WorldWideScience

Sample records for thermal imagery

  1. Facial Component Detection in Thermal Imagery

    NARCIS (Netherlands)

    Martinez, Brais; Binefa, Xavier; Pantic, Maja

    2010-01-01

    This paper studies the problem of detecting facial components in thermal imagery (specifically eyes, nostrils and mouth). One of the immediate goals is to enable the automatic registration of facial thermal images. The detection of eyes and nostrils is performed using Haar features and the

  2. Dichoptic fusion of thermal and intensified imagery

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Hoeven, M. van der

    2006-01-01

    Subjects used the dichoptic combination of a monocular image intensifier (NVG) and a monocular uncooled microbolometer (LWIR) to detect and localise both visual targets and camouflaged thermal targets while moving through a dimly lit complex environment. The NVG imagery enabled the subjects to move

  3. Toward automated face detection in thermal and polarimetric thermal imagery

    Science.gov (United States)

    Gordon, Christopher; Acosta, Mark; Short, Nathan; Hu, Shuowen; Chan, Alex L.

    2016-05-01

    Visible spectrum face detection algorithms perform pretty reliably under controlled lighting conditions. However, variations in illumination and application of cosmetics can distort the features used by common face detectors, thereby degrade their detection performance. Thermal and polarimetric thermal facial imaging are relatively invariant to illumination and robust to the application of makeup, due to their measurement of emitted radiation instead of reflected light signals. The objective of this work is to evaluate a government off-the-shelf wavelet based naïve-Bayes face detection algorithm and a commercial off-the-shelf Viola-Jones cascade face detection algorithm on face imagery acquired in different spectral bands. New classifiers were trained using the Viola-Jones cascade object detection framework with preprocessed facial imagery. Preprocessing using Difference of Gaussians (DoG) filtering reduces the modality gap between facial signatures across the different spectral bands, thus enabling more correlated histogram of oriented gradients (HOG) features to be extracted from the preprocessed thermal and visible face images. Since the availability of training data is much more limited in the thermal spectrum than in the visible spectrum, it is not feasible to train a robust multi-modal face detector using thermal imagery alone. A large training dataset was constituted with DoG filtered visible and thermal imagery, which was subsequently used to generate a custom trained Viola-Jones detector. A 40% increase in face detection rate was achieved on a testing dataset, as compared to the performance of a pre-trained/baseline face detector. Insights gained in this research are valuable in the development of more robust multi-modal face detectors.

  4. Thermal Imagery of Groundwater Seeps: Possibilities and Limitations.

    Science.gov (United States)

    Mundy, Erin; Gleeson, Tom; Roberts, Mark; Baraer, Michel; McKenzie, Jeffrey M

    2017-03-01

    Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air-water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non-freezing conditions, and no solar radiation. © 2016, National Ground Water Association.

  5. Evaluation of terrestrial photogrammetric point clouds derived from thermal imagery

    Science.gov (United States)

    Metcalf, Jeremy P.; Olsen, Richard C.

    2016-05-01

    Computer vision and photogrammetric techniques have been widely applied to digital imagery producing high density 3D point clouds. Using thermal imagery as input, the same techniques can be applied to infrared data to produce point clouds in 3D space, providing surface temperature information. The work presented here is an evaluation of the accuracy of 3D reconstruction of point clouds produced using thermal imagery. An urban scene was imaged over an area at the Naval Postgraduate School, Monterey, CA, viewing from above as with an airborne system. Terrestrial thermal and RGB imagery were collected from a rooftop overlooking the site using a FLIR SC8200 MWIR camera and a Canon T1i DSLR. In order to spatially align each dataset, ground control points were placed throughout the study area using Trimble R10 GNSS receivers operating in RTK mode. Each image dataset is processed to produce a dense point cloud for 3D evaluation.

  6. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    Science.gov (United States)

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  7. 3D SURFACE GENERATION FROM AERIAL THERMAL IMAGERY

    Directory of Open Access Journals (Sweden)

    B. Khodaei

    2015-12-01

    Full Text Available Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV. The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  8. Measurement of wind speed from cooling lake thermal imagery

    Science.gov (United States)

    Garrett, Alfred J.; Tuckfield, R. Cary; Villa-Aleman, Eliel; Kurzeja, Robert J.; Pendergast, Malcolm M.

    2009-05-01

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.

  9. D Object Classification Based on Thermal and Visible Imagery in Urban Area

    Science.gov (United States)

    Hasani, H.; Samadzadegan, F.

    2015-12-01

    The spatial distribution of land cover in the urban area especially 3D objects (buildings and trees) is a fundamental dataset for urban planning, ecological research, disaster management, etc. According to recent advances in sensor technologies, several types of remotely sensed data are available from the same area. Data fusion has been widely investigated for integrating different source of data in classification of urban area. Thermal infrared imagery (TIR) contains information on emitted radiation and has unique radiometric properties. However, due to coarse spatial resolution of thermal data, its application has been restricted in urban areas. On the other hand, visible image (VIS) has high spatial resolution and information in visible spectrum. Consequently, there is a complementary relation between thermal and visible imagery in classification of urban area. This paper evaluates the potential of aerial thermal hyperspectral and visible imagery fusion in classification of urban area. In the pre-processing step, thermal imagery is resampled to the spatial resolution of visible image. Then feature level fusion is applied to construct hybrid feature space include visible bands, thermal hyperspectral bands, spatial and texture features and moreover Principle Component Analysis (PCA) transformation is applied to extract PCs. Due to high dimensionality of feature space, dimension reduction method is performed. Finally, Support Vector Machines (SVMs) classify the reduced hybrid feature space. The obtained results show using thermal imagery along with visible imagery, improved the classification accuracy up to 8% respect to visible image classification.

  10. Applications of thermal infrared imagery for energy conservation and environmental surveys

    Science.gov (United States)

    Carney, J. R.; Vogel, T. C.; Howard, G. E., Jr.; Love, E. R.

    1977-01-01

    The survey procedures, developed during the winter and summer of 1976, employ color and color infrared aerial photography, thermal infrared imagery, and a handheld infrared imaging device. The resulting imagery was used to detect building heat losses, deteriorated insulation in built-up type building roofs, and defective underground steam lines. The handheld thermal infrared device, used in conjunction with the aerial thermal infrared imagery, provided a method for detecting and locating those roof areas that were underlain with wet insulation. In addition, the handheld infrared device was employed to conduct a survey of a U.S. Army installation's electrical distribution system under full operating loads. This survey proved to be cost effective procedure for detecting faulty electrical insulators and connections that if allowed to persist could have resulted in both safety hazards and loss in production.

  11. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2012-10-01

    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  12. A data mining approach for sharpening satellite thermal imagery over land

    Science.gov (United States)

    Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...

  13. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    Science.gov (United States)

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-01-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management. PMID:28338047

  14. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    Science.gov (United States)

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-03-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.

  15. Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: a case study

    Science.gov (United States)

    Effective and efficient methods are needed to map agricultural subsurface drainage systems. Visible (VIS), near infrared (NIR), and/or thermal infrared (TIR) imagery obtained by unmanned aircraft systems (UAS) may provide a means for determining drainage pipe locations. Preliminary UAS surveys wit...

  16. Characterization of Terrestrial Discharges into Coastal Waters with Thermal Imagery from a Hierarchical Monitoring Program

    Directory of Open Access Journals (Sweden)

    Claudia Ferrara

    2017-07-01

    Full Text Available Background: The hierarchical use of remotely-sensed imagery from satellites, and then proximally-sensed imagery from helicopter sand drones, can provide a range of spatial and temporal coverage that supports water quality monitoring of complex pollution scenarios. Methods: The study used hierarchical satellite-, helicopter-, and drone-acquired thermal imagery of coastal plumes ranging from 3 to 300 m, near Naples, Italy, and captured temporally- and spatially-overlapping in situ samples to correlate thermal and water quality parameters in each plume and the seawater. Results: In situ sampling determined that between-plume salinity varied by 37%, chlorophyll-a varied by 356%, dissolved oxygen varied by 81%, and turbidity varied by 232%. The radiometric temperature, Trad, for the plume area of interest had a correlation of 0.81 with salinity, 0.74 with chlorophyll-a, 0.98 with dissolved oxygen, and −0.61 with turbidity. Conclusion: This study established hierarchical use of remote and proximal thermal imagery can provide monitoring of complex coastal areas.

  17. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  18. Management applications for thermal IR imagery of lake processes

    Science.gov (United States)

    Whipple, J. M.; Haynes, R. B.

    1971-01-01

    A thermal infrared scanning program was conducted in the Lake Ontario Basin region in an effort to determine: (1) limonologic data that could be collected by remote sensing techniques, and (2) local interest in and routine use of such data in water management programs. Difficulties encountered in the development of an infrared survey program in New York suggest that some of the major obstacles to acceptance of remotely sensed data for routine use are factors of psychology rather than technology. Also, terminology used should suit the measurement technique in order to encourage acceptance of the surface thermal data obtained.

  19. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  20. Monitoring large enrichment plants using thermal imagery from commercial satellites: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Adam Bernstein

    2000-05-01

    Thermal imagery from commercial satellites is an interesting candidate technology for use as a verification tool for the purpose of monitoring certain types of fissile material production sites. Examples of its potential treaty applications include the Fissile Material Cutoff Treaty (FMCT) or a Fissile Material Production Moratorium. To help determine the capabilities and limitations of such imagery as a monitoring tool, the author has examined archived LANDSAT-5 images of the Portsmouth Gaseous Diffusion Plant, a large US uranium-enrichment facility in Ohio. This analysis indicates that large-scale gaseous diffusion plants can very likely be recognized as operational with thermal imagery throughout most of the year in clear weather conditions. It may also be possible to identify certain other large-scale qualitative changes in operations, such as the shut-down of a single process building in a plant, by a comparison of its temperature with the temperatures of neighboring operational process buildings. However, uncertainties in the current data set prevent a definitive conclusion regarding the latter capability. This study identifies intrinsic weaknesses, including vulnerability to countermeasures, that prevent thermal imagery from satellites from being a robust standalone verification tool, even for very large enrichment plants. Nonetheless, the imagery may be useful as a trigger for an on-site inspection, to alert and train inspectors prior to an inspection, and possibly to reduce the frequency of on-site inspections required at a given site. It could have some immediate utility for monitoring the two large gaseous diffusion plants the US and the French plant at Tricastin, and possibly for determining the operational status of two gaseous diffusion plants in China as well--a total of five plants worldwide. The ease of acquisition and modest cost of thermal commercial imagery further increase its attractiveness as a verification tool. In addition to these basic

  1. An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery

    Science.gov (United States)

    Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley

    2009-01-01

    In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 x 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each the. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal infrared

  2. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand

    Science.gov (United States)

    Harvey, M. C.; Rowland, J. V.; Luketina, K. M.

    2016-10-01

    Drones are now routinely used for collecting aerial imagery and creating digital elevation models (DEM). Lightweight thermal sensors provide another payload option for generation of very high-resolution aerial thermal orthophotos. This technology allows for the rapid and safe survey of thermal areas, often present in inaccessible or dangerous terrain. Here we present a 2.2 km2 georeferenced, temperature-calibrated thermal orthophoto of the Waikite geothermal area, New Zealand. The image represents a mosaic of nearly 6000 thermal images captured by drone over a period of about 2 weeks. This is thought by the authors to be the first such image published of a significant geothermal area produced by a drone equipped with a thermal camera. Temperature calibration of the image allowed calculation of heat loss (43 ± 12 MW) from thermal lakes and streams in the survey area (loss from evaporation, conduction and radiation). An RGB (visible spectrum) orthomosaic photo and digital elevation model was also produced for this area, with ground resolution and horizontal position error comparable to commercially produced LiDAR and aerial imagery obtained from crewed aircraft. Our results show that thermal imagery collected by drones has the potential to become a key tool in geothermal science, including geological, geochemical and geophysical surveys, environmental baseline and monitoring studies, geotechnical studies and civil works.

  3. The Use of Meteorlogical Data to Improve Contrail Detection in Thermal Imagery over Ireland.

    Science.gov (United States)

    Whelan, Gillian M.; Cawkwell, Fiona; Mannstein, Hermann; Minnis, Patrick

    2009-01-01

    Aircraft induced contrails have been found to have a net warming influence on the climate system, with strong regional dependence. Persistent linear contrails are detectable in 1 Km thermal imagery and, using an automated Contrail Detection Algorithm (CDA), can be identified on the basis of their different properties at the 11 and 12 m w av.el enTgthshe algorithm s ability to distinguish contrails from other linear features depends on the sensitivity of its tuning parameters. In order to keep the number of false identifications low, the algorithm imposes strict limits on contrail size, linearity and intensity. This paper investigates whether including additional information (i.e. meteorological data) within the CDA may allow for these criteria to be less rigorous, thus increasing the contrail-detection rate, without increasing the false alarm rate.

  4. Thermal Resistances in the Everest Area derived from Satellite Imagery using a Nonlinear Energy Balance Model

    Science.gov (United States)

    Rounce, D.; McKinney, D. C.

    2013-12-01

    Debris cover has a large impact on sub-debris ablation rates and glacier evolution. A thin debris layer may enhance ablation by reducing albedo increasing radiation absorption, while thicker debris insulates the glacier causing ablation to decrease. Debris thickness, thermal conductivity, and meteorological conditions may be measured in the field, but they require extensive fieldwork (Brock et al., 2010; Nicholson and Benn, 2012). This has forced many simplifications and assumptions in models. Satellite imagery combined with an energy balance model has been used with to extract information about debris cover remotely (Nakawo and Rana, 1999; Zhang et al., 2011). The spatial distribution of thermal resistances derived from these studies have agreed well with field values; however, the values were considerably lower than the field values. The difference has been attributed to the mixed pixel effect. Foster et al. (2012) developed an energy balance model that agrees well with debris thickness measured in the field. The model requires knowledge of the thermal conductivity and utilizes a relationship between air and surface temperature to lower sensible heat fluxes. We derive thermal resistances of debris-covered glaciers from satellite imagery in the Everest area. Previous satellite studies have assumed a linear debris temperature gradient, which is valid for time periods of 24 hours or greater (Nicholson and Benn, 2006); however, gradients during the day are nonlinear (Nicholson and Benn, 2006; Reid and Brock, 2010). Landsat 7 imagery is used to account for the non-linear gradient, using the ratio of temperature gradient in the upper 10cm versus the entire debris thickness. These values are derived from temperature profiles on Ngozumpa Glacier (Nicholson, 2004). Meteorological data are obtained from the Pyramid Station. The derived thermal resistances agree well with those found on debris-covered glaciers in the Everest region. Brock, B., Mihalcea, C., Kirkbride, M

  5. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Yalong Ma

    2016-03-01

    Full Text Available Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs, more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG and Discrete Cosine Transform (DCT features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  6. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    Science.gov (United States)

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-01-01

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564

  7. Comparison of the inversion periods for MidIR and LWIR polarimetric and conventional thermal imagery

    Science.gov (United States)

    Felton, M.; Gurton, K. P.; Pezzaniti, J. L.; Chenault, D. B.; Roth, L. E.

    2010-04-01

    We report the results of a diurnal study in which radiometrically calibrated polarimetric and conventional thermal imagery are recorded in the MidIR and LWIR to identify and compare the respective time periods in which minimum target contrast is achieved. The MidIR polarimetric sensor is based on a division-of-aperture approach and has a 640x512 InSb focal-plane array, while the LWIR polarimetric sensor uses a spinning achromatic retarder to perform the polarimetric filtering and has a 324x256 microbolometer focal-plane array. The images used in this study include the S0 and S1 Stokes images of a scene containing a military vehicle and the natural background. In addition, relevant meteorological parameters measured during the test period include air temperature, ambient loading in the LWIR, relative humidity, cloud cover, height, and density. The data shows that the chief factors affecting polarimetric contrast in both wavebands are the amount of thermal emission from the objects in the scene and the abundance of MidIR and LWIR sources in the optical background. In particular, it has been observed that the MidIR polarimetric contrast was positively correlated to the presence of MidIR sources in the optical background, while the LWIR polarimetric contrast was negatively correlated to the presence of LWIR sources in the optical background.

  8. Estimating Coastal Lagoon Tidal Flooding and Repletion with Multidate ASTER Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Thomas R. Allen

    2012-10-01

    Full Text Available Coastal lagoons mix inflowing freshwater and tidal marine waters in complex spatial patterns. This project sought to detect and measure temperature and spatial variability of flood tides for a constricted coastal lagoon using multitemporal remote sensing. Advanced Spaceborne Thermal Emission Radiometer (ASTER thermal infrared data provided estimates of surface temperature for delineation of repletion zones in portions of Chincoteague Bay, Virginia. ASTER high spatial resolution sea-surface temperature imagery in conjunction with in situ observations and tidal predictions helped determine the optimal seasonal data for analyses. The selected time series ASTER satellite data sets were analyzed at different tidal phases and seasons in 2004–2006. Skin surface temperatures of ocean and estuarine waters were differentiated by flood tidal penetration and ebb flows. Spatially variable tidal flood penetration was evaluated using discrete seed-pixel area analysis and time series Principal Components Analysis. Results from these techniques provide spatial extent and variability dynamics of tidal repletion, flushing, and mixing, important factors in eutrophication assessment, water quality and resource monitoring, and application of hydrodynamic modeling for coastal estuary science and management.

  9. Enhancement of thermal imagery using a low-cost high-resolution visual spectrum camera for scene understanding

    Science.gov (United States)

    Smith, Ryan E.; Anderson, Derek T.; Bethel, Cindy L.; Archibald, Chris

    2017-05-01

    Thermal-infrared cameras are used for signal/image processing and computer vision in numerous military and civilian applications. However, the cost of high quality (e.g., low noise, accurate temperature measurement, etc.) and high resolution thermal sensors is often a limiting factor. On the other hand, high resolution visual spectrum cameras are readily available and typically inexpensive. Herein, we outline a way to upsample thermal imagery with respect to a high resolution visual spectrum camera using Markov random field theory. This paper also explores the tradeoffs and impact of upsampling, both qualitatively and quantitatively. Our preliminary results demonstrate the successful use of this approach for human detection and accurate propagation of thermal measurements in an image for more general tasks like scene understanding. A tradeoff analysis of the cost-to-performance as the resolution of the thermal camera decreases is provided.

  10. Use of the Vis-SWIR to Aid Atmospheric Correction of Multispectral and Hyperspectral Thermal Infrared (TIR) Imagery: The TIR Model

    National Research Council Canada - National Science Library

    Gruninger, John; Fox, Marsha; Lee, Jamine; Ratkowski, Anthony J; Hoke, Michael L

    2006-01-01

    The atmospheric correction of thermal infrared (TIR) imagery involves the combined tasks of separation of atmospheric transmittance, downwelling flux and upwelling radiance from the surface material spectral emissivity and temperature...

  11. Effective evaluation of privacy protection techniques in visible and thermal imagery

    Science.gov (United States)

    Nawaz, Tahir; Berg, Amanda; Ferryman, James; Ahlberg, Jörgen; Felsberg, Michael

    2017-09-01

    Privacy protection may be defined as replacing the original content in an image region with a (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed, the development of privacy protection techniques also needs to be complemented with an established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation methods rely on the use of subjective judgments or assume a specific target type in image data and use target detection and recognition accuracies to assess privacy protection. An annotation-free evaluation method that is neither subjective nor assumes a specific target type is proposed. It assesses two key aspects of privacy protection: "protection" and "utility." Protection is quantified as an appearance similarity, and utility is measured as a structural similarity between original and privacy-protected image regions. We performed an extensive experimentation using six challenging datasets (having 12 video sequences), including a new dataset (having six sequences) that contains visible and thermal imagery. The new dataset is made available online for the community. We demonstrate effectiveness of the proposed method by evaluating six image-based privacy protection techniques and also show comparisons of the proposed method over existing methods.

  12. Spatiotemporal Evaluation of Nocturnal Cold Air Drainage Over a Simple Slope Using Thermal Infrared Imagery

    Science.gov (United States)

    Ikani, V.; Chokmani, K.; Fathollahi, L.; Granberg, H.; Fournier, R.

    2016-06-01

    Measurements of climatic processes such as cold air drainage flows are problematic over mountainous areas. Observation of cold air drainage is not available in the existing observation network and it requires a special methodology. The main objective of this study was to characterize the cold air drainage over regions with a slope. A high resolution infrared camera, a meteorological station and Digital Elevation Model (DEM) were used. The specific objective was to derive nocturnal cold air drainage velocity over the slope. To address these objectives, a number of infrared measurement campaigns were conducted during calm and clear sky conditions over an agricultural zone (blackcurrant farm) in Canada. Using thermal infrared images, the nocturnal surface temperature gradient were computed in hourly basis. The largest gradient magnitudes were found between 17h -20h. The cooling rates at basin area were two times higher in comparison to the magnitudes observed within slope area. The image analysis illustrated this considerable temperature gradient of the basin may be partly due to transport of cold air drainage into the basin from the slope. The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  13. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.

    Science.gov (United States)

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-05-19

    In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between

  14. Developing HEAT Scores with H-Res Thermal Imagery to Support Urban Energy Efficiency

    Science.gov (United States)

    Hemachandran, Bharanidharan

    As part of The Calgary Community GHG Reduction Plan (2009) The City is seeking an implementation strategy to reduce GHGs and promote low-carbon living, with a focus on improving urban energy efficiency. The most cited obstacle to energy efficiency improvements is the lack of interest from consumers (CUI, 2008). However, Darby (2006) has shown that effective feedback significantly reduces energy consumption. To exploit these findings, the HEAT (Heat Energy Assessment Technologies) Geoweb project integrates high-resolution (H-Res) airborne thermal imagery (TABI 1800) to provide unique energy efficiency feedback to Calgary homeowners in the form of interactive HEAT Maps and Hot Spots (Hay et al., 2011). As a part of the HEAT Phase II program, the goal of this research is to provide enhanced feedback support for urban energy efficiency by meeting two key objectives: (i) develop an appropriate method to define HEAT Scores using TABI 1800 imagery that allows for the comparison of waste heat of one or more houses with all other mapped houses in the community and city, and (ii) develop a multi-scale interactive Geoweb interface that displays the HEAT Scores at City, Community and Residential scales. To achieve these goals, we describe the evolution of three novel HEAT Score techniques based on: (i) a Standardized Score, (ii) the WUFIRTM model and Logistic Regression and (iii ) a novel criteria weighted method that considers: (a) heat transfer through different roofing materials, (b) local climatic conditions and (c) house age and living area attributes. Furthermore, (d) removing or adding houses to analysis based on this 3rd technique, does not affect the HEAT Score of other houses and (e) HEAT Scores can be compared within and across different cities. We also describe how HEAT Scores are incorporated within the HEAT Geoweb architecture. It is envisioned that HEAT Scores will promote energy efficiency among homeowners and urban city planners, as they will quantify and

  15. Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalez-Dugo

    2015-10-01

    Full Text Available There is a growing need for developing high-throughput tools for crop phenotyping that would increase the rate of genetic improvement. In most cases, the indicators used for this purpose are related with canopy structure (often acquired with RGB cameras and multispectral sensors allowing the calculation of NDVI, but using approaches related with the crop physiology are rare. High-resolution hyperspectral remote sensing imagery provides optical indices related to physiological condition through the quantification of photosynthetic pigment and chlorophyll fluorescence emission. This study demonstrates the use of narrow-band indicators of stress as a potential tool for phenotyping under rainfed conditions using two airborne datasets acquired over a wheat experiment with 150 plots comprising two species and 50 varieties (bread and durum wheat. The flights were performed at the early stem elongation stage and during the milking stage. Physiological measurements made at the time of flights demonstrated that the second flight was made during the terminal stress, known to largely determine final yield under rainfed conditions. The hyperspectral imagery enabled the extraction of thermal, radiance, and reflectance spectra from 260 spectral bands from each plot for the calculation of indices related to photosynthetic pigment absorption in the visible and red-edge regions, the quantification of chlorophyll fluorescence emission, as well as structural indices related to canopy structure. Under the conditions of this study, the structural indices (i.e., NDVI did not show a good performance at predicting yield, probably because of the large effects of terminal water stress. Thermal indices, indices related to chlorophyll fluorescence (calculated using the FLD method, and carotenoids pigment indices (PRI and CAR demonstrated to be better suited for screening complex traits such as crop yield. The study concludes that the indicators derived from high

  16. Thermal plume effects: A multi-disciplinary approach for assessing effects of thermal pollution on estuaries using benthic diatoms and satellite imagery

    Science.gov (United States)

    Ingleton, Timothy; McMinn, Andrew

    2012-03-01

    Rapid, reliable and cost-effective techniques for assessing and monitoring pollution are required because of increased development pressures associated with continued population growth. An innovative multi-disciplinary approach was applied to a power station discharge in Lake Macquarie, Australia, using benthic diatoms, water quality, satellite imagery and temperature loggers. Triplicate sediment samples at five sites across a thermal gradient in one plume affected and two control bays were analysed for benthic diatoms. Multivariate analysis indicated that diatom assemblages and environmental gradients in the receiving water embayment were significantly different to control bays. The plume affected benthic assemblages to greater depths (˜4.7 m) than observed by previous studies and this is likely to have implications for estimates of estuarine productivity and nutrient cycling. Of the 244 diatom taxa identified, Navicula rhaphoneis appeared to best identify areas of the lake bed exposed to temperatures 3-4 °C above ambient (ΔT). Tryblionella lanceola, Tryblionella littoralis, Grammatophora spp. and Psammodictyon panduriformis also contributed to gradients and might be used as plume indicator species. Temperature, ammonia, oxidised nitrogen and selenium significantly explained gradients in the species data (p = 0.02). Satellite imagery indicated that receiving bay temperature gradients (<7 °C) were greatest in winter, whereas loggers showed ΔT was greatest in autumn then winter. These analyses highlighted that seasonality is an important factor when considering the effects of thermal plumes on receiving environment ecology. Analyses of imagery and logger data are effective techniques for managers to routinely assess plume intensity and extent. This study demonstrates that both benthic diatoms and satellite imagery are valuable tools for the monitoring and assessment of thermal pollution in coastal environments.

  17. Measured comparison of the inversion periods for polarimetric and conventional thermal long-wave IR (LWIR) imagery

    Science.gov (United States)

    Felton, M.; Gurton, K. P.; Roth, L. E.; Pezzaniti, J. L.; Chenault, D. B.

    2009-08-01

    We report the results of a multi-day diurnal study in which radiometrically calibrated polarimetric and conventional thermal imagery is recorded in the LWIR to identify/compare the respective time periods in which minimum target contrast is achieved, e.g., thermal inversion periods are typically experienced during dusk and dawn. Imagery is recorded with a polarimetric IR sensor employing a 324x256 microbolometer array using a spinning achromatic retarder to perform the polarimetric filtering. The images used in this study include the S0, normalized S1, and normalized S2 Stokes images and the degree of linear polarization (DOLP) images of a scene containing military vehicles and the natural background. In addition, relevant meteorological parameters measured during the test period include air temperature, ambient loading in the LWIR, relative humidity, and cloud cover, height and density. The data shows that the chief factors affecting polarimetric contrast are the amount of thermal emission from the objects in the scene and the abundance of LWIR sources in the optical background. In addition, we found that contrast between targets and background within polarimetric images often remains relatively high during periods of low thermal contrast.

  18. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  19. Detection of Verticillium wilt of olive trees and downy mildew of opium poppy using hyperspectral and thermal UAV imagery

    Science.gov (United States)

    Calderón Madrid, Rocío; Navas Cortés, Juan Antonio; Montes Borrego, Miguel; Landa del Castillo, Blanca Beatriz; Lucena León, Carlos; Jesús Zarco Tejada, Pablo

    2014-05-01

    The present study explored the use of high-resolution thermal, multispectral and hyperspectral imagery as indicators of the infections caused by Verticillium wilt (VW) in olive trees and downy mildew (DM) in opium poppy fields. VW, caused by the soil-borne fungus Verticillium dahliae, and DM, caused by the biotrophic obligate oomycete Peronospora arborescens, are the most economically limiting diseases of olive trees and opium poppy, respectively, worldwide. V. dahliae infects the plant by the roots and colonizes its vascular system, blocking water flow and eventually inducing water stress. P. arborescens colonizes the mesophyll, appearing the first symptoms as small chlorotic leaf lesions, which can evolve to curled and thickened tissues and systemic infections that become deformed and necrotic as the disease develops. The work conducted to detect VW and DM infection consisted on the acquisition of time series of airborne thermal, multispectral and hyperspectral imagery using 2-m and 5-m wingspan electric Unmanned Aerial Vehicles (UAVs) in spring and summer of three consecutive years (2009 to 2011) for VW detection and on three dates in spring of 2009 for DM detection. Two 7-ha commercial olive orchards naturally infected with V. dahliae and two opium poppy field plots artificially infected by P. arborescens were flown. Concurrently to the airborne campaigns, olive orchards and opium poppy fields were assessed "in situ" to assess actual VW severity and DM incidence. Furthermore, field measurements were conducted at leaf and crown level. The field results related to VW detection showed a significant increase in crown temperature (Tc) minus air temperature (Ta) and a decrease in leaf stomatal conductance (G) as VW severity increased. This reduction in G was associated with a significant increase in the Photochemical Reflectance Index (PRI570) and a decrease in chlorophyll fluorescence. DM asymptomatic leaves showed significantly higher NDVI and lower green/red index

  20. Wildlife Multispecies Remote Sensing Using Visible and Thermal Infrared Imagery Acquired from AN Unmanned Aerial Vehicle (uav)

    Science.gov (United States)

    Chrétien, L.-P.; Théau, J.; Ménard, P.

    2015-08-01

    Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.

  1. Comparative analysis on thermal non-destructive testing imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT)

    Science.gov (United States)

    Yousefi, Bardia; Sfarra, Stefano; Ibarra Castanedo, Clemente; Maldague, Xavier P. V.

    2017-09-01

    Thermal and infrared imagery creates considerable developments in Non-Destructive Testing (NDT) area. Here, a thermography method for NDT specimens inspection is addressed by applying a technique for computation of eigen-decomposition which refers as Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). The proposed approach uses a shorter computational alternative to estimate covariance matrix and Singular Value Decomposition (SVD) to obtain the result of Principal Component Thermography (PCT) and ultimately segments the defects in the specimens applying color based K-medoids clustering approach. The problem of computational expenses for high-dimensional thermal image acquisition is also investigated. Three types of specimens (CFRP, Plexiglas and Aluminium) have been used for comparative benchmarking. The results conclusively indicate the promising performance and demonstrate a confirmation for the outlined properties.

  2. Monitoring the Impacts of Severe Drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Austin R. Coates

    2015-10-01

    Full Text Available Airborne hyperspectral and thermal infrared imagery acquired in 2013 and 2014, the second and third years of a severe drought in California, were used to assess drought impacts on dominant plant species. A relative green vegetation fraction (RGVF calculated from 2013–2014 Airborne Visible Infrared Imaging Spectrometer (AVIRIS data using linear spectral unmixing revealed seasonal and multi-year changes relative to a pre-drought 2011 reference AVIRIS image. Deeply rooted tree species and tree species found in mesic areas showed the least change in RGVF. Coastal sage scrub species demonstrated the highest seasonal variability, as well as a longer-term decline in RGVF. Ceanothus species were apparently least well-adapted to long-term drought among chaparral species, showing persistent declines in RGVF over 2013 and 2014. Declining RGVF was associated with higher land surface temperature retrieved from MODIS-ASTER Airborne Simulator (MASTER data. Combined collection of hyperspectral and thermal infrared imagery may offer new opportunities for mapping and monitoring drought impacts on ecosystems.

  3. Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery.

    Directory of Open Access Journals (Sweden)

    Shan-e-Ahmed Raza

    Full Text Available Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and environmental conditions and can be confounded by variations in complex canopy structure. Therefore, in this work, instead of using stress indices, information from thermal and visible light imagery was combined along with machine learning techniques to identify regions of canopy showing a response to soil water deficit. Thermal and visible light images of a spinach canopy with different levels of soil moisture were captured. Statistical measurements from these images were extracted and used to classify between canopies growing in well-watered soil or under soil moisture deficit using Support Vector Machines (SVM and Gaussian Processes Classifier (GPC and a combination of both the classifiers. The classification results show a high correlation with soil moisture. We demonstrate that regions of a spinach crop responding to soil water deficit can be identified by using machine learning techniques with a high accuracy of 97%. This method could, in principle, be applied to any crop at a range of scales.

  4. Assessing Geologic Controls on Groundwater Discharge in the Loup River Basin of Nebraska by Using Aerial Thermal-Infrared Imagery

    Science.gov (United States)

    Hobza, C. M.; Schepers, A.

    2016-12-01

    Streamflows in the Loup River basin are sensitive to groundwater withdrawals because of the close hydrologic connection between groundwater and surface water. Groundwater discharge contributes more than 90 percent of streamflow in the Loup River basin in the Nebraska Sand Hills. The U.S. Geological Survey, in cooperation with the Upper and Lower Loup Natural Resources Districts, and the Nebraska Environmental Trust, are studying the temporal and spatial characteristics of surface-water/groundwater interaction within the Loup River basin. Streams in the Loup River basin are known to receive a combination of focused discharge (groundwater discharge as springs) and diffuse discharge. To map focused groundwater discharge points, aerial thermal-infrared imagery was collected over two stream reaches prior to onset of ice cover in late 2015, when warm thermal anomalies in stream-surface temperatures indicated areas of focused groundwater discharge. Zones of focused groundwater discharge were detected along the upper South Loup, North Fork of South Loup, and Dismal Rivers. Within the active stream channel, the Dismal River is incising into the Ogallala Formation, which is locally characterized as fine-grained sandstone interbedded with siltstone. Some points of focused discharge along the Dismal River result from local confining beds within the Ogallala Formation that create strong vertical gradients near the stream margin. A series of focused groundwater discharge points was detected along the upper South Loup River where the river has incised into Pliocene-age gravel deposits. Stream surface temperatures from the aerial thermal-infrared imagery were plotted against distance downstream. Results showed a substantial increase in the groundwater component of streamflow originating from diffuse groundwater discharge located upstream from mapped springs.

  5. Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards

    Directory of Open Access Journals (Sweden)

    Joaquim Bellvert

    2016-01-01

    Full Text Available In the current scenario of worldwide limited water supplies, conserving water is a major concern in agricultural areas. Characterizing within-orchard spatial heterogeneity in water requirements would assist in improving irrigation water use efficiency and conserve water. The crop water stress index (CWSI has been successfully used as a crop water status indicator in several fruit tree species. In this study, the CWSI was developed in three Prunus persica L. cultivars at different phenological stages of the 2012 to 2014 growing seasons, using canopy temperature measurements of well-watered trees. The CWSI was then remotely estimated using high-resolution thermal imagery acquired from an airborne platform and related to leaf water potential (ѰL throughout the season. The feasibility of mapping within-orchard spatial variability of ѰL from thermal imagery was also explored. Results indicated that CWSI can be calculated using a common non-water-stressed baseline (NWSB, upper and lower limits for the entire growing season and for the three studied cultivars. Nevertheless, a phenological effect was detected in the CWSI vs. ѰL relationships. For a specific given CWSI value, ѰL was more negative as the crop developed. This different seasonal response followed the same trend for the three studied cultivars. The approach presented in this study demonstrated that CWSI is a feasible method to assess the spatial variability of tree water status in heterogeneous orchards, and to derive ѰL maps throughout a complete growing season. A sensitivity analysis of varying pixel size showed that a pixel size of 0.8 m or less was needed for precise ѰL mapping of peach and nectarine orchards with a tree crown area between 3.0 to 5.0 m2.

  6. HIGH RESOLUTION LANDCOVER MODELLING WITH PLÉIADES IMAGERY AND DEM DATA IN SUPPORT OF FINE SCALE LANDSCAPE THERMAL MODELLING

    Directory of Open Access Journals (Sweden)

    M. Thompson

    2017-11-01

    Full Text Available In the evaluation of air-borne thermal infrared imaging sensors, the use of simulated spectral infrared scenery is a cost-effective way to provide input to the sensor. The benefit of simulated scenes includes control over parameters governing the spectral and related thermal behaviour of the terrain as well as atmospheric conditions. Such scenes need to have a high degree of radiometric and geometric accuracy, as well as high resolution to account for small objects having different spectral and associated thermal properties. In support of this, innovative use of tri-stereo, ultra-high resolution Pléiades satellite imagery is being used to generated high detail, small scale quantitative terrain surface data to compliment comparable optical data in order to produce detailed urban and rural landscape datasets representative of different landscape features, within which spectrally defined characteristics can be subsequently matched to thermal signatures. Pléiades tri-stereo mode, acquired from the same orbit during the same pass, is particularly favourable for reaching the required metric accuracy because images are radiometrically and geometrically very homogeneous, which allows a very good radiometric matching for relief computation. The tri-stereo approach reduces noise and allows significantly enhanced relief description in landscapes where simple stereo imaging cannot see features, such as in dense urban areas or valley bottoms in steep, mountainous areas. This paper describes the datasets that have been generated for DENEL over the Hartebeespoort Dam region, west of Pretoria, South Africa. The final terrain datasets are generated by integrated modelling of both height and spectral surface characteristics within an object-based modelling environment. This approach provides an operational framework for rapid and highly accurate mapping of building and vegetation structure of wide areas, as is required in support of the evaluation of thermal

  7. Crop water stress maps for an entire growing season from visible and thermal UAV imagery

    DEFF Research Database (Denmark)

    Hoffmann, Helene; Jensen, Rasmus; Thomsen, Anton

    2016-01-01

    This study investigates whether a water deficit index (WDI) based on imagery from unmanned aerial vehicles (UAVs) can provide accurate crop water stress maps at different growth stages of barley and in differing weather situations. Data from both the early and late growing season are included...... to investigate whether the WDI has the unique potential to be applicable both when the land surface is partly composed of bare soil and when crops on the land surface are senescing. The WDI differs from the more commonly applied crop water stress index (CWSI) in that it uses both a spectral vegetation index (VI...... season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI accounts for areas of ripe crops that no longer have the same need for irrigation. WDI maps can potentially serve as water stress maps...

  8. Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring

    DEFF Research Database (Denmark)

    Alldieck, Thiemo; Bahnsen, Chris Holmberg; Moeslund, Thomas B.

    2016-01-01

    introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two...... parallel segmentation pipelines of the RGB and thermal video streams. The potential of the proposed context-aware fusion is demonstrated by extensive tests of quantitative and qualitative characteristics on existing and novel video datasets and benchmarked against competing approaches to multi-modal fusion....

  9. Derivation of cloud-free-region atmospheric motion vectors from FY-2E thermal infrared imagery

    Science.gov (United States)

    Wang, Zhenhui; Sui, Xinxiu; Zhang, Qing; Yang, Lu; Zhao, Hang; Tang, Min; Zhan, Yizhe; Zhang, Zhiguo

    2017-02-01

    The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split window (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.

  10. Colour-the-INSight : Combining a direct view rifle sight with fused intensified and thermal imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Jansen, C.; Toet, A.; Bijl, P.; Bakker, P.J.; Hiddema, A.C.; Vliet, S.F. van

    2012-01-01

    We present the design and evaluation of a new demonstrator rifle sight viewing system containing direct view, red aim point and fusion of an (uncooled, LWIR) thermal sensor with a digital image intensifier. Our goal is to create a system that performs well under a wide variety of (weather)

  11. Heat and water transfer at the bare soil surface : aspects affecting thermal imagery

    NARCIS (Netherlands)

    Berge, ten H.F.M.

    1986-01-01

    Surface temperature as assessed by means of thermal infra red remote sensing is affected by a number of soil properties. The sensitivity of surface temperature and surface energy fluxes to variations in physical soil properties is studied by means of a numerical simulation

  12. Multispectral Thermal Imagery and Its Application to the Geologic Mapping of the Koobi Fora Formation, Northwestern Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Green, Mary K. [Univ. of New Mexico, Albuquerque, NM (United States)

    2005-12-01

    The Koobi Fora Formation in northwestern Kenya has yielded more hominin fossils dated between 2.1 and 1.2 Ma than any other location on Earth. This research was undertaken to discover the spectral signatures of a portion of the Koobi Fora Formation using imagery from the DOE's Multispectral Thermal Imager (MTI) satellite. Creation of a digital geologic map from MTI imagery was a secondary goal of this research. MTI is unique amongst multispectral satellites in that it co-collects data from 15 spectral bands ranging from the visible to the thermal infrared with a ground sample distance of 5 meters per pixel in the visible and 20 meters in the infrared. The map was created in two stages. The first was to correct the base MTI image using spatial accuracy assessment points collected in the field. The second was to mosaic various MTI images together to create the final Koobi Fora map. Absolute spatial accuracy of the final map product is 73 meters. The geologic classification of the Koobi Fora MTI map also took place in two stages. The field work stage involved location of outcrops of different lithologies within the Koobi Fora Formation. Field descriptions of these outcrops were made and their locations recorded. During the second stage, a linear spectral unmixing algorithm was applied to the MTI mosaic. In order to train the linear spectra unmixing algorithm, regions of interest representing four different classes of geologic material (tuff, alluvium, carbonate, and basalt), as well as a vegetation class were defined within the MTI mosaic. The regions of interest were based upon the aforementioned field data as well as overlays of geologic maps from the 1976 Iowa State mapping project. Pure spectra were generated for each class from the regions of interest, and then the unmixing algorithm classified each pixel according to relative percentage of classes found within the pixel based upon the pure spectra values. A total of four unique combinations of geologic

  13. Face detection in thermal imagery using an Open Source Computer Vision library

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Somboonkaew, Armote

    2009-05-01

    This paper studies the use of a combination of Haar-like features and a cascade of boosted tree classifiers embedded in a widely used OpenCV for face detection in thermal images. With 2013 positive and 2020 negative 320×240-pixel thermal images for 20 training stages on three window sizes of 20×20, 24×24, and 30×30 pixels, our experiment shows that these three windows offer similar hit and false alarm rates at the end of the training section. Larger windows also spend much more time to train. During our testing, the 30×30-pixel window provides measured best hit and false rejection/acceptation rates of 93.4% and 6.6%, respectively, with a measured slowest detection speed of 19.6 ms. A 5-ms improvement in the measured detection speed with a slightly lower hit rate of 92.1% is accomplished by using the 24×24-pixel window. These results verify that the combination of Haar-like features and a cascade of boosted tree classifiers is a promising technique for face detection application in thermal images.

  14. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas

    Directory of Open Access Journals (Sweden)

    Rocío Calderón

    2015-05-01

    Full Text Available Automatic methods for an early detection of plant diseases (i.e., visible symptoms at early stages of disease development using remote sensing are critical for precision crop protection. Verticillium wilt (VW of olive caused by Verticillium dahliae can be controlled only if detected at early stages of development. Linear discriminant analysis (LDA and support vector machine (SVM classification methods were applied to classify V. dahliae severity using remote sensing at large scale. High-resolution thermal and hyperspectral imagery were acquired with a manned platform which flew a 3000-ha commercial olive area. LDA reached an overall accuracy of 59.0% and a κ of 0.487 while SVM obtained a higher overall accuracy, 79.2% with a similar κ, 0.495. However, LDA better classified trees at initial and low severity levels, reaching accuracies of 71.4 and 75.0%, respectively, in comparison with the 14.3% and 40.6% obtained by SVM. Normalized canopy temperature, chlorophyll fluorescence, structural, xanthophyll, chlorophyll, carotenoid and disease indices were found to be the best indicators for early and advanced stage infection by VW. These results demonstrate that the methods developed in other studies at orchard scale are valid for flights in large areas comprising several olive orchards differing in soil and crop management characteristics.

  15. Identification of Rocks and Their Quartz Content in Gua Musang Goldfield Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Imagery

    Directory of Open Access Journals (Sweden)

    Kouame Yao

    2017-01-01

    Full Text Available Quartz is an important mineral element and the most abundant rock-forming mineral that controls the mineralogy of a reservoir. At the surface, quartz is more stable than most other rock minerals because it is made up of interlocking silica that makes it quite resistant to mechanical weathering. Quartz abundance is an indication of mineralization in many metal deposits; therefore, identification and mapping of quartz in rocks are of great value for exploration and resource potential assessments. In this study, thermal infrared (TIR bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER imagery were used to identify quartz contained rocks in Gua Musang. First, the image was corrected for atmospheric effect and the study area subset for further processing. Thereafter, spectral transformation (principal component analysis (PCA was implemented on the TIR bands and the resulting principal component (PC images were analysed. The three optimal PCs were selected using the strength of spectral interaction and the eigenvalues of each band. To discriminate between quartz-rich and quartz-poor rocks, RGB false colour composite and greyscale image of one of the PCs were analysed. The result shows that volcanogenic igneous rock and carbonate sedimentary rocks of Permian formation are quartz-poor while Triassic sedimentary rock made up of organic particles and sandstone is quartz-rich. On the contrary, the quartz content in the metamorphic rock varies across the area but is richer in quartz content than the igneous and carbonate rocks. Classification of the composite image classified using maximum likelihood (ML supervised classification method produced overall accuracy and Kappa coefficient of 96.53%, and 0.95, respectively.

  16. Using thermal infrared imagery produced by unmanned air vehicles to evaluate locations of ecological road structures

    Directory of Open Access Journals (Sweden)

    Sercan Gülci

    2016-07-01

    Full Text Available The aerial photos and satellite images are widely used and cost efficient data for monitoring and analysis of large areas in forestry activities. Nowadays, accurate and high resolution remote sensing data can be generated for large areas by using Unmanned Aerial Vehicles (UAV integrated with sensors working in various spectral bands. Besides, the UAV systems (UAVs have been used in interdisciplinary studies to produce data of large scale forested areas for desired time periods (i.e. in different seasons or different times of a day. In recent years, it has become more important to conduct studies on determination of wildlife corridors for controlling and planning of habitat fragmentation of wild animals that need vast living areas. The wildlife corridors are a very important base for the determination of a road network planning and placement of ecological road structures (passages, as well as for the assessment of special and sensitive areas such as riparian zones within the forest. It is possible to evaluate wildlife corridors for large areas within a shorter time by using data produced by ground measurements, and remote sensing and viewer systems (i.e. photo-trap, radar and etc., as well as by using remote sensing data generated by UAVs. Ecological behaviors and activities (i.e. sheltering, feeding, mating, etc. of wild animals vary spatially and temporally. Some species are active in their habitats at day time, while some species are active during the night time. One of the most effective methods for evaluation of night time animals is utilizing heat sensitive thermal cameras that can be used to collect thermal infrared images with the night vision feature. When the weather conditions are suitable for a flight, UAVs assist for determining location of corridors effectively and accurately for moving wild animals at any time of the day. Then, the most suitable locations for ecological road structures can be determined based on wildlife corridor

  17. Measurement of Heat Losses on The Milking Machine Electric Motor at Various Regulations of Vacuum Using Methods of Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Jan Kudělka

    2014-01-01

    Full Text Available To ensure the desirable vacuum in the milking machines, use is currently made predominantly of rotary vacuum pumps. These vacuum pumps are driven by a squirrel-cage induction motor. Until recently, the vacuum in the system to achieve the required value was controlled by a main control valve sucking in ambient air into the system. During the milking process itself and during other activities (flushing, sanitation, this control method consumed a large amount of electricity. The technical solution to electricity demand reduction was introduced with the emergence and development of frequency converters. The frequency converters control the operation of the asynchronous electric motor so that the actual delivery of the vacuum pumps equals the volume of air sucked into the vacuum pipe. The motor supply by the frequency converter brings about a host of adverse phenomena. This paper is dedicated to motor heating and heat losses on the surface of the electric motor at different regulations of vacuum in milking machines. The objective of the paper is to determine the immediate specific heat flows along the surface of the electric motor of the milking machine during milking using a control valve regulation and a control using the frequency converter, and compare the resulting value. The specific heat flows were determined by means of a non-traditional method of temperature field measurement using a system of thermal imagery. The calculated and measured data obtained from both these systems were statistically evaluated and compared. Use was made of a milking machine located in the cooperative Hospodářské obchodní družstvo (HOD Jabloňov.

  18. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring

    Science.gov (United States)

    Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose

    2018-02-01

    Methane (CH4) is the main constituent of natural gas. Fugitive CH4 emissions partially stem from geological reservoirs (seepages) and leaks in pipelines and petroleum production plants. Airborne hyperspectral sensors with enough spectral and spatial resolution and high signal-to-noise ratio can potentially detect these emissions. Here, a field experiment performed with controlled release CH4 sources was conducted in the Rocky Mountain Oilfield Testing Center (RMOTC), Casper, WY (USA). These sources were configured to deliver diverse emission types (surface and subsurface) and rates (20-1450 scf/hr), simulating natural (seepages) and anthropogenic (pipeline) CH4 leaks. The Aerospace Corporation's SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) sensor acquired hyperspectral thermal infrared data over the experimental site with 128 bands spanning the 7.6 μm-13.5 μm range. The data was acquired with a spatial resolution of 0.5 m at 1500 ft and 0.84 m at 2500 ft above ground level. Radiance images were pre-processed with an adaptation of the In-Scene Atmospheric Compensation algorithm and converted to emissivity through the Emissivity Normalization algorithm. The data was processed with a Matched Filter. Results allowed the separation between endmembers related to the spectral signature of CH4 from the background. Pixels containing CH4 signatures (absorption bands at 7.69 μm and 7.88 μm) were highlighted and the gas plumes mapped with high definition in the imagery. The dispersion of the mapped plumes is consistent with the wind direction measured independently during the experiment. Variations in the dimension of mapped gas plumes were proportional to the emission rate of each CH4 source. Spectral analysis of the signatures within the plumes shows that CH4 spectral absorption features are sharper and deeper in pixels located near the emitting source, revealing regions with higher gas density and assisting in locating CH4 sources in the field

  19. Combining very-long-range terrestrial laser scanner data and thermal imagery for analysis of active lava flow fields

    Science.gov (United States)

    James, Mike; Pinkerton, Harry; Applegarth, Jane

    2010-05-01

    detected in the repeat measurement from the head of the Valle del Bove. With the oblique views afforded by the ground-based instrument, the rough lava-channel topography results in irregular data spacing which can make the interpretation of laser-derived digital elevation models alone difficult. Nevertheless, fusing topographic data with thermal images allows active flow features to be clearly identified, and consideration of individual laser returns can permit new flows and purely inflated regions to be distinguished. The very-long-range capabilities of new terrestrial laser scanners have significantly increased their usefulness for frequent measurement of inaccessible terrain. In the case of active lavas, combining data with thermal imagery can greatly assist in data interpretation and visualisation.

  20. Thermal Imagery-Derived Surface Inundation Modeling to Assess Flood Risk in a Flood-Pulsed Savannah Watershed in Botswana and Namibia

    Directory of Open Access Journals (Sweden)

    Jeri J. Burke

    2016-08-01

    Full Text Available The Chobe River Basin (CRB, a sub-basin of the Upper Zambezi Basin shared by Namibia and Botswana, is a complex hydrologic system that lies at the center of the world’s largest transfrontier conservation area. Despite its regional importance for livelihoods and biodiversity, its hydrology, controlled by the timing and relative contributions of water from two regional rivers, remains poorly understood. An increase in the magnitude of flooding in this region since 2009 has resulted in significant displacements of rural communities. We use an innovative approach that employs time-series of thermal imagery and station discharge data to model seasonal flooding patterns, identify the driving forces that control the magnitude of flooding and the high population density areas that are most at risk of high magnitude floods throughout the watershed. Spatio-temporal changes in surface inundation determined using NASA Moderate-resolution Imaging Spectroradiometer (MODIS thermal imagery (2000–2015 revealed that flooding extent in the CRB is extremely variable, ranging from 401 km2 to 5779 km2 over the last 15 years. A multiple regression model of lagged discharge of surface contributor basins and flooding extent in the CRB indicated that the best predictor of flooding in this region is the discharge of the Zambezi River 64 days prior to flooding. The seasonal floods have increased drastically in magnitude since 2008 causing large populations to be displaced. Over 46,000 people (53% of Zambezi Region population are living in high magnitude flood risk areas, making the need for resettlement planning and mitigation strategies increasingly important.

  1. Spatial heterogeneity in geothermally-influenced lakes derived from atmospherically corrected Landsat thermal imagery and three-dimensional hydrodynamic modelling

    DEFF Research Database (Denmark)

    Allan, Mathew G; Hamilton, David P.; Trolle, Dennis

    2016-01-01

    Atmospheric correction of Landsat 7 thermal data was carried out for the purpose of retrieval of lake skin water temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. The effect of the atmosphere was modelled using four sources of atmospheric profile data as input to the MODera...

  2. Thermal ecology on an exposed algal reef: infrared imagery a rapid tool to survey temperature at local spatial scales

    Science.gov (United States)

    Cox, T. E.; Smith, C. M.

    2011-12-01

    We tested the feasibility of infra-red (IR) thermography as a tool to survey in situ temperatures in intertidal habitats. We employed this method to describe aspects of thermal ecology for an exposed algal reef in the tropics (O`ahu, Hawai`i). In addition, we compared temperatures of the surrounding habitat as determined by IR thermography and traditional waterproof loggers. Images of reef organisms (6 macroalgae, 9 molluscs, 1 anthozoan, and 2 echinoderms), loggers, and landscapes were taken during two diurnal low tides. Analysis of IR thermographs revealed remarkable thermal complexity on a narrow tropical shore, as habitats ranged from 18.1 to 38.3°C and surfaces of organisms that ranged from 21.1 to 33.2°C. The near 20°C difference between abiotic habitats and the mosaic of temperatures experienced by reef organisms across the shore are similar to findings from temperate studies using specialized longterm loggers. Further, IR thermography captured rapid temperature fluctuations that were related to tidal height and cross-correlated to wave action. Finally, we gathered evidence that tidal species were associated with particular temperature ranges and that two species possess morphological characteristics that limit thermal stress. Loggers provided similar results as thermography but lack the ability to resolve variation in fine-scale spatial and temporal patterns. Our results support the utility of IR thermography in exploring thermal ecology, and demonstrate the steps needed to calibrate data leading to establishment of baseline conditions in a changing and heterogeneous environment.

  3. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  4. Foliar Temperature Gradients as Drivers of Budburst in Douglas-fir: New Applications of Thermal Infrared Imagery

    Science.gov (United States)

    Miller, R.; Lintz, H. E.; Thomas, C. K.; Salino-Hugg, M. J.; Niemeier, J. J.; Kruger, A.

    2014-12-01

    Budburst, the initiation of annual growth in plants, is sensitive to climate and is used to monitor physiological responses to climate change. Accurately forecasting budburst response to these changes demands an understanding of the drivers of budburst. Current research and predictive models focus on population or landscape-level drivers, yet fundamental questions regarding drivers of budburst diversity within an individual tree remain unanswered. We hypothesize that foliar temperature, an important physiological property, may be a dominant driver of differences in the timing of budburst within a single tree. Studying these differences facilitates development of high throughput phenotyping technology used to improve predictive budburst models. We present spatial and temporal variation in foliar temperature as a function of physical drivers culminating in a single-tree budburst model based on foliar temperature. We use a novel remote sensing approach, combined with on-site meteorological measurements, to demonstrate important intra-canopy differences between air and foliar temperature. We mounted a thermal infrared camera within an old-growth canopy at the H.J. Andrews LTER forest and imaged an 8m by 10.6m section of a Douglas-fir crown. Sampling one image per minute, approximately 30,000 thermal infrared images were collected over a one-month period to approximate foliar temperature before, during and after budburst. Using time-lapse photography in the visible spectrum, we documented budburst at fifteen-minute intervals with eight cameras stratified across the thermal infrared camera's field of view. Within the imaged tree's crown, we installed a pyranometer, 2D sonic anemometer and fan-aspirated thermohygrometer and collected 3,000 measurements of net shortwave radiation, wind speed, air temperature and relative humidity. We documented a difference of several days in the timing of budburst across both vertical and horizontal gradients. We also observed clear

  5. HOW MANY HIPPOS (HOMHIP: ALGORITHM FOR AUTOMATIC COUNTS OF ANIMALS WITH INFRA-RED THERMAL IMAGERY FROM UAV

    Directory of Open Access Journals (Sweden)

    S. Lhoest

    2015-08-01

    Full Text Available The common hippopotamus (Hippopotamus amphibius L. is part of the animal species endangered because of multiple human pressures. Monitoring of species for conservation is then essential, and the development of census protocols has to be chased. UAV technology is considering as one of the new perspectives for wildlife survey. Indeed, this technique has many advantages but its main drawback is the generation of a huge amount of data to handle. This study aims at developing an algorithm for automatic count of hippos, by exploiting thermal infrared aerial images acquired from UAV. This attempt is the first known for automatic detection of this species. Images taken at several flight heights can be used as inputs of the algorithm, ranging from 38 to 155 meters above ground level. A Graphical User Interface has been created in order to facilitate the use of the application. Three categories of animals have been defined following their position in water. The mean error of automatic counts compared with manual delineations is +2.3% and shows that the estimation is unbiased. Those results show great perspectives for the use of the algorithm in populations monitoring after some technical improvements and the elaboration of statistically robust inventories protocols.

  6. Everyday imagery

    DEFF Research Database (Denmark)

    Peters, Chris; Allan, Stuart

    2016-01-01

    ’s detailed analysis of open-ended questionnaires from ‘millennial’ smartphone users elucidates the varied experiential, compositional, and technological aspects associated with smartphone imagery in everyday life. It argues that the associated changes do more than just update previous technologies but rather...

  7. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration

    Science.gov (United States)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.

    2009-04-01

    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary

  8. Thin-ice dynamics and ice production in the Storfjorden polynya for winter seasons 2002/2003–2013/2014 using MODIS thermal infrared imagery

    Directory of Open Access Journals (Sweden)

    A. Preußer

    2015-05-01

    Full Text Available Spatial and temporal characteristics of the Storfjorden polynya, which forms regularly in the proximity of the islands Spitsbergen, Barentsøya and Edgeøya in the Svalbard archipelago under the influence of strong northeasterly winds, have been investigated for the period of 2002/2003 to 2013/2014 using thermal infrared satellite imagery. Thin-ice thicknesses were calculated from MODIS ice-surface temperatures combined with ECMWF ERA-Interim atmospheric reanalysis data in an energy-balance model. Associated quantities like polynya area and total ice production were derived and compared to previous remote sensing and modeling studies. A basic coverage-correction scheme was applied to account for cloud gaps in the daily composites. On average, both polynya area and ice production are thereby increased by about 30%. The sea ice in the Storfjorden area experiences a late fall freeze-up in several years over the 12-winter period, which becomes most apparent through an increasing frequency of large thin-ice areas until the end of December. In the course of an average winter season, ice thicknesses below 10 cm are dominating within the Storfjorden basin. During the regarded period, the mean polynya area is 4555.7 ± 1542.9 km2. Maximum daily ice production rates can reach as high as 26 cm d−1, while the average ice production is estimated at 28.3 ± 8.5 km3 per winter and therefore lower than in previous studies. Despite this comparatively short record of 12 winter seasons, a significant positive trend of 20.2 km3 per decade could be detected, which originates primarily from a delayed freeze-up in November and December in recent winter seasons. This contrasts earlier reports of a slightly negative trend in accumulated ice production prior to 2002. Although featuring more pronounced interannual variations between 2004/2005 and 2011/2012, our estimates underline the importance of this relatively small coastal polynya system considering its

  9. Thin-ice dynamics and ice production in the Storfjorden polynya for winter seasons 2002/2003-2013/2014 using MODIS thermal infrared imagery

    Science.gov (United States)

    Preusser, A.; Willmes, S.; Heinemann, G.; Paul, S.

    2015-05-01

    Spatial and temporal characteristics of the Storfjorden polynya, which forms regularly in the proximity of the islands Spitsbergen, Barentsøya and Edgeøya in the Svalbard archipelago under the influence of strong northeasterly winds, have been investigated for the period of 2002/2003 to 2013/2014 using thermal infrared satellite imagery. Thin-ice thicknesses were calculated from MODIS ice-surface temperatures combined with ECMWF ERA-Interim atmospheric reanalysis data in an energy-balance model. Associated quantities like polynya area and total ice production were derived and compared to previous remote sensing and modeling studies. A basic coverage-correction scheme was applied to account for cloud gaps in the daily composites. On average, both polynya area and ice production are thereby increased by about 30%. The sea ice in the Storfjorden area experiences a late fall freeze-up in several years over the 12-winter period, which becomes most apparent through an increasing frequency of large thin-ice areas until the end of December. In the course of an average winter season, ice thicknesses below 10 cm are dominating within the Storfjorden basin. During the regarded period, the mean polynya area is 4555.7 ± 1542.9 km2. Maximum daily ice production rates can reach as high as 26 cm d-1, while the average ice production is estimated at 28.3 ± 8.5 km3 per winter and therefore lower than in previous studies. Despite this comparatively short record of 12 winter seasons, a significant positive trend of 20.2 km3 per decade could be detected, which originates primarily from a delayed freeze-up in November and December in recent winter seasons. This contrasts earlier reports of a slightly negative trend in accumulated ice production prior to 2002. Although featuring more pronounced interannual variations between 2004/2005 and 2011/2012, our estimates underline the importance of this relatively small coastal polynya system considering its contribution to the cold

  10. Current Resource Imagery Projects

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Map showing coverage of current Resource imagery projects. High resolution/large scale Resource imagery is typically acquired for the U.S. Forest Service and other...

  11. National Agriculture Imagery Program

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. A primary goal of the NAIP...

  12. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  13. Looking at catchments in colors: combining thermal IR imagery with geochemical and isotopic tracers to document spatio-temporal dynamics of water source and flowpaths in the hillslope-riparian zone-stream system

    Science.gov (United States)

    Pfister, L.; Martínez-Carreras, N.; Wetzel, C.; Ector, L.; Hissler, C.; Hoffmann, L.; Frentress, J. J.; McDonnell, J. J.

    2012-04-01

    At present, our conceptual understanding of catchment-scale water mixing, source apportionment and hydrological connectivity is thwarted by measurement limitations. For instance, the measurement and documentation of HRS connectivity is a major impediment to better process understanding. In recent literature, there have been repeatedly calls for interdisciplinary approaches to expand the frontier of hydrological theory and eventually overcome the well-known limitations that are inherent to conventional techniques used for tracing water source, flowpaths and residence times. The 2010 edition of the EGU Leonardo Topical Conference Series on the hydrological cycle had concluded that a major challenge for hydrology in the near future will be to apply more often multidisciplinary approaches, so to find creative solutions that will eventually allow us to move away from 'monochrome pictures of reality', and 'see the catchments in colors'. Here, we demonstrate the potential for thermal infrared imagery to both determine adequate water sampling sites and validate the identification of water source and connectivity through conventional tracers. Until recently, the use of heat as a ground water tracer had been largely restricted to the hydrogeological literature. Thermal remote sensing of riparian and water surface temperatures has been of interest in aquatic management issues, as well as for the assessment of spatial heterogeneities. Our proof-of-concept study in the Weierbach experimental watershed further extended the potential for infrared thermography via hand-held cameras to hydrological processes studies across various hydrological response units (HRU). Infrared thermography of surface water dynamics stemming either from infiltration excess overland flow or saturation excess overland flow was mapped throughout a complete rainfall-runoff event. In order to grasp the spatial and temporal variability of geochemical and isotopic signatures, during and after a storm event

  14. Automatic Cloud and Shadow Detection in Optical Satellite Imagery Without Using Thermal Bands—Application to Suomi NPP VIIRS Images over Fennoscandia

    Directory of Open Access Journals (Sweden)

    Eija Parmes

    2017-08-01

    Full Text Available In land monitoring applications, clouds and shadows are considered noise that should be removed as automatically and quickly as possible, before further analysis. This paper presents a method to detect clouds and shadows in Suomi NPP satellite’s VIIRS (Visible Infrared Imaging Radiometer Suite satellite images. The proposed cloud and shadow detection method has two distinct features when compared to many other methods. First, the method does not use the thermal bands and can thus be applied to other sensors which do not contain thermal channels, such as Sentinel-2 data. Secondly, the method uses the ratio between blue and green reflectance to detect shadows. Seven hundred and forty-seven VIIRS images over Fennoscandia from August 2014 to April 2016 were processed to train and develop the method. Twenty four points from every tenth of the images were used in accuracy assessment. These 1752 points were interpreted visually to cloud, cloud shadow and clear classes, then compared to the output of the cloud and shadow detection. The comparison on VIIRS images showed 94.2% correct detection rates and 11.1% false alarms for clouds, and respectively 36.1% and 82.7% for shadows. The results on cloud detection were similar to state-of-the-art methods. Shadows showed correctly on the northern edge of the clouds, but many shadows were wrongly assigned to other classes in some cases (e.g., to water class on lake and forest boundary, or with shadows over cloud. This may be due to the low spatial resolution of VIIRS images, where shadows are only a few pixels wide and contain lots of mixed pixels.

  15. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  16. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum

    Science.gov (United States)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2016-10-01

    The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.

  17. Imagery ability and imagery use in individual and team sports

    OpenAIRE

    Peltomäki, Ville

    2014-01-01

    The purpose of this research was to examine whether individual and team sport athletes differ in their imagery use and imagery ability, and to examine whether level of sport participation or weekly sport involvement are variables that differentiate between athletes on the basis of their levels of imagery ability and imagery use. Two measures were conducted. The Sport Imagery Ability Measure (SIAM) is a 48-item self-report measure that uses four sport related scenes to examine the dimensional,...

  18. Refinamento de imagens termais do Landsat 5 - TM com base em classes de NDVI Sharpening of thermal Landsat 5 - TM imagery data based on NDVI classification

    Directory of Open Access Journals (Sweden)

    Argemiro Lucena de Araújo

    2012-12-01

    Full Text Available O objetivo desse estudo foi avaliar um método simplificado, baseado em classes de NDVI para refinamento das imagens de temperatura da superfície (Ts, obtidas pelo sensor TM do Landsat 5 referentes aos anos de 2005 e 2006. Para tanto, foram propostos e comparados três modelos de refinamento baseados no método de regressão linear. Os erros percentuais e erros médios quadráticos obtidos com a utilização dos modelos avaliados foram, respectivamente, da ordem de 0,37% e 1,38 ºC, enquanto o modelo original apresentou erro médio quadrático da ordem de 1,32 ºC. Foram constatados que os erros obtidos com as calibrações realizadas não influenciaram significativamente nos valores médios das imagens termais, e que os resultados contribuíram substancialmente para a melhoria da resolução espacial das mesmas. O refinamento permitiu ainda a identificação precisa de alvos da superfície e a identificação de feições não detectáveis na resolução original. Isto evidencia que o método simplificado sugerido neste estudo, permite um refinamento preciso com uma forma de obtenção mais simples em relação ao modelo original.The objective of this study was to use a simplified method based on NDVI classes for the sharpening of the Landsat 5 - TM surface temperature images (Ts obtained during the years of 2005 and 2006. Thus, three sharpening models, based on the linear regression method, were proposed and compared. The relative and the root mean square errors obtained through the suggested models were of 0.37% and 1.38 ºC, respectively, while the original model presented root mean square error of 1.32 ºC. It was verified that the errors obtained with the accomplished calibrations did not significantly influence in the average values of the thermal images and the results contributed substantially to the improvement of their spatial resolution. The sharpening allowed the precise identification of the targets and features undetectable at

  19. Environmental studies of Iceland with ERTS-1 imagery

    Science.gov (United States)

    Williams, R. S., Jr.; Boovarsson, A.; Frioriksson, S.; Thorsteinsson, I.; Palmason, G.; Rist, S.; Saemundsson, K.; Sigtryggsson, H.; Thorarinsson, S.

    1974-01-01

    Imagery from the ERTS-1 satellite can be used to study geological and geophysical phenomena which are important in relation to Iceland's natural resources. Multispectral scanner (MSS) imagery can be used to map areas of altered ground, intense thermal emission, fallout from volcanic eruptions, lava flows, volcanic geomorphology, erosion or build-up of land, snow cover, the areal extent of glaciers and ice caps, etc. At least five distinct vegetation types and barren areas can be mapped using MSS false-color composites. Stereoscopic coverage of iceland by side-lapping ERTS imagery permits precise analysis of various natural phenomena.

  20. NOAA Emergency Response Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is in response to natural disasters. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The majority...

  1. Coastal California Digital Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital ortho-imagery dataset is a survey of coastal California. The project area consists of approximately 3774 square miles. The project design of the digital...

  2. SHEBA Reconnaissance Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of optical band reconnaissance imagery of the Surface Heat Balance of the Arctic (SHEBA) site acquired between August 1997 and September 1998....

  3. Measuring Creative Imagery Abilities

    Directory of Open Access Journals (Sweden)

    Dorota M. Jankowska

    2015-10-01

    Full Text Available Over the decades, creativity and imagination research developed in parallel, but they surprisingly rarely intersected. This paper introduces a new theoretical model of creative imagination, which bridges creativity and imagination research, as well as presents a new psychometric instrument, called the Test of Creative Imagery Abilities (TCIA, developed to measure creative imagery abilities understood in accordance with this model. Creative imagination is understood as constituted by three interrelated components: vividness (the ability to create images characterized by a high level of complexity and detail, originality (the ability to produce unique imagery, and transformativeness (the ability to control imagery. TCIA enables valid and reliable measurement of these three groups of abilities, yielding the general score of imagery abilities and at the same time making profile analysis possible. We present the results of eight studies on a total sample of more than 1,700 participants, showing the factor structure of TCIA using confirmatory factor analysis, as well as provide data confirming this instrument’s validity and reliability. The availability of TCIA for interested researchers may result in new insights and possibilities of integrating the fields of creativity and imagination science.

  4. Measuring creative imagery abilities

    Science.gov (United States)

    Jankowska, Dorota M.; Karwowski, Maciej

    2015-01-01

    Over the decades, creativity and imagination research developed in parallel, but they surprisingly rarely intersected. This paper introduces a new theoretical model of creative visual imagination, which bridges creativity and imagination research, as well as presents a new psychometric instrument, called the Test of Creative Imagery Abilities (TCIA), developed to measure creative imagery abilities understood in accordance with this model. Creative imagination is understood as constituted by three interrelated components: vividness (the ability to create images characterized by a high level of complexity and detail), originality (the ability to produce unique imagery), and transformativeness (the ability to control imagery). TCIA enables valid and reliable measurement of these three groups of abilities, yielding the general score of imagery abilities and at the same time making profile analysis possible. We present the results of nine studies on a total sample of more than 1700 participants, showing the factor structure of TCIA using confirmatory factor analysis, as well as provide data confirming this instrument's validity and reliability. The availability of TCIA for interested researchers may result in new insights and possibilities of integrating the fields of creativity and imagination science. PMID:26539140

  5. Stabilizing posture through imagery.

    Science.gov (United States)

    Papalia, Eleonora; Manzoni, Diego; Santarcangelo, Enrica L

    2014-01-01

    Abstract In the general population, suppression of vision modulates body sway by increasing the center of pressure (CoP) velocity, while a light fingertip touch reduces the area of the CoP displacement in blindfolded subjects. This study assessed whether imagined fixation and fingertip touch differentially stabilize posture in subjects with high (highs) and low (lows) hypnotizability. Visual and tactile imageries were ineffective in lows. In highs, the effects of visual imagery could not be evaluated because the real information was ineffective; real tactile stimulation was effective only on velocity, but the imagery effects could not be definitely assessed owing to low effect size. The highs' larger variability could account for this and represents the most important finding.

  6. NAIP 2015 Imagery Feedback Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback map allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program (NAIP)...

  7. NAIP 2017 Imagery Feedback Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2017 Imagery Feedback map allows users to make comments and observations about the quality of the 2017 National Agriculture Imagery Program (NAIP)...

  8. Vibrato changes following imagery.

    Science.gov (United States)

    Moorcroft, Lynda; Kenny, Dianna T; Oates, Jennifer

    2015-03-01

    This study investigated acoustic change in singers' vibrato following imagery and non-imagery tasks. The study used a fully randomized cross-over (six conditions × two times) block design, in which each singer received each intervention in random order. Data were analyzed using the general linear model (GLM). Main effects for time and condition and interaction effects (time × condition) were calculated for each dependent measure. Six classically trained female singers recorded an 8-bar solo before and after three nonvocal, 25 minute tasks. Each singer performed the tasks in a different randomized order in a single sitting. Task 1 involved imagery of the breath directed up and down as far from the larynx as possible; Task 2 used Braille music code, enabling the singer to engage in tactile, kinesthetic and visual imagery related to music but unrelated to breath function; Task 3 was a nonimagery activity requiring the completion of a cloze passage about breath function. From the 11 longest notes in each solo, spectrograms of the partials were produced and assessed for pre- to post-test changes in vibrato rate, vibrato extent, and sound pressure level (SPL). Only the breathing imagery task produced significantly more moderate and regular vibrato rates. Vibrato extent was not responsive to any intervention. Findings indicate that breathing imagery regulates singers' vibrato in a manner consistent with that of a more proficient, warmed-up voice. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. The Imagery-Creativity Connection.

    Science.gov (United States)

    Daniels-McGhee, Susan; Davis, Gary A.

    1994-01-01

    This paper reviews historical highlights of the imagery-creativity connection, including early and contemporary accounts, along with notable examples of imagery in the creative process. It also looks at cross-modal imagery (synesthesia), a model of image-based creativity and the creative process, and implications for strengthening creativity by…

  10. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about 500...

  11. Training visual imagery: Improvements of metacognition, but not imagery strength

    Directory of Open Access Journals (Sweden)

    Rosanne Lynn Rademaker

    2012-07-01

    Full Text Available Visual imagery has been closely linked to brain mechanisms involved in perception. Can visual imagery, like visual perception, improve by means of training? Previous research has demonstrated that people can reliably evaluate the vividness of single episodes of sensory imagination – might the metacognition of imagery also improve over the course of training? We had participants imagine colored Gabor patterns for an hour a day, over the course of five consecutive days, and again two weeks after training. Participants rated the subjective vividness and effort of their mental imagery on each trial. The influence of imagery on subsequent binocular rivalry dominance was taken as our measure of imagery strength. We found no overall effect of training on imagery strength. Training did, however, improve participant’s metacognition of imagery. Trial-by-trial ratings of vividness gained predictive power on subsequent rivalry dominance as a function of training. These data suggest that, while imagery strength might be immune to training in the current context, people’s metacognitive understanding of mental imagery can improve with practice.

  12. Fast natural color mapping for night-time imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Toet, A.

    2010-01-01

    We present a new method to render multi-band night-time imagery (images from sensors whose sensitive range does not necessarily coincide with the visual part of the electromagnetic spectrum, e.g. image intensifiers, thermal camera's) in natural daytime colors. The color mapping is derived from the

  13. Standardized rendering from IR surveillance motion imagery

    Science.gov (United States)

    Prokoski, F. J.

    2014-06-01

    Government agencies, including defense and law enforcement, increasingly make use of video from surveillance systems and camera phones owned by non-government entities.Making advanced and standardized motion imaging technology available to private and commercial users at cost-effective prices would benefit all parties. In particular, incorporating thermal infrared into commercial surveillance systems offers substantial benefits beyond night vision capability. Face rendering is a process to facilitate exploitation of thermal infrared surveillance imagery from the general area of a crime scene, to assist investigations with and without cooperating eyewitnesses. Face rendering automatically generates greyscale representations similar to police artist sketches for faces in surveillance imagery collected from proximate locations and times to a crime under investigation. Near-realtime generation of face renderings can provide law enforcement with an investigation tool to assess witness memory and credibility, and integrate reports from multiple eyewitnesses, Renderings can be quickly disseminated through social media to warn of a person who may pose an immediate threat, and to solicit the public's help in identifying possible suspects and witnesses. Renderings are pose-standardized so as to not divulge the presence and location of eyewitnesses and surveillance cameras. Incorporation of thermal infrared imaging into commercial surveillance systems will significantly improve system performance, and reduce manual review times, at an incremental cost that will continue to decrease. Benefits to criminal justice would include improved reliability of eyewitness testimony and improved accuracy of distinguishing among minority groups in eyewitness and surveillance identifications.

  14. Agricultural Applications and Requirements for Thermal Infrared Scanners

    Science.gov (United States)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  15. Reserve Component Contribution to Imagery Intelligence

    National Research Council Canada - National Science Library

    Stafford, Ann

    2003-01-01

    .... Because raw imagery has limited value until it has been exploited, the increased volume of raw imagery demands an enhanced ability for combatant commanders and the National Imagery and Mapping Agency (NIMA...

  16. Imagery Rescripting for Personality Disorders

    Science.gov (United States)

    Arntz, Arnoud

    2011-01-01

    Imagery rescripting is a powerful technique that can be successfully applied in the treatment of personality disorders. For personality disorders, imagery rescripting is not used to address intrusive images but to change the implicational meaning of schemas and childhood experiences that underlie the patient's problems. Various mechanisms that may…

  17. Mental imagery changes multisensory perception.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2013-07-22

    Multisensory interactions are the norm in perception, and an abundance of research on the interaction and integration of the senses has demonstrated the importance of combining sensory information from different modalities on our perception of the external world. However, although research on mental imagery has revealed a great deal of functional and neuroanatomical overlap between imagery and perception, this line of research has primarily focused on similarities within a particular modality and has yet to address whether imagery is capable of leading to multisensory integration. Here, we devised novel versions of classic multisensory paradigms to systematically examine whether imagery is capable of integrating with perceptual stimuli to induce multisensory illusions. We found that imagining an auditory stimulus at the moment two moving objects met promoted an illusory bounce percept, as in the classic cross-bounce illusion; an imagined visual stimulus led to the translocation of sound toward the imagined stimulus, as in the classic ventriloquist illusion; and auditory imagery of speech stimuli led to a promotion of an illusory speech percept in a modified version of the McGurk illusion. Our findings provide support for perceptually based theories of imagery and suggest that neuronal signals produced by imagined stimuli can integrate with signals generated by real stimuli of a different sensory modality to create robust multisensory percepts. These findings advance our understanding of the relationship between imagery and perception and provide new opportunities for investigating how the brain distinguishes between endogenous and exogenous sensory events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Kinesthetic imagery of musical performance

    Directory of Open Access Journals (Sweden)

    Martin eLotze

    2013-06-01

    Full Text Available Musicians use different kinds of imagery. This review focuses on kinesthetic imagery, which has been shown to be an effective complement to actively playing an instrument. However, experience in actual movement performance seems to be a requirement for a recruitment of those brain areas representing movement ideation during imagery. An internal model of movement performance might be more differentiated when training has been more intense or simply performed more often. Therefore, with respect to kinesthetic imagery, these strategies are predominantly found in professional musicians. There are a few possible reasons as to why kinesthetic imagery is used in addition to active training; one example is the need for mental rehearsal of the technically most difficult passages. Training difficult passages repeatedly has the potential to induce fatigue in tendons and muscles and can ultimately result in the development of dystonia. Another reason for mental practice is that mental rehearsal of the piece helps to improve performance if the instrument is not available for actual training as is the case for professional musicians when they are travelling to various appearances. Overall, mental imagery in musicians is not necessarily specific to motor, somatosensory, auditory or visual aspects of imagery, but integrates them all. In particular, the audiomotor loop is highly important, since auditory aspects are crucial for guiding motor performance. Furthermore, slight co-movement, for instance of the fingers, usually occurs when imagining musical performance, a situation different to the laboratory condition where movement execution is strictly controlled. All these aspects result in a distinctive representation map for the mental imagery of musical performance. This review summarizes behavioral data, and findings from functional brain imaging studies of mental imagery of musical performance.

  19. Imageries of Corporate Social Responsibility

    DEFF Research Database (Denmark)

    Höllerer, Markus A.; Jancsary, Dennis; Meyer, Renate E.

    2013-01-01

    of imageries-of-practice to embrace the critical role that shared visual language plays in the construction of meaning and the emergence of field-level logics. In particular, we argue that imageries-of-practice, compared to verbal vocabularies, are just as well equipped to link locally resonating symbolic...... of inconsistencies in several ways: By translating abstract global ideas into concrete local knowledge, imageries-of-practice aid in mediating spatial oppositions; by linking the past, present, and future, they bridge time; by mediating between different institutional spheres and their divergent logics, they appease...

  20. Motor imagery in physical therapist practice.

    Science.gov (United States)

    Dickstein, Ruth; Deutsch, Judith E

    2007-07-01

    Motor imagery is the mental representation of movement without any body movement. Abundant evidence on the positive effects of motor imagery practice on motor performance and learning in athletes, people who are healthy, and people with neurological conditions (eg, stroke, spinal cord injury, Parkinson disease) has been published. The purpose of this update is to synthesize the relevant literature about motor imagery in order to facilitate its integration into physical therapist practice. This update also will discuss visual and kinesthetic motor imagery, factors that modify motor imagery practice, the design of motor imagery protocols, and potential applications of motor imagery.

  1. The ASPRS Digital Imagery Product Guideline Project

    Science.gov (United States)

    Ryan, Robert; Kuper, Philip; Stanley, Thomas; Mondello, Charles

    2001-01-01

    The American Society for Photogrammetry and Remote Sensing (ASPRS) Primary Data Acquisition Division is developing a Digital Imagery Product Guideline in conjunction with NASA, the U.S. Geological Survey (USGS), the National Imagery and Mapping Agency (NIMA), academia, and industry. The goal of the guideline is to offer providers and users of digital imagery a set of recommendatons analogous those defined by the ASPRS Aerial Photography 1995 Draft Standard for film-based imagery. This article offers a general outline and description of the Digital Imagery Product Guideline and Digital Imagery Tutorial/Reference documents for defining digital imagery requirements.

  2. Land Use and Land Cover, This land cover map was produced from Landsat TM imagery with a spatial resolution of 30x30m. The classification process used six of the original seven bands of the imagery; the 120x120m thermal infrared band was removed from the data sets before processi, Published in 1998, 1:24000 (1in=2000ft) scale, University of Georgia.

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Use and Land Cover dataset current as of 1998. This land cover map was produced from Landsat TM imagery with a spatial resolution of 30x30m. The classification...

  3. Assessment of motor imagery ability and training

    OpenAIRE

    André Luiz Felix Rodacki; Joice Mara Facco Stefanello; Claudio Portilho Marques

    2010-01-01

    The aim of this study was to evaluate changes in motor imagery ability in response to a specific dart throwing training. Twelve subjects (17-22 years) with no previous experience in dart throwing or imagery agreed to participate. Changes in imagery ability were assessed using the Sports Imagery Questionnaire before (pretreatment) and after (post-treatment) an imagery training program consisting of 10 sessions. Retention (RET) was assessed 2 weeks after training. The program included mental ex...

  4. New Percepts via Mental Imagery?

    Science.gov (United States)

    Mast, Fred W; Tartaglia, Elisa M; Herzog, Michael H

    2012-01-01

    We are able to extract detailed information from mental images that we were not explicitly aware of during encoding. For example, we can discover a new figure when we rotate a previously seen image in our mind. However, such discoveries are not "really" new but just new "interpretations." In two recent publications, we have shown that mental imagery can lead to perceptual learning (Tartaglia et al., 2009, 2012). Observers imagined the central line of a bisection stimulus for thousands of trials. This training enabled observers to perceive bisection offsets that were invisible before training. Hence, it seems that perceptual learning via mental imagery leads to new percepts. We will argue, however, that these new percepts can occur only within "known" models. In this sense, perceptual learning via mental imagery exceeds new discoveries in mental images. Still, the effects of mental imagery on perceptual learning are limited. Only perception can lead to really new perceptual experience.

  5. APFO Historical Availability of Imagery

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The APFO Historical Availability ArcGIS Online web map provides an easy to use reference of what historical imagery is available by county from the Aerial...

  6. Dynamic aspects of musical imagery.

    Science.gov (United States)

    Halpern, Andrea R

    2012-04-01

    Auditory imagery can represent many aspects of music, such as the starting pitches of a tune or the instrument that typically plays it. In this paper, I concentrate on more dynamic, or time-sensitive aspects of musical imagery, as demonstrated in two recently published studies. The first was a behavioral study that examined the ability to make emotional judgments about both heard and imagined music in real time. The second was a neuroimaging study on the neural correlates of anticipating an upcoming tune, after hearing a cue tune. That study found activation of several sequence-learning brain areas, some of which varied with the vividness of the anticipated musical memory. Both studies speak to the ways in which musical imagery allows us to judge temporally changing aspects of the represented musical experience. These judgments can be quite precise, despite the complexity of generating the rich internal representations of imagery. © 2012 New York Academy of Sciences.

  7. New percepts via mental imagery?

    Directory of Open Access Journals (Sweden)

    Fred Walter Mast

    2012-10-01

    Full Text Available We are able to extract detailed information from mental images that we were not explicitly aware of during encoding. For example, we can discover a new figure when we rotate a previously seen image in our mind. However, such discoveries are not really new but just new interpretations. In two recent publications, we have shown that mental imagery can lead to perceptual learning (Tartaglia et al., 2009, 2012. Observers imagined the central line of a bisection stimulus for thousands of trials. This training enabled observers to perceive bisection offsets that were invisible before training. Hence, it seems that perceptual learning via mental imagery leads to new percepts. We will argue, however, that these new percepts can occur only within known models. In this sense, perceptual learning via mental imagery exceeds new discoveries in mental images. Still, the effects of mental imagery on perceptual learning are limited. Only perception can lead to really new perceptual experience.

  8. Intelligence and imagery in personality.

    Science.gov (United States)

    Tedford, W H; Penk, M L

    1977-08-01

    One hundred college undergraduates were administered the Richardson revision of the Gordon Test of Visual Imagery Control, the Betts-Sheehan Questionnaire Upon Mental Imagery, and the Shipley-Hartford Institute of Living Scale. The latter provided a conceptual quotient (CQ) score of intellectual impairment based upon a ratio between vocabulary and abstraction scores. Subjects with CQs above 100 had significantly higher control scores (p less than .02). High control subjects had significantly higher total IQ scores than did low control subjects (p less than .04). Subjects with high and medium range control had higher vocabulary scores than those with low control. This suggests possible assessment of proneness toward introverted and extraverted neuroticism based upon a combination type of imagery score and the ratio between abstract or vocabulary scores. The connection of imagery with dimensions of IQ may be a start toward a more refined measure of this aspect of personality. Problems and implications are discussed.

  9. COMMERCIAL IMAGERY WORLDVIEW-1 (Federally Downloadable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  10. COMMERCIAL IMAGERY WORLDVIEW-2 (Federally Viewable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  11. Publicly Available IKONOS-2 Commercial Imagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  12. COMMERCIAL IMAGERY WORLDVIEW-3 (Federally Downloadable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  13. AgSat Imagery Collection Footprints

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The AgSat Imagery Collection Footprints map shows the imagery footprints which have been collected under the USDA satellite blanket purchase agreement. Click on a...

  14. COMMERCIAL IMAGERY WORLDVIEW-2 (Federally Downloadable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  15. COMMERCIAL IMAGERY QUICKBIRD-1 (Federally Downloadable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  16. COMMERCIAL IMAGERY QUICKBIRD-2 (Federally Viewable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  17. COMMERCIAL IMAGERY IKONOS-2 (Federally Downloadable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  18. COMMERCIAL IMAGERY GEOEYE-1 (Federally Viewable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  19. COMMERCIAL IMAGERY GEOEYE-1 Authorized (Federally Downloadable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  20. COMMERCIAL IMAGERY WORLDVIEW-1 (Federally Viewable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  1. COMMERCIAL IMAGERY IKONOS-2 (Federally Viewable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  2. Supportive Music and Imagery Method

    OpenAIRE

    Sumi Paik-Maier

    2010-01-01

    The Supportive Music and Imagery Method is derived from the Bonny Method of Guided Imagery and Music (BMGIM). It uses one piece of pre-recorded music that is short and simple in all musical elements and non-classical music is often used.It aims at enhancing one’s ego by supporting one’s positive resource rather than exploring problems and issues. It is containing and highly structured compared to BMGIM and it focuses on the here-and-now.

    I will introduce how the SMI...

  3. Characterizing tropical forests with multispectral imagery

    Science.gov (United States)

    Eileen Helmer; Nicholas R. Goodwin; Valery Gond; Carlos M. Souza, Jr.; Gregory P. Asner

    2015-01-01

    Multispectral satellite imagery, that is, remotely sensed imagery with discrete bands ranging from visible to shortwave infrared (SWIR) wavelengths, is the timeliest and most accessible remotely sensed data for monitoring tropical forests. Given this relevance, we summarize here how multispectral imagery can help characterize tropical forest attributes of widespread...

  4. Agency Video, Audio and Imagery Library

    Science.gov (United States)

    Grubbs, Rodney

    2015-01-01

    The purpose of this presentation was to inform the ISS International Partners of the new NASA Agency Video, Audio and Imagery Library (AVAIL) website. AVAIL is a new resource for the public to search for and download NASA-related imagery, and is not intended to replace the current process by which the International Partners receive their Space Station imagery products.

  5. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico

    Science.gov (United States)

    Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.

    2005-01-01

    Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.

  6. The relationship between the use of kinaesthetic imagery and different visual imagery perspectives.

    Science.gov (United States)

    Callow, Nichola; Hardy, Lew

    2004-02-01

    In two studies, we examined the strength of relationship between internal and external visual imagery with kinaesthetic imagery. In Study 1, 56 participants completed the Vividness of Movement Imagery Questionnaire and the Movement Imagery Questionnaire. Pearson's product-moment correlations failed to reveal a significant correlation between external visual imagery and kinaesthetic imagery. However, the correlation between internal visual imagery and kinaesthetic imagery approached significance. In Study 2, the instructional set of the Vividness of Movement Imagery Questionnaire was changed to make the participant the 'agent' of the external visual perspective images rather than somebody else. Sixty-four participants completed the two questionnaires. The results indicated a significant correlation between external visual imagery and kinaesthetic imagery (r = 0.60, P imagery and kinaesthetic imagery was non-significant (r = 0.23, P > 0.01). The results are discussed in relation to who is the agent of the image and the processes that may underlie kinaesthetic imagery. The implications for researchers trying to establish the functional, behavioural and neurological differences within, and across, imagery modalities are considered.

  7. Music, Hemisphere Preference and Imagery.

    Science.gov (United States)

    Stratton, Valerie N.; Zalanowski, Annette H.

    Two experiments were conducted to determine a possible relationship between the right hemisphere, music perception, and mental imagery. The first experiment compared two groups of college students, one of which showed a preference for left hemisphere thinking (n=22) and the other a preference for right hemisphere thinking (n=20), in order to test…

  8. Stereoscopy in cinematographic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  9. Illustrating and Designing Quranic Imagery

    Science.gov (United States)

    Almenoar, Lubna

    2009-01-01

    Selected verses from Abdullah Yusuf Ali's English language translation of the meaning of the Quran have been used as a literary text to teach both descriptive and figurative imagery (including similes, metaphors and symbols) to students at the undergraduate level in an Islamic institution. The technique--Illustrating and Designing for teaching…

  10. Movement and stretching imagery during flexibility training.

    Science.gov (United States)

    Vergeer, Ineke; Roberts, Jenny

    2006-02-01

    The aim of this study was to examine the effect of movement and stretching imagery on increases in flexibility. Thirty volunteers took part in a 4 week flexibility training programme. They were randomly assigned to one of three groups: (1) movement imagery, where participants imagined moving the limb they were stretching; (2) stretching imagery, where participants imagined the physiological processes involved in stretching the muscle; and (3) control, where participants did not engage in mental imagery. Active and passive range of motion around the hip was assessed before and after the programme. Participants provided specific ratings of vividness and comfort throughout the programme. Results showed significant increases in flexibility over time, but no differences between the three groups. A significant relationship was found, however, between improved flexibility and vividness ratings in the movement imagery group. Furthermore, both imagery groups scored significantly higher than the control group on levels of comfort, with the movement imagery group also scoring significantly higher than the stretching imagery group. We conclude that the imagery had stronger psychological than physiological effects, but that there is potential for enhancing physiological effects by maximizing imagery vividness, particularly for movement imagery.

  11. NASA Polar Imagery: Have It Your Way or Have It Our Way

    Science.gov (United States)

    Schmaltz, J. E.; Alarcon, C.; Boller, R. A.; Cechini, M. F.; Davies, D.; Ilavajhala, S.; Hall, J. R.; Huang, T.; Joshi, T.; McGann, J. M.; Murphy, K. J.; Plesea, L.; Roberts, J. T.; Thompson, C. K.; Timmons, E.

    2013-12-01

    The MODIS Rapid Response project has been providing complete near real-time imagery coverage of Antarctica since December 2008 and the Arctic since March 2009. In late 2009, the Land Atmosphere Near real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. To meet these performance goals, the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) was chosen as the standard interface for these services. GIBS has been one of the pioneers in providing tiled image services for the polar regions and also in the clarification of the time and elevation dimensions as used within the WMTS specification. Currently, there are more than a dozen MODIS imagery products available in polar stereographic projections for each pole, including four daily one kilometer 11 micron thermal infrared band images during all seasons. Imagery back to mid-2013 is currently available and reprocessing of imagery from the entire MODIS record is underway and community input is being solicited on recommendations for additional imagery layers from MODIS and other NASA instruments. A variety of geo-spatial client software is able to access these WMTS services. In addition, users can write their own interfaces using OpenLayers or the GDAL library. An OpenLayers demonstration client, Worldview (http://earthdata.nasa.gov/worldview), was developed at Goddard to showcase GIBS imagery. Worldview provides easy viewing of the entire imagery record. A search function allows discovery and

  12. Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea

    Science.gov (United States)

    Preußer, Andreas; Heinemann, Günther; Willmes, Sascha; Paul, Stephan

    2016-12-01

    High-resolution MODIS thermal infrared satellite data are used to infer spatial and temporal characteristics of 17 prominent coastal polynya regions over the entire Arctic basin. Thin-ice thickness (TIT) distributions (≤ 20 cm) are calculated from MODIS ice-surface temperatures, combined with ECMWF ERA-Interim atmospheric reanalysis data in an energy balance model for 13 winter seasons (2002/2003 to 2014/2015; November to March). From all available MODIS swath data, daily thin-ice thickness composites are computed in order to derive quantities such as polynya area and total thermodynamic (i.e., potential) ice production. A gap-filling approach is applied to account for cloud and data gaps in the MODIS composites. All polynya regions combined cover an average thin-ice area of 226.6 ± 36.1 × 103 km2 in winter. This allows for an average total winter-accumulated ice production of about 1811 ± 293 km3, whereby the Kara Sea region, the North Water polynya (both 15 %), polynyas on the western side of Novaya Zemlya (20 %), as well as scattered smaller polynyas in the Canadian Arctic Archipelago (all combined 12 %) are the main contributors. Other well-known sites of polynya formation (Laptev Sea, Chukchi Sea) show smaller contributions and range between 2 and 5 %. We notice distinct differences to earlier studies on pan-Arctic polynya characteristics, originating in some part from the use of high-resolution MODIS data, as the capability to resolve small-scale (> 2 km) polynyas and also large leads are increased. Despite the short record of 13 winter seasons, positive trends in ice production are detected for several regions of the eastern Arctic (most significantly in the Laptev Sea region with an increase of 6.8 km3 yr-1) and the North Water polynya, while other polynyas in the western Arctic show a more pronounced variability with varying trends. We emphasize the role of the Laptev Sea polynyas as being a major influence on Transpolar Drift characteristics through

  13. Resolution Enhancement of Multilook Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Galbraith, Amy E. [Univ. of Arizona, Tucson, AZ (United States)

    2004-07-01

    This dissertation studies the feasibility of enhancing the spatial resolution of multi-look remotely-sensed imagery using an iterative resolution enhancement algorithm known as Projection Onto Convex Sets (POCS). A multi-angle satellite image modeling tool is implemented, and simulated multi-look imagery is formed to test the resolution enhancement algorithm. Experiments are done to determine the optimal con guration and number of multi-angle low-resolution images needed for a quantitative improvement in the spatial resolution of the high-resolution estimate. The important topic of aliasing is examined in the context of the POCS resolution enhancement algorithm performance. In addition, the extension of the method to multispectral sensor images is discussed and an example is shown using multispectral confocal fluorescence imaging microscope data. Finally, the remote sensing issues of atmospheric path radiance and directional reflectance variations are explored to determine their effect on the resolution enhancement performance.

  14. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  15. The relationship between corticospinal excitability during motor imagery and motor imagery ability.

    Science.gov (United States)

    Williams, Jacqueline; Pearce, Alan J; Loporto, Michela; Morris, Tony; Holmes, Paul S

    2012-01-15

    It is commonly reported that transcranial magnetic stimulation (TMS) of the motor cortex during action observation and motor imagery results in increases in the amplitude of motor evoked potentials (MEPs) in muscles specific to the observed or imagined action. This study aimed to determine whether MEP amplitude was related to the motor imagery ability of participants. Participants were 15 healthy, right-handed adults (five male), with a mean age of 29.7 years. Motor imagery ability was measured using the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2) and a hand rotation task. TMS was delivered during observation and imagery of a finger-thumb opposition sequence and MEPs were measured in the abductor pollicis brevis. Significant increases in MEP amplitude, from baseline, were recorded during observation and imagery conditions. The change in amplitude to both observation and imagery was expressed as a percentage of baseline amplitude. There was a significant correlation between MEP change for the imagery condition and imagery ability, with greater change linked to more vivid images and faster response times. The relationship between MEP change for the observation condition and imagery ability was less salient. This is the first study to show that the strength of corticospinal activation during imagery, which may be a determinant of the effectiveness of imagery training, is related to imagery ability in the general population, and has implications for clinical programs. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Movement and stretching imagery during flexibility training.

    OpenAIRE

    Vergeer, I.; Roberts, J.

    2006-01-01

    The aim of this study was to examine the effect of movement and stretching imagery on increases in flexibility. Thirty volunteers took part in a 4 week flexibility training programme. They were randomly assigned to one of three groups: (1) movement imagery, where participants imagined moving the limb they were stretching; (2) stretching imagery, where participants imagined the physiological processes involved in stretching the muscle; and (3) control, where participants did not engage in ment...

  17. Assessment of motor imagery ability and training

    Directory of Open Access Journals (Sweden)

    André Luiz Felix Rodacki

    2010-09-01

    Full Text Available The aim of this study was to evaluate changes in motor imagery ability in response to a specific dart throwing training. Twelve subjects (17-22 years with no previous experience in dart throwing or imagery agreed to participate. Changes in imagery ability were assessed using the Sports Imagery Questionnaire before (pretreatment and after (post-treatment an imagery training program consisting of 10 sessions. Retention (RET was assessed 2 weeks after training. The program included mental exercises designed to develop vivid images, to control one’s own images, and to increase perception about performance. Comparison of the imagery training conditions (training alone, training accompanied, observing a colleague, and during assessment showed no differences between the pretreatment, post-treatment and RET evaluations. Although imagery ability did not respond to training, significant differences between imagery domains (visual, auditory, kinesthetic, and animic were found (p<0.05, except between the visual and animic domains (p=0.58. These differences might be related to subject’s domain preference subject during the imagery process and to the nature of the task in which the skill technique used seems to be a relevant aspect.

  18. Unconscious Imagination and the Mental Imagery Debate

    Directory of Open Access Journals (Sweden)

    Berit Brogaard

    2017-05-01

    Full Text Available Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn’s model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience.

  19. The Functional Equivalence between Movement Imagery, Observation, and Execution Influences Imagery Ability

    Science.gov (United States)

    Williams, Sarah E.; Cumming, Jennifer; Edwards, Martin G.

    2011-01-01

    Based on literature identifying movement imagery, observation, and execution to elicit similar areas of neural activity, research has demonstrated that movement imagery and observation successfully prime movement execution. To investigate whether movement and observation could prime ease of imaging from an external visual-imagery perspective, an…

  20. Feasibility of using multiplexed SLAR imagery for water resources management and mapping vegetation communities

    Science.gov (United States)

    Drake, B.; Shuchman, R. A.

    1974-01-01

    A two-wavelength (X band and L band) multiplexed synthetic aperture side-looking airborne radar (SLAR), providing parallel- and cross-polarized images, has been tested for application in mapping vegetation and water resources. Indications of the relative heights, densities, surface roughness and other parameters provided by the multiplexed radar imagery can be used to differentiate and map various types of vegetation. The multiplexed SLAR is superior to thermal IR imagery and aerial photography for determining heights of vegetation and water-land boundaries.

  1. OrthoImagery Submission for Isabella county, MI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This data set contains 1-meter resolution imagery derived from the 2005 National Agriculture Imagery Program (NAIP) statewide aerial imagery acquisition. Data have...

  2. Evaluation of motor imagery ability in neurological patients: a review

    OpenAIRE

    Heremans, Elke; Vercruysse, Sarah; Spildooren, Joke; Feys, Peter; Helsen, W.; Nieuwboer, Alice

    2013-01-01

    Motor imagery is a promising new intervention strategy within neurological rehabilitation. However, previous studies have shown that the ability to perform motor imagery is not well preserved in all neurological patients. Therefore, patients’ motor imagery ability needs to be thoroughly examined when they are included in motor imagery rehabilitation programs or studies. In the past, objective methods to evaluate motor imagery were lacking rigour, and participants’ imagery ability was often in...

  3. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  4. Real-time people and vehicle detection from UAV imagery

    Science.gov (United States)

    Gaszczak, Anna; Breckon, Toby P.; Han, Jiwan

    2011-01-01

    A generic and robust approach for the real-time detection of people and vehicles from an Unmanned Aerial Vehicle (UAV) is an important goal within the framework of fully autonomous UAV deployment for aerial reconnaissance and surveillance. Here we present an approach for the automatic detection of vehicles based on using multiple trained cascaded Haar classifiers with secondary confirmation in thermal imagery. Additionally we present a related approach for people detection in thermal imagery based on a similar cascaded classification technique combining additional multivariate Gaussian shape matching. The results presented show the successful detection of vehicle and people under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance of the detector is optimized to reduce the overall false positive rate by aiming at the detection of each object of interest (vehicle/person) at least once in the environment (i.e. per search patter flight path) rather than every object in each image frame. Currently the detection rate for people is ~70% and cars ~80% although the overall episodic object detection rate for each flight pattern exceeds 90%.

  5. Beyond visual imagery: how modality-specific is enhanced mental imagery in synesthesia?

    Science.gov (United States)

    Spiller, Mary Jane; Jonas, Clare N; Simner, Julia; Jansari, Ashok

    2015-01-01

    Synesthesia based in visual modalities has been associated with reports of vivid visual imagery. We extend this finding to consider whether other forms of synesthesia are also associated with enhanced imagery, and whether this enhancement reflects the modality of synesthesia. We used self-report imagery measures across multiple sensory modalities, comparing synesthetes' responses (with a variety of forms of synesthesia) to those of non-synesthete matched controls. Synesthetes reported higher levels of visual, auditory, gustatory, olfactory and tactile imagery and a greater level of imagery use. Furthermore, their reported enhanced imagery is restricted to the modalities involved in the individual's synesthesia. There was also a relationship between the number of forms of synesthesia an individual has, and the reported vividness of their imagery, highlighting the need for future research to consider the impact of multiple forms of synesthesia. We also recommend the use of behavioral measures to validate these self-report findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Imagery, Music, Cognitive Style and Memory.

    Science.gov (United States)

    Stratton, Valerie N.; Zalanowski, Annette

    Paired associate memory was tested with imagery and repetition instructions, with and without background music. Subjects were 64 students enrolled in an introductory psychology course. Music was found to have no effect with imagery instructions, but significantly improved performance with the repetition instructions. Music had different effects on…

  7. Mental Imagery in Creative Problem Solving.

    Science.gov (United States)

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  8. Motor imagery development in primary school children.

    NARCIS (Netherlands)

    Caeyenberghs, K.; Tsoupas, J.; Wilson, P.H.; Smits-Engelsman, B.C.M.

    2009-01-01

    Motor imagery provides a unique window on the integrity of movement representation. How this ability unfolds during development remains unknown, however. It was the aim of this cross-sectional study to chart the development of movement imagery over childhood using validated measures, and to examine

  9. Alcohol imagery on New Zealand television

    Directory of Open Access Journals (Sweden)

    Reeder Anthony I

    2007-02-01

    Full Text Available Abstract Background To examine the extent and nature of alcohol imagery on New Zealand (NZ television, a content analysis of 98 hours of prime-time television programs and advertising was carried out over 7 consecutive days' viewing in June/July 2004. The main outcome measures were number of scenes in programs, trailers and advertisements depicting alcohol imagery; the extent of critical versus neutral and promotional imagery; and the mean number of scenes with alcohol per hour, and characteristics of scenes in which alcohol featured. Results There were 648 separate depictions of alcohol imagery across the week, with an average of one scene every nine minutes. Scenes depicting uncritical imagery outnumbered scenes showing possible adverse health consequences of drinking by 12 to 1. Conclusion The evidence points to a large amount of alcohol imagery incidental to storylines in programming on NZ television. Alcohol is also used in many advertisements to market non-alcohol goods and services. More attention needs to be paid to the extent of alcohol imagery on television from the industry, the government and public health practitioners. Health education with young people could raise critical awareness of the way alcohol imagery is presented on television.

  10. Using Mental Imagery to Enhance Athletic Performance.

    Science.gov (United States)

    Kenitzer, Raymond F.; Briddell, W. Bryan

    1991-01-01

    Four steps help coaches implement a mental imagery program to improve their athletes' performance and emotional control: evaluate athletes' imaging ability; provide an imaging warm-up; integrate the senses; and use goal achievement strategies. The article notes that imagery skills must be maintained and practiced consistently. (SM)

  11. Coaches' Encouragement of Athletes' Imagery Use

    Science.gov (United States)

    Jedlic, Brie; Hall, Nathan; Munroe-Chandler, Krista; Hall, Craig

    2007-01-01

    To investigate whether coaches encourage their athletes to use imagery, two studies were undertaken. In the first, 317 athletes completed the Coaches' Encouragement of Athletes' Imagery Use Questionnaire. In the second, 215 coaches completed a slightly modified version of this questionnaire. It was found that coaches and athletes generally agreed…

  12. Mental Imagery and Visual Working Memory

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  13. Cognitive maps in imagery neglect.

    Science.gov (United States)

    Palermo, Liana; Ranieri, Giulia; Nemmi, Federico; Guariglia, Cecilia

    2012-04-01

    Patients with imagery neglect (RI+) show peculiar difficulties in orienting themselves in the environment. Navigational impairments could be due to a deficit in creating or using a mental representation of the environment (Guariglia, Piccardi, Iaria, Nico, & Pizzamiglio, 2005) or, according to the BBB model (Burgess, Becker, King, & O'Keefe, 2001), to a specific deficit in a mechanism that transforms an allocentric representation into an egocentric one and vice versa. Previous studies, however, do not allow discerning between a deficit in forming or in using a cognitive map, taking no notice of the fact that these are two different abilities underlain by different neuroanatomical areas, which could be independently impaired. Furthermore, the BBB model has never been verified in a population of brain-damaged patients. Therefore, we administered two tasks that separately assess the ability to create and use a cognitive map of the environment to 28 right brain-damaged patients (4 patients with imagery neglect and 4 patients with perceptual neglect) and 11 healthy participants. RI+ patients showed no specific deficit in creating or using a cognitive map, but failed to transform an egocentric representation of the environment into an allocentric one and vice versa, as predicted by the BBB model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Observer perspective imagery with stuttering.

    Science.gov (United States)

    Lowe, Robyn; Menzies, Ross; Packman, Ann; O'Brian, Sue; Onslow, Mark

    2015-01-01

    Adults who stutter are at risk of developing a range of psychological conditions. Social anxiety disorder is the most common anxiety disorder associated with stuttering. Observer perspective imagery is one cognitive process involved in the maintenance of some anxiety disorders. This involves viewing images as if looking at the self from the perspective of another. In contrast, the field perspective involves looking out from the self at the surrounding environment. The purpose of this study was to assess the presence of observer perspective imagery with stuttering. The authors administered the Hackmann, Surawy and Clark (1998) semi-structured interview to 30 adults who stutter and 30 controls. Group images and impressions were compared for frequency, perspective recalled and emotional valence. The stuttering group was significantly more likely than controls to recall images and impressions from an observer rather than a field perspective for anxious situations. It is possible the present results could reflect the same attentional processing bias that occurs with anxiety disorders in the non-stuttering population. These preliminary results provide an explanation for the persistence of conditions such as social anxiety disorder with stuttering. Clinical implications are discussed.

  15. Coalitional Tracker for Deception Detection in Thermal Imagery

    Science.gov (United States)

    Dowdall, Jonathan; Pavlidis, Ioannis; Tsiamyrtzis, Panagiotis

    We propose a novel tracking method that uses a network of independent particle filter trackers whose interactions are modeled using coalitional game theory. Our tracking method is general; it maintains pixel-level accuracy, and can negotiate surface deformations and occlusions. We tested our method in a substantial video set featuring nontrivial motion from over 40 objects in both the infrared and vi sual spectra. The coalitional tracker demonstrated fault-tolerant behavior that far exceeds the performance of single-particle filter trackers. Our method represents a shift from the typical tracking paradigms and may find application in demanding imaging problems across the electromagnetic spectrum.

  16. Use of Landsat thermal imagery for dynamically monitoring ...

    Indian Academy of Sciences (India)

    66

    for retrieving geothermal related resources more accurately. Jiang et al. (2017) used spatiotemporal Landsat TM and ETM+ images to detect changes in coal fires by utilizing a generalized single-channel method. Spontaneous combustion of underground coal seam is very serious in Datong Jurassic coal mining area, ...

  17. Analysis of Thermal Imagery Collected at Yuma I, Yuma, Arizona

    Science.gov (United States)

    1994-08-01

    ee .~c * cc cc c a t r i C...l n t 1 1 1 n - t i n 1z - z A. a n li in t ,1 n -l ......... .... AD.. 333333 as3 E Ban E2 Apend E IageMeft -Oiuaf0 .. .n...ili ---- - - Ila 10 si V 0 4 .: a ,..*a43 217 a- a a a. .. .A G18 Apend G Iage etris-Oloal -. 00 Wj. 331s 0.000.08 883.8833333.388 1i nI q-f 13 :1f

  18. STcorr: An IDL code for image based normalization of lapse rate and illumination effects on nighttime TIR imagery

    Science.gov (United States)

    Ulusoy, İnan; Labazuy, Philippe; Aydar, Erkan

    2012-06-01

    Thermal infrared imagery (TIR) is a useful tool to detect and quantify the surface temperature anomalies associated with geothermal fields. Accurate detection of anomalies in surface temperature is an important aspect of geothermal research. Although day-time TIR images have long been used for temperature anomaly mapping, the increase in the spatial resolution and the number of acquisitions of nighttime thermal imagery provide new perspectives to the remote geothermal monitoring and exploration. However, the nighttime thermal imagery requires appropriate corrections in order to minimize some major artefacts. These corrections are namely: the masking of small scale thermal anomalies by the lapse rate, the relict diurnal heat due to the radiation of sun and the slope effect. Moreover, the correction of nighttime TIR imagery according to the altitude, slope aspect and the slope of the study area provide more reliable data. STcorr is an Interactive Data Language (IDL) code for the correction of altitude, aspect and slope effects in nighttime thermal imagery using image based polynomial regression analysis. Standard ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Surface Kinetic Temperature (ST) image and Digital Elevation Model (DEM) are used to calculate a lapse rate model. Upon the retrieval of lapse rate, an illumination correction is performed based on the relationship between the corrected image and the aspect and slope images, interactive and "step by step" structure of the code permit user to improve the quality of the output. An ASTER nighttime ST image of the Mt. Nemrut volcano has been corrected using STcorr as an example. The procedure improves the reliability of the output after the retrieval of altitude, aspect and slope effects. Thermal anomalies observed in the Mt. Nemrut are consistent with the hydrothermal activity and the hot spots detected by self-potential measurements in the area.

  19. Imagery use in sport: mediational effects for efficacy.

    Science.gov (United States)

    Short, Sandra E; Tenute, Amy; Feltz, Deborah L

    2005-09-01

    The factors that influence whether an athlete chooses to engage in imagery are largely unknown. One reason may be the amount of confidence athletes have in their ability to image. The aim of this study was to examine the relationships among efficacy in using imagery, imagery use and imagery ability. Consistent with Bandura's (1986, 1997) theory, it was hypothesized that there would be a positive correlation between efficacy in using imagery and imagery use, and that efficacy in using imagery would mediate the relationship between imagery ability and imagery use. Participants were 74 female athletes from various sports. The instruments we used were the Movement Imagery Questionnaire-Revised (Hall & Martin, 1997) for imagery ability, the Sport Imagery Questionnaire (Hall, Mack, Paivio, & Hausenblas, 1998) for imagery use, and a modified version of the latter questionnaire for efficacy in using imagery. Correlations showed that the more athletes were confident in their ability to use a certain image, the more they used it. Efficacy in using imagery was found to mediate only the relationship between imagery ability and cognitive imagery use.

  20. Mental imagery of positive and neutral memories: A fMRI study comparing field perspective imagery to observer perspective imagery.

    Science.gov (United States)

    Grol, Maud; Vingerhoets, Guy; De Raedt, Rudi

    2017-02-01

    Imagery perspective can influence what information is recalled, processing style, and emotionality; however, the understanding of possible mechanisms mediating these observed differences is still limited. We aimed to examine differences between memory recall from a field perspective and observer perspective at the neurobiological level, in order to improve our understanding of what is underlying the observed differences at the behavioral level. We conducted a fMRI study in healthy individuals, comparing imagery perspectives during recall of neutral and positive autobiographical memories. Behavioral results revealed field perspective imagery of positive memories, as compared to observer perspective, to be associated with more positive feelings afterwards. At the neurobiological level, contrasting observer perspective to field perspective imagery was associated with greater activity, or less decrease relative to the control visual search task, in the right precuneus and in the right temporoparietal junction (TPJ). Greater activity in the right TPJ during an observer perspective as compared to field perspective could reflect performing a greater shift of perspective and mental state during observer perspective imagery than field perspective imagery. Differential activity in the precuneus may reflect that during observer perspective imagery individuals are more likely to engage in (self-) evaluative processing and visuospatial processing. Our findings contribute to a growing understanding of how imagery perspective can influence the type of information that is recalled and the intensity of the emotional response. Observer perspective imagery may not automatically reduce emotional intensity but this could depend on how the imagined situation is evaluated in relation to the self-concept. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Measurement of motivational imagery abilities in sport.

    Science.gov (United States)

    Gregg, Melanie; Hall, Craig

    2006-09-01

    Athletes report using imagery most often to successfully cope with and master challenging situations. This function of imagery is termed "motivational general-mastery" and includes imagining being focused, confident and in control in difficult circumstances. Also, athletes often use imagery to regulate their arousal levels (e.g. relaxing, psyching up) and this function of imagery is termed "motivational-general arousal". While most athletes report employing these two motivational functions of imagery, their ability to do so has not been examined. The aim of the present study was to develop a measure of motivational general sport imagery ability, the Motivational Imagery Ability Measure for Sport (MIAMS). This was accomplished through three phases. Across these phases, evidence was generated showing that the psychometric properties of the instrument are adequate. In addition, the relationship of scores on the MIAMS to demographic variables, including sex, sport type and competitive standard, were examined. It was found that athletes participating at a competitive level scored higher on the MIAMS than athletes participating at a recreational level.

  2. Does motor imagery enhance stretching and flexibility?

    Science.gov (United States)

    Guillot, Aymeric; Tolleron, Coralie; Collet, Christian

    2010-02-01

    Although several studies have demonstrated that motor imagery can enhance learning processes and improve motor performance, little is known about its effect on stretching and flexibility. The increased active and passive range of motion reported in preliminary research has not been shown to be elicited by motor imagery training alone. We thus compared flexibility scores in 21 synchronized swimmers before and after a 5-week mental practice programme that included five stretching exercises in active and passive conditions. The imagery training programme resulted in selective increased flexibility, independently of the stretching method. Overall, the improvement in flexibility was greater in the imagery group than in the control group for the front split (F(1,18) = 4.9, P = 0.04), the hamstrings (F(1,18) = 5.2, P = 0.035), and the ankle stretching exercises (F(1,18) = 5.6, P = 0.03). There was no difference in shoulders and side-split flexibility (F(1,18) = 0.1, P = 0.73 and F(1,18) = 3.3, P = 0.08 respectively). Finally, there was no correlation between individual imagery ability and improvement in flexibility. Psychological and physiological effects of motor imagery could explain the increase in range of motion, suggesting that imagery enhances joint flexibility during both active and passive stretching.

  3. Loss of form vision impairs spatial imagery.

    Science.gov (United States)

    Occelli, Valeria; Lin, Jonathan B; Lacey, Simon; Sathian, K

    2014-01-01

    Previous studies have reported inconsistent results when comparing spatial imagery performance in the blind and the sighted, with some, but not all, studies demonstrating deficits in the blind. Here, we investigated the effect of visual status and individual preferences ("cognitive style") on performance of a spatial imagery task. Participants with blindness resulting in the loss of form vision at or after age 6, and age- and gender-matched sighted participants, performed a spatial imagery task requiring memorization of a 4 × 4 lettered matrix and subsequent mental construction of shapes within the matrix from four-letter auditory cues. They also completed the Santa Barbara Sense of Direction Scale (SBSoDS) and a self-evaluation of cognitive style. The sighted participants also completed the Object-Spatial Imagery and Verbal Questionnaire (OSIVQ). Visual status affected performance on the spatial imagery task: the blind performed significantly worse than the sighted, independently of the age at which form vision was completely lost. Visual status did not affect the distribution of preferences based on self-reported cognitive style. Across all participants, self-reported verbalizer scores were significantly negatively correlated with accuracy on the spatial imagery task. There was a positive correlation between the SBSoDS score and accuracy on the spatial imagery task, across all participants, indicating that a better sense of direction is related to a more proficient spatial representation and that the imagery task indexes ecologically relevant spatial abilities. Moreover, the older the participants were, the worse their performance was, indicating a detrimental effect of age on spatial imagery performance. Thus, spatial skills represent an important target for rehabilitative approaches to visual impairment, and individual differences, which can modulate performance, should be taken into account in such approaches.

  4. Effect of modeling on sexual imagery.

    Science.gov (United States)

    Sachs, D H; Duffy, K G

    1976-07-01

    Social learning theory was used to examine the effects of a model's sexual imagery on the observer's sexual imagery. In the guise of a creative writing experiment, male and female college students were asked to listen to a tape recording of a same- or opposite-sex model relating a story in response to a sample TAT card. The story described a man and a woman in a physical sex encounter (high sex), a romantic date (medium sex), or a casual study date (low sex). The sample TAT picture and model's story were omitted in the control groups. All subjects wrote stories in response to two other TAT cards. These stories were scored for sexual imagery by a male and a female judge who were blind to experimental conditions and who used a standard sexual imagery scoring manual. The following prediction were based on social learning theory: There would be greater sexual imagery in the stories of subjects who heard the high sex model than in the stories of those who heard the medium or low sex model or no model. Past research implied the prediction that the modeling effects would be greater for males than for females in the high sex model condition and greater for females than for males in the medium sex model condition. The results were analyzed using two factorial analyses of variance. There was greater sexual imagery by subjects who heard the high sex model than by those who heard the low sex model or model. The sexual imagery by subjects who heard the medium sex model was intermediate between that by those who heard the high sex model and that by those who heard the low sex model. The modeling effect was greater in males. The results also confirmed the prediction that sexual imagery would be greater for males in the high sex model condition but did not confirm the prediction that sexual imagery would be greater for females in the medium sex model condition.

  5. The Sport Imagery Questionnaire for Children (SIQ-C)

    Science.gov (United States)

    Hall, C. R.; Munroe-Chandler, K. J.; Fishburne, G. J.; Hall, N. D.

    2009-01-01

    Athletes of all ages report using imagery extensively to enhance their sport performance. The Sport Imagery Questionnaire (Hall, Mack, Paivio, & Hausenblas, 1998) was developed to assess cognitive and motivational imagery used by adult athletes. No such instrument currently exists to measure the use of imagery by young athletes. The aim of the…

  6. Students' Use of Imagery in Solving Qualitative Problems in Kinematics.

    Science.gov (United States)

    Kozhevnikov, Maria; Hegarty, Mary; Mayer, Richard

    This report describes a study that investigated the relationship between mental imagery and problem solving in physics, specifically in kinematics. A distinction is made between visual imagery and spatial imagery used in solving physics problems. The results of this study indicate that while spatial imagery may promote problem solving success, the…

  7. Performance improvements from imagery:evidence that internal visual imagery is superior to external visual imagery for slalom performance

    OpenAIRE

    Nichola eCallow; Ross eRoberts; Lew eHardy; Dan eJiang; Martin G Edwards

    2013-01-01

    We report three experiments investigating the hypothesis that use of internal visual imagery (IVI) would be superior to external visual imagery (EVI) for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group) performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under bo...

  8. Cortical activity during motor execution, motor imagery, and imagery-based online feedback.

    Science.gov (United States)

    Miller, Kai J; Schalk, Gerwin; Fetz, Eberhard E; den Nijs, Marcel; Ojemann, Jeffrey G; Rao, Rajesh P N

    2010-03-02

    Imagery of motor movement plays an important role in learning of complex motor skills, from learning to serve in tennis to perfecting a pirouette in ballet. What and where are the neural substrates that underlie motor imagery-based learning? We measured electrocorticographic cortical surface potentials in eight human subjects during overt action and kinesthetic imagery of the same movement, focusing on power in "high frequency" (76-100 Hz) and "low frequency" (8-32 Hz) ranges. We quantitatively establish that the spatial distribution of local neuronal population activity during motor imagery mimics the spatial distribution of activity during actual motor movement. By comparing responses to electrocortical stimulation with imagery-induced cortical surface activity, we demonstrate the role of primary motor areas in movement imagery. The magnitude of imagery-induced cortical activity change was approximately 25% of that associated with actual movement. However, when subjects learned to use this imagery to control a computer cursor in a simple feedback task, the imagery-induced activity change was significantly augmented, even exceeding that of overt movement.

  9. Mental imagery boosts music compositional creativity.

    Science.gov (United States)

    Wong, Sarah Shi Hui; Lim, Stephen Wee Hun

    2017-01-01

    We empirically investigated the effect of mental imagery on young children's music compositional creativity. Children aged 5 to 8 years participated in two music composition sessions. In the control session, participants based their composition on a motif that they had created using a sequence of letter names. In the mental imagery session, participants were given a picture of an animal and instructed to imagine the animal's sounds and movements, before incorporating what they had imagined into their composition. Six expert judges independently rated all music compositions on creativity based on subjective criteria (consensual assessment). Reliability analyses indicated that the expert judges demonstrated a high level of agreement in their ratings. The mental imagery compositions received significantly higher creativity ratings by the expert judges than did the control compositions. These results provide evidence for the effectiveness of mental imagery in enhancing young children's music compositional creativity.

  10. 2012 Oconee County, Georgia ADS80 Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — All imagery was collected during the 2012 Spring flying season during leaf-off conditions for deciduous vegetation in the State of Georgia. The sun angle was at...

  11. 2013 Bridge Creek, OR 4-Band Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In March 2012, WSI (Watershed Sciences, Inc.) was contracted by Woolpert, Inc. (Woolpert) to collect Light Detection and Ranging (LiDAR) data and digital imagery in...

  12. SMEX04 Landsat Thematic Mapper Imagery, Arizona

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides imagery developed from Landsat 5 Thematic Mapper (TM) data for use in studying land cover features during the Soil Moisture Experiment 2004...

  13. Mental imagery boosts music compositional creativity.

    Directory of Open Access Journals (Sweden)

    Sarah Shi Hui Wong

    Full Text Available We empirically investigated the effect of mental imagery on young children's music compositional creativity. Children aged 5 to 8 years participated in two music composition sessions. In the control session, participants based their composition on a motif that they had created using a sequence of letter names. In the mental imagery session, participants were given a picture of an animal and instructed to imagine the animal's sounds and movements, before incorporating what they had imagined into their composition. Six expert judges independently rated all music compositions on creativity based on subjective criteria (consensual assessment. Reliability analyses indicated that the expert judges demonstrated a high level of agreement in their ratings. The mental imagery compositions received significantly higher creativity ratings by the expert judges than did the control compositions. These results provide evidence for the effectiveness of mental imagery in enhancing young children's music compositional creativity.

  14. The Imagery of Bacchylides’ Ode 5

    Directory of Open Access Journals (Sweden)

    Jacob Stern

    2003-03-01

    Full Text Available Bacchylides’ choice of vocabulary and imagery reinforces the portrayal of human weakness and futility that is implicit in his version of the encounter between Heracles and Meleager.

  15. SMEX02 Landsat Thematic Mapper Imagery, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides imagery developed from Landsat 5 and 7 Thematic Mapper (TM) data for use in studying land cover features during the Soil Moisture Experiment...

  16. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    wave like features, the latter appearing to be of "white noise" nature. There exists a 180 degrees ambiguity in wave direction observed from radar imageries. Based on the method of Atanassov et al (1985), a computer program has been developed...

  17. Guided Imagery and Music - And Beyond?

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    4 original research articles, one essay, a classical article and two clinical papers documenting the development of theory, research and clinical practice within the receptive music therapy model [The Bonny Method of] Guided Imagery and Music.......4 original research articles, one essay, a classical article and two clinical papers documenting the development of theory, research and clinical practice within the receptive music therapy model [The Bonny Method of] Guided Imagery and Music....

  18. Mental concerts: musical imagery and auditory cortex.

    Science.gov (United States)

    Zatorre, Robert J; Halpern, Andrea R

    2005-07-07

    Most people intuitively understand what it means to "hear a tune in your head." Converging evidence now indicates that auditory cortical areas can be recruited even in the absence of sound and that this corresponds to the phenomenological experience of imagining music. We discuss these findings as well as some methodological challenges. We also consider the role of core versus belt areas in musical imagery, the relation between auditory and motor systems during imagery of music performance, and practical implications of this research.

  19. Using a foreign language reduces mental imagery.

    Science.gov (United States)

    Hayakawa, Sayuri; Keysar, Boaz

    2017-12-23

    Mental imagery plays a significant role in guiding how we feel, think, and even behave. These mental simulations are often guided by language, making it important to understand what aspects of language contribute to imagery vividness and consequently to the way we think. Here, we focus on the native-ness of language and present evidence that using a foreign language leads to less vivid mental imagery than using a native tongue. In Experiment 1, participants using a foreign language reported less vivid imagery of sensory experiences such as sight and touch than those using their native tongue. Experiment 2 provided an objective behavioral measure, showing that muted imagery reduced accuracy when judging the similarity of shapes of imagined objects. Lastly, Experiment 3 demonstrated that this reduction in mental imagery partly accounted for the previously observed foreign language effects in moral choice. Together, the findings suggest that our mental images change when using a foreign tongue, leading to downstream consequences for how we make decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Imagery intelligence from low altitudes: chosen aspects

    Science.gov (United States)

    Walczykowski, P.; Kedzierski, M.

    2017-04-01

    Remote acquisition of information about phenomena and objects from an imagery is the main objective of remote sensing. The ability to realize aims of image intelligence depends on the quality of acquired remote sensing data. The imagery intelligence can be carried out from different altitudes- from satellite level to terrestrial platforms. In this article, authors are focused on chosen aspects of imagery intelligence from low altitudes. Unfortunately the term low altitudes is not precise defined, therefore, for the purpose of this article is assumed that low altitudes, are altitudes in which operate the mini unmanned aerial vehicles (mini UAVs).The quality of imagery acquired determines the level of analysis that can be performed. The imagery quality depends on many factors, such as platforms on which the sensor is mounted, imaging sensors, height from which the data are acquired and object that is investigated. The article will also present the methods for assessing the quality of imagery in terms of detection, identification, description and technical analysis of investigated objects, as well as in terms of the accuracy of their location in the images (targeting).

  1. Voluntary and Involuntary Imagery in Social Anxiety.

    Science.gov (United States)

    Homer, Sophie R; Deeprose, Catherine

    2017-05-01

    Negative mental imagery is ubiquitous in cognitive models of social anxiety and in the social anxiety literature. Previous research has shown that it is causal of increased anxiety, lower social performance ratings and lower implicit self-esteem. Despite its prevalence, few studies have investigated this imagery directly. This study aimed to provide an in-depth analysis of the phenomenology of negative imagery experienced by socially anxious individuals, and to compare recurrent and intrusive images with images deliberately generated by participants during the study. Thirty-eight undergraduate students screened to be above average in social anxiety scores completed a computerized imagery questionnaire adapted from previous qualitative work. Thematic analyses revealed four major image themes for intrusive images and three for deliberately generated images including interacting with others and anxiety symptoms. Most intrusive images were based on negative episodic memories and were experienced at least fortnightly. Images were primarily visual, auditory and somatic but could involve any sensory modality. Depression anxiety stress scale (DASS-21) scores were higher in participants who experienced intrusive imagery and increased with the frequency of intrusions. Emotionality was generally higher in intrusive images than generated images. The phenomenology of negative imagery experienced by socially anxious individuals is idiosyncratic and may be inherently different from images generated for use in experimental research. Theoretical and clinical implications are discussed.

  2. Histopathology reconstruction on digital imagery

    Science.gov (United States)

    Li, Wenjing; Lieberman, Rich W.; Nie, Sixiang; Xie, Yihua; Eldred, Michael; Oyama, Jody

    2009-02-01

    Diagnosing cervical cancer in a woman is a multi-step procedure involving examination of the cervix, possible biopsy and follow-up. It is open to subjective interpretation and highly dependent upon the skills of cytologists, colposcopists, and pathologists. In an effort to reduce the subjectiveness of the colposcopist-directed biopsy and to improve the diagnostic accuracy of colposcopy, we have developed new colposcopic imaging systems with accompanying computer aided diagnostic (CAD) techniques to guide a colposcopist in deciding if and where to biopsy. If the biopsy's histopathology, the identification of the disease state at the cellular and near-cellular level, is to be used as the gold standard for CAD, then the location of the histopathologic analysis must match exactly to the location of the biopsy tissue in the digital image. Otherwise, no matter how perfect the histopathology and the quality of the digital imagery, the two data sets cannot be matched and the true sensitivity and specificity of the CAD cannot be ascertained. We report here on new approaches to preserving, continuously, the location and orientation of a biopsy sample with respect to its location in the digital image of the cervix so as to preserve the exact spatial relationship throughout the mechanical aspects of the histopathologic analysis. This new approach will allow CAD to produce a linear diagnosis and pinpoint the location of the tissue under examination.

  3. Cognitive aesthetics of alchemical imagery.

    Science.gov (United States)

    Connolly, Angela M

    2013-02-01

    Jung's contribution to the understanding of the relevance of psychology to alchemy has become increasingly invalidated by the ahistorical nature of his approach, just as his tendency to ignore the importance of cognitive aesthetics for an improved comprehension of the functions of alchemical images has prevented Jungians from further extending Jung's insight of the importance of alchemy for psychology. This paper explores the history of the development of alchemical illustrations in Western Europe from the 14(th) to the 16(th) century, tracing the emergent processes over time. It is only when we take into consideration the historical dimension and the aesthetics of alchemical imagery that it becomes possible to demonstrate how the increasing use of certain aesthetic techniques such as the disjunction and recombination of separate metaphorical elements of previous illustrations, the use of compressive combinations and the use of framing devices worked to gradually increase the cognitive function and the symbolical power of the images. If alchemy is still relevant to psychotherapy it is exactly because it helps us to understand the importance of cognitive aesthetics in our approach to the images, metaphors and narratives of our patients. © 2013, The Society of Analytical Psychology.

  4. Pseudocolor transformation of ERTS imagery

    Science.gov (United States)

    Lamar, J. V.; Merifield, P. M.

    1973-01-01

    One of the photographic techniques which shows great promise as an aid in interpreting ERTS imagery is pseudocolor transformation. It is a process where each shade of gray in an original black-and-white image is seen as a different color in the transformation. The well known ERTS-1 MSS image of the Monterey Bay-San Francisco area was transformed using a technique which requires only two intermediate separations. Possible faults were delineated on an overlay of the transformation before referring to geologic maps. The results were quite remarkable in that all large active or recently active faults shown on the latest geologic map of California were interpreted from the image for all, or much, of their length. Perhaps the most interesting result was the Reliz fault. The fault is shown as covered; however, a lineation corresponding to the position of the fault is visible on the image. The usefulness of ERTS image in identifying recently active faults is demonstrable. Although the faults are also visible in the unenhanced image, they are clearly accentuated and more easily mapped on the pseudocolor transformation.

  5. Imagery metadata development based on ISO/TC 211 standards

    Directory of Open Access Journals (Sweden)

    Rong Xie

    2007-04-01

    Full Text Available This paper reviews the present status and major problems of the existing ISO standards related to imagery metadata. An imagery metadata model is proposed to facilitate the development of imagery metadata on the basis of conformance to these standards and combination with other ISO standards related to imagery. The model presents an integrated metadata structure and content description for any imagery data for finding data and data integration. Using the application of satellite data integration in CEOP as an example, satellite imagery metadata is developed, and the resulting satellite metadata list is given.

  6. Imagery in Dance: A Literature Review.

    Science.gov (United States)

    Pavlik, Katherine; Nordin-Bates, Sanna

    2016-01-01

    Dance imagery is a consciously created mental representation of an experience, either real or imaginary, that may affect the dancer and her or his movement. In this study, imagery research in dance was reviewed in order to: 1. describe the themes and ideas that the current literature has attempted to illuminate and 2. discover the extent to which this literature fits the Revised Applied Model of Deliberate Imagery Use. A systematic search was performed, and 43 articles from 24 journals were found to fit the inclusion criteria. The articles were reviewed, analyzed, and categorized. The findings from the articles were then reported using the Revised Applied Model as a framework. Detailed descriptions of Who, What, When and Where, Why, How, and Imagery Ability were provided, along with comparisons to the field of sports imagery. Limitations within the field, such as the use of non-dance-specific and study-specific measurements, make comparisons and clear conclusions difficult to formulate. Future research can address these problems through the creation of dance-specific measurements, higher participant rates, and consistent methodologies between studies.

  7. Graph clustering for weapon discharge event detection and tracking in infrared imagery using deep features

    Science.gov (United States)

    Bhattacharjee, Sreyasee Das; Talukder, Ashit

    2017-05-01

    This paper addresses the problem of detecting and tracking weapon discharge event in an Infrared Imagery collection. While most of the prior work in related domains exploits the vast amount of complementary in- formation available from both visible-band (EO) and Infrared (IR) image (or video sequences), we handle the problem of recognizing human pose and activity detection exclusively in thermal (IR) images or videos. The task is primarily two-fold: 1) locating the individual in the scene from IR imagery, and 2) identifying the correct pose of the human individual (i.e. presence or absence of weapon discharge activity or intent). An efficient graph-based shortlisting strategy for identifying candidate regions of interest in the IR image utilizes both image saliency and mutual similarities from the initial list of the top scored proposals of a given query frame, which ensures an improved performance for both detection and recognition simultaneously and reduced false alarms. The proposed search strategy offers an efficient feature extraction scheme that can capture the maximum amount of object structural information by defining a region- based deep shape descriptor representing each object of interest present in the scene. Therefore, our solution is capable of handling the fundamental incompleteness of the IR imageries for which the conventional deep features optimized on the natural color images in Imagenet are not quite suitable. Our preliminary experiments on the OSU weapon dataset demonstrates significant success in automated recognition of weapon discharge events from IR imagery.

  8. Aerial Photography and Imagery, Ortho-Corrected, This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in the continental U.S. NAIP imagery may contain as much as 10% cloud cover per tile. This fil, Published in 2005, 1:63360 (1in=1mile) scale, University of Georgia.

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2005. This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP...

  9. [Mental Imagery: Neurophysiology and Implications in Psychiatry].

    Science.gov (United States)

    Martínez, Nathalie Tamayo

    2014-03-01

    To provide an explanation about what mental imagery is and some implications in psychiatry. This article is a narrative literature review. There are many terms in which imagery representations are described in different fields of research. They are defined as perceptions in the absence of an external stimulus, and can be created in any sensory modality. Their neurophysiological substrate is almost the same as the one activated during sensory perception. There is no unified theory about its function, but it is possibly the way that our brain uses and manipulates the information to respond to the environment. Mental imagery is an everyday phenomenon, and when it occurs in specific patterns it can be a sign of mental disorders. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  10. USDA/FSA Imagery Programs - Public Map Gallery

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Imagery programs are an important part of maintaining, creating and updating geospatial data at the USDA Farm Service Agency. Imagery acquisition is provided by the...

  11. NAIP = USDA FSA National Agricultural Imagery Program: 2003 - Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. A primary goal of the NAIP...

  12. COMMERCIAL IMAGERY IRS-P6-AWIFS (Federally Downloadable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  13. COMMERCIAL IMAGERY IRS-P6-AWIFS (Federally Viewable)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Commercial Data Purchases (UCDP) imagery collection is an archive of commercial remote sensing imagery from several different commercial vendors. The UCDP...

  14. Aerial Photography and Imagery, Ortho-Corrected - FDOT 2009 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This Imagery was provided by Florida Department of Transportation to the Volusia County Property Appraiser. 1 Foot Color Pixel Orthophotography. This imagery was...

  15. USING OF THERMAL STRUCTURE MAPS FOR VEGETATION MAPPING (CASE OF ALTACHEYSKY WILDLIFE AREA

    Directory of Open Access Journals (Sweden)

    L. A. Abramova

    2014-01-01

    Full Text Available Thermal infrared imagery contains considerable amount of qualitative information about ground objects and landscapes. In spite of it, this type of data is often used to derive quantitative information such as land or sea surface temperatures. This paper describes the examination of Altacheysky wildlife area situated in the southern part of Buryatia Republic, Mukhorshibirsky district based on Landsat imagery and ground observations. Ground observations were led to study the vegetation cover of the area. Landsat imagery were used to make multitemporal thermal infrared image combined of 7 ETM+ scenes and to make multispectral image combined of different zones of a OLI scene. Both images were classified. The multitemporal thermal infrared classification result was used to compose thermal structure map of the wildlife area. Comparison of the map, multispectral image classification result and ground observations data reveals that thermal structure map describes better the particularities of Altacheysky wildlife area vegetation cover.

  16. Imagery perspective among young athletes: Differentiation between external and internal visual imagery

    OpenAIRE

    Yu, Qiu-Hua; Amy S.N. Fu; Kho, Adeline; Li, Jie; Sun, Xiao-Hua; Chan, Chetwyn C. H.

    2016-01-01

    Purpose: This study aimed to investigate the construct of external visual imagery (EVI) vs. internal visual imagery (IVI) by comparing the athletes' imagery ability with their levels of skill and types of sports. Methods: Seventy-two young athletes in open (n = 45) or closed (n = 27) sports and with different skill levels completed 2 custom-designed tasks. The EVI task involved the subject generating and visualizing the rotated images of different body parts, whereas the IVI task involved ...

  17. The Involuntary Musical Imagery Scale (IMIS)

    OpenAIRE

    Floridou, G; Williamson, V; Stewart, L; Mullensiefen, D

    2015-01-01

    This report comprises 3 studies that delineate the development and validation of the Involuntary Musical Imagery Scale (IMIS) based on data from 2,646 individuals. This new self-report inventory measures individual differences in involuntary musical imagery (“INMI,” commonly referred to as “earworms”). The first study involved exploratory factor analysis, leading to the identification of a 4-factor scale structure. The 4 factors are conceived as “Negative Valence,” “Movement,” “Personal Refle...

  18. A Physicist's Anschauungen Concerning Mental Imagery

    Science.gov (United States)

    Miller, Arthur I.; Kaiser, Mary K.

    1987-01-01

    This book is an integration of historical and psychological analyses, with the goal of understanding the role of mental imagery in three seminal developments of early 20th-century physics: special relativity (1905), general relativity (1915), and quantum mechanics (1925). The book focuses on the insights that can be gleaned from Gesalt psychology, genetic epistemology, and recent theories of imagery in cognitive science. The book is divided into three sections. The first presents the comparative epistemologies of the scientists whose developments provide the data base for analyses. The second section considers the role of aesthetics and "visuability" in the transformation (and evaluation) of scientific concepts.

  19. Feldenkrais sensory imagery and forward reach.

    Science.gov (United States)

    Dunn, P A; Rogers, D K

    2000-12-01

    To investigate the effect of sensory imagery on subsequent movement, a unilateral Fleldenkrais lesson of imaging a soft bristle brush passing over one half of the body and in which no movement occurred, was given to 12 naive subjects. Forward flexion for each side of the body was measured at a sit-and-reach box. For 8 and 10 subjects who reported the perception of a side as being longer and lighter following the sensory imagery, there was also a significant increase in the forward flexion range on that side.

  20. Athletes' use of exercise imagery during weight training.

    Science.gov (United States)

    Silbernagel, Michael S; Short, Sandra E; Ross-Stewart, Lindsay C

    2007-11-01

    Imagery is a cognitive process during which people use their minds to create (or recreate) experiences that are similar to real-life situations. This study examined how college athletes used imagery during weight training. Subjects were 295 Division I (n = 163) and Division II (n = 132) college student athletes (men: n = 138, women: n = 157) who participated in a weight training program as a requirement of their sport. They completed a slightly modified version of the "Weight Lifting Imagery Questionnaire." Results showed that appearance imagery (i.e., images related to the attainment of a fit-looking body) was used and considered the most effective followed by technique imagery (i.e., images related to performing the skill and techniques correctly with good form) and energy imagery (i.e., images related to getting "psyched up" or feeling energized). Other variables that effected imagery use were gender, age, time of season, and levels of motivation. In addition, gender, previous imagery training, and level of motivation had an effect on the perceptions of imagery effectiveness. Confidence in the ability to image was associated with both imagery use and effectiveness, and imagery use and effectiveness were associated with confidence in the weight room. The findings support previous research in exercise imagery that appearance imagery is most used followed by technique and energy imagery and extend them in such a way that strength coaches have practical advice on how to use imagery in a positive way with their athletes. Suggestions about how strength coaches can use imagery with their clients are provided.

  1. Olfactory dreams, olfactory interest, and imagery : Relationships to olfactory memory

    OpenAIRE

    Arshamian, Artin

    2007-01-01

    Existing evidence for olfactory imagery is mixed and mainly based on reports from hallucinations and volitional imagery. Using a questionnaire, Stevenson and Case (2005) showed that olfactory dreams provided a good source for olfactory imagery studies. This study applied an extended version of the same questionnaire and examined olfactory dreams and their relation to real-life experienced odors, volitional imagery, and olfactory interest. Results showed that olfactory dreams were similar to r...

  2. Mental imagery in rowers during pre-competition periods : research ...

    African Journals Online (AJOL)

    These results provide support for previous research in the area of imagery use, as well as extending previous knowledge on imagery use prior to a competition. Keywords: Mental imagery, Rowing, Sport psychology. South African Journal for Research in Sport, Physical Education and Recreation Vol.26(1) 2004: 1-7 ...

  3. Now see this: a new vision of exercise imagery.

    Science.gov (United States)

    Munroe-Chandler, Krista J; Gammage, Kimberley L

    2005-10-01

    Recent exercise imagery findings suggest that past research in this field has been shortsighted and has severely curtailed progress in this important area. The authors provide a conceptual framework that focuses on how imagery may impact exercise behavior. This model expands our current knowledge of exercise imagery to suggest how it may function as an effective intervention to increase exercise behavior.

  4. Botswana team sport players' perception of cohesion and imagery ...

    African Journals Online (AJOL)

    Perception of cohesion and imagery use among 45 elite team sport players in Botswana were assessed with the Group Environment Questionnaire (Carron et al., 1985) and the Sport Imagery Questionnaire (Hall et al., 1998) to determine whether a relationship exists between the variables, and whether imagery use will ...

  5. Imagery Arousal as a Function of Exposure to Artistic Stimuli.

    Science.gov (United States)

    Bilotta, Joseph

    The purpose of this study was to determine to what extent music and art can arouse imagery experiences in an audience. Because of the relationship found between imagery and the arts in past research, it was hypothesized that artistic stimuli would have a greater influence on imagery than other kinds of stimuli (art-information or non-artistic).…

  6. Hyperspectral Imagery for Large Area Survey of Organophosphate Pesticides

    Science.gov (United States)

    2015-03-26

    HYPERSPECTRAL IMAGERY FOR LARGE AREA SURVEY OF ORGANOPHOSPHATE PESTICIDES THESIS MARCH 2015...States. AFIT-ENV-MS-15-M-203 HYPERSPECTRAL IMAGERY FOR LARGE AREA SURVEY OF ORGANOPHOSPHATE PESTICIDES THESIS Presented to the Faculty...HYPERSPECTRAL IMAGERY FOR LARGE AREA SURVEY OF ORGANOPHOSPHATE PESTICIDES Daniel R. Baseley, BSE Captain, USAF Committee Membership

  7. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Palm Beach County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  8. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Duval County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  9. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Collier County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  10. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Citrus County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  11. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Washington County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  12. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Liberty County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  13. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Polk County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  14. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Jackson County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  15. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Putnam County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  16. Aerial Photography and Imagery, Ortho-Corrected - FL Bay Ortho Imagery Project Spring 2013

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This file references a single orthogonal imagery tile produced from nadir images captured by Pictometry International during the period of December 30th, 2012 and...

  17. Coupling movement with imagery as a new perspective for motor imagery practice.

    Science.gov (United States)

    Guillot, Aymeric; Moschberger, Kevin; Collet, Christian

    2013-02-20

    Recent data support the beneficial role of gesturing during mental practice. The present study examined whether coupling motor imagery (MI) with some movement sequences (dynamic imagery condition) impacted motor performance to a greater extent than performing MI while remaining motionless. A group of active high jumpers imagined their jump both with and without associated arm movement. Three outcome variables were measured: the number of successful attempts, the temporal congruence between MI and actual jump performance, and the technical quality of the jump. Data revealed that dynamic imagery enhanced both MI quality and temporal congruence between MI and motor performance, and further improved the technical efficacy of the jump. Athletes also reported more vivid representation while coupling MI with actual movement. These data support the hypothesis that performing dynamic imagery might contribute to enhance MI quality and efficacy, and sketch potentially fruitful new directions for MI practice.

  18. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Franklin County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  19. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Okeechobee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  20. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Levy County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  1. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Pinellas County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  2. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Jefferson County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  3. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Broward County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  4. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Gilchrist County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  5. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Sumter County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  6. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Madison County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  7. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Gadsden County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  8. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Lee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  9. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Orange County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  10. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Hernando County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  11. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Wakulla County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  12. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Okaloosa County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  13. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Bay County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  14. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Flagler County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  15. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Holmes County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  16. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Brevard County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  17. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Santa Rosa County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  18. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Miami-Dade County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  19. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Martin County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  20. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Taylor County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  1. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Glades County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  2. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Highlands County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  3. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Hamilton County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  4. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Marion County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  5. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Lake County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  6. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Volusia County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  7. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Columbia County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  8. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Sarasota County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  9. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Dixie County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  10. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Escambia County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  11. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Union County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  12. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Clay County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  13. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Bradford County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  14. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Hendry County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  15. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Seminole County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  16. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Osceola County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  17. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Indian River County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  18. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Alachua County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  19. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - St. Johns County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  20. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Suwannee County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  1. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Hillsborough County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  2. Aerial Photography and Imagery, Ortho-Corrected - 2010 NAIP Imagery - Nassau County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains polygons delineating the seams boundary between acquired imagery used in the creation of DOQQs and compressed county mosaic (CCM). The DOQQ...

  3. National Geospatial Data Asset (NGDA) National Agriculture Imagery Program (NAIP) Imagery - 2017 Planned Acquisition

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — NAIP imagery is acquired annually with the total coverage being determined by available funds from FSA and funding partners, considering FSA priorities. The NAIP...

  4. Exploitation of combined visible hyperspectral and infrared imagery

    Science.gov (United States)

    Smith, Geoffrey B.; Marmorino, George O.; Miller, W. David

    2008-11-01

    Natural and anthropogenic surfactants accumulate at the air-sea interface, forming microlayer films, slicks, and foam patches. The resulting enhanced viscoelasticity of the interface alters the small-scale wave spectrum and near-surface turbulence. These changes alter the surface thermal boundary layer and ``skin'' temperature, making infrared thermal imagery ideal for detecting/mapping/studying ocean slicks. Slicks are found under a range of conditions and can result from physical straining of the sea surface (e.g. internal waves) as well as from local biological processes (e.g. plankton blooms). Airborne datasets that combine simultaneous airborne infrared and visible wavelength hyperspectral remote sensing data are now available and provide new opportunities to investigate the physical and biological processes that result in ocean slicks. In addition to the multiple sensors, these datasets are at spatial and time scales much smaller than possible with available satellite remote sensors. This enables the study of a much broader range of phenomena. In particular we investigate the relationship between surface accumulations of vegetative material, ocean slicks and surface temperature changes. We also investigate the relationship between the presence of slicks and water column chromophoric dissolved organic matter (CDOM).

  5. PRICISE TARGET GEOLOCATION AND TRACKING BASED ON UAV VIDEO IMAGERY

    Directory of Open Access Journals (Sweden)

    H. R. Hosseinpoor

    2016-06-01

    Full Text Available There is an increasingly large number of applications for Unmanned Aerial Vehicles (UAVs from monitoring, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using an extended Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors, Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process. The results of this study compared with code-based ordinary GPS, indicate that RTK observation with proposed method shows more than 10 times improvement of accuracy in target geolocation.

  6. COCOA: tracking in aerial imagery

    Science.gov (United States)

    Ali, Saad; Shah, Mubarak

    2006-05-01

    Unmanned Aerial Vehicles (UAVs) are becoming a core intelligence asset for reconnaissance, surveillance and target tracking in urban and battlefield settings. In order to achieve the goal of automated tracking of objects in UAV videos we have developed a system called COCOA. It processes the video stream through number of stages. At first stage platform motion compensation is performed. Moving object detection is performed to detect the regions of interest from which object contours are extracted by performing a level set based segmentation. Finally blob based tracking is performed for each detected object. Global tracks are generated which are used for higher level processing. COCOA is customizable to different sensor resolutions and is capable of tracking targets as small as 100 pixels. It works seamlessly for both visible and thermal imaging modes. The system is implemented in Matlab and works in a batch mode.

  7. Comparing Landsat-7 ETM+ and ASTER Imageries to Estimate Daily Evapotranspiration Within a Mediterranean Vineyard Watershed

    Science.gov (United States)

    Montes, Carlo; Jacob, Frederic

    2017-01-01

    We compared the capabilities of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imageries for mapping daily evapotranspiration (ET) within a Mediterranean vineyard watershed. We used Landsat and ASTER data simultaneously collected on four dates in 2007 and 2008, along with the simplified surface energy balance index (S-SEBI) model. We used previously ground-validated good quality ASTER estimates as reference, and we analyzed the differences with Landsat retrievals in light of the instrumental factors and methodology. Although Landsat and ASTER retrievals of S-SEBI inputs were different, estimates of daily ET from the two imageries were similar. This is ascribed to the S-SEBI spatial differencing in temperature, and opens the path for using historical Landsat time series over vineyards.

  8. Imagery Teaches Elementary Economics Schema Efficiently.

    Science.gov (United States)

    McKenzie, Gary R.

    In a complex domain such as economics, elementary school students' knowledge of formal systems beyond their immediate experience is often too incomplete, superficial, and disorganized to function as schema or model. However, visual imagery is a good technique for teaching young children a network of 10 to 20 propositions and the relationships…

  9. Adolescent perceptions of smoking imagery in film.

    Science.gov (United States)

    McCool, J P; Cameron, L D; Petrie, K J

    2001-05-01

    Smoking amongst adolescents in New Zealand continues to be a problem, with more than a one-third increase in smoking prevalence between 1992 and 1997. Favourable portrayals of smoking in the media have been cited as potential motivators of the initiation of smoking among adolescents. To date, however, its role in influencing smoking perceptions and behaviours has not received systematic analysis. A qualitative study was conducted to explore how adolescents interpret and decode smoking imagery in movies. Data was collected through focus groups. Same-gender groups of 12- and 13-year-old students were interviewed at their schools. Participants discussed their recollections of and responses to portrayals of smoking in recently viewed films, as well as their perceptions of smoking in general. Students perceived that smoking in film is both highly prevalent and recognisable, and they regarded on-screen-smoking imagery as an accurate reflection of reality. Adolescents in this study were predominantly nonchalant towards the inclusion of smoking images in film, and they perceived an unrealistically high prevalence of smoking amongst peers and adults. Their noncholant response is linked with the perception that smoking is normal and prevalent and with the broad understanding of the constructed nature of media imagery. Smoking imagery in film may play a critical role in reinforcing cultural interpretations of tobacco use, such as its role as a means of stress relief, development of self-image and as a marker of adult independence.

  10. A Role for Imagery in Mentoring.

    Science.gov (United States)

    Fletcher, Sarah

    2000-01-01

    Examples of imagery and visualization in medicine, sports, and preservice teaching explore the potential of these techniques in mentoring relationships. They help proteges develop a positive self-image in a new role, make mentors' experience more explicit, and depict possible selves toward which proteges can work. (SK)

  11. UAV imagery analysis: challenges and opportunities

    Science.gov (United States)

    Grant, Barbara G.

    2017-05-01

    As UAV imaging continues to expand, so too do the opportunities for improvements in data analysis. These opportunities, in turn, present their own challenges including the need for real time radiometric and spectral calibration; the continued development of quality metrics facilitating exploitation of strategic and tactical imagery; and the need to correct for sensor and platform-induced artifacts in image data.

  12. Image enhancement for noisy color imagery

    NARCIS (Netherlands)

    Dijk, J.; Hollander, R.J.M. den

    2008-01-01

    Recently new techniques for night vision cameras are developed. So-called EMCCD cameras are able to record color information about the scene. However, in low-light situations this imagery becomes noisy. This is also the case for normal CCD cameras in dark situations or in shadowed areas. In this

  13. Investigation of Satellite Imagery for Regional Planning

    Science.gov (United States)

    Harting, W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Satellite multispectral imagery was found to be useful in regional planning for depicting general developed land patterns, wooded areas, and newly constructed highways by using visual photointerpretation methods. Other characteristics, such as residential and nonresidential development, street patterns, development density, and some vacant land components cannot be adequately detected using these standard methods.

  14. Scanning silence: mental imagery of complex sounds.

    Science.gov (United States)

    Bunzeck, Nico; Wuestenberg, Torsten; Lutz, Kai; Heinze, Hans-Jochen; Jancke, Lutz

    2005-07-15

    In this functional magnetic resonance imaging (fMRI) study, we investigated the neural basis of mental auditory imagery of familiar complex sounds that did not contain language or music. In the first condition (perception), the subjects watched familiar scenes and listened to the corresponding sounds that were presented simultaneously. In the second condition (imagery), the same scenes were presented silently and the subjects had to mentally imagine the appropriate sounds. During the third condition (control), the participants watched a scrambled version of the scenes without sound. To overcome the disadvantages of the stray acoustic scanner noise in auditory fMRI experiments, we applied sparse temporal sampling technique with five functional clusters that were acquired at the end of each movie presentation. Compared to the control condition, we found bilateral activations in the primary and secondary auditory cortices (including Heschl's gyrus and planum temporale) during perception of complex sounds. In contrast, the imagery condition elicited bilateral hemodynamic responses only in the secondary auditory cortex (including the planum temporale). No significant activity was observed in the primary auditory cortex. The results show that imagery and perception of complex sounds that do not contain language or music rely on overlapping neural correlates of the secondary but not primary auditory cortex.

  15. Natural colour mapping for multiband nightvision imagery

    NARCIS (Netherlands)

    Toet, A.

    2003-01-01

    We present a method to give (fused) multiband night-time imagery a natural day-time colour appearance. For input, the method requires a false colour RGB image that is produced by mapping three individual bands (or the .rst three principal components) of a multiband nightvision system to the

  16. Lehrbuch Guided Imagery in Music (GIM)

    DEFF Research Database (Denmark)

    Maack, Carola; Geiger, Edith Maria

    Guided Imagery in Music (GIM) ist eine musikpsychotherapeutische Methode, bei welcher der Patient eine Auswahl meist klassischer Musik in einem entspannten Zustand hört und sein Erleben (= Imaginationen) der Therapeutin mitteilt. Theoretische Hintergründe, klinische Anwendung, sowie...

  17. Paris Commune Imagery in China's Mass Media.

    Science.gov (United States)

    Meiss, Guy T.

    The role of ideology in mass media practices is explored in an analysis of the relation between the Paris Commune of 1871 and the Shanghai Commune of 1967, two attempts to translate the philosophical concept of dictatorship of the proletariat into some political form. A review of the use of Paris Commune imagery by the Chinese to mobilize the…

  18. Imagery Rescripting across Disorders: A Practical Guide

    Science.gov (United States)

    Stopa, Lusia

    2011-01-01

    Intrusive images occur in many disorders and, as well as causing distress, they frequently represent important negative meanings about the self, other people, or the world. Imagery rescripting describes a set of therapeutic techniques that are aimed at changing these negative meanings. This special series focuses on when and how to do imagery…

  19. Using ASTER Imagery in Land Use/cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project

    Directory of Open Access Journals (Sweden)

    Recep Gundogan

    2008-02-01

    Full Text Available The satellite imagery has been effectively utilized for classifying land covertypes and detecting land cover conditions. The Advanced Spaceborne Thermal Emissionand Reflection Radiometer (ASTER sensor imagery has been widely used in classificationprocess of land cover. However, atmospheric corrections have to be made by preprocessingsatellite sensor imagery since the electromagnetic radiation signals received by the satellitesensors can be scattered and absorbed by the atmospheric gases and aerosols. In this study,an ASTER sensor imagery, which was converted into top-of-atmosphere reflectance(TOA, was used to classify the land use/cover types, according to COoRdination ofINformation on the Environment (CORINE land cover nomenclature, for an arearepresenting the heterogonous characteristics of eastern Mediterranean regions inKahramanmaras, Turkey. The results indicated that using the surface reflectance data ofASTER sensor imagery can provide accurate (i.e. overall accuracy and kappa values of83.2% and 0.79, respectively and low-cost cover mapping as a part of inventory forCORINE Land Cover Project.

  20. Using ASTER Imagery in Land Use/cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project.

    Science.gov (United States)

    Yüksel, Alaaddin; Akay, Abdullah E; Gundogan, Recep

    2008-02-21

    The satellite imagery has been effectively utilized for classifying land covertypes and detecting land cover conditions. The Advanced Spaceborne Thermal Emissionand Reflection Radiometer (ASTER) sensor imagery has been widely used in classificationprocess of land cover. However, atmospheric corrections have to be made by preprocessingsatellite sensor imagery since the electromagnetic radiation signals received by the satellitesensors can be scattered and absorbed by the atmospheric gases and aerosols. In this study,an ASTER sensor imagery, which was converted into top-of-atmosphere reflectance(TOA), was used to classify the land use/cover types, according to COoRdination ofINformation on the Environment (CORINE) land cover nomenclature, for an arearepresenting the heterogonous characteristics of eastern Mediterranean regions inKahramanmaras, Turkey. The results indicated that using the surface reflectance data ofASTER sensor imagery can provide accurate (i.e. overall accuracy and kappa values of83.2% and 0.79, respectively) and low-cost cover mapping as a part of inventory forCORINE Land Cover Project.

  1. Relating multimodal imagery data in three dimensions

    Science.gov (United States)

    Walli, Karl C.

    This research develops and improves the fundamental mathematical approaches and techniques required to relate imagery and imagery derived multimodal products in 3D. Image registration, in a 2D sense, will always be limited by the 3D effects of viewing geometry on the target. Therefore, effects such as occlusion, parallax, shadowing, and terrain/building elevation can often be mitigated with even a modest amounts of 3D target modeling. Additionally, the imaged scene may appear radically different based on the sensed modality of interest; this is evident from the differences in visible, infrared, polarimetric, and radar imagery of the same site. This thesis develops a 'model-centric' approach to relating multimodal imagery in a 3D environment. By correctly modeling a site of interest, both geometrically and physically, it is possible to remove/mitigate some of the most difficult challenges associated with multimodal image registration. In order to accomplish this feat, the mathematical framework necessary to relate imagery to geometric models is thoroughly examined. Since geometric models may need to be generated to apply this 'model-centric' approach, this research develops methods to derive 3D models from imagery and LIDAR data. Of critical note, is the implementation of complimentary techniques for relating multimodal imagery that utilize the geometric model in concert with physics based modeling to simulate scene appearance under diverse imaging scenarios. Finally, the often neglected final phase of mapping localized image registration results back to the world coordinate system model for final data archival are addressed. In short, once a target site is properly modeled, both geometrically and physically, it is possible to orient the 3D model to the same viewing perspective as a captured image to enable proper registration. If done accurately, the synthetic model's physical appearance can simulate the imaged modality of interest while simultaneously removing the

  2. Motion/imagery secure cloud enterprise architecture analysis

    Science.gov (United States)

    DeLay, John L.

    2012-06-01

    Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.

  3. Enhancing imagery through hypnosis: a performance aid for athletes.

    Science.gov (United States)

    Liggett, D R

    2000-10-01

    This value of imagery in sports is widely acknowledged. The contribution of hypnosis to enhancing athletes' performance is also recognized, but the value of hypnosis in enhancing imagery has little recognition. The reason for this neglect is explored. The study used Martens' Sport Imagery Questionnaire, which asked the participants to image 4 different situations in their own sport--practicing alone, practicing in front of others, watching a teammate, and competing. Participants reported their subjective impression of vividness on four dimensions--visual, auditory, kinesthetic, and affective. The 14 athletes participating imaged each situation in and out of hypnosis--half of the time the imagery in hypnosis came first and half after. The participants reported that the imagery under hypnosis was more intense for each dimension and more intense for each situation. Whether the imagery was done under hypnosis first or after was not significant. The findings suggest that hypnosis substantially enhances imagery intensity and effectiveness.

  4. Mental imagery in music performance: underlying mechanisms and potential benefits.

    Science.gov (United States)

    Keller, Peter E

    2012-04-01

    This paper examines the role of mental imagery in music performance. Self-reports by musicians, and various other sources of anecdotal evidence, suggest that covert auditory, motor, and/or visual imagery facilitate multiple aspects of music performance. The cognitive and motor mechanisms that underlie such imagery include working memory, action simulation, and internal models. Together these mechanisms support the generation of anticipatory images that enable thorough action planning and movement execution that is characterized by efficiency, temporal precision, and biomechanical economy. In ensemble performance, anticipatory imagery may facilitate interpersonal coordination by enhancing online predictions about others' action timing. Overlap in brain regions subserving auditory imagery and temporal prediction is consistent with this view. It is concluded that individual differences in anticipatory imagery may be a source of variation in expressive performance excellence and the quality of ensemble cohesion. Engaging in effortful musical imagery is therefore justified when artistic perfection is the goal. © 2012 New York Academy of Sciences.

  5. Imagery use by injured athletes: a qualitative analysis.

    Science.gov (United States)

    Driediger, Molly; Hall, Craig; Callow, Nichola

    2006-03-01

    The purpose of this study was to expand our knowledge and increase our understanding of imagery use by athletes in sport-injury rehabilitation using a qualitative approach. The participants were 10 injured athletes who were receiving physiotherapy at the time they were interviewed. During the interviews, the athletes provided extensive information about their use of imagery during injury rehabilitation and it was clear that they believed imagery served cognitive, motivational and healing purposes in effectively rehabilitating an injury. Cognitive imagery was used to learn and properly perform the rehabilitation exercises. They employed motivational imagery for goal setting (e.g. imagined being fully recovered) and to enhance mental toughness, help maintain concentration and foster a positive attitude. Imagery was used to manage pain. The methods they employed for controlling pain included using imagery to practise dealing with expected pain, using imagery as a distraction, imagining the pain dispersing, and using imagery to block the pain. With respect to what they imaged (i.e. the content of their imagery), they employed both visual and kinaesthetic imagery and their images tended to be positive and accurate. It was concluded that the implementation of imagery alongside physical rehabilitation should enhance the rehabilitation experience and, therefore, facilitate the recovery rates of injured athletes. Moreover, it was recommended that those responsible for the treatment of injured athletes (e.g. medical doctors, physiotherapists) should understand the benefits of imagery in athletic injury rehabilitation, since it is these practitioners who are in the best position to encourage injured athletes to use imagery.

  6. Selective effect of physical fatigue on motor imagery accuracy.

    Directory of Open Access Journals (Sweden)

    Franck Di Rienzo

    Full Text Available While the use of motor imagery (the mental representation of an action without overt execution during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001 were observed during the posttest for internal visual imagery. A significant correlation (r=0.64; p<0.05 was observed between motor imagery vividness (estimated through imagery questionnaire and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to

  7. Movement imagery for speech in healthy women: influences on articulation accuracy and fluidity, imagery times, and expectations of success.

    Science.gov (United States)

    Mantie-Kozlowski, Alana; Netsell, Ronald; Daniel, Todd

    2012-12-01

    The use of movement imagery in speech performance has received less attention than it has in many other professional disciplines. 30 healthy monolingual native English speakers participated in this within-subjects study. Participants' speech accuracy and fluidity was compared when they used movement imagery and when they did not. The timing of imagery and articulation were compared using a chronometric paradigm. Participants' expectations of improvement when using movement imagery for speech were compared to their actual performance. The results from this study support the use of movement imagery for speech with a single imaging event for the purpose of improving speech fluidity, but not for improving articulation accuracy. The chronometric system as a tool for monitoring adherence to the movement imagery protocol for speech proved valuable. Finally, while estimation inflation has been reported by some using movement imagery techniques, this was not the case for the participants of this study.

  8. Automated directional measurement system for the acquisition of thermal radiative measurements of vegetative canopies

    NARCIS (Netherlands)

    Timmermans, J.; Gieske, A.; Tol, van der C.; Verhoef, W.; Su, Z.

    2009-01-01

    The potential for directional optical and thermal imagery is very large. Field measurements have been performed with a goniometer on which thermal instruments were attached. In order to reduce dynamical effects the goniometer was adjusted to run in automated mode, for zenith and azimuthal direction.

  9. Imagery encoding and false recognition errors: Examining the role of imagery process and imagery content on source misattributions.

    Science.gov (United States)

    Foley, Mary Ann; Foy, Jeffrey; Schlemmer, Emily; Belser-Ehrlich, Janna

    2010-11-01

    Imagery encoding effects on source-monitoring errors were explored using the Deese-Roediger-McDermott paradigm in two experiments. While viewing thematically related lists embedded in mixed picture/word presentations, participants were asked to generate images of objects or words (Experiment 1) or to simply name the items (Experiment 2). An encoding task intended to induce spontaneous images served as a control for the explicit imagery instruction conditions (Experiment 1). On the picture/word source-monitoring tests, participants were much more likely to report "seeing" a picture of an item presented as a word than the converse particularly when images were induced spontaneously. However, this picture misattribution error was reversed after generating images of words (Experiment 1) and was eliminated after simply labelling the items (Experiment 2). Thus source misattributions were sensitive to the processes giving rise to imagery experiences (spontaneous vs deliberate), the kinds of images generated (object vs word images), and the ways in which materials were presented (as pictures vs words).

  10. Performance improvements from imagery:evidence that internal visual imagery is superior to external visual imagery for slalom performance

    Directory of Open Access Journals (Sweden)

    Nichola eCallow

    2013-10-01

    Full Text Available We report three experiments investigating the hypothesis that use of internal visual imagery (IVI would be superior to external visual imagery (EVI for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under both IVI and EVI conditions. Performance was again quickest in the IVI compared to EVI condition, with no differences in accuracy. Experiment 3 used the same group design as Experiment 1, but with participants performing a downhill ski-slalom task. Results revealed the IVI group to be significantly more accurate than the control group, with no significant differences in time taken to complete the task. These results support the beneficial effects of IVI for slalom-based tasks, and significantly advances our knowledge related to the differential effects of visual imagery perspectives on motor performance.

  11. Performance improvements from imagery: evidence that internal visual imagery is superior to external visual imagery for slalom performance.

    Science.gov (United States)

    Callow, Nichola; Roberts, Ross; Hardy, Lew; Jiang, Dan; Edwards, Martin Gareth

    2013-01-01

    We report three experiments investigating the hypothesis that use of internal visual imagery (IVI) would be superior to external visual imagery (EVI) for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group) performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under both IVI and EVI conditions. Performance was again quickest in the IVI compared to EVI condition, with no differences in accuracy. Experiment 3 used the same group design as Experiment 1, but with participants performing a downhill ski-slalom task. Results revealed the IVI group to be significantly more accurate than the control group, with no significant differences in time taken to complete the task. These results support the beneficial effects of IVI for slalom-based tasks, and significantly advances our knowledge related to the differential effects of visual imagery perspectives on motor performance.

  12. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available wider range of temperature limits, saving energy while still satisfying the majority of building occupants. It is also noted that thermal comfort varies significantly between individuals and it is generally not possible to provide a thermal environment...

  13. Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback.

    Science.gov (United States)

    Yu, Tianyou; Xiao, Jun; Wang, Fangyi; Zhang, Rui; Gu, Zhenghui; Cichocki, Andrzej; Li, Yuanqing

    2015-07-01

    Motor imagery-related mu/beta rhythms, which can be voluntarily modulated by subjects, have been widely used in EEG-based brain computer interfaces (BCIs). Moreover, it has been suggested that motor imagery-specific EEG differences can be enhanced by feedback training. However, the differences observed in the EEGs of naive subjects are typically not sufficient to provide reliable EEG control and thus result in unintended feedback. Such feedback can frustrate subjects and impede training. In this study, a hybrid BCI paradigm combining motor imagery and steady-state visually evoked potentials (SSVEPs) has been proposed to provide effective continuous feedback for motor imagery training. During the initial training sessions, subjects must focus on flickering buttons to evoke SSVEPs as they perform motor imagery tasks. The output/feedback of the hybrid BCI is based on hybrid features consisting of motor imagery- and SSVEP-related brain signals. In this context, the SSVEP plays a more important role than motor imagery in generating feedback. As the training progresses, the subjects can gradually decrease their visual attention to the flickering buttons, provided that the feedback is still effective. In this case, the feedback is mainly based on motor imagery. Our experimental results demonstrate that subjects generate distinguishable brain patterns of hand motor imagery after only five training sessions lasting approximately 1.5 h each. The proposed hybrid feedback paradigm can be used to enhance motor imagery training. This hybrid BCI system with feedback can effectively identify the intentions of the subjects.

  14. Assessing mental imagery in clinical psychology: A review of imagery measures and a guiding framework

    Science.gov (United States)

    Pearson, David G.; Deeprose, Catherine; Wallace-Hadrill, Sophie M.A.; Heyes, Stephanie Burnett; Holmes, Emily A.

    2013-01-01

    Mental imagery is an under-explored field in clinical psychology research but presents a topic of potential interest and relevance across many clinical disorders, including social phobia, schizophrenia, depression, and post-traumatic stress disorder. There is currently a lack of a guiding framework from which clinicians may select the domains or associated measures most likely to be of appropriate use in mental imagery research. We adopt an interdisciplinary approach and present a review of studies across experimental psychology and clinical psychology in order to highlight the key domains and measures most likely to be of relevance. This includes a consideration of methods for experimentally assessing the generation, maintenance, inspection and transformation of mental images; as well as subjective measures of characteristics such as image vividness and clarity. We present a guiding framework in which we propose that cognitive, subjective and clinical aspects of imagery should be explored in future research. The guiding framework aims to assist researchers in the selection of measures for assessing those aspects of mental imagery that are of most relevance to clinical psychology. We propose that a greater understanding of the role of mental imagery in clinical disorders will help drive forward advances in both theory and treatment. PMID:23123567

  15. Assessing mental imagery in clinical psychology: a review of imagery measures and a guiding framework.

    Science.gov (United States)

    Pearson, David G; Deeprose, Catherine; Wallace-Hadrill, Sophie M A; Burnett Heyes, Stephanie; Holmes, Emily A

    2013-02-01

    Mental imagery is an under-explored field in clinical psychology research but presents a topic of potential interest and relevance across many clinical disorders, including social phobia, schizophrenia, depression, and post-traumatic stress disorder. There is currently a lack of a guiding framework from which clinicians may select the domains or associated measures most likely to be of appropriate use in mental imagery research. We adopt an interdisciplinary approach and present a review of studies across experimental psychology and clinical psychology in order to highlight the key domains and measures most likely to be of relevance. This includes a consideration of methods for experimentally assessing the generation, maintenance, inspection and transformation of mental images; as well as subjective measures of characteristics such as image vividness and clarity. We present a guiding framework in which we propose that cognitive, subjective and clinical aspects of imagery should be explored in future research. The guiding framework aims to assist researchers in the selection of measures for assessing those aspects of mental imagery that are of most relevance to clinical psychology. We propose that a greater understanding of the role of mental imagery in clinical disorders will help drive forward advances in both theory and treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Statistical Processing Methods for Polarimetric Imagery

    Science.gov (United States)

    2008-09-01

    everything we have together. Calibration data for the HST imagery was graciously provided by M. Kishi- moto . Some of the data presented in this paper...analytic signal representation of light (plane wave radiation) in a vacuum is given by two orthogonal electric fields, ux(t) and uy(t), that are both...analyzer, is an optical element that absorbs radiation at rate that is dependent on the orientation of the incident electric field. This field

  17. Active training paradigm for motor imagery BCI.

    Science.gov (United States)

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  18. Mental Representation and Motor Imagery Training

    Directory of Open Access Journals (Sweden)

    Thomas eSchack

    2014-05-01

    Full Text Available Research in sports, dance and rehabilitation has shown that Basic Action Concepts (BACs are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, SDA-M (structural dimensional analysis of mental representation, to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

  19. Mental representation and motor imagery training.

    Science.gov (United States)

    Schack, Thomas; Essig, Kai; Frank, Cornelia; Koester, Dirk

    2014-01-01

    Research in sports, dance and rehabilitation has shown that basic action concepts (BACs) are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, the structural dimensional analysis of mental representation (SDA-M), to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations (MTMR) has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

  20. Neural Entrainment to Auditory Imagery of Rhythms

    Directory of Open Access Journals (Sweden)

    Haruki Okawa

    2017-10-01

    Full Text Available A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.

  1. Mental imagery affects subsequent automatic defense responses

    Directory of Open Access Journals (Sweden)

    Muriel A Hagenaars

    2015-06-01

    Full Text Available Automatic defense responses promote survival and appropriate action under threat. They have also been associated with the development of threat-related psychiatric syndromes. Targeting such automatic responses during threat may be useful in populations with frequent threat exposure. Here, two experiments explored whether mental imagery as a pre-trauma manipulation could influence fear bradycardia (a core characteristic of freezing during subsequent analogue trauma (affective picture viewing. Image-based interventions have proven successful in the treatment of threat-related disorders, and are easily applicable. In Experiment 1 43 healthy participants were randomly assigned to an imagery script condition. Participants executed a passive viewing task with blocks of neutral, pleasant and unpleasant pictures after listening to an auditory script that was either related (with a positive or a negative outcome or unrelated to the unpleasant pictures from the passive viewing task. Heart rate was assessed during script listening and during passive viewing. Imagining negative related scripts resulted in greater bradycardia (neutral-unpleasant contrast than imagining positive scripts, especially unrelated. This effect was replicated in Experiment 2 (N = 51, again in the neutral-unpleasant contrast. An extra no-script condition showed that bradycardia was not induced by the negative related script, but rather that a positive script attenuated bradycardia. These preliminary results might indicate reduced vigilance after unrelated positive events. Future research should replicate these findings using a larger sample. Either way, the findings show that highly automatic defense behavior can be influenced by relatively simple mental imagery manipulations.

  2. Motor imagery in unipolar major depression

    Directory of Open Access Journals (Sweden)

    Djamila eBennabi

    2014-12-01

    Full Text Available Background: Motor imagery is a potential tool to investigate action representation, as it can provide insights into the processes of action planning and preparation. Recent studies suggest that depressed patients present specific impairment in mental rotation. The present study was designed to investigate the influence of unipolar depression on motor imagery ability.Methods: Fourteen right-handed patients meeting DSM-IV criteria for unipolar depression were compared to fourteen matched healthy controls. Imagery ability was accessed by the timing correspondence between executed and imagined movements during a pointing task, involving strong spatiotemporal constraints (speed/accuracy trade off paradigm.Results: Compared to controls, depressed patients showed marked motor slowing on both actual and imagined movements. Furthermore, we observed greater temporal discrepancies between actual and mental movements in depressed patients than in healthy controls. Lastly, depressed patients modulated, to some extent, mental movement durations according to the difficulty of the task, but this modulation was not as strong as that of healthy subjects.Conclusion: These results suggest that unipolar depression significantly affects the higher stages of action planning and point out a selective decline of motor prediction.

  3. Analysis of temporal dynamics in imagery during acute limb ischemia and reperfusion

    Science.gov (United States)

    Irvine, John M.; Regan, John; Spain, Tammy A.; Caruso, Joseph D.; Rodriquez, Maricela; Luthra, Rajiv; Forsberg, Jonathon; Crane, Nicole J.; Elster, Eric

    2014-03-01

    Ischemia and reperfusion injuries present major challenges for both military and civilian medicine. Improved methods for assessing the effects and predicting outcome could guide treatment decisions. Specific issues related to ischemia and reperfusion injury can include complications arising from tourniquet use, such as microvascular leakage in the limb, loss of muscle strength and systemic failures leading to hypotension and cardiac failure. Better methods for assessing the viability of limbs/tissues during ischemia and reducing complications arising from reperfusion are critical to improving clinical outcomes for at-risk patients. The purpose of this research is to develop and assess possible prediction models of outcome for acute limb ischemia using a pre-clinical model. Our model relies only on non-invasive imaging data acquired from an animal study. Outcome is measured by pathology and functional scores. We explore color, texture, and temporal features derived from both color and thermal motion imagery acquired during ischemia and reperfusion. The imagery features form the explanatory variables in a model for predicting outcome. Comparing model performance to outcome prediction based on direct observation of blood chemistry, blood gas, urinalysis, and physiological measurements provides a reference standard. Initial results show excellent performance for the imagery-base model, compared to predictions based direct measurements. This paper will present the models and supporting analysis, followed by recommendations for future investigations.

  4. Computing Coastal Ocean Surface Currents from MODIS and VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Jianfei Liu

    2017-10-01

    Full Text Available We explore the potential of computing coastal ocean surface currents from Moderate-Resolution Imaging Spectroradiometer (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS satellite imagery using the maximum cross-correlation (MCC method. To improve on past versions of this method, we evaluate combining MODIS and VIIRS thermal infrared (IR and ocean color (OC imagery to map the coastal surface currents and discuss the benefits of this combination of sensors and optical channels. By combining these two sensors, the total number of vectors increases by 58.3 % . In addition, we also make use of the different surface patterns of IR and OC imagery to improve the tracking performance of the MCC method. By merging the MCC velocity fields inferred from IR and OC products, the spatial coverage of each individual MCC field is increased by 65.8 % relative to the vectors derived from OC images. The root mean square (RMS error of the merged currents is 18 cm · s − 1 compared with coincident HF radar surface currents. A 5-year long time serious of merged MCC computed currents was used to investigate the current structure of the California Current (CC. Weekly, seasonal, and 5-year mean flows provide a unique space-time picture of the oceanographic variability of the CC.

  5. Tobacco imagery on New Zealand television 2002–2004

    Science.gov (United States)

    McGee, Rob; Ketchel, Juanita

    2006-01-01

    Considerable emphasis has been placed on the importance of tobacco imagery in the movies as one of the “drivers” of smoking among young people. Findings are presented from a content analysis of 98 hours of prime‐time programming on New Zealand television 2004, identifying 152 scenes with tobacco imagery, and selected characteristics of those scenes. About one in four programmes contained tobacco imagery, most of which might be regarded as “neutral or positive”. This amounted to about two scenes containing such imagery for every hour of programming. A comparison with our earlier content analysis of programming in 2002 indicated little change in the level of tobacco imagery. The effect of this imagery in contributing to young viewers taking up smoking, and sustaining the addiction among those already smoking, deserves more research attention. PMID:16998178

  6. Use of ERTS-1 imagery in forest inventory

    Science.gov (United States)

    Rennie, J. C.; Birth, E. E.

    1974-01-01

    The utility of ERTS-1 imagery when combined with field observations and with aircraft imagery and field observations is evaluated. Satellite imagery consisted of 9-1/2 inch black and white negatives of four multispectral scanner bands taken over Polk County, Tennessee. Aircraft imagery was obtained by a C-130 flying at 23,000 ft over the same area and provided the basis for locating ground plots for field observations. Correspondence between aircraft and satellite imagery was somewhat inaccurate due to seasonal differences in observations and lack of good photogrammetry with the data processing system used. Better correspondence was found between satellite imagery and ground observations. Ways to obtain more accurate data are discussed, and comparisons between aircraft and satellite observations are tabulated.

  7. Improvement in spatial imagery following sight onset late in childhood.

    Science.gov (United States)

    Gandhi, Tapan K; Ganesh, Suma; Sinha, Pawan

    2014-03-01

    The factors contributing to the development of spatial imagery skills are not well understood. Here, we consider whether visual experience shapes these skills. Although differences in spatial imagery between sighted and blind individuals have been reported, it is unclear whether these differences are truly due to visual deprivation or instead are due to extraneous factors, such as reduced opportunities for the blind to interact with their environment. A direct way of assessing vision's contribution to the development of spatial imagery is to determine whether spatial imagery skills change soon after the onset of sight in congenitally blind individuals. We tested 10 children who gained sight after several years of congenital blindness and found significant improvements in their spatial imagery skills following sight-restoring surgeries. These results provide evidence of vision's contribution to spatial imagery and also have implications for the nature of internal spatial representations.

  8. Alcohol consumption in young adults: the role of multisensory imagery.

    Science.gov (United States)

    Connor, Jason P; Kavanagh, David J; Andrade, Jackie; May, Jon; Feeney, Gerald F X; Gullo, Matthew J; White, Angela M; Fry, Marie-Louise; Drennan, Judy; Previte, Josephine; Tjondronegoro, Dian

    2014-03-01

    Little is known about the subjective experience of alcohol desire and craving in young people. Descriptions of alcohol urges continue to be extensively used in the everyday lexicon of young, non-dependent drinkers. Elaborated Intrusion (EI) Theory contends that imagery is central to craving and desires, and predicts that alcohol-related imagery will be associated with greater frequency and amount of drinking. This study involved 1535 age stratified 18-25 year olds who completed an alcohol-related survey that included the Imagery scale of the Alcohol Craving Experience (ACE) questionnaire. Imagery items predicted 12-16% of the variance in concurrent alcohol consumption. Higher total Imagery subscale scores were linearly associated with greater drinking frequency and lower self-efficacy for moderate drinking. Interference with alcohol imagery may have promise as a preventive or early intervention target in young people. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  10. THE RELATIONSHIPS BETWEEN IMAGERY TYPES AND GOAL ORIENTATIONS IN THROWERS

    OpenAIRE

    Kale Kizildag Esen; Cepikkurt Fatma

    2014-01-01

    The purpose of this study was to investigate the relationship between imagery types and goal orientations in throwers. 62 athletes (33 female and 29 male) who competed in track and field national team ( age= 18.70 years; SD= 2.88, sportage= 6.26 years; SD= 3.16) participated in this study. All participants completed Sport Imagery Questionnaire- SIQ and Task and Ego Orientation in Sport- TEOSQ. Relationships between imagery types and goal orientations in throwerswere analyzed with Pearson Mom...

  11. Selective Effect of Physical Fatigue on Motor Imagery Accuracy

    Science.gov (United States)

    Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric

    2012-01-01

    While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, pimagery. A significant correlation (r = 0.64; pimagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary feedback originating from actual motor practice under fatigue. These findings provide insights to

  12. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  13. Auditory and motor imagery modulate learning in music performance

    OpenAIRE

    Brown, Rachel M.; Caroline ePalmer

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced nov...

  14. LUNAR TERRAIN AND ALBEDO RECONSTRUCTION FROM APOLLO IMAGERY

    Data.gov (United States)

    National Aeronautics and Space Administration — LUNAR TERRAIN AND ALBEDO RECONSTRUCTION FROM APOLLO IMAGERY ARA V NEFIAN*, TAEMIN KIM, MICHAEL BROXTON, AND ZACH MORATTO Abstract. Generating accurate three...

  15. Suicidal imagery in a previously depressed community sample.

    Science.gov (United States)

    Crane, Catherine; Shah, Dhruvi; Barnhofer, Thorsten; Holmes, Emily A

    2012-01-01

    This study sought to replicate previous findings of vivid suicide-related imagery in previously suicidal patients in a community sample of adults with a history of depression. Twenty-seven participants were interviewed regarding suicidal imagery. Seventeen participants reported prior suicidal ideation or behaviour in the clinical assessment, and the vast majority of these also reported experiencing suicide-related imagery when at their most depressed and despairing, in many cases in the form of flash-forwards to imagined future suicidal acts. Interestingly, five of the 10 participants who did not report suicidal ideation or behaviour in the clinical interview also described prominent imagery related to themes of death and suicide, but in several cases, these images were associated with meanings that seemed to act to reduce the likelihood of subsequent suicidal acts. Severity of prior suicidality was associated with lower levels of imagery-related distress and higher levels of imagery-related comfort. These findings support the idea that suicide-related imagery is an important component in the phenomenology of depression and despair and hint at potentially important differences in the meaning associated with such imagery between those individuals who report experiencing suicidal ideation or behaviour when depressed and those who do not. The findings are consistent with Joiner's model of acquired capability for suicide through habituation to pain and fear of suicide and suggest that it may be useful to tackle such imagery directly in the treatment of suicidal patients. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Estimation of Mexico's Informal Economy and Remittances Using Nighttime Imagery

    National Research Council Canada - National Science Library

    Tilottama Ghosh; Sharolyn Anderson; Rebecca L Powell; Paul C Sutton; Christopher D Elvidge

    2009-01-01

    .... This research explores the potential for estimating the formal and informal economy for Mexico using known relationships between the spatial patterns of nighttime satellite imagery and economic...

  17. Automatic detection, pursuit, and classification in infrared imagery

    Science.gov (United States)

    Quignon, J.

    1992-02-01

    Presented here are certain aspects of the treatment techniques of images and the reconnaissance of forms for automatic detection of targets in infrared imagery. The algorithms described here are put to work in real time for plane, helicopter, and missile targets in view of their integration into the solar defense system. Nevertheless, the algorithms are sufficiently general to be applied to optoelectronic equipment in air to ground and air to air systems. The treatments are of two categories. The first category includes those which are carried over the reduced zones of the entire field analyzed by the sensor (typically, 2 degrees by 3 degrees for a thermal camera from a short range arms system). These systems extract from the background potential targets (called alarms). The criteria of segmentation are based on the contrast and the movement of targets in relation to the background. The second category includes those which are carried over the reduced zones of an image (pursuit window) and which have as a goal the classification (recognition) of potential targets and their pursuit.

  18. Dead pixel correction techniques for dual-band infrared imagery

    Science.gov (United States)

    Nguyen, Chuong T.; Mould, Nick; Regens, James L.

    2015-07-01

    We present two new dead pixel correction algorithms for dual-band infrared imagery. Specifically, we address the problem of repairing unresponsive elements in the sensor array using signal processing techniques to overcome deficiencies in image quality that are present following the nonuniformity correction process. Traditionally, dead pixel correction has been performed almost exclusively using variations of the nearest neighbor technique, where the value of the dead pixel is estimated based on pixel values associated with the neighboring image structure. Our approach differs from existing techniques, for the first time we estimate the values of dead pixels using information from both thermal bands collaboratively. The proposed dual-band statistical lookup (DSL) and dual-band inpainting (DIP) algorithms use intensity and local gradient information to estimate the values of dead pixels based on the values of unaffected pixels in the supplementary infrared band. The DSL algorithm is a regression technique that uses the image intensities from the reference band to estimate the dead pixel values in the band undergoing correction. The DIP algorithm is an energy minimization technique that uses the local image gradient from the reference band and the boundary values from the affected band to estimate the dead pixel values. We evaluate the effectiveness of the proposed algorithms with 50 dual-band videos. Simulation results indicate that the proposed techniques achieve perceptually and quantitatively superior results compared to existing methods.

  19. National Agriculture Imagery Program (NAIP) Orthorectified Photomosaic for Washita Battlefield National Historic Site Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in...

  20. Mental imagery for musical changes in loudness

    Directory of Open Access Journals (Sweden)

    Freya eBailes

    2012-12-01

    Full Text Available Musicians imagine music during mental rehearsal, when reading from a score, and while composing. An important characteristic of music is its temporality. Among the parameters that vary through time is sound intensity, perceived as patterns of loudness. Studies of mental imagery for melodies (i.e. pitch and rhythm show interference from concurrent musical pitch and verbal tasks, but how we represent musical changes in loudness is unclear. Theories suggest that our perceptions of loudness change relate to our perceptions of force or effort, implying a motor representation. An experiment was conducted to investigate the modalities that contribute to imagery for loudness change. Musicians performed a within-subjects loudness change recall task, comprising 48 trials. First, participants heard a musical scale played with varying patterns of loudness, which they were asked to remember. There followed an empty interval of 8 seconds (nil distractor control, or the presentation of a series of 4 sine tones, or 4 visual letters or 3 conductor gestures, also to be remembered. Participants then saw an unfolding score of the notes of the scale, during which they were to imagine the corresponding scale in their mind while adjusting a slider to indicate the imagined changes in loudness. Finally, participants performed a recognition task of the tone, letter or gesture sequence. Based on the motor hypothesis, we predicted that observing and remembering conductor gestures would impair loudness change scale recall, while observing and remembering tone or letter string stimuli would not. Results support this prediction, with loudness change recalled less accurately in the gestures condition than in the control condition. An effect of musical training suggests that auditory and motor imagery ability may be closely related to domain expertise.

  1. Mental Imagery for Musical Changes in Loudness

    Science.gov (United States)

    Bailes, Freya; Bishop, Laura; Stevens, Catherine J.; Dean, Roger T.

    2012-01-01

    Musicians imagine music during mental rehearsal, when reading from a score, and while composing. An important characteristic of music is its temporality. Among the parameters that vary through time is sound intensity, perceived as patterns of loudness. Studies of mental imagery for melodies (i.e., pitch and rhythm) show interference from concurrent musical pitch and verbal tasks, but how we represent musical changes in loudness is unclear. Theories suggest that our perceptions of loudness change relate to our perceptions of force or effort, implying a motor representation. An experiment was conducted to investigate the modalities that contribute to imagery for loudness change. Musicians performed a within-subjects loudness change recall task, comprising 48 trials. First, participants heard a musical scale played with varying patterns of loudness, which they were asked to remember. There followed an empty interval of 8 s (nil distractor control), or the presentation of a series of four sine tones, or four visual letters or three conductor gestures, also to be remembered. Participants then saw an unfolding score of the notes of the scale, during which they were to imagine the corresponding scale in their mind while adjusting a slider to indicate the imagined changes in loudness. Finally, participants performed a recognition task of the tone, letter, or gesture sequence. Based on the motor hypothesis, we predicted that observing and remembering conductor gestures would impair loudness change scale recall, while observing and remembering tone or letter string stimuli would not. Results support this prediction, with loudness change recalled less accurately in the gestures condition than in the control condition. An effect of musical training suggests that auditory and motor imagery ability may be closely related to domain expertise. PMID:23227014

  2. Essential climatic variables estimation with satellite imagery

    Science.gov (United States)

    Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.

  3. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    and surface wind waves, especially swell. SAR is also useful for ship detection Ocean waves are weakly 10 A.A. Fernandes et al. imaged and can be recognized from SAR imagery from their fine "finger print" like signature. In contrast with ocean waves.../internal waves by all types of radar including ship radar, Real Aperture Radar (RAR) mounted on aeroplanes and Synthetic. Aperture Radar (SAR) mounted on satellites, is by modulation of the back-scatter from short Bragg resonant capillary-gravity waves...

  4. L’imagerie populaire du Grand Ouest

    OpenAIRE

    Duprat, Annie

    2003-01-01

    Les mots « imagerie populaire » désignent une production d’estampes qui sont des gravures sur bois, généralement en couleurs, et le plus souvent vendues par colportage. Mais on peut y associer également les vignettes des livres, les en-têtes des correspondances administrative ou commerciale, ou encore les cartes à jouer. Les sujets des images populaires sont religieux, historiques, comiques ou moralisateurs : ils servent presque toujours à édifier le lecteur. La plupart des imagiers de la fin...

  5. Teaching Fair Use with Astronomy Imagery

    Science.gov (United States)

    Wilson, Teresa

    2016-01-01

    Plagiarism among students is most common because of a misunderstanding of copyright and fair use. Images and text are frequently used without proper credit to the original author, and works are frequently acknowledged improperly. For example, space imagery is often used in posters, presentations, on the web, on Facebook, and even in the classrooms, but often are not properly cited. A lesson plan on fair use is presented, outlining what constitutes fair use and how to properly acknowledge the work done by artists and authors everywhere, with examples drawn from the Astronomy Picture of the Day (APOD).

  6. [Gender and emotional response induced by imagery].

    Science.gov (United States)

    Lasa Aristu, Amaia; Vallejo Pareja, M A; Domínguez Sánchez, Javier

    2007-05-01

    The aim of this study is to explore gender differences in emotional expression: Do men benefit from their stereotyped response pattern to some negative affects such as sadness? Do women benefit less than men from positive affect? We studied sadness and happiness in the laboratory, using imagery induction with some temporal proximity, and registering physiological, facial, and cognitive responses. The results show a complex panorama in which the differences depend on the emotional content and presentation order. The results are in accordance with the educational theories that postulate prototypical emotional education, and indicate a way to reduce the problems related to women's sensitization to sadness, using the beneficial effects of positive experiences.

  7. Photogrammetry of the Viking-Lander imagery.

    Science.gov (United States)

    Wu, S.S.C.; Schafer, F.J.

    1982-01-01

    We have solved the problem of photogrammetric mapping from the Viking Lander photography in two ways: 1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture by means of computerized rectification; and 2) by interfacing a high-speed, general-purpose computer to the AS-11A analytical plotter so that all computations of corrections can be performed in real time during the process of model orientation and map compilation. Examples are presented of photographs and maps of Earth and Mars. -from Authors

  8. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  9. Guided Imagery and Music Bibliography and GIM/Related Literature Refworks Database

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2010-01-01

    Bibliografi og database over litteratur om den receptive musikterapimetode Guided Imagery and Music......Bibliografi og database over litteratur om den receptive musikterapimetode Guided Imagery and Music...

  10. SOME ASPECTS OF SATELLITE IMAGERY INTEGRATION FROM EROS B AND LANDSAT 8

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2016-06-01

    Full Text Available The Landsat 8 satellite which was launched in 2013 is a next generation of the Landsat remote sensing satellites series. It is equipped with two new sensors: the Operational Land Imager (OLI and the Thermal Infrared Sensor (TIRS. What distinguishes this satellite from the previous is four new bands (coastal aerosol, cirrus and two thermal infrared TIRS bands. Similar to its antecedent, Landsat 8 records electromagnetic radiation in a panchromatic band at a range of 0.5‐0.9 μm with a spatial resolution equal to 15 m. In the paper, multispectral imagery integration capabilities of Landsat 8 with data from the new high resolution panchromatic EROS B satellite are analyzed. The range of panchromatic band for EROS B is 0.4‐0.9 μm and spatial resolution is 0.7 m. Research relied on improving the spatial resolution of natural color band combinations (bands: 4,3,2 and of desired false color band composition of Landsat 8 satellite imagery. For this purpose, six algorithms have been tested: Brovey’s, Mulitplicative, PCA, IHS, Ehler's, HPF. On the basis of the visual assessment, it was concluded that the best results of multispectral and panchromatic image integration, regardless land cover, are obtained for the multiplicative method. These conclusions were confirmed by statistical analysis using correlation coefficient, ERGAS and R-RMSE indicators.

  11. The role of mental imagery in depression: Negative mental imagery induces strong implicit and explicit affect in depression

    Directory of Open Access Journals (Sweden)

    Stefanie Maria Görgen

    2015-07-01

    Full Text Available Mental imagery, seeing with the mind’s eyes, can induce stronger positive as well as negative affect compared to verbal processing. Given this emotion-amplifying effect, it appears likely that mental images play an important role in affective disorders. According to the subcomponents model of depression, depressed mood is maintained by both negative imagery (which amplifies negative mood and less efficient positive imagery processes. Empirical research on the link between mental imagery and affect in clinical depression, however, is still sparse. This study aimed at testing the role of mental imagery in depression, using a modified version of the Affect Misattribution Procedure (AMP and the Self-Assessment Manikin (SAM to assess implicit (AMP and explicit (SAM affect elicited by mental images, pictures, and verbal processing in clinically depressed participants (n = 32 compared to healthy controls (n = 32. In individuals with a depressive disorder, compared to healthy controls, negative mental images induced stronger negative affect in the explicit as well as implicit measure. Negative mental imagery did not, however, elicit greater increases in explicitly and implicitly assessed negative affect compared to other processing modalities (verbal processing, pictures in the depressed group. Additionally, a positive imagery deficit in depression was observed in the explicit measure. Interestingly, the two groups did not differ in implicitly assessed affect after positive imagery, indicating that depressed individuals might benefit from positive imagery on an implicit or automatic level. Overall, our findings suggest that mental imagery also plays an important role in depression and confirm the potential of novel treatment approaches for depression such as the promotion of positive imagery.

  12. The Role of Mental Imagery in Depression: Negative Mental Imagery Induces Strong Implicit and Explicit Affect in Depression.

    Science.gov (United States)

    Görgen, Stefanie Maria; Joormann, Jutta; Hiller, Wolfgang; Witthöft, Michael

    2015-01-01

    Mental imagery, seeing with the mind's eyes, can induce stronger positive as well as negative affect compared to verbal processing. Given this emotion-amplifying effect, it appears likely that mental images play an important role in affective disorders. According to the subcomponents model of depression, depressed mood is maintained by both negative imagery (which amplifies negative mood) and less efficient positive imagery processes. Empirical research on the link between mental imagery and affect in clinical depression, however, is still sparse. This study aimed at testing the role of mental imagery in depression, using a modified version of the affect misattribution procedure (AMP) and the self-assessment manikin (SAM) to assess implicit (AMP) and explicit (SAM) affect elicited by mental images, pictures, and verbal processing in clinically depressed participants (n = 32) compared to healthy controls (n = 32). In individuals with a depressive disorder, compared to healthy controls, negative mental images induced stronger negative affect in the explicit as well as implicit measure. Negative mental imagery did not, however, elicit greater increases in explicitly and implicitly assessed negative affect compared to other processing modalities (verbal processing, pictures) in the depressed group. Additionally, a positive imagery deficit in depression was observed in the explicit measure. Interestingly, the two groups did not differ in implicitly assessed affect after positive imagery, indicating that depressed individuals might benefit from positive imagery on an implicit or automatic level. Overall, our findings suggest that mental imagery also plays an important role in depression and confirm the potential of novel treatment approaches for depression, such as the promotion of positive imagery.

  13. Imagery: An Over-Looked Ability among the Gifted.

    Science.gov (United States)

    Roodin, Paul

    1983-01-01

    Although frequently discounted, imagery plays an important role in the intellectual development of gifted students. It can be useful in helping students remember, create (in the arts and in sports), and develop flexibility in thinking. Imagery may also be involved in gifted adolescents' career and life decisions. (CL)

  14. Mental imagery and perception in hallucination-prone individuals

    NARCIS (Netherlands)

    Aleman, André M.A.; Nieuwenstein, Mark R.M.A.; Böcker, Koen B. E.; de Haan, Edward H.F.

    2000-01-01

    College students screened for hallucination-proneness using the Launay-Slade Hallucination Scale (LSHS) were compared on measures of self-report vividness of imagery and on behavioral measures of imagery and perception (visual and auditory). Specifically, we tested the hypothesis whether

  15. Small UAV-Acquired, High-resolution, Georeferenced Still Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Hruska

    2005-09-01

    Currently, small Unmanned Aerial Vehicles (UAVs) are primarily used for capturing and down-linking real-time video. To date, their role as a low-cost airborne platform for capturing high-resolution, georeferenced still imagery has not been fully utilized. On-going work within the Unmanned Vehicle Systems Program at the Idaho National Laboratory (INL) is attempting to exploit this small UAV-acquired, still imagery potential. Initially, a UAV-based still imagery work flow model was developed that includes initial UAV mission planning, sensor selection, UAV/sensor integration, and imagery collection, processing, and analysis. Components to support each stage of the work flow are also being developed. Critical to use of acquired still imagery is the ability to detect changes between images of the same area over time. To enhance the analysts’ change detection ability, a UAV-specific, GIS-based change detection system called SADI or System for Analyzing Differences in Imagery is under development. This paper will discuss the associated challenges and approaches to collecting still imagery with small UAVs. Additionally, specific components of the developed work flow system will be described and graphically illustrated using varied examples of small UAV-acquired still imagery.

  16. Individual Differences in Visual Imagery and Piaget's Stages.

    Science.gov (United States)

    Preston, Kathleen

    It was hypothesized that high visual imagery is a liability during acquisition periods and an asset during consolidation periods of Piaget's stages of concrete and formal operations. It was also hypothesized that at all ages high imagery would be related to performance on a "spatial egocentrism" task. A sample consisting of 195 children…

  17. 2015 Florida Panhandle RCD30 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain imagery data collected with an RCD30 camera as 8-bit RGBN TIFF images. Imagery was required 1000m seaward of the land/water interface or to laser...

  18. 2015 Southwest Florida RCD30 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain imagery data collected with an RCD30 camera as 8-bit RGBN TIFF images. Imagery was required 1000m seaward of the land/water interface or to laser...

  19. Emotional Imagery and the Differential Diagnosis of Anxiety.

    Science.gov (United States)

    Cook, Edwin W., III; And Others

    1988-01-01

    For 38 anxiety patients, exposure to phobic imagery resulted in significantly larger heart rate and skin conductance increases than control imagery. Results suggest that simple phobia is avoidance disposition, social phobia involves multiple problems of interpersonal dominance, and agoraphobia may be more similar to generalized anxiety disorder…

  20. A Motion Aftereffect from Visual Imagery of Motion

    Science.gov (United States)

    Winawer, Jonathan; Huk, Alexander C.; Boroditsky, Lera

    2010-01-01

    Mental imagery is thought to share properties with perception. To what extent does the process of imagining a scene share neural circuits and computational mechanisms with actually perceiving the same scene? Here, we investigated whether mental imagery of motion in a particular direction recruits neural circuits tuned to the same direction of…

  1. Portable devices for delivering imagery and modelling interventions ...

    African Journals Online (AJOL)

    The main objective of this study was to investigate the effectiveness of portable devices (MP4) and a stationary device (DVD and fixed point stationary computer) in delivering imagery and modelling training among female netball players, examining the effect on imagery adherence, performance, self-efficacy, and the relative ...

  2. Seeing Is Believing: Using Imagery to Enhance Your Coaching

    Science.gov (United States)

    Finch, Laura M.

    2011-01-01

    Imagery is a powerful sport psychology tool easily accessible to coaches. These reminders can help coaches improve their athletes' images and performance: (1) Create vivid and controllable images; (2) Use polysensory images and instructional cues, delivered, ideally, in real time; (3) Use internal and external perspectives; (4) Use imagery during…

  3. Current insights in the development of children's motor imagery ability.

    NARCIS (Netherlands)

    Spruijt, S.; Kamp, J. van der; Steenbergen, B.

    2015-01-01

    Over the last two decades, the number of studies on motor imagery in children has witnessed a large expansion. Most studies used the hand laterality judgment paradigm or the mental chronometry paradigm to examine motor imagery ability. The main objective of the current review is to collate these

  4. Current insights in the development of children's motor imagery ability

    NARCIS (Netherlands)

    Spruijt, S.; Kamp, J. van der; Steenbergen, B.

    2015-01-01

    Over the last two decades, the number of studies on motor imagery in children has witnessed a large expansion. Most studies used the hand laterality judgment paradigm or the mental chronometry paradigm to examine motor imagery ability. The main objective of the current review is to collate these

  5. Guided Imagery in the Classroom: An Enhancement to Learning.

    Science.gov (United States)

    Herr, Kay U.

    The use of guided imagery meshes with recent insights into right and left brain learning. Guided imagery engages the right brain processes such as imagination, emotion, creative, and intuitive activities. While much instruction is concerned with left brain activity, that is, the processsing of information through words, the addition of right brain…

  6. Imagining the Music: Methods for Assessing Musical Imagery Ability

    Science.gov (United States)

    Clark, Terry; Williamon, Aaron

    2012-01-01

    Timing profiles of live and imagined performances were compared with the aim of creating a context-specific measure of musicians' imagery ability. Thirty-two advanced musicians completed imagery use and vividness surveys, and then gave two live and two mental performances of a two-minute musical excerpt, tapping along with the beat of the mental…

  7. Local Imagery, Proverbs and Metaphors in Chinua Achebe's Anthills ...

    African Journals Online (AJOL)

    In many African cultures, a feeling for language, for imagery and for the expression of abstract ideas through compressed and allusive phraseology, comes out particularly clearly in proverbs. The figurative quality of proverbs, local imagery, simile and metaphors are striking. This paper examines some snatches of Chinua ...

  8. Using Imagery Rescripting to Treat Major Depression: Theory and Practice

    Science.gov (United States)

    Wheatley, Jon; Hackmann, Ann

    2011-01-01

    This paper considers the role that intrusive memories may play in maintaining depression and the rationale for using imagery rescripting in order to target these memories. Potential mechanisms of change underlying imagery rescripting are discussed. The relationship between depressive rumination and memories is considered, as well as potential…

  9. Agricultural applications for thermal infrared multispectral scanner data

    Science.gov (United States)

    Pelletier, R. E.; Ochoa, M. C.; Hajek, B. F.

    1985-01-01

    The use of the Thermal Infrared Multispectral Scanner (TIMS) data in agricultural landscapes is discussed. The TIMS allows for narrow-band analysis in the 8.2-11.6 micron range at spatial resolutions down to 5 meters in cell size. A coastal plain region in SE Alabama was studied using the TIMS. The crop/plant vigor, canopy density, and thermal response changes for soils obtained from thermal imagery are examined. The application of TIMS data to hydrologic and topographic issues, inventory and conservation monitoring, and the enhancement and extraction of cartographic features is described.

  10. Alerts of forest disturbance from MODIS imagery

    Science.gov (United States)

    Hammer, Dan; Kraft, Robin; Wheeler, David

    2014-12-01

    This paper reports the methodology and computational strategy for a forest cover disturbance alerting system. Analytical techniques from time series econometrics are applied to imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to detect temporal instability in vegetation indices. The characteristics from each MODIS pixel's spectral history are extracted and compared against historical data on forest cover loss to develop a geographically localized classification rule that can be applied across the humid tropical biome. The final output is a probability of forest disturbance for each 500 m pixel that is updated every 16 days. The primary objective is to provide high-confidence alerts of forest disturbance, while minimizing false positives. We find that the alerts serve this purpose exceedingly well in Pará, Brazil, with high probability alerts garnering a user accuracy of 98 percent over the training period and 93 percent after the training period (2000-2005) when compared against the PRODES deforestation data set, which is used to assess spatial accuracy. Implemented in Clojure and Java on the Hadoop distributed data processing platform, the algorithm is a fast, automated, and open source system for detecting forest disturbance. It is intended to be used in conjunction with higher-resolution imagery and data products that cannot be updated as quickly as MODIS-based data products. By highlighting hotspots of change, the algorithm and associated output can focus high-resolution data acquisition and aid in efforts to enforce local forest conservation efforts.

  11. Matte painting in stereoscopic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2010-02-01

    While there have been numerous studies concerning human perception in stereoscopic environments, rules of thumb for cinematography in stereoscopy have not yet been well-established. To that aim, we present experiments and results of subject testing in a stereoscopic environment, similar to that of a theater (i.e. large flat screen without head-tracking). In particular we wish to empirically identify thresholds at which different types of backgrounds, referred to in the computer animation industry as matte paintings, can be used while still maintaining the illusion of seamless perspective and depth for a particular scene and camera shot. In monoscopic synthetic imagery, any type of matte painting that maintains proper perspective lines, depth cues, and coherent lighting and textures saves in production costs while still maintaining the illusion of an alternate cinematic reality. However, in stereoscopic synthetic imagery, a 2D matte painting that worked in monoscopy may fail to provide the intended illusion of depth because the viewer has added depth information provided by stereopsis. We intend to observe two stereoscopic perceptual thresholds in this study which will provide practical guidelines indicating when to use each of three types of matte paintings. We ran subject tests in two virtual testing environments, each with varying conditions. Data were collected showing how the choices of the users matched the correct response, and the resulting perceptual threshold patterns are discussed below.

  12. Mental imagery as the adaptationist views it.

    Science.gov (United States)

    Pani, J R

    1996-09-01

    Mental images are one of the more obvious aspects of human conscious experience. Familiar idioms such as "the mind's eye" reflect the high status of the image in metacognition. Theoretically, a defining characteristic of mental images is that they can be analog representations. But this has led to an enduring puzzle in cognitive psychology: How do "mental pictures" fit into a general theory of cognition? Three empirical problems have constituted this puzzle: The incidence of mental images has been unpredictable, innumerable ordinary concepts cannot be depicted, and images typically do not resemble things well. I argue in this paper that theorists have begun to address these problems successfully. I argue further that the critical theoretical framework involves thinking of mental images as information within a cognitive system that is fundamentally adaptive. The main outline of the adaptationist framework was evident in the school of thought known as American Functionalism, but adaptationism has formed a consistent pattern of theorizing across many authors and decades. I briefly describe Functionalism and then present seven basic claims about imagery that were common in the years before the predominance of behaviorism. I then show how these claims have reappeared and been further articulated in modern cognitive psychology. I end with a brief integration of some of the basic elements of an adaptationist theory of imagery.

  13. Anomaly Detection from Hyperspectral Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Qiandong Guo

    2016-12-01

    Full Text Available Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS data covering the post-attack World Trade Center (WTC and anomalies are fire spots. The other data set called SpecTIR contained fabric panels as anomalies compared to their background. Existing anomaly detection algorithms including the Reed–Xiaoli detector (RXD, the blocked adaptive computation efficient outlier nominator (BACON, the random selection based anomaly detector (RSAD, the weighted-RXD (W-RXD, and the probabilistic anomaly detector (PAD are reviewed here. The RXD generally sets strict assumptions to the background, which cannot be met in many scenarios, while BACON, RSAD, and W-RXD employ strategies to optimize the estimation of background information. The PAD firstly estimates both background information and anomaly information and then uses the information to conduct anomaly detection. Here, the BACON, RSAD, W-RXD, and PAD outperformed the RXD in terms of detection accuracy, and W-RXD and PAD required less time than BACON and RSAD.

  14. Automated oil spill detection with multispectral imagery

    Science.gov (United States)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  15. Improved VIIRS and MODIS SST Imagery

    Directory of Open Access Journals (Sweden)

    Irina Gladkova

    2016-01-01

    Full Text Available Moderate Resolution Imaging Spectroradiometers (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS satellites, are capable of providing superior sea surface temperature (SST imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. VIIRS additionally does two irreversible data reduction steps onboard: pixel aggregation (to reduce resolution changes across the swath and pixel deletion, which complicate both bow-tie correction and destriping. While destriping was addressed elsewhere, this paper describes an algorithm, adopted in the National Oceanic and Atmospheric Administration (NOAA Advanced Clear-Sky Processor for Oceans (ACSPO SST system, to minimize the bow-tie artifacts in the SST imagery and facilitate application of the pattern recognition algorithms for improved separation of ocean from cloud and mapping fine SST structure, especially in the dynamic, coastal and high-latitude regions of the ocean. The algorithm is based on a computationally fast re-sampling procedure that ensures a continuity of corresponding latitude and longitude arrays. Potentially, Level 1.5 products may be generated to benefit a wide range of MODIS and VIIRS users in land, ocean, cryosphere, and atmosphere remote sensing.

  16. Visual imagery without visual perception: lessons from blind subjects

    Science.gov (United States)

    Bértolo, Helder

    2014-08-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review some of the works providing evidence for both claims. It seems that studying visual imagery in blind subjects can be used as a way of answering some of those questions, namely if it is possible to have visual imagery without visual perception. We present results from the work of our group using visual activation in dreams and its relation with EEG's spectral components, showing that congenitally blind have visual contents in their dreams and are able to draw them; furthermore their Visual Activation Index is negatively correlated with EEG alpha power. This study supports the hypothesis that it is possible to have visual imagery without visual experience.

  17. Visual imaging capacity and imagery control in Fine Arts students.

    Science.gov (United States)

    Pérez-Fabello, Maria José; Campos, Alfredo; Gómez-Juncal, Rocío

    2007-06-01

    This study investigated relationships between visual imaging abilities (imaging capacity and imagery control) and academic performance in 146 Fine Arts students (31 men, 115 women). Mean age was 22.3 yr. (SD= 1.9; range 20-26 yr.). All of the participants who volunteered for the experiment regularly attended classes and were first, second, or third year students. For evaluation of imaging abilities, the Spanish versions of the Gordon Test of Visual Imagery Control, the Vividness of Visual Imagery Questionnaire, the Verbalizer-Visualizer Questionnaire, and Betts' Questionnaire Upon Mental Imagery were used. Academic performance was assessed in four areas, Drawing, Painting, Sculpture, and Complementary Subjects, over a three-year period. The results indicate that imagery control was associated with academic performance in Fine Arts. These findings are discussed in the context of previous studies, and new lines of research are proposed.

  18. Analisa Spektrum Motor Imagery pada Sinyal Aktivitas Otak

    Directory of Open Access Journals (Sweden)

    Johan Chandra

    2017-01-01

    Full Text Available Otak merupakan organ vital pada tubuh manusia yang berperan sebagai pusat kendali sistem saraf manusia. Sinyal yang dikeluarkan otak (EEG mengandung berbagai informasi yang dapat dimanfaatkan pada teknologi BCI. Salah satu informasi yang dapat digunakan adalah informasi motorik baik mengenai motor execution maupung motor imagery. Pada penderita stroke yang biasanya mengalami kelumpuhan pada anggota gerak tubuhnya, informasi mengenai motor imagery dapat dimanfaatkan untuk aplikasi Brain Computer Interface terutama dalam rehabilitasi kelumpuhan anggota gerak pasien tersebut. Pada penelitian ini dirancang sebuah alat sistem EEG untuk merekam sinyal EEG pada otak untuk menganalisa spektrum motor imagery pada sinyal aktivitas otak. Sistem terdiri dari rangkaian filter pasif, rangkaian proteksi, penguat isntrumentasi, common mode rejection, amplifier, dan filter. Pengujian dilakukan dengan membandingkan sinyal EEG pada tasking motor imagery dan motor execution. Selanjutnya, informasi motorik baik motor execution dan motor imagery dapat diaplikasikan lebih lanjut pada sistem BCI terutama pada rehabilitasi medik.

  19. Global Imagery Browse Services (GIBS) - Rapidly Serving NASA Imagery for Applications and Science Users

    Science.gov (United States)

    Schmaltz, J. E.; Ilavajhala, S.; Plesea, L.; Hall, J. R.; Boller, R. A.; Chang, G.; Sadaqathullah, S.; Kim, R.; Murphy, K. J.; Thompson, C. K.

    2012-12-01

    Expedited processing of imagery from NASA satellites for near-real time use by non-science applications users has a long history, especially since the beginning of the Terra and Aqua missions. Several years ago, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near-real time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. The baseline technology chosen for GIBS was a Tiled Web Mapping Service (TWMS) developed at the Jet Propulsion Laboratory. Using this, global images and mosaics are divided into tiles with fixed bounding boxes for a pyramid of fixed resolutions. Initially, the satellite imagery is created at the existing data systems for each sensor, ensuring the oversight of those most knowledgeable about the science. There, the satellite data is geolocated and converted to an image format such as JPEG, TIFF, or PNG. The GIBS ingest server retrieves imagery from the various data systems and converts them into image tiles, which are stored in a highly-optimized raster format named Meta Raster Format (MRF). The image tiles are then served to users via HTTP by means of an Apache module. Services are available for the entire globe (lat-long projection) and for both polar regions (polar stereographic projection). Requests to the services can be made with the non-standard, but widely known, TWMS format or via the well-known OGC Web Map Tile Service (WMTS) standard format. Standard OGC Web Map Service (WMS) access to the GIBS server is also available. In addition, users may request a

  20. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  1. Thermal characteristics of mountain desert terrain derived from thermal infrared multispectral scanner measurements

    Science.gov (United States)

    Astling, E. G.; Quattrochi, D. A.

    1989-01-01

    The spatial and temporal variability of mountain-desert territory thermal is examined with an airborne thermal infrared multispectral scanner (TIMS). The purpose of the study is to demonstrate that inhomogeneities of the surface temperatures in the area can be adequately large to influence mesoscale circulations and the turbulence characteristics of boundary-layer flow. Ground truth measurements are compared to the TIMS imagery, with focus placed on the thermal infrared sensitivity to wet and dry soils, terrain elevation, and soil type. The results indicate that variations in the thermal features are dependent on soil type and soil moisture, and that the dependence on surface radiative temperatures on terrain elevation is apparent in daytime measurements.

  2. An Evolving Model for Capacity Building with Earth Observation Imagery

    Science.gov (United States)

    Sylak-Glassman, E. J.

    2015-12-01

    For the first forty years of Earth observation satellite imagery, all imagery was collected by civilian or military governmental satellites. Over this timeframe, countries without observation satellite capabilities had very limited access to Earth observation data or imagery. In response to the limited access to Earth observation systems, capacity building efforts were focused on satellite manufacturing. Wood and Weigel (2012) describe the evolution of satellite programs in developing countries with a technology ladder. A country moves up the ladder as they move from producing satellites with training services to building satellites locally. While the ladder model may be appropriate if the goal is to develop autonomous satellite manufacturing capability, in the realm of Earth observation, the goal is generally to derive societal benefit from the use of Earth observation-derived information. In this case, the model for developing Earth observation capacity is more appropriately described by a hub-and-spoke model in which the use of Earth observation imagery is the "hub," and the "spokes" describe the various paths to achieving that imagery: the building of a satellite (either independently or with assistance), the purchase of a satellite, participation in a constellation of satellites, and the use of freely available or purchased satellite imagery. We discuss the different capacity-building activities that are conducted in each of these pathways, such as the "Know-How Transfer and Training" program developed by Surrey Satellite Technology Ltd. , Earth observation imagery training courses run by SERVIR in developing countries, and the use of national or regional remote sensing centers (such as those in Morocco, Malaysia, and Kenya) to disseminate imagery and training. In addition, we explore the factors that determine through which "spoke" a country arrives at the ability to use Earth observation imagery, and discuss best practices for achieving the capability to use

  3. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  4. Visible and thermal spectrum synthetic image generation with DIRSIG and MuSES for ground vehicle identification training

    Science.gov (United States)

    May, Christopher M.; Maurer, Tana O.; Sanders, Jeffrey S.

    2017-05-01

    There is a ubiquitous and never ending need in the US armed forces for training materials that provide the warfighter with the skills needed to differentiate between friendly and enemy forces on the battlefield. The current state of the art in battlefield identification training is the Recognition of Combat Vehicles (ROCV) tool created and maintained by the Communications - Electronics Research, Development and Engineering Center Night Vision and Electronic Sensors Directorate (CERDEC NVESD). The ROC-V training package utilizes measured visual and thermal imagery to train soldiers about the critical visual and thermal cues needed to accurately identify modern military vehicles and combatants. This paper presents an approach that has been developed to augment the existing ROC-V imagery database with synthetically generated multi-spectral imagery that will allow NVESD to provide improved training imagery at significantly lower costs.

  5. Study of recreational land and open space using Skylab imagery. [snow and ice hydrology of southeast Michigan

    Science.gov (United States)

    Sattinger, I. J. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Despite almost uniform surface temperature conditions in the study area, the thermal imagery did illustrate the following possible uses: (1) Surface temperatures relative to 0 C reveal whether the snow and ice cover is wet and the melt pattern. This information is useful in hydrologic monitoring of runoff timing and rate, as well as indicating trafficability conditions on the snow. (2) When the surface temperature of snow and ice is below freezing, it may serve as an indicator of spatial variation of air temperatures. This information may be used in calculating the spatial variation of surface radiation budgets, or in observing synoptic weather condition changes or local microclimatic effects. (3) Frozen inland lakes with less than about three or four inches of snow over the ice may be differentiated from surrounding snow covered land areas; this is not always feasible in visible wavelength imagery. The feasibility of this application decreases as the ice thickness increases.

  6. Self-efficacy, imagery use, and adherence during injury rehabilitation.

    Science.gov (United States)

    Wesch, N; Hall, C; Prapavessis, H; Maddison, R; Bassett, S; Foley, L; Brooks, S; Forwell, L

    2012-10-01

    Previous observational studies examining imagery, self-efficacy, and adherence during injury rehabilitation have been cross-sectional and thus have not provided a clear representation of what occurs over the course of the rehabilitation period. The objectives of this research were (1) to examine the temporal patterns of imagery, self-efficacy, and rehabilitation adherence during an 8-week rehabilitation program and (2) to identify the time-order relationships between imagery, self-efficacy, and adherence. The design of the study was prospective and observational. 90 injured people (n=57 males; n=33 females) aged 18-78 years attending an injury rehabilitation clinic participated. The main outcome measures were imagery (cognitive, motivational, and healing), self-efficacy (task and coping), and rehabilitation adherence (duration, quality, and frequency). Results indicated that task efficacy, imagery use, and adherence levels remained stable, while coping efficacy declined over time. During the course of rehabilitation, moderate to strong reciprocal relationships existed between self-efficacy and adherence to rehabilitation. Weak to moderate relationships were found between imagery use and rehabilitation adherence. The results of this study can be used to inform the development of interventions steeped in self-efficacy and imagery aimed at improving rehabilitation adherence and treatment outcome. © 2011 John Wiley & Sons A/S.

  7. Iterative fragmentation of cognitive maps in a visual imagery task.

    Science.gov (United States)

    Fourtassi, Maryam; Hajjioui, Abderrazak; Urquizar, Christian; Rossetti, Yves; Rode, Gilles; Pisella, Laure

    2013-01-01

    It remains unclear whether spontaneous eye movements during visual imagery reflect the mental generation of a visual image (i.e. the arrangement of the component parts of a mental representation). To address this specificity, we recorded eye movements in an imagery task and in a phonological fluency (non-imagery) task, both consisting in naming French towns from long-term memory. Only in the condition of visual imagery the spontaneous eye positions reflected the geographic position of the towns evoked by the subjects. This demonstrates that eye positions closely reflect the mapping of mental images. Advanced analysis of gaze positions using the bi-dimensional regression model confirmed the spatial correlation of gaze and towns' locations in every single individual in the visual imagery task and in none of the individuals when no imagery accompanied memory retrieval. In addition, the evolution of the bi-dimensional regression's coefficient of determination revealed, in each individual, a process of generating several iterative series of a limited number of towns mapped with the same spatial distortion, despite different individual order of towns' evocation and different individual mappings. Such consistency across subjects revealed by gaze (the mind's eye) gives empirical support to theories postulating that visual imagery, like visual sampling, is an iterative fragmented processing.

  8. Iterative fragmentation of cognitive maps in a visual imagery task.

    Directory of Open Access Journals (Sweden)

    Maryam Fourtassi

    Full Text Available It remains unclear whether spontaneous eye movements during visual imagery reflect the mental generation of a visual image (i.e. the arrangement of the component parts of a mental representation. To address this specificity, we recorded eye movements in an imagery task and in a phonological fluency (non-imagery task, both consisting in naming French towns from long-term memory. Only in the condition of visual imagery the spontaneous eye positions reflected the geographic position of the towns evoked by the subjects. This demonstrates that eye positions closely reflect the mapping of mental images. Advanced analysis of gaze positions using the bi-dimensional regression model confirmed the spatial correlation of gaze and towns' locations in every single individual in the visual imagery task and in none of the individuals when no imagery accompanied memory retrieval. In addition, the evolution of the bi-dimensional regression's coefficient of determination revealed, in each individual, a process of generating several iterative series of a limited number of towns mapped with the same spatial distortion, despite different individual order of towns' evocation and different individual mappings. Such consistency across subjects revealed by gaze (the mind's eye gives empirical support to theories postulating that visual imagery, like visual sampling, is an iterative fragmented processing.

  9. Toward interactive search in remote sensing imagery

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Do [Los Alamos National Laboratory; Harvey, Neal [Los Alamos National Laboratory; Theile, James [Los Alamos National Laboratory

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  10. Hyperspectral digital imagery collection experiment (HYDICE)

    Science.gov (United States)

    Mitchell, Peter A.

    1995-11-01

    In order to advance the state-of-the-art in the collection of imaging spectroscopy, the U.S. Navy Space and Warfare Systems Command sponsored the development and fabrication of a new generation, well calibrated hyperspectral imaging spectrometer. Called the Hyperspectral Digital Imagery Collection Experiment (HYDICE), the sensor was built by Hughes Danbury Optical Systems, Danbury, Conn., delivered for integration into the Environmental Institute of Michigan's (ERIM) CV-580 aircraft in December 1994, tested and characterized between January and June 1995, and has since been involved in several airborne data collection experiments. In this paper, the HYDICE Program Office organization, sensor specifications, airborne characterization results, and a summary of the results of the most recent data exploitation and analyses are presented.

  11. Imagerie de fluorescence en champ proche

    Science.gov (United States)

    Fragola, A.; Aigouy, L.; Grésillon, S.; de Wilde, Y.

    2002-06-01

    Le microscope optique en champ proche développé au laboratoire utilise une pointe diffusante comme sonde locale en mode “tapping” pour réaliser une imagerie de fluorescence à haute résolution. Afin de caractériser le montage et de comprendre le processus de formation des images de fluorescence en champ proche, nous avons utilisé des billes fluorescentes et des cristaux dopés à l'erbium. Ces expériences nous ont également permis de mettre en évidence l'influence de l'amplitude de vibration de la pointe sur le contraste optique obtenu.

  12. Photogrammetry of the Viking Lander imagery

    Science.gov (United States)

    Wu, S. S. C.; Schafer, F. J.

    1982-01-01

    The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.

  13. What Do Eye Gaze Metrics Tell Us about Motor Imagery?

    Directory of Open Access Journals (Sweden)

    Elodie Poiroux

    Full Text Available Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to "spy" on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI, target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males, were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system. Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks. Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.

  14. A comparison of real and simulated airborne multisensor imagery

    Science.gov (United States)

    Bloechl, Kevin; De Angelis, Chris; Gartley, Michael; Kerekes, John; Nance, C. Eric

    2014-06-01

    This paper presents a methodology and results for the comparison of simulated imagery to real imagery acquired with multiple sensors hosted on an airborne platform. The dataset includes aerial multi- and hyperspectral imagery with spatial resolutions of one meter or less. The multispectral imagery includes data from an airborne sensor with three-band visible color and calibrated radiance imagery in the long-, mid-, and short-wave infrared. The airborne hyperspectral imagery includes 360 bands of calibrated radiance and reflectance data spanning 400 to 2450 nm in wavelength. Collected in September 2012, the imagery is of a park in Avon, NY, and includes a dirt track and areas of grass, gravel, forest, and agricultural fields. A number of artificial targets were deployed in the scene prior to collection for purposes of target detection, subpixel detection, spectral unmixing, and 3D object recognition. A synthetic reconstruction of the collection site was created in DIRSIG, an image generation and modeling tool developed by the Rochester Institute of Technology, based on ground-measured reflectance data, ground photography, and previous airborne imagery. Simulated airborne images were generated using the scene model, time of observation, estimates of the atmospheric conditions, and approximations of the sensor characteristics. The paper provides a comparison between the empirical and simulated images, including a comparison of achieved performance for classification, detection and unmixing applications. It was found that several differences exist due to the way the image is generated, including finite sampling and incomplete knowledge of the scene, atmospheric conditions and sensor characteristics. The lessons learned from this effort can be used in constructing future simulated scenes and further comparisons between real and simulated imagery.

  15. Tobacco imagery on prime time UK television.

    Science.gov (United States)

    Lyons, Ailsa; McNeill, Ann; Britton, John

    2014-05-01

    Smoking in films is a common and well documented cause of youth smoking experimentation and uptake and hence a significant health hazard. The extent of exposure of young people to tobacco imagery in television programming has to date been far less investigated. We have therefore measured the extent to which tobacco content occurs in prime time UK television, and estimated exposure of UK youth. The occurrence of tobacco, categorised as actual tobacco use, implied tobacco use, tobacco paraphernalia, other reference to tobacco, tobacco brand appearances or any of these, occurring in all prime time broadcasting on the five most popularly viewed UK television stations during 3 separate weeks in 2010 were measured by 1-minute interval coding. Youth exposure to tobacco content in the UK was estimated using media viewing figures. Actual tobacco use, predominantly cigarette smoking, occurred in 73 of 613 (12%) programmes, particularly in feature films and reality TV. Brand appearances were rare, occurring in only 18 programmes, of which 12 were news or other factual genres, and 6 were episodes of the same British soap opera. Tobacco occurred with similar frequency before as after 21:00, the UK watershed for programmes suitable for youth. The estimated number of incidences of exposure of the audience aged less than 18 years for any tobacco, actual tobacco use and tobacco branding were 59 million, 16 million and 3 million, respectively on average per week. Television programming is a source of significant exposure of youth to tobacco imagery, before and after the watershed. Tobacco branding is particularly common in Coronation Street, a soap opera popular among youth audiences. More stringent controls on tobacco in prime time television therefore have the potential to reduce the uptake of youth smoking in the UK.

  16. Tobacco imagery on prime time UK television

    Science.gov (United States)

    Lyons, Ailsa; McNeill, Ann; Britton, John

    2014-01-01

    Background Smoking in films is a common and well documented cause of youth smoking experimentation and uptake and hence a significant health hazard. The extent of exposure of young people to tobacco imagery in television programming has to date been far less investigated. We have therefore measured the extent to which tobacco content occurs in prime time UK television, and estimated exposure of UK youth. Methods The occurrence of tobacco, categorised as actual tobacco use, implied tobacco use, tobacco paraphernalia, other reference to tobacco, tobacco brand appearances or any of these, occurring in all prime time broadcasting on the five most popularly viewed UK television stations during 3 separate weeks in 2010 were measured by 1-minute interval coding. Youth exposure to tobacco content in the UK was estimated using media viewing figures. Findings Actual tobacco use, predominantly cigarette smoking, occurred in 73 of 613 (12%) programmes, particularly in feature films and reality TV. Brand appearances were rare, occurring in only 18 programmes, of which 12 were news or other factual genres, and 6 were episodes of the same British soap opera. Tobacco occurred with similar frequency before as after 21:00, the UK watershed for programmes suitable for youth. The estimated number of incidences of exposure of the audience aged less than 18 years for any tobacco, actual tobacco use and tobacco branding were 59 million, 16 million and 3 million, respectively on average per week. Conclusions Television programming is a source of significant exposure of youth to tobacco imagery, before and after the watershed. Tobacco branding is particularly common in Coronation Street, a soap opera popular among youth audiences. More stringent controls on tobacco in prime time television therefore have the potential to reduce the uptake of youth smoking in the UK. PMID:23479113

  17. North-American Conference Highlights the Treatment of Trauma Utilizing Guided Imagery and Music

    DEFF Research Database (Denmark)

    Scott-Montcrieff, Suzannah; Beck, Bolette Daniels; Montgomery, Erin

    2015-01-01

    A report on the 2015 Association for Music and Imagery conference highlights papers that address clinical practice and research using Guided Imagery and Music for the treatment of trauma.......A report on the 2015 Association for Music and Imagery conference highlights papers that address clinical practice and research using Guided Imagery and Music for the treatment of trauma....

  18. Aerial Photography and Imagery, Ortho-Corrected, 2009 Ortho aerial Imagery collected by Pictometry Inc - includes both Ortho and Oblique Imagery, Published in 2009, 1:1200 (1in=100ft) scale, City of Portage Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2009. 2009 Ortho aerial Imagery collected by Pictometry Inc - includes both Ortho and Oblique...

  19. Tobacco imagery on New Zealand television 2002–2004

    OpenAIRE

    McGee, Rob; Ketchel, Juanita

    2006-01-01

    Considerable emphasis has been placed on the importance of tobacco imagery in the movies as one of the “drivers” of smoking among young people. Findings are presented from a content analysis of 98 hours of prime‐time programming on New Zealand television 2004, identifying 152 scenes with tobacco imagery, and selected characteristics of those scenes. About one in four programmes contained tobacco imagery, most of which might be regarded as “neutral or positive”. This amounted to about two scen...

  20. Flexibility Versus Expertise: A Closer Look at the Employment of United States Air Force Imagery Analysts

    Science.gov (United States)

    2017-10-01

    imagery, synthetic aperture still imagery, multi-spectral imagery, and hyper-spectral imagery. The training and skill sets required for each of these...set but exploring the best way to manage the career field should also be pursued. More research should be conducted if Air Force leadership chose...them for. In addition, FMV analysts are required to maintain expertise in conventional still imagery exploitation skills which typically atrophies

  1. Face recognition in the thermal infrared domain

    Science.gov (United States)

    Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.

    2017-10-01

    Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.

  2. Vectorized Shoreline of Guguan CNMI 2001, Derived from IKONOS Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  3. Aerial Photography and Imagery, Ortho-Corrected - VOLUSIA 2006 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — 2006, 6 inch Pixel Color Orthophotography - - Panchromatic, red, green, blue and near infrared imagery was acquired using the Leica ADS40 multi-spectral scanner (see...

  4. OrthoImagery Submission for Franklin County, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  5. Motivational orientations and imagery use: a goal profiling analysis.

    Science.gov (United States)

    Cumming, Jennifer; Hall, Craig; Harwood, Chris; Gammage, Kimberley

    2002-02-01

    The aim of this study was to establish whether different motivational profiles that result from performing a cluster analysis reflect the use of different functions and amounts of imagery. One hundred and five competitive swimmers were recruited to participate in the study. They were asked to complete both the Task and Ego Orientation in Sport Questionnaire (TEOSQ) and the Sport Imagery Questionnaire. The results of a K-means cluster analysis on the TEOSQ scores resulted in a three-cluster solution that maximized between-group differences and minimized within-group differences. A multivariate analysis of variance revealed that the three cluster groups could be distinguished by their use of imagery. Specifically, the results indicated that individuals with a 'complementary balance' between task and ego orientations were more motivated to perform the functions of imagery that would help them to maximize their performance.

  6. OrthoImagery submittal for Rush County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  7. CLPX-Satellite: Radarsat Synthetic Aperture Radar Imagery

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of time-series spaceborne Synthetic Aperture Radar (SAR) imagery of the three Cold Land Processes Field Experiment (CLPX) Meso-cell Study...

  8. OrthoImagery Submission for Albany County, New York

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  9. Vectorized Shoreline of Agrihan CNMI 2001, Derived from IKONOS Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  10. Vectorized Shoreline of Pagan CNMI 2001, Derived from IKONOS Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  11. Vectorized Shoreline of Alamagan CNMI 2001, Derived from IKONOS Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  12. APPLYING SATELLITE IMAGERY TO TRIAGE ASSESSMENT OF ECOSYSTEM HEALTH

    Science.gov (United States)

    Considerable evidence documents that certain changes in vegetation and soils result in irreversibly degraded rangeland ecosystems. We used Advanced Very High Resolution Radiometer (AVHRR)imagery to develop calibration patterns of change in the Normalized Difference Vegetation Ind...

  13. Reson 8101 Backscatter imagery of Penguin Bank, Molokai, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Backscatter imagery extracted from gridded bathymetry of Penguin Bank, Molokai, Hawaii, USA. These data provide almost complete coverage between 0 and 100 meters....

  14. Aristotle’s Concept of Mental Imagery in Sports

    Directory of Open Access Journals (Sweden)

    Stavroula Roumbou

    2017-04-01

    Full Text Available Throughout the past decade, there has been an accelerated expansion of heightening consciousness in athletic performance’s mental facets, which is reflected in the aggrandizement of research concern in cognitive sports psychology. Research on mental imagery has been considerably influenced by cognitive concepts whereby Aristotle, the Stageirite philosopher, delivers the primary systematic account of the significant role of mental imagery in cognition. In Aristotelian psychological theory, mental images perform much the same function that the rather broader concept of mental portrayal plays in contemporary cognitive science. With the assumption that cognition refers to any mental activity associated with acquiring, storing or using knowledge (including competent behaviour, the present paper, endeavors to forge an alliance between Aristotle’s notion of mental imagery, which draws attentions to some form of fundamental mental portrayal of athletic Knowledge, along with the contemporary notion of mental imagery in sports performers.

  15. NAIP Aerial Imagery (Resampled), Salton Sea - 2005 [ds425

    Data.gov (United States)

    California Department of Resources — NAIP 2005 aerial imagery that has been resampled from 1-meter source resolution to approximately 30-meter resolution. This is a mosaic composed from several NAIP...

  16. USGS NAIP Imagery Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS NAIP Imagery service from The National Map (TNM) consists of high resolution images that combine the visual attributes of an aerial photograph with the...

  17. OrthoImagery submittal for Fulton County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  18. OrthoImagery Submission for Howard County NE

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the surface of the Earth, collected by a sensor in which object displacement has been removed...

  19. Using satellite imagery for crime mapping in South Africa.

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2002-12-01

    Full Text Available . Increasingly, technologies such as digital orthophotographs, high-resolution satellite imagery and the global positioning system (GPS) are being used for these areas to provide base mapping and application data for geographical information systems (GIS...

  20. Using satellite imagery for crime mapping in South Africa

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2002-12-01

    Full Text Available . Increasingly, technologies such as digital orthophotographs, high-resolution satellite imagery and the global positioning system (GPS) are being used for these areas to provide base mapping and application data for geographical information systems (GIS...

  1. USGS Imagery Topo Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Imagery Topo is a topographic tile cache base map with orthoimagery as a backdrop, and combines the most current data (Boundaries, Names, Transportation,...

  2. Object versus spatial visual mental imagery in patients with schizophrenia

    NARCIS (Netherlands)

    Aleman, A; de Haan, EHF; Kahn, RS

    Objective: Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with

  3. Application of digital image processing techniques to astronomical imagery 1977

    Science.gov (United States)

    Lorre, J. J.; Lynn, D. J.

    1978-01-01

    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  4. OrthoImagery submittal for Huntington County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  5. Aerial Photography and Imagery, Ortho-Corrected - FDOT 2006 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This Imagery was provided by Florida Department of Transportation to the Volusia County Property Appraiser. The photography was acquired Dec 2005 through Feb 2006. 1...

  6. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  7. Vectorized Shoreline of Asuncion CNMI 2001, Derived from IKONOS Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  8. USGS Imagery Only Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Imagery Only is a tile cache base map of orthoimagery in The National Map visible to the 1:18,000 scale. Orthoimagery data are typically high resolution images...

  9. The role of religious imagery in adaptive psychotherapy.

    Science.gov (United States)

    Langs, Robert

    2009-01-01

    This paper presents the viewpoint of the adaptive approach in respect to manifest allusions to God and other religious themes from patients in psychotherapy and psychoanalysis. Such imagery is understood and interpreted on a par with secular imagery, as reflections of encoded deep unconscious experiences, many of them in response to therapists' interventions. The article also explores the reasons why religious imagery is uncommon in adaptive modes of therapy, discusses encoded evidence that therapists' religious self-revelations and extended personal reactions to patients' religious images are maladaptively countertransference-based, and suggests that particular kinds of encoded nonreligious imagery suggest that the deep unconscious mind should be thought of as an inner god of divine wisdom and pristine morality. The decision as to whether this viewpoint speaks for the existence of a transcendental deity or is properly considered in secular terms lies beyond the province of psychoanalytic observations and thinking.

  10. OrthoImagery Submission for Monmouth County, New Jersey

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  11. WETLAND VEGETATION INTEGRITY ASSESSMENT WITH LOW ALTITUDE MULTISPECTRAL UAV IMAGERY

    National Research Council Canada - National Science Library

    M. A. Boon; S. Tesfamichael

    2017-01-01

    .... Applications of these sensors for mapping of wetland ecosystems are rare. Here, we evaluate the performance of low altitude multispectral UAV imagery to determine the state of wetland vegetation in a localised spatial area...

  12. OrthoImagery submittal for Greene County, Indiana

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth?s surface, collected by a sensor in which object displacement has been removed for...

  13. OrthoImagery Submission for Vermilion County, Illinois, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has beeen removed for...

  14. OrthoImagery Submission for Putnam County, New York

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for...

  15. OrthoImagery Submission for Jefferson County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  16. OrthoImagery Submission for Emanuel County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  17. OrthoImagery Submission for Johnson County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  18. OrthoImagery Submission for Bacon County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  19. OrthoImagery Submission for Screven County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  20. OrthoImagery Submission for Glascock County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  1. OrthoImagery Submission for Evans County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  2. OrthoImagery Submission for Lanier County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  3. OrthoImagery Submission for Bulloch County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  4. OrthoImagery Submission for Mower County, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  5. OrthoImagery Submission for Laurens County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  6. OrthoImagery Submission for Freeborn County, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  7. OrthoImagery Submission for Cedar County, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  8. OrthoImagery Submission for Montgomery County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  9. OrthoImagery Submission for Wheeler County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  10. OrthoImagery Submission for Tift County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  11. OrthoImagery Submission for Dodge County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  12. OrthoImagery Submission for Telfair County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  13. OrthoImagery Submission for Candler County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  14. OrthoImagery Submission for Tattnall County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  15. OrthoImagery Submission for TREUTLEN County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  16. OrthoImagery Submission for Wilcox County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  17. OrthoImagery Submission for Burke County, GA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — NAIP imagery is available for distribution within 60 days of the end of a flying season and is intended to provide current information of agricultural conditions in...

  18. Aerial Photography and Imagery, Ortho-Corrected - USAAIR 2003 Orthophotography

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — USA Airphoto Imagery (http://www.airphotousa.com). Used with the Photomapper Application (http://www.airphotousa.com/Products/PhotoMapper/index.html). April, 2003 -...

  19. SMEX02 Landsat Thematic Mapper Imagery, Iowa, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides imagery developed from Landsat 5 and 7 Thematic Mapper (TM) data for use in studying land cover features during the Soil Moisture Experiment...

  20. Vectorized Shoreline of Aguijan CNMI 2001, Derived from IKONOS Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  1. The National Agriculture Imagery Program Change 2002-2017

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The National Agriculture Imagery Program Change 2002-2017 is a web mapping application hosted on the ArcGIS online FSA Organizational Subscription. This web...

  2. Fusion of Inertial Navigation and Imagery Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations of the Fusion of Inertial Navigation and Imagery Data are the application of the concept to the dynamic entry-interface through near-landing phases,...

  3. Massachusetts Bay - Internal wave packets digitized from SAR imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...

  4. Coastal Bend Texas Benthic Habitat Mapping Reprocessed DOQQ Aerial Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to reprocess existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  5. CLPX-Satellite: Landsat Thematic Mapper Imagery, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of Landsat thematic mapper imagery collected over the Cold Land Processes Field Experiment (CLPX) Large Regional Study Area (LRSA), located...

  6. Vectorized Shoreline of Anatahan CNMI 2001, Derived from IKONOS Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  7. The 1997 eruption of Okmok Volcano, Alaska: A synthesis of remotely sensed imagery

    Science.gov (United States)

    Patrick, M.R.; Dehn, J.; Papp, K.R.; Lu, Z.; Dean, K.; Moxey, L.; Izbekov, P.; Guritz, R.

    2003-01-01

    Okmok Volcano, in the eastern Aleutian Islands, erupted in February and March of 1997 producing a 6-km-long lava flow and low-level ash plumes. This caldera is one of the most active in the Aleutian Arc, and is now the focus of international multidisciplinary studies. A synthesis of remotely sensed data (AirSAR, derived DEMs, Landsat MSS and ETM+ data, AVHRR, ERS, JERS, Radarsat) has given a sequence of events for the virtually unobserved 1997 eruption. Elevation data from the AirSAR sensor acquired in October 2000 over Okmok were used to create a 5-m resolution DEM mosaic of Okmok Volcano. AVHRR nighttime imagery has been analyzed between February 13 and April 11, 1997. Landsat imagery and SAR data recorded prior to and after the eruption allowed us to accurately determine the extent of the new flow. The flow was first observed on February 13 without precursory thermal anomalies. At this time, the flow was a large single lobe flowing north. According to AVHRR Band 3 and 4 radiance data and ground observations, the first lobe continued growing until mid to late March, while a second, smaller lobe began to form sometime between March 11 and 12. This is based on a jump in the thermal and volumetric flux determined from the imagery, and the physical size of the thermal anomalies. Total radiance values waned after March 26, indicating lava effusion had ended and a cooling crust was growing. The total area (8.9 km2), thickness (up to 50 m) and volume (1.54×108 m3) of the new lava flow were determined by combining observations from SAR, Landsat ETM+, and AirSAR DEM data. While the first lobe of the flow ponded in a pre-eruption depression, our data suggest the second lobe was volume-limited. Remote sensing has become an integral part of the Alaska Volcano Observatory’s monitoring and hazard mitigation efforts. Studies like this allow access to remote volcanoes, and provide methods to monitor potentially dangerous ones.

  8. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...

  9. Users, uses, and value of Landsat satellite imagery: results from the 2012 survey of users

    Science.gov (United States)

    Miller, Holly M.; Richardson, Leslie A.; Koontz, Stephen R.; Loomis, John; Koontz, Lynne

    2013-01-01

    Landsat satellites have been operating since 1972, providing a continuous global record of the Earth’s land surface. The imagery is currently available at no cost through the U.S. Geological Survey (USGS). Social scientists at the USGS Fort Collins Science Center conducted an extensive survey in early 2012 to explore who uses Landsat imagery, how they use the imagery, and what the value of the imagery is to them. The survey was sent to all users registered with USGS who had accessed Landsat imagery in the year prior to the survey and over 11,000 current Landsat imagery users responded. The results of the survey revealed that respondents from many sectors use Landsat imagery in myriad project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance of and dependence on the imagery, the numerous environmental and societal benefits observed from projects using Landsat imagery, the potential negative impacts on users’ work if Landsat imagery was no longer available, and the substantial aggregated annual economic benefit from the imagery. These results represent only the value of Landsat to users registered with USGS; further research would help to determine what the value of the imagery is to a greater segment of the population, such as downstream users of the imagery and imagery-derived products.

  10. The applied model of imagery use: Examination of moderation and mediation effects.

    Science.gov (United States)

    Koehn, S; Stavrou, N A M; Young, J A; Morris, T

    2016-08-01

    The applied model of mental imagery use proposed an interaction effect between imagery type and imagery ability. This study had two aims: (a) the examination of imagery ability as a moderating variable between imagery type and dispositional flow, and (b) the testing of alternative mediation models. The sample consisted of 367 athletes from Scotland and Australia, who completed the Sport Imagery Questionnaire, Sport Imagery Ability Questionnaire, and Dispositional Flow Scale-2. Hierarchical regression analysis showed direct effects of imagery use and imagery ability on flow, but no significant interaction. Mediation analysis revealed a significant indirect path, indicating a partially mediated relationship (P = 0.002) between imagery use, imagery ability, and flow. Partial mediation was confirmed when the effect of cognitive imagery use and cognitive imagery ability was tested, and a full mediation model was found between motivational imagery use, motivational imagery ability, and flow. The results are discussed in conjunction with potential future research directions on advancing theory and applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Digital enhancement of night vision and thermal images

    OpenAIRE

    Teo, Chek Koon

    2003-01-01

    Approved for public release, distribution is unlimited Low image contrast limits the amount of information conveyed to the user. With the proliferation of digital imagery and computer interface between man-and-machine, it is now viable to consider digitally enhancing the image before presenting it to the user, thus increasing the information throughput. This thesis explores the effect of the Contrast Limited Adaptive Histogram Equalization (CLAHE) process on night vision and thermal ima...

  12. Thermal-Polarimetric and Visible Data Collection for Face Recognition

    Science.gov (United States)

    2016-09-01

    capability, a database of simultaneously acquired thermal and visible face imagery is needed to support the development of multimodal face recognition...passed to the FPA changes. “In its principle mode of operation, the system acquires a set of 16 images per rotation of the λ/2 retarder. Images are...Byrd KA Preview of the newly acquired NVESD-ARL multimodal face database. Proc SPIE DSS. 2013;8734. 10. Yuffa AJ, Gurton KP, Videen G. Appl Optics

  13. How the mind is easily hooked on musical imagery

    OpenAIRE

    Liikkanen, Lassi A.

    2009-01-01

    Recent studies show that nearly all people living in western societies are affected by involuntary musical imagery, or “earworms”. It has been suggested that prior exposure to music is an important predictor of this phenomenon. In comparison, cognitive psychologists use the concepts of recency (serial position) and the priming effect (brief exposure) to describe similar memory features. The aim of this study was to explore the dynamics of involuntary musical imagery in relation to these memor...

  14. Planning, preparation, execution, and imagery of volitional action.

    Science.gov (United States)

    Deecke, L

    1996-03-01

    There are different motor sets, which a human subject can be in or act from: he or she can be in a self-initiated voluntary movement set (action) or in a response set (re-action). Also, imagery sets are available that are necessary for the acquisition and practice of skill. Most important are such imagery sets for rehearsal in theatre, dance, music, sports, combat, etc.

  15. Planning, preparation, execution, and imagery of volitional action

    OpenAIRE

    Deecke, Lüder

    1996-01-01

    There are different motor sets, which a human subject can be in or act from: He or she can be in a self-initiated voluntary movement set (action) or in a response set (re-action). Also, imagery sets are available that are necessary for the acquisition and practice of skill. Most important are such imagery sets for rehearsal in theatre, dance, music, sports, combat, etc.

  16. Analisa Spektrum Motor Imagery pada Sinyal Aktivitas Otak

    OpenAIRE

    Chandra, Johan; Arifin, Achmad; Fatoni, Muhammad Hilman

    2016-01-01

    Otak merupakan organ vital pada tubuh manusia yang berperan sebagai pusat kendali sistem saraf manusia. Sinyal yang dikeluarkan otak (EEG) mengandung berbagai informasi yang dapat dimanfaatkan pada teknologi BCI. Salah satu informasi yang dapat digunakan adalah informasi motorik baik mengenai motor execution maupung motor imagery. Pada penderita stroke yang biasanya mengalami kelumpuhan pada anggota gerak tubuhnya, informasi mengenai motor imagery dapat dimanfaatkan untuk aplikasi Brain Compu...

  17. Analisa Spektrum Motor Imagery pada Sinyal Aktivitas Otak

    OpenAIRE

    Johan Chandra; Achmad Arifin; Muhammad Hilman Fatoni

    2017-01-01

    Otak merupakan organ vital pada tubuh manusia yang berperan sebagai pusat kendali sistem saraf manusia. Sinyal yang dikeluarkan otak (EEG) mengandung berbagai informasi yang dapat dimanfaatkan pada teknologi BCI. Salah satu informasi yang dapat digunakan adalah informasi motorik baik mengenai motor execution maupung motor imagery. Pada penderita stroke yang biasanya mengalami kelumpuhan pada anggota gerak tubuhnya, informasi mengenai motor imagery dapat dimanfaatkan untuk aplikasi Brain Compu...

  18. Aristotle’s Concept of Mental Imagery in Sports

    OpenAIRE

    Stavroula Roumbou

    2017-01-01

    Throughout the past decade, there has been an accelerated expansion of heightening consciousness in athletic performance’s mental facets, which is reflected in the aggrandizement of research concern in cognitive sports psychology. Research on mental imagery has been considerably influenced by cognitive concepts whereby Aristotle, the Stageirite philosopher, delivers the primary systematic account of the significant role of mental imagery in cognition. In Aristotelian psychological theory, men...

  19. Imagery about suicide in depression—“Flash-forwards”?

    OpenAIRE

    Holmes, Emily A; Crane, Catherine; Fennell, Melanie J. V.; Williams, J. Mark G.

    2007-01-01

    Suicide is a significant world health problem, with more deaths by suicide globally than by war. We need to better understand the cognitive processes underlying suicidal thinking for improved treatment development. Cognitive psychology indicates that mental imagery can be causal in determining future behavior, yet the occurrence of suicide-related imagery has not previously been investigated. Interviews with 15 depressed and formerly suicidal patients in remission found that all patients repo...

  20. Rapid Global Imagery Management and Generation In Action

    Science.gov (United States)

    Huang, T.; Alarcon, C.; Thompson, C. K.; Roberts, J. T.; Hall, J. R.; Cechini, M. F.; Schmaltz, J. E.; McGann, J. M.; Boller, R. A.; Murphy, K. J.; Bingham, A. W.

    2013-12-01

    NASA's Global Imagery Browse Services (GIBS) project has positioned itself to be the global imagery solution for the Earth Observation System (EOS), delivering global, full-resolution satellite imagery in a highly responsive manner. This is an ambitious goal for supporting a growing a collection of distributed archives consist of heterogeneous near real-time (NRT) and science products with varied and often disparate provenance pertaining to source platforms and instruments, spatial resolutions, processing algorithms, metadata models and packaging specifications. GIBS consists of two major subsystems, OnEarth and The Imagery Exchange (TIE). OnEarth is the Open Geospatial Consortium (OGC)-compliant Web Map Tile Service (WMTS), which efficiently serves multi-resolution imagery to clients (e.g., http://podaac-tools.jpl.nasa.gov/soto/ and http://earthdata.nasa.gov/labs/worldview/). TIE is the GIBS imagery workflow management solution that is a specialization of the horizontally scaled Data Management and Archive System (DMAS) developed at the Jet Propulsion Laboratory. Like DMAS, TIE is an Open Archival Information System (OAIS) responsible for orchestrating the workflow for acquisition, preparation, generation, and archiving of imagery to be served by OnEarth. The workflow collects imagery provenance throughout a product's lifecycle by leveraging the EOS Clearing House (ECHO) and other long-term metadata repositories in order to promote reproducibility and retain lineage with source observational artifacts. This talk focuses on the current TIE development activities and some of the patterns and architectures that have proven successful in building a horizontal-scaling workflow data systems. As a data solution developed using open source technologies. This talk also discusses current activities in getting DMAS and TIE to the open source community.

  1. Relaxation guided imagery reduces motor fluctuations in Parkinson's disease.

    Science.gov (United States)

    Schlesinger, Ilana; Benyakov, Orna; Erikh, Ilana; Nassar, Maria

    2014-01-01

    Motor fluctuations in Parkinson's disease (PD) cause major disabling symptoms. We aimed to assess the efficacy of relaxation guided imagery in PD patients with motor fluctuation. In a prospective pilot, case cohort, PD patients underwent (i) a relaxation session with relaxation guided imagery, and (ii) a control session of relaxing music. Three-day diaries were completed at baseline and after each intervention. Subsequently, patients received discs for home listening-a relaxation guided imagery disc and a relaxing music disc. After three months the patients were interviewed by phone. Twenty one PD patients participated and 19 completed this study. There was a significant increase in the percent of "on" time after listening to the relaxation guided imagery disc as compared with baseline (from 47.7% to 62.8%, 95% CI 5.26-25.03, p = 0.005). Relaxing music caused no significant change in percent of "on" time from baseline (from 47.7% to 53.0%, p = 0.161). Although all sessions were performed in "on" state, there was a significant decrease in UPDRS motor subscores after each of the two sessions as compared with the UPDRS score before the session (relaxation guided imagery mean reduction -3.81 p = 0.0002 and after relaxing music mean reduction -1.95, p = 0.001), significantly more so after the relaxation guided imagery (p = 0.020). After 3 months listening to the relaxation guided imagery disc increased "on" time from baseline by 12.6% (95% CI 3.19-28.39, p = 0.111) but this did not reach statistical significance. In this pilot study we showed that relaxation guided imagery is a promising treatment for PD.

  2. Multispectral satellite imagery segmentation using a simplified JSEG approach

    Science.gov (United States)

    Chen, QiuXiao; Luo, JianCheng; Zhou, ChengHu

    2004-11-01

    It is a big challenge to segment remote sensing images especially multispectral satellite imagery due to their unique features. In consideration of the fact that satellite imagery are playing an increasing important role, we conducted the research on segmentation of such imagery. Since multispectral satellite imagery are more similar to natural color images than to other type of images, it is more likely that studies on natural color images segmentation can be extended to multispectral satellite imagery. The obstacle of applying these studies into multispectral satellite imagery lies into their inefficiency when dealing with the large size of images. Therefore, based on a natural color image segmentation approach - JSEG, we proposed a more efficient one. First, a grid-based cluster initialization approach is proposed to obtain the initial cluster centers, based on which, a fast image quantization approach is implemented. Second, a feature image named J-image to describe local homogeneity is obtained. Then a watershed approach is applied to the J-image, and initial segmentation results are obtained. At last, based on the histogram similarity of each region, a simplified growth merging approach is proposed and the final segmentation results are obtained. By comparing the result of the JSEG approach and the proposed one, we found that the latter is rather efficient and accuracy. Advice on further studies is also presented.

  3. Worry tendencies predict brain activation during aversive imagery.

    Science.gov (United States)

    Schienle, Anne; Schäfer, Axel; Pignanelli, Roman; Vaitl, Dieter

    2009-09-25

    Because of its abstract nature, worrying might function as an avoidance response in order to cognitively disengage from fearful imagery. The present functional magnetic resonance imaging study investigated neural correlates of aversive imagery and their association with worry tendencies, as measured by the Penn State Worry Questionnaire (PSWQ). Nineteen healthy women first viewed, and subsequently imagined pictures from two categories, 'threat' and 'happiness'. Worry tendencies were negatively correlated with brain activation in the anterior cingulate cortex, the prefrontal cortex (dorsolateral, dorsomedial, ventrolateral), the parietal cortex and the insula. These negative correlations between PSWQ scores and localized brain activation were specific for aversive imagery. Moreover, activation in the above mentioned regions was positively associated with the experienced vividness of both pleasant and unpleasant mental pictures. As the identified brain regions are involved in emotion regulation, vivid imagery and memory retrieval, a lowered activity in high PSWQ scorers might be associated with cognitive disengagement from aversive imagery as well as insufficient refresh rates of mental pictures. Our preliminary findings encourage future imagery studies on generalized anxiety disorder patients, as one of the main symptoms of this disorder is excessive worrying.

  4. Thermal defoliation

    Science.gov (United States)

    The negative perception some consumers hold regarding agricultural chemicals has resulted in an increased demand for organic foods and fibers, and in increasing political pressure for the regulation of agricultural production practices. This has revived interest in thermal defoliation of cotton and ...

  5. Holographic thermalization

    NARCIS (Netherlands)

    Balasubramanian, V.; Bernamonti, A.; de Boer, J.; Copland, N.; Craps, B.; Keski-Vakkuri, E.; Müller, B.; Schäfer, A.; Shigemori, M.; Staessens, W.

    2011-01-01

    Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint approximation these probes are computed in AdS space

  6. Mapping surface flow in low gradient areas with thermal remote sensing

    DEFF Research Database (Denmark)

    Prinds, Christian; Petersen, Rasmus Jes; Greve, Mogens Humlekrog

    Thermal infrared (TIR) imagery has long been used for mapping groundwater-surface water interactions and mainly for locating areas of groundwater seepage in lakes and shorelines (Rundquist et al. 1985, Banks et al. 1996). In this study, we used the method for locating discharge from tile drains i...

  7. Motor Imagery Impairment in Postacute Stroke Patients

    Directory of Open Access Journals (Sweden)

    Niclas Braun

    2017-01-01

    Full Text Available Not much is known about how well stroke patients are able to perform motor imagery (MI and which MI abilities are preserved after stroke. We therefore applied three different MI tasks (one mental chronometry task, one mental rotation task, and one EEG-based neurofeedback task to a sample of postacute stroke patients (n=20 and age-matched healthy controls (n=20 for addressing the following questions: First, which of the MI tasks indicate impairment in stroke patients and are impairments restricted to the paretic side? Second, is there a relationship between MI impairment and sensory loss or paresis severity? And third, do the results of the different MI tasks converge? Significant differences between the stroke and control groups were found in all three MI tasks. However, only the mental chronometry task and EEG analysis revealed paresis side-specific effects. Moreover, sensitivity loss contributed to a performance drop in the mental rotation task. The findings indicate that although MI abilities may be impaired after stroke, most patients retain their ability for MI EEG-based neurofeedback. Interestingly, performance in the different MI measures did not strongly correlate, neither in stroke patients nor in healthy controls. We conclude that one MI measure is not sufficient to fully assess an individual’s MI abilities.

  8. ESTIMATION OF CORK PRODUCTION USINGAERIAL IMAGERY1

    Directory of Open Access Journals (Sweden)

    Peter Surovy

    2015-10-01

    Full Text Available ABSTRACT Inventory and prediction of cork harvest over time and space is important to forest managers who must plan and organize harvest logistics (transport, storage, etc.. Common field inventory methods including the stem density, diameter and height structure are costly and generally point (plot based. Furthermore, the irregular horizontal structure of cork oak stands makes it difficult, if not impossible, to interpolate between points. We propose a new method to estimate cork production using digital multispectral aerial imagery. We study the spectral response of individual trees in visible and near infrared spectra and then correlate that response with cork production prior to harvest. We use ground measurements of individual trees production to evaluate the model’s predictive capacity. We propose 14 candidate variables to predict cork production based on crown size in combination with different NDVI index derivates. We use Akaike Information Criteria to choose the best among them. The best model is composed of combinations of different NDVI derivates that include red, green, and blue channels. The proposed model is 15% more accurate than a model that includes only a crown projection without any spectral information.

  9. Guided Imagery and Music with Cancer Survivors

    DEFF Research Database (Denmark)

    Bonde, Lars Ole; Thomasen, Ellen

    "Receptiv musikterapi med udskrevne cancerpatienter - en effektundersøgelse med fokus på stemning og livskvalitet." Pilot-projekt Fra oktober 2002 til april 2003 gennemføres (med økonomisk støtte af VIFAB) et pilotprojekt med 6 deltagere. Formålet er dels at få et indtryk af musikterapiens potent...... at vise, om receptiv musikterapi (Guided Imagery and Music/ GIM*) kan forbedre udskrevne/færdigbehandlede cancer-patienters stemningsleje (mood) og livskvalitet. Den kvantitative effektundersøgelse skal vise, om GIM-terapien har en målbar effekt, mens den kvalitative, fænomenologisk...... have en positiv effekt på udskrevne cancer-patienters stemning (mood) og livskvalitet. *GIM er en receptiv psykoterapiform, hvor klienten efter en kort afspænding lytter til udvalgt klassisk musik, liggende på en briks med lukkede øjne. I dialog med terapeuten udforsker klienten som en ”rejsende” sine...

  10. Mapping Mediterranean seagrasses with Sentinel-2 imagery.

    Science.gov (United States)

    Traganos, Dimosthenis; Reinartz, Peter

    2017-07-01

    Mediterranean seagrasses have been hailed for their numerous ecosystem services, yet they are undergoing a decline in their coverage. The major complication with resolving this tendency is the sparsity of data on their overall distribution. This study addresses the suitability of the recently launched Sentinel-2 satellite for mapping the distribution of Mediterranean seagrass meadows. A comprehensive methodology is presented which applies atmospheric and analytical water column corrections and compares the performance of three different supervised classifiers. Remote sensing of the Thermaikos Gulf, northwestern Aegean Sea (Greece, eastern Mediterranean Sea) reveals that the utilization of Support Vector Machines on water column corrected reflectances yields best accuracies. Two Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa, cover a total submerged area of 1.48km2 between depths of 1.4-16.5m. With its 10-m spatial resolution and 5-day revisit frequency, Sentinel-2 imagery can mitigate the Mediterranean seagrass distribution data gap and allow better management and conservation in the future in a retrospective, time- and cost-effective fashion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Thermal Hardware for the Thermal Analyst

    Science.gov (United States)

    Steinfeld, David

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Space Flight Center (GSFC) Thermal Engineering Branch (Code 545). NCTS 21070-1. Most Thermal analysts do not have a good background into the hardware which thermally controls the spacecraft they design. SINDA and Thermal Desktop models are nice, but knowing how this applies to the actual thermal hardware (heaters, thermostats, thermistors, MLI blanketing, optical coatings, etc...) is just as important. The course will delve into the thermal hardware and their application techniques on actual spacecraft. Knowledge of how thermal hardware is used and applied will make a thermal analyst a better engineer.

  12. Automated Directional Measurement System for the Acquisition of Thermal Radiative Measurements of Vegetative Canopies

    Directory of Open Access Journals (Sweden)

    Zhongbo Su

    2009-03-01

    Full Text Available The potential for directional optical and thermal imagery is very large. Field measurements have been performed with a goniometer on which thermal instruments were attached. In order to reduce dynamical effects the goniometer was adjusted to run in automated mode, for zenith and azimuthal direction. Directional measurements were performed over various crops with increasing heterogeneity. The improvements to the goniometer proved successful. For all the crops, except the vineyard, the acquisition of the directional thermal brightness temperatures of the crops went successfully. The large scale heterogeneity of the vineyard proved to be larger then the goniometer was capable of. The potential of directional thermal brightness temperatures has been proven.

  13. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  14. Music to the inner ears: exploring individual differences in musical imagery.

    Science.gov (United States)

    Beaty, Roger E; Burgin, Chris J; Nusbaum, Emily C; Kwapil, Thomas R; Hodges, Donald A; Silvia, Paul J

    2013-12-01

    In two studies, we explored the frequency and phenomenology of musical imagery. Study 1 used retrospective reports of musical imagery to assess the contribution of individual differences to imagery characteristics. Study 2 used an experience sampling design to assess the phenomenology of musical imagery over the course of one week in a sample of musicians and non-musicians. Both studies found episodes of musical imagery to be common and positive: people rarely wanted such experiences to end and often heard music that was personally meaningful. Several variables predicted musical imagery, including personality, musical preferences, and positive mood. Musicians tended to hear musical imagery more often, but they reported less frequent episodes of deliberately-generated imagery. Taken together, the present research provides new insights into individual differences in musical imagery, and it supports the emerging view that such experiences are common, positive, and more voluntary than previously recognized. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Multimodal sensor experiment for evaluating motion imagery in activity-based intelligence

    Science.gov (United States)

    Lewis, Christian M.; Messinger, David; Neuberger, Briana

    2014-06-01

    Activity Based Intelligence (ABI) is the derivation of information from the composite of a series of individual actions being recorded over a period of time. Due to its temporal nature, ABI is usually developed from Motion Imagery (MI) or Full Motion Video (FMV) taken from a given scene. One common misconception, is that ABI boils down to a simple resolution problem; more pixels at a higher frame rate is better. As part of this research an experiment was designed and performed to address this assumption; by analyzing varying temporal resolutions in conjunction with several modalities, a trade space for characterizing activities can be developed. Thermal Infrared (IR), multispectral, and polarimetric data were used to augment RGB MI. As these data are still being analyzed, this paper gives an update to the experiment and analysis process.

  16. Exceptional visuospatial imagery in schizophrenia; implications for madness and creativity

    Directory of Open Access Journals (Sweden)

    Taylor eBenson

    2013-11-01

    Full Text Available Biographical and historical accounts suggest a link between scientific creativity and schizophrenia. Longitudinal studies of gifted children indicate that visuospatial imagery plays a pivotal role in exceptional achievements in science and mathematics. We asked whether visuospatial imagery is enhanced in individuals with schizophrenia (SZ. We compared SZ and matched healthy controls (HC on five visuospatial tasks tapping parietal and frontoparietal functions. Two aspects of visuospatial transformation, spatial location and mental imagery manipulation were examined with Paper Folding Test and Jigsaw Puzzle Task, respectively. Visuospatial intelligence was assessed with Ravens Progressive Matrices, which is associated with frontoparietal network activity. Hemispatial inattention implicating parietal function was assessed with line bisection task. Mediated by prefrontal cortex, spatial delayed response task was used to index working memory maintenance, which was impaired in SZ compared to HC. In contrast, SZ showed intact visuospatial intelligence and transformation of location. Further, SZ performed significantly better than HC on jigsaw puzzle task indicating enhanced mental imagery manipulation. Spatial working memory maintenance and mental imagery manipulation were strongly associated in HC but dissociated in SZ. Thus, we observed enhanced mental imagery manipulation in SZ but the dissociation of mental imagery from working memory suggests a disrupted frontoparietal network. Finally, while HC showed the expected leftward pseudoneglect, SZ showed increased rightward line bisection bias implicating left hemispatial inattention and impaired right parietal control of spatial attention. The current results chart a unique profile of impaired, spared and enhanced parietal-mediated visuospatial functions implicating parietal abnormalities as a biobehavioral marker for SZ. We discuss these results in relation to creative cognition.

  17. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2011-01-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa

  18. Thermal Clothing

    Science.gov (United States)

    1997-01-01

    Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.

  19. Turbulent Thermalization

    CERN Document Server

    Micha, Raphael; Micha, Raphael; Tkachev, Igor I.

    2004-01-01

    We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating of the Universe after inflation constitutes our prime motivation and application of the results. We identify three different stages of these processes. During the initial stage of ``parametric resonance'', only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our analytical results are general and give estimates of reheating time and temperature in terms of coupling constants and...

  20. Levels of imagery and personality dimensions in a female prison population.

    Science.gov (United States)

    Stricklin, A B; Penk, M L

    1980-08-01

    Personality and mental imagery tests were administered to 62 female prisoners. The study replicates the finding concerning relationships between imagery types and two specific personality dimensions, and extends the findings across populations, personality inventories, and investigators. Control of visual imagery is linked negatively to a measure of neurosis (Scale 2 of the MMPI); and (if level of neurosis is controlled) EI is linked to vividness of imagery. That is, an anova interaction showed that, with high neurosis scores, extroverts report more vivid imagery than introverts, but with low neurosis scores, introverts report more vivid imagery than extroverts.

  1. Classifying objects in LWIR imagery via CNNs

    Science.gov (United States)

    Rodger, Iain; Connor, Barry; Robertson, Neil M.

    2016-10-01

    The aim of the presented work is to demonstrate enhanced target recognition and improved false alarm rates for a mid to long range detection system, utilising a Long Wave Infrared (LWIR) sensor. By exploiting high quality thermal image data and recent techniques in machine learning, the system can provide automatic target recognition capabilities. A Convolutional Neural Network (CNN) is trained and the classifier achieves an overall accuracy of > 95% for 6 object classes related to land defence. While the highly accurate CNN struggles to recognise long range target classes, due to low signal quality, robust target discrimination is achieved for challenging candidates. The overall performance of the methodology presented is assessed using human ground truth information, generating classifier evaluation metrics for thermal image sequences.

  2. Alcohol imagery on popularly viewed television in the UK.

    Science.gov (United States)

    Lyons, Ailsa; McNeill, Ann; Britton, John

    2014-09-01

    Exposure to alcohol consumption and product imagery in films is associated with increased alcohol consumption among young people, but the extent to which exposure also occurs through television is not clear. We have measured the occurrence of alcohol imagery in prime-time broadcasting on UK free-to-air television channels. Occurrence of alcohol imagery (actual use, implied use, brand appearances or other reference to alcohol) was measured in all broadcasting on the five most popular UK television stations between 6 and 10 p.m. during 3 weeks in 2010, by 1-min interval coding. Alcohol imagery occurred in over 40% of broadcasts, most commonly soap operas, feature films, sport and comedies, and was equally frequent before and after the 9 p.m. watershed. Brand appearances occurred in 21% of programmes, and over half of all sports programmes, a third of soap operas and comedies and a fifth of advertising/trailers. Three brands, Heineken, Budweiser and Carlsberg together accounted for ∼40% of all brand depictions. Young people are exposed to frequent alcohol imagery, including branding, in UK prime-time television. It is likely that this exposure has an important effect on alcohol consumption in young people. © The Author 2013. Published by Oxford University Press on behalf of Faculty of Public Health.

  3. Harnessing Satellite Imageries in Feature Extraction Using Google Earth Pro

    Science.gov (United States)

    Fernandez, Sim Joseph; Milano, Alan

    2016-07-01

    Climate change has been a long-time concern worldwide. Impending flooding, for one, is among its unwanted consequences. The Phil-LiDAR 1 project of the Department of Science and Technology (DOST), Republic of the Philippines, has developed an early warning system in regards to flood hazards. The project utilizes the use of remote sensing technologies in determining the lives in probable dire danger by mapping and attributing building features using LiDAR dataset and satellite imageries. A free mapping software named Google Earth Pro (GEP) is used to load these satellite imageries as base maps. Geotagging of building features has been done so far with the use of handheld Global Positioning System (GPS). Alternatively, mapping and attribution of building features using GEP saves a substantial amount of resources such as manpower, time and budget. Accuracy-wise, geotagging by GEP is dependent on either the satellite imageries or orthophotograph images of half-meter resolution obtained during LiDAR acquisition and not on the GPS of three-meter accuracy. The attributed building features are overlain to the flood hazard map of Phil-LiDAR 1 in order to determine the exposed population. The building features as obtained from satellite imageries may not only be used in flood exposure assessment but may also be used in assessing other hazards and a number of other uses. Several other features may also be extracted from the satellite imageries.

  4. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    Directory of Open Access Journals (Sweden)

    Xiangguang Leng

    2016-08-01

    Full Text Available With the rapid development of spaceborne synthetic aperture radar (SAR and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  5. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics

    Directory of Open Access Journals (Sweden)

    Daniela Cardone

    2015-01-01

    Full Text Available Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  6. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    Science.gov (United States)

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  7. Current insights in the development of children’s motor imagery ability

    Directory of Open Access Journals (Sweden)

    Steffie eSpruijt

    2015-06-01

    Full Text Available Over the last two decades, the number of studies on motor imagery in children has witnessed a large expansion. Most studies used the hand laterality judgment paradigm or the mental chronometry paradigm to examine motor imagery ability. The main objective of the current review is to collate these studies to provide a more comprehensive insight in children’s motor imagery development and its age of onset. Motor imagery is a form of motor cognition and aligns with forward (or predictive models of motor control. Studying age-related differences in motor imagery ability in children therefore provides insight in underlying processes of motor development during childhood. Another motivation for studying age-related differences in motor imagery is that in order to effectively apply motor imagery training in children (with motor impairments, it is pertinent to first establish the age at which children are actually able to perform motor imagery.Overall, performance in the imagery tasks develops between 5 and 12 years of age. The age of motor imagery onset, however, remains equivocal, as some studies indicate that children of 5 to 7 years old can already enlist motor imagery in an implicit motor imagery task, whereas other studies using explicit instructions revealed that children do not use motor imagery before the age of 10. From the findings of the current study, we can conclude that motor imagery training is potentially a feasible method for paediatric rehabilitation in children from 5 years on. We suggest that younger children are most likely to benefit from motor imagery training that is presented in an implicit way. Action observation training might be a beneficial adjunct to implicit motor imagery training. From 10 years of age, more explicit forms of motor imagery training can be effectively used.

  8. A cognitive-psychological perspective on Gillespie's "Lights and lattices": some relations among perception, imagery, and thought.

    Science.gov (United States)

    Hunt, H

    1989-04-01

    George Gillespie's valuable observations on light and lattice imageries are played in the context of current research and theory on cognitive imagery (Kosslyn, Pylyshyn), ordinary and lucid dreaming, representational geometric imagery in scientific thought, the author's previous writings on altered states of consciousness, and Gibson's views on perception and imagery. Gillespie's reports show categories of imagery deconstruction and abstraction that link these areas and suggest an integrative model of the varieties of symbolic imagery.

  9. Imagery versus verbal interpretive cognitive bias modification for compulsive checking.

    Science.gov (United States)

    Black, Melissa J; Grisham, Jessica R

    2016-08-01

    Pathological doubting and checking is a common symptom presentation in obsessive-compulsive disorder (OCD). Previous research has established that compulsive checkers do not display an actual memory deficit, but lack confidence in their memories and experience intolerance of uncertainty regarding the completion of tasks. We investigated whether interpretive cognitive bias modification (CBM-I) reduced memory distrust and intolerance of uncertainty in a nonclinical sample. We also examined the possible enhancement of CBM-I for OCD through imagery training. The results provide evidence that participants who received positive imagery CBM-I training may have interpreted novel ambiguous checking scenarios more adaptively and endorsed negative checking beliefs less relative to participants in the control imagery CBM-I condition. Findings on behavioural checking tasks did not indicate any specific response to CBM-I training. Future research may translate these suggestive findings into a useful adjunct to traditional strategies targeting maladaptive OCD beliefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Imagining Success: Multiple Achievement Goals and the Effectiveness of Imagery.

    Science.gov (United States)

    Blankert, Tim; Hamstra, Melvyn R W

    2017-01-02

    Imagery (richly imagining carrying out a task successfully) is a popular performance-enhancement tool in many domains. This experiment sought to test whether pursuing two achievement goals (vs. one) benefits performance after an imagery exercise. We examined mastery goals (aiming to improve skill level) and performance goals (aiming to outperform others) among 65 tennis players who were assigned to a mastery goal condition, a performance goal condition, or a mastery goal and performance goal condition. After reading instructions for a service task, which included the goal manipulation, participants completed 20 tennis services. They then completed an imagery exercise and, finally, completed another 20 services. Postimagery service performance was better in the dual-goal condition than in the other conditions.

  11. Genetic programming approach to extracting features from remotely sensed imagery

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, J. P. (James P.); Perkins, S. J. (Simon J.); Harvey, N. R. (Neal R.); Szymanski, J. J. (John J.); Brumby, Steven P.

    2001-01-01

    Multi-instrument data sets present an interesting challenge to feature extraction algorithm developers. Beyond the immediate problems of spatial co-registration, the remote sensing scientist must explore a complex algorithm space in which both spatial and spectral signatures may be required to identify a feature of interest. We describe a genetic programming/supervised classifier software system, called Genie, which evolves and combines spatio-spectral image processing tools for remotely sensed imagery. We describe our representation of candidate image processing pipelines, and discuss our set of primitive image operators. Our primary application has been in the field of geospatial feature extraction, including wildfire scars and general land-cover classes, using publicly available multi-spectral imagery (MSI) and hyper-spectral imagery (HSI). Here, we demonstrate our system on Landsat 7 Enhanced Thematic Mapper (ETM+) MSI. We exhibit an evolved pipeline, and discuss its operation and performance.

  12. Motor imagery enhancement paradigm using moving rubber hand illusion system.

    Science.gov (United States)

    Minsu Song; Jonghyun Kim

    2017-07-01

    Motor imagery (MI) has been widely used in neurorehabilitation and brain computer interface. The size of event-related desynchronization (ERD) is a key parameter for successful motor imaginary rehabilitation and BCI adaptation. Many studies have used visual guidance for enhancement/ amplification of motor imagery ERD amplitude, but their enhancements were not significant. We propose a novel ERD enhancing paradigm using body-ownership illusion, or also known as rubber hand illusion (RHI). The system was made by motorized, moving rubber hand which can simulate wrist extension. The amplifying effects of the proposed RHI paradigm were evaluated by comparing ERD sizes of the proposed paradigm with motor imagery and actual motor execution paradigms. The comparison result shows that the improvement of ERD size due to the proposed paradigm was statistically significant (pparadigms.

  13. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  14. High Resolution Imagery of Nikunau Island Coral Reef Systems Prior to and During Suspected Bleaching Events

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a collection of imagery of Nikunau Island coral reef systems. They are pairs of imagery where one image was acquired during a suspected bleaching...

  15. High Resolution Imagery of Keppel Island Coral Reef Systems Prior to and During Suspected Bleaching Events

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a collection of imagery of Keppel Island coral reef systems. They are pairs of imagery where one image was acquired during a suspected bleaching...

  16. High Resolution Imagery of Howland Island Coral Reef Systems Prior to and During Suspected Bleaching Events

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a collection of imagery of Howland Island coral reef systems. They are pairs of imagery where one image was acquired during a suspected bleaching...

  17. LA0801 Ortho-rectified Aerial Imagery of Terrebonne and Timbalier Bays Barrier Islands, Louisiana.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AERO-METRIC, INC. (AME) was provided aerial photographic imagery collected by NOAA along the shoreline of Louisiana. The purpose of the imagery was to provide...

  18. USGS Imagery Only Large-scale Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Imagery Only Large service from The National Map (TNM) consists of National Agriculture Imagery Program (NAIP) and high resolution orthoimagery (HRO) that...

  19. Aerial Photography and Imagery, Ortho-Corrected - 2013 Digital Orthophotos - Liberty County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital ortho imagery covering Liberty County, FL. This 1"=200' scale imagery is comprised of 24 bit natural color orthophotography with...

  20. Aerial Photography and Imagery, Ortho-Corrected - 2013 Digital Orthophotos - Calhoun County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital ortho imagery covering Calhoun and Gulf Counties, FL. This 1"=200' scale imagery is comprised of natural color orthoimagery with...