WorldWideScience

Sample records for thermal infrared emission

  1. Using Thermal Infrared Absorption and Emission to Determine Trace Gases

    Science.gov (United States)

    Clerbaux, Cathy; Drummond, James R.; Flaud, Jean-Marie; Orphal, Johannes

    The light emerging from the top of the atmosphere in the greater part of the infrared region is thermal radiation from the Earth's surface. The resultant spectra obtained depend on the temperature difference between the emitting feature and absorbing gas. In this region the greenhouse gases, carbon dioxide, CO2, methane, CH4, ozone, O3, and water, H2O, are observed as well as carbon monoxide, CO, a product indicative of fossil fuel combustion, methanol, CH3OH, from biomass burning, and ammonia, NH3, from agriclulture. Chapter 3 describes the techniques for retrieving atmospheric abundances of these and other species from a number of satellite instruments, and concludes with suggestions for future developments.

  2. Thermal infrared emissivity spectrum and its characteristics of crude oil slick covered seawater.

    Science.gov (United States)

    Xiong, Pan; Gu, Xing-Fai; Yu, Taol; Meng, Qing-Yan; Li, Jia-Guoi; Shi, Ji-xiang; Cheng, Yang; Wang, Liang; Liu, Wen-Song; Liu, Qi-Yuei; Zhao, Li-Min

    2014-11-01

    Detecting oil slick covered seawater surface using the thermal infrared remote sensing technology exists the advantages such as: oil spill detection with thermal infrared spectrum can be performed in the nighttime which is superior to visible spectrum, the thermal infrared spectrum is superior to detect the radiation characteristics of both the oil slick and the seawater compared to the mid-wavelength infrared spectrum and which have great potential to detect the oil slick thickness. And the emissivity is the ratio of the radiation of an object at a given temperature in normal range of the temperature (260-320 K) and the blackbody radiation under the same temperature , the emissivity of an object is unrelated to the temperature, but only is dependent with the wavelength and material properties. Using the seawater taken from Bohai Bay and crude oil taken from Gudao oil production plant of Shengli Oilfield in Dongying city of Shandong Province, an experiment was designed to study the characteristics and mechanism of thermal infrared emissivity spectrum of artificial crude oil slick covered seawater surface with its thickness. During the experiment, crude oil was continuously dropped into the seawater to generate artificial oil slick with different thicknesses. By adding each drop of crude oil, we measured the reflectivity of the oil slick in the thermal infrared spectrum with the Fourier transform infrared spectrometer (102F) and then calculated its thermal infrared emissivity. The results show that the thermal infrared emissivity of oil slick changes significantly with its thickness when oil slick is relatively thin (20-120 μm), which provides an effective means for detecting the existence of offshore thin oil slick In the spectrum ranges from 8 to 10 μm and from 13. 2 to 14 μm, there is a steady emissivity difference between the seawater and thin oil slick with thickness of 20 μm. The emissivity of oil slick changes marginally with oil slick thickness and

  3. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces

    Science.gov (United States)

    Yang, Yue; Taylor, Sydney; Alshehri, Hassan; Wang, Liping

    2017-07-01

    In the present study, we experimentally demonstrate the spectrally coherent and diffuse thermal emission by exciting magnetic polaritons in SiC metasurfaces fabricated by the focused ion beam technique. Spectral emittance characterized by using an infrared microscope coupled to a Fourier transform spectrometer clearly shows a wavelength-selective emission peak as high as 0.8. Numerical simulations including emittance spectra and contour plot of electromagnetic field distribution were carried out to verify and understand the underlying mechanism of magnetic polaritons. The metasurfaces were further shown to be direction and polarization independent. The results would facilitate metasurfaces for applications like radiative thermal management and infrared sensing.

  4. Diamond fly cutting of aluminum thermal infrared flat mirrors for the OSIRIS-REx Thermal Emission Spectrometer (OTES) instrument

    Science.gov (United States)

    Groppi, Christopher E.; Underhill, Matthew; Farkas, Zoltan; Pelham, Daniel

    2016-07-01

    We present the fabrication and measurement of monolithic aluminum flat mirrors designed to operate in the thermal infrared for the OSIRIS-Rex Thermal Emission Spectrometer (OTES) space instrument. The mirrors were cut using a conventional fly cutter with a large radius diamond cutting tool on a high precision Kern Evo 3-axis CNC milling machine. The mirrors were measured to have less than 150 angstroms RMS surface error.

  5. A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Songhan Wang

    2015-08-01

    Full Text Available On-board the Landsat-8 satellite, the Thermal Infrared Sensor (TIRS, which has two adjacent thermal channels centered roughly at 10.9 and 12.0 μm, has a great benefit for the land surface temperature (LST retrieval. The single-channel algorithm (SC and split-window algorithm (SW have been applied to retrieve the LST from TIRS data, which need the land surface emissivity (LSE as prior knowledge. Due to the big challenge of determining the LSE, this study develops a temperature and emissivity separation algorithm which can simultaneously retrieve the LST and LSE. Based on the laboratory emissivity spectrum data, the minimum-maximum emissivity difference module (MMD module for TIRS data is developed. Then, an emissivity log difference method (ELD method is developed to maintain the emissivity spectrum shape in the iterative process, which is based on the modified Wien’s approximation. Simulation results show that the root-mean-square-errors (RMSEs are below 0.7 K for the LST and below 0.015 for the LSE. Based on the SURFRAD ground measurements, further evaluation demonstrates that the average absolute error of the LST is about 1.7 K, which indicated that the algorithm is capable of retrieving the LST and LSE simultaneously from TIRS data with fairly good results.

  6. Galactic Latitude Dependence of Near-infrared Diffuse Galactic Light: Thermal Emission or Scattered Light?

    Science.gov (United States)

    Sano, K.; Matsuura, S.

    2017-11-01

    Near-infrared (IR) diffuse Galactic light (DGL) consists of scattered light and thermal emission from interstellar dust grains illuminated by the interstellar radiation field (ISRF). At 1.25 and 2.2 μ {{m}}, a recent observational study shows that intensity ratios of the DGL to interstellar 100 μ {{m}} dust emission steeply decrease toward high Galactic latitudes (b). In this paper, we investigate the origin(s) of the b-dependence on the basis of models of thermal emission and scattered light. Combining a thermal emission model with the regional variation of the polycyclic aromatic hydrocarbon abundance observed with Planck, we show that the contribution of the near-IR thermal emission component to the observed DGL is lower than ∼ 20 % . We also examine the b-dependence of the scattered light, assuming a plane–parallel Galaxy with smooth distributions of the ISRF and dust density along the vertical direction, and assuming a scattering phase function according to a recently developed model of interstellar dust. We normalize the scattered light intensity to the 100 μ {{m}} intensity corrected for deviation from the cosecant-b law according to the Planck observation. As the result, the present model that considers the b-dependence of dust and the ISRF properties can account for the observed b-dependence of the near-IR DGL. However, the uncertainty in the correction for the 100 μ {{m}} emission is large, and other normalizing quantities may be appropriate for a more robust analysis of the DGL.

  7. Near infrared emission from molecule-like silver clusters confined in zeolite A assisted by thermal activation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui, E-mail: linh8112@163.com; Imakita, Kenji; Rong Gui, Sa Chu; Fujii, Minoru, E-mail: fujii@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-07-07

    Strong and broad near infrared (NIR) emission peaked at ~855 nm upon optimal excitation at 342 nm has been observed from molecule-like silver clusters (MLSCs) confined in zeolite A assisted by thermal activation. To the best of our knowledge, this is the first observation of NIR emission peaked at longer than 800 nm from MLSCs confined in solid matrices. The decay time of the NIR emission is over 10 μs, which indicates that it is a spin-forbidden transition. The ~855 nm NIR emission shows strong dependence on the silver loading concentration and the thermal activation temperature.

  8. Land surface emissivity retrieval from airborne hyperspectral scanner thermal infrared data over urban surfaces

    Science.gov (United States)

    Gao, C. X.; Qian, Y. G.; Wang, N.; Ma, L. L.; Jiang, X. G.

    2015-12-01

    Land surface emissivity (LSE) is a key parameter for characterizing the land surface, and is vital for a wide variety of surface-atmosphere studies. This paper retrieved LSEs of land surfaces over the city of Madrid, Spain from airborne hyperspectral scanner (AHS) thermal infrared data using temperature emissivity separation (TES) method. Six different kinds of urban surfaces: asphalt, bare soil, granite, pavement, shrub and grass pavement, were selected to evaluate the performance of the TES method in urban areas. The results demonstrate that the TES method can be successfully applied to retrieve LSEs in urban area. The six urban surfaces have similar curve shape of emissivity spectra, with the lowest emissivity in band 73, and highest in band 78; the LSE for bare soil varies significantly with spectra, approximately from 0.90 in band 72 to 0.98 in band 78, whereas the LSE for grass has the smallest spectral variation, approximately from 0.965 in band 72 to 0.974 in band 78, and the shrub presents higher LSE than other surfaces in bands 72, 73, 75-77, but a little lower in bands 78 and 79. Furthermore, it is worth noting that band 73 is suitable for discriminating different urban surfaces because large LSE differences exist in this channel for different urban surfaces.

  9. In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes

    Science.gov (United States)

    Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.

    2016-12-01

    Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.

  10. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  11. Interactive Radiative Transfer Modeling Tools to Map Volcanic Emissions with Thermal Infrared Remote Sensing

    Science.gov (United States)

    Realmuto, V. J.

    2012-12-01

    The estimation of plume composition from thermal infrared (TIR) radiance measurements is based in radiative transfer (RT) modeling. To model the observed spectra we must consider the temperature, emissivity, and elevation of the surface beneath the plume, plume altitude and thickness, and the local atmospheric temperature and humidity. Our knowledge of these parameters is never perfect, and interactive RT modeling allows us to evaluate the impact of these uncertainties on our estimates of plume composition. Interactive RT modeling has three main components: retrieval procedures for plume components, an engine for RT calculations, and a graphic user interface (GUI) to input radiance data, modify model parameters, launch retrievals, and visualize the resulting estimates of plume composition. The Jet Propulsion Laboratory (JPL), in collaboration with Spectral Sciences, Inc. (SSI), is developing a new class of tools for interactive RT modeling. We will implement RT modeling on graphics processors (GPU) to achieve a 100-fold increase in processing speed, relative to conventional CPU-based processing, and thus enable fully-interactive estimation and visualization of plume composition. The heritage for our new tools is based on the Plume Tracker toolkit, developed at JPL, and MODTRAN RT model, developed by SSI. Plume Tracker integrates retrieval procedures, interactive visualization tools, and an interface to a modified version of MODTRAN under a single GUI. Our new tools will incorporate refinements from a recent adaptation of MODTRAN to optimize modeling the radiative properties of chemical clouds. This presentation will include a review of the foundations of plume mapping in the TIR and examples of the application of Plume Tracker to ASTER, MODIS, and AIRS data. We will present an overview of our tool development effort and discuss the application of these tools to data from new and future instruments, such as the airborne Hyperspectral Thermal Emission Spectrometer

  12. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and Its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, D. W.

    2010-03-01

    We synthesized allophane, a terrestrial aqueous alteration product, and measured a thermal IR emission spectrum for the public spectral library. The use of this spectrum in martian spectral models can help constrain chemical alteration environments.

  13. NEAR-INFRARED THERMAL EMISSION DETECTIONS OF A NUMBER OF HOT JUPITERS AND THE SYSTEMATICS OF GROUND-BASED NEAR-INFRARED PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Croll, Bryce [5525 Olund Road, Abbotsford, B.C. (Canada); Albert, Loic; Lafreniere, David [Département de physique, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7 (Canada); Jayawardhana, Ray [Department of Physics and Astronomy, York University, Toronto, ON L3T 3R1 (Canada); Cushing, Michael [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Moutou, Claire [Canada-France-Hawaii Telescope Corporation, 65-1238 Mamalahoa Highway, Kamuela, HI 96743 (United States); Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden St, MS-51, Cambridge, MA 02138 (United States); Bonomo, Aldo S. [INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Deleuil, Magali [Aix Marseille University, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), UMR 7326, F-13388 Marseille cedex 13 (France); Fortney, Jonathan, E-mail: croll@space.mit.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-20

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.

  14. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  15. Near-infrared Thermal Emission Detections of a Number of Hot Jupiters and the Systematics of Ground-based Near-infrared Photometry

    Science.gov (United States)

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-01

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  16. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images.

    Science.gov (United States)

    Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang

    2015-06-08

    The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800-1200 cm(-1) and a spectral sampling frequency of 0.25 cm(-1). We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product.

  17. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods

    Science.gov (United States)

    Hubbard, Bernard E.; Hooper, Donald M.; Solano, Federico; Mars, John C.

    2018-01-01

    We apply linear deconvolution methods to derive mineral and glass proportions for eight field sample training sites at seven dune fields: (1) Algodones, California; (2) Big Dune, Nevada; (3) Bruneau, Idaho; (4) Great Kobuk Sand Dunes, Alaska; (5) Great Sand Dunes National Park and Preserve, Colorado; (6) Sunset Crater, Arizona; and (7) White Sands National Monument, New Mexico. These dune fields were chosen because they represent a wide range of mineral grain mixtures and allow us to gauge a better understanding of both compositional and sorting effects within terrestrial and extraterrestrial dune systems. We also use actual ASTER TIR emissivity imagery to map the spatial distribution of these minerals throughout the seven dune fields and evaluate the effects of degraded spectral resolution on the accuracy of mineral abundances retrieved. Our results show that hyperspectral data convolutions of our laboratory emissivity spectra outperformed multispectral data convolutions of the same data with respect to the mineral, glass and lithic abundances derived. Both the number and wavelength position of spectral bands greatly impacts the accuracy of linear deconvolution retrieval of feldspar proportions (e.g. K-feldspar vs. plagioclase) especially, as well as the detection of certain mafic and carbonate minerals. In particular, ASTER mapping results show that several of the dune sites display patterns such that less dense minerals typically have higher abundances near the center of the active and most evolved dunes in the field, while more dense minerals and glasses appear to be more abundant along the margins of the active dune fields.

  18. The thermal infrared continuum in solar flares

    Science.gov (United States)

    Fletcher, Lyndsay; Simoes, Paulo; Kerr, Graham Stewart; Hudson, Hugh S.; Gimenez de Castro, C. Guillermo; Penn, Matthew J.

    2017-08-01

    Observations of the Sun with the Atacama Large Millimeter Array have now started, and the thermal infrared will regularly be accessible from the NSF’s Daniel K. Inouye Solar Telescope. Motivated by the prospect of these new observations, and by recent flare detections in the mid infrared, we set out here to model and understand the source of the infrared continuum in flares, and to explore its diagnostic capability for the physical conditions in the flare atmosphere. We use the 1D radiation hydrodynamics code RADYN to calculate mid-infrared continuum emission from model atmospheres undergoing sudden deposition of energy by non-thermal electrons. We identify and characterise the main continuum thermal emission processes relevant to flare intensity enhancement in the mid- to far-infrared (2-200 micron) spectral range as free-free emission on neutrals and ions. We find that the infrared intensity evolution tracks the energy input to within a second, albeit with a lingering intensity enhancement, and provides a very direct indication of the evolution of the atmospheric ionization. The prediction of highly impulsive emission means that, on these timescales, the atmospheric hydrodynamics need not be considered in analysing the mid-IR signatures.

  19. Landsat and Thermal Infrared Imaging

    Science.gov (United States)

    Arvidson, Terry; Barsi, Julia; Jhabvala, Murzy; Reuter, Dennis

    2012-01-01

    The purpose of this chapter is to describe the collection of thermal images by Landsat sensors already on orbit and to introduce the new thermal sensor to be launched in 2013. The chapter describes the thematic mapper (TM) and enhanced thematic mapper plus (ETM+) sensors, the calibration of their thermal bands, and the design and prelaunch calibration of the new thermal infrared sensor (TIRS).

  20. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  1. Infrared thermal imaging in medicine.

    Science.gov (United States)

    Ring, E F J; Ammer, K

    2012-03-01

    This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

  2. Inter-Comparison of S-NPP VIIRS and Aqua MODIS Thermal Emissive Bands Using Hyperspectral Infrared Sounder Measurements as a Transfer Reference

    Directory of Open Access Journals (Sweden)

    Yonghong Li

    2016-01-01

    Full Text Available This paper compares the calibration consistency of the spectrally-matched thermal emissive bands (TEB between the Suomi National Polar-orbiting Partnership (S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS, using observations from their simultaneous nadir overpasses (SNO. Nearly-simultaneous hyperspectral measurements from the Aqua Atmospheric Infrared Sounder(AIRS and the S-NPP Cross-track Infrared Sounder (CrIS are used to account for existing spectral response differences between MODIS and VIIRS TEB. The comparison uses VIIRS Sensor Data Records (SDR in MODIS five-minute granule format provided by the NASA Land Product and Evaluation and Test Element (PEATE and Aqua MODIS Collection 6 Level 1 B (L1B products. Each AIRS footprint of 13.5 km (or CrIS field of view of 14 km is co-located with multiple MODIS (or VIIRS pixels. The corresponding AIRS- and CrIS-simulated MODIS and VIIRS radiances are derived by convolutions based on sensor-dependent relative spectral response (RSR functions. The VIIRS and MODIS TEB calibration consistency is evaluated and the two sensors agreed within 0.2 K in brightness temperature. Additional factors affecting the comparison such as geolocation and atmospheric water vapor content are also discussed in this paper.

  3. Harvesting renewable energy from Earth's mid-infrared emissions

    KAUST Repository

    Byrnes, S. J.

    2014-03-03

    It is possible to harvest energy from Earth\\'s thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

  4. Harvesting renewable energy from Earth's mid-infrared emissions.

    Science.gov (United States)

    Byrnes, Steven J; Blanchard, Romain; Capasso, Federico

    2014-03-18

    It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

  5. Infrared thermal models for Saturn's ring

    Science.gov (United States)

    Price, M. J.

    1976-01-01

    Infrared (10 and 20 microns) thermal emission data for Saturn's rings are discussed in terms of simple isothermal radiative transfer models of finite optical thickness. Recent brightness temperature measurements, corresponding to essentially maximum ring tilt, indicate that optical single scattering albedos less than 0.75 are required to provide sufficient heating of the ring material. Reconciliation with analyses of the optical scattering properties of the ring requires the backscattering efficiency to be even higher than for a macroscopic sphere. Historical brightness temperature measurements are used to show that no unique isothermal ring model exists. Instead, a temperature gradient perpendicular to the ring plane appears to be present.

  6. Perfect Thermal Emission by Nanoscale Transmission Line Resonators.

    Science.gov (United States)

    Liu, Baoan; Gong, Wei; Yu, Bowen; Li, Pengfei; Shen, Sheng

    2017-02-08

    Thermal radiation with a narrow-band emission spectrum is of great importance in a variety of applications such as infrared sensing, thermophotovoltaics, radiation cooling, and thermal circuits. Although resonant nanophotonic structures such as metamaterials and nanocavities have been demonstrated to achieve the narrow-band thermal emission, maximizing their radiation power toward perfect emission still remains challenging. Here, based on the recently developed quasi-normal mode theory, we prove that thermal emission from a nanoscale transmission line resonator can always be maximized by tuning the waveguiding loss of the resonator or bending the structure. By use of nanoscale transmission line resonators as basic building blocks, we experimentally demonstrate a new type of macroscopic perfect and tunable thermal emitters. Our experimental demonstration in conjunction with the general theoretical framework from the quasi-normal mode theory lays the foundation for designing tunable narrow-band thermal emitters with applications in thermal infrared light sources, thermal management, and infrared sensing and imaging.

  7. Low-thermal expansion infrared glass ceramics

    Science.gov (United States)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  8. Thermal Infrared Anomalies of Several Strong Earthquakes

    OpenAIRE

    Congxin Wei; Yuansheng Zhang; Xiao Guo; Shaoxing Hui; Manzhong Qin; Ying Zhang

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method...

  9. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces.

    Science.gov (United States)

    Edwards, C S; Christensen, P R

    2013-04-10

    The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars. Miniaturization of this instrument has also been demonstrated, as the same microscope objective has been mounted to a flight-spare mini-TES. Further miniaturization of this instrument is straightforward with modern electronics, and the development of this instrument as an arm-mounted device is the end goal.

  10. Formation of the thermal infrared continuum in solar flares

    Science.gov (United States)

    Simões, Paulo J. A.; Kerr, Graham S.; Fletcher, Lyndsay; Hudson, Hugh S.; Giménez de Castro, C. Guillermo; Penn, Matt

    2017-09-01

    Aims: Observations of the Sun with the Atacama Large Millimeter Array have now started, and the thermal infrared will regularly be accessible from the NSF's Daniel K. Inouye Solar Telescope. Motivated by the prospect of these new data, and by recent flare observations in the mid infrared, we set out here to model and understand the source of the infrared continuum in flares, and to explore its diagnostic capability for the physical conditions in the flare atmosphere. Methods: We use the one-dimensional (1D) radiation hydrodynamics code RADYN to calculate mid-infrared continuum emission from model atmospheres undergoing sudden deposition of energy by non-thermal electrons. Results: We identify and characterise the main continuum thermal emission processes relevant to flare intensity enhancement in the mid- to far-infrared (2-200 μm) spectral range as free-free emission on neutrals and ions. We find that the infrared intensity evolution tracks the energy input to within a second, albeit with a lingering intensity enhancement, and provides a very direct indication of the evolution of the atmospheric ionisation. The prediction of highly impulsive emission means that, on these timescales, the atmospheric hydrodynamics need not be considered in analysing the mid-IR signatures.

  11. Infrared Emission by an Aerosol Cloud.

    Science.gov (United States)

    1980-10-10

    the enthalpy of reaction (Table II). The CISO H-H 0 reaction seems to be 3 2 an exception, although more quantitative studies are required. These...Indicates infrared emission (wweak, mmedium, sstrong). c. Upper figure includes heat of hydration of reaction products. (a) 20 (b) j 𔃻 155 ~%_o 5 25 26 272...future. , It (19) * ~.. -~--~ .-- ___ SUMMARY Detectable levels of infrared emission have been observed from carboxylic acid, amine , and sulfuric acid gas

  12. Face recognition in the thermal infrared domain

    Science.gov (United States)

    Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.

    2017-10-01

    Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.

  13. Thermal Emission from Structured Media

    Science.gov (United States)

    Zimmerman, Ian Andrew

    This dissertation covers a study of the use of macroscopic structure as a means of controlling thermal emission in the THz and mid-IR frequency regions. Chapter 1 presents a brief introduction to the THz frequency region and to the concept of the photonic crystal, the primary type of geometry used. Chapter 2 compares the two most common methods used to calculate the thermal emission of a structure whose components are all at the same temperature. These methods are compared in terms of the results they give and in terms of how computationally involved the methods are. The first method explored involves using Kirchhoff's law of thermal emission which equates the absorptivity and emissivity of a structure. The second method is to calculate the emission directly from the Green's function using the microscopic thermal currents given by the Fluctuation-Dissipation theorem. A derivation of the second method is given, and the equality between the two methods is proven in 1D. It is shown that the Kirchhoff's law method is much more computationally efficient, and it is therefore used for the parametric studies of the structures which make up the remainder of this document. Chapter 3 covers work done in the THz regime. In the THz frequency regime, where a historic lack of sources has in part impeded full exploration and utilization, a photonic crystal design is proposed to control the thermal emission. It is shown that using a 1D bi-layered photonic crystal, composed of alternating section of silicon wafers and vacuum sections, it is possible to tailor many narrowband emission features over a broadband frequency range. In simulation both spectral and directional thermal emission control is demonstrated, and a parametric study is performed to explore how changes in the geometry of the photonic crystal change its thermal emission signature. A description is then given of how the photonic crystal is constructed and how its thermal emission is measured using Fourier transform

  14. Development of models for thermal infrared radiation above and within plant canopies

    Science.gov (United States)

    Paw u, Kyaw T.

    1992-01-01

    Any significant angular dependence of the emitted longwave radiation could result in errors in remotely estimated energy budgets or evapotranspiration. Empirical data and thermal infrared radiation models are reviewed in reference to anisotropic emissions from the plant canopy. The biometeorological aspects of linking longwave models with plant canopy energy budgets and micrometeorology are discussed. A new soil plant atmosphere model applied to anisotropic longwave emissions from a canopy is presented. Time variation of thermal infrared emission measurements is discussed.

  15. Thermal Infrared Imaging Spectrometer - An advanced optics technology instrument

    Science.gov (United States)

    Mahoney, Colin; Labaw, Clayton; Sobel, Harold; Kahle, Anne

    1990-01-01

    Through the use of a special optical filter, the Thermal Infrared Imaging Spectrometer, an airborne multispectral IR imaging instrument operating in the thermal emission region (7.5-14 microns), will achieve signal-to-noise ratios greater than 600 with ambient temperature optics. This instrument will be used to do compositional surface mapping of the terrain, and will refine the ability to categorize rock families and types by providing much higher spectral resolution in the emission region than was previously available. Details of the optical system, the detector, the cooler system, and the support electronics are described.

  16. Thermal Infrared Anomalies of Several Strong Earthquakes

    Directory of Open Access Journals (Sweden)

    Congxin Wei

    2013-01-01

    Full Text Available In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1 There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2 There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3 Thermal radiation anomalies are closely related to the geological structure. (4 Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  17. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  18. Selective thermal emission from thin-film metasurfaces

    Science.gov (United States)

    Streyer, W.; Law, S.; Mason, J.; Adams, D. C.; Rooney, G.; Jacobs, T.; Wasserman, D.

    2013-09-01

    The mid-infrared (mid-IR), as the spectral range where all finite temperature biological and mechanical objects emit thermal radiation, and where numerous molecular species have strong vibrational absorption resonances, is of significant importance for both security and sensing applications. The design of materials with engineered absorption resonances, which by Kirchoff's Law, should give strongly selective emission at the design resonance upon thermal excitation, allows for the control of the spectral character of the material's thermal emission. Designed as a thin film coating, these structures can be applied to grey-body emitters to shift the grey-body thermal emission into predetermined spectral bands, altering their appearance on a thermal imaging system. Here we demonstrate strongly selective mid-infrared absorption and thermal emission from three classes of subwavelength thin-film materials. First, we demonstrate selective thermal emission from patterned, commerciallyavailable steel films, via selective out-coupling of thermally-excited surface modes. Subsequently, we show nearperfect absorption (and strongly selective thermal emission) for wavelengths between 5 - 9μm with patterned metal-dielectric-metal structures. Finally, we demonstrate strong absorption from large area, unpatterned, thinfilm high-index dielectric coatings on highly-doped Si substrates, tunable across the mid-IR (5 - 12μm). Our results are compared to numerical simulations, as well as analytical models, with good agreement between experiments and models.

  19. Infrared thermal imaging in connective tissue diseases.

    Science.gov (United States)

    Chojnowski, Marek

    2017-01-01

    Infrared thermal imaging (IRT) is a non-invasive, non-contact technique which allows one to measure and visualize infrared radiation. In medicine, thermal imaging has been used for more than 50 years in various clinical settings, including Raynaud's phenomenon and systemic sclerosis. Imaging and quantification of surface body temperature provides an indirect measure of the microcirculation's overall performance. As such, IRT is capable of confirming the diagnosis of Raynaud's phenomenon, and, with additional cold or heat challenge, of differentiating between the primary and secondary condition. In systemic sclerosis IRT has a potential role in assessing disease activity and monitoring treatment response. Despite certain limitations, thermal imaging can find a place in clinical practice, and with the introduction of small, low-cost infrared cameras, possibly become a part of routine rheumatological evaluation.

  20. Mid infrared emission spectroscopy of carbon plasma

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; Yang, Clayton S.-C.; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6 μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10 μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5 μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  1. Mid infrared emission spectroscopy of carbon plasma.

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-05

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Low thermal emissivity surfaces using AgNW thin films

    Science.gov (United States)

    Pantoja, Elisa; Bhatt, Rajendra; Liu, Anping; Gupta, Mool C.

    2017-12-01

    The properties of silver nanowire (AgNW) films in the optical and infrared spectral regime offer an interesting opportunity for a broad range of applications that require low-emissivity coatings. This work reports a method to reduce the thermal emissivity of substrates by the formation of low-emissivity AgNW coating films from solution. The spectral emissivity was characterized by thermal imaging with an FLIR camera, followed by Fourier transform infrared spectroscopy. In a combined experimental and simulation study, we provide fundamental data of the transmittance, reflectance, haze, and emissivity of AgNW thin films. Emissivity values were finely tuned by modifying the concentration of the metal nanowires in the films. The simulation models based on the transfer matrix method developed for the AgNW thin films provided optical values that show a good agreement with the measurements.

  3. Thermal infrared exploration in the Carlin trend, northern Nevada

    Science.gov (United States)

    Watson, K.; Kruse, F.A.; Hummer-Miller, S.

    1990-01-01

    Experimental Thermal Infrared Multispectral Scanner (TIMS) aircraft data have been acquired for the Rodeo Creek NE 7 1/2 minute quadrangle, Eureka County, northern Nevada, covering the Carlin gold mine. A simple model has been developed to extract spectral emissivities for mapping surface lithology and alteration based on the physical properties of geologic materials. Emissivity-ratio images were prepared that allow generalized lithologic discrimination, identification of areas with high silica content, and the first reported detection of the carbonate secondary rest-strahlen feature. -from Authors

  4. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  5. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fuyuan, E-mail: wangfy1986@gmail.com; Cheng, Laifei; Zhang, Qing, E-mail: zhangqing@nwpu.edu.cn; Zhang, Litong

    2014-09-15

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density.

  6. Teaching physics and understanding infrared thermal imaging

    Science.gov (United States)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2017-08-01

    Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.

  7. Advances in photo-thermal infrared imaging microspectroscopy

    Science.gov (United States)

    Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew

    2013-05-01

    There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.

  8. Harvesting renewable energy from Earth’s mid-infrared emissions

    Science.gov (United States)

    Byrnes, Steven J.; Blanchard, Romain; Capasso, Federico

    2014-01-01

    It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations. PMID:24591604

  9. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrare...

  10. Thermal removal from near-infrared imaging spectroscopy data of the Moon

    Science.gov (United States)

    Clark, Roger N.; Pieters, Carle M.; Green, Robert O.; Boardman, J.W.; Petro, Noah E.

    2011-01-01

    In the near-infrared from about 2 μm to beyond 3 μm, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 μm pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon.

  11. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  12. Landsat 8 Thermal Infrared Sensor Geometric Characterization and Calibration

    Directory of Open Access Journals (Sweden)

    James Storey

    2014-11-01

    Full Text Available The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI and the Thermal Infrared Sensor (TIRS. The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  13. Landsat 8 thermal infrared sensor geometric characterization and calibration

    Science.gov (United States)

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  14. The First Reported Infrared Emission from the SN1006 Remnant

    Science.gov (United States)

    Winkler, P. Frank; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Long, Knox S.; Raymond, John C.; Reynolds, Stephen P.

    2012-01-01

    We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 m image from MIPS clearly shows faint filamentary emission along the northwest rim of the remnant shell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 m emission traces the Balmer filaments almost perfectly, but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lowera relic effect from an earlier epoch when the shock was encountering a lower densitybut higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the IRS instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium is lower than that expected for the Galactic ISM-as has also been observed in the analysis of IR emission from other SNRs but whose cause remains unclear. As with other SNIa remnants, SN1006 shows no evidence for dust grain formation in the supernova ejecta.

  15. Thermal infrared research: Where are we now?

    Science.gov (United States)

    Hatfield, J. L.; Jackson, R. D.

    1982-01-01

    The use of infrared temperatures in agriculture and hydrology is based on the energy balance equation which is used to estimate evapotranspiration and crop stress over small areas within a field as well as large areas. For its full utilization, this measurement must be combined with other spectral data collected at a time resolution sufficient to detect changes in the agricultural or hydrological systems and at a spatial resolution with enough detail to sample within individual fields. The most stringent requirement is that the data be readily available to the user. The spatial resolution necessary for IR measurements to be incorporated into evapotranspiration models to accurately estimate field and regional transpiration or measure crop stress; methods to estimate crop stress and yield over large areas and different cultivars within a species; the temporal resolution adequate for detecting crop stress or inclusion in evapotranspiration models; and ancillary parameters for estimating thermal IR measurements must be investigated.

  16. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    Science.gov (United States)

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  17. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  18. MGS SAMPLER THERMAL EMISSION SPECTROMETER GLOBAL TEMPERATURE

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains Thermal Emission Spectrometer (TES) 25-micron global surface temperature data, collected during the ANS portion of the Mars Global Surveyor...

  19. Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing.

    Science.gov (United States)

    Gong, Yongkang; Wang, Zuobin; Li, Kang; Uggalla, Leshan; Huang, Jungang; Copner, Nigel; Zhou, Yang; Qiao, Dun; Zhu, Jiuyuan

    2017-11-01

    Development of a novel, cost-effective, and highly efficient mid-infrared light source has been identified as a major scientific and technological goal within the area of optical gas sensing. We have proposed and investigated a mid-infrared metamaterial thermal emitter based on micro-structured chromium thin film. The results demonstrate that the proposed thermal light source supports broadband and wide angular absorption of both TE- and TM-polarized light, giving rise to broadband thermal radiation with averaged emissivity of ∼0.94 in a mid-infrared atmospheric window of 8-14 μm. The proposed microphotonic concept provides a promising alternative mid-infrared source and paves the way towards novel optical gas sensing platforms for many applications.

  20. Modification of Thermal Emission via Metallic Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-07-30

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  1. Planck intermediate results: XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    DEFF Research Database (Denmark)

    Aghanim, N.; Ashdown, M.; Aumont, J.

    2016-01-01

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combinati...

  2. Near infrared emission spectroscopy induced by ultrasonic irradiation.

    Science.gov (United States)

    Borges, Sivanildo Silva; Korn, Mauro; Gonzaga, Fabiano Barbieri; Pasquini, Celio

    2006-07-01

    Near infrared emission caused by ultrasonic excitation is demonstrated for the first time in this work. The instrument is constituted of an acousto-optical tunable filter-based spectrometer, an ultrasonic processor connected to a titanium alloy ultrasonic probe and a cylindrical borosilicate flask containing the sample to be excited. The radiation emitted by the sample is collected by a concave mirror and sent to the spectrometer. The effects of the position of the probe extremity in relation to a lateral entrance of the borosilicate flask and of the ultrasonic power on the emission signal were studied. The best results were obtained by positioning the probe extremity up to 2mm from the reflexive body (lateral entrance) using 30% of the full ultrasonic incident power and acquiring spectra after 5 min of sonication. The NIR emission spectra resulting from the ultrasonic excitation were in agreement with that obtained by thermal excitation. The proposed technique was utilized to study different poly(dimethylsiloxane) samples having different viscosities.

  3. Infrared landmine detection and thermal model analysis

    NARCIS (Netherlands)

    Schwering, P.B.W.; Kokonozi, A.; Carter, L.J.; Lensen, H.A.; Franken, E.M.

    2001-01-01

    Infrared imagers are capable of the detection of surface laid mines. Several sensor fused land mine detection systems make use of metal detectors, ground penetrating radar and infrared imagers. Infrared detection systems are sensitive to apparent temperature contrasts and their detection

  4. Proposal of novel measurement method for thermal diffusivity from infrared thermal movie

    Science.gov (United States)

    Okamoto, Yoichi; Watanabe, Shin; Ogata, Kento; Hiramatsu, Koji; Miyazaki, Hisashi; Morimoto, Jun

    2017-05-01

    A brand new thermal diffusivity measurement method was developed. In this new noncontact and absolute measurement method, thermal diffusivity was measured from infrared movie data. The model of one-dimensional thermal conduction was constructed by taking into account the thermal flow other than one-dimensional thermal conduction in the sample. On the basis of this thermal conduction model, the analytical equation for calculating thermal diffusivity was derived. A single-crystal sapphire plate was used as a test specimen for the new method. The test specimen was arranged to cause one-dimensional heat conduction. Infrared movies were taken by using an infrared camera at room temperature. Then, thermal diffusivity was numerically calculated from the acquired movie data using the analytical equation. It was experimentally demonstrated that thermal diffusivity was measured with an accuracy of around 10% error, from an infrared movie of a single-crystal sapphire sample.

  5. 3D Temperature Distribution Model Based on Thermal Infrared Image

    Directory of Open Access Journals (Sweden)

    Tong Jia

    2017-01-01

    Full Text Available This paper aims to study the construction of 3D temperature distribution reconstruction system based on binocular vision technology. Initially, a traditional calibration method cannot be directly used, because the thermal infrared camera is only sensitive to temperature. Therefore, the thermal infrared camera is calibrated separately. Belief propagation algorithm is also investigated and its smooth model is improved in terms of stereo matching to optimize mismatching rate. Finally, the 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model and has strong robustness.

  6. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  7. Infrared thermography: A non-invasive window into thermal physiology.

    Science.gov (United States)

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Zodiacal Emission Observations with the AKARI Infrared Camera

    Science.gov (United States)

    Pyo, J.; Ueno, M.; Kwon, S. M.; Hong, S. S.; Ishihara, D.; Ishiguro, M.; Usui, F.; Matsumoto, T.; Jeong, W.-S.; Ootsubo, T.; Matsuura, S.; Mukai, T.

    2012-05-01

    From the pointed and scanning observations of the AKARI at the mid-infrared wavelengths, we retrieved the fine-, small-, and global-scale properties of the zodiacal emission and the interplanetary dust cloud.

  9. Voyager IRIS Measurements of Triton's Thermal Emission: Impllications for Pluto?

    Science.gov (United States)

    Stansberry, John A.; Spencer, John; Linscott, Ivan

    2015-11-01

    The New Horizons Pluto encounter data set includes unique observations obtained using the Radio Science experiment to measure the night-side thermal emission at centimeter wavelengths, well beyond the emission peak (in the 70 to 100 micron range). 26 years ago the Voyager 2 Infrared Interferometer Spectrometer (IRIS) obtained spectra in the 30 - 50 micron wavelength range to try and detect thermal emission from Pluto's sibling, Triton. Conrath etal. (1989) analyzed 16 of the IRIS spectra of Triton's dayside and derived a weak limit of 36 K - 41 K. We have analysed those, and an additional 75 spectra, to refine the limits on the temperature of Triton's surface, and to explore diurnal differences in the thermal emission. Triton results from other Voyager instruments provide important constraints on our interpretation of the IRIS data, as do Spitzer measurements of Pluto's thermal emission.For unit-emissivity, average temperature is 34 K, inconsistent with the pressure of Triton's atmosphere (13 - 19 microbar), the presence of beta-phase nitrogen ice on the surface, and the likely presence ofwarm regions on the surface. The atmospheric pressure requires nitrogen ice temperatures of 37.4 K - 38.1 K, which in turn requires emissivity of 0.31--0.53. Such a low emissivity in this spectral region might be expected if the surface is dominated by nitrogen or methane ice. Averages of data subsets show evidence for brightness temperature variations across Triton's surface. Surprisingly, the data seem to indicate that Triton's nightside equatorial region was warmer than on the dayside.These Voyager results for Triton provide a useful context for interpreting New Horizons and ALMA observations of emission from Pluto in the sub-millimeter and centimeter region. JWST will be capable of detecting Triton's and Pluto's 10 - 28 micron thermal emission, although scattered light from Neptune may be an issue for the Triton. Combined with new capabilities of ALMA to measure the sub

  10. Estimating Clothing Thermal Insulation Using an Infrared Camera

    National Research Council Canada - National Science Library

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera...

  11. Diffuse infrared emission of the galaxy: Large scale properties

    Science.gov (United States)

    Perault, M.; Boulanger, F.; Falgarone, E.; Puget, J. L.

    1987-01-01

    The Infrared Astronomy Satellite (IRAS) survey is used to study large scale properties and the origin of the diffuse emission of the Galaxy. A careful subtraction of the zodiacal light enables longitude profiles of the galactic emission at 12, 25, 60, and 100 microns to be presented.

  12. Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data.

    Science.gov (United States)

    Qian, Yong-Gang; Wang, Ning; Ma, Ling-Ling; Liu, Yao-Kai; Wu, Hua; Tang, Bo-Hui; Tang, Ling-Li; Li, Chuan-Rong

    2016-01-25

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes at local/global scales. In this paper, a LST retrieval method was proposed from airborne multispectral scanner data comparing one mid-infrared (MIR) channel and one thermal infrared (TIR) channel with the land surface emissivity given as a priori knowledge. To remove the influence of the direct solar radiance efficiently, a relationship between the direct solar radiance and water vapor content and the view zenith angle and solar zenith angle was established. Then, LST could be retrieved with a split-window algorithm from MIR/TIR data. Finally, the proposed algorithm was applied to the actual airborne flight data and validated with in situ measurements of land surface types in the Baotou site in China on 17 October 2014. The results demonstrate that the difference between the retrieved and in situ LST was less than 1.5 K. The bais, RMSE, and standard deviation of the retrieved LST were 0.156 K, 0.883 K, and 0.869 K, respectively, for samples.

  13. Validating an infrared thermal switch as a novel access technology.

    Science.gov (United States)

    Memarian, Negar; Venetsanopoulos, Anastasios N; Chau, Tom

    2010-08-05

    Recently, a novel single-switch access technology based on infrared thermography was proposed. The technology exploits the temperature differences between the inside and surrounding areas of the mouth as a switch trigger, thereby allowing voluntary switch activation upon mouth opening. However, for this technology to be clinically viable, it must be validated against a gold standard switch, such as a chin switch, that taps into the same voluntary motion. In this study, we report an experiment designed to gauge the concurrent validity of the infrared thermal switch. Ten able-bodied adults participated in a series of 3 test sessions where they simultaneously used both an infrared thermal and conventional chin switch to perform multiple trials of a number identification task with visual, auditory and audiovisual stimuli. Participants also provided qualitative feedback about switch use. User performance with the two switches was quantified using an efficiency measure based on mutual information. User performance (p = 0.16) and response time (p = 0.25) with the infrared thermal switch were comparable to those of the gold standard. Users reported preference for the infrared thermal switch given its non-contact nature and robustness to changes in user posture. Thermal infrared access technology appears to be a valid single switch alternative for individuals with disabilities who retain voluntary mouth opening and closing.

  14. Validating an infrared thermal switch as a novel access technology

    Directory of Open Access Journals (Sweden)

    Memarian Negar

    2010-08-01

    Full Text Available Abstract Background Recently, a novel single-switch access technology based on infrared thermography was proposed. The technology exploits the temperature differences between the inside and surrounding areas of the mouth as a switch trigger, thereby allowing voluntary switch activation upon mouth opening. However, for this technology to be clinically viable, it must be validated against a gold standard switch, such as a chin switch, that taps into the same voluntary motion. Methods In this study, we report an experiment designed to gauge the concurrent validity of the infrared thermal switch. Ten able-bodied adults participated in a series of 3 test sessions where they simultaneously used both an infrared thermal and conventional chin switch to perform multiple trials of a number identification task with visual, auditory and audiovisual stimuli. Participants also provided qualitative feedback about switch use. User performance with the two switches was quantified using an efficiency measure based on mutual information. Results User performance (p = 0.16 and response time (p = 0.25 with the infrared thermal switch were comparable to those of the gold standard. Users reported preference for the infrared thermal switch given its non-contact nature and robustness to changes in user posture. Conclusions Thermal infrared access technology appears to be a valid single switch alternative for individuals with disabilities who retain voluntary mouth opening and closing.

  15. Factors affecting thermal infrared images at selected field sites

    Energy Technology Data Exchange (ETDEWEB)

    Sisson, J.B.; Ferguson, J.S.

    1993-07-01

    A thermal infrared (TIR) survey was conducted to locate surface ordnance in and around the Naval Ordnance Disposal Area, and a thermal anomaly was found. This report documents studies conducted to identify the position of cause of the thermal anomaly. Also included are results of a long path Fourier transform infrared survey, soil sampling activities, soil gas surveys, and buried heater studies. The results of these studies indicated that the thermal anomaly was caused by a gravel pad, which had thermal properties different than those of the surrounding soil. Results from this investigation suggest that TIR is useful for locating surface objects having a high thermal inertia compared to the surrounding terrain, but TIR is of very limited use for characterizing buried waste or other similar buried objects at the INEL.

  16. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics

    Directory of Open Access Journals (Sweden)

    Daniela Cardone

    2015-01-01

    Full Text Available Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  17. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    Science.gov (United States)

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  18. Optimized mid-infrared thermal emitters for applications in aircraft countermeasures

    Directory of Open Access Journals (Sweden)

    Simón G. Lorenzo

    2017-12-01

    Full Text Available We introduce an optimized aperiodic multilayer structure capable of broad angle and high temperature thermal emission over the 3 μm to 5 μm atmospheric transmission band. This aperiodic multilayer structure composed of alternating layers of silicon carbide and graphite on top of a tungsten substrate exhibits near maximal emittance in a 2 μm wavelength range centered in the mid-wavelength infrared band traditionally utilized for atmospheric transmission. We optimize the layer thicknesses using a hybrid optimization algorithm coupled to a transfer matrix code to maximize the power emitted in this mid-infrared range normal to the structure’s surface. We investigate possible applications for these structures in mimicking 800–1000 K aircraft engine thermal emission signatures and in improving countermeasure effectiveness against hyperspectral imagers. We find these structures capable of matching the Planck blackbody curve in the selected infrared range with relatively sharp cutoffs on either side, leading to increased overall efficiency of the structures. Appropriately optimized multilayer structures with this design could lead to matching a variety of mid-infrared thermal emissions. For aircraft countermeasure applications, this method could yield a flare design capable of mimicking engine spectra and breaking the lock of hyperspectral imaging systems.

  19. Laboratory technique for quantitative thermal emissivity ...

    Indian Academy of Sciences (India)

    of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral parti- culates (<65μm), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future. Indian Moon mission programme ...

  20. Laboratory technique for quantitative thermal emissivity ...

    Indian Academy of Sciences (India)

    This laboratory at the Department of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral particulates (> 65 m), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future ...

  1. Synthetic approaches toward tungsten photonic crystals for thermal emission

    Science.gov (United States)

    Denny, Nicholas R.; Han, Sangjin; Turgeon, Ryan T.; Lytle, Justin C.; Norris, David J.; Stein, Andreas

    2005-11-01

    The efficiency of standard incandescent light sources is limited by strong thermal emission in the infrared regime. It is possible that emission of light may be more efficient when the conventional tungsten filament is replaced by metallic photonic crystals that have large photonic band gaps in the infrared and can suppress the thermal emission of blackbody emitters. One approach toward fabricating photonic crystal structures with highly ordered periodic features on an optical length scale involves colloidal crystal templating to produce inverse opals. Metallic inverse opals were synthesized using chemical vapor deposition (CVD) and wet chemical methods capable of producing granules, thin films and monolithic pieces. Thin films were prepared by infiltrating silica opal films with tungsten hexacarbonyl in a CVD process, reducing tungsten in hydrogen and removing the silica template by HF etching. A range of soluble metal precursors, including tungsten(VI) chloride, tungsten(V) ethoxide and acetylated peroxotungstic acid, were infiltrated into self-assembled, colloidal crystal arrays comprised of monodisperse poly(methyl methacrylate) (PMMA) spheres. The infiltrated composites were processed under reducing conditions to produce metallic inverse replicas of the template. The influence of processing conditions on structural properties, including thickness of skeletal walls, window openings and solid filling fraction, was studied. A monolithic tungsten inverse opal with dimensions of 0.5 × 0.5 × 0.2 cm was resistively heated in an inert atmosphere and thermal emission was observed. The wet chemical methods provide a low cost alternative to expensive nanolithographic methods for the fabrication of three-dimensional periodic metallic structures.

  2. Control over emissivity of zero-static-power thermal emitters based on phase changing material GST

    CERN Document Server

    Du, Kaikai; Lyu, Yanbiao; Ding, Jichao; Lu, Yue; Cheng, Zhiyuan; Qiu, Min

    2016-01-01

    Controlling the emissivity of a thermal emitter has attracted growing interest with a view towards a new generation of thermal emission devices. So far, all demonstrations have involved sustained external electric or thermal consumption to maintain a desired emissivity. Here control over the emissivity of a thermal emitter consisting of a phase changing material Ge2Sb2Te5 (GST) film on top of a metal film is demonstrated. This thermal emitter shows broad wavelength-selective spectral emissivity in the mid-infrared. The peak emissivity approaches the ideal blackbody maximum and a maximum extinction ratio of above 10dB is attainable by switching GST between the crystalline and amorphous phases. By controlling the intermediate phases, the emissivity can be continuously tuned. This switchable, tunable, wavelength-selective and thermally stable thermal emitter will pave the way towards the ultimate control of thermal emissivity in the field of fundamental science as well as for energy-harvesting and thermal contro...

  3. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  4. Analysis of auroral infrared emissions observed during the ELIAS experiment

    Directory of Open Access Journals (Sweden)

    G. E. Caledonia

    Full Text Available The ELIAS (Earth Limb Infrared Atmospheric Structure experiment was flown from the Poker Flat Research Range, Alaska in 1983 and successfully monitored visible and infrared emissions from an IBC III+ aurora. Measurements were performed in both staring and scanning modes over several hundred seconds. The data for short- and mid-wave infrared regions have been analyzed in terms of auroral excitation of the NO and NO+ vibrational bands. Auroral excitation efficiencies and kinetic implications are presented.

  5. Determining the leaf emissivity of three crops by infrared thermometry.

    Science.gov (United States)

    Chen, Chiachung

    2015-05-15

    Plant temperature can provide important physiological information for crop management. Non-contact measurement with an infrared thermometer is useful for detecting leaf temperatures. In this study, a novel technique was developed to measure leaf emissivity using an infrared thermometer with an infrared sensor and a thermocouple wire. The measured values were transformed into true temperatures by calibration equations to improve the measurement accuracy. The relationship between two kinds of measurement temperatures and setting emissivities was derived as a model for calculating of true emissivity. The emissivities of leaves of three crops were calculated by the mathematical equation developed in this study. The mean emissivities were 0.9809, 0.9783, 0.981 and 0.9848 for Phalaenopsis mature and new leaves and Paphiopedilum and Malabar chestnut leaves, respectively. Emissivity differed significantly between leaves of Malabar chestnut and the two orchids. The range of emissivities determined in this study was similar to that in the literature. The precision of the measurement is acceptable. The method developed in this study is a real-time, in situ technique and could be used for agricultural and forestry plants.

  6. Determining the Leaf Emissivity of Three Crops by Infrared Thermometry

    Directory of Open Access Journals (Sweden)

    Chiachung Chen

    2015-05-01

    Full Text Available Plant temperature can provide important physiological information for crop management. Non-contact measurement with an infrared thermometer is useful for detecting leaf temperatures. In this study, a novel technique was developed to measure leaf emissivity using an infrared thermometer with an infrared sensor and a thermocouple wire. The measured values were transformed into true temperatures by calibration equations to improve the measurement accuracy. The relationship between two kinds of measurement temperatures and setting emissivities was derived as a model for calculating of true emissivity. The emissivities of leaves of three crops were calculated by the mathematical equation developed in this study. The mean emissivities were 0.9809, 0.9783, 0.981 and 0.9848 for Phalaenopsis mature and new leaves and Paphiopedilum and Malabar chestnut leaves, respectively. Emissivity differed significantly between leaves of Malabar chestnut and the two orchids. The range of emissivities determined in this study was similar to that in the literature. The precision of the measurement is acceptable. The method developed in this study is a real-time, in situ technique and could be used for agricultural and forestry plants.

  7. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    Science.gov (United States)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  8. Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance

    Science.gov (United States)

    Kats, Mikhail A.; Blanchard, Romain; Zhang, Shuyan; Genevet, Patrice; Ko, Changhyun; Ramanathan, Shriram; Capasso, Federico

    2013-10-01

    We experimentally demonstrate that a thin (approximately 150-nm) film of vanadium dioxide (VO2) deposited on sapphire has an anomalous thermal emittance profile when heated, which arises because of the optical interaction between the film and the substrate when the VO2 is at an intermediate state of its insulator-metal transition (IMT). Within the IMT region, the VO2 film comprises nanoscale islands of the metal and dielectric phases and can thus be viewed as a natural, disordered metamaterial. This structure displays “perfect” blackbodylike thermal emissivity over a narrow wavelength range (approximately 40cm-1), surpassing the emissivity of our black-soot reference. We observe large broadband negative differential thermal emittance over a >10°C range: Upon heating, the VO2-sapphire structure emits less thermal radiation and appears colder on an infrared camera. Our experimental approach allows for a direct measurement and extraction of wavelength- and temperature-dependent thermal emittance. We anticipate that emissivity engineering with thin-film geometries comprising VO2 and other thermochromic materials will find applications in infrared camouflage, thermal regulation, and infrared tagging and labeling.

  9. Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance

    Directory of Open Access Journals (Sweden)

    Mikhail A. Kats

    2013-10-01

    Full Text Available We experimentally demonstrate that a thin (approximately 150-nm film of vanadium dioxide (VO_{2} deposited on sapphire has an anomalous thermal emittance profile when heated, which arises because of the optical interaction between the film and the substrate when the VO_{2} is at an intermediate state of its insulator-metal transition (IMT. Within the IMT region, the VO_{2} film comprises nanoscale islands of the metal and dielectric phases and can thus be viewed as a natural, disordered metamaterial. This structure displays “perfect” blackbodylike thermal emissivity over a narrow wavelength range (approximately 40  cm^{-1}, surpassing the emissivity of our black-soot reference. We observe large broadband negative differential thermal emittance over a >10 °C range: Upon heating, the VO_{2}-sapphire structure emits less thermal radiation and appears colder on an infrared camera. Our experimental approach allows for a direct measurement and extraction of wavelength- and temperature-dependent thermal emittance. We anticipate that emissivity engineering with thin-film geometries comprising VO_{2} and other thermochromic materials will find applications in infrared camouflage, thermal regulation, and infrared tagging and labeling.

  10. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    Science.gov (United States)

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  11. Infra-red reflectance and emissivity spectra of nanodiamonds

    OpenAIRE

    Maturilli, A.; Shiryaev, A. A.; Kulakova, I I; Helbert, J.

    2012-01-01

    Reflectance and emissivity spectra of nanodiamonds powder were measured in a dedicated setup at temperatures up to 873 K. The spectra are characterised by presence of sharp bands due to surface-bound functional groups. Thermal desorption of oxygen-containing groups lead to corresponding spectral changes. The maximal emissivity of nanodiamond powder reaches 0.985.

  12. Standoff laser-induced thermal emission of explosives

    Science.gov (United States)

    Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Figueroa-Navedo, Amanda; Hernandez-Rivera, Samuel P.

    2013-05-01

    A laser mediated methodology for remote thermal excitation of analytes followed by standoff IR detection is proposed. The goal of this study was to determine the feasibility of using laser induced thermal emission (LITE) from vibrationally excited explosives residues deposited on surfaces to detect explosives remotely. Telescope based FT-IR spectral measurements were carried out to examine substrates containing trace amounts of threat compounds used in explosive devices. The highly energetic materials (HEM) used were PETN, TATP, RDX, TNT, DNT and ammonium nitrate with concentrations from 5 to 200 μg/cm2. Target substrates of various thicknesses were remotely heated using a high power CO2 laser, and their mid-infrared (MIR) thermally stimulated emission spectra were recorded. The telescope was configured from reflective optical elements in order to minimize emission losses in the MIR frequencies and to provide optimum overall performance. Spectral replicas were acquired at a distance of 4 m with an FT-IR interferometer at 4 cm- 1 resolution and 10 scans. Laser power was varied from 4-36 W at radiation exposure times of 10, 20, 30 and 60 s. CO2 laser powers were adjusted to improve the detection and identification of the HEM samples. The advantages of increasing the thermal emission were easily observed in the results. Signal intensities were proportional to the thickness of the coated surface (a function of the surface concentration), as well as the laser power and laser exposure time. For samples of RDX and PETN, varying the power and time of induction of the laser, the calculated low limit of detections were 2 and 1 μg/cm2, respectively.

  13. Seeking phyllosilicates in thermal infrared data: A laboratory and Martian data case study

    Science.gov (United States)

    McDowell, Meryl L.; Hamilton, Victoria E.

    2009-06-01

    Previous analyses of Thermal Emission Spectrometer (TES) data produce results that could suggest a widespread distribution of phyllosilicate minerals over the surface of Mars, whereas studies of visible to near-infrared (VNIR) data indicate a more limited distribution. We use VNIR detections of phyllosilicates in the vicinity of the Nili Fossae to determine the spectral characteristics of phyllosilicate-bearing material in the thermal infrared (TIR). By investigating areas of VNIR phyllosilicate detection in more detail, we find that the phyllosilicate-bearing material corresponds to spectral variation in Thermal Emission Imaging System decorrelation-stretched TIR images and differences in infrared spectral shape that are consistent with, but not uniquely attributable to, mixtures of phyllosilicates and basalt. Phyllosilicate phases are modeled from TES data at abundances that average 5% over the region and at abundances near the 10-15% detection limit in our specific regions of interest. Deconvolution of numerical mixtures of phyllosilicate and basalt spectra indicates that these low abundances of phyllosilicates likely are not influenced by uncertainties greater than the 10-15% uncertainty of the method. TES spectra and modeled abundances vary between the phyllosilicate-bearing material and the surrounding region, but this difference in composition cannot be attributed solely to the presence of phyllosilicates. We believe the inconsistencies in phyllosilicate occurrence between TES and VNIR analyses may be explained by the inclusion of phyllosilicates in the models of TES data as substitutes for poorly crystalline phases (e.g., allophane) not currently available in public infrared spectral libraries.

  14. Structure of the Extended Emission in the Infrared Celestial Background,

    Science.gov (United States)

    1986-09-30

    particles in the interstellar medium and, perhaps, from band emission due to polycyclic aromatic hydrocarbons. These galactic sources combine along the line...of sight to produce an ntense band of emission centered on the galactic plane which has full width at half maxima of about 2’.,,- Introduction Meter...Infrared Astronmy Satellite (IRAS). H II regions, areas of ionized gas mixed with and surrounded by dust, are the brightest discrete objects in the

  15. Use of the Vis-SWIR to Aid Atmospheric Correction of Multispectral and Hyperspectral Thermal Infrared (TIR) Imagery: The TIR Model

    National Research Council Canada - National Science Library

    Gruninger, John; Fox, Marsha; Lee, Jamine; Ratkowski, Anthony J; Hoke, Michael L

    2006-01-01

    The atmospheric correction of thermal infrared (TIR) imagery involves the combined tasks of separation of atmospheric transmittance, downwelling flux and upwelling radiance from the surface material spectral emissivity and temperature...

  16. Mid and thermal infrared remote sensing at the Jet Propulsion Laboratory

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.

    2016-05-01

    The mid and thermal infrared (MTIR) for the Earth surface is defined between 3 and 14µm. In the outer solar system, objects are colder and their Planck response shifts towards longer wavelengths. Hence for these objects (e.g. icy moons, polar caps, comets, Europa), the thermal IR definition usually stretches out to 50µm and beyond. Spectroscopy has been a key part of this scientific exploration because of its ability to remotely determine elemental and mineralogical composition. Many key gas species such as methane, ammonia, sulfur, etc. also have vibrational bands which show up in the thermal infrared spectrum above the background response. Over the past few decades, the Jet Propulsion Laboratory has been building up a portfolio of technology to capture the MTIR for various scientific applications. Three recent sensors are briefly reviewed: The airborne Hyperspectral thermal emission spectrometer (HyTES), the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Mars Climate Sounder (MCS)/DIVINER. Each of these sensors utilize a different technology to provide a remote sensing product based on MTIR science. For example, HyTES is a push-brooming hyperspectral imager which utilizes a large format quantum well infrared photodetector (QWIP). The goal is to transition this to a new complementary barrier infrared photodetector (CBIRD) with a similar long wave cut-off and increased sensitivity. ECOSTRESS is a push-whisk Mercury Cadmium Telluride (MCT) based high speed, multi-band, imager which will eventually observe and characterize plant/vegetation functionality and stress index from the International Space Station (ISS) across the contiguous United States (CONUS). MCS/DIVINER utilizes thermopile technology to capture the thermal emission from the polar caps and shadow regions of the moon. Each sensor utilizes specific JPL technology to capture unique science.

  17. Electrically Excited, Localized Infrared Emission from Single Carbon Nanotubes

    NARCIS (Netherlands)

    Freitag, Marcus; Tsang, James C.; Kirtley, John; Kirtley, J.R.; Carlsen, Autumn; Chen, Jia; Troeman, A.G.P.; Hilgenkamp, Johannes W.M.; Avouris, Phaedon

    2006-01-01

    Carbon nanotube field-effect transistors (CNTFETs) produce band gap derived infrared emission under both ambipolar and unipolar transport conditions. We demonstrate here that heterogeneities/defects in the local environment of a CNTFET perturb the local potentials and, as a result, the

  18. New Trends in Energy Harvesting from Earth Long-Wave Infrared Emission

    Directory of Open Access Journals (Sweden)

    Luciano Mescia

    2014-01-01

    Full Text Available A review, even if not exhaustive, on the current technologies able to harvest energy from Earth’s thermal infrared emission is reported. In particular, we discuss the role of the rectenna system on transforming the thermal energy, provided by the Sun and reemitted from the Earth, in electricity. The operating principles, efficiency limits, system design considerations, and possible technological implementations are illustrated. Peculiar features of THz and IR antennas, such as physical properties and antenna parameters, are provided. Moreover, some design guidelines for isolated antenna, rectifying diode, and antenna coupled to rectifying diode are exploited.

  19. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    Science.gov (United States)

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  20. Infrared scanners detect thermal gradients in building walls

    Science.gov (United States)

    Kantsios, A. G.

    1979-01-01

    Presents study on ability of infrared scanner used to detect thermal gradients in outside walls of two homes in Virginia Beach, Virginia under joint effort of Langley Research Center, Virginia Energy Office and Virginia Beach Energy Conservation Pilot Project. Details how study can be used to help minimize energy loss.

  1. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  2. Thermal infrared sensors for postharvest deficit irrigation of peach

    Science.gov (United States)

    California has been in a historic drought and the lack of water has been a major problem for agriculture especially for crops that depend on irrigation. A multi-year field study was carried out to demonstrate the feasibility of applying thermal infrared sensors for managing deficit irrigation in an ...

  3. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2013-01-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability

  4. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, C.; van der Heijden, Ferdinand; Bus, Sicco A.

    Background: Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the

  5. Infrared lens thermal effect: equivalent focal shift and calculating model

    Science.gov (United States)

    Zhang, Cheng-shuo; Shi, Zelin; Feng, Bin; Xu, Bao-shu

    2014-11-01

    It's well-know that the focal shift of infrared lens is the major factor in degeneration of imaging quality when temperature change. In order to figure out the connection between temperature change and focal shift, partial differential equations of thermal effect on light path are obtained by raytrace method, to begin with. The approximately solution of the PDEs show that focal shift is proportional to temperature change. And a formula to compute the proportional factor is given. In order to understand infrared lens thermal effect deeply, we use defocus by image plane shift at constant temperature to equivalently represent thermal effect on infrared lens. So equivalent focal shift (EFS) is defined and its calculating model is proposed at last. In order to verify EFS and its calculating model, Physical experimental platform including a motorized linear stage with built-in controller, blackbody, target, collimator, IR detector, computer and other devices is developed. The experimental results indicate that EFS make the image plane shift at constant temperature have the same influence on infrared lens as thermal effect and its calculating model is correct.

  6. Thermal Infrared Spectroscopy of Saturn and Titan from Cassini

    Science.gov (United States)

    Jennings, Donald E.; Brasunas, J. C.; Carlson, R. C.; Flasar, F. M.; Kunde, V. G.; Mamoutkine, A. A.; Nixon, A.; Pearl, J. C.; Romani, P. N.; Simon-Miller, A. A.; hide

    2009-01-01

    The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.

  7. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    Science.gov (United States)

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.

  8. Agricultural applications for thermal infrared multispectral scanner data

    Science.gov (United States)

    Pelletier, R. E.; Ochoa, M. C.; Hajek, B. F.

    1985-01-01

    The use of the Thermal Infrared Multispectral Scanner (TIMS) data in agricultural landscapes is discussed. The TIMS allows for narrow-band analysis in the 8.2-11.6 micron range at spatial resolutions down to 5 meters in cell size. A coastal plain region in SE Alabama was studied using the TIMS. The crop/plant vigor, canopy density, and thermal response changes for soils obtained from thermal imagery are examined. The application of TIMS data to hydrologic and topographic issues, inventory and conservation monitoring, and the enhancement and extraction of cartographic features is described.

  9. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  10. Near-infrared emissions from Yb{sup 3+}-doped CeO{sub 2} and Ce{sub 2}Si{sub 2}O{sub 7} films based on silicon substrates subjected to thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Guangyao; Wang, Shenwei; Li, Ling; Yin, Xue; Huang, Miaoling; Yi, Lixin [Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing (China)

    2016-05-15

    Photoluminescence properties of Yb{sup 3+}-doped CeO{sub 2} films annealed in different atmospheres were investigated. CeO{sub 2}:Yb{sup 3+} films were deposited by electron-beam evaporation technique. Near-infrared emission around 970 nm was observed after annealing the films both in air and in Ar-H{sub 2} atmosphere, which is attributed to the Yb{sup 3+}:{sup 2}F{sub 5/2} → {sup 2}F{sub 7/2} transition. Optimization of the Yb{sup 3+} concentration for the 970 nm luminescence yield was also investigated. Characterized by different methods, Ce{sub 2}Si{sub 2}O{sub 7} was formed in the films annealed in reducing atmosphere, which was expected to be more applicable for the silicon-based optoelectronic applications. (orig.)

  11. Infrared characterization of thermal gradients on disc brakes

    Science.gov (United States)

    Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre

    2003-04-01

    The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.

  12. Thermal analysis of nanofluids in microfluidics using an infrared camera.

    Science.gov (United States)

    Yi, Pyshar; Kayani, Aminuddin A; Chrimes, Adam F; Ghorbani, Kamran; Nahavandi, Saeid; Kalantar-zadeh, Kourosh; Khoshmanesh, Khashayar

    2012-07-21

    We present the thermal analysis of liquid containing Al(2)O(3) nanoparticles in a microfluidic platform using an infrared camera. The small dimensions of the microchannel along with the low flow rates (less than 120 μl min(-1)) provide very low Reynolds numbers of less than 17.5, reflecting practical parameters for a microfluidic cooling platform. The heat analysis of nanofluids has never been investigated in such a regime, due to the deficiencies of conventional thermal measurement systems. The infrared camera allows non-contact, three dimensional and high resolution capability for temperature profiling. The system was studied at different w/w concentrations of thermally conductive Al(2)O(3) nanoparticles and the experiments were in excellent agreement with the computational fluid dynamics (CFD) simulations.

  13. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  14. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (I) using a catalogue of confirmed clusters detected in Planck data; (II) using an all-sky tSZ map built from Planck frequency maps; and (III) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (I) 6σ; (II) 3σ; and (III) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.

  15. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  16. Infrared Thermal Imaging System on a Mobile Phone

    Directory of Open Access Journals (Sweden)

    Fu-Feng Lee

    2015-04-01

    Full Text Available A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM and mobile phone with embedded exclusive software (IRAPP was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time.

  17. Infrared thermal facial image sequence registration analysis and verification

    Science.gov (United States)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  18. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    Science.gov (United States)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  19. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Science.gov (United States)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  20. Measurement of thermal radiation using regular glass optics and short-wave infrared detectors.

    Science.gov (United States)

    Yoon, H W; Eppeldauer, G P

    2008-01-21

    The measurement of thermal radiation from ambient-temperature objects using short-wave infrared detectors and regular glass optics is described. The detectors are chosen to operate in the 2.0 microm to 2.5 microm atmospheric window. Selection of detectors with high shunt resistance along with the 4-stage thermo-electric cooling of the detectors to -85 degrees C results in detectivity, D*, of 4 x 10(13) cm Hz(1/2)/W which is near the background limited performance at 295 K. Furthermore, the use of regular-glass commercial optics to collect the thermal radiation results in diffraction-limited imaging. The use of a radiation thermometer constructed with these elements for the measurement of a blackbody from 20 degrees C to 50 degrees C results in noise-equivalent temperature difference (NETD) of thermal sensors also leads to lower sensitivity to the emissivity of the object in determining the temperature of the object. These elements are used to construct a calibrator for an infrared collimator, and such a system demonstrates noise-equivalent irradiances of thermal infrared detectors.

  1. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  2. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  3. Airborne measurement of aircraft emissions using passive infrared FT spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haschberger, P.; Lindermeir, E.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-01

    For the first time emissions from aircraft jet engines where measured inflight by use of a Fourier transform infrared spectrometer. The instrument works in a non-intrusive mode observing the plume from the cabin and detecting the emitted infrared radiation. Applying nonlinear inversion techniques the concentrations and emission indices of the infrared active gas components are calculated. Besides CO, CO{sub 2}, and water vapor the separate acquisition of NO and NO{sub 2} is of special interest. For the ATTAS research aircraft as a first carrier the emission index of NO{sub x}, EI(NO{sub x}), is in the range of 5-7.5 g(NO{sub 2})/(kg fuel) with a ratio NO{sub 2}/NO{sub x} of 12-22%. The precision of the measurement system is better than 5%, the estimated accuracy depends on the species and ranges between 5-25%. This report presents a summary of the results including a comparison of measured data and ground-to-altitude correlation models. (orig.) 144 figs., 42 tabs., 497 refs.

  4. Estimating Clothing Thermal Insulation Using an Infrared Camera

    OpenAIRE

    Jeong-Hoon Lee; Young-Keun Kim; Kyung-Soo Kim; Soohyun Kim

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal cloth...

  5. The Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Reuter, Dennis; Richardson, Cathy; Irons, James; Allen, Rick; Anderson, Martha; Budinoff, Jason; Casto, Gordon; Coltharp, Craig; Finneran, Paul; Forsbacka, Betsy; hide

    2010-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and USGS mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC} under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper outlines the design of the TIRS instrument and gives an example of its application to monitoring water consumption by measuring evapotranspiration.

  6. Systems Analysis for Thermal Infrared ` THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Sun, Jingye; Brindley, Helen E.; Liang, Xiaoxin; Lucyszyn, Stepan

    2015-05-01

    The ` THz Torch' concept was recently introduced by the authors for providing secure wireless communications over short distances within the thermal infrared (10-100 THz). Unlike conventional systems, thermal infrared can exploit front-end thermodynamics with engineered blackbody radiation. For the first time, a detailed power link budget analysis is given for this new form of wireless link. The mathematical modeling of a short end-to-end link is provided, which integrates thermodynamics into conventional signal and noise power analysis. As expected from the Friis formula for noise, it is found that the noise contribution from the pyroelectric detector dominates intrinsic noise. From output signal and noise voltage measurements, experimental values for signal-to-noise ratio (SNR) are obtained and compared with calculated predictions. As with conventional communications systems, it is shown for the first time that the measured SNR and measured bit error rate found with this thermodynamics-based system resembles classical empirical models. Our system analysis can serve as an invaluable tool for the development of thermal infrared systems, accurately characterizing each individual channel and, thus, enables the performance of multi-channel ` THz Torch' systems to be optimized.

  7. [Health risks from infrared emissions from radiant tube heaters in the workplace].

    Science.gov (United States)

    Bergamaschi, A; Grandi, C; D'Addato, M; Di Carlo, V; Russo, A

    1995-01-01

    With the exception of domestic rooms, Overhead Radiant Tube Heaters (ORTH) are an effective system for indoor heating (e.g. warehouses, factories, garage workshops, shipyards, greenhouses, schools hall etc.). The growing number of units installed is due to several advantages, such as uniform heating, absence of air movements, energy saving, versatility and safety. Indoor heating is obtained by an infrared emission, which is produced by the circulation of combustion exhaust gases within tubes and is collected by a set of reflecting surfaces located around the tubes. In the present communication, the attention is driven on the characteristics of ORTH infrared emissions, with reference to potential health risks for the exposed people (especially people working within areas heated by this system). A reason for this is represented by the existence of a specific italian regulation (Circolare N. 1322/4134-28.01.1992, Direzione Generale della Protezione Civile-Ministero dell'Interno). Following the last one, ORTH surface temperatures resulting in a spectral emission which includes wavelengths less than 3 microns have to be considered, in the case of ORTHs with thermal power greater than 34.89 kW, as hazardous for exposed people. Although the ORTHs emission spectrum partially covers the near infrared region (0.8-1.4 microns) at 400 degrees Celsius and may adversely affect the retained tissue a gross evaluation of the near infrared energetic flux, weightened on the surface unit, allows to exclude this risk. On the opposite, the results of the same evaluation carried out in the medium and far infrared spectral region at 200 degrees-400 degrees Celsius (the normal temperature range for ORTHs) do not allow to preliminary exclude a thermal risk for eye structures such as lens, near the tube surface at least. In every case, a burn hazard for both corneal tissue and skin is excluded. With the aim to carry out a detailed set of radiometric estimates, some preliminary considerations

  8. Enhanced Plasmonic Wavelength Selective Infrared Emission Combined with Microheater

    Directory of Open Access Journals (Sweden)

    Hiroki Ishihara

    2017-09-01

    Full Text Available The indirect wavelength selective thermal emitter that we have proposed is constructed using a new microheater, demonstrating the enhancement of the emission peak generated by the surface plasmon polariton. The thermal isolation is improved using a 2 μm-thick Si membrane having 3.6 and 5.4 mm outer diameter. The emission at around the wavelength of the absorption band of CO2 gas is enhanced. The absorption signal increases, confirming the suitability for gas sensing. Against input power, the intensity at the peak wavelength shows a steeper increasing ratio than the background intensity. The microheater with higher thermal isolation gives larger peak intensity and its increasing ratio against the input power.

  9. Applying infrared measurements in a measuring system for determining thermal parameters of thermal insulation materials

    Science.gov (United States)

    Chudzik, S.

    2017-03-01

    The paper presents results of research on an innovative method for determining thermal parameters of thermal insulating materials. The method is based on harmonic thermal excitations. Temperature measurements at selected points of a specimen under test are performed by means of semiconductor infrared sensors. The study also employs a 3D model of thermal diffusion. To obtain a solution of the coefficient inverse problem a method based on an artificial neural network is presented. The heat transfer coefficient on the specimen surface is estimated on the basis of a reference specimen. The validity of the adopted model of heat diffusion and the usefulness of the method proposed are verified experimentally.

  10. Thermal characteristics of mountain desert terrain derived from thermal infrared multispectral scanner measurements

    Science.gov (United States)

    Astling, E. G.; Quattrochi, D. A.

    1989-01-01

    The spatial and temporal variability of mountain-desert territory thermal is examined with an airborne thermal infrared multispectral scanner (TIMS). The purpose of the study is to demonstrate that inhomogeneities of the surface temperatures in the area can be adequately large to influence mesoscale circulations and the turbulence characteristics of boundary-layer flow. Ground truth measurements are compared to the TIMS imagery, with focus placed on the thermal infrared sensitivity to wet and dry soils, terrain elevation, and soil type. The results indicate that variations in the thermal features are dependent on soil type and soil moisture, and that the dependence on surface radiative temperatures on terrain elevation is apparent in daytime measurements.

  11. Thermal infrared imaging in psychophysiology: potentialities and limits.

    Science.gov (United States)

    Ioannou, Stephanos; Gallese, Vittorio; Merla, Arcangelo

    2014-10-01

    Functional infrared thermal imaging (fITI) is considered an upcoming, promising methodology in the emotional arena. Driven by sympathetic nerves, observations of affective nature derive from muscular activity subcutaneous blood flow as well as perspiration patterns in specific body parts. A review of 23 experimental procedures that employed fITI for investigations of affective nature is provided, along with the adopted experimental protocol and the thermal changes that took place on selected regions of interest in human and nonhuman subjects. Discussion is provided regarding the selection of an appropriate baseline, the autonomic nature of the thermal print, the experimental setup, methodological issues, limitations, and considerations, as well as future directions. © 2014 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  12. Analysis of effective radiant temperatures in a Pacific Northwest forest using Thermal Infrared Multispectral Scanner data

    Science.gov (United States)

    Sader, S. A.

    1986-01-01

    Analysis of Thermal Infrared Multispectral Scanner data collected over H. J. Andrews experimental forest in western Oregon indicated that aspect and slope gradient had a greater effect on the thermal emission of younger reforested clearcuts than of older stands. Older forest stands (older than 25 years) with greater amounts of green biomass and closed canopies, had lower effective radiant temperatures than younger, less dense stands. Aspect and slope had little effect on the effective radiant temperature of these older stands. Canopy temperature recorded at approximately 1:30 pm local time July 29, 1983 were nearly equal to maximum daily air temperature recorded at eight reference stands. The investigation provided some insights into the utility of the thermal sensor for detecting surface temperature differences related to forest composition and green biomass amounts in mountain terrain.

  13. Human ear detection in the thermal infrared spectrum

    Science.gov (United States)

    Abaza, Ayman; Bourlai, Thirimachos

    2012-06-01

    In this paper the problem of human ear detection in the thermal infrared (IR) spectrum is studied in order to illustrate the advantages and limitations of the most important steps of ear-based biometrics that can operate in day and night time environments. The main contributions of this work are two-fold: First, a dual-band database is assembled that consists of visible and thermal profile face images. The thermal data was collected using a high definition middle-wave infrared (3-5 microns) camera that is capable of acquiring thermal imprints of human skin. Second, a fully automated, thermal imaging based ear detection method is developed for real-time segmentation of human ears in either day or night time environments. The proposed method is based on Haar features forming a cascaded AdaBoost classifier (our modified version of the original Viola-Jones approach1 that was designed to be applied mainly in visible band images). The main advantage of the proposed method, applied on our profile face image data set collected in the thermal-band, is that it is designed to reduce the learning time required by the original Viola-Jones method from several weeks to several hours. Unlike other approaches reported in the literature, which have been tested but not designed to operate in the thermal band, our method yields a high detection accuracy that reaches ~ 91.5%. Further analysis on our data set yielded that: (a) photometric normalization techniques do not directly improve ear detection performance. However, when using a certain photometric normalization technique (CLAHE) on falsely detected images, the detection rate improved by ~ 4%; (b) the high detection accuracy of our method did not degrade when we lowered down the original spatial resolution of thermal ear images. For example, even after using one third of the original spatial resolution (i.e. ~ 20% of the original computational time) of the thermal profile face images, the high ear detection accuracy of our method

  14. Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments

    Science.gov (United States)

    Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.; hide

    2012-01-01

    Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.

  15. MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII

    Energy Technology Data Exchange (ETDEWEB)

    L. BALICK; A. GILLESPIE; ET AL

    2001-03-01

    Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation

  16. Compositional and textural information from the dual inversion of visible, near and thermal infrared remotely sensed data

    Science.gov (United States)

    Brackett, Robert A.; Arvidson, Raymond E.

    1993-01-01

    A technique is presented that allows extraction of compositional and textural information from visible, near and thermal infrared remotely sensed data. Using a library of both emissivity and reflectance spectra, endmember abundances and endmember thermal inertias are extracted from AVIRIS (Airborne Visible and Infrared Imaging Spectrometer) and TIMS (Thermal Infrared Mapping Spectrometer) data over Lunar Crater Volcanic Field, Nevada, using a dual inversion. The inversion technique is motivated by upcoming Mars Observer data and the need for separation of composition and texture parameters from sub pixel mixtures of bedrock and dust. The model employed offers the opportunity to extract compositional and textural information for a variety of endmembers within a given pixel. Geologic inferences concerning grain size, abundance, and source of endmembers can be made directly from the inverted data. These parameters are of direct relevance to Mars exploration, both for Mars Observer and for follow-on missions.

  17. Infrared thermal imaging for automated detection of diabetic foot complications.

    Science.gov (United States)

    van Netten, Jaap J; van Baal, Jeff G; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A

    2013-09-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. © 2013 Diabetes Technology Society.

  18. Identification of microcrystalline rocks using thermal emission spectroscopy

    Science.gov (United States)

    Hardgrove, C. J.; Rogers, D.; Glotch, T. D.; Arnold, J. A.

    2015-12-01

    High-silica deposits on Mars have been discovered from orbit (Holden Crater, Mawrth Vallis) and from landed surface missions to both Gusev Crater (Spirit) and Gale Crater (Curiosity). The character of these silica deposits can be used to understand both the depositional environment (i.e. fumarole vs. sinter) and/or diagenetic process. Initial work has shown that, in the case of opaline silica, there are differences in spectral shape that may be related to surface textural features imparted during formation or post-depositional alteration. Due to the increasing importance of understanding microcrystalline deposits on Mars, here, we study the effects of crystal size and surface roughness on thermal infrared emission spectra of micro- and macro-crystalline quartz. The spectra of chert and macro-crystalline quartz have significant differences in both spectral contrast, and in the rounded doublet between ~1000-1250 cm-1, which can shift and appear less rounded in microcrystalline samples. We find that microcrystalline minerals exhibit naturally rough surfaces compared to their macrocrystalline counterparts at the 10 micron scale; and that this roughness causes distinct spectral differences within the Reststrahlen bands. We find that surface roughness, if rough on the scale of the wavelengths where the wavelength-dependent absorption coefficient (k) is large, can cause not only decreased spectral contrast, but also substantial changes in spectral shape. The spectral shape differences are small enough that the composition of the material is still recognizable, but large enough such that a roughness effect could be detected. We find that my studying the thermal infrared spectral character of the sample, it may be possible to make general inferences about microcrystallinity, and thus aid in the potential reconstruction of sedimentary rock diagenesis.

  19. Acidic weathering of basalt and basaltic glass: 1. Near-infrared spectra, thermal infrared spectra, and implications for Mars

    Science.gov (United States)

    Horgan, Briony H. N.; Smith, Rebecca J.; Cloutis, Edward A.; Mann, Paul; Christensen, Philip R.

    2017-01-01

    Acid-leached rinds and coatings occur in volcanic environments on Earth and have been identified using orbital spectroscopy on Mars, but their development is poorly understood. We simulated long-term open-system acidic weathering in a laboratory by repeatedly rinsing and submerging crystalline and glassy basalts in pH 1 and pH 3 acidic solutions for 213 days and compared their visible/near-infrared (0.3-2.5 µm) and thermal infrared (5-50 µm) spectral characteristics to their microscopic physical and chemical properties from scanning electron microscopy (SEM). We find that while alteration at moderately low pH ( 3) can produce mineral precipitates from solution, it has very little spectral or physical effect on the underlying parent material. In contrast, alteration at very low pH ( 1) results in clear silica spectral signatures for all crystalline samples while glasses exhibit strong blue concave-up near-infrared slopes. SEM indicates that these spectral differences correspond to different modes of alteration. In glass, alteration occurs only at the surface and produces a silica-enriched leached rind, while in more crystalline samples, alteration penetrates the interior to cause dissolution and replacement by silica. We confirm that glass is more stable than crystalline basalt under long-term acidic leaching, suggesting that glass could be enriched and common in terrains on Mars that have been exposed to acidic weathering. Leached glasses are consistent with both OMEGA and Thermal Emission Spectrometer (TES) spectra of the Martian northern lowlands and may contribute to the high-silica phases detected globally in TES Surface Type 2. Thus, both glass-rich deposits and acidic weathering may have been widespread on Mars.

  20. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    Science.gov (United States)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  1. Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    Science.gov (United States)

    Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Soler, J. D.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2016-12-01

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.

  2. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    Science.gov (United States)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  3. Terrestrial Applications of the Thermal Infrared Sensor, TIRS

    Science.gov (United States)

    Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis

    2009-01-01

    Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.

  4. Thermal Infrared Remote Sensing of the Yellowstone Geothermal System

    Science.gov (United States)

    Vaughan, R. G.; Keszthelyi, L. P.; Heasler, H.; Jaworowski, C.; Lowenstern, J. B.; Schneider, D. J.

    2009-12-01

    The Yellowstone National Park (YNP) geothermal system is one of the largest in the world, with thousands of individual thermal features ranging in size from a few centimeters to tens of meters across, (e.g., fumaroles, geysers, mud pots and hot spring pools). Together, large concentrations of these thermal features make up dozens of distinct thermal areas, characterized by sparse vegetation, hydrothermally altered rocks, and usually either sinter, travertine, or acid sulfate alteration. The temperature of these thermal features generally ranges from ~30 to ~93 oC, which is the boiling temperature of water at the elevation of Yellowstone. In-situ temperature measurements of various thermal features are sparse in both space and time, but they show a dynamic time-temperature relationship. For example, as geysers erupt and send pulses of warm water down slope, the warm water cools rapidly and is then followed by another pulse of warm water, on time scales of minutes. The total heat flux from the Park’s thermal features has been indirectly estimated from chemical analysis of Cl- flux in water flowing from Yellowstone’s rivers. We are working to provide a more direct measurement, as well as estimates of time variability, of the total heat flux using satellite multispectral thermal infrared (TIR) remote sensing data. Over the last 10 years, NASA’s orbiting ASTER and MODIS instruments have acquired hundreds and thousands of multispectral TIR images, respectively, over the YNP area. Compared with some volcanoes, Yellowstone is a relatively low-temperature geothermal system, with low thermal contrast to the non-geothermal surrounding areas; therefore we are refining existing techniques to extract surface temperature and thermal flux information. This task is complicated by issues such as, during the day, solar heated surfaces may be warmer than nearby geothermal features; and there is some topographic (elevation) influence on surface temperatures, even at night. Still

  5. Kirchhoff's Law of Thermal Emission: 150 Years

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-10-01

    Full Text Available In this work, Kirchhoff's law (Kirchhoff G. Monatsberichte der Akademie der Wissenschaften zu Berlin, sessions of Dec. 1859, 1860, 783-787 is being revisited not only to mark its 150th anniversary but, most importantly, to highlight serious overreaching in its formulation. At the onset, Kirchhoff's law correctly outlines the equivalence between emission and absorption for an opaque object under thermal equilibrium. This same conclusion had been established earlier by Balfour Stewart (Stewart B. Trans. Royal Soc. Edinburgh, 1858, v.22(1, 1-20. However, Kirchhoff extends the treatment beyond his counterpart, stating that cavity radiation must always be black, or normal: depending only on the temperature and the frequency of observation. This universal aspect of Kirchhoff's law is without proper basis and constitutes a grave distortion of experimental reality. It is readily apparent that cavities made from arbitrary materials ($varepsilon < 1$ are never black. Their approach to such behavior is being driven either by the blackness of the detector, or by black materials placed near the cavity. Ample evidence exists that radiation in arbitrary cavities is sensitive to the relative position of the detectors. In order to fully address these issues, cavity radiation and the generalization of Kirchhoff's law are discussed. An example is then taken from electromagnetics, at microwave frequencies, to link results in the resonant cavity with those inferred from the consequences of generalization.

  6. Kirchhoff's Law of Thermal Emission: 150 Years

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-10-01

    Full Text Available n this work, Kirchhoff’s law (Kirchhoff G. Monatsberichte der Akademie der Wis- senschaften zu Berlin , sessions of Dec. 1859, 1860, 783–787 is being revisited not only to mark its 150th anniversary but, most importantly, to highlight serious overreaching in its formulation. At the onset, Kirchhoff’s law correctly outlines the equivalence be- tween emission and absorption for an opaque object under thermal equilibrium. This same conclusion had been established earlier by Balfour Stewart (Stewart B. Trans. Royal Soc. Edinburgh , 1858, v. 22(1, 1–20. However, Kirchhoff extends the treatment beyond his counterpart, stating that cavity radiation must always be black, or normal: depending only on the temperature and the frequency of observation. This universal aspect of Kirchhoff’s law is without proper basis and constitutes a grave distortion of experimental reality. It is readily apparent that cavities made from arbitrary materials ( " < 1 are never black. Their approach to such behavior is being driven either by the blackness of the detector, or by black materials placed near the cavity. Ample evidence exists that radiation in arbitrary cavities is sensitive to the relative position of the de- tectors. In order to fully address these issues, cavity radiation and the generalization of Kirchhoff’s law are discussed. An example is then taken from electromagnetics, at microwave frequencies, to link results in the resonant cavity with those inferred from the consequences of generalization.

  7. Multispectral, thermal infrared satellite data for geologic applications

    Science.gov (United States)

    Blodget, H. W.; Andre, C. G.; Marcell, R.; Minor, T. B.

    1985-01-01

    The value of multispectral thermal infrared satellite data for geologic mapping was assessed, applying the principal component and canonical analysis techniques to the images of the central part of the Arabian Peninsula (a 200 x 300 km area). Low resolution thermal infrared (TIR) data from the Nimbus 5 Surface Composition Mapping Radiometer (SCMR) and the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) were used. Color images included an 8.8 micrometer (SCMR) and 3.7 and 10.8 micrometer (AVHRR-night) data, ratioed AVHRR day/night TIR data, ratioed AVHRR reflected radiation data, and transformed 8- and 10-band TIR plus reflected radiation data. The results clearly demonstrated the potential geologic value of multispectral TIR data. Igneous and metamorphic units could be separated as a class (although not from each other except for young calc-alkaline granites). Some previously unmapped extensions of mapped faults below thick sedimentary units could be delineated. No single enhancement technique displayed all the potential information, implying that they should be used together.

  8. Secure thermal infrared communications using engineered blackbody radiation.

    Science.gov (United States)

    Liang, Xiaoxin; Hu, Fangjing; Yan, Yuepeng; Lucyszyn, Stepan

    2014-06-10

    The thermal (emitted) infrared frequency bands, from 20-40 THz and 60-100 THz, are best known for applications in thermography. This underused and unregulated part of the spectral range offers opportunities for the development of secure communications. The 'THz Torch' concept was recently presented by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels; the energy in each channel is then independently pulsed modulated and multiplexing schemes are introduced to create a robust form of short-range secure communications in the far/mid infrared. To date, octave bandwidth (25-50 THz) single-channel links have been demonstrated with 380 bps speeds. Multi-channel 'THz Torch' frequency division multiplexing (FDM) and frequency-hopping spread-spectrum (FHSS) schemes have been proposed, but only a slow 40 bps FDM scheme has been demonstrated experimentally. Here, we report a much faster 1,280 bps FDM implementation. In addition, an experimental proof-of-concept FHSS scheme is demonstrated for the first time, having a 320 bps data rate. With both 4-channel multiplexing schemes, measured bit error rates (BERs) of < 10(-6) are achieved over a distance of 2.5 cm. Our approach represents a new paradigm in the way niche secure communications can be established over short links.

  9. Atmospheric water vapor retrieval from Landsat 8 thermal infrared images

    Science.gov (United States)

    Ren, Huazhong; Du, Chen; Liu, Rongyuan; Qin, Qiming; Yan, Guangjian; Li, Zhao-Liang; Meng, Jinjie

    2015-03-01

    Atmospheric water vapor (wv) is required for the accurate retrieval of the land surface temperature from remote sensing data and other applications. This work aims to estimate wv from Landsat 8 Thermal InfraRed Sensor (TIRS) images using a new modified split-window covariance-variance ratio (MSWCVR) method on the basis of the brightness temperatures of two thermal infrared bands. Results show that the MSWCVR method can theoretically retrieve wv with an accuracy better than 0.3 g/cm2 for dry atmosphere (wv Robotic Network) ground-measured data and MODIS (Moderate Resolution Imaging Spectroradiometer) products. The results show that the retrieved wv from the TIRS data is highly correlated with the wv of AERONET and MODIS but is generally larger. This difference was probably attributed to the uncertainty of radiometric calibration and stray light coming outside from field of view of TIRS instrument in the current images. Consequently, the data quality and radiometric calibration of the TIRS data should be improved in the future.

  10. Shape memory nanocomposite of poly(L-lactic acid/graphene nanoplatelets triggered by infrared light and thermal heating

    Directory of Open Access Journals (Sweden)

    S. Lashgari

    2016-04-01

    Full Text Available In this study, the effect of graphene nanoplatelets (GNPs on the shape memory properties of poly(L-lactic acid (PLLA was studied. In addition to thermal activation, the possibility of infrared actuating of thermo-responsive shape memory PLLA/GNPs nanocomposite was investigated. The incorporated GNPs were expected to absorb infrared wave’s energy and activate shape memory PLLA/GNPs. Different techniques such as differential scanning calorimetry (DSC, wide-angle X-ray diffraction (WAXD, field emission gun scanning electron microscope (FEG-SEM and dynamic mechanical thermal analysis (DMTA were used to characterize samples. DSC and WAXD results indicated that GNPs augmented crystallinity due to nucleating effect of graphene particles. GNPs improved both thermal and infrared activating shape memory properties along with faster response. Pure shape memory PLLA was slightly responsive to infrared light and its infrared actuated shape recovery ratio was 86% which increased to more than 95% with loading of GNPs. Drastic improvement in the crystallinity was obtained in nanocomposites with lower GNPs contents (0.5 and 1 wt% due to finer dispersion of graphene which resulted in more prominent mechanical and shape memory properties enhancement. Infrared activated shape memory PLLA/GNPs nanocomposites can be developed for wireless remote shape control of smart medical and bio-systems.

  11. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  12. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: a systematic review and meta-analysis.

    Science.gov (United States)

    Sanchis-Sánchez, Enrique; Vergara-Hernández, Carlos; Cibrián, Rosa M; Salvador, Rosario; Sanchis, Enrique; Codoñer-Franch, Pilar

    2014-10-01

    Musculoskeletal injuries occur frequently. Diagnostic tests using ionizing radiation can lead to problems for patients, and infrared thermal imaging could be useful when diagnosing these injuries. A systematic review was performed to determine the diagnostic accuracy of infrared thermal imaging in patients with musculoskeletal injuries. A meta-analysis of three studies evaluating stress fractures was performed and found a lack of support for the usefulness of infrared thermal imaging in musculoskeletal injuries diagnosis.

  13. Spatial distribution of far-infrared emission in spiral galaxies. I. Relation with radio continuum emission.

    Science.gov (United States)

    Mayya, Y. D.; Rengarajan, T. N.

    1997-09-01

    We use high resolution IRAS and 20 cm radio continuum (RC) images of a sample of 22 spiral galaxies to study the correlation between the far infra-red (FIR) and RC emissions within the galactic disks. A combination of exponential and gaussian profiles rather than a single exponential profile is found to be a better representation of the observed intensity profiles in the two bands. The gaussian component, which we show is not due to the effects of limited beam-resolution, contains more than 60% of the total flux in majority of the galaxies. The dominance of the gaussian component suggests that the nuclear star forming regions and the bulge stars are more important contributors to the emission in the two bands, rather than the outer exponential stellar disks. The RC profile is flatter compared to the FIR profile, resulting in a decrease of their ratio, Q-Sixty, away from the center. However, the Q-sixty increases in the extreme outer parts, where the dispersion in the FIR and RC correlation is also higher than in the central regions. The global Q-sixty and its dispersion match those in the inner parts of the galaxies. These results imply that the observed tight correlation in the global quantities reflects processes in the inner regions only where OB stars and the associated Type II supernovae control the FIR and RC emission. In the outer parts heating of very small dust grains by the old disk stars provides a secondary component in the FIR emission, without associated RC emission. The edge-on galaxy NGC3079 shows extended FIR and RC emissions along its minor axis, probably associated with the nuclear starburst activity. keywords - star formation - far infrared emission -- radio continuum emission

  14. The facial expression of schizophrenic patients applied with infrared thermal facial image sequence

    National Research Council Canada - National Science Library

    Bo-Lin Jian; Chieh-Li Chen; Wen-Lin Chu; Min-Wei Huang

    2017-01-01

    .... Thus, this study used non-contact infrared thermal facial images (ITFIs) to analyze facial temperature changes evoked by different emotions in moderately and markedly ill schizophrenia patients...

  15. Thermal surveillance of active volcanoes. [infrared scanner recordings of thermal anomalies of Mt. Baker volcano

    Science.gov (United States)

    Friedman, J. D. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.

  16. The MAMBA Thermal Infrared All-Sky Camera

    Science.gov (United States)

    Pier, Edward Alan; Tinn Chee Jim, Kevin; Lewis, Peter

    2015-08-01

    We are developing a system to continually and simultaneously monitor infrared atmospheric extinction along all lines of sight. This system combines a next generation radiometrically calibrated thermal all-sky camera, a weather station, and a neural net trained on historic Radiosonde profiles. Oceanit Laboratories, Inc. will market this system as an off the shelf unit. Custom-built thermal all sky cameras have previously been used on Haleakala, Cerro Tololo, and elsewhere. Except for RASICAM on Cerro Tololo, they have not been radiometrically calibrated and have been used only for qualitative cloud monitoring. The new system will have improved sky coverage, resolution, and noise properties with respect to RASICAM, and simulations show it will be able to infer atmospheric transmittance to within a few percent. The all sky camera will combine an equiresolution optical design with an off-the-shelf thermal detector and in field blackbody calibration sources to provide uniform sensitivity and radiometric accuracy across the sky at relatively low cost. Our goal is to make such systems ubiqitous at observatories around the world.

  17. PHyTIR - A Prototype Thermal Infrared Radiometer

    Science.gov (United States)

    Jau, Bruno M.; Hook, Simon J.; Johnson, William R.; Foote, Marc C.; Paine, Christopher G.; Pannell, Zack W.; Smythe, Robert F.; Kuan, Gary M.; Jakoboski, Julie K.; Eng, Bjorn T.

    2013-01-01

    This paper describes the PHyTIR (Prototype HyspIRI Thermal Infrared Radiometer) instrument, which is the engineering model for the proposed HyspIRI (Hyperspectral Infrared Imager) earth observing instrument. The HyspIRI mission would be comprised of the HyspIRI TIR (Thermal Infrared Imager), and a VSWIR (Visible Short-Wave Infra-Red Imaging Spectrometer). Both instruments would be used to address key science questions related to the earth's carbon cycle, ecosystems, climate, and solid earth properties. Data gathering of volcanic activities, earthquakes, wildfires, water use and availability, urbanization, and land surface compositions and changes, would aid the predictions and evaluations of such events and the impact they create. Even though the proposed technology for the HyspIRI imager is mature, the PHyTIR prototype is needed to advance the technology levels for several of the instrument's key components, and to reduce risks, in particular to validate 1) the higher sensitivity, spatial resolution, and higher throughput required for this focal plane array, 2) the pointing accuracy, 2) the characteristics of several spectral channels, and 4) the use of ambient temperature optics. The PHyTIR telescope consists of the focal plane assembly that is housed within a cold housing located inside a vacuum enclosure; all mounted to a bulkhead, and an optical train that consists of 3 powered mirrors; extending to both sides of the bulkhead. A yoke connects the telescope to a scan mirror. The rotating mirror enables to scan- a large track on the ground. This structure is supported by kinematic mounts, linking the telescope assembly to a base plate that would also become the spacecraft interface for HyspIRI. The focal plane's cooling units are also mounted to the base plate, as is an overall enclosure that has two viewing ports with large exterior baffles, shielding the focal plane from incoming stray light. PHyTIR's electronics is distributed inside and near the vacuum

  18. Infrared dielectric function of polydimethylsiloxane and selective emission behavior

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Arvind; Czapla, Braden; Narayanaswamy, Arvind, E-mail: arvind.narayanaswamy@columbia.edu [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Mayo, Jeff [Skycatch, San Francisco, California 94107 (United States)

    2016-08-08

    The complex refractive index of polydimethylsiloxane (PDMS) is determined in the wavelength range between 2.5 μm and 16.7 μm. The parameters of a Drude-Lorentz oscillator model (with 15 oscillators) are extracted from Fourier transform infrared spectroscopy reflectance measurements made on both bulk PDMS and thin films of PDMS deposited on the gold coated silicon substrates. It is shown that thin films of PDMS atop gold exhibit selective emission in the 8 μm to 13 μm atmospheric transmittance window, which demonstrates that PDMS, especially due to its ease of deposition, may be a viable material for passive radiative cooling applications.

  19. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2017-10-01

    In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.

  20. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  1. Far-red to near infrared emission and scattering spectroscopy for biomedical applications

    Science.gov (United States)

    Zhang, Gang

    2001-06-01

    The thesis investigates the far-red and near infrared (NIR) spectral region from biomedical tissue samples for monitoring the state of tissues. The NIR emission wing intensity is weak in comparison to the emission in the visible spectral region. The wing emission from biomedical samples has revealed meaningful information about the state of the tissues. A model is presented to explain the shape of the spectral wing based on a continuum of energy levels. The wing can be used to classify different kinds of tissues; especially it can be used to differentiate cancer part from normal human breast tissues. The research work of the far-red emission from thermal damaged tissue samples shows that the emission intensity in this spectral region is proportional to the extent of the thermal damage of the tissue. Near infrared spectral absorption method is used to investigate blood hemodynamics (perfusion and oxygenation) in brain during sleep-wake transition. The result of the research demonstrates that the continuous wave (CW) type near infrared spectroscopy (NIRS) device can be used to investigate brain blood perfusion and oxygenation with a similar precision with frequency domain (FD) type device. The human subject sleep and wake transition, has been monitored by CW type NIRS instrument with traditional electroencephalograph (EEG) method. Parallel change in oxy-Hb and deoxy-Hb is a discrete event that occurs in the transition from both sleep to wakefulness and wakefulness to sleep. These hemodynamic switches are generally about few seconds delayed from the human decided transition point between sleep and wake on the polygraph EEG recording paper. The combination of NIRS and EEG methods monitor the brain activity, gives more information about the brain activity. The sleep apnea investigation was associated with recurrent apneas, insufficient nasal continuous positive airway pressure (CPAP) and the different response of the peripheral and central compartments to breathing

  2. The new airborne Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Kahle, A. B.

    1983-01-01

    A new airborne Thermal Infrared Multispectral Scanner (TIMS) with six bands between 8 and 12 microns is briefly characterized, and some results of remote sensing experiments are reported. The instrument has an instantaneous field of view of 2.5 milliradians, a total field of view of 80 deg, and a NE Delta T of approximately 0.1-0.3 C depending on the band. In the TIMS image of Death Valley, silica-rich rocks were easily separable from the nonsilicates. The Eureka Quartzite stood out in sharp contrast to other Ordovician and Cambrian metasediments, and Tertiary volcanic rocks were easily separable from both. Also distinguishable were various units in the fan gravels.

  3. An infrared radiation based thermal biosensor for enzymatic biochemical reactions.

    Science.gov (United States)

    Zhang, Lei; Dong, Tao; Zhao, Xinyan; Yang, Zhaochu; Pires, Nuno M M

    2012-01-01

    In this paper, a thermal biosensor based on the infrared radiation energy is proposed for calorimetric measurement of biochemical reactions. Having a good structure design combined with MEMS technology as well as employing the Si /SiGe quantum well sensing material with a high TCR and low 1/f noise, the sensor shows potentials to be high sensitive and real-time. The urea enzymatic reaction was tested to verify the performance of sensor, which demonstrates a linear detection range from 0.5mM to 150mM and a relative standard deviation less than 1%. For the sensor fabrication, wafer-level transfer bonding is a key process, which makes the integration of quantum well material and a free standing structure possible. It reduces the heat loss from the sensor to the surrounding environment.

  4. A method for accurate temperature measurement using infrared thermal camera.

    Science.gov (United States)

    Tokunaga, Tomoharu; Narushima, Takashi; Yonezawa, Tetsu; Sudo, Takayuki; Okubo, Shuichi; Komatsubara, Shigeyuki; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2012-08-01

    The temperature distribution on a centre-holed thin foil of molybdenum, used as a sample and heated using a sample-heating holder for electron microscopy, was measured using an infrared thermal camera. The temperature on the heated foil area located near the heating stage of the heating holder is almost equal to the temperature on the heating stage. However, during the measurement of the temperature at the edge of the hole of the foil located farthest from the heating stage, a drop in temperature should be taken into consideration; however, so far, no method has been developed to locally measure the temperature distribution on the heated sample. In this study, a method for the accurate measurement of temperature distribution on heated samples for electron microscopy is discussed.

  5. Modelling The Thermal Emission From Airless Planetary Surfaces And Sub-surfaces

    Science.gov (United States)

    Leyrat, Cedric; Le Gall, A.; Stolzenbach, A.; Lellouch, E.

    2012-10-01

    Thermal emission from airless planetary bodies hold important clues on the thermo-physical and compositional characteristics of their surfaces. At short wavelengths, in the mid-infrared domain, thermal emission arises from the first layers of the regolith (a few microns). In contrast, radiometric measurements obtained at larger wavelengths can probe deeper below the surface as the material becomes more “transparent”. At such wavelengths thermal emission probes several tens of cm up to a few meters below the surface, depending on the absorbing properties of the body’s regolith. The radiometric data obtained by spacecraft can be used to constrain the electrical and thermal properties of surface bodies, thus providing clues on their physical state (roughness, porosity) and composition (dielectric constant). This will help identifying the geological endogenic or exogenic processes that have affected these bodies. Both the Cassini (NASA/ESA/ASI) and Rosetta (ESA) spacecrafts have onboard a radiometer operating at relatively large wavelengths, respectively in the microwave and sub-millimetric domains. At such wavelengths, these instruments sense the thermal emission not only from the surface but also from a section of the sub-surface of the targeted bodies. As a consequence, the interpretation of radiometric data collected over the airless icy satellites of Saturn by Cassini and over the comet 67P/Churyumov-Gerasimenko by the Rosetta orbiter requires a good knowledge of the temperature profile below the surface, down to several meters. We have developed a new thermal model of surfaces that takes into account for conductive heat transport, local variations of the insolation on both diurnal and seasonal timescales, multiple sources of heating, and geometry computations based on SPICE/NAIF kernels. This new thermal model could be used to interpret Cassini radar/radiometer data recorded over some of Saturn’s icy satellites and Miro/Rosetta future measurements of the

  6. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  7. Development of Thermal Infrared Sensor to Supplement Operational Land Imager

    Science.gov (United States)

    Shu, Peter; Waczynski, Augustyn; Kan, Emily; Wen, Yiting; Rosenberry, Robert

    2012-01-01

    The thermal infrared sensor (TIRS) is a quantum well infrared photodetector (QWIP)-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 m. The focal plane will contain three 640 512 QWIP arrays mounted onto a silicon substrate. The readout integrated circuit (ROIC) addresses each pixel on the QWIP arrays and reads out the pixel value (signal). The ROIC is controlled by the focal plane electronics (FPE) by means of clock signals and bias voltage value. The means of how the FPE is designed to control and interact with the TIRS focal plane assembly (FPA) is the basis for this work. The technology developed under the FPE is for the TIRS focal plane assembly (FPA). The FPE must interact with the FPA to command and control the FPA, extract analog signals from the FPA, and then convert the analog signals to digital format and send them via a serial link (USB) to a computer. The FPE accomplishes the described functions by converting electrical power from generic power supplies to the required bias power that is needed by the FPA. The FPE also generates digital clocking signals and shifts the typical transistor-to-transistor logic (TTL) to }5 V required by the FPA. The FPE also uses an application- specific integrated circuit (ASIC) named System Image, Digitizing, Enhancing, Controlling, And Retrieving (SIDECAR) from Teledyne Corp. to generate the clocking patterns commanded by the user. The uniqueness of the FPE for TIRS lies in that the TIRS FPA has three QWIP detector arrays, and all three detector arrays must be in synchronization while in operation. This is to avoid data skewing while observing Earth flying in space. The observing scenario may be customized by uploading new control software to the SIDECAR.

  8. Optical properties of mineral dust aerosol in the thermal infrared

    Science.gov (United States)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  9. Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data

    Science.gov (United States)

    Neinavaz, Elnaz; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.

    2016-12-01

    One of the plant biophysical factors affecting the canopy spectral reflectance of plants in the optical domain to receive research attention in recent decades is leaf area index (LAI). Although it is expected that the value of LAI affects the emission of radiation, it not known how. To our knowledge, the effect of LAI on plant canopy emissivity spectra has not yet been investigated in the thermal infrared region (TIR 8-14 μm). The overall aim of this study was to demonstrate the effect of LAI on canopy emissivity spectra of different species at the nadir position. The 279 spectral wavebands in the TIR domain were measured under controlled laboratory condition using a MIDAC spectrometer for four plant species. The corresponding LAI of each measurement was destructively calculated. We found a positive correlation between canopy emissivity spectra at various LAI values, indicating that emissivity increases concomitantly with LAI value. The canopy emissivity spectra of the four species were found to be statistically different at various wavebands even when the LAI values of the species were similar. It seems that other biophysical or biochemical factors also contribute to canopy emissivity spectra: this merits further investigation. We not only quantify the role of LAI on canopy emissivity spectra for the first time, but also demonstrate the potential of using hyperspectral thermal data to estimate LAI of plant species.

  10. Near-infrared emission spectrometry based on an acousto-optical tunable filter.

    Science.gov (United States)

    Gonzaga, Fabiano Barbieri; Pasquini, Celio

    2005-02-15

    A spectrometer has been constructed to detect the radiation emitted by thermally excited samples in the near-infrared spectral region extending from 1500 to 3000 nm. The instrument employs an acousto-optical tunable filter (AOTF) made of TeO2 and attains maximum sensitivity by making effective use of the two diffracted beams produced by the anisotropic AOTF. The full exploitation of the transmitted power of the monochromatic beams is reported for the first time and became possible because the detector does not saturate when employed for the acquisition of the weak emission signal in the NIR region, even when exposed to the total (nondiffracted) beam. Thus, modulation and lock-in-based detection can be employed to find the intensity of the diffracted beams superimposed on the nondiffracted beam. The resolution is slighted degraded in view of the small (approximately 10 nm) difference in the wavelength diffracted in the ordinary and extraordinary beams. The instrument has been evaluated in terms of signal-to-noise ratio, effect of sample thickness, and excitation temperature and for its potential in analytical applications in monitoring high-temperature kinetics, for qualitative identification of inorganic solids, for use with a closed cell to obtain spectra of species that evaporate at the temperatures (> 150 degrees C) necessary for sample excitation, and for quantitative purposes in the determination of soybean oil content in olive oil. The feasibility of near-infrared emission spectroscopy has been demonstrated together with some of its advantages over mid-infrared emission spectroscopy, such as greater tolerance to sample thickness, suitable signal-to-noise, and its use in the investigation of kinetic phenomena and phase transitions at high temperatures.

  11. Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars

    Science.gov (United States)

    Johnson, J. R.; Christensen, P.R.; Lucey, P.G.

    2002-01-01

    Thin coatings of atmospherically deposited dust can mask the spectral characteristics of underlying surfaces on Mars from the visible to thermal infrared wavelengths, making identification of substrate and coating mineralogy difficult from lander and orbiter spectrometer data. To study the spectral effects of dust coatings, we acquired thermal emission and hemispherical reflectance spectra (5-25 μm; 2000-400 cm-1) of basaltic andesite coated with different thicknesses of air fall-deposited palagonitic soils, fine-grained ceramic clay powders, and terrestrial loess. The results show that thin coatings (10-20 μm) reduce the spectral contrast of the rock substrate substantially, consistent with previous work. This contrast reduction continues linearly with increasing coating thickness until a "saturation thickness" is reached, after which little further change is observed. The saturation thickness of the spectrally flat palagonite coatings is ~100-120 μm, whereas that for coatings with higher spectral contrast is only ~50-75 μm. Spectral differences among coated and uncoated samples correlate with measured coating thicknesses in a quadratic manner, whereas correlations with estimated surface area coverage are better fit by linear functions. Linear mixture modeling of coated samples using the rock substrate and coating materials as end-members is also consistent with their measured coating thicknesses and areal coverage. A comparison of ratios of Thermal Emission Spectrometer (TES) spectra of dark and bright intracrater and windstreak deposits associated with Radau crater suggests that the dark windstreak material may be coated with as much as 90% areal coverage of palagonitic dust. The data presented here also will help improve interpretations of upcoming mini-TES and Thermal Emission Imaging System (THEMIS) observations of coated Mars surface materials.

  12. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  13. Characterization and Infrared Emission Spectroscopy of Ball Plasmoid Discharges

    Science.gov (United States)

    Dubowsky, Scott E.; McCall, Benjamin J.

    2015-06-01

    Plasmas at atmospheric pressure serve many purposes, from ionization sources for ambient mass spectrometry (AMS) to plasma-assisted wound healing. Of the many naturally occurring ambient plasmas, ball lightning is one of the least understood; there is currently no solid explanation in the literature for the formation and lifetime of natural ball lightning. With the first measurements of naturally occurring ball lightning being reported last year, we have worked to replicate the natural phenomenon in order to elucidate the physical and chemical processes by which the plasma is sustained at ambient conditions. We are able to generate ball-shaped plasmoids (self-sustaining plasmas) that are analogous to natural ball lightning using a high-voltage, high-current, pulsed DC system. Improvements to the discharge electronics used in our laboratory and characterization of the plasmoids that are generated from this system will be described. Infrared emission spectroscopy of these plasmoids reveals emission from water and hydroxyl radical -- fitting methods for these molecular species in the complex experimental spectra will be presented. Rotational temperatures for the stretching and bending modes of H2O along with that of OH will be presented, and the non-equilibrium nature of the plasmoid will be discussed in this context. Cen, J.; Yuan, P,; Xue, S. Phys. Rev. Lett. 2014, 112, 035001. Dubowsky, S.E.; Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R.H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45.

  14. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Science.gov (United States)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2017-07-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  15. Thermal comfort of seats as visualized by infrared thermography.

    Science.gov (United States)

    Sales, Rosemary Bom Conselho; Pereira, Romeu Rodrigues; Aguilar, Maria Teresa Paulino; Cardoso, Antônio Valadão

    2017-07-01

    Published studies that deal with the question of how the temperature of chair seats influences human activities are few, but the studies considering such a factor, a function of the type of material, could contribute to improvements in the design of chairs. This study evaluates seat temperatures of 8 types of chairs made of different materials. The parts of the furniture that people come into contact with, and the thermal response of the material to heating and cooling have been evaluated. Infrared thermography was used for this, as it is a non-contact technique that does not present any type of risk in the measurement of temperatures. Seats made of synthetic leather (leatherette), wood and polyester fabric were found to have the highest temperatures, and the plywood seat showed the lowest. The study has also revealed that thermography can contribute to studies of thermal comfort of chair seats in addition to determining the most suitable material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Subsurface thermal coagulation of tissues using near infrared lasers

    Science.gov (United States)

    Chang, Chun-Hung Jack

    Noninvasive laser therapy is currently limited primarily to cosmetic dermatological applications such as skin resurfacing, hair removal, tattoo removal and treatment of vascular birthmarks. In order to expand applications of noninvasive laser therapy, deeper optical penetration of laser radiation in tissue as well as more aggressive cooling of the tissue surface is necessary. The near-infrared laser wavelength of 1075 nm was found to be the optimal laser wavelength for creation of deep subsurface thermal lesions in liver tissue, ex vivo, with contact cooling, preserving a surface tissue layer of 2 mm. Monte Carlo light transport, heat transfer, and Arrhenius integral thermal damage simulations were conducted at this wavelength, showing good agreement between experiment and simulations. Building on the initial results, our goal is to develop new noninvasive laser therapies for application in urology, specifically for treatment of female stress urinary incontinence (SUI). Various laser balloon probes including side-firing and diffusing fibers were designed and tested for both transvaginal and transurethral approaches to treatment. The transvaginal approach showed the highest feasibility. To further increase optical penetration depth, various types and concentrations of optical clearing agents were also explored. Three cadavers studies were performed to investigate and demonstrate the feasibility of laser treatment for SUI.

  17. Infrared detection of moist areas in monumental buildings based on thermal inertia analysis

    Science.gov (United States)

    Grinzato, Ermanno G.; Mazzoldi, Andrea

    1991-03-01

    This paper presents a technique to detect the moisture conditions of walls supporting frescoes in order to detach its in case and to understand causes of the surface wetting. An important feature of the testing procedure is to be nondestructive and appropriate to analyze large surfaces as it is based on thermographic image processing. The goal is to classify the wall surface on the basis of its moisture condition. We choose the thermal inertia as the most suitable parameter for this purpose, because the heat capacity of a porous body increases to a great extent by varying its water content. The test works modifying the wall inner thermal conditions and detecting temperature variations of the fresco, in time and space domain. For this purpose a convective thermal flux is uniformly applied to the surface while an infrared camera views it. In such a way temperature gradients appear, whose maximum directional variation curves are used to segment the surface and the mean temperature time difference is used to label each area. The key point of the proposed procedure is the freedom from the knowledge of the wall composition and its thermal and hydrologic dynamic status, depending on weather history. Other topics as the environmental radiometric reflection and emission, the 'Narcissus effect' in thermograms mosaic composition and the perspective distortions are considered. Experimental results on a XVI century church at Padua, Italy) are presented.

  18. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near infrared range

    CERN Document Server

    Fisenko, Anatoliy I

    2016-01-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these ...

  19. The thermal emission of Centaurs and trans-Neptunian objects at millimeter wavelengths from ALMA observations

    Science.gov (United States)

    Lellouch, E.; Moreno, R.; Müller, T.; Fornasier, S.; Santos-Sanz, P.; Moullet, A.; Gurwell, M.; Stansberry, J.; Leiva, R.; Sicardy, B.; Butler, B.; Boissier, J.

    2017-12-01

    The sensitivity of ALMA makes it possible to detect thermal mm/submm emission from small and/or distant solar system bodies at the sub-mJy level. While the measured fluxes are primarily sensitive to the objects' diameters, deriving precise sizes is somewhat hampered by the uncertain effective emissivity at these wavelengths. Following recent work presenting ALMA data for four trans-Neptunian objects (TNOs) with satellites, we report on ALMA 233 GHz (1.29 mm) flux measurements of four Centaurs (2002 GZ32, Bienor, Chiron, Chariklo) and two other TNOs (Huya and Makemake), sampling a range of sizes, albedos, and compositions. These thermal fluxes are combined with previously published fluxes in the mid/far infrared in order to derive their relative emissivity at radio (mm/submm) wavelengths, using the Near Earth Asteroid Standard Model (NEATM) and thermophysical models. We reassess earlier thermal measurements of these and other objects - including Pluto/Charon and Varuna - exploring, in particular, effects due to non-spherical shape and varying apparent pole orientation whenever information is available, and show that these effects can be key for reconciling previous diameter determinations and correctly estimating the spectral emissivities. We also evaluate the possible contribution to thermal fluxes of established (Chariklo) or claimed (Chiron) ring systems. For Chariklo, the rings do not impact the diameter determinations by more than 5%; for Chiron, invoking a ring system does not help in improving the consistency between the numerous past size measurements. As a general conclusion, all the objects, except Makemake, have radio emissivities significantly lower than unity. Although the emissivity values show diversity, we do not find any significant trend with physical parameters such as diameter, composition, beaming factor, albedo, or color, but we suggest that the emissivity could be correlated with grain size. The mean relative radio emissivity is found to be 0

  20. Spatial distribution of far infrared emission in spiral galaxies I. Relation with radio continuum emission

    OpenAIRE

    Y. D. Mayya; Rengarajan, T. N.

    1997-01-01

    We use high resolution IRAS and 20 cm radio continuum (RC) images of a sample of 22 spiral galaxies to study the correlation between the far infra-red (FIR) and RC emissions within the galactic disks. A combination of exponential and gaussian profiles rather than a single exponential profile is found to be a better representation of the observed intensity profiles in the two bands. The gaussian component, which we show is not due to the effects of limited beam-resolution, contains more than 6...

  1. A Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies

    Science.gov (United States)

    Díaz-Santos, T.; Armus, L.; Charmandaris, V.; Lu, N.; Stierwalt, S.; Stacey, G.; Malhotra, S.; van der Werf, P. P.; Howell, J. H.; Privon, G. C.; Mazzarella, J. M.; Goldsmith, P. F.; Murphy, E. J.; Barcos-Muñoz, L.; Linden, S. T.; Inami, H.; Larson, K. L.; Evans, A. S.; Appleton, P.; Iwasawa, K.; Lord, S.; Sanders, D. B.; Surace, J. A.

    2017-09-01

    We present an analysis of {[{{O}}{{I}}]}63, [O III]88, [N II]122, and {[{{C}}{{II}}]}158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ˜240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey. We find pronounced declines (“deficits”) of line-to-FIR continuum emission for [N II]122, {[{{O}}{{I}}]}63, and {[{{C}}{{II}}]}158 as a function of FIR color and infrared luminosity surface density, {{{Σ }}}{IR}. The median electron density of the ionized gas in LIRGs, based on the [N II]122/[N II]205 ratio, is {n}{{e}} = 41 cm-3. We find that the dispersion in the {[{{C}}{{II}}]}158 deficit of LIRGs is attributed to a varying fractional contribution of photodissociation regions (PDRs) to the observed {[{{C}}{{II}}]}158 emission, f([{{C}} {{II}}{]}158{PDR}) = [{{C}} {{II}}{]}158{PDR}/{[{{C}}{{II}}]}158, which increases from ˜60% to ˜95% in the warmest LIRGs. The {[{{O}}{{I}}]}63/[{{C}} {{II}}{]}158{PDR} ratio is tightly correlated with the PDR gas kinetic temperature in sources where {[{{O}}{{I}}]}63 is not optically thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, {n}{{H}}, and intensity of the interstellar radiation field, G, in units of {G}0 and find G/{n}{{H}} ratios of ˜0.1-50 {G}0 cm3, with ULIRGs populating the upper end of the distribution. There is a relation between G/{n}{{H}} and {{{Σ }}}{IR}, showing a critical break at {{{Σ }}}{IR}* ≃ 5 × 1010 L ⊙ kpc-2. Below {{{Σ }}}{IR}* , G/{n}{{H}} remains constant, ≃0.32 {G}0 cm3, and variations in {{{Σ }}}{IR} are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above {{{Σ }}}{IR}* , G/{n}{{H}} increases rapidly with {{{Σ }}}{IR}, signaling a departure from the typical PDR conditions found in normal star-forming galaxies toward more intense/harder radiation fields and compact geometries typical of starbursting sources.

  2. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    Science.gov (United States)

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s(-1) with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  3. Analytical tools for thermal infrared engineerig: a thermal sensor simulation package

    Science.gov (United States)

    Jaggi, Sandeep

    1992-09-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration. To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering'--ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as SNR, NER, NETD etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters. In addition, ATTIRE can be used as a tutorial for understanding the distribution of thermal flux or solar irradiance over selected bandwidths of the spectrum. This spectrally distributed incident flux can then be analyzed as it propagates through the subsystems that constitute the entire sensor. ATTIRE provides a variety of functions ranging from plotting black-body curves for varying bandwidths and computing the integral flux, to performing transfer function analysis of the sensor system. The package runs from a menu- driven interface in a PC-DOS environment. Each sub-system of the sensor is represented by windows and icons. A user-friendly mouse-controlled point-and-click interface allows the user to simulate various aspects of a sensor. The package can simulate a theoretical sensor system. Trade-off studies can be easily done by changing the appropriate parameters and monitoring the effect of the system performance. The package can provide plots of system performance versus any system parameter. A parameter (such as the entrance aperture of the optics) could be varied and its effect on another parameter (e.g., NETD) can be plotted. A third parameter (e.g., the

  4. The synthesis and characterization of Al/Co3O4 magnetic composite pigments with low infrared emissivity and low lightness

    Science.gov (United States)

    Liu, Yunfeng; Xie, Jianliang; Luo, Mei; Jian, Shuai; Peng, Bo; Deng, Longjiang

    2017-06-01

    The main challenge of low infrared emissivity coatings based on aluminum flake lies in finding an efficient method to synthesize the composite pigment with low infrared emissivity and low lightness simultaneously. In this work, we overcome this constraint to some extent, synthesizing a novel Al/Co3O4 magnetic composite pigments with low infrared emissivity and low lightness by thermal cracking and hot flowing method. The results show that the covering area of Co3O4 on the aluminum flake can be tuned by the amount of CoCO3 adding in precursor and the reaction temperature of hot flowing, both of which pay a key factor on the VIS and IR spectral reflectance and magnetic properties. The magnetic Al/Co3O4 composite pigments with low lightness and low infrared emissivity can be obtained at 130 °C for 24 h in hot flowing liquid. The lightness L∗ can be decreased to 69.2, however the infrared emissivity (8-14 μm) is also low to 0.45. Compared with the single Al flakes, Al/Co3O4 magnetic composite pigments present stronger magnetic properties. Therefore, the Al/Co3O4 magnetic composite pigments have offered new choice for the pigments of low infrared emissivity coatings.

  5. Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission

    Science.gov (United States)

    Lee, Y.-J.; Talghader, J. J.

    2018-01-01

    For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships are developed for systems with any number of modes and couplings to an observing space. The results are shown to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime where the current theory of thermal emission fluctuations and background noise, which was developed decades ago for free-space or single-mode cavities, has no derived solutions.

  6. Mapping the Piute Mountains, CA with Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Hook, S. J.; Karlstrom, K. E.; Miller, C. F.; McCaffrey, K. J. W.

    1993-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired in 1990 over the PiuteMountains, California to evaluate their usefulness for lithologic mapping in an area ofmetamorphosed, structurally complex, igneous and sedimentary rocks. The data were calibrated,atmospherically corrected, and emissivity variations extracted from them. There was an excellentvisual correlation between the units revealed in the TIMS data and the recent mapping in the easternside of the area. It was also possible to correct, improve and extend the recent map. For example,several areas of amphibolite were identified in the TIMS data that had been incorrectly mapped asgranodioritic gneiss, and the presence of a swarm of mafic dikes, of which only a few had previouslybeen identified, was revealed...

  7. Applications of thermal infrared imagery for energy conservation and environmental surveys

    Science.gov (United States)

    Carney, J. R.; Vogel, T. C.; Howard, G. E., Jr.; Love, E. R.

    1977-01-01

    The survey procedures, developed during the winter and summer of 1976, employ color and color infrared aerial photography, thermal infrared imagery, and a handheld infrared imaging device. The resulting imagery was used to detect building heat losses, deteriorated insulation in built-up type building roofs, and defective underground steam lines. The handheld thermal infrared device, used in conjunction with the aerial thermal infrared imagery, provided a method for detecting and locating those roof areas that were underlain with wet insulation. In addition, the handheld infrared device was employed to conduct a survey of a U.S. Army installation's electrical distribution system under full operating loads. This survey proved to be cost effective procedure for detecting faulty electrical insulators and connections that if allowed to persist could have resulted in both safety hazards and loss in production.

  8. Experimental investigation of thermal loading of a horizontal thin plate using infrared camera

    Directory of Open Access Journals (Sweden)

    M.Y. Abdollahzadeh Jamalabadi

    2014-07-01

    Full Text Available This study reports the results of experimental investigations of the characteristics of thermal loading of a thin plate by discrete radiative heat sources. The carbon–steel thin plate is horizontally located above the heat sources. Temperature distribution of the plate is measured using an infrared camera. The effects of various parameters, such as the Rayleigh number, from 107 to 1011, the aspect ratio, from 0.05 to 0.2, the distance ratio, from 0.05 to 0.2, the number of heaters, from 1 to 24, the thickness ratio, from 0.003 to 0.005, and the thermal radiative emissivity, from 0.567 to 0.889 on the maximum temperature and the length of uniform temperature region on a thin plate are explored. The results indicate that the most effective parameters on the order of impact on the maximum temperature is Rayleigh number, the number of heat sources, the distance ratio, the aspect ratio, the surface emissivity, and the plate thickness ratio. Finally, the results demonstrated that there is an optimal distance ratio to maximize the region of uniform temperature on the plate.

  9. Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

    Directory of Open Access Journals (Sweden)

    Singhal Mayank

    2017-01-01

    Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

  10. Mineralogic information from a new airborne thermal infrared multispectral scanner

    Science.gov (United States)

    Kahle, A. B.; Goetz, A. F. H.

    1983-01-01

    The thermal IR multispectral scanner (TIMS) has been developed for airborne geologic surveys. The resststrahlen band between 8-11 microns is exhibited by interatomic stretching vibrations of Si and oxygen bound up in the crystal lattice of silicate rocks. The crystal structure of the component minerals influence the depth and position of the detected band. The TIMS has six channels, an 80 deg field of view, and a sensitivity sufficient to detect a noise equivalent change in spectral emissivity of 0.002-0.006. The six bands measured are 8.2-8.6, 8.6-9.0, 9.4-10.2, 10.2-11.2, and 11.2-12.2 microns, using HgCdTe detectors. The data are analyzed with respect to emissivity variations as a function of wavelength, using the component transformation technique called a decorrelation stretch, with spectral differences being displayed as different colors. Sample scenes from Death Valley and the Nevada Cuprite mining district are compared with visible and near-IR color composites of the same areas, revealing the superior distinctions that are available with the TIMS.

  11. Emission Line Metallicities from the Faint Infrared Grism Survey

    Science.gov (United States)

    Pharo, John; Christensen, Lise; Malhotra, Sangeeta; Rhoads, James; Smith, Mark; Harish, Santosh; yang, huan; FIGS Collaboration

    2018-01-01

    We present the redshifts and line identifications for 71 emission-line galaxies (ELGs) with z ~ 0.3 - 3 in the HUDF as part of the Faint Infrared Grism Survey (FIGS). We have calculated gas-phase metallicity for 39 ELGs using the R23 method, and for 14 ELGs for which we have [OIII]4363 measurements at S/N > 3, which enables the direct measurement of metallicity from the [OIII] electron temperature. The ELGs were selected by an automatic search of one-dimensional slitless spectroscopy from the WFC3 G102 grism on the Hubble Space Telescope. We matched the ELG candidate spectra with high-resolution optical spectra from MUSE, which allowed confirmation and identification of single-line FIGS detections and provided lower-wavelength line measurements. Once individual line fluxes were measured, we produced metallicities via the [OIII]4363 and R23 methods and analyzed the metallicity in relation to mass, star formation rate, and other properties.

  12. On-orbit Validation and Testing of Thermal Infrared Radiance Accuracy for Spaceborne CO2 Measurements

    Science.gov (United States)

    Gero, P.; Knuteson, R. O.; Best, F. A.; Adler, D. A.; Pettersen, C.; Revercomb, H. E.; Taylor, J. K.; Tobin, D.; Shiomi, K.

    2013-12-01

    Measurements of spectrally resolved thermal infrared (TIR) radiance contain signatures of carbon dioxide that can provide information about its distribution that is complementary to shortwave infrared measurements. In addition, simultaneous retrievals of temperature, water vapor, and other atmospheric constituents can be performed, which provide further insight into scientific questions about the carbon cycle. These measurements of spectral TIR radiance, however, must be made with demonstrable high-accuracy. The University of Wisconsin Space Science and Engineering Center, with support from the NASA Instrument Incubator Program (IIP), has developed the On-orbit Absolute Radiance Standard (OARS), an integrated subsystem that provides on-orbit end-to-end radiometric accuracy validation for infrared remote sensing instruments. The OARS constitutes a high-emissivity (>0.999) blackbody cavity, with an on-board emissivity monitor with uncertainty better than 0.06%, as well as embedded phase change cells that provide on-orbit absolute temperature determination with uncertainties better than 5 mK (k=3). The combined uncertainty of the subsystem is 0.045 K (k=3) in the effective brightness temperature of the blackbody cavity. The OARS was designed to meet the stringent requirements of climate benchmark missions, which require measurement uncertainties better than 0.1 K (k=3) in brightness temperature for the detection of spectral climate signatures. In this paper, we show the sensitivity of TIR radiation to perturbations in atmospheric carbon dioxide concentration, and we present a feasibility study for validating the measurements made by a TIR sensor using the OARS concept in order to make spaceborne measurements of CO2 with demonstrable on-orbit accuracy.

  13. A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features

    Science.gov (United States)

    Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.

    2012-01-01

    Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.

  14. Thermal Infrared Sensor (TIRS) Instrument Thermal Subsystem Design and Lessons Learned

    Science.gov (United States)

    Otero, Veronica; Mosier, Carol; Neuberger, David

    2013-01-01

    The Thermal Infrared Sensor (TIRS) is one of two instruments on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in February of 2013. The TIRS instrument was officially added to the mission later in the flow, which led to a highly aggressive schedule that became one of the main drivers during instrument development. The thermal subsystem design of the TIRS Sensor Unit is comprised of five thermal zones which range in temperature from less than 43 Kelvin to 330 Kelvin. Most zones are proportional heater controlled, and all are within a volume of 35 cu.ft. A two-stage cryocooler is used to cool the "cold stage" including three QWIP detectors to less than 43 Kelvin, and cool the "warm stage" to 105 Kelvin. The excess power dissipation from the cryocooler is rejected via ammonia transport heat pipes to a dedicated Cryocooler Radiator with embedded ammonia heat pipes. The cryogenic subsystem includes a series of shells used to radiatively and conductively isolate the cold stage from the warmer surroundings. The Optical System (telescope) is passively cooled to 180-190 Kelvin using a "thermal link" (comprised of a Flexible Conductive Thermal Strap and an APG Bar) which couples the telescope stage to a dedicated radiator with embedded ethane heat pipes. The Scene Select Mechanism, which is responsible for moving the Scene Select Mirror to three distinct positions (including Nadir, Space, and On-board Black Body Calibrator pointing), runs nominally at 278 Kelvin and is thermally isolated from the cryogenic thermal zones. The On-board Black Body Calibrator requires a dedicated radiator which allows for a temperature range of 260-330 Kelvin at the Source. The detectors are powered by the FPE Box, which is mounted to the nadir external surface of the composite honeycomb structure. There are two additional electronics boxes which are wet-mounted directly to the spacecraft shear panel, the Main Electronics Box and Cryocooler Electronics Box; thermal

  15. White light emission from Er2O3 nano-powder excited by infrared radiation

    Science.gov (United States)

    Tabanli, Sevcan; Eryurek, Gonul; Di Bartolo, Baldassare

    2017-07-01

    Phosphors of Er2O3 nano-crystalline powders were synthesized by the thermal decomposition method. The structural properties of the nano-powders were investigated with XRD and HRTEM measurements. The cubic phase with a = 10.540 Å was the only phase observed. The average crystalline sizes and the widths of the grain size distribution curves were determined to be 27.2, 18.7 and 9.7 nm, respectively. The spectroscopic properties of the Er2O3 nano-powder were studied by measuring the luminescence, decay and rise patterns under 808 and 975 nm diode laser excitations. A peculiar effect of the pressure was observed since an optically active ion (Er) is part of the complex and not a dopant. A broad band of the white light emission combined with blue, green and red up-conversion emission bands of Er3+ ions were observed at 0.03 mbar pressure under both excitation wavelengths. Only, an intense broad band white light emission was observed from these nanocrystals at atmospheric pressure. Rising patterns show that the white light intensity reaches its maximum value more rapidly under 975 nm excitation although it decays slower than that of 808 nm excitation. The color quality parameters such as the color coordinate (CRI), correlated color temperature and the color rendering index were found to vary with both the excitation wavelength and the ambient pressure indicating that these nanocrystals could be considered good white light emitting source under the infrared excitations.

  16. Estimating Clothing Thermal Insulation Using an Infrared Camera

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Lee

    2016-03-01

    Full Text Available In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively.

  17. A Thermal Infrared Radiation Parameterization for Atmospheric Studies

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)

    2001-01-01

    This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.

  18. Estimating Clothing Thermal Insulation Using an Infrared Camera

    Science.gov (United States)

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively. PMID:27005625

  19. Estimating Clothing Thermal Insulation Using an Infrared Camera.

    Science.gov (United States)

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-03-09

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing's temperature is more accurate within 3% error and lower clothing's temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively.

  20. Thermal consequences of colour and near-infrared reflectance.

    Science.gov (United States)

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  1. Using the thermal infrared multispectral scanner (TIMS) to estimate surface thermal responses

    Science.gov (United States)

    Luvall, J. C.; Holbo, H. R.

    1987-01-01

    A series of measurements was conducted over the H.J. Andrews, Oregon, experimental coniferous forest, using airborne thermal infrared multispectral scanner (TIMS). Flight lines overlapped, with a 28-min time difference between flight lines. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture were used for atmospheric radiance corrections of the TIMS data. Surface temperature differences over time between flight lines were used to develop thermal response numbers (TRNs) which characterized the thermal response (in KJ/sq m/C, where K is the measured incoming solar radiation) of the different surface types. The surface types included a mature forest (canopy dominated by dense crowns of Pseudosuga menziesii, with a secondary canopy of dense Tsuga heterophylla, and also a tall shrub layer of Acer circinatum) and a two-year-old clear-cut. The temperature distribution, within TIMS thermal images was found to reflect the surface type examined. The clear-cut surface had the lowest TRN, while mature Douglas fir the highest.

  2. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration

    Science.gov (United States)

    Barsi, Julia A.; Shott, John R.; Raqueno, Nina G.; Markham, Brian L.; Radocinski, Robert G.

    2014-01-01

    Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq m·sr·micrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq m·sr·micrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have

  3. Landsat-8 Thermal Infrared Sensor (TIRS Vicarious Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Julia A. Barsi

    2014-11-01

    Full Text Available Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS, a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively. They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI, also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL and the Rochester Institute of Technology (RIT, both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 and 1.67 K at 300 K. Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed

  4. FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, Avi M.; Mumma, Michael J.; Villanueva, Geronimo [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bast, Jeanette; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Blake, Geoffrey A. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Salyk, Colette, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-10

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C{sub 2}H{sub 2} in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of {approx}500 at 3 {mu}m, revealing multiple emission features of H{sub 2}O, OH, HCN, and C{sub 2}H{sub 2}. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH{sub 4} and NH{sub 3}. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 Degree-Sign , suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).

  5. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Directory of Open Access Journals (Sweden)

    Frize Monique

    2004-06-01

    Full Text Available Abstract Background The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. Methods This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. Results The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure

  6. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Science.gov (United States)

    Herry, Christophe L; Frize, Monique

    2004-01-01

    Background The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. Methods This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. Results The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs) delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure of distance between

  7. Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures

    Science.gov (United States)

    Sakr, Enas; Bermel, Peter

    2017-02-01

    Simultaneously controlling both the spectral and angular emission of thermal photons can qualitatively change the nature of thermal radiation, and offers a great potential to improve a broad range of applications, including infrared light sources and thermophotovoltaic (TPV) conversion of waste heat to electricity. For TPV in particular, frequency-selective emission is necessary for spectral matching with a photovoltaic converter, while directional emission is needed to maximize the fraction of emission reaching the receiver at large separation distances. This can allow the photovoltaics to be moved outside vacuum encapsulation. In this work, we demonstrate both directionally and spectrally-selective thermal emission for p-polarization, using a combination of an epsilon-near-zero (ENZ) thin film backed by a metal reflector, a high contrast grating, and an omnidirectional mirror. Gallium-doped zinc oxide is selected as an ENZ material, with cross-over frequency in the near-infrared. The proposed structure relies on coupling guided modes (instead of plasmonic modes) to the ENZ thin film using the high contrast grating. The angular width is thus controlled by the choice of grating period. Other off-directional modes are then filtered out using the omnidirectional mirror, thus enhancing frequency selectivity. Our emitter design maintains both a high view factor and high frequency selectivity, leading to a factor of 8.85 enhancement over a typical blackbody emitter, through a combination of a 22.26% increase in view factor and a 6.88x enhancement in frequency selectivity. This calculation assumes a PV converter five widths away from the same width emitter in 2D at 1573 K.

  8. Calcium pyroxenes at Mercurian surface temperatures: investigation of in-situ emissivity spectra and thermal expansion

    Science.gov (United States)

    Ferrari, S.; Nestola, F.; Helbert, J.; Maturilli, A.; D'Amore, M.; Alvaro, M.; Domeneghetti, M.; Massironi, M.; Hiesinger, H.

    2013-12-01

    The European Space Agency and Japan Aerospace Agency mission to Mercury, named BepiColombo, will carry on board the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) that will be able to provide surface Thermal Infra-Red (TIR) emissivity spectra from 7 to 14 μm. This range of wavelengths is very useful to identify the fine-scale structural properties of several silicates. For mineral families as pyroxenes, the emissivity peak positions are good indicators of the composition. A complication in the interpretation of MERTIS data could arise from the extreme daily surface temperature range of Mercury (70 to 725 K) that significantly affects the crystal structure and density of minerals and consequently should affect the TIR spectral signature of each single mineral present on the surface of the planet. In preparation for the MERTIS data analysis, we are extensively investigating at high temperatures conditions several mineral phases potentially detectable on the surface of Mercury. Two C2/c augitic pyroxenes, with constant calcium content and very different magnesium to iron ratio, were studied by in situ high-temperature thermal infrared spectroscopy (up to 750 K) and in situ high-temperature single-crystal X-ray diffraction (up to 770 K). The emissivity spectra of the two samples show similar band center shifts of the main three bands toward lower wavenumbers with increasing temperature. Our results indicate that the center position of bands 1 and 2 is strictly dependent on temperature, whereas the center position of band 3 is a strong function of the composition regardless the temperature. These data suggest that MERTIS spectra will be able to provide indications of C2/c augitic pyroxene with different magnesium contents and will allow a correct interpretation independently on the spectra acquisition temperature.

  9. Investigation of forest canopy temperatures recorded by the thermal infrared multispectral scanner at H. J. Andrews Experimental Forest

    Science.gov (United States)

    Sader, Steven A.

    1986-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were collected over the H. J. Andrews Experimental Forest in Western Oregon on July 29, 1983 at approximately 1:30 p.m., Pacific Standard Time. The relation of changes in canopy temperature to green leaf biomass levels in reforested clearcuts and old-growth forest was investigated. A digital data base was generated in order to isolate that portion of the thermal emission that could be attributed to surface properties other than the vegetation biomass component. The TIMS appears to be capable of detecting subtle differences in ERT as related to canopy closure and green lead biomass, however calibration techniques are needed to correct for emissivity and atmospheric effects.

  10. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Directory of Open Access Journals (Sweden)

    Ran Liu

    2015-07-01

    Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  11. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  12. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Science.gov (United States)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  13. Fourier domain target transformation analysis in the thermal infrared

    Science.gov (United States)

    Anderson, D. L.

    1993-01-01

    Remote sensing uses of principal component analysis (PCA) of multispectral images include band selection and optimal color selection for display of information content. PCA has also been used for quantitative determination of mineral types and abundances given end member spectra. The preliminary results of the investigation of target transformation PCA (TTPCA) in the fourier domain to both identify end member spectra in an unknown spectrum, and to then calculate the relative concentrations of these selected end members are presented. Identification of endmember spectra in an unknown sample has previously been performed through bandmatching, expert systems, and binary classifiers. Both bandmatching and expert system techniques require the analyst to select bands or combinations of bands unique to each endmember. Thermal infrared mineral spectra have broad spectral features which vary subtly with composition. This makes identification of unique features difficult. Alternatively, whole spectra can be used in the classification process, in which case there is not need for an expert to identify unique spectra. Use of binary classifiers on whole spectra to identify endmember components has met with some success. These techniques can be used, along with a least squares fit approach on the endmembers identified, to derive compositional information. An alternative to the approach outlined above usese target transformation in conjunction with PCA to both identify and quantify the composition of unknown spectra. Preprocessing of the library and unknown spectra into the fourier domain, and using only a specific number of the components, allows for significant data volume reduction while maintaining a linear relationship in a Beer's Law sense. The approach taken here is to iteratively calculate concentrations, reducing the number of endmember components until only non-negative concentrations remain.

  14. VO1/VO2 MARS INFRARED THERMAL MAPPER RESAMPLED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the Infrared Thermal Mapping (IRTM) data of Mars acquired by the Viking orbiters. The database contains the time, geometry, and radiative...

  15. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  16. In-Flight Calibration of the Thermal Infrared Sensor (TIRS) on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K.; Reuter, D.; Montanaro, M.; Hook, S.; Markham, B.

    2011-01-01

    Describe in-flight calibration for the Thermal Infrared Sensor (TIRS) (1) Overview of TIRS (2) On-orbit radiometric calibration (2a) Onboard calibrator (2b) Terrestrial sites (3) On-orbit geometric and spatial calibration

  17. Phase Retrieval on Undersampled Data from the Thermal Infrared Sensor (TIRS)

    Science.gov (United States)

    Bolcar, Matthew R.; Mentzell, Eric

    2011-01-01

    Phase retrieval was applied to under-sampled data from a thermal infrared imaging system to estimate defocus across the field of view (FOV). We compare phase retrieval estimated values to those obtained using an independent technique.

  18. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    Science.gov (United States)

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced (p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  19. Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    Science.gov (United States)

    Palluconi, F. D.; Meeks, G. R.

    1985-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction.

  20. Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: a case study

    Science.gov (United States)

    Effective and efficient methods are needed to map agricultural subsurface drainage systems. Visible (VIS), near infrared (NIR), and/or thermal infrared (TIR) imagery obtained by unmanned aircraft systems (UAS) may provide a means for determining drainage pipe locations. Preliminary UAS surveys wit...

  1. Comparative study of the thermal performance and emission levels ...

    African Journals Online (AJOL)

    Comparative study of the thermal performance and emission levels of an existing and modified coal/biomass burning stove. ... The stove was charged with jive (5) selected wood species and a number of parameters, such as temperature projile amI flue gas composition were measured. Experimental evidence points to an ...

  2. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter

    2010-11-01

    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  3. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner

    Science.gov (United States)

    Ondrusek, Jaime; Christensen, Philip R.; Fink, Jonathan H.

    1993-01-01

    To investigate the effect of vesicularity on TIMS (Thermal Infrared Multispectral Scanner) imagery independent of chemical variations, we studied a large rhyolitic flow of uniform composition but textural heterogeneity. The imagery was recalibrated so that the digital number values for a lake in the scene matched a calculated ideal spectrum for water. TIMS spectra for the lava show useful differences in coarsely and finely vesicular pumice data, particularly in TIMS bands 3 and 4. Images generated by ratioing these bands accurately map out those areas known from field studies to be coarsely vesicular pumice. These texture-related emissivity variations are probably due to the larger vesicles being relatively deeper and separated by smaller septa leaving less smooth glass available to give the characteristic emission of the lava. In studies of inaccessible lava flows (as on Mars) areas of coarsely vesicular pumice must be identified and avoided before chemical variations can be interpreted. Remotely determined distributions of vesicular and glassy textures can also be related to the volatile contents and potential hazards associated with the emplacement of silicic lava flows on Earth.

  4. MODELING OF THE ZODIACAL EMISSION FOR THE AKARI/IRC MID-INFRARED ALL-SKY DIFFUSE MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi [Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Ootsubo, Takafumi [Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902 (Japan); Pyo, Jeonghyun [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Onaka, Takashi, E-mail: kondo@u.phys.nagoya-u.ac.jp, E-mail: ishihara@u.phys.nagoya-u.ac.jp [Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-03-15

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  5. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Aaron M.; Finkbeiner, Douglas P., E-mail: ameisner@fas.harvard.edu, E-mail: dfinkbeiner@cfa.harvard.edu [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States)

    2015-01-10

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  6. Agricultural Applications and Requirements for Thermal Infrared Scanners

    Science.gov (United States)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  7. MER2 MARS MINIATURE THERMAL EMISSION SPECTROMETER EMR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains Mars Exploration Rover Miniature Thermal Emission Spectrometer (Mini-TES) Emissivity Reduced Data Record (EMR) products and ancillary files....

  8. Reflection and thermal emission spectra of Earth-like extrasolar planets affected by clouds

    Science.gov (United States)

    Kitzmann, Daniel; Patzer, A. B. C.; von Paris, Philip; Rauer, Heike

    Clouds can have an important impact on the radiative transfer in planetary atmospheres by absorption and scattering of the incident stellar radiation and the thermal radiation from the surface. Consequently, the planetary emission and reflection spectra are strongly affected by the presence of clouds, resulting in e.g. the concealing of thermal surface emissions or dampening of molecular absorption bands in the infrared. To study these effects, a parametrised cloud description, accounting for two different types of clouds (low-level water and high-level ice clouds) and their partial overlap has been developed. The multi-layered cloud model is based on observations in the Earth's atmosphere and has been coupled with a one-dimensional radiative-convective steady state climate model to obtain low-resolution spectra of Earth-like extrasolar planets. In this contribution the impact of multi-layered on low-resolution thermal emission and reflec-tion spectra is presented for Earth-like planets orbiting different types of central stars, with special emphasis on so-called biomarker signatures. The influence of clouds on the ability to derive information about the planetary surface temperatures from low-resolution spectra is also discussed.

  9. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  10. Feasibility and Accuracy of Thermophysical Estimation of Asteroid 162173 Ryugu (1999 JU3) from the Hayabusa2 Thermal Infrared Imager

    Science.gov (United States)

    Takita, Jun; Senshu, Hiroki; Tanaka, Satoshi

    2017-07-01

    We present the results of a numerical study to prepare for the remote sensing of asteroid 162173 Ryugu (1999 JU3) using the Hayabusa2 thermal infrared imager (TIR). We simulated the thermal characteristics of the asteroid with a thermophysical model (TPM) using an ideal body with a smooth and spherical surface, and investigated its feasibility to determine the thermophysical properties of the asteroid under two possible spin vectors; (λ_{ecl}, β_{ecl}) = (73°, -62°) and (331°, 20°). Each of the simulated snapshots taken at various local times during the 1.5-year proximity phase was analyzed to estimate uncertainties of the diurnal thermal phase delay to infer the thermal inertia of Ryugu. The temperature in a pixel was simulated based on the specification of the imager and the observing geometry. Moreover, we carried out a regression analysis to estimate albedo and thermal emissivity from the time variation of surface temperature. We also investigated the feasibility of determining thermal phase delay in a first attempt using realistic rough surfaces. We found that precise determination of the thermal phase delay would be difficult in the (331°, 20°) spin type unless the surface was nearly smooth. In contrast, the thermal phase delay is likely to be observable even if the surface topography is moderately rough in the other spin type. From the smooth-surface model, we obtained a less than 20% error of thermal inertia on observation opportunities under the likely range of thermal inertia ≤ 1000 J m^{-2} s^{-1/2} K^{-1}. The error of thermal inertia exceeded 50% under a realistic surface with roughness.

  11. Producing Mosaiced Infrared Data on Natural Hazards for Real-time Emergency Management using UAS and Thermal Infrared Cameras

    Science.gov (United States)

    Hatfield, M. C.; Webley, P. W.; Saiet, E., II

    2015-12-01

    Unmanned aerial systems (UAS) provide a unique capability for emergency management and real-time hazard assessment with access to hazardous environments that maybe off limits for manned aircraft while reducing the risk to personnel and loss of ground assets. When dealing with hazards, such as forest fires and volcanic eruptions, there is a need to assess the location of the fire/flow front and where best to assign ground personnel to reduce the risk to local populations and infrastructure. Thermal infrared cameras provide the ideal tool to detect subtle changes in the developing fire/flow front while providing data 24/7. There are limits to the detecting capabilities of these cameras given the wavelengths used and image resolution available. Given the large thermal contrast between the hot flow front and surrounding landscape then the data can be used to map out the location and changes seen as the front of the flow/fire advances. To map the complete hazard then either the UAS has to be flown at an altitude to capture the event in one image or the data has to be mosaiced together. Higher altitudes lead to coarser resolution imagery and therefore we will show how thermal infrared data can be mosaiced to provide the highest spatial resolution map of the hazard. We will present results using different UAS and thermal cameras including adding neutral density filters to detect hotter thermal targets. Timely generation of these mosaiced maps in a real-time environment is critical for those assessing the ongoing event and we will show how these maps can be generated quickly with the necessary spatial and thermal accuracy while discussing the requirements needed to generate thermal infrared maps of the hazardous events that are both useful for quick real-time assessment and also for further investigation in research projects.

  12. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences.

    Science.gov (United States)

    Cardone, Daniela; Merla, Arcangelo

    2017-05-05

    Thermal infrared imaging has been proposed, and is now used, as a tool for the non-contact and non-invasive computational assessment of human autonomic nervous activity and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal detectors and the development of computational models of the autonomic control of the facial cutaneous temperature, several autonomic variables can be computed through thermal infrared imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor and stress responses. In fact, all of these parameters impact on the control of the cutaneous temperature. The physiological information obtained through this approach, could then be used to infer about a variety of psychophysiological or emotional states, as proved by the increasing number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper presents a review of the principal achievements of thermal infrared imaging in computational psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired monitoring of psychophysiological activity and affective states. It also presents a summary on the modern, up-to-date infrared sensors technology.

  13. The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization

    Science.gov (United States)

    The Thermal InfraRed Sensor (TIRS) on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single channel sensors, TIRS uses two channels to cover the 10-12 micron band. It is also a pushbroom imager; a departure from the previous whiskbroom approach. Nevertheles...

  14. Infrared radiative properties and thermal modeling of ceramic-embedded textile fabrics.

    Science.gov (United States)

    Anderson, David M; Fessler, John R; Pooley, Matthew A; Seidel, Scott; Hamblin, Michael R; Beckham, Haskell W; Brennan, James F

    2017-03-01

    The infrared optical properties of textiles are of great importance in numerous applications, including infrared therapy and body thermoregulation. Tuning the spectral response of fabrics by the engineering of composite textile materials can produce fabrics targeted for use in these applications. We present spectroscopic data for engineered polyester fabric containing varying amounts of ceramic microparticles within the fiber core and report a spectrally-dependent shift in infrared reflectance, transmittance and absorptance. A thermal transport model is subsequently implemented to study the effect of these modified properties on the spectral distribution of infrared radiation incident upon the wearer of a garment constructed of this fabric.

  15. Thermal infrared spectroscopy of experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of Mars

    Science.gov (United States)

    Johnson, J. R.; Horz, F.; Lucey, P.G.; Christensen, P.R.

    2002-01-01

    The feldspar and pyroxene mineralogies on Mars revealed by the Thermal Emission Spectrometer (TES) on Mars Global Surveyor likely record a variety of shock effects, as suggested by petrologic analyses of the Martian meteorites and the abundance of impact craters on the planet's surface. To study the effects of shock pressures on thermal infrared spectra of these minerals, we performed shock recovery experiments on orthopyroxenite and anorthosite samples from the Stillwater Complex (Montana) over peak pressures from 17 to 63 GPa. We acquired emissivity and hemispherical reflectance spectra (350-1400 cm-1; ???7-29 ??m) of both coherent chips and fine-grained powders of shocked and unshocked samples. These spectra are more directly comparable to remotely sensed data of Mars (e.g., TES) than previously acquired absorption or transmission spectra of shocked minerals. The spectra of experimentally shocked feldspar show systematic changes with increasing pressure due to depolymerization of the silica tetrahedra. For the spectra of chips, this includes the disappearance of small bands in the 500-650 cm-1 region and a strong band at 1115 cm-1, and changes in positions of a strong band near 940 cm-1 and the Christiansen feature near 1250 cm-1. Spectra of the shocked powders show the gradual disappearance of a transparency feature near 830 cm-1. Fewer changes are observed in the pyroxene spectra at pressures as high as 63 GPa. Spectra of experimentally shocked minerals will help identify more precisely the mineralogy of rocks and soils not only from TES but also from Mars instruments such as miniTES and THEMIS.

  16. Research of Registration Approaches of Thermal Infrared Images and Intensity Images of Point Cloud

    Science.gov (United States)

    Liu, L.; Wei, Z.; Liu, X.; Yang, Z.

    2017-09-01

    In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner) point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  17. RESEARCH OF REGISTRATION APPROACHES OF THERMAL INFRARED IMAGES AND INTENSITY IMAGES OF POINT CLOUD

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-09-01

    Full Text Available In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  18. The enhanced and broadband near-infrared emission in Pr3+/Nd3+ co-doped tellurite glass

    Science.gov (United States)

    Zhou, Zizhong; Zhou, Yaxun; Cheng, Pan; Zhou, Minghan; Su, Xiue; Li, Jun

    2017-11-01

    This paper reports an enhanced and broadband near-infrared fluorescence emission in the Pr3+/Nd3+ co-doped tellurite glass, which was prepared using melt-quenching technique. Under the excitation of 488 nm laser diode (LD), three near-infrared emission bands at around 0.9, 1.04 and 1.30 μm from 3P1,0 → 1G4, 1G4→3H4 and 1G4→3H5 radiative transitions respectively were observed in the Pr3+ single-doped glass, and the fluorescence intensities increased further with the introduction of Nd3+ ions, which is mainly attributed to the energy transfers from Nd3+ to Pr3+ emissions. Meanwhile, the spectral overlapping of Pr3+:1G4→3H4 and Nd3+:4F3/2 → 4I11/2 radiative transitions resulted in a broadband emission ranging from 1000 to 1100 nm, whose full-width at half-maximum (FWHM) reached about 66 nm. Additionally, the spectroscopic properties of Nd3+ and Pr3+ ions were analyzed using Judd-Ofelt theory and the thermal stability property of prepared glass was characterized by the differential scanning calorimeter (DSC) measurement, and larger than 134 °C for the difference ΔT(=Tx -Tg) was observed, which indicates its feasibility for later fiber drawing. The enhanced fluorescence and broadband emission indicate that Pr3+/Nd3+ co-doped tellurite glass can be applied in the near-infrared band tunable lasers and broadband optical amplifiers.

  19. Thermal Emissivity and Cigarette Coal Temperature During Smolder

    Directory of Open Access Journals (Sweden)

    Lyman CS

    2014-12-01

    Full Text Available Coal temperatures affect the burn properties of cigarettes. Thermal imaging was used to determine the average maximum surface coal temperatures during smolder of cigarettes of different tobacco types. The thermal imaging camera was calibrated against a reference blackbody. An emissivity correction was necessary since the set point temperatures of the reference blackbody did not correspond to the measured temperatures of the reference blackbody. A 0.87 camera emissivity was applied to provide accurate coal temperatures at a corrected emissivity of approximately 1. The average maximum surface coal temperatures during smolder of unfiltered single-tobacco-type cigarettes and a commercial blend cigarette were determined (with the camera lens focused parallel to the cigarette, and no discernible differences among them were found. The calculated average maximum surface coal temperature during smolder for all cigarettes was 584 AA± 15 °C. During smolder, thermocouples were used to measure the temperature of the gas phase (along the central axis of coal, and the thermal imaging camera was used to measure the temperature of the solid phase of the coal's surface. Using thermocouples, the peak coal temperatures in the center of the coal during smolder for three filtered single-tobacco-type cigarettes were 736-744 °C. Peak coal temperatures, measured by thermal imaging, on the surface of the coal (with the camera lens focused coaxially with the coal and the ash removed for the same three single-tobacco-type cigarettes had a range of 721-748 °C. There was good correspondence between the two techniques. These results confirm that during smolder the gas-phase temperature inside the coal (as measured with the thermocouple and the solid-phase temperatures beneath the ash (as measured with the camera are in near thermal equilibrium. With proper calibration, a thermal imaging system is a good alternative to thermocouples for measuring cigarette coal

  20. Control of Several Emissions during Olive Pomace Thermal Degradation

    Directory of Open Access Journals (Sweden)

    Teresa Miranda

    2014-10-01

    Full Text Available Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min−1. The following species were analysed: aromatic compounds (benzene and toluene, sulphur emissions (sulphur dioxide, 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor.

  1. Analysis on energy transfer process of Ho3+ doped fluoroaluminate glass sensitized by Yb3+ for mid-infrared 2.85 μm emission

    Science.gov (United States)

    Zhou, Beier; Wei, Tao; Cai, Muzhi; Tian, Ying; Zhou, Jiajia; Deng, Degang; Xu, Shiqing; Zhang, Junjie

    2014-12-01

    This work reports the mid-infrared emission properties around 2.85 μm in a Yb3+/Ho3+ codoped fluoroaluminate glass. This fluoroaluminate glass shows a good thermal stability and high transmittance around 3 μm. The mid-infrared emission characteristics and energy transfer mechanism upon the excitation of the conventional 980 nm laser diode have been investigated. The prepared glass possesses higher spontaneous transition probability (31.77 s-1) along with the larger calculated emission cross section (1.91×10-20 cm2) corresponding to the laser transition of Ho3+:5I6→5I7. Besides, the upconversion, 1.2 μm and 2 μm fluorescence spectra were measured to understand mid-infrared emission behavior together with decay curves of Ho3+:5I6 level. Moreover, energy transfer microparameters between Yb3+ and Ho3+ were calculated and discussed based on Dexter's model. Hence, the advantageous spectroscopic characteristics of Yb3+/Ho3+ codoped fluoroaluminate glass as well as the good thermal property indicate that this kind of glass is an attractive host for developing mid-infrared solid state laser.

  2. New Opportunities in Mid-Infrared Emission Control

    Directory of Open Access Journals (Sweden)

    Peter Geiser

    2015-09-01

    Full Text Available Tunable laser absorption spectroscopy (TLAS has been well accepted as a preferred measurement technique for many industrial applications in recent years, especially for in situ applications. Previously, mainly near-infrared lasers have been used in TLAS sensors. The advent of compact mid-infrared light sources, like quantum cascade lasers and interband cascade lasers, has made it possible to detect gases with better sensitivity by utilizing fundamental absorption bands and to measure species that do not have any absorption lines in the near-infrared spectral region. This technological advancement has allowed developing new sensors for gases, such as nitric oxide and sulfur dioxide, for industrial applications. Detection limits of better than 1 ppm·m for nitric oxide and better than 10 ppm·m for sulfur dioxide are demonstrated in field experiments.

  3. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  4. Huanglongbing (Citrus Greening Detection Using Visible, Near Infrared and Thermal Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Reza Ehsani

    2013-02-01

    Full Text Available This study demonstrates the applicability of visible-near infrared and thermal imaging for detection of Huanglongbing (HLB disease in citrus trees. Visible-near infrared (440–900 nm and thermal infrared spectral reflectance data were collected from individual healthy and HLB-infected trees. Data analysis revealed that the average reflectance values of the healthy trees in the visible region were lower than those in the near infrared region, while the opposite was the case for HLB-infected trees. Moreover, 560 nm, 710 nm, and thermal band showed maximum class separability between healthy and HLB-infected groups among the evaluated visible-infrared bands. Similarly, analysis of several vegetation indices indicated that the normalized difference vegetation index (NDVI, Vogelmann red-edge index (VOG and modified red-edge simple ratio (mSR demonstrated good class separability between the two groups. Classification studies using average spectral reflectance values from the visible, near infrared, and thermal bands (13 spectral features as input features indicated that an average overall classification accuracy of about 87%, with 89% specificity and 85% sensitivity could be achieved with classification models such as support vector machine for trees with symptomatic leaves.

  5. Radiometric comparison of Mars Climate Sounder and Thermal Emission spectrometer measurements

    Science.gov (United States)

    Bandfield, Joshua L.; Wolff, Michael J.; Smith, Michael D.; Schofield, John T.; McCleese, Daniel J.

    2013-07-01

    Mars Climate Sounder (MCS) nadir oriented thermal infrared and solar channel measurements are compared with Thermal Emission Spectrometer (TES) measurements across multiple Mars years. Thermal infrared measurements were compared by convolving the TES data using the MCS spectral band passes. The MCS solar channel measurements were calibrated using Compact Reconnaissance Imaging Spectrometer for Mars observations to provide the proper gain factor (3.09 × 10-3 W sr-1 m-2 μm-1). The comparisons of the datasets show that day and night surface and atmospheric temperatures are within 3 K over the course of 5 martian years, after accounting for the local time differences. Any potential interannual variations in global average temperature are masked by calibration and modeling uncertainties. Previous work attributed apparent interannual global surface and atmospheric temperature variations to major dust storm activity; however, this variation has since been attributed to a calibration error in the TES dataset that has been corrected. MCS derived Lambert albedos are slightly higher than TES measurements acquired over the same season and locations. Most of this difference can be attributed to the spectral response functions of MCS and TES. Consistent with previous work, global albedo is highly variable (˜6%) and this variability must be taken into account when determining long term global trends. Vertical aerosol distributions were also derived from the calibrated MCS visible channel limb measurements, demonstrating the utility of the MCS visible channel data for monitoring of aerosols.

  6. [Monitoring method of underground coal fire based on night thermal infrared remote sensing technology].

    Science.gov (United States)

    Jiang, Wei-Guo; Wu, Jian-Jun; Gu, Lei; Yang, Bo; Chen, Qiang; Liu, Xiao-Chen

    2011-02-01

    Land surface temperature is higher in the zones of underground coal fire than in their surroundings areas. It is possible to monitor the coal fire and the heat anomalies using the remote sensing technology of thermal infrared. By taking the coal fire of Wuda in Inner Mongolia Autonomous Region as an example, the monitoring methods of underground coal fire were explored based on different seasons night ASTER thermal infrared images. By employing the TES-ADE algorithm and threshold segmentation method, land surface temperature was retrieved and coal fire areas were extracted. Finally the seasonal variation of surface temperature, the surface temperature differences between night and day, and the change and distribution of coal fire area were analyzed. The results showed that (1) it is effective to retrieve land surface temperature and to avoid the interference of sand, bare land and building based on the remote sensing of thermal infrared at night; (2) it is best time to extract the coal fire areas based on the winter night images of thermal infrared; (3) it is effective to monitor the change and distribution of coal fire areas based on the winter night images of thermal infrared.

  7. Infrared emissivity studies of melting thresholds and structural changes of aluminium and copper samples heated by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L; Riou, O; Stenz, C; Tikhonchuk, V T [Centre Lasers Intenses et Applications, UMR 5107 CNRS-Universite Bordeaux 1-CEA, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)

    2006-12-21

    We propose a new method for studies of laser-induced heating and melting of metallic foils. The method is based on time-integrated measurements of the surface infrared thermal emission. The experimental data are compared with a model where two equations describe the evolution of electron and lattice temperatures and the emissivity is found from the Drude model with the temperature-dependent electron collision frequency. A good agreement between the experimental data and the model is found for the aluminium samples. It is less satisfactory for the copper, but a signature of phase melting can also be pointed out. A multi-pulse laser irradiation study indicates significant changes in the surface emittance, related to preheating, oxidation and/or chemical modification of the copper sample. The proposed method is relatively simple and complementary to the pump-probe technique.

  8. Volcanic SO2 and SiF4 visualization and their ratio monitored using 2-D thermal emission spectroscopy

    Science.gov (United States)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2011-09-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a save distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume, animation and determination of its propagation speed. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 which was confirmed from the strong ash emission registered around 01:00 a.m. LST (Local Standard Time) and a pronounced SO2 cloud was registered. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential imagees is used to calculate the emission rates at different distances from the crater.

  9. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  10. Novel use of infrared thermal imaging to predict arteriovenous fistula patency and maturation.

    Science.gov (United States)

    Al Shakarchi, Julien; Hodson, James; Field, Melanie; Inston, Nicholas

    2017-07-14

    The arteriovenous fistula (AVF) is the preferred method of long-term haemodialysis. However, it has been shown to have a substantial rate of maturation failure. The formation of an AVF creates haemodynamic changes to blood flow in the arm with diversion of blood away from the distal circulation into the low pressure venous system, in turn, leading to thermal changes distally. In this study, we aimed to assess the novel use of infrared thermal imaging as a predictor of arteriovenous maturation. A prospective cohort study was conducted on 100 consecutive patients who had AVF formation from December 2015 to June 2016. Infrared thermal imaging was undertaken pre- and post-operatively on the day of surgery to assess thermal changes to the arms and to assess them as predictors of clinical patency and functional maturation. For clinical patency, infrared thermal imaging was found to have a positive predictive value of 88% and a negative predictive value of 86%. For functional maturation, it was found to have a positive predictive value of 84%, a negative predictive value of 95%. In addition, it was shown to have superiority to the commonly used intra-operative predictor of thrill as well as other independent pre-operative patient factors. Infrared thermal imaging has been found to be a very useful tool in accurately predicting fistula patency and maturation.

  11. Effect of gallium environment on infrared emission in Er3+-doped gallium– antimony– sulfur glasses

    Science.gov (United States)

    Jiao, Qing; Li, Ge; Li, Lini; Lin, Changgui; Wang, Guoxiang; Liu, Zijun; Dai, Shixun; Xu, Tiefeng; Zhang, Qinyuan

    2017-01-01

    Gallium-based Ga–Sb–S sulfide glasses was elaborated and studied. A relationship between the structure, composition, and optical properties of the glass has been established. The effects of the introduction of Ga on the structure using infrared and Raman spectroscopies and on the Er3+-doped IR emission have been discussed. The results show that incorporation of Ga induced the dissociation of [SbS3] pyramids units and the formation of tetrahedral [GaS4] units. The dissolved rare earth ions are separated around the Ga–S bonding and the infrared emission quenching are controlled. Moreover, continuous introduction of Er ions into the glass forms more Er–S bonds through the further aggregation surrounding the [GaS4] units. In return, the infrared emission intensity decreased with excessive Er ion addition. This phenomenon is correlated with the recurrence concentration quenching effect induced by the increase of [GaS4] units. PMID:28106143

  12. Thermal and Non-thermal emission in the Jets and Lobes of Cygnus A

    Science.gov (United States)

    De Vries, Martijn; Wise, Michael; Huppenkothen, Daniela; Nulsen, Paul; Snios, Bradford; Hardcastle, Martin

    2017-08-01

    We present a spatially-resolved, spectral analysis aimed at detecting and characterizing the non-thermal X-ray emission from the jets and lobes in the powerful radio galaxy Cygnus A based on a new, deep 1 Msec Chandra exposure. These jets and lobes are believed to be a primary means by which energy liberated by accretion onto the central supermassive black hole is transported into the outer galaxy and are integral to understanding the mechanisms that drive AGN feedback. Despite being well-studied over the years, we still do not understand how this energy is transported, the connection between the X-ray and radio structures, and the underlying emission mechanisms that produce them. The X-ray jets in Cygnus A show a clear misalignment with the radio and it has been proposed that they are either inverse Compton-emitting relics or a separate electron population emitting X-ray synchrotron emission. Previous X-ray studies of the jets and lobes have been unsuccessful in distinguishing between these possibilities largely due to the difficulty of separating any non-thermal components from thermal emission in the surrounding hot ICM at CCD spectral resolutions.In this presentation, we report on a new statistical analysis using MCMC sampling and Bayesian model selection to characterize the X-ray emission in the jets and lobes of Cygnus A. The model includes a mixture of thermal ICM emission and distinct non-thermal components from both the eastern and western jets and lobes. Our analysis clearly favors the presence of non-thermal emission and we find a distinct asymmetry with the western lobe roughly 20% fainter and with a much steeper photon index. Combining existing radio data with our X-ray fluxes and photon indices, we determine the energy densities and pressures for both synchrotron and inverse Compton (IC) emission models. For the IC model, we derive energy densities in the lobes consistent with the external pressure; however, both the eastern and western jets would be

  13. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  14. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    1994-08-01

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  15. Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup

    Directory of Open Access Journals (Sweden)

    Francesco Bianchi

    2014-10-01

    Full Text Available Thermal infrared imaging is a valuable tool to perform non-destructive qualitative tests and to investigate buildings envelope thermal-energy behavior. The assessment of envelope thermal insulation, ventilation, air leakages, and HVAC performance can be implemented through the analysis of each thermogram corresponding to an object surface temperature. Thermography also allows the identification of thermal bridges in buildings’ envelope that, together with windows and doors, constitute one of the weakest component increasing thermal losses. A quantitative methodology was proposed in previous researches by the authors in order to evaluate the effect of such weak point on the energy balance of the whole building. In the present work, in-field experimental measurements were carried out with the purpose of evaluating the energy losses through the envelope of a test room experimental field. In-situ thermal transmittance of walls, ceiling and roof were continuously monitored and each element was characterized by its own thermal insulation capability. Infrared thermography and the proposed quantitative methodology were applied to assess the energy losses due to thermal bridges. The main results show that the procedure confirms to be a reliable tool to quantify the incidence of thermal bridges in the envelope thermal losses.

  16. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    2012-01-01

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  17. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  18. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  19. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  20. Optical sensors of gas on the basis of semiconductor sources of infrared emission

    Directory of Open Access Journals (Sweden)

    Kabatsiy V. N.

    2008-08-01

    Full Text Available Various constructions of optic sensors of gas and gas analyzers on their basis with the use of low-powered semiconductor sources of infrared emission for wave-length of 2,5–5,0 mm made on basis of InGaAs/InAs and InAsSbP/InAs heterostructures are worked out. The experimental results demonstrating the ability of application of semiconductor sources of infrared emission in optic sensors for measuring of metan concentration (CH4 and carbon dioxide (CO2 are given. The availability of use of such sensors in the gas analysis equipment of new generation is shown.

  1. Multifunctional upconversion nanoprobe for tumor fluorescence imaging and near-infrared thermal therapy

    Science.gov (United States)

    Wei, Yanchun; Chen, Qun; Wu, Baoyan; Xing, Da

    2014-09-01

    The combination of diagnostics and therapeutics is growing rapidly in cancer treatment. Here, using upconversion nanoparticles coated with chitosan conjugated with a targeting molecule and loaded with indocyanine green (ICG), an excitation-selectable nanoprobe with highly integrated functionalities, including the emission of visible and near-infrared (NIR) light, strong optical absorption in the NIR region and high photostability was developed. After injected in mice, the nanoprobes targeted to the tumor vascular system. NIR lasers (980 and 808 nm) were then selectively applied to the mice. The results show that, the emitted upconversion fluorescence and NIR fluorescence can be used in a complementary manner for high signal/noise ratio and sensitive tumor imaging for more precise tumor localization; Highly effective photothermal therapy can be realized using 808 nm laser irradiation. The upconversion fluorescence at 654 nm is useful for monitoring treatment effect during thermal therapy. In summary, using the nanoprobes, outstanding therapeutic efficacy could be realized and the nanofabrication strategy would highlight the promise of upconversion nanoparticles in cancer theranostics.

  2. Infrared Thermography as a Non-destructive Testing Solution for Thermal Spray Metal Coatings

    Science.gov (United States)

    Santangelo, Paolo E.; Allesina, Giulio; Bolelli, Giovanni; Lusvarghi, Luca; Matikainen, Ville; Vuoristo, Petri

    2017-09-01

    In this work, an infrared (IR) thermographic procedure was evaluated as a non-destructive testing tool to detect damage in thermal spray metallic coatings. As model systems, polished HVOF- and HVAF-sprayed Fe-based layers deposited onto steel plates were employed. Damage by external-object impingement was simulated through a cyclic impact-test apparatus, which induced circumferential and radial cracks across all model systems, and interface cracks of different sizes in distinct samples. Damaged and undamaged plates were bulk-heated to above 100 °C using an IR lamp; their free-convection cooling was then recorded by an IR thermocamera. The intentionally induced defects were hardly detectable in IR thermograms, due to IR reflection and artificial "hot" spots induced by residuals of transfer material from the impacting counterbody. As a micrometer-thin layer of black paint was applied, surface emissivity got homogenized and any artifacts were effectively suppressed, so that failed coating areas clearly showed up as "cold spots." This effect was more apparent when large interface cracks occurred. Finite-element modeling proved the physical significance of the IR-thermography approach, showing that failed coating areas are cooled by surrounding air faster than they are heated by conduction from the hot substrate, which is due to the insulating effect of cracks.

  3. The TUBIN nanosatellite mission for wildfire detection in thermal infrared

    Science.gov (United States)

    Barschke, Merlin F.; Bartholomäus, Julian; Gordon, Karsten; Lehmann, Marc; Brieß, Klaus

    2017-06-01

    The increasing number of wildfires has significant impact on the Earth's climate system. Furthermore, they cause severe economic damage in many parts of the world. While different land and airborne wildfire detection and observation systems are in use in some areas of the world already, spaceborne systems offer great potential regarding global and continuous observation. TUBIN is a proof-of-concept mission to demonstrate the capabilities of a nanosatellite carrying lightweight infrared microbolometer arrays for spaceborne detection of wildfires and other high-temperature events. To this end, TUBIN carries two infrared microbolometers complemented by a CMOS imager. The TUBIN space segment is based on the TUBiX20 nanosatellite platform of Technische Universität Berlin and is the first mission that implements the full-scale attitude determination and control system of TUBiX20. Thereby, the TUBIN mission will demonstrate the platform's ability to support a challenging Earth observation mission.

  4. Fine characterization rock thermal damage by acoustic emission technique

    Science.gov (United States)

    Kong, Biao; Li, Zenghua; Wang, Enyuan

    2018-02-01

    This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.

  5. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  6. Non-thermal x-ray emission from wire array z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Ampleford, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jennings, Christopher Ashley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Webb, Timothy Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper-Slaboszewicz, V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Loisel, Guillaume Pascal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Timothy McGuire [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bell, Kate Suzanne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Brent M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Leroy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chittenden, Jeremy P. [Imperial College, London (United Kingdom); Sherlock, Mark [Imperial College, London (United Kingdom); Appelbe, Brian [Imperial College, London (United Kingdom); Giuliani, John [Naval Research Lab. (NRL), Washington, DC (United States); Ouart, Nicholas [Naval Research Lab. (NRL), Washington, DC (United States); Seely, John [Artep Inc., Ellicott City, MD (United States)

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  7. Determining the emissivity of pig skin for accurate infrared thermography

    DEFF Research Database (Denmark)

    Sørensen, Dennis D.; Clausen, Sønnik; Mercer, James B.

    2014-01-01

    for the ear base (p euthanasia) tended to be lower (p = 0.06) compared with the emissivity of the skin areas when perfused with blood. The results of this study confirm that it is valid to use the human skin...

  8. FUSION OF LANDSAT- 8 THERMAL INFRARED AND VISIBLE BANDS WITH MULTI-RESOLUTION ANALYSIS CONTOURLET METHODS

    Directory of Open Access Journals (Sweden)

    F. Farhanj

    2017-09-01

    Full Text Available Land surface temperature image is an important product in many lithosphere and atmosphere applications. This image is retrieved from the thermal infrared bands. These bands have lower spatial resolution than the visible and near infrared data. Therefore, the details of temperature variation can't be clearly identified in land surface temperature images. The aim of this study is to enhance spatial information in thermal infrared bands. Image fusion is one of the efficient methods that are employed to enhance spatial resolution of the thermal bands by fusing these data with high spatial resolution visible bands. Multi-resolution analysis is an effective pixel level image fusion approach. In this paper, we use contourlet, non-subsampled contourlet and sharp frequency localization contourlet transform in fusion due to their advantages, high directionality and anisotropy. The absolute average difference and RMSE values show that with small distortion in the thermal content, the spatial information of the thermal infrared and the land surface temperature images is enhanced.

  9. Fusion of - 8 Thermal Infrared and Visible Bands with Multi-Resolution Analysis Contourlet Methods

    Science.gov (United States)

    Farhanj, F.; Akhoondzadeh, M.

    2017-09-01

    Land surface temperature image is an important product in many lithosphere and atmosphere applications. This image is retrieved from the thermal infrared bands. These bands have lower spatial resolution than the visible and near infrared data. Therefore, the details of temperature variation can't be clearly identified in land surface temperature images. The aim of this study is to enhance spatial information in thermal infrared bands. Image fusion is one of the efficient methods that are employed to enhance spatial resolution of the thermal bands by fusing these data with high spatial resolution visible bands. Multi-resolution analysis is an effective pixel level image fusion approach. In this paper, we use contourlet, non-subsampled contourlet and sharp frequency localization contourlet transform in fusion due to their advantages, high directionality and anisotropy. The absolute average difference and RMSE values show that with small distortion in the thermal content, the spatial information of the thermal infrared and the land surface temperature images is enhanced.

  10. [Using infrared thermal asymmetry analysis for objective assessment of the lesion of facial nerve function].

    Science.gov (United States)

    Liu, Xu-long; Hong, Wen-xue; Song, Jia-lin; Wu, Zhen-ying

    2012-03-01

    The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some lesions of facial nerve function are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to capture the alteration of the infrared thermal distribution. This paper presents a new method of analysis of the thermal asymmetry named effective thermal area ratio, which is a product of two variables. The first variable is mean temperature difference between the specific facial region and its contralateral region. The second variable is a ratio, which is equal to the area of the abnormal region divided by the total area. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results show: that the mean specificity and sensitivity of this method are 0.90 and 0.87 respectively, improved by 7% and 26% compared with conventional methods. Spearman correlation coefficient between effective thermal area ratio and the degree of facial nerve function is an average of 0.664. Hence, concerning the diagnosis and assessment of facial nerve function, infrared thermography is a powerful tool; while the effective ther mal area ratio is an efficient clinical indicator.

  11. [Anomaly of infrared thermal radiation intensity on unilateral mild to moderate Bell's palsy].

    Science.gov (United States)

    Liu, Xu-long; Hong, Wen-xue; Zhang, Tao; Wu, Zhen-ying; Zhang, Dong

    2011-05-01

    Bell's palsy is a kind of facial nerve diseases with a high incidence, and the patients who get the disease the first time predominate in the patients who suffer mildly or moderately. The aim of the present study is to explore a novel assessment for Bell's palsy objectively and noninvasively based on infrared thermal image. As the acupoints on the face are approximately bilateral symmetric, the acupoints on the affected side were chosen as the experimental group, while the same ones on the other side as the control group. Their infrared thermal radiations were researched separately and the results were as follows: on acute stage, the differences of infrared thermal radiation intensity of the same points were significant between the healthy and affected sides, indicating significant temperature difference (over 0.3 degrees C). The acupoints on the affected side with its surrounding tissue formed an irregular abnormal region on the infrared thermal image. Its pseudocolor was obviously different from that of the healthy side. At the same time, the more serious the Bell's palsy, the more evident the temperature differences of the same acupoints on bilateral sides. It was positive correlation (r=0.676, r=0.498, r=0.506, r=0.545, r=0.518, all Pinfrared thermal image could be used to objectively assess the severity of Bell' palsy.

  12. Warping-based co-registration of thermal infrared images: Study of factors influencing its applicability

    Science.gov (United States)

    Cardone, D.; Pinti, P.; Di Donato, L.; Merla, A.

    2017-06-01

    A relevant issue for processing biomedical thermal imaging data is the availability of tools for objective and quantitative comparison of images across different conditions or subjects. To this goal, a solution can be offered by projecting the thermal distribution data onto a fictitious template to obtain a common reference for comparison across cases or subjects. In this preliminary study, we tested the feasibility of applying a warping procedure on infrared thermal images. Fifteen thermal images of checkerboard were recorded at three different distances and five different angles in order to evaluate which factor mostly influences the warping accuracy. The accuracy of three different warping transformation models (local weighted mean (LWM), polynomial, affine) was tested by comparing the positioning error between users' selected fiduciary points on each thermal image and their corresponding reference position assigned on the template image. Fifteen users, divided into three groups upon on their experience in thermal imaging processing, participated in this study in order to evaluate the effect of experience in applying a warping procedure to the analysis of thermal infrared images. The most relevant factor influencing the positioning and thermal errors is the acquisition distance, while the users' level of experience and the inclination angle do not seem to play the same importance. Comparing the three transformations, the LWM seems to be the best in terms of minimizing the two categories of errors. This preliminary work helps to understand the limits and the possibilities of applying warping techniques for objective, quantitative and automatic thermal image comparisons.

  13. Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer.

    Science.gov (United States)

    Namura, Kyoko; Suzuki, Motofumi; Nakajima, Kaoru; Kimura, Kenji

    2013-04-08

    Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.

  14. Near Zero Emissions at 50 Percent Thermal Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under

  15. Noninvasive determination of burn depth in children by digital infrared thermal imaging

    Science.gov (United States)

    Medina-Preciado, Jose David; Kolosovas-Machuca, Eleazar Samuel; Velez-Gomez, Ezequiel; Miranda-Altamirano, Ariel; González, Francisco Javier

    2013-06-01

    Digital infrared thermal imaging is used to assess noninvasively the severity of burn wounds in 13 pediatric patients. A delta-T (ΔT) parameter obtained by subtracting the temperature of a healthy contralateral region from the temperature of the burn wound is compared with the burn depth measured histopathologically. Thermal imaging results show that superficial dermal burns (IIa) show increased temperature compared with their contralateral healthy region, while deep dermal burns (IIb) show a lower temperature than their contralateral healthy region. This difference in temperature is statistically significant (pburns. These results show that digital infrared thermal imaging could be used as a noninvasive procedure to assess burn wounds. An additional advantage of using thermal imaging, which can image a large skin surface area, is that it can be used to identify regions with different burn depths and estimate the size of the grafts needed for deep dermal burns.

  16. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico

    Science.gov (United States)

    Gomez, Valle R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J.

    1970-01-01

    New techniques, involving interpretation of panchromatic, ektachrome and ektachrome infrared aerographic photogaphs and thermographic infrared imagery recording emission from the earth's surface in middle and far infrared wavelengths (3-5??m and 8-14??m), are being introduced in geothermal investigations in Mexico to identify outstanding structural and geologic features in a rapid and economical manner. The object of this work is to evaluate the new airborne infrared techniques and equipment as a complement to the data obtained from panchromatic aerial photography. This project is part of the Mexican remote sensing program of natural resources carried out under the auspices of the Comision Nacional del Espacio Exterior and in which the Research Institute (Instituto de Investigaciones de la Industria Electrica) is actively participating. The present study was made cooperatively with the U.S. National Aeronautics and Space Administration and the U.S. Geological Survey. The Los Negritos-Ixtlan de los Hervores geothermal fields are located east of Lake Chapala at the intersection of the Sierra Madre occidental and the west-central segment of the neovolcanic axis of Mexico. The two principal zones of hydrothermal activity occur in a tectonic trench filled with lake sediments of the Quaternary intercalated with Quaternary and Holocene volcanic rocks and characterized by an intricate system of block-fault tectonics, part of the Chapala-Acambay tectonic system, along which there has been volcanic activity in modern time. Surface manifestations of geothermal activity consist of relatively high heat flow and hot springs, small geysers and small steam vents aligned along an E-W axis at Ixtlan, possibly at the intersection of major fault trends and mud volcanoes and hot pools aligned NE-SW at Los Negritos. More than 20 exit points of thermal waters are shown on infrared imagery to be aligned along an extension of the Ixtlan fault between Ixtlan and El Salitre. A narrow zone of

  17. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi [The Graduate University of Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Peterson, Byron J.; Mukai, Kiyofumi; Akiyama, Tsuyoshi; Watanabe, Takashi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Drapiko, Evgeny A. [Fusion Centre, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Alekseyev, Andrey G. [Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Itomi, Muneji [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2014-05-15

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  18. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique.

    Science.gov (United States)

    Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi

    2014-05-01

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  19. Stratospheric HBr mixing ratio obtained from far infrared emission spectra

    Science.gov (United States)

    Park, J. H.; Carli, B.; Barbis, A.

    1989-01-01

    Emission features of HBr isotopes have been identified in high-resolution FIR emission spectra obtained with a balloon-borne Fourier-transform spectrometer in the spring of 1979 at 32 deg N latitude. When six single-scan spectra at a zenith angle of 93.2 deg were averaged, two features of HBr isotopes at 50.054 and 50.069/cm were obtained with a signal-to-noise ratio of 2.5. The volume mixing ratio retrieved from the average spectrum is 2.0 x 10 to the -11th, which is assumed to be constant above 28 km, with an uncertainty of 35 percent. This stratospheric amount of HBr is about the same as the current level of tropospheric organic bromine compounds, 25 pptv. Thus HBr could be the major stratospheric bromine species.

  20. Modeling the Dust Infrared Emission from Nearby Galaxies

    Science.gov (United States)

    Li, Aigen; Draine, Bruce

    2005-06-01

    Based on the silicate-graphite-PAHs interstellar grain model, we propose to model the dust IR emission from nearby galaxies obtained by Spitzer on a pixel-by-pixel basis. The dust, consisting of a mixture of silicate grains and carbonaceous grains (graphite and PAHs) and spanning a wide range of sizes from a few angstroms to a few micrometers, is heated by starlight with a range of intensities in each pixel. By fitting the IRAC, MIPS photometry and IRS spectroscopy of each pixel, we will be able (1) to determine the spatial distribution of dust, the spatial distribution of starlight intensity, and the regional variation of the PAH abundance and properties within a galaxy, (2) to see how the dust mass and the abundance and properties of the PAHs vary from galaxy to galaxy, and (3) to relate the dust mass and the PAH abundance and properties with environmental conditions and galaxy type. We will calculate the temperature probability distribution functions for small grains (neutral PAHs and charged PAHs; silicate and graphite grains smaller than 250 Angstrom), as well as the steady temperatures of large graphite and silicate grains, for a wide range of sizes, exposed to starlight of a wide range of intensities and of a wide range of spectral shapes. We will build a ``library'' of temperature probability distribution functions and model IR emission spectra for each grain species of each grain size, heated by each starlight intensity of each starlight spectrum. This ``library'' will be made available to the astronomical community on WWW at http://www.astro.princeton.edu/~draine/dust/dust.html. This ``library'' will be very useful for interpreting the IR emission data (particularly the PAH emission features) obtained by Spitzer for both Galactic and extragalactic objects.

  1. Retrieval of ice cloud properties with visible/near-/shortwave-infrared (VNIR/SWIR) and thermal-infrared (TIR) obaservations

    Science.gov (United States)

    Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Yang, P.; Ding, J.

    2016-12-01

    An optical-estimation (OE) based ice cloud retrieval algorithm is developed with visible/near-/shortwave-infrared (VNIR/SWIR) and thermal-infrared (TIR) observations. It is known that VNIR/SWIR observations are more sensitive to optically thick clouds, while TIR observations are more sensitive to optically thin clouds. The combination of both VNIR/SWIR and TIR observations is expected to improve the overall ice cloud retrieval performance. In this study, we develop an optimal method to select different bands for retrieving different types of ice clouds (e.g., thin cirrus or deep convective cloud). With the optimally selected bands, retrieval uncertainties are minimized and information content are maximized. The retrieval algorithm is based on a clear-sky transmittance module and a radiative transfer model that cover the VNIR/SWIR and TIR regions. The forward model is computational efficiency and therefore can be used to a wide variaty of remote sensing applications.

  2. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring

    Science.gov (United States)

    Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose

    2018-02-01

    Methane (CH4) is the main constituent of natural gas. Fugitive CH4 emissions partially stem from geological reservoirs (seepages) and leaks in pipelines and petroleum production plants. Airborne hyperspectral sensors with enough spectral and spatial resolution and high signal-to-noise ratio can potentially detect these emissions. Here, a field experiment performed with controlled release CH4 sources was conducted in the Rocky Mountain Oilfield Testing Center (RMOTC), Casper, WY (USA). These sources were configured to deliver diverse emission types (surface and subsurface) and rates (20-1450 scf/hr), simulating natural (seepages) and anthropogenic (pipeline) CH4 leaks. The Aerospace Corporation's SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) sensor acquired hyperspectral thermal infrared data over the experimental site with 128 bands spanning the 7.6 μm-13.5 μm range. The data was acquired with a spatial resolution of 0.5 m at 1500 ft and 0.84 m at 2500 ft above ground level. Radiance images were pre-processed with an adaptation of the In-Scene Atmospheric Compensation algorithm and converted to emissivity through the Emissivity Normalization algorithm. The data was processed with a Matched Filter. Results allowed the separation between endmembers related to the spectral signature of CH4 from the background. Pixels containing CH4 signatures (absorption bands at 7.69 μm and 7.88 μm) were highlighted and the gas plumes mapped with high definition in the imagery. The dispersion of the mapped plumes is consistent with the wind direction measured independently during the experiment. Variations in the dimension of mapped gas plumes were proportional to the emission rate of each CH4 source. Spectral analysis of the signatures within the plumes shows that CH4 spectral absorption features are sharper and deeper in pixels located near the emitting source, revealing regions with higher gas density and assisting in locating CH4 sources in the field

  3. Miniature thermal emission spectrometer for the Mars Exploration Rover

    Science.gov (United States)

    Silverman, Steven; Peralta, Richard; Christensen, Phil; Mehall, Greg

    2006-10-01

    This paper describes results of the calibration of the miniature thermal emission spectrometer (Mini-TES) being built by Raytheon Santa Barbara Remote Sensing (SBRS) under contract to Arizona State University (ASU). This paper also serves as an update to an earlier paper [R.J. Peralta, S. Silverman, D. Bates, Raytheon/Santa Barbara Remote Sensing, P. Christensen, G. Mehall, T. Tourville, R. Keehn, G. Cannon, Arizona State University, Miniature thermal emission spectrometer for the Mars Exploration Rover, Proceedings of the SPIE, vol. 4485-09, August 2001] for mission description and instrument design. Mini-TES is a single detector Fourier transform spectrometer (FTS), covering the spectral range 5 29μm at 10cm spectral resolution. Launched in June 2003, one Mini-TES instrument will fly to Mars aboard each of the two missions of NASA's Mars Exploration Rover Project (MER), named Spirit and Opportunity. Mini-TES is designed to provide a key minerological remote sensing component of the MER mission, which includes several other science instruments. The first Mini-TES unit was required to meet a two-year development schedule with proven, flight-tested instrumentation. Therefore, SBRS designed Mini-TES based on proven heritage from the successful Mars Global Surveyor (MGS) thermal emission spectrometer (TES), which was launched in 1996 and is still operational with over 500 million spectra collected to date. Mini-TES design, performance, integration onto the rovers, as well as details of the calibration are discussed. Full instrument and calibration details are the subject of an upcoming Journal of Geophysical Research Mini-TES paper by Christensen, et al.

  4. Electrical Energy Harvesting from Thermal Energy with Converged Infrared Light

    Science.gov (United States)

    Goh, S. Y.; Kok, S. L.

    2017-06-01

    Photovoltaics (PV) cell is a common energy harvester that had been used to harvest solar energy and convert it into electrical energy. However, the vast energy from the spectrum of sunlight is not fully harvested. Therefore, thermoelectric (TE) module that harvest electrical energy from heat is being proposed in this paper. Generally, the part of the sunlight spectrum that induce heat is in the spectrum band of infrared (IR). For the experimental set-up in this paper, infrared (IR) light bulb was being used to simulate the IR spectrum band of the sunlight. In order to maximize the heat energy collection, a convex lens was being used to converge the IR light and therefore focused the heat on an aluminium sheet and heat sink which was placed on top of the hot side of the TE module. The distance between convex lens and IR light bulb is varying in between 10cm and 55cm and the reading was taken at an interval of 5cm. Firstly, the temperature of the IR light and converged IR light were recorded and plotted in graph. The graph showed that the temperature of the converged IR light bulb is higher than the IR light bulb. Lastly, the voltage and power output of the TE module with different heat source was compared. The output voltage and power of the TE module increased inverse proportional to the distance between IR light bulb and TE module.

  5. Effect of thermal power plant emissions on Catharanthus roseus L

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.M.; Pandey, V.; Shukla, J.; Singh, N.; Yunus, M.; Singh, S.N.; Ahmad, K.J. (National Botanical Research Institute, Lucknow (India))

    1990-06-01

    Most of the industrialized nations depend largely on the combustion of fossil fuels for their energy requirements. During the past few years in India quite a few thermal power plants have been commissioned to cater to the increasing energy requirements. As most of the power plants are coal-fired, a complex mixture of several pollutants is released in the atmosphere on the combustion of coal. Leaves by virtue of their unique position on plants and their functions, experience the maximum brunt of exposure and undergo certain changes in form, structure and function with the changes in surrounding environs, and such modifications are likely to serve as markers of environmental pollution. The present paper deals with the long term exposure effects of thermal power plant emissions on Catharanthus roseus L. - a common perennial shrub, with glossy leaves and white, mauve or pink colored flowers and of great medicinal value is grown as an ornamental plant all over the country.

  6. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  7. Retrieval of leaf water content spanning the visible to thermal infrared spectra

    CSIR Research Space (South Africa)

    Ullah, S

    2014-05-01

    Full Text Available The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390 µm -14.0 µm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band...

  8. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  9. Amplitude of the diurnal temperature cycle as observed by thermal infrared and microwave radiometers

    Science.gov (United States)

    Land surface temperature (LST) is a key input to physically-based retrieval algorithms of hydrological states and fluxes, and global measurements of LST are provided by many satellite platforms. Passive microwave (MW) observations offer an alternative to conventional thermal infrared (TIR) LST retri...

  10. Detection of heat inleaks in cryogenic enclosures by infrared thermal imaging

    CERN Document Server

    Lebrun, P

    1982-01-01

    Localized heat inleaks in cryogenic enclosures can be detected by the ‘cool spots’ they produce on the ambient temperature surface of the vessel outer walls. Infrared thermography, a simple technique permitting detailed thermal mapping of surfaces, has been successfully used for locating such ‘cool spots’ on cryogenic vessels and transfer lines.

  11. Nanoparticles with Near-Infrared Emission Enhanced by Pillararene-Based Molecular Recognition in Water.

    Science.gov (United States)

    Shi, Bingbing; Jie, Kecheng; Zhou, Yujuan; Zhou, Jiong; Xia, Danyu; Huang, Feihe

    2016-01-13

    Here we report the unprecedented preparation of nanoparticles with near-infrared (NIR) emission enhanced by host-guest complexation between a water-soluble pillar[5]arene (WP5) and a cyanostilbene derivative (1) in water. Amphiphilic 1 self-assembles in water to form nanoribbons with relatively weak NIR emission at low concentrations. However, after addition of equimolar WP5, these nanoribbons transform into nanoparticles with stronger NIR emission due to the formation of a supramolecular amphiphile and host-guest complexation-enhanced aggregation. These nanoparticles show pH responsiveness, and collapse after treatment with acid. More importantly, these nanoparticles can be used in living cell imaging.

  12. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    Science.gov (United States)

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Clinical trial on the characteristics of zheng classification of pulmonary diseases based on infrared thermal imaging technology.

    Science.gov (United States)

    Ni, Jin-Xia; Gao, Si-Hua; Li, Yu-Hang; Ma, Shi-Lei; Tian, Tian; Mo, Fang-Fang; Wang, Liu-Qing; Zhu, Wen-Zeng

    2013-01-01

    Zheng classification study based on infrared thermal imaging technology has not been reported before. To detect the relative temperature of viscera and bowels of different syndromes patients with pulmonary disease and to summarize the characteristics of different Zheng classifications, the infrared thermal imaging technology was used in the clinical trial. The results showed that the infrared thermal images characteristics of different Zheng classifications of pulmonary disease were distinctly different. The influence on viscera and bowels was deeper in phlegm-heat obstructing lung syndrome group than in cold-phlegm obstructing lung syndrome group. It is helpful to diagnose Zheng classification and to improve the diagnosis rate by analyzing the infrared thermal images of patients. The application of infrared thermal imaging technology provided objective measures for medical diagnosis and treatment in the field of Zheng studies and provided a new methodology for Zheng classification.

  14. Ultra High Resolution Imaging of Enceladus Tiger Stripe Thermal Emission with Cassini CIRS

    Science.gov (United States)

    Spencer, John R.; Gorius, Nicolas; Howett, Carly; Verbiscer, Anne J.; Cassini CIRS Team

    2017-10-01

    In October 2015, Cassini flew within 48 km of Enceladus’ south pole. The spacecraft attitude was fixed during the flyby, but the roll angle of the spacecraft was chosen so that the remote sensing instrument fields of view passed over Damascus, Baghdad, and Cairo Sulci. The Composite Infrared Spectrometer (CIRS) instrument obtained a single interferometer scan during the flyby, using a special mode, enabled by a flight software update, which bypassed numerical filters to improve the fidelity of the interferograms. This generated a total of 11 interferograms, at 5 contiguous spatial locations for each of the 7 - 9 micron (FP4) and 9 - 17 micron (FP3) focal planes, and a single larger field of view for the 17 - 500 micron focal plane (FP1). Strong spikes were seen in the interferograms when crossing each of the sulci, due to the rapid passage of warm material through the field of view. For FP3 and FP4, the temporal variations of the signals from the 5 contiguous detectors can be used to generated 5-pixel-wide images of the thermal emission, which show excellent agreement between the two focal planes. FP3 and FP4 spatial resolution, limited along track by the 5 msec time sampling of the interferogram, and across track by the CIRS field of view, is a remarkable 40 x 40 meters. At this resolution, the tiger stripe thermal emission shows a large amount of structure, including both continuous emission along the fractures, discrete hot spots less than 100 meters across, and extended emission with complex structure.

  15. Iapetus' near surface thermal emission modeled and constrained using Cassini RADAR Radiometer microwave observations

    Science.gov (United States)

    Le Gall, A.; Leyrat, C.; Janssen, M. A.; Keihm, S.; Wye, L. C.; West, R.; Lorenz, R. D.; Tosi, F.

    2014-10-01

    Since its arrival at Saturn, the Cassini spacecraft has had only a few opportunities to observe Iapetus, Saturn's most distant regular satellite. These observations were all made from long ranges (>100,000 km) except on September 10, 2007, during Cassini orbit 49, when the spacecraft encountered the two-toned moon during its closest flyby so far. In this pass it collected spatially resolved data on the object's leading side, mainly over the equatorial dark terrains of Cassini Regio (CR). In this paper, we examine the radiometry data acquired by the Cassini RADAR during both this close-targeted flyby (referred to as IA49-3) and the distant Iapetus observations. In the RADAR's passive mode, the receiver functions as a radiometer to record the thermal emission from planetary surfaces at a wavelength of 2.2-cm. On the cold icy surfaces of Saturn's moons, the measured brightness temperatures depend both on the microwave emissivity and the physical temperature profile below the surface down to a depth that is likely to be tens of centimeters or even a few meters. Combined with the concurrent active data, passive measurements can shed light on the composition, structure and thermal properties of planetary regoliths and thus on the processes from which they have formed and evolved. The model we propose for Iapetus' microwave thermal emission is fitted to the IA49-3 observations and reveals that the thermal inertias sensed by the Cassini Radiometer over both CR and the bright mid-to-high latitude terrains, namely Ronceveaux Terra (RT) in the North and Saragossa Terra (ST) in the South, significantly exceed those measured by Cassini's CIRS (Composite Infrared Spectrometer), which is sensitive to much smaller depths, generally the first few millimeters of the surface. This implies that the subsurface of Iapetus sensed at 2.2-cm wavelength is more consolidated than the uppermost layers of the surface. In the case of CR, a thermal inertia of at least 50 J m-2 K-1 s-1/2, and

  16. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Li, Shunbo; Wen, Weijia, E-mail: phwen@ust.hk [Department of Physics, KAUST-HKUST Joint Micro/Nanofluidic Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Cao, Wenbin [Nano Science and Technology Program, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  17. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-12-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  18. Emission Lines in the Near-infrared Spectra of the Infrared Quintuplet Stars in the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Najarro, F. [Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón a Ajalvir km 4, E-28850 Torrejón de Ardoz (Spain); Geballe, T. R. [Gemini Observatory, 670 North A’ohoku Place, Hilo, HI 96720 (United States); Figer, D. F. [Center for Detectors, Rochester Institute of Technology, 74 Lomb Memorial Drive, Rochester, NY 14623 (United States); Fuente, D. de la [Instituto de Astronomía, Unidad Académica en Ensenada, Universidad Nacional Autónoma de México, Ensenada 22860, México (Mexico)

    2017-08-20

    We report the detection of a number of emission lines in the 1.0–2.4 μ m spectra of four of the five bright-infrared dust-embedded stars at the center of the Galactic center’s (GC) Quintuplet Cluster. Spectroscopy of the central stars of these objects is hampered not only by the large interstellar extinction that obscures all of the objects in the GC, but also by the large amounts of warm circumstellar dust surrounding each of the five stars. The pinwheel morphologies of the dust observed previously around two of them are indicative of Wolf–Rayet colliding wind binaries; however, infrared spectra of each of the five have until now revealed only dust continua steeply rising to long wavelengths and absorption lines and bands from interstellar gas and dust. The emission lines detected, from ionized carbon and from helium, are broad and confirm that the objects are dusty late-type carbon Wolf–Rayet stars.

  19. Uncooled infrared thermal imaging systems for law enforcement

    Science.gov (United States)

    Kyle, Robert J. S.; Van Dover, Douglas K.

    1995-05-01

    For over 18 years, Texas Instruments (TI) has been developing low cost uncooled thermal imaging technology for night vision applications. Using technology developed with support from several government agencies, TI is offering this dual-use technology in a low cost system for police cruisers and other surveillance applications. TI has teamed with Highes Aircraft to provide NIGHTSIGHTTM, now being marketed jointly. Because NIGHSIGHT is a passive thermal image, it gives law enforcement officers the ability to see in total darkness. This capability gives the uncooled system distinct advantages over image intensifiers which require some degree of visible light. It also differs from typical cryogenic or cooled IR systems because it does not contain a cryogenic cooler mechanism or a scanner which lowers the complexity, costs, size, weight, and power consumption. Police across the US have tested prototype sensors with positive results. Police officers often praise the ability to see in total darkness and report the many advantages of the system and how it changes their perspective on law enforcement. Systems have also been provided to the Drug Enforcement Agency, INS border patrol, prison security staff, Baltimore-Washington International Airport security, Texas Parks and Wildlife Service and the Los Angeles Harbor Patrol and have been used in a variety of security and surveillance situations. The paper will address the implementation of the technology; discuss barriers to use such as cost, awareness, and system understanding, and examine the impact of the technology on the effectiveness of law enforcement at night.

  20. Thermal diffusivity measurement of ring specimens by infrared thermography

    Science.gov (United States)

    Ferrarini, G.; Bison, P.; Bortolin, A.; Cadelano, G.; Rossi, S.

    2017-05-01

    The thermal diffusivity of solid materials is usually measured with the well-known flash method. In the traditional setup, the tested specimens have the shape of a small disc. However, several industrial applications need to test different typologies of samples. This work is focused on ring specimens, that are widely used as joints or sealants in various applications. The goal is investigating the possibilities and limitations of the flash method, applying minimum adjustments to the traditional experimental setup. A preliminary numerical study is conducted with the creation of a finite element model. Firstly, the model is checked with the standard case of a full disk. Then the simulation investigates the case of an aluminum oxide ring, that is taken as the reference case to determine the reliability of the proposed technique. After the simulation, an experimental measurement is performed on the aluminum oxide ring reference case. Several samples are tested and useful information on the practical feasibility of the experimental setup are collected. The obtained thermal diffusivity values fall into the expected range for the material, confirming the validity of the suggested method.

  1. Time calibration of thermal rolling shutter infrared cameras

    Science.gov (United States)

    Peeters, J.; Louarroudi, E.; De Greef, D.; Vanlanduit, S.; Dirckx, J. J. J.; Steenackers, G.

    2017-01-01

    The working principle of nearly all uncooled microbolometer thermal imaging systems is based on the rolling shutter principle. This results in time delays between rows giving rise to distorted and blurred images which are difficult to correlate with, for example instantaneous numerical simulation results for nondestructive evaluation. Until today high-end and high-cost thermal cameras need to be used for instantaneous measurements. Furthermore, quantitative defect evaluation on average conductive materials is difficult to perform as a result of the rolling shutter blur of the uncooled cameras. In this contribution, a time delay compensation method is designed. The developed algorithm is described and a measurement routine is elaborated to measure the inter- and intra-frame delays between two pixels. Finally, an artificial global shutter image sequence is developed using linear interpolation between the original fluctuating frames. We will show that by applying our proposed method, the intra-frame delay can be predicted and compensated with an accuracy of 16 μs . Besides, there is only made use of low-cost equipment to provide a straight-forward methodology which makes it applicable for the further integration of low-cost microbolometers in industry. This means that we have made the application of low-cost microbolometers feasible for instantaneous measurements.

  2. Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared

    Science.gov (United States)

    Elliott, J.; Yu, H.-F.; Schmidl, S.; Greiner, J.; Gruber, D.; Oates, S.; Kobayashi, S.; Zhang, B.; Cummings, J. R.; Filgas, R.; hide

    2014-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, which is often fit with empirical functions, such as the Band function. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, which cover an energy range of 5 orders of magnitude (10(exp -3) keV to 100 keV). We determine a photometric redshift of z = 3.1 +/- 0.1 with a line-of-sight with little or no extinction (AV approx. 0 mag) utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma(sub 0) approx. 250 and an emission radius of R ray emission, which rebrightens by a factor of approx. 100. This suggests an afterglow component is dominating the emission. We present GRB 121217A, one of the few GRBs that has multi-wavelength observations of the prompt-emission period and shows that it can be understood with a synchrotron radiation model. However, due to the complexity of the GRB's emission, other mechanisms that result in Band-like spectra cannot be ruled out.

  3. Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission

    Science.gov (United States)

    Kirchschlager, Florian; Wolf, Sebastian; Brunngräber, Robert; Matter, Alexis; Krivov, Alexander V.; Labdon, Aaron

    2018-01-01

    Hot exozodiacal dust emission was detected in recent surveys around two dozen main-sequence stars at distances of less than 1 au using the H- and K-band interferometry. Due to the high contrast as well as the small angular distance between the circumstellar dust and the star, direct observation of this dust component is challenging. An alternative way to explore the hot exozodiacal dust is provided by mid-infrared interferometry. We analyse the L, M and N bands interferometric signature of this emission in order to find stronger constraints for the properties and the origin of the hot exozodiacal dust. Considering the parameters of nine debris disc systems derived previously, we model the discs in each of these bands. We find that the M band possesses the best conditions to detect hot dust emission, closely followed by L and N bands. The hot dust in three systems - HD 22484 (10 Tau), HD 102647 (β Leo) and HD 177724 (ζ Aql) - shows a strong signal in the visibility functions, which may even allow one to constrain the dust location. In particular, observations in the mid-infrared could help to determine whether the dust piles up at the sublimation radius or is located at radii up to 1 au. In addition, we explore observations of the hot exozodiacal dust with the upcoming mid-infrared interferometer Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) at the Very Large Telescope Interferometer.

  4. Monitoring Dielectric Thin-Film Production on Product Wafers Using Infrared Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NIEMCZYK,THOMAS M.; ZHANG,SONGBIAO; HAALAND,DAVID M.

    2000-12-18

    Monitoring of dielectric thin-film production in the microelectronics industry is generally accomplished by depositing a representative film on a monitor wafer and determining the film properties off line. One of the most important dielectric thin films in the manufacture of integrated circuits is borophosphosilicate glass (BPSG). The critical properties of BPSG thin films are the boron content, phosphorus content and film thickness. We have completed an experimental study that demonstrates that infrared emission spectroscopy coupled with multivariate analysis can be used to simultaneous y determine these properties directly from the spectra of product wafers, thus eliminating the need of producing monitor wafers. In addition, infrared emission data can be used to simultaneously determine the film temperature, which is an important film production parameter. The infrared data required to make these determinations can be collected on a time scale that is much faster than the film deposition time, hence infrared emission is an ideal candidate for an in-situ process monitor for dielectric thin-film production.

  5. Application of FTIR spectrometer to the test of extinction performance of water fog with infrared emission

    Science.gov (United States)

    Wang, Xuanyu

    2009-05-01

    The infrared spectrum, granularity distribution and mass concentration of water fog were tested by a FTIR spectrometer, laser granularity device and other apparatus in a 75.6m3 test room. The transmittance and mass extinction coefficients of water fog with infrared emission were tested and analyzed within 3~5μm and 8~14μm wave band. The extinction efficiency factors of water fog with 3~14μm infrared were calculated according to Van der Hulst formula and the curve was drawn to show the factors varied with the incident wavelength. According to the experimental results, the water fog has a good extinction performance to infrared emission and the extinction performance is obviously influenced by incident wavelength. For example, the extinction efficiency factor increases with the incident wavelength within 3~5μm but has the least at 10.4μm and has the maximum at 13μm. By the analysis, the average mass extinction coefficient of the water fog between 3μm and 5μm infrared wave band is 0.110m2/g while between 8μm and 14μm is 0.102m2/g. The experimental result tested by FTIR spectrometer is consistent with theoretic result calculated according to Van der Hulst formula, so that the method to test the mass extinction coefficient of water fog with infrared emission by FTIR spectrometer is viable and scientific, while Van der Hulst formula may be applied to calculate the extinction efficiency factors of particles from water fog.

  6. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    Science.gov (United States)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  7. MERTIS: geometrical calibration of thermal infrared optical system by applying diffractive optical elements

    Science.gov (United States)

    Bauer, M.; Baumbach, D.; Buder, M.; Börner, A.; Grießbach, D.; Peter, G.; Santier, E.; Säuberlich, T.; Schischmanow, A.; Schrader, S.; Walter, I.

    2015-09-01

    Geometrical sensor calibration is essential for space applications based on high accuracy optical measurements, in this case for the thermal infrared push-broom imaging spectrometer MERTIS. The goal is the determination of the interior sensor orientation. A conventional method is to measure the line of sight for a subset of pixels by single pixel illumination with collimated light. To adjust angles, which define the line of sight of a pixel, a manipulator construction is used. A new method for geometrical sensor calibration is using Diffractive Optical Elements (DOE) in connection with laser beam equipment. Diffractive optical elements (DOE) are optical microstructures, which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the resulting image is invariant against translation. This particular characteristic allows a complete geometrical sensor calibration with only one taken image avoiding complex adjustment procedures, resulting in a significant reduction of calibration effort. We present a new method for geometrical calibration of a thermal infrared optical system, including an thermal infrared test optics and the MERTIS spectrometer bolometer detector. The fundamentals of this new approach for geometrical infrared optical systems calibration by applying diffractive optical elements and the test equipment are shown.

  8. Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass.

    Science.gov (United States)

    Tian, Ying; Zhang, Junjie; Jing, Xufeng; Xu, Shiqing

    2012-12-01

    Fluorophosphate glass doped with Nd(3+) has been synthesized with low OH content. Near infrared emissions centered around 0.9, 1.06, and 1.3 μm have been successfully obtained in present glass excited by a conventional 800 nm laser diode. Based on the absorption spectrum, radiative properties were calculated and discussed using the Judd-Ofelt theory. The luminescence characteristics and energy transfer mechanism were investigated. Desirable low OH(-) concentration and spectroscopic characteristics of Nd(3+)-doped fluorophosphate glass indicate that it is a promising material for near-infrared lasers. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO2 Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer

    Science.gov (United States)

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8–14 µm with a single-band CO2 laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8–14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  10. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO2 Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Ren-Hua Zhang

    2016-06-01

    Full Text Available In the inversion of land surface temperature (LST from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8–14 µm with a single-band CO2 laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8–14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods.

  11. Effect of microstructure of graphite on the nonreductive thermal ion emission in thermal ionization mass spectrometry.

    Science.gov (United States)

    Wei, H Z; Jiang, S Y; Xiao, Y K

    2010-02-25

    The emission behavior of polyatomic ions in the ionization source of thermal ionization mass spectrometry (TIMS) was investigated. The results suggest that the presence of a graphite promoter plays a key role for the formation and stable emission of polyatomic ions, such as M(2)X(+), M(2)BO(2)(+), Cs(2)NO(2)(+), and Cs(2)CNO(+). Our data further implied that the intensity of M(2)X(+) and M(2)BO(2)(+) increases and the emission temperature decreases with increasing cationic and anionic radius. During the boron isotopic measurement using the Cs(2)BO(2)(+)-graphite-PTIMS method, the isobaric interference ion Cs(2)CNO(+) cannot be transformed from nitrate or organic compounds containing an amide group but can be induced by the existence of trace amounts of boron because of its special electron-deficiency property (B(3+)). Characterization on the planar crystalline structure of various graphite samples with SEM, TEM, and Raman spectroscopy confirmed the relationship of the emission capacity of polyatomic ions and the crystal microstructure of graphite and provides direct evidence that graphite with a perfect parallel and equidistant layer orientation shows a beneficial effect on the emission of polyatomic ions in TIMS. The mechanism study on the formation of polyatomic ions opens the possibility to establish high precision methods for isotopic composition analysis of more nonmetal elements with the TIMS technique.

  12. Tracing star formation with non-thermal radio emission

    Science.gov (United States)

    Schober, Jennifer; Schleicher, D. R. G.; Klessen, R. S.

    2017-06-01

    A key for understanding the evolution of galaxies and in particular their star formation history will be future ultradeep radio surveys. While star formation rates (SFRs) are regularly estimated with phenomenological formulas based on the local FIR-radio correlation, we present here a physically motivated model to relate star formation with radio fluxes. Such a relation holds only in frequency ranges where the flux is dominated by synchrotron emission, as this radiation originates from cosmic rays produced in supernova remnants, therefore reflecting recent star formation. At low frequencies, synchrotron emission can be absorbed by the free-free mechanism. This suppression becomes stronger with increasing number density of the gas, more precisely of the free electrons. We estimate the critical observing frequency below which radio emission is not tracing the SFR, and use the three well-studied local galaxies M51, M82, and Arp 220 as test cases for our model. If the observed galaxy is at high redshift, this critical frequency moves along with other spectral features to lower values in the observing frame. In the absence of systematic evolutionary effects, one would therefore expect that the method can be applied at lower observing frequencies for high-redshift observations. However, in case of a strong increase of the typical gas column densities towards high redshift, the increasing free-free absorption may erase the star formation signatures at low frequencies. At high radio frequencies both, free-free emission and the thermal bump, can dominate the spectrum, also limiting the applicability of this method.

  13. Infrared non-destructive evaluation method and apparatus

    Science.gov (United States)

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  14. MER1 MARS MINIATURE THERMAL EMISSION SPECTROMETER BTR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains Mars Exploration Rover Miniature Thermal Emission Spectrometer (Mini-TES) Brightness Temperature Reduced Data Record (BTR) products and...

  15. Multisensor Fusion of Landsat Images for High-Resolution Thermal Infrared Images Using Sparse Representations

    Directory of Open Access Journals (Sweden)

    Hong Sung Jin

    2017-01-01

    Full Text Available Land surface temperature (LST is an important parameter in the analysis of climate and human-environment interactions. Landsat Earth observation satellite data including a thermal band have been used for environmental research and applications; however, the spatial resolution of this thermal band is relatively low. This study investigates an efficient method of fusing Landsat panchromatic and thermal infrared images using a sparse representation (SR technique. The application of SR is used for the estimation of missing details of the available thermal infrared (TIR image to enhance its spatial features. First, we propose a method of building a proper dictionary considering the spatial resolution of the original thermal image. Second, a sparse representation relation between low- and high-resolution images is constructed in terms of the Landsat spectral response. We then compare the fused images created with different sampling factors and patch sizes. The results of both qualitative and quantitative evaluation show that the proposed method improves spatial resolution and preserves the thermal properties of basic LST data for use with environmental problems.

  16. A debugging method of the Quadrotor UAV based on infrared thermal imaging

    Science.gov (United States)

    Cui, Guangjie; Hao, Qian; Yang, Jianguo; Chen, Lizhi; Hu, Hongkang; Zhang, Lijun

    2018-01-01

    High-performance UAV has been popular and in great need in recent years. The paper introduces a new method in debugging Quadrotor UAVs. Based on the infrared thermal technology and heat transfer theory, a UAV is under debugging above a hot-wire grid which is composed of 14 heated nichrome wires. And the air flow propelled by the rotating rotors has an influence on the temperature distribution of the hot-wire grid. An infrared thermal imager below observes the distribution and gets thermal images of the hot-wire grid. With the assistance of mathematic model and some experiments, the paper discusses the relationship between thermal images and the speed of rotors. By means of getting debugged UAVs into test, the standard information and thermal images can be acquired. The paper demonstrates that comparing to the standard thermal images, a UAV being debugging in the same test can draw some critical data directly or after interpolation. The results are shown in the paper and the advantages are discussed.

  17. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Directory of Open Access Journals (Sweden)

    Benjamin Tardy

    2016-08-01

    Full Text Available Land surface temperature (LST is an important variable involved in the Earth’s surface energy and water budgets and a key component in many aspects of environmental research. The Landsat program, jointly carried out by NASA and the USGS, has been recording thermal infrared data for the past 40 years. Nevertheless, LST data products for Landsat remain unavailable. The atmospheric correction (AC method commonly used for mono-window Landsat thermal data requires detailed information concerning the vertical structure (temperature, pressure and the composition (water vapor, ozone of the atmosphere. For a given coordinate, this information is generally obtained through either radio-sounding or atmospheric model simulations and is passed to the radiative transfer model (RTM to estimate the local atmospheric correction parameters. Although this approach yields accurate LST data, results are relevant only near this given coordinate. To meet the scientific community’s demand for high-resolution LST maps, we developed a new software tool dedicated to processing Landsat thermal data. The proposed tool improves on the commonly-used AC algorithm by incorporating spatial variations occurring in the Earth’s atmosphere composition. The ERA-Interim dataset (ECMWFmeteorological organization was used to retrieve vertical atmospheric conditions, which are available at a global scale with a resolution of 0.125 degrees and a temporal resolution of 6 h. A temporal and spatial linear interpolation of meteorological variables was performed to match the acquisition dates and coordinates of the Landsat images. The atmospheric correction parameters were then estimated on the basis of this reconstructed atmospheric grid using the commercial RTMsoftware MODTRAN. The needed surface emissivity was derived from the common vegetation index NDVI, obtained from the red and near-infrared (NIR bands of the same Landsat image. This permitted an estimation of LST for the entire

  18. Detection of Oil Product on the Water Surface with Thermal Infrared Camera

    Directory of Open Access Journals (Sweden)

    Kristina Pilžis

    2017-09-01

    Full Text Available From all existing remote detectors infrared sensors are the cheapest and most widely used. In this article described experiment was done to determine if it is possible to detected oil products on the water surface using thermal infrared camera. This hypothesis was confirmed – thickest layer of used oil product appeared hotter than water. Also, it was found that temperatures of oil product on the surface directly depend on the air temperature. However, clouds have a significant effect on efficiency of this remote sensing method.

  19. Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor

    Science.gov (United States)

    Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.

    2011-01-01

    Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.

  20. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  1. Experimental study on water content detection of traditional masonry based on infrared thermal image

    Science.gov (United States)

    Zhang, Baoqing; Lei, Zukang

    2017-10-01

    Based on infrared thermal imaging technology for seepage test of two kinds of brick masonry, find out the relationship between the distribution of one-dimensional two brick surface temperature distribution and one-dimensional surface moisture content were determined after seepage brick masonry minimum temperature zone and water content determination method of the highest point of the regression equation, the relationship between temperature and moisture content of the brick masonry reflected the quantitative and establish the initial wet masonry building disease analysis method, then the infrared technology is applied to the protection of historic buildings in.

  2. Optically active SiO{sub 2}/TiO{sub 2}/polyacetylene multilayered nanospheres: Preparation, characterization, and application for low infrared emissivity

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; He, Man; Chen, Zhenjie; Zhang, Tao

    2014-01-01

    Optically active silica/titania/substituted polyacetylene (SiO{sub 2}/TiO{sub 2}/SPA) multilayered core–shell nanocomposite was successfully prepared by the combination of subsequent surface titania deposition and polymer grafting on the bare silica nanosphere. The chiral amino acid-based SPA copolymer serving as the organic shell was optically active and adopted a predominately single-handed helical conformation. The SiO{sub 2}/TiO{sub 2}/SPA nanospheres were characterized by Fourier transform infrared spectroscopies (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to record the formation of the multilayered architecture and the results clearly showed that the inorganic/organic hybrid nanoparticles exhibited hierarchical multilayered core–shell construction. The SPA outer shell experienced an enhancement in thermal stability and still remained considerable optical activity after grafting to the SiO{sub 2}/TiO{sub 2} nanosphere. The SiO{sub 2}/TiO{sub 2}/SPA nanocomposite had an infrared emissivity value (ε = 0.548) at the wavelength of 8–14 μm which was much lower than each of its components. The reduced infrared emissivity values proved that the strengthened interfacial interactions originating from the coating SPA had an effective synergistic effect with the semiconductive anatase TiO{sub 2} nanoparticles on silica sphere in lowering the infrared emissivity value.

  3. Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data

    Science.gov (United States)

    Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher

    2017-05-01

    Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance

  4. Thermal infrared remote sensing of water temperature in riverine landscapes

    Science.gov (United States)

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  5. [Error analysis of the land surface temperature retrieval using HJ-1B thermal infrared remote sensing data].

    Science.gov (United States)

    Zhao, Li-Min; Yu, Tao; Tian, Qing-Jiu; Gu, Xing-Fa; Li, Jia-Guo; Wan, Wei

    2010-12-01

    Error analysis is playing an important role in the application of the remote sensing data and model. A theoretical analysis of error sensitivities in land surface temperature (LST) retrieval using radiance transfer model (RT) is introduced, which was applied to a new thermal infrared remote sensing data of HJ-1B satellite(IRS4). The modification of the RT model with MODTRAN 4 for IRS4 data is mentioned. Error sensitivities of the model are exhibited by analyzing the derivatives of parameters. It is shown that the greater the water vapor content and smaller the emissivity and temperature, the greater the LST retrieval error. The main error origin is from equivalent noise, uncertainty of water vapor content and emissivity, which lead to an error of 0.7, 0.6 and 0.5 K on LST in typical condition, respectively. Hence, a total error of 1 K for LST has been found. It is confirmed that the LST retrieved from HJ-1B data is incredible when application requirement is more than 1K, unless more accurate in situ measurements for atmospheric parameters and emissivity are applied.

  6. Extended far-infrared emission and star formation in Seyfert galaxies

    Science.gov (United States)

    Marston, A. P.

    1994-01-01

    An investigation into the extended distribution of far-infrared (FIR) emission associated with nearby Seyfert galaxies is made using a set of MEM reconstructions of IRAS Chopped Photometric Channel (CPC) data (Marston 1993). The data is compared to a set of HII/starburst galaxy images similarly processed in order to compare distributions and FIR color properties. It is shown that the central 1 kpc or so of Seyfert galaxies show extended FIR emission. FIR colors suggest that the bulk of this emission is not directly associated with an active nucleus. They further suggest that the origins of the majority of the emission is from heated dust associated with star formation surrounding the nucleus rather than dust heated by the active nucleus. Nearby Seyfert galaxies are shown to have a higher concentration of far-infrared emission from their centers than the HII/starburst galaxies and a number appear to reside in disk galaxies with relatively low ongoing star formation in their disks. An example of this is NGC 7582 which has a smooth disk but an active nucleus/starbust center.

  7. Don't get burned: thermal monitoring of vessel sealing using a miniature infrared camera

    Science.gov (United States)

    Lin, Shan; Fichera, Loris; Fulton, Mitchell J.; Webster, Robert J.

    2017-03-01

    Miniature infrared cameras have recently come to market in a form factor that facilitates packaging in endoscopic or other minimally invasive surgical instruments. If absolute temperature measurements can be made with these cameras, they may be useful for non-contact monitoring of electrocautery-based vessel sealing, or other thermal surgical processes like thermal ablation of tumors. As a first step in evaluating the feasibility of optical medical thermometry with these new cameras, in this paper we explore how well thermal measurements can be made with them. These cameras measure the raw flux of incoming IR radiation, and we perform a calibration procedure to map their readings to absolute temperature values in the range between 40 and 150 °C. Furthermore, we propose and validate a method to estimate the spatial extent of heat spread created by a cautery tool based on the thermal images.

  8. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI

    Directory of Open Access Journals (Sweden)

    L. Klüser

    2011-05-01

    Full Text Available From the high spectral resolution thermal infrared observations of the Infrared Atmospheric Sounding Interferometer (IASI mineral dust AOD (transferred from thermal infrared to 0.5 μm is retrieved using a Singular Vector Decomposition of brightness temperature spectra. As infrared retrieval based on 8–12 μm observations, dust observation with IASI is independent from solar illumination. Through the linear combinations of suitable independent singular vectors weighted by their contribution to the observed signal, and a projection of different a-priori dust spectra on the resulting signal the dust can be well distinguished from the influence of surface emissivity and gas absorption. In contrast to lookup-table based single-channel retrievals this method takes advantage of the spectral shape of dust extinction and surface and atmosphere influence over the total 8–12 μm window band. Using different a-priori spectra for dust extinction allows also for an estimation of dust particle size in terms of effective radius based on the respective dust model size distributions. These dust models are also used for the transfer of infrared AOD to 0.5 μm. Four months of IASI observations covering Northern Africa and Arabia are used for evaluation. Two large scale dust events, one covering the Arabian Peninsula and adjacent parts of the Indian Ocean, the other over the Atlantic Ocean off the coast of West-Africa, are analysed and compared with other satellite images. They also show the good suitability of IASI data for dust observation at day and night. Monthly means derived from IASI observations represent well the known seasonal cycles of dust activity over Northern Africa and Arabia. IASI Dust AOD0.5 μm and AERONET coarse mode AOD0.5 μm are reasonably well (linearly correlated with ρ=0.623. Moreover, comparison of time series of AERONET and IASI observations shows that the evolution of dust events is very well covered by the

  9. Research of thermal conditions over high-temperature gas-fired infrared emitters

    Directory of Open Access Journals (Sweden)

    Ermolaev Anton N.

    2017-01-01

    Full Text Available The paper presents the study results of the thermal conditions in the area above high-temperature gas-fired infrared emitter. A number of bench tests and experiments were made on the basis of production facilities to control the distribution of temperatures above emitter in different heating system operating modes. Impact of the thermal characteristics in the area above high-temperature gas-fired infrared emitter on the heating system performance was estimated. Comparison of the bench tests results with existing experimental data has shown a good result convergence for both efficiency and accuracy. The obtained results can be used in the emitter development phase and in the construction phase of modern gas-fired radiant heating systems.

  10. The use of infrared thermal imaging in the diagnosis of deep vein thrombosis

    Science.gov (United States)

    Kacmaz, Seydi; Ercelebi, Ergun; Zengin, Suat; Cindoruk, Sener

    2017-11-01

    The diagnosis of Deep Vein Thrombosis is of vital importance, especially in emergency situations where there is a lack of time and the patient's condition is critical. Late diagnosis causes cost increase, long waiting time, and improper treatment. Today, with the rapidly developing technology, the cost of thermal cameras is gradually decreasing day by day. Studies have shown that many diseases are associated with heat. As a result, infrared images are thought to be a tool for diagnosing various diseases. In this study, it has been shown that infrared thermal imaging can be used as a pre-screening test in the diagnosis of Deep Vein Thrombosis with the developed computer aided software. In addition, a sample combination is shown for applications that utilize emergency services to perform diagnosis and treatment of Deep Vein Thrombosis as soon as possible.

  11. Infrared camera assessment of skin surface temperature--effect of emissivity.

    Science.gov (United States)

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): Spatial variations within the Proctor Crater dune field on Mars

    Science.gov (United States)

    Fenton, Lori K.; Mellon, Michael T.

    2006-06-01

    Thermal inertia, a parameter calculated from surface temperatures obtained from spacecraft, has long been used to quantify the amount of loose, fine-grained material on the Martian surface. With little ``ground truth'' available, studies often refer to Martian dune fields to calibrate thermal inertias. The well-understood physical properties of dune sand make it an ideal basis for comparison to more complex surfaces. However, higher-resolution data sets available from the TES (Thermal Emission Spectrometer onboard Mars Global Surveyor) and THEMIS (Thermal Emission Imaging System onboard Mars Odyssey) show spatial variations in the thermal properties within dune fields, calling into question their effectiveness as controls for thermal inertia studies. In order to explain these variations, we apply a thermal model developed for TES data to a commonly investigated dune field in Noachis Terra, that on the floor of Proctor Crater. We show that in this dune field, the thermal variations on the scale of 30 J m-2 s-0.5 K-1 are present and correlate spatially with aeolian features in the dune field. These variations correspond to three types of surfaces observed in the Mars Orbital Camera Narrow Angle (MOC NA) images: (1) dune sand, (2) interdunes exposing the surface underlying the dune field, and (3) sand-covered interdunes, or dune troughs. Both the interdunes and the dune troughs have cooler nighttime temperatures than the dune sand, corresponding to lower thermal inertia values. The dune troughs may be sand-covered areas with either minor amounts of dust accumulation or a mean sand grain size lower than that of dune sand. Because fine sand grains tend to preferentially accumulate on dune crests rather than in dune troughs, the second hypothesis is considered less likely than the first. This has implications for the recent sedimentary history of the dune field: Dust accumulation in dune troughs may imply that sand saltation is not prevalent enough to scour away all of

  13. Fourier Transform Infrared Spectroscopic Study of Thermal and Electrical Aging in Polyurethane

    Science.gov (United States)

    1987-03-20

    allophanate, biuret , and aromatic groups, while the soft segments co01sist of the flexible polyether, polyester, and polyalkyl groups from the polyols...results in Fig. 3a, it is a rea- sonable working hypothesis that these aging methods are achieving substantial- ly the same result by different means...formative stage of Uralane 5753 degradation via physical, thermal, and electrical methods . The changes in infrared absorbance noted in Tables 1 and 2 were

  14. Prototype of microbolometer thermal infrared camera for forest fire detection from space

    Science.gov (United States)

    Guerin, Francois; Dantes, Didier; Bouzou, Nathalie; Chorier, Philippe; Bouchardy, Anne-Marie; Rollin, Joël.

    2017-11-01

    The contribution of the thermal infrared (TIR) camera to the Earth observation FUEGO mission is to participate; to discriminate the clouds and smoke; to detect the false alarms of forest fires; to monitor the forest fires. Consequently, the camera needs a large dynamic range of detectable radiances. A small volume, low mass and power are required by the small FUEGO payload. These specifications can be attractive for other similar missions.

  15. Measurement of thermal properties of magnetic nanoparticles using infrared thermal microscopy

    DEFF Research Database (Denmark)

    Kim, Jae Young; Chang, Ki Soo; Kook, Myung Ho

    2013-01-01

    Magnetic nanoparticles (MNPs) are considered promising for biomedical applications such as hyperthermia treatment and disease diagnosis owing to their distinctive thermal properties. For these applications, it is essential to screen the temperature distribution in the targeted disease site...

  16. Objective assessment of biomagnetic devices and alternative clinical therapies using infrared thermal imaging

    Science.gov (United States)

    Rockley, Graham J.

    2001-03-01

    The overwhelming introduction of magnetic devices and other alternative therapies into the health care market prompts the need for objective evaluation of these techniques through the use of infrared thermal imaging. Many of these therapies are reported to promote the stimulation of blood flow or the relief of pain conditions. Infrared imaging is an efficient tool to assess such changes in the physiological state. Therefore, a thermal imager can help document and substantiate whether these therapies are in fact providing an effective change to the local circulation. Thermal images may also indicate whether the change is temporary or sustained. As a specific case example, preliminary findings will be presented concerning the use of magnets and the effect they have on peripheral circulation. This will include a discussion of the recommended protocols for this type of infrared testing. This test model can be applied to the evaluation of other devices and therapeutic procedures which are reputed to affect circulation such as electro acupuncture, orthopedic footwear and topical ointments designed to relieve pain or inflammation.

  17. Multi-channel thermal infrared communications using engineered blackbody radiation for security applications

    Science.gov (United States)

    Hu, F.; Liang, X.; Lucyszyn, S.

    2014-10-01

    The thermal (emitted) infrared frequency bands, typically from 20-40 THz and 60-100 THz, are best known for applications in thermography, such as target acquisition, surveillance, night vision, and remote sensing. This unregulated part of the spectral range offers opportunities for the development of short-range secure communications. The `THz Torch' concept was recently demonstrated by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels. The energy in each channel is then independently pulse-modulated, transmitted and detected, creating a robust form of short-range secure communications in the far/mid infrared. In this paper, recent progress for the `THz Torch' technology will be presented; the physical level integrity for multichannel proof-of-concept working demonstrators will be evaluated. By exploring a diverse range of methods, significant enhancements to both data rate and distance can be expected. Our thermodynamics-based approach represents a new paradigm in the sense that 19th century physics can be exploited with 20th century multiplexing concepts for low-cost 21st century ubiquitous security and defence applications in the thermal infrared range.

  18. An Efficient Algorithm for Server Thermal Fault Diagnosis Based on Infrared Image

    Science.gov (United States)

    Liu, Hang; Xie, Ting; Ran, Jian; Gao, Shan

    2017-10-01

    It is essential for a data center to maintain server security and stability. Long-time overload operation or high room temperature may cause service disruption even a server crash, which would result in great economic loss for business. Currently, the methods to avoid server outages are monitoring and forecasting. Thermal camera can provide fine texture information for monitoring and intelligent thermal management in large data center. This paper presents an efficient method for server thermal fault monitoring and diagnosis based on infrared image. Initially thermal distribution of server is standardized and the interest regions of the image are segmented manually. Then the texture feature, Hu moments feature as well as modified entropy feature are extracted from the segmented regions. These characteristics are applied to analyze and classify thermal faults, and then make efficient energy-saving thermal management decisions such as job migration. For the larger feature space, the principal component analysis is employed to reduce the feature dimensions, and guarantee high processing speed without losing the fault feature information. Finally, different feature vectors are taken as input for SVM training, and do the thermal fault diagnosis after getting the optimized SVM classifier. This method supports suggestions for optimizing data center management, it can improve air conditioning efficiency and reduce the energy consumption of the data center. The experimental results show that the maximum detection accuracy is 81.5%.

  19. Feature Selection for Intelligent Firefighting Robot Classification of Fire, Smoke, and Thermal Reflections Using Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Kim

    2016-01-01

    Full Text Available Locating a fire inside of a structure that is not in the direct field of view of the robot has been researched for intelligent firefighting robots. By classifying fire, smoke, and their thermal reflections, firefighting robots can assess local conditions, decide a proper heading, and autonomously navigate toward a fire. Long-wavelength infrared camera images were used to capture the scene due to the camera’s ability to image through zero visibility smoke. This paper analyzes motion and statistical texture features acquired from thermal images to discover the suitable features for accurate classification. Bayesian classifier is implemented to probabilistically classify multiple classes, and a multiobjective genetic algorithm optimization is performed to investigate the appropriate combination of the features that have the lowest errors and the highest performance. The distributions of multiple feature combinations that have 6.70% or less error were analyzed and the best solution for the classification of fire and smoke was identified.

  20. Active infrared thermal imaging technology to detect the corrosion defects in aircraft cargo door

    Science.gov (United States)

    Chen, Dapeng; Zhang, Cunlin; Zeng, Zhi; Xing, Chunfei; Li, Yanhong

    2009-11-01

    Aircraft fuselage material corrosion problems have been major aviation security issues, which hinder the development of aviation industry. How can we use non-destructive testing methods to detect the internal corrosion defects from the outside of the fuselage, to find the hidden safety problems in advance and update the defective equipment and materials, has great significance for the prevention of accidents. Nowadays, the active infrared thermal imaging technology as a new nondestructive technology has been gradually used on a wide variety of materials, such as composite, metal and so on. This article makes use of this technology on an aircraft cargo door specimen to detect the corrosion defects. Firstly, use High-energy flash pulse to excite the specimen, and use the thermal image processing software to splice the thermal images, so the thermal images of the overall specimen can be showed. Then, heat the defects by ultrasonic excitation, this will cause vibration and friction or thermoelastic effects in the places of defects, so the ultrasonic energy will dissipate into heat and manifested in the uneven temperature of surface. An Infrared camera to capture the changes of temperature of material surface, send data to the computer and records the thermal information of the defects. Finally, extracting data and drawing infrared radiation-time curve of some selected points of interest to analyze the signal changes in heat of defects further more. The results of the experiments show that both of the two ways of heat excitation show a clear position and shape of defects, and the ultrasonic method has more obvious effect of excitation to the defects, and a higher signal to noise ratio than the flash pulse excitation, but flash pulse method do not contact the specimen in the process of excitation, and shows the location and shape of defects in the overall of the specimen has its advantages.

  1. Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test

    Science.gov (United States)

    Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel

    2015-01-01

    NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.

  2. A protocol for analysing thermal stress in insects using infrared thermography.

    Science.gov (United States)

    Gallego, Belén; Verdú, José R; Carrascal, Luis M; Lobo, Jorge M

    2016-02-01

    The study of insect responses to thermal stress has involved a variety of protocols and methodologies that hamper the ability to compare results between studies. For that reason, the development of a protocol to standardize thermal assays is necessary. In this sense, infrared thermography solves some of the problems allowing us to take continuous temperature measurements without handling the individuals, an important fact in cold-blooded organisms like insects. Here, we present a working protocol based on infrared thermography to estimate both cold and heat thermal stress in insects. We analyse both the change in the body temperature of individuals and their behavioural response. In addition, we used partial least squares regression for the statistical analysis of our data, a technique that solves the problem of having a large number of variables and few individuals, allowing us to work with rare or endemic species. To test our protocol, we chose two species of congeneric, narrowly distributed dung beetles that are endemic to the southeastern part of the Iberian Peninsula. With our protocol we have obtained five variables in the response to cold and twelve in the response to heat. With this methodology we discriminate between the two flightless species of Jekelius through their thermal response. In response to cold, Jekelius hernandezi showed a higher rate of cooling and reached higher temperatures of stupor and haemolymph freezing than Jekelius punctatolineatus. Both species displayed similar thermoregulation ranges before reaching lethal body temperature with heat stress. Overall, we have demonstrated that infrared thermography is a suitable method to assess insect thermal responses with a high degree of sensitivity, allowing for the discrimination between closely related species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  4. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    National Research Council Canada - National Science Library

    Wang, Fei; Qin, Zhihao; Song, Caiying; Tu, Lili; Karnieli, Arnon; Zhao, Shuhe

    2015-01-01

      The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST...

  5. In-Flight Wavelength Calibration of Thermal Infrared Multispectral Scanner (TIMS) Data Acquired from the ER-2

    Science.gov (United States)

    Hook, S.; Okada, K.

    1994-01-01

    In 1991 one flightline of Thermal Infrared Multispectral Scanner (TIMS) data was acquired over Castaic Lake, California and in 1992 four flightlines of TIMS data were acquired over Death Valley, California.

  6. Planck intermediate results: XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.

    2014-01-01

    The dust-Hi correlation is used to characterize the emission properties of dust in the diffuse interstellar medium (ISM) from far infrared wavelengths to microwave frequencies. The field of this investigation encompasses the part of the southern sky best suited to study the cosmic infrared...

  7. Characterisation of mineral dust emission in the Middle EAST using the Spinning Enhanced Visible and Infrared Imager (SEVIRI)

    Science.gov (United States)

    Hennen, M.; Shahgedanova, M.; White, K.

    2015-12-01

    Using the Spinning Enhanced Visual and InfraRed Imager (SEVIRI) on-board Meteosat's second generation satellite (MSG), mineral dust emissions from the Middle East were observed at a high temporal and spatial resolution between the years 2006 and 2013. This research provides a subjective derivation of mineral dust source locations in the Middle East using the thermal infrared Dust RGB product. Focusing on the brightness temperature difference around 10.8 µm channel and their spectral contrast with clear sky conditions, the Dust RGB product has been recognised as a major asset in detecting dust. While the product has already been used to map dust emissions in Sahara and south Africa, this research is the first to map dust emissions in the Middle East using SEVIRI, one of the dustiest regions in the world second only to the Sahara Desert. For every dust storm activation within the Middle East, the point of first emission is derived from visual inspection of each 15 minute image, these points were then recorded in a dust source climatology (DSC) database, along with time and direction of dust movement. To take account of potential errors inherent in this subjective detection method, a degree of confidence is associated with each data point with relevance to time of day (which has a strong effect on ability to detect dust in these products) and weather conditions, in particular presence of clouds. These results are compared with an automated retrieval using Aerosol Optical Depth (AOD) measurements form the Moderate Resolution Image Spectrometer (MODIS); which, due to its sun-synchronous orbit allows a measurement of dust in the atmosphere once a day. Differences in the spatial distribution of SEVIRI dust sources and MODIS inferred dust source regions can be explained by inherent transport bias in the latter's low sampling rate and prevailing wind conditions. This database will provide an important tool in further understanding dust emission processes in the region

  8. Rapid subsurface detection of nanoscale defects in live microprocessors by functional infrared emission spectral microscopy.

    Science.gov (United States)

    Saloma, Caesar; Tarun, Alvarado; Bailon, Michelle; Soriano, Maricor

    2005-12-01

    We demonstrate the rapid and nondestructive detection of subsurface nanometer-size defects in 90 nm technology live microprocessors with a new technique called functional infrared emission spectral microscopy. Broken, leaky, and good transistors with similar photoemission images are identified from each other by their different emission spectra that are calculated as linear combinations of weighted basis spectra. The basis spectra are derived from a spectral library by principal component analysis. Leaky transistors do not exhibit apparent morphological damage and are undetectable by optical or scanning probe microscopy alone. The emission signals from two or more transistors combined incoherently, and defect detection is primarily limited by the signal-to-noise ratio of the detected spectrum and not by the separation distance of neighboring transistors.

  9. On the Diffuse Non-thermal Emission from Galaxy Clusters

    Science.gov (United States)

    Donnert, J.

    2011-07-01

    A number of galaxy clusters show complex radio emission not associable with optical counterparts. These objects are commonly classified as radio relics, radio mini halos and giant radio halos. The latter are diffuse Mpc-sized objects centred on the intra-cluster medium (ICM) and are commonly observed in merging clusters. In this work we investigate the formation of radio halos by means of astrophysical numerical simulations. Radio halos (RH) are observed in the GHz regime and show a complex broken power-law emission spectrum. This points to a population of relativistic electrons (CRe) interacting with the magnetic field present in the intra-cluster medium and emitting radio synchrotron radiation. Furthermore RH are transient phenomena, as inferred from the bimodal distribution of radio bright and radio quiet clusters found early on. Their scaling relations with thermal cluster observables breaks the self-similar model established from X-ray observations. In general, relativistic particles are injected strongly localised by shocks and galactic outflows into the ICM with a power-law spectrum. They are then subject to energy losses via inverse Compton, synchrotron, bremsstrahlung and Coulomb processes. This results in a limited lifetime of cosmic-ray electrons at synchrotron bright energies in the intra-cluster medium of ≈ 10^8 yrs. However, due to their interaction with the complex magnetic field of the ICM, it can be shown that cosmic-ray electrons have their effective diffusion speed limited to the Alven velocity in the thermal plasma. This poses a problem on the formation of radio halos, because it is unclear how the cluster-wide synchrotron bright population of CRe, necessary to make a radio halo, can be maintained under these conditions. Currently two competing models are heavily discussed to solve this problem. Hadronic (secondary) models consider the hadronic interaction of relativistic protons (CRp) with the thermal gas of the ICM. In contrast to CR

  10. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater

    Directory of Open Access Journals (Sweden)

    Fabio Sansivero

    2013-11-01

    Full Text Available Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano.

  11. Thermal emissions and climate change: Cooler options for future energy technology

    OpenAIRE

    Cowern, Nick E. B.; Ahn, Chihak

    2008-01-01

    Global warming arises from 'temperature forcing', a net imbalance between energy fluxes entering and leaving the climate system and arising within it. Humanity introduces temperature forcing through greenhouse gas emissions, agriculture, and thermal emissions from fuel burning. Up to now climate projections, neglecting thermal emissions, typically foresee maximum forcing around the year 2050, followed by a decline. In this paper we show that, if humanity's energy use grows at 1%/year, slower ...

  12. Thermal Breakdown Kinetics of 1-Ethyl-3-Methylimidazolium Ethylsulfate Measured Using Quantitative Infrared Spectroscopy.

    Science.gov (United States)

    Wheeler, Jeffrey L; Pugh, McKinley; Atkins, S Jake; Porter, Jason M

    2017-12-01

    In this work, the thermal stability of the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4]) is investigated using infrared (IR) spectroscopy. Quantitative IR absorption spectral data are measured for heated [EMIM][EtSO4]. Spectra have been collected between 25 ℃ and 100 ℃ using a heated optical cell. Multiple samples and cell pathlengths are used to determine quantitative values for the molar absorptivity of [EMIM][EtSO4]. These results are compared to previous computational models of the ion pair. These quantitative spectra are used to measure the rate of thermal decomposition of [EMIM][EtSO4] at elevated temperatures. The spectroscopic measurements of the rate of decomposition show that thermogravimetric methods overestimate the thermal stability of [EMIM][EtSO4].

  13. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide

    Science.gov (United States)

    Ventura, M.; Silva, J. R.; Andrade, L. H. C.; Scorza Júnior, R. P.; Lima, S. M.

    2018-01-01

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations ( 2 ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH) + 1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH) + 1δ(CH) combination band at 960 nm can be used as a marker for SFZ in methanol.

  14. Extraction of Curcumin Pigment from Indonesian Local Turmeric with Its Infrared Spectra and Thermal Decomposition Properties

    Science.gov (United States)

    Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Ana; Widiaty, I.; Hurriyati, R.

    2017-03-01

    Curcumin is one of the pigments which is used as a spice in Asian cuisine, traditional cosmetic, and medicine. Therefore, process for getting curcumin has been widely studied. Here, the purpose of this study was to demonstrate the simple method for extracting curcumin from Indonesian local turmeric and investigate the infrared spectra and thermal decomposition properties. In the experimental procedure, the washed turmeric was dissolved into an ethanol solution, and then put into a rotary evaporator to enrich curcumin concentration. The result showed that the present method is effective to isolate curcumin compound from Indonesian local turmeric. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.

  15. Assessing Consistency in Radiated Thermal Output of Beef Steers by Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-07-01

    Full Text Available Measurements of radiated thermal output are claimed to reflect the metabolic efficiency of mammals. This is important in food-producing animals because a measure of metabolic efficiency may translate to desirable characteristics, such as growth efficiency or residual feed intake, and permit the grouping of animals by metabolic characteristics that can be more precisely managed. This study addresses the question of whether radiated thermal parameters are characteristic of individual animals under normal and metabolically-challenging conditions. Consistency in radiated thermal output was demonstrated over a period of four weeks on condition that a sufficiently representative sample of measurements could be made on individual animals. The study provided evidence that infrared thermography could be used as an automated, rapid, and reliable tool for assessing thermoregulatory processes.

  16. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  17. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  18. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  19. Evaluation of the cellulite using a thermal infra-red camera.

    Science.gov (United States)

    Nkengne, A; Papillon, A; Bertin, C

    2013-02-01

    Cellulite is usually related to alterations of the microcirculation. Measuring the skin temperature is a mean to assess the skin microvascular plexus. A three-step clinical study was performed in order to develop and to validate the use of an infrared thermal camera for measuring cellulite severity. Thermal images of the thigh were recorded and processed to quantify the thermal homogeneity. The proposed protocol was then validated in three steps. Firstly, the parameters which could influence the skin temperature were identified throw a design of experiment. Secondly, the repeatability and reproducibility of the method was estimated (five subjects, four investigators and five experiments). Finally, thermal images and clinical grading of cellulite was performed on 39 women (21-68 years old), and the correlation between these methods was assessed. All parameters describing the thermal homogeneity were found repeatable and reproducible. The strongest correlation between thermal results and the clinical assessment were observed for Sa (R = 0.53, P cellulite. © 2012 John Wiley & Sons A/S.

  20. Broadband ∼3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses

    Science.gov (United States)

    Shen, Lingling; Wang, Ning; Dou, Aoju; Cai, Yangjian; Tian, Ying; Huang, Feifei; Xu, Shiqing; Zhang, Junjie

    2018-01-01

    The Dy3+/Yb3+ co-doped germanate glasses with good thermal stability have been prepared by the conventional melt quenching method. The J-O intensity parameters and radiative properties such as spontaneous transition probilities (Arad), fluorescence branching ratios (β) and radiative lifetimes (τrad) were investigated according to the absorption spectrum based on Judd-Ofelt theory. An intense emission around ∼3 μm with the FWHM reaching to 322 nm was obtained in present glasses excited by 980 nm LD. The high spontaneous transition probability (63.94 s-1), large emission cross section (6.0 × 10-21 cm2) and superior gain performance corresponding to the Dy3+: 6H13/2 → 6H15/2 transition were obtained. Moreover, the energy transfer mechanism was analyzed qualitatively, and it was found that the energy transfer from Yb3+: 2F5/2 to Dy3+: 6H5/2 level could be quite efficient. Hence, the results indicated that the prepared Dy3+/Yb3+ co-doped germanate glass could be a potential candidate for ∼3 μm mid-infrared solid state lasers.

  1. Thermal signature analysis of human face during jogging activity using infrared thermography technique

    Science.gov (United States)

    Budiarti, Putria W.; Kusumawardhani, Apriani; Setijono, Heru

    2016-11-01

    Thermal imaging has been widely used for many applications. Thermal camera is used to measure object's temperature above absolute temperature of 0 Kelvin using infrared radiation emitted by the object. Thermal imaging is color mapping taken using false color that represents temperature. Human body is one of the objects that emits infrared radiation. Human infrared radiations vary according to the activity that is being done. Physical activities such as jogging is among ones that is commonly done. Therefore this experiment will investigate the thermal signature profile of jogging activity in human body, especially in the face parts. The results show that the significant increase is found in periorbital area that is near eyes and forehand by the number of 7.5%. Graphical temperature distributions show that all region, eyes, nose, cheeks, and chin at the temperature of 28.5 - 30.2°C the pixel area tends to be constant since it is the surrounding temperature. At the temperature of 30.2 - 34.7°C the pixel area tends to increase, while at the temperature of 34.7 - 37.1°C the pixel area tends to decrease because pixels at temperature of 34.7 - 37.1°C after jogging activity change into temperature of 30.2 - 34.7°C so that the pixel area increases. The trendline of jogging activity during 10 minutes period also shows the increasing of temperature. The results of each person also show variations due to physiological nature of each person, such as sweat production during physical activities.

  2. Characterization of optical and micro-physical properties of cirrus clouds using a wideband thermal infrared spectrometer

    Science.gov (United States)

    Palchetti, Luca; Di Natale, Gianluca; Bianchini, Giovanni

    2014-05-01

    High-altitude ice clouds such as cirrus clouds play a key role in the Earth's radiation budget since they cover permanently about 20-30% of the surface of the planet, reaching even to 60-70% in the tropics. The modulation of the incoming solar radiation and the outgoing Earth's thermal emission due to cirrus can contribute to heat or to cool the atmosphere, according to their optical properties, which must be characterised with great accuracy and over the whole spectral range involved in the scattering and emission processes. Here we present the infrared measurements over the wide spectral range from 9 to 50 micron performed by the Fourier transform spectrometer REFIR-PAD (Radiation Explorer in Far InfraRed - Prototype for Application and Development) during many field campaigns that have taken place since 2007 from different high-altitude ground-based stations: Testa Grigia Station, Cervinia-Italy, (3480 m asl), Cerro Toco, Atacama-Chile, (5380 m asl), Concordia Base, Dome C-Antarctica (3230 m asl). These measurements show for the first time the spectral effect of cirrus clouds in the long-wave part of the emission spectrum above 15 micron of wavelength. To characterise these measurements over the wide spectral range as a function of the optical properties of ice particles, a model of the radiative transfer, that integrates the well known numerical code LBLRTM, which simulates the radiative transfer in the atmosphere, with a specific code which simulates the propagation of the radiation through the cloud, was developed. The optical properties of clouds have been modelled using the δ-scaled Eddington approximation for a single layer and the Ping Yang's database for the single-scattering properties of ice crystals. The preliminary results of the fit procedure used for the determination of the micro-physical parameters of ice crystals, such as the effective diameter, ice water path, effective temperature and optical thickness will be shown in the presentation. The

  3. [Mid-infrared emission and multiphonon relaxation in Tm3+-doped Ge-Ga-Se glasses].

    Science.gov (United States)

    Zhang, Peng-Jun; Dai, Shi-Xun; Le, Fang-Da; Peng, Bo; Xu, Tie-Feng; Nie, Qiu-Hua; Zhang, Xiang-Hua

    2010-06-01

    A series of chalcogenide glasses based on the composition Ge30 Ga5 Se65 (at. %) doped with the different Tm3+ ions were synthesized by melt-quenching technique. The refractive indexes, Raman spectra, absorption spectra, near-and mid-infrared fluorescence, and lifetimes of glass samples under 800 nm laser excitation were measured. The intensity parameters omega(i) (i = 2, 4, 6), transition probabilities, branching ratios and radiative lifetimes have been predicted for Tm3+ ions in samples by using the Judd-Ofelt theory. The near-infrared emission spectra at 1.23, 1.48 and 1.8 microm were observed and their quantum efficiencies were evaluated respectively in glass doped with 1 Wt% Tm(3+)-ions under 800 nm excitation. The mid-infrared fluorescence spectra were investigated with the different Tm3+ ion concentration under 800 nm excitation. The multiphonon relaxation rate of Tm3+ : 3 H5 --> 3F4 by the measured and calculated lifetimes, and the relative parameters of W(0) and a in Ge30 Ga5 Se65 glass were evaluated. Results show that the multiphonon relaxation rates were significantly lower than other glasses due to the lower maximum phonon energy, so the selenide glasses are promising as host materials for doping by rare earth ions and for preparation of mid-infrared optical elements.

  4. Radiometric enhancements of thermal infrared images for rock slope investigation by coupling with groundbased LiDAR

    Science.gov (United States)

    Derron, Marc-Henri; Dubas, Olivier; Guérin, Antoine; Lefeuvre, Caroline; Jaboyedoff, Michel

    2017-04-01

    Modern infrared thermal (IRT) cameras make easy to acquire images of "apparent" temperature in the field. Usually based on a microbolometer, they actually record the irradiance [W/m2] collected by the sensor in the LWIR band (8-12 micron). This irradiance results from a quite complex mixing of thermal contributors and factors, and its interpretation in terms of temperature is not straightforward. The apparent temperature of a rock surface may differ very significantly from its "real" temperature (properly named "kinetic" temperature). Some of the factors intervening in the measurement depends on the rock cliff geometry (local incidence angle, dip direction and angle, cliff orientation relatively to the sun position, sensor to cliff range). We propose to use terrestrial LiDAR data to correct IRT images for these geometrical effects. To do it, xyz points from LiDAR data are projected in the focal plane of the IRT camera in order to produce images of geometric properties. These images can then be used to correct the radiometric values of the IRT images based on various empirical relationships. Preliminary results on a cliff show that a difference of range inside an image may account for up to 1 degree of temperature and local incidence angle up to 2 degrees (for a homogeneous rock surfaces at constant emissivity). The impact of ambient radiative environment (sky, sun, ground, etc) will be assessed in a next step.

  5. Multi-use applications of dual-band infrared (DBIR) thermal imaging for detecting obscured structural defects

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.; Durbin, P.F.

    1994-05-01

    Precise dual-band infrared (DBIR) thermal imaging provides a useful diagnostic tool for wide-area detection of defects from corrosion damage in metal airframes, heat damage in composite structures and structural damage in concrete bridge decks. We use DBIR image ratios to enhance surface temperature contrast, remove surface emissivity noise and increase signal-to-clutter ratios. We clarify interpretation of hidden defect sites by distinguishing temperature differences at defect sites from emissivity differences at clutter sites. This reduces the probability of false calls associated with misinterpreted image data. For airframe inspections, we map flash-heated defects in metal structures. The surface temperature rise above ambient at corrosion-thinned sites correlates with the percentage of material loss from corrosion thinning. For flash-heated composite structures, we measure the temperature-time history which relates to the depth and extent of heat damage. In preparation for bridge deck inspections, we map the natural day and night temperature variations at known concrete slab delamination sites which heat and coot at different rates than their surroundings. The above-ambient daytime and below-ambient nightime delamination site temperature differences correlate with the volume of replaced concrete at the delamination sites.

  6. Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

    Directory of Open Access Journals (Sweden)

    Antonio Hernán-Caballero

    2017-10-01

    Full Text Available We use a semi-empirical model to reproduce the 0.1–10 μm spectral energy distribution (SED of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk, where differences in the optical spectral index are reproduced by varying the amount of extinction. The near- and mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust. The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10 μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39 μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

  7. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-04

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  8. Infrared absorption spectroscopy of carbon monoxide on nickel films: a low temperature thermal detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.B.

    1978-11-01

    Sensitive vibrational spectra of carbon monoxide molecules adsorbed on evaporated nickel films have been measured by attaching a thermometer to the sample, cooling the assembly to liquid helium temperatures, and recording the temperature changes which occur when infrared radiation is absorbed. The measurements are made in an ultrahigh vacuum chamber in which the sample surface can be cleaned, heated, exposed to gas molecules and cooled to 1.6 K for the infrared measurements. The spectra of chemisorbed CO molecules are interpreted in terms of the linear and bridge adsorption sites on the nickel surface, and they show how the distribution of molecules among these sites changes when the CO coverage increases and intermolecular forces become important. The spectra of physically adsorbed molecules in both monolayer and multilayer films are also reported. Absorptions as small as five parts in 10/sup 5/ of the incident radiation can presently be detected in spectra covering broad bands of infrared frequencies with a resolution of 2 cm/sup -1/. This high sensitivity is attributable to the low noise and reduced background signal of the thermal detection scheme, to the stability of the rapid scan Fourier transform infrared spectrometer, and to the automated computerized data acquisition electronics. Better performance is expected in future experiments on single crystal samples as well as evaporated films. This will make it possible to study molecules with weaker absorptions than CO and to look for evidence of chemical reactions between different adsorbed molecules.

  9. Properties of the Variation of the Infrared Emission of OH/IR Stars I. The K Band Light Curves

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2009-09-01

    Full Text Available To study properties of the variation of the infrared emission of OH/IR stars, we collect and analyze the infrared observational data in K band for nine OH/IR stars. We use the observational data obtained for about three decades including recent data from the two micron all sky survey (2MASS and the deep near infrared survey of the southern sky (DENIS. We use Marquardt-Levenberg algorithm to determine the pulsation period and amplitude for each star and compare them with previous results of infrared and radio investigations.

  10. Genetic background of methane emission by Dutch Holstein Friesian cows measured with infrared sensors in automatic milking systems

    NARCIS (Netherlands)

    Engelen, van S.; Bovenhuis, H.; Tol, van der P.P.J.; Visker, M.H.P.W.

    2018-01-01

    International environmental agreements have led to the need to reduce methane emission by dairy cows. Reduction could be achieved through selective breeding. The aim of this study was to quantify the genetic variation of methane emission by Dutch Holstein Friesian cows measured using infrared

  11. Infrared Emission from Kilonovae: The Case of the Nearby Short Hard Burst GRB 160821B

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Lau, Ryan M. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Korobkin, Oleg; Wollaeger, Ryan; Fryer, Christopher L. [Computational Methods Group (CCS-2), Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545 (United States)

    2017-07-10

    We present constraints on Ks-band emission from one of the nearest short hard gamma-ray bursts, GRB 160821B, at z = 0.16, at three epochs. We detect a red relativistic afterglow from the jetted emission in the first epoch but do not detect any excess kilonova emission in the second two epochs. We compare upper limits obtained with Keck I/MOSFIRE to multi-dimensional radiative transfer models of kilonovae, that employ composition-dependent nuclear heating and LTE opacities of heavy elements. We discuss eight models that combine toroidal dynamical ejecta and two types of wind and one model with dynamical ejecta only. We also discuss simple, empirical scaling laws of predicted emission as a function of ejecta mass and ejecta velocity. Our limits for GRB 160821B constrain the ejecta mass to be lower than 0.03 M {sub ⊙} for velocities greater than 0.1 c. At the distance sensitivity range of advanced LIGO, similar ground-based observations would be sufficiently sensitive to the full range of predicted model emission including models with only dynamical ejecta. The color evolution of these models shows that I – K color spans 7–16 mag, which suggests that even relatively shallow infrared searches for kilonovae could be as constraining as optical searches.

  12. Quantitative thermal imperfection definition using non-destructive infrared thermography on an advanced DEMO divertor concept

    Science.gov (United States)

    Gallay, F.; Richou, M.; Vignal, N.; Lenci, M.; Roccella, S.; Kermouche, G.; Visca, E.; You, J. H.

    2017-12-01

    The future DEMO divertor is currently under conceptual design within the European Consortium. In this regard, several concepts have been proposed and mock-ups have been fabricated to investigate their thermo-mechanical behaviour. Indeed, as a key plasma facing component, the divertor will have to withstand extreme thermal loads (up to 20 MW m-2 during slow transient events) and will have to be able to exhaust a large amount of heat. The presence of structural defects in the component may significantly affect the thermal response and must therefore be considered. A non-destructive technique based on infrared thermography is proposed here to detect defects in mock-ups where graded material was used as an interlayer between the heatsink material and the armor material. Two methods to characterize the size and location of such defects are presented. It was shown that finite element analysis combined with experimental data from infrared thermography, provides accurate means to assess quantitatively the size and position of thermal imperfections.

  13. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  14. INTERPRETATION OF THERMAL-INFRARED MULTISPECTRAL SCANNER IMAGES OF THE OSGOOD MOUNTAINS, NEVADA.

    Science.gov (United States)

    Krohn, M. Dennis

    1984-01-01

    Data from the Thermal-Infrared Multispectral Scanner (TIMS) were collected over the Osgood Mountains in northern Nevada midmorning on 27 August 1983. The area includes gold-producing properties of the Getchell Mine, the Prinson Mine, and a prospect being developed near Preble, Nevada. Tungsten-bearing tactite deposits, barite deposits, and some minor lead-zinc deposits are also present. The area was surveyed to determine if multichannel, mid-infrared data could detect the effects of hydrothermal alteration in the sediment-hosted disseminated gold deposits. Because the gold in the deposits is generally microscopic and the effects of alteration are difficult to observe, the deposits present a difficult challenge for geological remote sensing.

  15. Ultraviolet radiation effects on the infrared damage rate of a thermal control coating

    Science.gov (United States)

    Bass, J. A.

    1972-01-01

    The effects of ultraviolet radiation on the infrared reflectance of ZnO silicone white thermal coatings were investigated. Narrow band ultraviolet radiation for wavelengths in the 2200A to 3500A range by a monochromator and a high pressure, 150-W Eimac xenon lamp. The sample was irradiated while in a vacuum of at least 0.000001 torr, and infrared reflectance was measured in situ with a spectroreflectometer at 19,500A. Reflectance degradation was studied as a function of wavelength, time, intensity, and dose. Damage was wavelength dependent at constant exposure, but no maximum was evident above the shortest wavelength investigated here. The degradation rate at constant intensity was an exponential function of time and varies with intensity.

  16. Application of combined Landsat thematic mapper and airborne thermal infrared multispectral scanner data to lithologic mapping in Nevada

    Science.gov (United States)

    Podwysocki, M.H.; Ehmann, W.J.; Brickey, D.W.

    1987-01-01

    Future Landsat satellites are to include the Thematic Mapper (TM) and also may incorporate additional multispectral scanners. One such scanner being considered for geologic and other applications is a four-channel thermal-infrared multispectral scanner having 60-m spatial resolution. This paper discusses the results of studies using combined Landsat TM and airborne Thermal Infrared Multispectral Scanner (TIMS) digital data for lithologic discrimination, identification, and geologic mapping in two areas within the Basin and Range province of Nevada. Field and laboratory reflectance spectra in the visible and reflective-infrared and laboratory spectra in the thermal-infrared parts of the spectrum were used to verify distinctions made between rock types in the image data sets.

  17. Proximity and Gaze Influences Facial Temperature: A Thermal Infrared Imaging Study.

    Directory of Open Access Journals (Sweden)

    Stephanos eIoannou

    2014-08-01

    Full Text Available Direct gaze and interpersonal proximity are known to lead to changes in psycho-physiology, behaviour and brain function. We know little, however, about subtler facial reactions such as rise and fall in temperature, which may be sensitive to contextual effects and functional in social interactions. Using thermal infrared imaging cameras 18 female adult participants were filmed at two interpersonal distances (intimate and social and two gaze conditions (averted and direct. The order of variation in distance was counterbalanced: half the participants experienced a female experimenter’s gaze at the social distance first before the intimate distance (a socially ‘normal’ order and half experienced the intimate distance first and then the social distance (an odd social order. At both distances averted gaze always preceded direct gaze. We found strong correlations in thermal changes between six areas of the face (forehead, chin, cheeks, nose, maxilliary and periorbital regions for all experimental conditions and developed a composite measure of thermal shifts for all analyses. Interpersonal proximity led to a thermal rise, but only in the ‘normal’ social order. Direct gaze, compared to averted gaze, led to a thermal increase at both distances with a stronger effect at intimate distance, in both orders of distance variation. Participants reported direct gaze as more intrusive than averted gaze, especially at the intimate distance. These results demonstrate the powerful effects of another person’s gaze on psycho-physiological responses, even at a distance and independent of context.

  18. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  19. Spatiotemporal Evaluation of Nocturnal Cold Air Drainage Over a Simple Slope Using Thermal Infrared Imagery

    Science.gov (United States)

    Ikani, V.; Chokmani, K.; Fathollahi, L.; Granberg, H.; Fournier, R.

    2016-06-01

    Measurements of climatic processes such as cold air drainage flows are problematic over mountainous areas. Observation of cold air drainage is not available in the existing observation network and it requires a special methodology. The main objective of this study was to characterize the cold air drainage over regions with a slope. A high resolution infrared camera, a meteorological station and Digital Elevation Model (DEM) were used. The specific objective was to derive nocturnal cold air drainage velocity over the slope. To address these objectives, a number of infrared measurement campaigns were conducted during calm and clear sky conditions over an agricultural zone (blackcurrant farm) in Canada. Using thermal infrared images, the nocturnal surface temperature gradient were computed in hourly basis. The largest gradient magnitudes were found between 17h -20h. The cooling rates at basin area were two times higher in comparison to the magnitudes observed within slope area. The image analysis illustrated this considerable temperature gradient of the basin may be partly due to transport of cold air drainage into the basin from the slope. The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  20. Hubble Space Telescope WFC3 Early Release Science: Emission-Line Galaxies from Infrared Grism Observations

    OpenAIRE

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S H; Gardner, J P; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; McCarthy, P. J.; Hathi, N. P.; Malhotra, S; Rhoads, J.; Balick, B.

    2010-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 micron grism data in GOODS-South from the PEARS program, extending the wavelength covereage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are ...

  1. Developing a thermal characteristic index for lithology identification using thermal infrared remote sensing data

    Science.gov (United States)

    Wei, Jiali; Liu, Xiangnan; Ding, Chao; Liu, Meiling; Jin, Ming; Li, Dongdong

    2017-01-01

    In remote sensing petrology fields, studies have mainly concentrated on spectroscopy remote sensing research, and methods to identify minerals and rocks are mainly based on the analysis and enhancement of spectral features. Few studies have reported the application of thermodynamics for lithology identification. This paper aims to establish a thermal characteristic index (TCI) to explore rock thermal behavior responding to defined environmental systems. The study area is located in the northern Qinghai Province, China, on the northern edge of the Qinghai-Tibet Plateau, where mafic-ultramafic rock, quartz-rich rock, alkali granite rock and carbonate rock are well exposed; the pixel samples of these rocks and vegetation were obtained based on relevant indices and geological maps. The scatter plots of TCI indicate that mafic-ultramafic rock and quartz-rich rock can be well extracted from other surface objects when interference from vegetation is lower. On account of the complexity of environmental systems, three periods of TCI were used to construct a three-dimensional scatter plot, named the multi-temporal thermal feature space (MTTFS) model. Then, the Bayes discriminant analysis algorithm was applied to the MTTFS model to extract rocks quantitatively. The classification accuracy of mafic-ultramafic rock is more than 75% in both training data and test data, which suggests TCI can act as a sensitive indicator to distinguish rocks and the MTTFS model can accurately extract mafic-ultramafic rock from other surface objects. We deduce that the use of thermodynamics is promising in lithology identification when an effective index is constructed and an appropriated model is selected.

  2. Thermal effects on light emission in Yb sup 3 sup + -sensitized rare-earth doped optical glasses

    CERN Document Server

    Gouveia, E A; Gouveia-Neto, A S

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb sup 3 sup + -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb sup 3 sup + -codoped Ga sub 2 S sub 3 :La sub 2 O sub 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La sub 2 O sub 3 chalcogenide and fluoroindate glasses codoped with Pr sup 3 sup + /Yb sup 3 sup + , excited off-resonance at 1.064 mu m. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends u...

  3. A model for μ-biomimetic thermal infrared sensors based on the infrared receptors of Melanophila acuminata.

    Science.gov (United States)

    Siebke, Georg; Holik, Peter; Schmitz, Sam; Schmitz, Helmut; Lacher, Manfred; Steltenkamp, Siegfried

    2014-09-01

    Beetles of the genus Melanophila acuminata detect forest fires from distances as far as 130 km with infrared-sensing organs. Inspired by this extremely sensitive biological device, we are developing an IR sensor that operates at ambient temperature using MEMS technology. The sensor consists of two liquid-filled chambers that are connected by a micro-fluidic system. Absorption of IR radiation by one of these chambers leads to heating and expansion of a liquid. The increasing pressure deflects a membrane covered by one electrode of a plate capacitor. The micro-fluidic system and the second chamber represent a fluidic low-pass filter, preventing slow, but large pressure changes. However, the strong frequency dependence of the filter demands a precise characterization of its properties. Here, we present a theoretical model that describes the frequency-dependent response of the sensor based on material properties and geometrical dimensions. Our model is divided into four distinct parts that address different aspects of the sensor. The model describes the frequency-dependent behaviour of the fluidic filter and a thermal low-pass filter as well as saturation effects at low frequencies. This model allows the calculation of optimal design parameters, and thereby provides the foundation for the development of such a sensor.

  4. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  5. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material.

    Science.gov (United States)

    Kats, Mikhail A; Blanchard, Romain; Genevet, Patrice; Yang, Zheng; Qazilbash, M Mumtaz; Basov, D N; Ramanathan, Shriram; Capasso, Federico

    2013-02-01

    We demonstrate that the resonances of infrared plasmonic antennas can be tuned or switched on/off by taking advantage of the thermally driven insulator-to-metal phase transition in vanadium dioxide (VO(2)). Y-shaped antennas were fabricated on a 180 nm film of VO(2) deposited on a sapphire substrate, and their resonances were shown to depend on the temperature of the VO(2) film in proximity of its phase transition, in good agreement with full-wave simulations. We achieved tunability of the resonance wavelength of approximately 10% (>1 μm at λ~10 μm).

  6. Luminescent Zinc Fingers: Zn-Responsive Neodymium Near-Infrared Emission in Water.

    Science.gov (United States)

    Isaac, Manon; Raibaut, Laurent; Cepeda, Céline; Roux, Amandine; Boturyn, Didier; Eliseeva, Svetlana V; Petoud, Stéphane; Sénèque, Olivier

    2017-08-16

    Responsive luminescent probes emitting in the near-infrared (NIR) are in high demand today for biological applications as they allow for the easy and unambiguous discrimination of autofluorescence. Due to their luminescence properties, lanthanide ions offer an interesting alternative to classical organic fluorescent dyes. This has stimulated the development of lanthanide-based responsive probes. Nevertheless, responsive probes that can operate in water with NIR-emitting lanthanide ions are scarce. In this communication, zinc fingers are shown to be versatile scaffolds to elaborate a variety of Zn2+ -responsive probes based on lanthanide emission and featuring desirable properties for the selective detection of Zn2+ in experimental conditions close to cellular. Of special interest is a NIR-emitting probe relying on Nd3+ emission. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spectroscopically forbidden infra-red emission in Au-vertical graphene hybrid nanostructures

    Science.gov (United States)

    Sivadasan, A. K.; Parida, Santanu; Ghosh, Subrata; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Implementation of Au nanoparticles (NPs) is a subject for frontier plasmonic research due to its fascinating optical properties. Herein, the present study deals with plasmonic assisted emission properties of Au NPs-vertical graphene (VG) hybrid nanostructures. The influence of effective polarizability of Au NPs on the surface enhanced Raman scattering and luminescence properties is investigated. In addition, a remarkable infra-red emission in the hybrid nanostructures is observed and interpreted on the basis of intra-band transitions in Au NPs. The flake-like nanoporous VG structure is invoked for the generation of additional confined photons to impart additional momentum and a gradient of confined excitation energy towards initiating the intra-band transitions of Au NPs. Integrating Au plasmonic materials in three-dimensional VG nanostructures enhances the light–matter interactions. The present study provides a new adaptable plasmonic assisted pathway for optoelectronic and sensing applications.

  8. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  9. Emissions, energy return and economics from utilizing forest residues for thermal energy compared to onsite pile burning

    Science.gov (United States)

    Greg Jones; Dan Loeffler; Edward Butler; Woodam Chung; Susan Hummel

    2010-01-01

    The emissions from delivering and burning forest treatment residue biomass in a boiler for thermal energy were compared with onsite disposal by pile-burning and using fossil fuels for the equivalent energy. Using biomass for thermal energy reduced carbon dioxide emissions on average by 39 percent and particulate matter emissions by 89 percent for boilers with emission...

  10. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 1: Slant-columns and their ratios

    Directory of Open Access Journals (Sweden)

    M. Grutter

    2012-02-01

    Full Text Available The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006–2009 using a Scanning Infrared Gas Imaging System (SIGIS. The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm−1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2 to calculate the emission rates at different distances from the crater.

  11. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 1: Slant-columns and their ratios

    Science.gov (United States)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2012-02-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time). Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2) to calculate the emission rates at different distances from the crater.

  12. Power electronics solution to dust emissions from thermal power plants

    Directory of Open Access Journals (Sweden)

    Vukosavić Slobodan

    2010-01-01

    Full Text Available Thermal power stations emit significant amounts of fly ash and ultra fine particles into the atmosphere. Electrostatic precipitators (ESP or electro filters remove flying ashes and fine particles from the flue gas before passing the gas into the chimney. Maximum allowable value of dust is 50 mg/m3 and it requires that the efficiency of the ESPs better than 99 %, which calls for an increase of active surface of the electrodes, hence increasing the filter volume and the weight of steel used for the filter. In previous decades, electrostatic precipitators in thermal power plants were fed by thyristor controlled, single phase fed devices having a high degree of reliability, but with a relatively low collection efficiency, hence requiring large effective surface of the collection plates and a large weight of steel construction in order to achieve the prescribed emission limits. Collection efficiency and energy efficiency of the electrostatic precipitator can be increased by applying high frequency high voltage power supply (HF HV. Electrical engineering faculty of the University of Belgrade (ETF has developed technology and HF HV equipment for the ESP power supply. This solution was subjected to extensive experimental investigation at TE Morava from 2008 to 2010. High frequency power supply is proven to reduce emission two times in controlled conditions while increasing energy efficiency of the precipitator, compared to the conventional thyristor controlled 50Hz supply. Two high frequency high voltage unit AR70/1000 with parameters 70 kV and 1000 mA are installed at TE Morava and thoroughly testes. It was found that the HF HV power supply of the ESP at TE Morava increases collection efficiency so that emission of fine particles and flying ashes are halved, brought down to only 50 % of the emissions encountered with conventional 50 Hz thyristor driven power supplies. On the basis of this study, conclusion is drawn that the equipment comprising HF HV

  13. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    Science.gov (United States)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  14. Determination of water surface temperature based on the use of Thermal Infrared Multispectral Scanner data

    Science.gov (United States)

    Anderson, James E.

    1992-01-01

    A straightforward method for compensating Thermal Infrared Multispectral Scanner (TIMS) digital data for the influence of atmospheric path radiance and the attenuation of target energy by the atmosphere is presented. A band ratioing model useful for estimating water surface temperatures, which requires no ground truth measurements, is included. A study conducted to test the potential of the model and the magnitudes of the corrections for atmosphere encountered is presented. Results of the study, which was based on data collected during an engineering evaluation flight of TIMS, indicate errors in the estimate of the surface temperature of the water fall from +/- 1.0 C for uncorrected data to +/- 0.4 C when data have been corrected according to the model presented. This value approaches the noise-limited thermal resolution of the sensor at the time of the flight.

  15. Evaluation of the infrared test method for the olympus thermal balance tests

    Science.gov (United States)

    Donato, M.; Stpierre, D.; Green, J.; Reeves, M.

    1986-01-01

    The performance of the infrared (IR) rig used for the thermal balance testing of the Olympus S/C thermal model is discussed. Included in this evaluation are the rig effects themselves, the IRFLUX computer code used to predict the radiation inputs, the Monitored Background Radiometers (MBR's) developed to measure the absorbed radiation flux intensity, the Uniform Temperature Reference (UTR) based temperature measurement system and the data acquisition system. A preliminary set of verification tests were performed on a 1 m x 1 m zone to assess the performance of the IR lamps, calrods, MBR's and aluminized baffles. The results were used, in part, to obtain some empirical data required for the IRFLUX code. This data included lamp and calrod characteristics, the absorptance function for various surface types, and the baffle reflectivities.

  16. Bone ablation without thermal or acoustic mechanical injury via a novel picosecond infrared laser (PIRL).

    Science.gov (United States)

    Jowett, Nathan; Wöllmer, Wolfgang; Reimer, Rudolph; Zustin, Jozef; Schumacher, Udo; Wiseman, Paul W; Mlynarek, Alex M; Böttcher, Arne; Dalchow, Carsten V; Lörincz, Balazs B; Knecht, Rainald; Miller, R J Dwayne

    2014-03-01

    A precise means to cut bone without significant thermal or mechanical injury has thus far remained elusive. A novel non-ionizing ultrafast pulsed picosecond infrared laser (PIRL) may provide the solution. Tissue ablation with the PIRL occurs via a photothermal process with thermal and stress confinement, resulting in efficient material ejection greatly enhanced through front surface spallation photomechanical effects. By comparison, the Er:YAG laser (EYL) ablates via photothermal and cavitation-induced photomechanical effects without thermal or acoustic confinement, leading to significant collateral tissue injury. This study compared PIRL and EYL bone ablation by infrared thermography (IRT), environmental scanning electron microscopy (ESEM), and histology. Prospective, comparative, ex vivo animal model. Optics laboratory. Ten circular area defects were ablated in ex vivo chicken humeral cortex using PIRL and EYL at similar average power (~70 mW) under IRT. Following fixation, ESEM and undecalcified light microscopy images were obtained and examined for signs of cellular injury. Peak rise in surface temperature was negligible and lower for PIRL (1.56 °C; 95% CI, 0.762-2.366) compared to EYL ablation (12.99 °C; 95% CI, 12.189-13.792) (P < .001). ESEM and light microscopy demonstrated preserved cortical microstructure following PIRL ablation in contrast to diffuse thermal injury seen with EYL ablation. Microfractures were not observed. Ablation of cortical bone using the PIRL generates negligible and significantly less heat than EYL ablation while preserving cortical microstructure. This novel laser has great potential in advancing surgical techniques where precision osseous manipulation is required.

  17. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies

    Science.gov (United States)

    Cilip, Christopher M.; Rosenbury, Sarah B.; Giglio, Nicholas; Hutchens, Thomas C.; Schweinsberger, Gino R.; Kerr, Duane; Latimer, Cassandra; Nau, William H.; Fried, Nathaniel M.

    2013-05-01

    Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578±154, 530±171, and 426±174 mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0±0.4 mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4 mm outer diameter).

  18. Polarized mid-infrared synchrotron emission in the core of Cygnus A

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rodriguez, E.; Packham, C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Tadhunter, C. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Mason, R. [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Perlman, E. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Alonso-Herrero, A. [Instituto de Física de Cantabria, CSIC-UC, E-39005 Cantabria (Spain); Ramos Almeida, C.; Rodríguez-Espinosa, J. M. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 Tenerife (Spain); Ichikawa, K. [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake cho, Kyoto 606-8502 (Japan); Levenson, N. A. [Gemini Observatory, Casilla 603, La Serena (Chile); Álvarez, C. A. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Ramírez, E. A. [Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo 05508-900 (Brazil); Telesco, C. M. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, P.O. Box 11205, Gainesville, FL 32611-2055 (United States)

    2014-10-01

    We present high-angular (∼0.''4) resolution mid-infrared (MIR) polarimetric observations in the 8.7 μm and 11.6 μm filters of Cygnus A using CanariCam on the 10.4 m Gran Telescopio CANARIAS. A highly polarized nucleus is observed with a degree of polarization of 11% ± 3% and 12% ± 3% and a position angle of polarization of 27° ± 8° and 35° ± 8° in a 0.''38 (∼380 pc) aperture for each filter. The observed rising of the polarized flux density with increasing wavelength is consistent with synchrotron radiation from the parsec-scale jet close to the core of Cygnus A. Based on our polarization model, the synchrotron emission from the parsec-scale jet is estimated to be 14% and 17% of the total flux density in the 8.7 μm and 11.6 μm filters, respectively. A blackbody component with a characteristic temperature of 220 K accounts for >75% of the observed MIR total flux density. The blackbody emission arises from a combination of (1) dust emission in the torus; and (2) diffuse dust emission around the nuclear region, but the contributions of the two components cannot be well-constrained in these observations.

  19. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging

    Science.gov (United States)

    Ghoroghchian, P. Peter; Frail, Paul R.; Susumu, Kimihiro; Blessington, Dana; Brannan, Aaron K.; Bates, Frank S.; Chance, Britton; Hammer, Daniel A.; Therien, Michael J.

    2005-01-01

    We demonstrate that synthetic soft materials can extend the utility of natural vesicles, from predominantly hydrophilic reservoirs to functional colloidal carriers that facilitate the biomedical application of large aqueous-insoluble compounds. Near-infrared (NIR)-emissive polymersomes (50-nm- to 50-μm-diameter polymer vesicles) were generated through cooperative self assembly of amphiphilic diblock copolymers and conjugated multi(porphyrin)-based NIR fluorophores (NIRFs). When compared with natural vesicles comprised of phospholipids, polymersomes were uniquely capable of incorporating and uniformly distributing numerous large hydrophobic NIRFs exclusively in their lamellar membranes. Within these sequestered compartments, long polymer chains regulate the mean fluorophore–fluorophore interspatial separation as well as the fluorophore-localized electronic environment. Porphyrin-based NIRFs manifest photophysical properties within the polymersomal matrix akin to those established for these high-emission dipole strength fluorophores in organic solvents, thereby yielding uniquely emissive vesicles. Furthermore, the total fluorescence emanating from the assemblies gives rise to a localized optical signal of sufficient intensity to penetrate through the dense tumor tissue of a live animal. Robust NIR-emissive polymersomes thus define a soft matter platform with exceptional potential to facilitate deep-tissue fluorescence-based imaging for in vivo diagnostic and drug-delivery applications. PMID:15708979

  20. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-04-01

    Full Text Available The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST. However, calibration notices issued by the United States Geological Survey (USGS indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial

  1. Far infrared stimulated emission from the ns and nf Rydberg states of NO

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Hiroki; Araki, Mitsunori; Umeki, Hiroya; Tsukiyama, Koichi [Graduate School of Chemical Sciences and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2013-06-28

    We report directional far-infrared emission from the {upsilon}= 0 vibrational levels of the 9s{sigma}, 10s{sigma}, 11s{sigma}, 9f, and 10f Rydberg states of NO in the gas phase. The emission around 28 and 19 {mu}m from the 9f state was identified as the downward 9f{yields} 8g and subsequent 8g{yields} 7f cascade transitions, respectively. The emission around 38 and 40 {mu}m from the 10f state was identified as the 10f{yields} 9g and 10f{yields} 9d{sigma}{pi} transition, respectively. Following the excitation of the 9s{sigma}, 10s{sigma}, and 11s{sigma} states, the emission around 40, 60, and 83 {mu}m was assigned as the 9s{sigma}{yields} 8p{sigma}, 10s{sigma}{yields} 9p{sigma}, and 11s{sigma}{yields} 10p{sigma} transitions, respectively. In addition to these emission systems originated from the laser-prepared levels, we found the emission bands from the 8f, 9f, and 10f states which are located energetically above the 9s{sigma}, 10s{sigma}, and 11s{sigma} states, respectively. This observation suggests that the upward 8f Leftwards-Arrow 9s{sigma}, 9f Leftwards-Arrow 10s{sigma}, and 10f Leftwards-Arrow 11s{sigma} optical excitation occurs. Since the energy differences between nf and (n+ 1)s{sigma} states correspond to the wavelength longer than 100 {mu}m, the absorption of blackbody radiation is supposed to be essential for these upward transitions.

  2. Detecting volcanic SO2 emissions with the Infrared Atmospheric Sounding Interferometer

    Science.gov (United States)

    Taylor, Isabelle; Carboni, Elisa; Mather, Tamsin; Grainger, Don

    2017-04-01

    Sulphur dioxide (SO2) emissions are one of the many hazards associated with volcanic activity. Close to the volcano they have negative impacts on human and animal health and affect the environment. Further afield they present a hazard to aviation (as well as being a proxy for volcanic ash) and can cause global changes to climate. These are all good reasons for monitoring gas emissions at volcanoes and this monitoring can also provide insight into volcanic, magmatic and geothermal processes. Advances in satellite technology mean that it is now possible to monitor these emissions from space. The Infrared Atmospheric Sounding Interferometer (IASI) on board the European Space Agency's MetOp satellites is commonly used, alongside other satellite products, for detecting SO2 emissions across the globe. A fast linear retrieval developed in Oxford separates the signal of the target species (SO2) from the spectral background by representing background variability (determined from pixels containing no SO2) in a background covariance matrix. SO2 contaminated pixels can be distinguished from this quickly, facilitating the use of this algorithm for near real time monitoring and for scanning of large datasets for signals to explore further with a full retrieval. In this study, the retrieval has been applied across the globe to identify volcanic emissions. Elevated signals are identified at numerous volcanoes including both explosive and passive emissions, which match reports of activity from other sources. Elevated signals are also evident from anthropogenic activity. These results imply that this tool could be successfully used to identify and monitor activity across the globe.

  3. Report on the CCT Supplementary Comparison S1 of Infrared Spectral Normal Emittance/Emissivity.

    Science.gov (United States)

    Hanssen, Leonard; Wilthan, B; Monte, Christian; Hollandt, Jörg; Hameury, Jacques; Filtz, Jean-Remy; Girard, Ferruccio; Battuello, Mauro; Ishii, Juntaro

    2016-01-01

    The National Measurement Institutes (NMIs) of the United States, Germany, France, Italy and Japan, have joined in an inter-laboratory comparison of their infrared spectral emittance scales. This action is part of a series of supplementary inter-laboratory comparisons (including thermal conductivity and thermal diffusivity) sponsored by the Consultative Committee on Thermometry (CCT) Task Group on Thermophysical Quantities (TG-ThQ). The objective of this collaborative work is to strengthen the major operative National Measurement Institutes' infrared spectral emittance scales and consequently the consistency of radiative properties measurements carried out worldwide. The comparison has been performed over a spectral range of 2 μm to 14 μm, and a temperature range from 23 °C to 800 °C. Artefacts included in the comparison are potential standards: oxidized inconel, boron nitride, and silicon carbide. The measurement instrumentation and techniques used for emittance scales are unique for each NMI, including the temperature ranges covered as well as the artefact sizes required. For example, all three common types of spectral instruments are represented: dispersive grating monochromator, Fourier transform and filter-based spectrometers. More than 2000 data points (combinations of material, wavelength and temperature) were compared. Ninety-eight percent (98%) of the data points were in agreement, with differences to weighted mean values less than the expanded uncertainties calculated from the individual NMI uncertainties and uncertainties related to the comparison process.

  4. Visible-infrared self-amplified spontaneous emission amplifier free electron laser undulator

    Directory of Open Access Journals (Sweden)

    Roger Carr

    2001-12-01

    Full Text Available The visible-infrared self-amplified spontaneous emission amplifier (VISA free electron laser (FEL is an experimental device designed to show self-amplified spontaneous emission (SASE to saturation in the near infrared to visible light energy range. It generates a resonant wavelength output from 800–600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is designed to show how SASE FEL theory corresponds with experiment in this wavelength range, using an electron beam with emittance close to that planned for the future Linear Coherent Light Source at SLAC. VISA comprises a 4 m pure permanent magnet undulator with four 99 cm segments, each of 55 periods, 18 mm long. The undulator has distributed focusing built into it, to reduce the average beta function of the 70–85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walk-off, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, we were able to control trajectory walk-off to less than ±50 μm per field gain length.

  5. Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes.

    Science.gov (United States)

    Aboshyan-Sorgho, Lilit; Nozary, Homayoun; Aebischer, Annina; Bünzli, Jean-Claude G; Morgantini, Pierre-Yves; Kittilstved, Kevin R; Hauser, Andreas; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2012-08-01

    This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF(3)SO(3))(2) (M = Cr, Zn) and Ln(CF(3)SO(3))(3) (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D(3)-symmetrical trinuclear [MLnM(L2)(3)](CF(3)SO(3))(n) complexes (M = Zn, n = 7; M = Cr, n = 9), in which the central lanthanide activator is sandwiched between the two transition metal cations. Visible or NIR irradiation of the peripheral Cr(III) chromophores in [CrLnCr(L2)(3)](9+) induces rate-limiting intramolecular intermetallic Cr→Ln energy transfer processes (Ln = Nd, Er, Yb), which eventually produces lanthanide-centered near-infrared (NIR) or IR emission with apparent lifetimes within the millisecond range. As compared to the parent dinuclear complexes [CrLn(L1)(3)](6+), the connection of a second strong-field [CrN(6)] sensitizer in [CrLnCr(L2)(3)](9+) significantly enhances the emission intensity without perturbing the kinetic regime. This work opens novel exciting photophysical perspectives via the buildup of non-negligible population densities for the long-lived doubly excited state [Cr*LnCr*(L2)(3)](9+) under reasonable pumping powers.

  6. Effect of the Dosage of Tourmaline on Far Infrared Emission Properties of Tourmaline/Glass Composite Materials.

    Science.gov (United States)

    Zhang, Hongchen; Meng, Junping; Liang, Jinsheng; Liu, Jie; Zeng, Zhaoyang

    2016-04-01

    Tourmaline/glass composite materials were prepared by sintering at 600 °C using micron-size tourmaline mineral and glass powders as raw materials. The glass has lower melting point than the transition temperature of tourmaline. The Fourier transform infrared spectroscopy showed that the far infrared emissivity of composite was significantly higher than that of either tourmaline or glass powders. A highest far infrared emissivity of 0.925 was obtained when the dosage of tourmaline was 10 wt%. The effects of the amount of tourmaline on the far infrared emission properties of composite was also systematically studied by field emission scanning electron microscope and X-ray diffraction. The tourmaline phase was observed in the composite, showing a particle size of about 70 nm. This meant that the tourmaline particles showed nanocrystallization. They distributed homogenous in the glass matrix when the dosage of tourmaline was not more than 20 wt%. Two reasons were attributed to the improved far infrared emission properties of composite: the particle size of tourmaline-doped was nanocrystallized and the oxidation of Fe2+ (0.076 nm in radius) to Fe3+ (0.064 nm in radius) took place inside the tourmaline-doped. This resulted in the shrinkage of unit cell of the tourmaline in the composite.

  7. Super-Planckian far-zone thermal emission from asymmetric hyperbolic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, Igor S. [School of Electrical Engineering, Aalto University, P.O. Box 13000, 00076 Aalto (Finland); Melnikov, Leonid A. [Yuri Gagarin State Technical University of Saratov, 77 Politekhnicheskaya, 410054 Saratov (Russian Federation)

    2014-10-20

    We demonstrate the production of strong directive thermal emissions in the far-field zone of asymmetric hyperbolic metamaterials (AHMs), exceeding that predicted by Planck's limit. Asymmetry is inherent to the uniaxial medium, where the optical axis is tilted with respect to medium interfaces. The use of AHMs is shown to enhance the free-space coupling efficiency of thermally radiated waves, resulting in Super-Planckian far-field thermal emission in certain directions. This effect is impossible in usual hyperbolic materials because emission of high density of states (DOS) photons into vacuum with smaller DOS is preserved by the total internal reflection. Different plasmonic metamaterials are proposed for realizing AHM media; the thermal emission from a AHM, based on a grapheme multilayer structure, is presented, as an example.

  8. MER2 MARS MINIATURE THERMAL EMISSION SPECTROMETER RDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains Mars Exploration Rover Miniature Thermal Emission Spectrometer (Mini-TES) Reduced Data Record (RDR) products and ancillary files. The Mini-TES...

  9. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-19

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  10. Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging

    Science.gov (United States)

    Ahuja, Sanjay; Ellingson, William A.; Stuckey, J. B.; Koehl, E. R.

    1996-03-01

    Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber- reinforced-silicon-carbide (SiC(f)/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC(f)/Si3N4), aluminum-oxide-reinforced-alumina (Al2O3(f)/Al2O3, etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly affect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for full-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full array of test specimens.

  11. Non-destructive evaluation of polyolefin thermal aging using infrared spectroscopy

    Science.gov (United States)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-01

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for nondestructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  12. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    Science.gov (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  13. Far-Infrared Emission Characteristics and Wear Comfort Property of ZrC-Imbedded Heat Storage Knitted Fabrics for Emotional Garments

    Directory of Open Access Journals (Sweden)

    Kim Hyun Ah

    2017-06-01

    Full Text Available This study examined the far-infrared emission characteristics and wear comfort properties of ZrC-imbedded heat storage knitted fabrics. For this purpose, ZrC-imbedded, heat storage PET (polyethylene terephthalate was spun from high-viscosity PET with imbedded ZrC powder on the core part and low-viscosity PET on the sheath part using a conjugated spinning method. ZrC-imbedded PET knitted fabric was also prepared and its physical properties were measured and compared with those of regular PET knitted fabric. In addition, ingredient analysis and the far-infrared emission characteristics of the ZrC-imbedded knitted fabrics were analyzed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The thermal properties, moisture absorption, and drying properties of the ZrC-imbedded PET knitted fabric were measured and compared with those of the regular PET knitted fabric. The mechanical properties using the FAST (fabric assurance by simple testing system and the dye affinity of the ZrC-imbedded knitted fabric were also measured and compared with those of regular PET knitted fabric.

  14. Infrared Active Phonons in the Negative Thermal Expanding Compound, ZrW2O8

    Science.gov (United States)

    Turpen, Chandra; Hancock, Jason N.; Schlesinger, Zack; Kowach, Glen

    2003-03-01

    ZrW_2O8 is unusual in that it contracts as it is heated, a phenomenon known as negative thermal expansion. We will present studies of infrared reflectivity and conductivity vs. frequency for a pressed pellet sample of ZrW_2O_8, a compound with cubic lattice structure. Our measurements range from 20 K up to room temperature and from 12 cm-1 to 5000 cm-1 encompassing the entire range of the infrared active phonons in ZrW_2O_8. The phonon spectra exhibit considerable temperature dependence, particularly at low frequency. It is of interest to note that our infrared measurements show two regions of strong absorption in frequency ranges where the phonon density-of-states inferred from time-of-flight neutron scattering is very low. We will compare IR results with other measurements and discuss implications for understanding the nature of this unusual compound. This material is based upon work supported by the National Science Foundation under Grant No. DMR-0071949.

  15. Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks

    Science.gov (United States)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin

    2017-10-01

    There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.

  16. First Use of an Airborne Thermal Infrared Hyperspectral Scanner for Compositional Mapping

    Science.gov (United States)

    Kirkland, Laurel; Herr, Kenneth; Keim, Eric; Adams, Paul; Salisbury, John; Hackwell, John; Treiman, Allan

    2002-01-01

    In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mon-non Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25 microns band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.

  17. Dark and background response stability for the Landsat 8 Thermal Infrared Sensor

    Science.gov (United States)

    Vanderwerff, Kelly; Montanaro, Matthew

    2012-01-01

    The Thermal Infrared Sensor (TIRS) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM), which is a joint mission between NASA and the USGS. The TIRS instrument will continue to collect the thermal infrared data that are currently being collected by the Thematic Mapper and the Enhanced Thematic Mapper Plus on Landsats 5 and 7, respectively. One of the key requirements of the new sensor is that the dark and background response be stable to ensure proper data continuity from the legacy Landsat instruments. Pre launch testing of the instrument has recently been completed at the NASA Goddard Space Flight Center (GSFC), which included calibration collects that mimic those that will be performed on orbit. These collects include images of a cold plate meant to simulate the deep space calibration source as viewed by the instrument in flight. The data from these collects give insight into the stability of the instrument’s dark and background response, as well as factors that may cause these responses to vary. This paper quantifies the measured background and dark response of TIRS as well as its stability.

  18. Integrated optics for nulling interferometry in the thermal infrared: progress and recent achievements

    Science.gov (United States)

    Barillot, M.; Barthelemy, E.; Bastard, L.; Broquin, J.-E.; Hawkins, G.; Kirschner, V.; Ménard, S.; Parent, G.; Poinsot, C.; Pradel, A.; Vigreux, C.; Zhang, S.; Zhang, X.

    2017-11-01

    The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively [1]. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering [2] takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.

  19. Investigation of the influence of spatial degrees of freedom on thermal infrared measurement

    Science.gov (United States)

    Fleuret, Julien R.; Yousefi, Bardia; Lei, Lei; Djupkep Dizeu, Frank Billy; Zhang, Hai; Sfarra, Stefano; Ouellet, Denis; Maldague, Xavier P. V.

    2017-05-01

    Long Wavelength Infrared (LWIR) cameras can provide a representation of a part of the light spectrum that is sensitive to temperature. These cameras also named Thermal Infrared (TIR) cameras are powerful tools to detect features that cannot be seen by other imaging technologies. For instance they enable defect detection in material, fever and anxiety in mammals and many other features for numerous applications. However, the accuracy of thermal cameras can be affected by many parameters; the most critical involves the relative position of the camera with respect to the object of interest. Several models have been proposed in order to minimize the influence of some of the parameters but they are mostly related to specific applications. Because such models are based on some prior informations related to context, their applicability to other contexts cannot be easily assessed. The few models remaining are mostly associated with a specific device. In this paper the authors studied the influence of the camera position on the measurement accuracy. Modeling of the position of the camera from the object of interest depends on many parameters. In order to propose a study which is as accurate as possible, the position of the camera will be represented as a five dimensions model. The aim of this study is to investigate and attempt to introduce a model which is as independent from the device as possible.

  20. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences].

    Science.gov (United States)

    Liu, Li; Fu, Qiao-yan; Shi, Ting-ting; Wang, Ai-chun; Zhang, Xue-wen

    2014-08-01

    Since HJ-1B was launched, 7 sets of blackbody data have been used to calculate onboard calibration coefficients, but the research work on the validation of coefficients is rare. According to the onboard calibration principle, calibration coefficients of HJ-1B thermal infrared channel on Sep 14th, 2009 were calculated with the half-width, moments and look-up table methods. MODIS was selected for the reference sensor, and algorithms of spectral match were improved between the HJ-1B thermal infrared channel and MODIS 31, 32 channels based on the spectral response divergence. The relationship of top of atmosphere (TOA) radiance between the remote sensors was calculated, based on which the surface leaving brightness temperature was calculated by Planck function to validate the brightness temperature calculated through the onboard calibration coefficients. The equivalent brightness temperature calculated by spectral response divergence method is 285.97 K, and the inversion brightness temperature calculated by half-width, moments and look-up table methods is 288.77, 274.52 and 285.97 K respectively. The difference between the inversion brightness temperature and the equivalent brightness temperature is 2.8, -11.46 and 0.02 K, respectively, which demonstrate that onboard calibration coefficients calculated by the look-up table method has better precision and feasibility.

  1. A review on the application of medical infrared thermal imaging in hands

    Science.gov (United States)

    Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António

    2017-09-01

    Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.

  2. Evaluation of Radiometric Performance for the Thermal Infrared Sensor Onboard Landsat 8

    Directory of Open Access Journals (Sweden)

    Huazhong Ren

    2014-12-01

    Full Text Available The radiometric performance of remotely-sensed images is important for the applications of such data in monitoring land surface, ocean and atmospheric status. One requirement placed on the Thermal Infrared Sensor (TIRS onboard Landsat 8 was that the noise-equivalent change in temperature (NEΔT should be ≤0.4 K at 300 K for its two thermal infrared bands. In order to optimize the use of TIRS data, this study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over uniform ground surfaces, including lake, deep ocean, snow, desert and Gobi, as well as dense vegetation. Results showed that the NEΔTs of the two bands were 0.051 and 0.06 K at 300 K, which exceeded the design specification by an order of magnitude. The effect of NEΔT on the land surface temperature (LST retrieval using a split window algorithm was discussed, and the estimated NEΔT could contribute only 3.5% to the final LST error in theory, whereas the required NEΔT could contribute up to 26.4%. Low NEΔT could improve the application of TIRS images. However, efforts are needed in the future to remove the effects of unwanted stray light that appears in the current TIRS images.

  3. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]{sub 18.7{sub μm}}, [O IV], [Fe II], [S III]{sub 33.5{sub μm}}, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z{sub ☉}, and ionization parameters of 2-8 × 10{sup 7} cm s{sup –1}. Based on the [S III]{sub 33.5{sub μm}}/[S III]{sub 18.7{sub μm}} ratios, the electron density in LIRG nuclei is typically one to a few hundred cm{sup –3}, with a median electron density of ∼300 cm{sup –3}, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s{sup –1}) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s{sup –1}. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential

  4. Neptune's non-thermal radio emissions - Phenomenology and source locations

    Science.gov (United States)

    Rabl, Gerald K. F.; Ladreiter, H.-P.; Rucker, Helmut O.; Kaiser, Michael L.

    1992-01-01

    During the inbound and the outbound leg of Voyager 2's encounter with Neptune, the Planetary Radio Astronomy (PRA) experiment aboard the spacecraft detected short radio bursts at frequencies within the range of about 500-1300 kHz, and broad-banded smoothly varying emission patterns within the frequency range from about 40-800 kHz. Both emissions can be described in terms of a period of 16.1 hours determining Neptune's rotation period. Furthermore, just near closest approach, a narrow-banded smoothly varying radio component was observed occurring between 600 and 800 kHz. After giving a brief overview about some general characteristics of Neptune's nonthermal radio emission, the source locations of Neptune's emission components are determined, using an offset tilted dipole model for Neptune's magnetic field. Assuming that the emission originates near the electron gyrofrequency a geometrical beaming model is developed in order to fit the observed emission episodes.

  5. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  6. SPITZER INFRARED SPECTROGRAPH DETECTION OF MOLECULAR HYDROGEN ROTATIONAL EMISSION TOWARDS TRANSLUCENT CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Ingalls, James G. [Spitzer Space Telescope Science Center, California Institute of Technology, 1200 E California Blvd, Mail Stop 220-6, Pasadena, CA 91125 (United States); Bania, T. M. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Boulanger, F. [Institut d' Astrophysique Spatiale, Universite Paris Sud, Bat. 121, F-91405 Orsay Cedex (France); Draine, B. T. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Falgarone, E. [Laboratoire de Radio-Astronomie, LERMA, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Hily-Blant, P., E-mail: ingalls@ipac.caltech.edu, E-mail: bania@bu.edu, E-mail: francois.boulanger@ias.u-psud.fr, E-mail: draine@astro.princeton.edu, E-mail: edith.falgarone@lra.ens.fr, E-mail: pierre.hilyblant@obs.ujf-grenoble.fr [LAOG, CNRS UMR 5571, Universite Joseph Fourier, BP53, F-38041 Grenoble (France)

    2011-12-20

    Using the Infrared Spectrograph on board the Spitzer Space Telescope, we have detected emission in the S(0), S(1), and S(2) pure-rotational (v = 0-0) transitions of molecular hydrogen (H{sub 2}) toward six positions in two translucent high Galactic latitude clouds, DCld 300.2-16.9 and LDN 1780. The detection of these lines raises important questions regarding the physical conditions inside low-extinction clouds that are far from ultraviolet radiation sources. The ratio between the S(2) flux and the flux from polycyclic aromatic hydrocarbons (PAHs) at 7.9 {mu}m averages 0.007 for these six positions. This is a factor of about four higher than the same ratio measured toward the central regions of non-active Galaxies in the Spitzer Infrared Nearby Galaxies Survey. Thus, the environment of these translucent clouds is more efficient at producing rotationally excited H{sub 2} per PAH-exciting photon than the disks of entire galaxies. Excitation analysis finds that the S(1) and S(2) emitting regions are warm (T {approx}> 300 K), but comprise no more than 2% of the gas mass. We find that UV photons cannot be the sole source of excitation in these regions and suggest mechanical heating via shocks or turbulent dissipation as the dominant cause of the emission. The clouds are located on the outskirts of the Scorpius-Centaurus OB association and may be dissipating recent bursts of mechanical energy input from supernova explosions. We suggest that pockets of warm gas in diffuse or translucent clouds, integrated over the disks of galaxies, may represent a major source of all non-active galaxy H{sub 2} emission.

  7. Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor

    Directory of Open Access Journals (Sweden)

    Brian N. Wenny

    2015-02-01

    Full Text Available The Thermal Infrared Sensor (TIRS for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC. TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. The two-band (10.9 and 12.0 μm pushbroom sensor with a 185 km-wide swath uses a staggered arrangement of quantum well infrared photodetector (QWIPs arrays. The required spatial resolution is 100 m for TIRS, with the assessment of crop moisture and water resources being science drivers for that resolution. The evaluation of spatial resolution typically relies on a straight knife-edge technique to determine the spatial edge response of a detector system, and such an approach was implemented for TIRS. Flexibility in the ground calibration equipment used for TIRS thermal-vacuum chamber testing also made possible an alternate strategy that implemented a circular target moved in precise sub-pixel increments across the detectors to derive the edge response. On-orbit, coastline targets were developed to evaluate the spatial response performance. Multiple targets were identified that produced similar results to one another. Even though there may be a slight bias in the point spread function (PSF/modulation transfer function (MTF estimates towards poorer performance using this approach, it does have the ability to track relative changes for monitoring long-term instrument status. The results for both pre- and post-launch response analysis show general good agreement and consistency with edge slope along-track values of 0.53 and 0.58 pre- and post-launch and across-track values 0f 0.59 and 0.55 pre- and post-launch.

  8. Thin-layer infrared spectroscopic study on thermal behavior of non-phospholipid lipids and nanovesicles

    Science.gov (United States)

    Bista, Rajan K.; Bruch, Reinhard F.; Covington, Aaron M.

    2009-02-01

    °The investigation of thermal behaviors and subsequent changes in the conformational order of lipids and liposomes is of importance in understanding various phenomena such as the formation and fusion of vesicles, trans-membrane diffusion and membrane interactions with drugs and proteins. In this work, the thermal behavior of a suite of newly developed self-forming synthetic non-phospholipid (PEGylated) lipids and its nanovesicles in buffer suspensions were investigated by variable-temperature thin-layered Fourier Transform Infrared (FTIR) transmission spectroscopy. The temperature-induced infrared spectra of such lipids composed of 1,2-dimyristoyl-rac-glycerol-3-dodecaethylene glycol (GDM-12) and 1,2-distearoyl-rac-glycerol-3-triicosaethylene glycol (GDS-23) were acquired by using FTIR spectrometer in conjunction with a custom built temperature-controlled demountable liquid cell. In contrast to conventional phospholipids, these novel lipids form liposomes spontaneously upon hydration, without the supply of external activation energy. It was found that the thermal stability of the PEGylated lipids defer greatly depending upon the acyl chain-lengths as well as number of associated head group units. Particularly, GDM-12 (saturated 14 hydrocarbon chains) shows one sharp order-disorder transition with temperature increasing from 3 to 5 °C. Similarly, GDS-23 (saturated 18 hydrocarbon chains) exhibits comparatively broad order-disorder transition profiles between temperature 17 and 22 °C. However, the phase transition temperature becomes significantly higher for lipid nanovesicles formed in aqueous suspensions. The results obtained in this study may find applications in various areas including the development of lipid based substance and drug delivery systems.

  9. Intense 2.7 μm mid-infrared emission of Er{sup 3+} in oxyfluoride glass ceramic containing NaYF{sub 4} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yin; Liu, Xueyun; Wang, Weichao; Yu, Ting; Zhang, Qinyuan, E-mail: qyzhang@scut.edu.cn

    2016-04-15

    Highlights: • Transparent oxyfluoride glass-ceramics containing NaYF{sub 4}:Er{sup 3+} nanocrystals have been prepared. • Intense 2.7 μm emission of the glass-ceramics has been demonstrated. • Prolonged decay lifetimes of Er{sup 3+}:{sup 4}I{sub 11/2} and {sup 4}I{sub 13/2} levels have been achieved. - Abstract: Transparent oxyfluoride glass ceramics containing NaYF{sub 4}:Er{sup 3+} nanocrystals have been prepared by melt quenching and subsequent thermal treatment. X-ray diffraction and high-resolution transmission electron microscopy analysis confirmed the precipitation of NaYF{sub 4} nanocrystals in glass. Energy dispersive spectrometer results evidenced the preferential concentration of Er{sup 3+} ions in nanocrystals. Mid-infrared, upconversion, and near-infrared emissions were measured upon excitation with 980 nm laser diode and the luminescence mechanisms were discussed. Intense 2.7 μm emission originating from the Er{sup 3+}:{sup 4}I{sub 11/2} → {sup 4}I{sub 13/2} transition was achieved due to the incorporation of Er{sup 3+} ions into the precipitated low phonon energy fluoride nanocrystals. The results indicate that oxyfluoride glass ceramic containing NaYF{sub 4}:Er{sup 3+} nanocrystals is a promising candidate material for 2.7 μm laser.

  10. Ultrafast and nonlinear spectroscopy of brilliant green-based nanoGUMBOS with enhanced near-infrared emission

    Science.gov (United States)

    Karam, Tony E.; Siraj, Noureen; Zhang, Zhenyu; Ezzir, Abdulrahman F.; Warner, Isiah M.; Haber, Louis H.

    2017-10-01

    The synthesis, characterization, ultrafast dynamics, and nonlinear spectroscopy of 30 nm nanospheres of brilliant green-bis(pentafluoroethylsulfonyl)imide ([BG][BETI]) in water are reported. These thermally stable nanoparticles are derived from a group of uniform materials based on organic salts (nanoGUMBOS) that exhibit enhanced near-infrared emission compared with the molecular dye in water. The examination of ultrafast transient absorption spectroscopy results reveals that the overall excited-state relaxation lifetimes of [BG][BETI] nanoGUMBOS are longer than the brilliant green molecular dye in water due to steric hindrance of the torsional degrees of freedom of the phenyl rings around the central carbon. Furthermore, the second harmonic generation signal of [BG][BETI] nanoGUMBOS is enhanced by approximately 7 times and 23 times as compared with colloidal gold nanoparticles of the same size and the brilliant green molecular dye in water, respectively. A very clear third harmonic generation signal is observed from the [BG][BETI] nanoGUMBOS but not from either the molecular dye or the gold nanoparticles. Overall, these results show that [BG][BETI] nanoGUMBOS exhibit altered ultrafast and nonlinear spectroscopy that is beneficial for various applications including nonlinear imaging probes, biomedical imaging, and molecular sensing.

  11. Optical absorption and near infrared emission properties of Nd 3+ ions in alkali lead tellurofluoroborate glasses

    Science.gov (United States)

    Saleem, S. A.; Jamalaiah, B. C.; Kumar, J. Suresh; Babu, A. Mohan; Moorthy, L. Rama; Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb; Yi, Soung Soo; Jeong, Jung Hyun

    2009-12-01

    Nd 3+ doped H 3BO 3-PbO-TeO 2-RF (R = Li, Na and K) glasses were prepared through melt quenching technique. Optical absorption and near infrared (NIR) fluorescence spectra were recorded at room temperature. The spectral intensities were analyzed in terms of the Judd-Ofelt (J-O) parameters ( Ω λ = 2, 4, 6). The covalency effect of Nd-O bond on the J-O parameters was estimated from the relative absorbance ratio (R) between 4I 9/2 → 4F 7/2 and 4I 9/2 → 4S 3/2 transitions. The effect of Nd-O covalency on the Ω4 and Ω6 intensity parameters as well as on the spontaneous emission probabilities ( AR) was discussed. Lomheim and Shazer hybrid method was applied to determine the fluorescence branching ratios ( βR) of each emission transition from the 4F 3/2 metastable level to its lower lying levels. The evaluated total radiative transition probabilities ( AT), stimulated emission cross-sections ( σe) and gain bandwidth parameters ( σe × Δ λP) were compared with the earlier reports.

  12. Electrical control simulation of near infrared emission in SOI-MOSFET quantum well devices

    Science.gov (United States)

    Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-07-01

    In the race to realize ultrahigh-speed processors, silicon photonics research is part of the efforts. Overcoming the silicon indirect bandgap with special geometry, we developed a concept of a metal-oxide-semiconductor field-effect transistor, based on a silicon quantum well structure that enables control of light emission. This quantum well consists of a recessed ultrathin silicon layer, obtained by a gate-recessed channel and limited between two oxide layers. The device's coupled optical and electrical properties have been simulated for channel thicknesses, varying from 2 to 9 nm. The results show that this device can emit near infrared radiation in the 1 to 2 μm range, compatible with the optical networking spectrum. The emitted light intensity can be electrically controlled by the drain voltage Vds while the peak emission wavelength depends on the channel thickness and slightly on Vds. Moreover, the location of the radiative recombination source inside the channel, responsible for the light emission, is also controllable through the applied voltages.

  13. Emission variation in infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo Gómez, J.A. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico); Casas Espinola, J.L., E-mail: jlcasas@esfm.ipn.mx [ESFM – Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Douda, J. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico)

    2014-11-15

    The paper presents the photoluminescence (PL) and Raman scattering investigations of infrared CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) in nonconjugated states and after the conjugation to the anti-papilloma virus antibodies (Ab). The Raman scattering study has shown that the CdSeTe core includes two layers with different material compositions such as: CdSe{sub 0.5}Te{sub 0.5} and CdSe{sub 0.7}Te{sub 0.3}. PL spectra of nonconjugated CdSeTe/ZnS QDs are characterized by two Gaussian shape PL bands related to exciton emission in the CdSeTe core and in intermediate layer at the core/shell interface. PL spectra of bioconjugated QDs have changed essentially: the main PL band related to the core emission shifts into high energy and become asymmetric. The energy diagram of double core/shell CdSeTe/ZnS QDs has been analyzed to explain the PL spectrum of nonconjugated QDs and its transformation at the bioconjugation to the papiloma virus antibodies. It is shown that the PL spectrum transformation in bioconjugated QDs can be a powerful technique for biology and medicine.

  14. Emission variation in infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies

    Science.gov (United States)

    Jaramillo Gómez, J. A.; Casas Espinola, J. L.; Douda, J.

    2014-11-01

    The paper presents the photoluminescence (PL) and Raman scattering investigations of infrared CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) in nonconjugated states and after the conjugation to the anti-papilloma virus antibodies (Ab). The Raman scattering study has shown that the CdSeTe core includes two layers with different material compositions such as: CdSe0.5Te0.5 and CdSe0.7Te0.3. PL spectra of nonconjugated CdSeTe/ZnS QDs are characterized by two Gaussian shape PL bands related to exciton emission in the CdSeTe core and in intermediate layer at the core/shell interface. PL spectra of bioconjugated QDs have changed essentially: the main PL band related to the core emission shifts into high energy and become asymmetric. The energy diagram of double core/shell CdSeTe/ZnS QDs has been analyzed to explain the PL spectrum of nonconjugated QDs and its transformation at the bioconjugation to the papiloma virus antibodies. It is shown that the PL spectrum transformation in bioconjugated QDs can be a powerful technique for biology and medicine.

  15. Thermal territories of the abdomen after caesarean section birth: infrared thermography and analysis.

    Science.gov (United States)

    Childs, C; Siraj, M R; Fair, F J; Selvan, A N; Soltani, H; Wilmott, J; Farrell, T

    2016-09-01

    To develop and refine qualitative mapping and quantitative analysis techniques to define 'thermal territories' of the post-partum abdomen, the caesarean section site and the infected surgical wound. In addition, to explore women's perspectives on thermal imaging and acceptability as a method for infection screening. Prospective feasibility study undertaken at a large University teaching hospital, Sheffield UK. Infrared thermal imaging of the abdomen was undertaken at the bedside on the first two days after elective caesarean section. Target recruitment: six women in each of three body mass index (BMI) categories (normal, 18.5-24.9 kg/m²; overweight 25-29.9 kg/m²; obese ≥30 kg/m²). Additionally, women presenting to the ward with wound infection were eligible for inclusion in the study. Perspectives on the use of thermal imaging and its practicality were also explored via semi-structured interviews and analysed using thematic content analysis. We recruited 20 women who had all undergone caesarean section. From the booking BMI, eight women were obese (including two women with infected wounds), seven women were overweight and five women had a normal BMI. Temperature (ºC) profiling and pixel clustering segmentation (hierarchical clustering-based segmentation, HCS) revealed characteristic features of thermal territories between scar and adjacent regions. Differences in scar thermal intensity profiles exist between healthy scars and infected wounds; features that have potential for wound surveillance. The maximum temperature differences (∆T) between healthy skin and the wound site exceed 2º C in women with established wound infection. At day two, two women had a scar thermogram with features observed in the 'infected' wound thermogram. Thermal imaging at early and later times after caesarean birth is feasible and acceptable. Women reported potential benefits of the technique for future wound infection screening. Thermal intensity profiling and HCS for pixel

  16. Thermal Performance of Hollow Clay Brick with Low Emissivity Treatment in Surface Enclosures

    Directory of Open Access Journals (Sweden)

    Roberto Fioretti

    2014-10-01

    Full Text Available External walls made with hollow clay brick or block are widely used for their thermal, acoustic and structural properties. However, the performance of the bricks frequently does not conform with the minimum legal requirements or the values required for high efficiency buildings, and for this reason, they need to be integrated with layers of thermal insulation. In this paper, the thermal behavior of hollow clay block with low emissivity treatment on the internal cavity surfaces has been investigated. The purpose of this application is to obtain a reduction in the thermal conductivity of the block by lowering the radiative heat exchange in the enclosures. The aims of this paper are to indicate a methodology for evaluating the thermal performance of the brick and to provide information about the benefits that should be obtained. Theoretical evaluations are carried out on several bricks (12 geometries simulated with two different thermal conductivities of the clay, using a finite elements model. The heat exchange procedure is implemented in accordance with the standard, so as to obtain standardized values of the thermal characteristics of the block. Several values of emissivity are hypothesized, related to different kinds of coating. Finally, the values of the thermal transmittance of walls built with the evaluated blocks have been calculated and compared. The results show how coating the internal surface of the cavity provides a reduction in the thermal conductivity of the block, of between 26% and 45%, for a surface emissivity of 0.1.

  17. Study on infrared differential thermal non-destructive testing technology of the permeability of hot mix asphalt pavements

    Science.gov (United States)

    Wang, Duanyi; Shi, Jicun

    2017-06-01

    In order to non-destructive test (NDT) the permeability coefficient of hot mix asphalt (HMA) pavements fast, A methodology for assessing the permeability coefficient was proposed by infrared differential thermal testing of pavement after rain. The relationship between permeability coefficient and air voids of HMA specimen deter-mined. Finite element method (FEM) models were built to calculate the surface temperature difference with different exposure time after precipitation. Simulated solar radiation source and fully saturated plate specimens were set in laboratory, tests verify that the different exposure time the specimen surface temperature difference. Infrared differential thermal detection permeable pavement hardware and corresponding software developed. Based on many test results, the evaluation index and criteria of permeability coefficient of HMA pavements tested by infrared differential thermal were developed. The results showed that: There is correlation between air voids and permeability coefficient of HMA specimen. Permeability coefficient of HMA pavements can be determined by different surface temperature at different exposure time. 9:00 am - 14:00 pm is the best time to detect permeability coefficient by infrared differential thermal NDT. Permeable asphalt pavement permeability can be achieved by infrared detector quickly and continuously, a lane testing; Per the permeable assessment criteria, in-place pavements permeability coefficients can be accurately evaluated.

  18. Preliminary on-orbit performance of the Thermal Infrared Sensor (TIRS) on board Landsat 8

    Science.gov (United States)

    Montanaro, Matthew; Tesfaye, Zelalem; Lunsford, Allen; Wenny, Brian; Reuter, Dennis; Markham, Brian; Smith, Ramsey; Thome, Kurtis

    2013-09-01

    The Thermal Infrared Sensor (TIRS) on board Landsat 8 continues thermal band measurements of the Earth for the Landsat program. TIRS improves on previous Landsat designs by making use of a pushbroom sensor layout to collect data from the Earth in two spectral channels. The radiometric performance requirements of each detector were set to ensure the proper radiometric integrity of the instrument. The performance of TIRS was characterized during pre-flight thermal-vacuum testing. Calibration methods and algorithms were developed to translate the raw signal from the detectors into an accurate at-aperture spectral radiance. The TIRS instrument has the ability to view an on-board variable-temperature blackbody and a deep space view port for calibration purposes while operating on-orbit. After TIRS was successfully activated on-orbit, checks were performed on the instrument data to determine its image quality. These checkouts included an assessment of the on-board blackbody and deep space views as well as normal Earth scene collects. The calibration parameters that were determined pre-launch were updated by utilizing data from these preliminary on-orbit assessments. The TIRS on-orbit radiometric performance was then characterized using the updated calibration parameters. Although the characterization of the instrument is continually assessed over the lifetime of the mission, the preliminary results indicate that TIRS is meeting the noise and stability requirements while the pixel-to-pixel uniformity performance and the absolute radiometric performance require further study.

  19. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  20. An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

    Directory of Open Access Journals (Sweden)

    Dong Huilong

    2016-03-01

    Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

  1. Impact of Thermal Mass Oriented Measures Over CO2 Emissions Of a Thermally Insulated Lowrise Apartment Building in Izmir, Turkey

    Directory of Open Access Journals (Sweden)

    Mümine Gerçek

    2015-02-01

    Full Text Available Climate change has drawn the attention of many researchers and practitioners to focus on the methods to address the challenges in achieving low-carbon buildings and cities and in future developments. Nevertheless, few studies have explored the impacts of thermal mass applications for the lowest carbon emissions of building operational energy consumption. A comparative study of CO2 emissions due to different wall and floor compositions is presented in accordance with their lifespans for a hot-humid climate site. Aim of this study is to examine the relation between the energy oriented operations and carbon emissions of the building. Firstly, an existing low-rise building in İzmir is selected, then modelled in the dynamic simulation model software DesignBuilder v4 by synchronizing drawings with basic operational principles of the program. Furthermore, various influence factors of building envelope thermal characteristics are selected as follows: type, location, thickness and thermal specifications of materials used by keeping thermal conductivity value constant. At the end, the research presents remarkable influence of thermal mass oriented measures on reducing energy demands and carbon footprints.

  2. Effects of Absorber Emissivity on Thermal Performance of a Solar Cavity Receiver

    Directory of Open Access Journals (Sweden)

    Jiabin Fang

    2014-01-01

    Full Text Available Solar cavity receiver is a key component to realize the light-heat conversion in tower-type solar power system. It usually has an aperture for concentrated sunlight coming in, and the heat loss is unavoidable because of this aperture. Generally, in order to improve the thermal efficiency, a layer of coating having high absorptivity for sunlight would be covered on the surface of the absorber tubes inside the cavity receiver. As a result, it is necessary to investigate the effects of the emissivity of absorber tubes on the thermal performance of the receiver. In the present work, the thermal performances of the receiver with different absorber emissivity were numerically simulated. The results showed that the thermal efficiency increases and the total heat loss decreases with increasing emissivity of absorber tubes. However, the thermal efficiency increases by only 1.6% when the emissivity of tubes varies from 0.2 to 0.8. Therefore, the change of absorber emissivity has slight effect on the thermal performance of the receiver. The reason for variation tendency of performance curves was also carefully analyzed. It was found that the temperature reduction of the cavity walls causes the decrease of the radiative heat loss and the convective heat loss.

  3. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  4. Ground-based atmospheric infrared and visible emission measurements. Report for 15 July 1983-14 June 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.J.; Steed, A.J.; Ware, G.A.; Offermann, D.; Lange, G.

    1985-01-01

    This reprint describes Ground-based measurements of night-sky near-infrared and visible emissions made at the Andenes, Norway, and Kiruna, Sweden, rocket launch sites during the Energy Budget Campaign of 1980. Optical measurements were made using visible and infrared photometers, a Michelson interferometer and a grating spectrometer. The specific aim of the experiments reported in the present paper was to investigate the relationships between the optical emissions from upper atmospheric hydroxyl (OH) and molecular oxygen (O2)and the magnetic activity in the auroral zone. Other airglow emissions, including the O and N2(+) species, wee monitored photometrically for diagnostic purposes. Furthermore, the ground-based optical instruments were used to support rocket-borne experiments launched in salvoes during the campaign. Observations were provided before and after the launches of the rocket payloads. Comparisons between upper atomospheric temperatures derived from airglow emissions and those obtained from in situ rocket probes were sought.

  5. Thermal Balance in Dense Molecular Clouds: Radiative Cooling Rates and Emission-Line Luminosities

    Science.gov (United States)

    Neufeld, David A.; Lepp, Stephen; Melnick, Gary J.

    1995-01-01

    We consider the radiative cooling of fully shielded molecular astrophysical gas over a wide range of temperatures ( 10 K line strengths that contribute to the total radiative cooling rate, and we have obtained example spectra for the submillimeter emission expected from molecular cloud cores. Many of the important cooling lines will be detectable using the Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite.

  6. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers

    Science.gov (United States)

    Christensen, Philip R.; Mehall, Greg L.; Silverman, Steven H.; Anwar, Saadat; Cannon, George; Gorelick, Noel; Kheen, Rolph; Tourville, Tom; Bates, Duane; Ferry, Steven; Fortuna, Teresa; Jeffryes, John; O'Donnell, William; Peralta, Richard; Wolverton, Thomas; Blaney, Diana; Denise, Robert; Rademacher, Joel; Morris, Richard V.; Squyres, Steven

    2003-12-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) will provide remote measurements of mineralogy and thermophysical properties of the scene surrounding the Mars Exploration Rovers and guide the rovers to key targets for detailed in situ measurements by other rover experiments. The specific scientific objectives of the Mini-TES investigation are to (1) determine the mineralogy of rocks and soils, (2) determine the thermophysical properties of selected soil patches, and (3) determine the temperature profile, dust and water-ice opacity, and water vapor abundance in the lower atmospheric boundary layer. The Mini-TES is a Fourier Transform Spectrometer covering the spectral range 5-29 μm (339.50 to 1997.06 cm-1) with a spectral sample interval of 9.99 cm-1. The Mini-TES telescope is a 6.35-cm-diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a voice-coil motor assembly. A single deuterated triglycine sulfate (DTGS) uncooled pyroelectric detector with proven space heritage gives a spatial resolution of 20 mrad; an actuated field stop can reduce the field of view to 8 mrad. Mini-TES is mounted within the rover's Warm Electronics Box and views the terrain using its internal telescope looking up the hollow shaft of the Pancam Mast Assembly (PMA) to the fixed fold mirror and rotating elevation scan mirror in the PMA head located ~1.5 m above the ground. The PMA provides a full 360°of azimuth travel and views from 30° above the nominal horizon to 50° below. An interferogram is collected every two seconds and transmitted to the Rover computer, where the Fast Fourier Transform, spectral summing, lossless compression, and data formatting are performed prior to transmission to Earth. Radiometric calibration is provided by two calibration V-groove blackbody targets instrumented with platinum thermistor temperature sensors with absolute temperature calibration of +/-0.1°C. One calibration target is located inside the PMA head; the

  7. Preparation of tourmaline nano-particles through a hydrothermal process and its infrared emission properties.

    Science.gov (United States)

    Xue, Gang; Han, Chao; Liang, Jinsheng; Wang, Saifei; Zhao, Chaoyue

    2014-05-01

    Tourmaline nano-particles were successfully prepared via a hydrothermal process using HCl as an additive. The reaction temperature (T) and the concentration of HCI (C(HCl)) had effects on the size and morphology of the tourmaline nano-particles. The optimum reaction condition was that: T = 180 degrees C and C(HCl) = 0.1 mol/l. The obtained nano-particles were spherical with the diameter of 48 nm. The far-infrared emissivity of the product was 0.923. The formation mechnism of the tourmaline nano-particles might come from the corrosion of grain boundary between the tourmaline crystals in acidic hydrothermal conditions and then the asymmetric contraction of the crystals.

  8. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    Science.gov (United States)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  9. [Ultra] luminous infrared galaxies selected at 90 μm in the AKARI deep field: a study of AGN types contributing to their infrared emission

    Science.gov (United States)

    Małek, K.; Bankowicz, M.; Pollo, A.; Buat, V.; Takeuchi, T. T.; Burgarella, D.; Goto, T.; Malkan, M.; Matsuhara, H.

    2017-02-01

    Aims: The aim of this work is to characterize physical properties of ultra luminous infrared galaxies (ULIRGs) and luminous infrared galaxies (LIRGs) detected in the far-infrared (FIR) 90 μm band in the AKARI Deep Field-South (ADF-S) survey. In particular, we want to estimate the active galactic nucleus (AGN) contribution to the LIRGs and ULIRGs' infrared emission and which types of AGNs are related to their activity. Methods: We examined 69 galaxies at redshift ≥0.05 detected at 90 μm by the AKARI satellite in the ADF-S, with optical counterparts and spectral coverage from the ultraviolet to the FIR. We used two independent spectral energy distribution fitting codes: one fitting the SED from FIR to FUV (CIGALE) (we use the results from CIGALE as a reference) and gray-body + power spectrum fit for the infrared part of the spectra (CMCIRSED) in order to identify a subsample of ULIRGs and LIRGs, and to estimate their properties. Results: Based on the CIGALE SED fitting, we have found that LIRGs and ULIRGs selected at the 90 μm AKARI band compose 56% of our sample (we found 17 ULIRGs and 22 LIRGs, spanning over the redshift range 0.06 ADF-S LIRGs and ULIRGs indicate that these relations are shaped by the dust mass and not by the increased dust heating. Conclusions: We conclude that LIRGs contain Type 1, Type 2, and intermediate types of AGNs, with an AGN contribution to the mid infrared emission at the median level of 13 ± 3%, whereas the majority of ULIRGs contain Type 2 AGNs, with a median AGN fraction equal to 19 ± 8%. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A1

  10. Thermal effects on arsenic emissions during coal combustion process.

    Science.gov (United States)

    Zhang, Weiqiang; Sun, Qiang; Yang, Xiuyuan

    2018-01-15

    In this study, the rate of emission of arsenic during the burning process of different kinds of coal is examined in order to study the volatile characteristics of arsenic during coal combustion which have negative effects on the ecological environment and human health. The results show that the emission rate of arsenic gradually increases with increased burning temperature, with a threshold of approximately 700°C to 800°C in the process of temperature increase. Then, the relationships among the arsenic emission rate and combustion environment, original arsenic content, combustion time, burning temperature, air flow and amount of arsenic fixing agent are discussed, and it is found that except for the original arsenic content, the rest of the factors have a nonlinear relationship with the emission rate of arsenic. That is, up to a certain level, they all contribute to the release of arsenic, and then their impact is minimal. The original arsenic content in coal is proportional to the arsenic emission rate. Therefore, taking into consideration the nonlinear relationships between factors that affect the arsenic emission rate can reduce contamination from arsenic. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Near-infrared emission spectrometry measurements for nonintrusive soot diagnostics in flames

    Energy Technology Data Exchange (ETDEWEB)

    Ayranci, Isil [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey); Centre de Thermique de Lyon (CETHIL CNRS-INSA Lyon-UCBL), Bat. Sadi Carnot, INSA-Lyon, F-69621 Villeurbanne (France)], E-mail: ayranci.kilinc@gmail.com; Vaillon, Rodolphe [Centre de Thermique de Lyon (CETHIL CNRS-INSA Lyon-UCBL), Bat. Sadi Carnot, INSA-Lyon, F-69621 Villeurbanne (France)], E-mail: rodolphe.vaillon@insa-lyon.fr; Selcuk, Nevin [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: selcuk@metu.edu.tr

    2008-01-15

    The present study focuses on measurement of line-of-sight emission intensity spectra in the near-infrared range by Fourier-transform infrared spectrometry for use in tomographic soot diagnostics. Measurements are carried out on an axisymmetric, laboratory grade, ethylene/air diffusion flame within the 1.1-1.7 {mu}m (9000-6000 cm{sup -1}) spectral range. Presentation of the measurement and calibration methodology is followed by the description of noise and uncertainty assessment procedures. A novel noise characterization approach that accounts for both spectral and spatial fluctuations is introduced. Measured intensities are utilized to infer soot temperature and volume fraction profiles from an inversion technique based on gray refractive index assumption. Predictions at flame axis are found to be in reasonable agreement with properties reported in literature for similar flames, but steep volume fraction peaks at the flame edges are not sufficiently captured due to the expected effects of large beam diameter, suggesting that the present configuration requires improvement in terms of spatial resolution.

  12. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu

    2017-03-13

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  13. Calibration of the Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K; Reuter, D.; Lunsford, D.; Montanaro, M.; Smith, J.; Tesfaye, Z.; Wenny, B.

    2011-01-01

    The Landsat series of satellites provides the longest running continuous data set of moderate-spatial-resolution imagery beginning with the launch of Landsat 1 in 1972 and continuing with the 1999 launch of Landsat 7 and current operation of Landsats 5 and 7. The Landsat Data Continuity Mission (LDCM) will continue this program into a fourth decade providing data that are keys to understanding changes in land-use changes and resource management. LDCM consists of a two-sensor platform comprised of the Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS). A description of the applications and design of the TIRS instrument is given as well as the plans for calibration and characterization. Included are early results from preflight calibration and a description of the inflight validation.

  14. These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnos

    Science.gov (United States)

    2002-01-01

    These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnostic of physical phenomena The 7.85-micron image in the upper left shows stratospheric temperatures which are elevated in the region of the A fragment impact (to the left of bottom). Temperatures deeper in the atmosphere near 150-mbar are shown by the 17.2-micron image in the upper right. There is a small elevation of temperatures at this depth, indicated by the arrow, and confirmed by other measurements near this wavelength. This indicates that the influence of the impact of fragment A on the troposphere has been minimal. The two images in the bottom row show no readily apparent perturbation of the ammmonia condensate cloud field near 600 mbar, as diagnosed by 8.57-micron radiation, and deeper cloud layers which are diagnosed by 5-micron radiation.

  15. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    Science.gov (United States)

    Jaggi, S.

    1993-01-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  16. Modeling of a single red blood cell thermal reaction exposed to infrared laser tweezers

    Science.gov (United States)

    Seteikin, A.; Krasnikov, I.; Bernhardt, I.

    2013-02-01

    Continuous-wave laser micro-beams are generally used as diagnostic tools in laser scanning microscopes or in the case of near-infrared (NIR) micro-beams, as optical traps for cell manipulation and force characterization. Because single beam traps are created with objectives of high numerical aperture, typical trapping intensities and photon flux densities are in the order of 106 W/cm2 and 103 cm-2s-1, respectively. The main idea of our theoretical study was to investigate the thermal reaction of RBCs irradiated by laser micro-beam. The study is supported by the fact that many experiments have been carried out with RBCs in laser NIR tweezers. In the present work it has been identified that the laser affects a RBC with a density of absorbed energy at approximately 107 J/cm3, which causes a temperature rise in the cell of about 7 - 12 °C.

  17. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    Science.gov (United States)

    Langran, Kenneth J.

    1986-01-01

    The Mount St. Helens 1980 eruption offers an opportunity to study vegetation recovery rates and patterns in a perturbed ecosystem. The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. It was observed that during maximum daytime solar heating, surface temperatures of vegetated areas are cooler than surrounding nonvegetated areas, and that surface temperature varies with percent vegetation cover. A method of measuring the relationship between effective radiant temperature (ERT) and percent vegetation cover in the thermal infrared (8 to 12 microns) region of the electromagnetic spectrum was investigated.

  18. Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging

    Science.gov (United States)

    Baumes, Jeffrey M.; Gassensmith, Jeremiah J.; Giblin, Jay; Lee, Jung-Jae; White, Alexander G.; Culligan, William J.; Leevy, W. Matthew; Kuno, Masaru; Smith, Bradley D.

    2010-12-01

    Imaging techniques are a vital part of clinical diagnostics, biomedical research and nanotechnology. Optical molecular imaging makes use of relatively harmless, low-energy light and technically straightforward instrumentation. Self-illuminating, chemiluminescent systems are particularly attractive because they have inherently high signal contrast due to the lack of background emission. Currently, chemiluminescence imaging involves short-lived molecular species that are not stored but are instead generated in situ, and they typically emit visible light, which does not penetrate far through heterogeneous biological media. Here, we describe a new paradigm for optical molecular imaging using squaraine rotaxane endoperoxides, interlocked fluorescent and chemiluminescent dye molecules that have a squaraine chromophore encapsulated inside a macrocycle endoperoxide. Squaraine rotaxane endoperoxides can be stored indefinitely at temperatures below -20 °C, but upon warming to body temperature they undergo a unimolecular chemical reaction and emit near-infrared light that can pass through a living mouse.

  19. Galvanic displacement synthesis of Al/Ni core–shell pigments and their low infrared emissivity application

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Le, E-mail: yuanle.cn@gmail.com [Center for Advanced Materials and Energy, Xihua University, Chengdu, 610039 (China); National Engineering Research Center of Electromagnetic Radiation Control Materials, UESTC, Chengdu, 610054 (China); Hu, Juan [Center for Advanced Materials and Energy, Xihua University, Chengdu, 610039 (China); Weng, Xiaolong [National Engineering Research Center of Electromagnetic Radiation Control Materials, UESTC, Chengdu, 610054 (China); Zhang, Qingyong [Center for Advanced Materials and Energy, Xihua University, Chengdu, 610039 (China); Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, UESTC, Chengdu, 610054 (China)

    2016-06-15

    We have successfully developed a magnetic Al/Ni core–shell pigment via a galvanic displacement reaction to obtain low infrared emissivity pigment with low lightness and visible light reflectance. Al/Ni core–shell particles were prepared via a simple one-step synthetic method where Ni was deposited onto the Al surface at the expense of Al atoms. The influence of pH and the amount of NH{sub 4}F complexing agent on phase structure, surface morphology, optical and magnetic properties were studied systematically. The neutral condition and high concentration of NH{sub 4}F forms smooth, flat, uniform and dense Ni shell on the surface of flake Al particles, which can significantly reduce the lightness and visible light reflectance but slightly increase the infrared emissivity. When the core–shell pigments are prepared in neutral pH solution at NH{sub 4}F = 11.2 g/L, the lightness (L{sup *}) and visual light reflectivity can be reduced by 12.6 and 0.46, respectively versus uncoated flake Al pigments, but the infrared emissivity is only increased by 0.02. The color changes from brilliant silver to gray black and the saturation magnetization value is 6.59 emu/g. Therefore, these Al/Ni magnetic composite pigments can be used as a novel low infrared emissivity pigment to improve the multispectral stealth performance of low-E coatings in the visual, IR and Radar wavebands. - Highlights: • Prepared magnetic Al/Ni core–shell pigment with low lightness and low emissivity. • Used one-pot galvanic displacement reaction to form smooth and dense Ni shell. • Show enhanced stealth performance in the visual, IR and Radar wavebands. • The lightness and visible light reflectance was decreased by 12.6 and 0.46. • But the infrared emissivity was only increases by 0.02.

  20. New Asia Dust Storm Detection Method Based on the Thermal Infrared Spectral Signature

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2014-12-01

    Full Text Available As hyperspectral instruments can provide the detailed spectral information, a new spectral similarity method for detecting and differentiating dust from non-dust scenes using the Atmospheric Infrared Sounder (AIRS observations has been developed. The detection is based on a pre-defined Dust Spectral Similarity Index (DSSI, which was calculated from the accumulated brightness temperature differences between selected 16 AIRS observation channels, in the thermal infrared region of 800–1250 cm−1. It has been demonstrated that DSSI can effectively separate the dust from non-dust by elevating dust signals. For underlying surface covered with dust, the DSSI tends to show values close to 1.0. However, the values of DSSI for clear sky surfaces or clouds (ice and water are basically lower than those of dust, as their spectrums have significant differences with dust. To evaluate this new simple DSSI dust detection algorithm, several Asia dust events observed in northern China were analyzed, and the results agree favorably with those from the Moderate resolution Imaging Spectro radiometer (MODIS and Cloud Aerosol LiDAR with Orthogonal Polarization (CALIOP observations.

  1. Hydrolysis of Baltic amber during thermal ageing--an infrared spectroscopic approach.

    Science.gov (United States)

    Pastorelli, Gianluca; Shashoua, Yvonne; Richter, Jane

    2013-04-01

    To enable conservation of amber in museums, understanding of chemical changes is crucial. While oxidation has been investigated particularly well for this natural polymer, further degradation phenomena in relation to humidity and pollutants are poorly studied or still unknown. Attenuated total reflectance-Fourier transform infrared spectroscopy was explored with regard to Baltic amber. A systematic spectroscopic survey of a wide range of thermally aged model amber samples, exposed to different microclimatic conditions, showed significant changes in their spectra. Samples aged in a humid and acidic environment or exposed to a humid and alkaline atmosphere generally exhibited a higher absorbance intensity of carbonyl groups at frequencies assigned to acids than unaged samples, samples aged in drier conditions and samples immersed in an alkaline solution. Baltic amber comprises succinate ester, which may be hydrolysed into communol and succinic acid. The survey thus provided evidence about the progress of hydrolytic reactions during degradation of Baltic amber. Infrared spectroscopy was shown to have significant potential for providing qualitative and quantitative chemical information on hydrolysis of amber, which will be of interest for the development of preventive conservation techniques for museum collections of amber objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  3. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    Science.gov (United States)

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M. Lucia

    2015-10-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700-850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  4. Far-infrared emission in luminous quasars accompanied by nuclear outflows

    Science.gov (United States)

    Maddox, Natasha; Jarvis, M. J.; Banerji, M.; Hewett, P. C.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; Furlanetto, C.; Maddox, S. J.; Smith, M. W. L.; Valiante, E.

    2017-09-01

    Combining large-area optical quasar surveys with the new far-infrared (FIR) Herschel-ATLAS Data Release 1, we search for an observational signature associated with the minority of quasars possessing bright FIR luminosities. We find that FIR-bright quasars show broad C IV emission-line blueshifts in excess of that expected from the optical luminosity alone, indicating particularly powerful nuclear outflows. The quasars show no signs of having redder optical colours than the general ensemble of optically selected quasars, ruling out differences in line-of-sight dust within the host galaxies. We postulate that these objects may be caught in a special evolutionary phase, with unobscured, high black hole accretion rates and correspondingly strong nuclear outflows. The high FIR emission found in these objects is then either a result of star formation related to the outflow, or is due to dust within the host galaxy illuminated by the quasar. We are thus directly witnessing coincident small-scale nuclear processes and galaxy-wide activity, commonly invoked in galaxy simulations that rely on feedback from quasars to influence galaxy evolution.

  5. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  6. Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO 2/SiO 2 multilayered microspheres

    Science.gov (United States)

    Yang, Yong; Zhou, Yuming; Ge, Jianhua; Wang, Yongjuan; Zhu, Yunxia

    2011-10-01

    Optically active polyurethane/titania/silica (LPU/TiO 2/SiO 2) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO 2/SiO 2 was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 μm) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO 2/SiO 2 exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus proved that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO 2/SiO 2 multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value.

  7. Thermal emission in fatigue described by power laws

    Directory of Open Access Journals (Sweden)

    Gallinatti A.E.

    2010-06-01

    Full Text Available In the present work, a theoretical model proposed by the literature and focused on the relationship between microplasticizations thermal behaviour and fatigue scatter is analysed and applied to fatigue test results of standard and notched steel specimens. The same experimental data are subjected to the TCM (Two Curves Method thermographic elaboration technique, in order to quickly evaluate fatigue limit values. TCM method has been modified, aiming at interpolating thermal data referred to the region of loads upper than fatigue limit with a non linear regression law having the same mathematical structure of the theoretical model equations (power laws.

  8. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  9. Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Daanen, H.A.M.

    2011-01-01

    Several studies suggest that the temperature of the inner canthus of the eye (Tca), determined with infrared thermal imaging, is an appropriate method for core temperature estimation in mass screening of fever. However, these studies used the error prone tympanic temperature as a reference.

  10. EVALUATION OF THE THERMAL INFRARED SATELLITE IMAGES APPLIANCE FOR VEGETATION INTERPRETATION (CASE STUDY OF BERING AND KUNASHIR ISLANDS

    Directory of Open Access Journals (Sweden)

    M. Yu. Grishchenko

    2017-01-01

    Full Text Available Thermal infrared satellite images are a promising source of information about geographic objects; many of their interpretive features have not been fully examined yet. In this paper we study the possibility of revealing the vegetation cover and certain vegetation communities using thermal infrared satellite images acquired by resource satellites-images characterized by spatial resolution of 30-150 m. These images allow us to study geosystems at the regional level, where the significant part of geographical research is focused. As the study areas selected two sites on Kunashir Island (caldera of the Golovnin volcano and Rogachiov and Gemmerling capes environs and one site on Bering Island (Buyan river valley and its watershed. The area is characterized by high heterogeneity of vegetation cover; in addition, an important factor in this choice was a large number of geobotanical descriptions made up by employees and trainees of the Kurilsky and S.V. Marakov Komandorsky nature reserves. In total, there were processed 37 satellite images that were grouped into multispectral files. The results of interpretation of multispectral images with a thermal infrared channel and without it have been compared. As a result, the work showed a high efficiency of using thermal infrared images to reveal some vegetation communities, particularly dwarf pine brushwood and floodplain willow shrub.

  11. Estimation of soil and vegetation temperatures with multiangular thermal infrared observations: IMGRASS, HEIFE, and SGP 1997 experiments

    NARCIS (Netherlands)

    Menenti, M.; Jia, L.; Li, Z.L.; Djepa, V.; Wang, J.; Stoll, M.P.; Su, Z.; Rast, M.

    2001-01-01

    The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of

  12. Multi-Sensor Fusion of Landsat 8 Thermal Infrared (TIR and Panchromatic (PAN Images

    Directory of Open Access Journals (Sweden)

    Hyung-Sup Jung

    2014-12-01

    Full Text Available Data fusion is defined as the combination of data from multiple sensors such that the resulting information is better than would be possible when the sensors are used individually. The multi-sensor fusion of panchromatic (PAN and thermal infrared (TIR images is a good example of this data fusion. While a PAN image has higher spatial resolution, a TIR one has lower spatial resolution. In this study, we have proposed an efficient method to fuse Landsat 8 PAN and TIR images using an optimal scaling factor in order to control the trade-off between the spatial details and the thermal information. We have compared the fused images created from different scaling factors and then tested the performance of the proposed method at urban and rural test areas. The test results show that the proposed method merges the spatial resolution of PAN image and the temperature information of TIR image efficiently. The proposed method may be applied to detect lava flows of volcanic activity, radioactive exposure of nuclear power plants, and surface temperature change with respect to land-use change.

  13. Modelling Miniature Incandescent Light Bulbs for Thermal Infrared `THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Lucyszyn, Stepan

    2015-04-01

    The ` THz Torch' concept is an emerging technology that was recently introduced by the authors for implementing secure wireless communications over short distances within the thermal infrared (20-100 THz, 15 μm to 3 μm). In order to predict the band-limited output radiated power from ` THz Torch' transmitters, for the first time, this paper reports on a detailed investigation into the radiation mechanisms associated with the basic thermal transducer. We demonstrate how both primary and secondary sources of radiation emitted from miniature incandescent light bulbs contribute to the total band-limited output power. The former is generated by the heated tungsten filament within the bulb, while the latter is due to the increased temperature of its glass envelope. Using analytical thermodynamic modelling, the band-limited output radiated power is calculated, showing good agreement with experimental results. Finally, the output radiated power to input DC power conversion efficiency for this transducer is determined, as a function of bias current and operation within different spectral ranges. This modelling approach can serve as an invaluable tool for engineering solutions that can achieve optimal performances with both single and multi-channel ` THz Torch' systems.

  14. Development and qualification of the conveyable thermal infrared field radiometer CLIMAT

    Science.gov (United States)

    Pietras, Christophe M.; Haeffelin, Martial P.; Legrand, Michel; Brogniez, Gerard; Abuhassan, Nader K.; Buis, Jean P.

    1995-12-01

    The radiometer CLIMAT is a highly sensitive field instrument designed for multispectral thermal infrared measurements. Ground-based measurements can be performed. but the instrument has capabilities for operating from aircraft or balloon. The optics consist of an objective lens and a condenser mounted according to the Koehler principle to provide uniform irradiation over the detector surface. The radiometric signal is treated by a fast thermopile detector characterized by a low noise and a very weak temperature dependence of its responsivity. The managing system allows either manual or automated measurements. The energy consumption of the instrument is optimized for a maximum autonomy. The optical and electrical units of the instrument are described. Different experimental studies for measuring the sensitivity accuracy, spectral characteristics, thermal behavior and, field of view of the instrument are described. The instrument is dedicated to ground and vegetation on the one hand. and on the other hand, clouds and atmospheric soundings. The radiometer is also designed for calibrations or analyses of satellite radiometry data. Some atmospheric measurements obtained with a prototype are presented. Prospects are the development and the qualification of a narrow field-of-view instrument adapted to inhomogeneous targets such as cirrus clouds. A 3.7-tim channel and an internal blackbody are under study.

  15. Multi-sensor fusio