan); Schlerf, Martin [Centre de Recherche Public-Gabriel Lippmann (CRPGL), L-4422 Belvaux (Luxembourg)

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 {mu}m) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R{sup 2} = 0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R{sup 2} = 0.88, RMSE = 8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. -- Highlights: Black-Right-Pointing-Pointer The mid and thermal infrared spectra are sensitive to variation in leaf water content. Black-Right-Pointing-Pointer Continuous wavelet analysis detected the variation caused by leaf water content. Black-Right-Pointing-Pointer The selected wavelet features are highly correlated with leaf water content. Black-Right-Pointing-Pointer Mid wave and thermal infrared spectra have the potential to estimate leaf water content.

  13. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  14. The 2007 Stromboli eruption: Event chronology and effusion rates using thermal infrared data

    Science.gov (United States)

    Calvari, S.; Lodato, L.; Steffke, A.; Cristaldi, A.; Harris, A. J. L.; Spampinato, L.; Boschi, E.

    2010-04-01

    Using thermal infrared images recorded by a permanent thermal camera network maintained on Stromboli volcano (Italy), together with satellite and helicopter-based thermal image surveys, we have compiled a chronology of the events and processes occurring before and during Stromboli's 2007 effusive eruption. These digital data also allow us to calculate the effusion rates and lava volumes erupted during the effusive episode. At the onset of the 2007 eruption, two parallel eruptive fissures developed within the northeast crater, eventually breaching the NE flank of the summit cone and extending along the eastern margin of the Sciara del Fuoco. These fed a main effusive vent at 400 m above sea level to feed lava flows that extended to the sea. The effusive eruption was punctuated, on 15 March, by a paroxysm with features similar to those of the 5 April paroxysm that occurred during the 2002-2003 effusive eruption. A total of between 3.2 × 106 and 11 × 106 m3 of lava was erupted during the 2007 eruption, over 34 days of effusive activity. More than half of this volume was emplaced during the first 5.5 days of the eruption. Although the 2007 effusive eruption had an erupted volume comparable to that of the previous (2002-2003) effusive eruption, it had a shorter duration and thus a mean output rate (=total volume divided by eruption duration) that was 1 order of magnitude higher than that of the 2002-2003 event (˜2.4 versus 0.32 ± 0.28 m3 s-1). In this paper, we discuss similarities and differences between these two effusive events and interpret the processes occurring in 2007 in terms of the recent dynamics witnessed at Stromboli.

  15. Near-infrared Thermal Emission Detections of a Number of Hot Jupiters and the Systematics of Ground-based Near-infrared Photometry

    Science.gov (United States)

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-01

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  16. Thermal infrared spectrometer for earth science remote sensing applications : instrument modifications and measurement procedures

    NARCIS (Netherlands)

    Hecker, C.; Hook, S.; Meijde, M. van der; Bakker, W.H.; Werff, H.M.A. van der; Wilbrink, H.J.; Ruitenbeek, F.J.A. van; Smeth, J.B. de; Meer, F.D. van der

    2011-01-01

    In this article we describe a new instrumental setup at the University of Twente Faculty ITC with an optimized processing chain to measure absolute directional-hemispherical reflectance values of typical earth science samples in the 2.5 to 16 μm range. A Bruker Vertex 70 FTIR spectrometer was chosen

  17. Application of infrared remote sensing to constrain in-situ estimates of ice crystal particle size during SPartICus

    Directory of Open Access Journals (Sweden)

    S. J. Cooper

    2011-08-01

    Full Text Available In a prior paper (Cooper and Garrett, 2010, an infrared remote sensing technique was developed that quantifies the effective radius re of ice crystals in cirrus clouds. By accounting for a broad range of expected inversion uncertainties, this retrieval scheme isolates those radiometric signatures that can only occur if the cirrus has nominally "small" values of re below 20 μm. The method is applicable only for specific cloud and atmospheric conditions. However, it can be particularly useful in constraining in-situ estimates of cirrus cloud re obtained from aircraft. Recent studies suggest that airborne measurements may be compromised by the shattering of ice crystals on airborne instrument inlets, so robust, independent confirmation of these measurements is needed. Here, we expand the Cooper and Garrett (2010 retrieval scheme to identify ice clouds that are likely to have "large" values of re greater than 20 μm. Using MODIS observations, we then compare assessments of cirrus cloud re with in-situ measurements obtained during three test cases from the 2010 SPartICus campaign. In general, there is good agreement between retrievals and in-situ measurements for a "small" and "large" crystal case. For a more ambiguously "small" re case, the 2D-S cloud probe indicates values of re that are slightly larger than expected from infrared retrievals, possibly indicating a slight bias in the 2D-S results towards large particles. For our test cases, there is no evidence to suggest that an FSSP-100 with unmodified inlets produces measurements of re in cirrus that are strongly biased low.

  18. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    Science.gov (United States)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  19. Method to analyze remotely sensed spectral data

    Science.gov (United States)

    Stork, Christopher L [Albuquerque, NM; Van Benthem, Mark H [Middletown, DE

    2009-02-17

    A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

  20. EXPERIMENTAL RESEARCH OF THE THERMAL BALANCE OF LOOSE DISPERSE MATERIALS EXEMPLIFIED BY MILLED PEAT EXPOSED TO INFRARED HEATING

    Directory of Open Access Journals (Sweden)

    Pavlov Mikhail Vasil'evich

    2012-10-01

    Full Text Available Good knowledge of thermal balance is a prerequisite of successful mastering of the processes of heat and water transfer within a body. Given the reflective power of the substance surface under consideration, the analysis of the thermal balance of a loose disperse material was performed. A sample of milled peat served as the loose disperse material exposed to infrared heating. The practical results were compared to those available in the literature. One of the key results of the experiment represents identification of the radiation balance of the substance. Further research of the heat accumulation capacity rad will make it possible to identify the boundary conditions (energy and mass at the body boundary required to formulate and solve the boundary problem of thermal and moisture transfer. The latter will make it possible to project and to manage the thermal and moisture mode of materials in terms of timing and depth subject to thermal processes underway on their surface

  1. Remote Sensing of Almond and Walnut Tree Canopy Temperatures Using an Inexpensive Infrared Sensor on a Small Unmanned Aerial Vehicle

    Science.gov (United States)

    Crawford, Kellen Ethan

    the needs of a given field for more precise monitoring. The goal of this study was to explore the feasibility of using an inexpensive temperature sensor (Melexis MLX90614; NV Melexis SA, Rozendaalstraat 12, 8900 Ieper, Belgium) on a small UAV (Mikrokopter OktoXL; Hisystems GmbH Flachsmeerstrasse 2, 26802 Moormerland, Germany) to sense the canopy temperatures of almond and walnut trees. To accomplish this goal, we installed an infrared temperature sensor and a digital camera on a small UAV. The camera provided a spatial awareness of the IR temperature measurements which would otherwise require a very expensive thermal imager to obtain. The UAV was flown above almond and walnut trees recording images and temperatures, which were aligned temporally in post-processing. The pixels of each image were classified in to four classes: sunlit leaves, shaded leaves, sunlit soil, and shaded soil. Assuming that the measured temperature could be described as a weighted sum of each class in the field of view of the IR sensor, a linear system of equations was established to estimate the temperature of each class using at least several measurements of the same tree. Results indicated a good correlation between the temperatures estimated from the linear system of equations and the temperatures of those classes sampled on the ground immediately following each flight. With leaf temperatures ranging from about 12 to 40 degrees Celsius between 23 flights over two years, the linear solver was able to estimate the temperature of the sunlit and shaded leaves to within several degrees Celsius of the sampled temperature in most cases, with a coefficient of determination (r2 value) of 0.96 during the first year, and 0.73 during the second year. An additional study was undertaken to detect spatial temperature distribution within the orchard. Ground measurements were taken of every other tree in two walnut rows and one almond row using the handheld sensor, and the UAV was flown over those rows

  2. A new paradigm of oral cancer detection using digital infrared thermal imaging

    Science.gov (United States)

    Chakraborty, M.; Mukhopadhyay, S.; Dasgupta, A.; Banerjee, S.; Mukhopadhyay, S.; Patsa, S.; Ray, J. G.; Chaudhuri, K.

    2016-03-01

    Histopathology is considered the gold standard for oral cancer detection. But a major fraction of patient pop- ulation is incapable of accessing such healthcare facilities due to poverty. Moreover, such analysis may report false negatives when test tissue is not collected from exact cancerous location. The proposed work introduces a pioneering computer aided paradigm of fast, non-invasive and non-ionizing modality for oral cancer detection us- ing Digital Infrared Thermal Imaging (DITI). Due to aberrant metabolic activities in carcinogenic facial regions, heat signatures of patients are different from that of normal subjects. The proposed work utilizes asymmetry of temperature distribution of facial regions as principle cue for cancer detection. Three views of a subject, viz. front, left and right are acquired using long infrared (7:5 - 13μm) camera for analysing distribution of temperature. We study asymmetry of facial temperature distribution between: a) left and right profile faces and b) left and right half of frontal face. Comparison of temperature distribution suggests that patients manifest greater asymmetry compared to normal subjects. For classification, we initially use k-means and fuzzy k-means for unsupervised clustering followed by cluster class prototype assignment based on majority voting. Average classification accuracy of 91:5% and 92:8% are achieved by k-mean and fuzzy k-mean framework for frontal face. The corresponding metrics for profile face are 93:4% and 95%. Combining features of frontal and profile faces, average accuracies are increased to 96:2% and 97:6% respectively for k-means and fuzzy k-means framework.

  3. Greenhouse gas emission rate estimates from airborne remote sensing in the short-wave infrared

    Energy Technology Data Exchange (ETDEWEB)

    Krings, Thomas

    2013-01-30

    The quantification of emissions of the greenhouse gases carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) is essential for attributing the roles of anthropogenic activity and natural phenomena in global climate change. The current measurement systems and networks, whilst having improved during the last decades, are deficient in many respects. For example, the emissions from localised and point sources such as fossil fuel exploration sites are not readily assessed. A tool developed to better understand point sources of CO{sub 2} and CH{sub 4} is the optical remote sensing instrument MAMAP, operated from aircraft. With a ground scene size of the order of 50m and a relative accuracy of the column-averaged dry air mole fractions of about 0.3% for XCO{sub 2} and less than 0.4% for XCH{sub 4}, MAMAP can make a significant contribution in this respect. Detailed sensitivity studies showed that the modified WFM-DOAS retrieval algorithm used for MAMAP has an approximate accuracy of about 0.24% for XCH{sub 4} and XCO{sub 2} in typical atmospheric conditions. At the example of CO{sub 2} plumes from two different power plants and CH{sub 4} plumes from coal mine ventilation shafts, two inversion approaches to obtain emission rates were developed and tested. One is based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data and the other is based on a simple Gaussian integral method. Compared to CO{sub 2} emission estimates as reported by the power plants' operator within the framework of emission databases (24 and 13 MtCO{sub 2} yr{sup -1}), the results of the individual inversion techniques were within ±10% with uncertainties of ±20-30% mainly due to insufficient wind information and non-stationary atmospheric conditions. Measurements at the coal mine included on-site wind observations by an aircraft turbulence probe that could be utilised to calibrate the wind model. In this case, the inversion results have a bias of less than 1

  4. Automated processing of thermal infrared images of Osservatorio Vesuviano permanent surveillance network by using Matlab code

    Science.gov (United States)

    Sansivero, Fabio; Vilardo, Giuseppe; Caputo, Teresa

    2017-04-01

    The permanent thermal infrared surveillance network of Osservatorio Vesuviano (INGV) is composed of 6 stations which acquire IR frames of fumarole fields in the Campi Flegrei caldera and inside the Vesuvius crater (Italy). The IR frames are uploaded to a dedicated server in the Surveillance Center of Osservatorio Vesuviano in order to process the infrared data and to excerpt all the information contained. In a first phase the infrared data are processed by an automated system (A.S.I.R.A. Acq- Automated System of IR Analysis and Acquisition) developed in Matlab environment and with a user-friendly graphic user interface (GUI). ASIRA daily generates time-series of residual temperature values of the maximum temperatures observed in the IR scenes after the removal of seasonal effects. These time-series are displayed in the Surveillance Room of Osservatorio Vesuviano and provide information about the evolution of shallow temperatures field of the observed areas. In particular the features of ASIRA Acq include: a) efficient quality selection of IR scenes, b) IR images co-registration in respect of a reference frame, c) seasonal correction by using a background-removal methodology, a) filing of IR matrices and of the processed data in shared archives accessible to interrogation. The daily archived records can be also processed by ASIRA Plot (Matlab code with GUI) to visualize IR data time-series and to help in evaluating inputs parameters for further data processing and analysis. Additional processing features are accomplished in a second phase by ASIRA Tools which is Matlab code with GUI developed to extract further information from the dataset in automated way. The main functions of ASIRA Tools are: a) the analysis of temperature variations of each pixel of the IR frame in a given time interval, b) the removal of seasonal effects from temperature of every pixel in the IR frames by using an analytic approach (removal of sinusoidal long term seasonal component by using a

  5. Infrared remote sensing of hazardous vapours: surveillance of public areas during the FIFA Football World Cup 2006

    Science.gov (United States)

    Harig, Roland; Matz, Gerhard; Rusch, Peter; Gerhard, Hans-Hennig; Gerhard, Jörn-Hinnrich; Schlabs, Volker

    2007-04-01

    The German ministry of the interior, represented by the civil defence agency BBK, established analytical task forces for the analysis of released chemicals in the case of fires, chemical accidents, terrorist attacks, or war. One of the first assignments of the task forces was the provision of analytical services during the football world cup 2006. One part of the equipment of these emergency response forces is a remote sensing system that allows identification and visualisation of hazardous clouds from long distances, the scanning infrared gas imaging system SIGIS 2. The system is based on an interferometer with a single detector element in combination with a telescope and a synchronised scanning mirror. The system allows 360° surveillance. The system is equipped with a video camera and the results of the analyses of the spectra are displayed by an overlay of a false colour image on the video image. This allows a simple evaluation of the position and the size of a cloud. The system was deployed for surveillance of stadiums and public viewing areas, where large crowds watched the games. Although no intentional or accidental releases of hazardous gases occurred in the stadiums and in the public viewing areas, the systems identified and located various foreign gases in the air.

  6. Photonic antenna coupled middlewave infrared photodetector and focal plane array with low noise and high quantum efficiency Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Middle-wave infrared (MWIR, 3-5 ??m) photodetectors are of great importance in numerous NASA applications, including thermal remote sensing for carbon-based trace...

  7. Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen

    Science.gov (United States)

    Timberlake, George T.; Patmore, Ann; Shallal, Assaad; McHugh, Dominic; Marshall, John

    1993-07-01

    It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

  8. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  9. Comparison of satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared-based Evaporative Stress Index for 2003-2013

    Science.gov (United States)

    Anderson, Martha C.; Zolin, Cornelio A.; Hain, Christopher R.; Semmens, Kathryn; Tugrul Yilmaz, M.; Gao, Feng

    2015-07-01

    Shortwave vegetation index (VI) and leaf area index (LAI) remote sensing products yield inconsistent depictions of biophysical response to drought and pluvial events that have occurred in Brazil over the past decade. Conflicting reports of severity of drought impacts on vegetation health and functioning have been attributed to cloud and aerosol contamination of shortwave reflectance composites, particularly over the rainforested regions of the Amazon basin which are subject to prolonged periods of cloud cover and episodes of intense biomass burning. This study compares timeseries of satellite-derived maps of LAI from the Moderate Resolution Imaging Spectroradiometer (MODIS) and precipitation from the Tropical Rainfall Mapping Mission (TRMM) with a diagnostic Evaporative Stress Index (ESI) retrieved using thermal infrared remote sensing over South America for the period 2003-2013. This period includes several severe droughts and floods that occurred both over the Amazon and over unforested savanna and agricultural areas in Brazil. Cross-correlations between absolute values and standardized anomalies in monthly LAI and precipitation composites as well as the actual-to-reference evapotranspiration (ET) ratio used in the ESI were computed for representative forested and agricultural regions. The correlation analyses reveal strong apparent anticorrelation between MODIS LAI and TRMM precipitation anomalies over the Amazon, but better coupling over regions vegetated with shorter grass and crop canopies. The ESI was more consistently correlated with precipitation patterns over both landcover types. Temporal comparisons between ESI and TRMM anomalies suggest longer moisture buffering timescales in the deeper rooted rainforest systems. Diagnostic thermal-based retrievals of ET and ET anomalies, such as used in the ESI, provide independent information on the impacts of extreme hydrologic events on vegetation health in comparison with VI and precipitation-based drought

  10. Mapping the Thermal State of Permafrost Through Modelling and Remote Sensing in ESA GlobPermafrost Project

    Science.gov (United States)

    Obu, J.; Westermann, S.; Kaab, A.; Bartsch, A.

    2016-12-01

    Permafrost cannot be directly detected from space, but many permafrost surface properties and features are observable with a variety of earth observation sensors. ESA's GlobPermafrost project develops, validates and implements different permafrost information products to support the research communities and related international organisations. Within GlobPermafrost, we aim to produce a circum-polar map of permafrost extent and thermal state. The thermal state of the ground cannot be directly inferred from spaceborne platforms with current remote sensing technologies. We overcome these limitations by combining the information content of several remote sensing products, namely time series of remotely sensed land surface temperature, snow cover and snow water equivalent. These products are employed to force ground thermal models at 1km resolution which deliver ground temperatures and probability of permafrost occurrence within a grid cell. This semi-empirical approach has been tested in non-glaciated, land area in the North Atlantic region. Mean annual ground temperatures were estimated at a spatial resolution of 1 km at using MODIS land surface temperatures and ERA reanalysis products. The results are compared to in-situ temperature measurements and show accuracy of approximately 2.5 °C. This procedure was improved with land surface temperature gap filling, snow water equivalent information and ground surface properties. We present first results and discuss the challenges in application of the scheme on the circumpolar scale.

  11. Identification of thermal properties distribution in building wall using infrared thermography

    Science.gov (United States)

    Brouns, Jordan; Dumoulin, Jean

    2016-04-01

    [1] L. Ibos, J-P. Monchau, V. Feuillet, Y. Candau, A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography, in Proc. SPIE 9534, Twelfth International Conference on Quality Control by Artificial Vision 2015, 95341I (April 30, 2015); doi:10.1117/12.2185126 [2] Nassiopoulos, A., Bourquin, F., On-site building walls characterization, Numerical Heat Transfer, Part A : Applications, 63(3) :179 :200, 2013 [3] J. Brouns, Développement d'outils numériques pour l'audit énergétique des bâtiments, PhD thesis, Université Paris-Est, SIE, 2014 [4] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Book, Dunod editor, 1968.

  12. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    Science.gov (United States)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  13. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    Science.gov (United States)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  14. Columnar and Upper Level CO2 Concentration as Retrieved from IMG/ADEOS Thermal Infrared Data

    Science.gov (United States)

    Imasu, R.; Ota, Y.

    2005-12-01

    Two types of retrieval method have been applied to retrieving CO2 columnar and upper level concentrations from the thermal infrared radiation spectra observed by a Fourier Transform Spectrometer (FTS) sensor, Interferometric Monitor for Greenhouse gases (IMG), aboard the ADvanced Earth Observing Satellite (ADEOS). In the first method, temperature profiles were assumed to be those from the re-analysis data of ECMWF, ERA 40, and CO2 concentration at 600hPa were retrieved with a minimum variance method from the spectrum data at 15 micron absorption band. On the other hand, the principle of the second method used for estimating columnar CO2 concentration was similar to that of the occultation method considering the ground surface as a strong radiation source. The spectral biases that were attributable to temperature and water vapor retrieval errors were reduced through a baseline correction procedure. For this analysis, spectrum data measured at a weak absorption band, a laser band, of CO2 located around 940 cm-1 were used. Although most of Jacobian components of this week absorption band have peaks in the troposphere, the contribution from the Non-LTE effects was briefly estimated. The retrieved results showed concentration contrast between the northern and the southern hemisphere and seasonal change of this feature for the data of 1997. These results were mostly consistent with ground based CO2 data of CMDL/NOA, but systematic biases of concentration existed in both types of retrieved results.

  15. Multifunctional upconversion nanoprobe for tumor fluorescence imaging and near-infrared thermal therapy

    Science.gov (United States)

    Wei, Yanchun; Chen, Qun; Wu, Baoyan; Xing, Da

    2014-09-01

    The combination of diagnostics and therapeutics is growing rapidly in cancer treatment. Here, using upconversion nanoparticles coated with chitosan conjugated with a targeting molecule and loaded with indocyanine green (ICG), an excitation-selectable nanoprobe with highly integrated functionalities, including the emission of visible and near-infrared (NIR) light, strong optical absorption in the NIR region and high photostability was developed. After injected in mice, the nanoprobes targeted to the tumor vascular system. NIR lasers (980 and 808 nm) were then selectively applied to the mice. The results show that, the emitted upconversion fluorescence and NIR fluorescence can be used in a complementary manner for high signal/noise ratio and sensitive tumor imaging for more precise tumor localization; Highly effective photothermal therapy can be realized using 808 nm laser irradiation. The upconversion fluorescence at 654 nm is useful for monitoring treatment effect during thermal therapy. In summary, using the nanoprobes, outstanding therapeutic efficacy could be realized and the nanofabrication strategy would highlight the promise of upconversion nanoparticles in cancer theranostics.

  16. Infrared Thermography as a Non-destructive Testing Solution for Thermal Spray Metal Coatings

    Science.gov (United States)

    Santangelo, Paolo E.; Allesina, Giulio; Bolelli, Giovanni; Lusvarghi, Luca; Matikainen, Ville; Vuoristo, Petri

    2017-09-01

    In this work, an infrared (IR) thermographic procedure was evaluated as a non-destructive testing tool to detect damage in thermal spray metallic coatings. As model systems, polished HVOF- and HVAF-sprayed Fe-based layers deposited onto steel plates were employed. Damage by external-object impingement was simulated through a cyclic impact-test apparatus, which induced circumferential and radial cracks across all model systems, and interface cracks of different sizes in distinct samples. Damaged and undamaged plates were bulk-heated to above 100 °C using an IR lamp; their free-convection cooling was then recorded by an IR thermocamera. The intentionally induced defects were hardly detectable in IR thermograms, due to IR reflection and artificial "hot" spots induced by residuals of transfer material from the impacting counterbody. As a micrometer-thin layer of black paint was applied, surface emissivity got homogenized and any artifacts were effectively suppressed, so that failed coating areas clearly showed up as "cold spots." This effect was more apparent when large interface cracks occurred. Finite-element modeling proved the physical significance of the IR-thermography approach, showing that failed coating areas are cooled by surrounding air faster than they are heated by conduction from the hot substrate, which is due to the insulating effect of cracks.

  17. Land surface emissivity retrieval from airborne hyperspectral scanner thermal infrared data over urban surfaces

    Science.gov (United States)

    Gao, C. X.; Qian, Y. G.; Wang, N.; Ma, L. L.; Jiang, X. G.

    2015-12-01

    Land surface emissivity (LSE) is a key parameter for characterizing the land surface, and is vital for a wide variety of surface-atmosphere studies. This paper retrieved LSEs of land surfaces over the city of Madrid, Spain from airborne hyperspectral scanner (AHS) thermal infrared data using temperature emissivity separation (TES) method. Six different kinds of urban surfaces: asphalt, bare soil, granite, pavement, shrub and grass pavement, were selected to evaluate the performance of the TES method in urban areas. The results demonstrate that the TES method can be successfully applied to retrieve LSEs in urban area. The six urban surfaces have similar curve shape of emissivity spectra, with the lowest emissivity in band 73, and highest in band 78; the LSE for bare soil varies significantly with spectra, approximately from 0.90 in band 72 to 0.98 in band 78, whereas the LSE for grass has the smallest spectral variation, approximately from 0.965 in band 72 to 0.974 in band 78, and the shrub presents higher LSE than other surfaces in bands 72, 73, 75-77, but a little lower in bands 78 and 79. Furthermore, it is worth noting that band 73 is suitable for discriminating different urban surfaces because large LSE differences exist in this channel for different urban surfaces.

  18. Application methods of infrared thermal images in the health care field of traditional Chinese medicine

    Science.gov (United States)

    Li, Ziru; Zhang, Xusheng

    2008-12-01

    Infrared thermal imaging (ITI) is the potential imaging technique for the health care field of traditional Chinese medicine (TCM). Successful application demands obeying the characteristics and regularity of the ITI of human body and designing rigorous trials. First, the influence of time must be taken into account as the ITI of human body varies with time markedly. Second, relative magnitude is preferred to be the index of the image features. Third, scatter diagrams and the method of least square could present important information for evaluating the health care effect. A double-blind placebo-controlled randomized trial was undertaken to study the influences of Shengsheng capsule, one of the TCM health food with immunity adjustment function, on the ITI of human body. The results showed that the effect of Shengsheng capsule to people with weak constitution or in the period of being weak could be reflected objectively by ITI. The relative efficacy rate was 81.3% for the trial group and 30.0% for the control group, there was significant difference between the two groups (P=0.003). So the sensitivity and objectivity of ITI are of great importance to the health care field of TCM.

  19. ARIEL - The Atmospheric Remote-sensing Infrared Exoplanet Large-survey

    Science.gov (United States)

    Eccleston, P.; Tinetti, G.

    2015-10-01

    More than 1,000 extrasolar systems have been discovered, hosting nearly 2,000 exoplanets. Ongoing and planned ESA and NASA missions from space such as GAIA, Cheops, PLATO, K2 and TESS, plus ground based surveys, will increase the number of known systems to tens of thousands. Of all these exoplanets we know very little; i.e. their orbital data and, for some of these, their physical parameters such as their size and mass. In the past decade, pioneering results have been obtained using transit spectroscopy with Hubble, Spitzer and ground-based facilities, enabling the detection of a few of the most abundant ionic, atomic and molecular species and to constrain the planet's thermal structure. Future general purpose facilities with large collecting areas will allow the acquisition of better exoplanet spectra, compared to the currently available, especially from fainter targets. A few tens of planets will be observed with JWST and E-ELT in great detail. A breakthrough in our understanding of planet formation and evolution mechanisms will only happen through the observation of the planetary bulk and atmospheric composition of a statistically large sample of planets. This requires conducting spectroscopic observations covering simultaneously a broad spectral region from the visible to the mid-IR. It also requires a dedicated space mission with the necessary photometric stability to perform these challenging measurements and sufficient agility to observe multiple times ~500 exoplanets over 3.5 years. The ESA Cosmic Vision M4 mission candidate ARIEL is designed to accomplish this goal and will provide a complete, statistically significant sample of gas-giants, Neptunes and super-Earths with temperatures hotter than 600K, as these types of planets will allow direct observation of their bulk properties, enabling us to constrain models of planet formation and evolution. The ARIEL consortium currently includes academic institutes and industry from eleven countries in Europe; the

  20. Validating the accuracy of SO2 gas retrievals in the thermal infrared (8-14 μm)

    Science.gov (United States)

    Gabrieli, Andrea; Porter, John N.; Wright, Robert; Lucey, Paul G.

    2017-11-01

    Quantifying sulfur dioxide (SO2) in volcanic plumes is important for eruption predictions and public health. Ground-based remote sensing of spectral radiance of plumes contains information on the path-concentration of SO2. However, reliable inversion algorithms are needed to convert plume spectral radiance measurements into SO2 path-concentrations. Various techniques have been used for this purpose. Recent approaches have employed thermal infrared (TIR) imaging between 8 μm and 14 μm to provide two-dimensional mapping of plume SO2 path-concentration, using what might be described as "dual-view" techniques. In this case, the radiance (or its surrogate brightness temperature) is computed for portions of the image that correspond to the plume and compared with spectral radiance obtained for adjacent regions of the image that do not (i.e., "clear sky"). In this way, the contribution that the plume makes to the measured radiance can be isolated from the background atmospheric contribution, this residual signal being converted to an estimate of gas path-concentration via radiative transfer modeling. These dual-view approaches suffer from several issues, mainly the assumption of clear sky background conditions. At this time, the various inversion algorithms remain poorly validated. This paper makes two contributions. Firstly, it validates the aforementioned dual-view approaches, using hyperspectral TIR imaging data. Secondly, it introduces a new method to derive SO2 path-concentrations, which allows for single point SO2 path-concentration retrievals, suitable for hyperspectral imaging with clear or cloudy background conditions. The SO2 amenable lookup table algorithm (SO2-ALTA) uses the MODTRAN5 radiative transfer model to compute radiance for a variety (millions) of plume and atmospheric conditions. Rather than searching this lookup table to find the best fit for each measured spectrum, the lookup table was used to train a partial least square regression (PLSR) model

  1. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR

    Science.gov (United States)

    Ustinov, E.

    1999-01-01

    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  2. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Directory of Open Access Journals (Sweden)

    Benjamin Tardy

    2016-08-01

    Full Text Available Land surface temperature (LST is an important variable involved in the Earth’s surface energy and water budgets and a key component in many aspects of environmental research. The Landsat program, jointly carried out by NASA and the USGS, has been recording thermal infrared data for the past 40 years. Nevertheless, LST data products for Landsat remain unavailable. The atmospheric correction (AC method commonly used for mono-window Landsat thermal data requires detailed information concerning the vertical structure (temperature, pressure and the composition (water vapor, ozone of the atmosphere. For a given coordinate, this information is generally obtained through either radio-sounding or atmospheric model simulations and is passed to the radiative transfer model (RTM to estimate the local atmospheric correction parameters. Although this approach yields accurate LST data, results are relevant only near this given coordinate. To meet the scientific community’s demand for high-resolution LST maps, we developed a new software tool dedicated to processing Landsat thermal data. The proposed tool improves on the commonly-used AC algorithm by incorporating spatial variations occurring in the Earth’s atmosphere composition. The ERA-Interim dataset (ECMWFmeteorological organization was used to retrieve vertical atmospheric conditions, which are available at a global scale with a resolution of 0.125 degrees and a temporal resolution of 6 h. A temporal and spatial linear interpolation of meteorological variables was performed to match the acquisition dates and coordinates of the Landsat images. The atmospheric correction parameters were then estimated on the basis of this reconstructed atmospheric grid using the commercial RTMsoftware MODTRAN. The needed surface emissivity was derived from the common vegetation index NDVI, obtained from the red and near-infrared (NIR bands of the same Landsat image. This permitted an estimation of LST for the entire

  3. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades.

    Science.gov (United States)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  4. Statistical analysis of land surface temperature-vegetation indexes relationship through thermal remote sensing.

    Science.gov (United States)

    Kumar, Deepak; Shekhar, Sulochana

    2015-11-01

    Vegetation coverage has a significant influence on the land surface temperature (LST) distribution. In the field of urban heat islands (UHIs) based on remote sensing, vegetation indexes are widely used to estimate the LST-vegetation relationship. This paper devises two objectives. The first analyzes the correlation between vegetation parameters/indicators and LST. The subsequent computes the occurrence of vegetation parameter, which defines the distribution of LST (for quantitative analysis of urban heat island) in Kalaburagi (formerly Gulbarga) City. However, estimation work has been done on the valuation of the relationship between different vegetation indexes and LST. In addition to the correlation between LST and the normalized difference vegetation index (NDVI), the normalized difference build-up index (NDBI) is attempted to explore the impacts of the green land to the build-up land on the urban heat island by calculating the evaluation index of sub-urban areas. The results indicated that the effect of urban heat island in Kalaburagi city is mainly located in the sub-urban areas or Rurban area especially in the South-Eastern and North-Western part of the city. The correlation between LST and NDVI, indicates the negative correlation. The NDVI suggests that the green land can weaken the effect on urban heat island, while we perceived the positive correlation between LST and NDBI, which infers that the built-up land can strengthen the effect of urban heat island in our case study. Although satellite data (e.g., Landsat TM thermal bands data) has been applied to test the distribution of urban heat islands, but the method still needs to be refined with in situ measurements of LST in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Directory of Open Access Journals (Sweden)

    Jin-Yu Zhang

    2014-01-01

    Full Text Available This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method.

  6. Analysis on nondestructive temperature distribution of tire tread part in a running using infrared thermal vision camera

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yeol; Yang, Dong Jo; Ma, Sang Dong [Mechanical Engineeering Division, Chosun University, Kwangju (Korea, Republic of); Park, Byoung Gu; Lee, Ju Wan [Kumho Industrial Tire Bussiness Unit, Seoul (Korea, Republic of)

    2001-11-15

    The experimental method which investigates validity of numerical simulation for wheeling tires has not developed until now. Separation of belt caused by sudden temperature increase is the most serious problem with wheeling tires. Actually, separation of belt is closely related with the life cycle and design of tires. It is important to investigate the temperature history of tires because sudden temperature increase on belt accelerates the thermal fatigue and then causes the destruction of bending area in the radial direction. Therefore, in the present study, finite element method (FEM) was used to obtain the accurate temperature distribution of tire. Its results were compared with experimental data acquired by infrared thermal camera.

  7. Near infrared emission from molecule-like silver clusters confined in zeolite A assisted by thermal activation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui, E-mail: linh8112@163.com; Imakita, Kenji; Rong Gui, Sa Chu; Fujii, Minoru, E-mail: fujii@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-07-07

    Strong and broad near infrared (NIR) emission peaked at ~855 nm upon optimal excitation at 342 nm has been observed from molecule-like silver clusters (MLSCs) confined in zeolite A assisted by thermal activation. To the best of our knowledge, this is the first observation of NIR emission peaked at longer than 800 nm from MLSCs confined in solid matrices. The decay time of the NIR emission is over 10 μs, which indicates that it is a spin-forbidden transition. The ~855 nm NIR emission shows strong dependence on the silver loading concentration and the thermal activation temperature.

  8. Low cost infrared and near infrared sensors for UAVs

    Science.gov (United States)

    Aden, S. T.; Bialas, J. P.; Champion, Z.; Levin, E.; McCarty, J. L.

    2014-11-01

    Thermal remote sensing has a wide range of applications, though the extent of its use is inhibited by cost. Robotic and computer components are now widely available to consumers on a scale that makes thermal data a readily accessible resource. In this project, thermal imagery collected via a lightweight remote sensing Unmanned Aerial Vehicle (UAV) was used to create a surface temperature map for the purpose of providing wildland firefighting crews with a cost-effective and time-saving resource. The UAV system proved to be flexible, allowing for customized sensor packages to be designed that could include visible or infrared cameras, GPS, temperature sensors, and rangefinders, in addition to many data management options. Altogether, such a UAV system could be used to rapidly collect thermal and aerial data, with a geographic accuracy of less than one meter.

  9. Estimating spatially distributed soil texture using time series of thermal remote sensing - a case study in central Europe

    Science.gov (United States)

    Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten

    2016-09-01

    For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.

  10. The infrared camera application for calculating the impact of the feed screw thermal expansion on machining accuracy

    Science.gov (United States)

    Matras, A.

    2017-08-01

    The paper discusses the impact of the feed screw heating on the machining accuracy. The test stand was built based on HASS Mini Mill 2 CNC milling machine and a Flir SC620 infrared camera. Measurements of workpiece were performed on Talysurf Intra 50 Taylor Hobson profilometer. The research proved that the intensive work of the milling machine lasted 60 minutes, causing thermal expansion of the feed screw what influence on the dimension error of the workpiece.

  11. Combining airborne thermal infrared images and radium isotopes to study submarine groundwater discharge along the French Mediterranean coastline

    OpenAIRE

    Simon Bejannin; Pieter van Beek; Thomas Stieglitz; Marc Souhaut; Joseph Tamborski

    2017-01-01

    Study region: The French Mediterranean coastline, which includes karstic springs discharging into coastal seas and coastal lagoons. Study focus: We investigated submarine groundwater discharge (SGD), an important vector for many chemical elements that may impact the quality of the coastal environment. First, we acquired airborne thermal infrared (TIR) images to detect terrestrial groundwater inputs. Then we report in situ data (salinity; temperature; radium isotopes). We use these data i) ...

  12. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis.

    Science.gov (United States)

    Ullah, Saleem; Skidmore, Andrew K; Naeem, Mohammad; Schlerf, Martin

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Hossein Ghayoumi zadeh

    2013-03-01

    Full Text Available Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and its sensitivity and precision in cancer diagnosis is improved by utilizing genetic algorithm and artificial neural network. Materials and Methods In this research, the necessary information is obtained from thermal imaging of 200 people, and 8 diagnostic parameters are extracted from these images by the research team. Then these 8 parameters are used as input of our proposed combinatorial model which is formed using artificial neural network and genetic algorithm. Results Our results have revealed that comparison of the breast areas; thermal pattern and kurtosis are the most important parameters in breast cancer diagnosis from proposed medical infrared imaging. The proposed combinatorial model with a 50% sensitivity, 75% specificity and, 70% accuracy shows good precision in cancer diagnosis. Conclusion The main goal of this article is to describe the capability of infrared imaging in preliminary diagnosis of breast cancer. This method is beneficial to patients with and without symptoms. The results indicate that the proposed combinatorial model produces optimum and efficacious parameters in comparison to other parameters and can improve the capability and power of globalizing the artificial neural network. This will help physicians in more accurate diagnosis of this type of cancer.

  14. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter

    2010-11-01

    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  15. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  16. ARIEL: Atmospheric Remote Sensing Infrared Exoplanet Large Survey. A proposal for the ESA Cosmic Vision M4

    Science.gov (United States)

    Pace, E.; Micela, G.; Ariel Team

    The Atmospheric Remote sensing Infrared Exoplanet Large survey (ARIEL) is a proposal in response to the call for a Medium-size mission opportunity in ESA’s Cosmic Vision 2015-2025 Science Programme for a launch in 2025 (M4). This mission will be devoted to observe spectroscopically in the IR a large population (hundreds to one thousand) of known planets in our Galaxy, opening a new discovery space in the field of extrasolar planet exploration and enabling a quantum leap in the understanding of the physics and chemistry of these far away worlds. The population of planets will include warm and hot gas‑giants, Neptunes and large terrestrial planets. The main ARIEL goal is the determination of the composition, formation and history of these planetary systems In order to fulfill the scientific goals of ARIEL, we propose the development of a 1‑meter class aperture space telescope, passively cooled to 70‑80K, to observe the combined light of stars and their planets, building on the current experience of transit and combined light observations with Hubble, Spitzer, and ground-based telescopes. While JWST and EELT will initiate a detailed mid- to high-resolution IR spectroscopic observation of a few tens of planets, this mission will extend the study to a much larger (an order of magnitude difference) representative population of extrasolar planets discovered by ESA GAIA, Cheops, PLATO, NASA Kepler II, TESS and from the ground. The statistical perspective provided by this mission, will allow us to address some of the fundamental questions of the Cosmic Vision programme: What are the conditions for planet formation and the emergence of life? ls our Solar System unique, rare or very common? How does the Solar System work?

  17. Mechanism controller system for the optical spectroscopic and infrared remote imaging system instrument on board the Rosetta space mission

    Science.gov (United States)

    Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.

    2001-05-01

    The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.

  18. Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis.

    Science.gov (United States)

    Carballo, Teresa; Gil, Ma Victoria; Gómez, Xiomar; González-Andrés, Fernando; Morán, Antonio

    2008-11-01

    Compost extract or "compost tea" is a liquid extract of compost obtained by mixing compost and water for a defined period of time. Compost tea contains nutrients and a range of different organisms and is applied to the soil or directly to plants with the principal aim of suppressing certain plant diseases. In addition, the application of compost tea supplies nutrients and organic matter to the soil. Thermal analysis and Fourier transform infrared spectroscopy (FTIR) are two widely applied analytical techniques for establishing the stability of compost, and although numerous studies have evaluated the capacity of compost tea to suppress plant diseases, there are no studies employing these techniques to characterize compost-tea. For the present study, 12 compost extracts were produced under varying conditions in a purpose-built reactor. Two different composts, an stable compost produced from manure and an unstable compost produced from municipal solid waste, respectively, two aeration systems (aerated and non-aerated extracts) and three temperatures (10, 20 and 30 degrees C) were used in these experiments. The extracts were freeze-dried and subsequently analysed, together with the two composts, by means of FTIR and thermal analysis. Extracts produced from high stability compost, independently of the conditions of aeration and temperature, showed very similar results. In contrast, differences among extracts produced from the unstable compost were more noticeable. However, the different conditions of aeration and temperature during the production of the extracts only explained partially these differences, since the transformations undergone by compost over the 3 months that the experiments lasted were also reflected in the composition of the extracts. In spite of everything, extraction process favoured the degradation of easily oxidizable organic matter, which was more abundant in unstable compost. This degradation was more intense for non-aerated processes, probably

  19. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  20. Calibration plan for the Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K.; Lunsford, A.; Montanaro, M.; Reuter, D.; Smith, R.; Tesfaye, Z.; Wenny, B.

    2011-06-01

    The Landsat Data Continuity Mission consists of a two-sensor platform with the Operational Land Imager and Thermal Infrared Sensor (TIRS). Much of the success of the Landsat program is the emphasis placed on knowledge of the calibration of the sensors relying on a combination of laboratory, onboard, and vicarious calibration methods. Rigorous attention to NIST-traceability of the radiometric calibration, knowledge of out-of-band spectral response, and characterizing and minimizing stray light should provide sensors that meet the quality of Landsat heritage. Described here are the methods and facilities planned for the calibration of TIRS which is a pushbroom sensor with two spectral bands (10.8 and 12 micrometer) and the spatial resolution 100 m with 185-km swath width. Testing takes place in a vacuum test chamber at NASA GSFC using a recently-developed calibration system based on a 16-aperture black body source to simulate spatial and radiometric sources. A two-axis steering mirror moves the source across the TIRS field while filling the aperture. A flood source fills the full field without requiring movement of beam providing a means to evaluate detector-to-detector response effects. Spectral response of the sensor will be determined using a monochromator source coupled to the calibration system. Knowledge of the source output will be through NIST-traceable thermometers integrated to the blackbody. The description of the calibration system, calibration methodology, and the error budget for the calibration system shows that the required 2% radiometric accuracy for scene temperatures between 260 and 330 K is well within the capabilities of the system.

  1. Application of airborne thermal infrared imaging for the detection of unexploded ordnance

    Science.gov (United States)

    Howard, Gary B.

    2001-03-01

    Airborne thermal infrared (IR) imaging technology is gaining wide acceptance as a large area survey technique for the detection and mapping of environmental contamination. A unique and very specialized subset of this application centers on the environmental issues related to the presence and dangers of military-originated unexploded ordnance (UXO). In fact, the UXO problem has emerged as one of the Department of Defense's most pressing environmental concerns. To help manage the issues associated with UXO contamination the subject can be further broken down into two integrally related areas. The first is the global humanitarian problem surrounding the approximately 100 million land mines left in place following military actions around the world, a problem which translates into thousands of civilian casualties annually. The second is the estimated 27 million acres in the United States contaminated with surface and buried munitions as a direct result of formerly used defense site (FUDS) activities rendering those lands unavailable for public or commercial use conversion. Through the application of various airborne IR imaging strategies at several of these FUDS locations, an airborne suite of technologies, and the process to acquire and analyze the resultant data, have evolved as a field ready system for the detection and mapping of this UXO material. The IR based hardware and application strategy now deployed have shown significant promise as a contributing technology in the long term solution for the non-tactical detection, identification, and mapping of buried and surface munitions around the world. This paper will explore the difficulties encountered with this application and will discuss results from a technology demonstration program conducted at the Dugway Proving Grounds, Utah.

  2. The autonomic signature of guilt in children: a thermal infrared imaging study.

    Directory of Open Access Journals (Sweden)

    Stephanos Ioannou

    Full Text Available So far inferences on early moral development and higher order self conscious emotions have mostly been based on behavioral data. Emotions though, as far as arguments support, are multidimensional notions. Not only do they involve behavioral actions upon perception of an event, but they also carry autonomic physiological markers. The current study aimed to examine and characterise physiological signs that underlie self-conscious emotions in early childhood, while grounding them on behavioral analyses. For this purpose, the "mishap paradigm" was used as the most reliable method for evoking feelings of "guilt" in children and autonomic facial temperature variation were detected by functional Infrared Imaging (fIRI. Fifteen children (age: 39-42 months participated in the study. They were asked to play with a toy, falsely informed that it was the experimenter's "favourite", while being unaware that it was pre-planned to break. Mishap of the toy during engagement caused sympathetic arousal as shown by peripheral nasal vasoconstriction leading to a marked temperature drop, compared to baseline. Soothing after the mishap phase induced an increase in nose temperature, associated with parasympathetic activity suggesting that the child's distress was neutralized, or even overcompensated. Behavioral analyses reported signs of distress evoked by the paradigm, backing up the thermal observation. The results suggest that the integration of physiological elements should be crucial in research concerning socio-emotional development. fIRI is a non invasive and non contact method providing a powerful tool for inferring early moral emotional signs based on physiological observations of peripheral vasoconstriction, while preserving an ecological and natural context.

  3. Use of the Vis-SWIR to Aid Atmospheric Correction of Multispectral and Hyperspectral Thermal Infrared (TIR) Imagery: The TIR Model

    National Research Council Canada - National Science Library

    Gruninger, John; Fox, Marsha; Lee, Jamine; Ratkowski, Anthony J; Hoke, Michael L

    2006-01-01

    The atmospheric correction of thermal infrared (TIR) imagery involves the combined tasks of separation of atmospheric transmittance, downwelling flux and upwelling radiance from the surface material spectral emissivity and temperature...

  4. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure

    National Research Council Canada - National Science Library

    Sujoy Kumar Ghosh; Mengying Xie; Christopher Rhys Bowen; Philip R Davies; David J Morgan; Dipankar Mandal

    2017-01-01

    In this paper, a novel infra-red (IR) sensitive Er3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power...

  5. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near infrared range

    CERN Document Server

    Fisenko, Anatoliy I

    2016-01-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these ...

  6. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    Science.gov (United States)

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s(-1) with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  7. Requirements and Implementation Feasibility for a CubeSat Thermal Infrared Imaging System to Monitor the Structure of Volcanic Ash Clouds

    Science.gov (United States)

    Thorsen, D.; Carroll, R.; Webley, P.; Hawkins, J.

    2014-12-01

    The 2010 eruption of the Eyjafjallajökull volcano in Iceland caused the cancellation of approximately 108,000 flights over an 8-day period, disrupted air traffic worldwide, and cost the airline industry more than $400 million per day. The inconvenience and economic impact of this and similar events, such as Puyehue-Cordon-Caulle in 2011, have heightened the interest in developing improved satellite remote sensing techniques for monitoring volcanic plumes and drifting clouds. For aviation safety, the operational/research community has started to move towards classifying the concentrations within volcanic plumes and clouds. Additionally, volcanic ash transport and dispersion (VATD) models are often used for forecasting ash cloud locations and they require knowledge of the structure of the erupting column to improve their ash simulations and also downwind 3-D maps of the ash cloud to calibrate/validate their modeling output. Existing remote sensing satellites utilize a brightness temperature method with thermal infrared (TIR) measurements from 10 - 12 μm to determine mass loading of volcanic ash along a single line of sight, but they have infrequent revisit times and they cannot resolve the three-dimensional structure of the ash clouds. A cluster of CubeSats dedicated to the monitoring of volcanic ash and plumes could provide both more frequent updates and the multi-aspect images needed to resolve the density structure of volcanic ash clouds and plumes. In this presentation, we discuss the feasibility and requirements for a CubeSat TIR imaging system and the associated on-board image processing that would be required to monitor the structure of volcanic ash clouds from Low Earth Orbit.

  8. Monitoring the Impacts of Severe Drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Austin R. Coates

    2015-10-01

    Full Text Available Airborne hyperspectral and thermal infrared imagery acquired in 2013 and 2014, the second and third years of a severe drought in California, were used to assess drought impacts on dominant plant species. A relative green vegetation fraction (RGVF calculated from 2013–2014 Airborne Visible Infrared Imaging Spectrometer (AVIRIS data using linear spectral unmixing revealed seasonal and multi-year changes relative to a pre-drought 2011 reference AVIRIS image. Deeply rooted tree species and tree species found in mesic areas showed the least change in RGVF. Coastal sage scrub species demonstrated the highest seasonal variability, as well as a longer-term decline in RGVF. Ceanothus species were apparently least well-adapted to long-term drought among chaparral species, showing persistent declines in RGVF over 2013 and 2014. Declining RGVF was associated with higher land surface temperature retrieved from MODIS-ASTER Airborne Simulator (MASTER data. Combined collection of hyperspectral and thermal infrared imagery may offer new opportunities for mapping and monitoring drought impacts on ecosystems.

  9. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi [The Graduate University of Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Peterson, Byron J.; Mukai, Kiyofumi; Akiyama, Tsuyoshi; Watanabe, Takashi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Drapiko, Evgeny A. [Fusion Centre, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Alekseyev, Andrey G. [Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Itomi, Muneji [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2014-05-15

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  10. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique.

    Science.gov (United States)

    Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi

    2014-05-01

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  11. On-Orbit Radiometric Performance of the Landsat 8 ThermalInfrared Sensor

    Directory of Open Access Journals (Sweden)

    Matthew Montanaro

    2014-11-01

    Full Text Available The Thermal Infrared Sensor (TIRS requirements for noise, stability, and uniformity were designed to ensure the radiometric integrity of the data products. Since the launch of Landsat 8 in February 2013, many of these evaluations have been based on routine measurements of the onboard calibration sources, which include a variable-temperature blackbody and a deep space view port. The noise equivalent change in temperature (NEdT of TIRS data is approximately 0.05 K @ 300 K in both bands, exceeding requirements by about a factor of 8 and Landsat 7 ETM+ performance by a factor of 3. Coherent noise is not readily apparent in TIRS data. No apparent change in the detector linearization has been observed. The radiometric stability of the TIRS instrument over the period between radiometric calibrations (about 40 min is less than one count of dark current and the variation in terms of radiance is less than 0.015 \\(W/m^2/sr/\\mu m\\ (or 0.13 K at 300 K, easily meeting the short term stability requirements. Long term stability analysis has indicated a degradation of about 0.2% or less per year. The operational calibration is only updated using the biases taken every orbit, due to the fundamental stability of the instrument. By combining the data from two active detector rows per band, 100% detector operability is maintained for the instrument. No trends in the noise, operability, or short term radiometric stability are apparent over the mission life. The uniformity performance is more difficult to evaluate as scene-varying banding artifacts have been observed in Earth imagery. Analyses have shown that stray light is affecting the recorded signal from the Earth and inducing the banding depending on the content of the surrounding Earth surface. As the stray light effects are stronger in the longer wavelength TIRS band11 (12.0 \\(\\mu m\\, the uniformity is better in the shorter wavelength band10 (10.9 \\(\\mu m\\. Both bands have exceptional noise and

  12. The facial expression of schizophrenic patients applied with infrared thermal facial image sequence.

    Science.gov (United States)

    Jian, Bo-Lin; Chen, Chieh-Li; Chu, Wen-Lin; Huang, Min-Wei

    2017-06-24

    Schizophrenia is a neurological disease characterized by alterations to patients' cognitive functions and emotional expressions. Relevant studies often use magnetic resonance imaging (MRI) of the brain to explore structural differences and responsiveness within brain regions. However, as this technique is expensive and commonly induces claustrophobia, it is frequently refused by patients. Thus, this study used non-contact infrared thermal facial images (ITFIs) to analyze facial temperature changes evoked by different emotions in moderately and markedly ill schizophrenia patients. Schizophrenia is an emotion-related disorder, and images eliciting different types of emotions were selected from the international affective picture system (IAPS) and presented to subjects during ITFI collection. ITFIs were aligned using affine registration, and the changes induced by small irregular head movements were corrected. The average temperatures from the forehead, nose, mouth, left cheek, and right cheek were calculated, and continuous temperature changes were used as features. After performing dimensionality reduction and noise removal using the component analysis method, multivariate analysis of variance and the Support Vector Machine (SVM) classification algorithm were used to identify moderately and markedly ill schizophrenia patients. Analysis of five facial areas indicated significant temperature changes in the forehead and nose upon exposure to various emotional stimuli and in the right cheek upon evocation of high valence low arousal (HVLA) stimuli. The most significant P-value (lower than 0.001) was obtained in the forehead area upon evocation of disgust. Finally, when the features of forehead temperature changes in response to low valence high arousal (LVHA) were reduced to 9 using dimensionality reduction and noise removal, the identification rate was as high as 94.3%. Our results show that features obtained in the forehead, nose, and right cheek significantly

  13. Lessons Learned During Instrument Testing for the Thermal Infrared Sensor (TIRS)

    Science.gov (United States)

    Peabody, Hume L.; Otero, Veronica; Neuberger, David

    2013-01-01

    The Themal InfraRed Sensor (TIRS) instrument, set to launch on the Landsat Data Continuity Mission in 2013, features a passively cooled telescope and IR detectors which are actively cooled by a two stage cryocooler. In order to proceed to the instrument level test campaign, at least one full functional test was required, necessitating a thermal vacuum test to sufficiently cool the detectors and demonstrate performance. This was fairly unique in that this test occurred before the Pre Environmental Review, but yielded significant knowledge gains before the planned instrument level test. During the pre-PER test, numerous discrepancies were found between the model and the actual hardware, which were revealed by poor correlation between model predictions and test data. With the inclusion of pseudo-balance points, the test also provided an opportunity to perform a pre-correlation to test data prior to the instrument level test campaign. Various lessons were learned during this test related to modeling and design of both the flight hardware and the Ground Support Equipment and test setup. The lessons learned in the pre-PER test resulted in a better test setup for the nstrument level test and the completion of the final instrument model correlation in a shorter period of time. Upon completion of the correlation, the flight predictions were generated including the full suite of off-nominal cases, including some new cases defined by the spacecraft. For some of these ·new cases, some components now revealed limit exceedances, in particular for a portion of the hardware that could not be tested due to its size and chamber limitations.. Further lessons were learned during the completion of flight predictions. With a correlated detalled instrument model, significant efforts were made to generate a reduced model suitable for observatory level analyses. This proved a major effort both to generate an appropriate network as well as to convert to the final model to the required

  14. Using Fourier Transform Near-Infrared Spectroscopy to Predict the Mechanical Properties of Thermally Modified Southern Pine Wood.

    Science.gov (United States)

    Tong, Li; Zhang, Wenbo

    2016-06-08

    This study seeks to estimate the mechanical properties of thermally modified wood (TMW) by using near-infrared (NIR) spectroscopy to measure 80 samples in three-point bending tests. Near-infrared spectra collected from the transverse, radial, and tangential sections of wood, coupled with chemometric techniques, were used to predict the mechanical properties of southern pine wood, from which NIR models were constructed based on partial least squares and corresponding cross-validation. The coefficient of determination between NIR transverse section spectra, as well as two mechanical properties of wood samples, modulus of rupture (MOR) and modulus of elasticity (MOE), were above 0.92 and greater than values for other sections. Spectral data from the transverse sections were richer than data from other sections, and thus, a model based on transverse sections better predicts the mechanical properties of wood. A close relationship between the values for mechanical properties (MOE and MOR) and the NIR spectra of thermally modified southern pine wood can be demonstrated, which provides the potential to predict the mechanical properties of untreated and thermally modified wood. © The Author(s) 2016.

  15. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  16. Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region.

    Science.gov (United States)

    Vincelette, Rebecca L; Welch, Ashley J; Thomas, Robert J; Rockwell, Benjamin A; Lund, David J

    2008-01-01

    Ocular damage threshold data remain sparse in the continuous wave (CW), near-infrared (NIR) radiation region save for the 1300-nm area that has been investigated in the past several decades. The 1300-nm ocular damage data have yielded unusual characteristics where CW retinal damage was observed in rabbit models, but never in nonhuman primate models. This paper reviews the existing 1300-nm ocular damage threshold data in terms of the fundamental criteria of an action spectrum to assist in explaining laser-tissue effects from near-infrared radiation in the eye. Reviewing the action spectrum criteria and existing NIR retinal lesion data lend evidence toward the significant presence of thermal lensing in ocular media affecting damage, a relatively unexplored mechanism of laser-tissue interaction.

  17. Usefulness of Infrared Thermal Imaging Camera for Screening of Postoperative Surgical Site Infection after the Nuss Procedure

    Directory of Open Access Journals (Sweden)

    Kenya Fujita

    2013-01-01

    Full Text Available Introduction and Objective. The Nuss procedure is widely used in the treatment of pectus excavatum worldwide. Postoperative pectus bar infection is one of the most serious complica