Applied mathematical methods in nuclear thermal hydraulics
International Nuclear Information System (INIS)
Ransom, V.H.; Trapp, J.A.
1983-01-01
Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated
Virginia Power thermal-hydraulics methods
International Nuclear Information System (INIS)
Anderson, R.C.; Basehore, K.L.; Harrell, J.R.
1987-01-01
Virginia Power's nuclear safety analysis group is responsible for the safety analysis of reload cores for the Surry and North Anna power stations, including the area of core thermal-hydraulics. Postulated accidents are evaluated for potential departure from nucleate boiling violations. In support of these tasks, Virginia Power has employed the COBRA code and the W-3 and WRB-1 DNB correlations. A statistical DNBR methodology has also been developed. The code, correlations and statistical methodology are discussed
Thermal-hydraulic methods in fast reactor safety
International Nuclear Information System (INIS)
Weber, D.P.; Briggs, L.L.
1985-01-01
Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided
Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer
Energy Technology Data Exchange (ETDEWEB)
D. S. Lucas
2004-10-01
A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.
Parallelization methods study of thermal-hydraulics codes
International Nuclear Information System (INIS)
Gaudart, Catherine
2000-01-01
The variety of parallelization methods and machines leads to a wide selection for programmers. In this study we suggest, in an industrial context, some solutions from the experience acquired through different parallelization methods. The study is about several scientific codes which simulate a large variety of thermal-hydraulics phenomena. A bibliography on parallelization methods and a first analysis of the codes showed the difficulty of our process on the whole applications to study. Therefore, it would be necessary to identify and extract a representative part of these applications and parallelization methods. The linear solver part of the codes forced itself. On this particular part several parallelization methods had been used. From these developments one could estimate the necessary work for a non initiate programmer to parallelize his application, and the impact of the development constraints. The different methods of parallelization tested are the numerical library PETSc, the parallelizer PAF, the language HPF, the formalism PEI and the communications library MPI and PYM. In order to test several methods on different applications and to follow the constraint of minimization of the modifications in codes, a tool called SPS (Server of Parallel Solvers) had be developed. We propose to describe the different constraints about the optimization of codes in an industrial context, to present the solutions given by the tool SPS, to show the development of the linear solver part with the tested parallelization methods and lastly to compare the results against the imposed criteria. (author) [fr
Study of thermal-hydraulic analyses with CIP method
International Nuclear Information System (INIS)
Doi, Yoshihiro
1996-09-01
New type of numerical scheme CIP has been proposed for solving hyperbolic type equations and the CIP is focused on as a less numerical diffusive scheme. C-CUP method with the CIP scheme is adopted to numerical simulations that treat compressible and incompressible fluids, phase change phenomena and Mixture fluids. To evaluate applicabilities of the CIP scheme and C-CUP method for thermal hydraulic analyses related to Fast Breeder Reactors (FBRs), the scheme and the method were reviewed. Feature of the CIP scheme and procedure of the C-CUP method were presented. The CIP scheme is used to solve linear hyperbolic type equations for advection term in basic equations of fluids. Key issues of the scheme is that profile between grid points is described to solve the equation by cubic polynomial and spatial derivatives of the polynomial. The scheme can capture steep change of solution and suppress numerical error. In the C-CUP method, the basic equations of fluids are divided into advection terms and the other terms. The advection terms is solved with CIP scheme and the other terms is solved with difference method. The C-CUP method is robust for numerical instability, but mass of fluid will be in unfair preservation with nonconservative equations for fluids. Numerical analyses with the CIP scheme and the C-CUP method has been performed for phase change, mixture and moving object. These analyses are depend on characteristics of that the scheme and the method are robust for steep change of density and useful for interface tracking. (author)
Momentum integral network method for thermal-hydraulic transient analysis
International Nuclear Information System (INIS)
Van Tuyle, G.J.
1983-01-01
A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion
CHF predictor derived from a 3D thermal-hydraulic code and an advanced statistical method
International Nuclear Information System (INIS)
Banner, D.; Aubry, S.
2004-01-01
A rod bundle CHF predictor has been determined by using a 3D code (THYC) to compute local thermal-hydraulic conditions at the boiling crisis location. These local parameters have been correlated to the critical heat flux by using an advanced statistical method based on spline functions. The main characteristics of the predictor are presented in conjunction with a detailed analysis of predictions (P/M ratio) in order to prove that the usual safety methodology can be applied with such a predictor. A thermal-hydraulic design criterion is obtained (1.13) and the predictor is compared with the WRB-1 correlation. (author)
Perturbative methods applied for sensitive coefficients calculations in thermal-hydraulic systems
International Nuclear Information System (INIS)
Andrade Lima, F.R. de
1993-01-01
The differential formalism and the Generalized Perturbation Theory (GPT) are applied to sensitivity analysis of thermal-hydraulics problems related to pressurized water reactor cores. The equations describing the thermal-hydraulic behavior of these reactors cores, used in COBRA-IV-I code, are conveniently written. The importance function related to the response of interest and the sensitivity coefficient of this response with respect to various selected parameters are obtained by using Differential and Generalized Perturbation Theory. The comparison among the results obtained with the application of these perturbative methods and those obtained directly with the model developed in COBRA-IV-I code shows a very good agreement. (author)
Thermally Actuated Hydraulic Pumps
Jones, Jack; Ross, Ronald; Chao, Yi
2008-01-01
Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research
Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer
Energy Technology Data Exchange (ETDEWEB)
Lucas, D.S.
2004-10-03
This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.
International Nuclear Information System (INIS)
King, J.B.; Anghaie, S.; Domanus, H.M.
1987-01-01
Finite difference approximations to the continuity, momentum, and energy equations in thermal hydraulics codes result in a system of N by N equations for a problem having N field points. In a three dimensional problem, N increases as the problem becomes larger or more complex, and more rapidly as the computational mesh size is reduced. As a consequence, the execution time required to solve the problem increases, which may lead to placing limits on the problem resolution or accuracy. A conventinal method of solution of these systems of equations is the Successive Over Relaxation (SOR) technique. However, for a wide range of problems the execution time may be reduced by using a more efficient linear equation solver. One such method is the conjugate gradient method which was implemented in COMMIX-1B thermal hydraulics code. It was found that the execution time required to solve the resulting system of equations was reduced by a factor of about 2 for some problems. This paper summarizes the characteristics of these iterative solution procedures and compares their performance in modeling of a variety of reactor thermal hydraulic problems, using the COMMIX-1B computer code
A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS
Energy Technology Data Exchange (ETDEWEB)
D’Auria, F; Rohatgi, Upendra S.
2017-01-12
The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.
International Nuclear Information System (INIS)
Choi, Sun Rock; Lim, Jae Yong; Kim, Sang Ji
2013-01-01
In this work, various core thermal-hydraulic design methods, which have arisen during the development of a prototype SFR, are compared to establish a proper design procedure. Comparative studies have been performed to determine the appropriate design method for the prototype SFR. The results show that the minimization method show a lower cladding midwall temperature than the fixed outlet temperature methods and superior thermal safety margin with the same coolant flow. The Korea Atomic energy Research Institute (KAERI) has performed a conceptual SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damages in SFR subassemblies are arisen from a creep induced failure. The creep limit is evaluated based on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, the core thermalhydraulic design method, which eventually determines the cladding temperature, is highly important to assure a safe and reliable operation of the reactor systems
International Nuclear Information System (INIS)
1980-01-01
Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base
Teaching Thermal Hydraulics and Numerical Methods: An Introductory Control Volume Primer
International Nuclear Information System (INIS)
D. S. Lucas
2004-01-01
A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com
Thermal-hydraulic characteristics of reacting zone for TWR bundles based on CFD method
International Nuclear Information System (INIS)
Lu Chuan; Yan Mingyu; Lu Jianchao
2013-01-01
Thermal-hydraulic characteristics of reacting zone for TWR (travelling wave reactor) bundles were analysed by CFD method. The calculation results of 7, 19 and 37 fuel pin bundles show the similar characteristics. The hot coolant seems to congregate into the centre as flowing to the downstream area. The high temperature coolant always distributes in the inner area while the temperature shows distinct gradation in the outer area. The temperature difference is more than 100 ℃ for the bundle whose diameter is about 26 cm. The major temperature gradations mainly locate in the outermost fuel rods of two circles while other circles show much smaller temperature gradients. This conclusion is estimated to be true for more fuel pin bundles such as 217 fuel pin bundles. The fuel assembly structure of the existing TWR design should be optimized in future. (authors)
International Nuclear Information System (INIS)
Avramova, M.; Ivanov, K.; Arenas, C.
2013-01-01
The principles that support the risk-informed regulation are to be considered in an integrated decision-making process. Thus, any evaluation of licensing issues supported by a safety analysis would take into account both deterministic and probabilistic aspects of the problem. The deterministic aspects will be addressed using Best Estimate code calculations and considering the associated uncertainties i.e. Plus Uncertainty (BEPU) calculations. In recent years there has been an increasing demand from nuclear research, industry, safety and regulation for best estimate predictions to be provided with their confidence bounds. This applies also to the sub-channel thermal-hydraulic codes, which are used to evaluate local safety parameters. The paper discusses the extension of BEPU methods to the sub-channel thermal-hydraulic codes on the example of the Pennsylvania State University (PSU) version of COBRA-TF (CTF). The use of coupled codes supplemented with uncertainty analysis allows to avoid unnecessary penalties due to incoherent approximations in the traditional decoupled calculations, and to obtain more accurate evaluation of margins regarding licensing limit. This becomes important for licensing power upgrades, improved fuel assembly and control rod designs, higher burn-up and others issues related to operating LWRs as well as to the new Generation 3+ designs being licensed now (ESBWR, AP-1000, EPR-1600 and etc.). The paper presents the application of Generalized Perturbation Theory (GPT) to generate uncertainties associated with the few-group assembly homogenized neutron cross-section data used as input in coupled reactor core calculations. This is followed by a discussion of uncertainty propagation methodologies, being implemented by PSU in cooperation of Technical University of Catalonia (UPC) for reactor core calculations and for comprehensive multi-physics simulations. (authors)
International Nuclear Information System (INIS)
Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.
2014-01-01
Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement
Steam generator thermal-hydraulics
International Nuclear Information System (INIS)
Inch, W.W.; Scott, D.A.; Carver, M.B.
1980-01-01
This paper discusses a code for detailed numerical modelling of steam generator thermal-hydraulics, and describes related experimental programs designed to promote in-depth understanding of three-dimensional two-phase flow. (auth)
International Nuclear Information System (INIS)
Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong
2016-01-01
In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy
Energy Technology Data Exchange (ETDEWEB)
Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy.
Liquid metal thermal-hydraulics
International Nuclear Information System (INIS)
Kottowski-Duemenil, H.M.
1994-01-01
This textbook is a report of the 26 years activity of the Liquid Metal Boiling Working Group (LMBWG). It summarizes the state of the art of liquid metal thermo-hydraulics achieved through the collaboration of scientists concerned with the development of the Fast Breeder Reactor. The first chapter entitled ''Liquid Metal Boiling Behaviour'', presents the background and boiling mechanisms. This section gives the reader a brief but thorough survey on the superheat phenomena in liquid metals. The second chapter of the text, ''A Review of Single and Two-Phase Flow Pressure Drop Studies and Application to Flow Stability Analysis of Boiling Liquid Metal Systems'' summarizes the difficulty of pressure drop simulation of boiling sodium in core bundles. The third chapter ''Liquid Metal Dry-Out Data for Flow in Tubes and Bundles'' describes the conditions of critical heat flux which limits the coolability of the reactor core. The fourth chapter dealing with the LMFBR specific topic of ''Natural Convection Cooling of Liquid Metal Systems''. This chapter gives a review of both plant experiments and out-of-pile experiments and shows the advances in the development of computing power over the past decade of mathematical modelling ''Subassembly Blockages Suties'' are discussed in chapter five. Chapter six is entitled ''A Review of the Methods and Codes Available for the Calculation on Thermal-Hydraulics in Rod-Cluster and other Geometries, Steady state and Transient Boiling Flow Regimes, and the Validation achieves''. Codes available for the calculation of thermal-hydraulics in rod-clusters and other geometries are reviewed. Chapter seven, ''Comparative Studies of Thermohydraulic Computer Code Simulations of Sodium Boiling under Loss of Flow Conditions'', represents one of the key activities of the LMBWG. Several benchmark exercises were performed with the aim of transient sodium boiling simulation in single channels and bundle blockages under steady state conditions and loss of
International Nuclear Information System (INIS)
Koshizuka, S.; Oka, Y.
1997-01-01
Moving Particle Semi-implicit (MPS) method is presented. Partial differential operators in the governing equations, such as gradient and Laplacian, are modeled as particle interactions without grids. A semi-implicit algorithm is used for incompressible flow analysis. In the present study, calculation models of moving solids, thin structures and phase change between liquid and gas are developed. Interaction between breaking waves and a floating solid is simulated using the model of moving solids. Calculations of collapsing water with a vertical thin plate show that water spills out over the plate which is largely deformed. Impingement of water jets on a molten metal pool is analyzed to investigate fundamental processes of vapor explosions. Water, vapor and molten metal are simultaneously calculated with evaporation. This calculation reveals that filaments of the molten metal emerge as the fragmentation process of vapor explosions. The MPS method is useful for complex problems involving moving interfaces even if topological deformations occur. (author)
International Nuclear Information System (INIS)
Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.
1986-11-01
COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods
GCFR thermal-hydraulic experiments
International Nuclear Information System (INIS)
Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.
1980-01-01
The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company
An overview on rod-bundle thermal-hydraulic analyses
International Nuclear Information System (INIS)
Sha, W.T.
1980-01-01
Three methods used in rod-bundle thermal-hydraulic analysis are summarized. These methods are: (1) subchannel analysis, (2) porous medium formulation with volume porosity, surface permeability, distributed resistance and distributed heat source (sink) and, (3) bench-mark rod-bundle thermal-hydraulic analysis using a boundary-fitted coordinate system. Basic limitations and merits of each method are delineated. (orig.)
Analysis of uncertainties of thermal hydraulic calculations
International Nuclear Information System (INIS)
Macek, J.; Vavrin, J.
2002-12-01
In 1993-1997 it was proposed, within OECD projects, that a common program should be set up for uncertainty analysis by a probabilistic method based on a non-parametric statistical approach for system computer codes such as RELAP, ATHLET and CATHARE and that a method should be developed for statistical analysis of experimental databases for the preparation of the input deck and statistical analysis of the output calculation results. Software for such statistical analyses would then have to be processed as individual tools independent of the computer codes used for the thermal hydraulic analysis and programs for uncertainty analysis. In this context, a method for estimation of a thermal hydraulic calculation is outlined and selected methods of statistical analysis of uncertainties are described, including methods for prediction accuracy assessment based on the discrete Fourier transformation principle. (author)
Reactor Thermal Hydraulic Numerical Calculation And Modeling
International Nuclear Information System (INIS)
Duong Ngoc Hai; Dang The Ba
2008-01-01
In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)
International Nuclear Information System (INIS)
Ridluan, Artit; Tokuhiro, Akira; Manic, Milos; Patterson, Michael; Danchus, William
2009-01-01
In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)
HANARO thermal hydraulic accident analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1996-06-01
For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.
Energy Technology Data Exchange (ETDEWEB)
Kamide, Hideki, E-mail: kamide.hideki@jaea.go.jp; Ohshima, Hiroyuki, E-mail: ohshima.hiroyuki@jaea.go.jp; Sakai, Takaaki, E-mail: sakai.takaaki@jaea.go.jp; Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp
2017-02-15
Highlights: • Thermal hydraulic issues for safety design criteria of sodium cooled fast reactors. • Measurement of velocity data in a subchannel surrounded by wire wrapped fuel-pins. • Statistical evaluation of core hot spot temperature during natural circulation. • Simulation of dynamics of molten fuel pool in a core disruptive accident. • V&V procedure of a multi-dimensional thermal hydraulic code on thermal striping. - Abstract: In the framework of the Generation-IV International Forum, the safety design criteria (SDC) incorporating safety-related R&D results on innovative technologies and lessons learned from Fukushima Dai-ichi nuclear power plants accident has been established to provide the set of general criteria for the safety designs of structures, systems and components of Generation-IV Sodium-cooled Fast Reactors (Gen-IV SFRs). A number of thermal-hydraulic evaluations are necessary to meet the concept of the criteria in the design studies of Gen-IV SFRs. This paper focuses on four kinds of thermal-hydraulic issues associated with the SDC, i.e., fuel subassembly thermal-hydraulics, natural circulation decay heat removal, core disruptive accidents, and thermal striping. Progress of evaluation methods on these issues is shown with activities on verification and validation (V&V) and experimental studies towards commercialization of SFR in Japan. These evaluation methods are planned to be eventually integrated into a comprehensive numerical simulation system that can be applied to all possible phenomena in SFR systems and that can be expected to become an effective tool for the development of human resource and the handing our knowledge and technologies down.
Directory of Open Access Journals (Sweden)
A. Rais
2015-01-01
Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.
Thermal-hydraulic unreliability of passive systems
International Nuclear Information System (INIS)
Tzanos, C.P.; Saltos, N.T.
1995-01-01
Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed
Thermal-hydraulic design of the 200 MW NHR
International Nuclear Information System (INIS)
Li Jincai; Gao Zuying; Xu Baocheng; He Junxiao
1997-01-01
The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs
Thermal-hydraulic design of the 200 MW NHR
Energy Technology Data Exchange (ETDEWEB)
Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)
1997-09-01
The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs.
Experimental thermal hydraulics in support of FBR
International Nuclear Information System (INIS)
Padmakumar, G.; Anand Babu, C.; Kalyanasundaram, P.; Vaidyanathan, G.
2009-01-01
The thermal hydraulic design plays a crucial role for the safe and economical deployment of Liquid Metal Cooled Fast Breeder Reactor (LMFBR). Robust experimental programmes are required in support of LMFBR thermal hydraulics design. The philosophy of testing has been to construct small scale models to understand the physical behaviour and to build larger scale models to optimize the component design. The experiments are conducted either in sodium or using a simulant like water/air. The paper gives a brief account of the various thermal hydraulic experiments carried out in support of the design of Prototype Fast Breeder Reactor (PFBR). (author)
Application of an analytical method for solution of thermal hydraulic conservation equations
Energy Technology Data Exchange (ETDEWEB)
Fakory, M.R. [Simulation, Systems & Services Technologies Company (S3 Technologies), Columbia, MD (United States)
1995-09-01
An analytical method has been developed and applied for solution of two-phase flow conservation equations. The test results for application of the model for simulation of BWR transients are presented and compared with the results obtained from application of the explicit method for integration of conservation equations. The test results show that with application of the analytical method for integration of conservation equations, the Courant limitation associated with explicit Euler method of integration was eliminated. The results obtained from application of the analytical method (with large time steps) agreed well with the results obtained from application of explicit method of integration (with time steps smaller than the size imposed by Courant limitation). The results demonstrate that application of the analytical approach significantly improves the numerical stability and computational efficiency.
Energy Technology Data Exchange (ETDEWEB)
Xi, Xi [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Xiao, Zejun, E-mail: fabulous_2012@sina.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yan, Xiao; Li, Yongliang; Huang, Yanping [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China)
2013-05-15
Highlights: ► CFX and MCNP codes are suitable to calculate the axial power profile of the FA. ► The partition method in the calculation will affect the final result. ► The density feedback has little effect on the axial power profile of CSR1000 FA. -- Abstract: SCWR (super critical water reactor) is one of the IV generation nuclear reactors in the world. In a typical SCWR the water enters the reactor from the cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change in temperature, there is a huge density change of the water along the axial direction of the fuel assembly (FA), which will affect the moderating power of the water. So the axial power distribution of the SCWR FA could be different from the traditional PWR FA.In this paper, it is the first time that the thermal hydraulics code CFX and neutronics code MCNP are used to analyze the axial power distribution of the SCWR FA. First, the factors in the coupled method which could affect the result are analyzed such as the initialization value or the partition method especially in the MCNP code. Then the axial power distribution of the Europe HPLWR FA is obtained by the coupled method with the two codes and the result is compared with that obtained by Waata and Reiss. There is a good agreement among the three kinds of results. At last, this method is used to calculate the axial power distribution of the Chinese SCWR (CSR1000) FA. It is found the axial power profile of the CSR1000 FA is not so sensitive to the change of the moderator density.
Review of best estimate plus uncertainty methods of thermal-hydraulic safety analysis
International Nuclear Information System (INIS)
Prosek, A.; Mavko, B.
2003-01-01
In 1988 United States Nuclear Regulatory Commission approved the revised rule on the acceptance of emergency core cooling system (ECCS) performance. Since that there has been significant interest in the development of codes and methodologies for best-estimate loss-of-coolant accident (LOCAs) analyses. Several new best estimate plus uncertainty methods (BEPUs) were developed in the world. The purpose of the paper is to review the developments in the direction of best estimate approaches with uncertainty quantification and to discuss the problems in practical applications of BEPU methods. In general, the licensee methods are following original methods. The study indicated that uncertainty analysis with random sampling of input parameters and the use of order statistics for desired tolerance limits of output parameters is today commonly accepted and mature approach. (author)
International Nuclear Information System (INIS)
Ono, H.; Mototani, A.; Kawamura, S.; Abe, N.; Takeuchi, Y.
2004-01-01
The post-BT standard is a new fuel integrity standard or the Atomic Energy Society of Japan that allows temporary boiling transition condition in the evaluation for BWR anticipated operational occurrences. For application of the post-BT standard to BWR anticipated operational occurrences evaluation, it is important to identify which fuel assemblies and which axial, radial positions of fuel rods have temporarily experienced the post-BT condition and to evaluates how high the fuel cladding temperature rise was and how long the dryout duration continued. Therefore, whole bundle simulation, in which each fuel assembly is simulated independently by one thermal-hydraulic component, is considered to be an effective analytical method. In the present study, a best-estimate thermal-hydraulic code, TRACG02, has been modified to extend it predictive capability by implementing the post-BT evaluation model such as the post-BT heat transfer correlation and rewetting correlation and enlarging the number of components used for BWR plant simulation. Based on new evaluation methods, BWR core thermal-hydraulic behavior has been analyzed for typical anticipated operational occurrence conditions. The location where boiling transition occurs and the severity of fuel assembly in the case of boiling transition conditions such as fuel cladding temperature, which are important factors in determining whether the reuse of the fuel assembly can be permitted, were well predicted by the proposed evaluation method. In summary, a new evaluation method for a detailed BWR core thermal-hydraulic analysis based on the post-BT standard of the Atomic Energy Society of Japan has been developed and applied to the evaluation of the post-BT standard during the actual BWR plant anticipated operational occurrences. (author)
Thermal hydraulics and mechanics core design programs
International Nuclear Information System (INIS)
Heinecke, J.
1992-10-01
The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology
Horizontal steam generator thermal-hydraulics
Energy Technology Data Exchange (ETDEWEB)
Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)
1995-09-01
Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.
Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics
Kolev, Nikolay Ivanov
2012-01-01
The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...
Multiphase flow dynamics 5 nuclear thermal hydraulics
Kolev, Nikolay Ivanov
2015-01-01
This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...
International Nuclear Information System (INIS)
Ninokata, Hisashi; Misawa, Takeharu; Baglietto, Emilio; Sorokin, A.P.; Maekawa, Isamu; Ohshima, Hiroyuki; Yamaguchi, Akira
2003-03-01
A method of large scale direct numerical simulation of turbulent flows in a high burn-up fuel pin bundle is proposed to evaluate wall shear stress and temperature distributions on the pin surfaces as well as detailed coolant velocity and temperature distributions inside subchannels under various thermal hydraulic conditions. This simulation is aimed at providing a tool to confirm margins to thermal hydraulics design limits of the nuclear fuels and at the same time to be used in design-by-analysis approaches. The method will facilitate thermal hydraulic design of high performance LMFR core fuels characterized by high burn-up, ultra long life, high reliable and safe performances, easiness of operation and maintenance, minimization of radio active wastes, without much relying on such empirical approach as hot spot factor and sub-factors, and above all the high cost mock up experiments. A pseudo direct numerical simulation of turbulence (DNS) code is developed, first on the Cartesian coordinates and then on the curvilinear boundary fit coordinates that enables us to reproduce thermal hydraulics phenomena in such a complicated flow channel as subchannels in a nuclear fuel pin assembly. The coordinate transformation is evaluated and demonstrated to yield correct physical quantities by carrying out computations and comparisons with experimental data with respect to the distributions of various physical quantities and turbulence statistics for fluid flow and heat transfers in various kinds of simple flow channel geometry. Then the boundary fitted pseudo DNS for flows inside an infinite pin array configuration is carried out and compared with available detailed experimental data. In parallel similar calculations are carried out using a commercial code STAR-CD to cross-check the DNS performances. As a results, the pseudo DNS showed reasonable comparisons with experiments as well as the STAR-CD results. Importance of the secondary flow influences is emphasized on the momentum
International Nuclear Information System (INIS)
Mizuno, Masahiro; Yamaguchi, Katsuhisa; Uto, Nariaki
1999-07-01
A design study of a new in-pile experimental reactor, SERAPH (Safety Engineering Reactor for Accident PHenomenology), for FBR safety research has progressed at JNC (Japan Nuclear Cycle Development Institute). SERAPH is intended for various in-pile experiments to be performed under quasi-steady state and various transient operation modes. In order to evaluate the driver core performance in conducting such experiments, clarify the relating design issues to be resolved and refine the experimental needs, it is indispensable to comprehend the allowable margin for the thermal-hydraulic fuel pin design since it largely affects the strategy for the driver core design. This report presents a thermal-hydraulic design method for the driver core fuel pins, which is a combination of a two-dimensional time-dependent heat transfer analysis code TAC-2D and a general non-linear finite-element structural analysis code FINAS. In TAC-2D, the allowable spatial mesh and the time step sizes are evaluated. The code is modified so as to treat time-dependent thermal properties, include an improved gap heat-transfer model and treat the change of intra-pin gap width under transient modes, for the purpose of improving the accuracy of evaluating heat transfer characteristics which gives a significant impact on the thermal-hydraulic design. As for FINAS, the number of element nodes and spatial meshes required to obtain adequate accuracy for the thermal stress characteristics of a fuel pellet during transient modes are investigated. In addition, post-processing tools are newly developed to process the calculation results obtained from these codes. The results of this work contribute to advancing the fuel pin design study for SERAPH as well with the investigation on the technique of manufacturing fuel pins. (author)
Proceedings of the third nuclear thermal hydraulics meeting
International Nuclear Information System (INIS)
Anon.
1987-01-01
This book contains the proceedings of the Thermal Hydraulics Division of the American Nuclear Society. The papers presented include: Simulator qualification using engineering codes and Development of thermal hydraulic analysis capabilities for Oyster Creek
International Nuclear Information System (INIS)
Toti, A.; Vierendeels, J.; Belloni, F.
2017-01-01
Highlights: • A system thermal-hydraulic/CFD coupling methodology is proposed for high-fidelity transient flow analyses. • The method is based on domain decomposition and implicit numerical scheme. • A novel interface Quasi-Newton algorithm is implemented to improve stability and convergence rate. • Preliminary validation analyses on the TALL-3D experiment. - Abstract: The paper describes the development and validation of a coupling methodology between the best-estimate system thermal-hydraulic code RELAP5-3D and the CFD code FLUENT, conceived for high fidelity plant-scale safety analyses of pool-type reactors. The computational tool is developed to assess the impact of three-dimensional phenomena occurring in accidental transients such as loss of flow (LOF) in the research reactor MYRRHA, currently in the design phase at the Belgian Nuclear Research Centre, SCK• CEN. A partitioned, implicit domain decomposition coupling algorithm is implemented, in which the coupled domains exchange thermal-hydraulics variables at coupling boundary interfaces. Numerical stability and interface convergence rates are improved by a novel interface Quasi-Newton algorithm, which is compared in this paper with previously tested numerical schemes. The developed computational method has been assessed for validation purposes against the experiment performed at the test facility TALL-3D, operated by the Royal Institute of Technology (KTH) in Sweden. This paper details the results of the simulation of a loss of forced convection test, showing the capability of the developed methodology to predict transients influenced by local three-dimensional phenomena.
International Nuclear Information System (INIS)
Sun, Zhi-xue; Zhang, Xu; Xu, Yi; Yao, Jun; Wang, Hao-xuan; Lv, Shuhuan; Sun, Zhi-lei; Huang, Yong; Cai, Ming-yu; Huang, Xiaoxue
2017-01-01
The Enhanced Geothermal System (EGS) creates an artificial geothermal reservoir by hydraulic fracturing which allows heat transmission through the fractures by the circulating fluids as they extract heat from Hot Dry Rock (HDR). The technique involves complex thermal–hydraulic–mechanical (THM) coupling process. A numerical approach is presented in this paper to simulate and analyze the heat extraction process in EGS. The reservoir is regarded as fractured porous media consisting of rock matrix blocks and discrete fracture networks. Based on thermal non-equilibrium theory, the mathematical model of THM coupling process in fractured rock mass is used. The proposed model is validated by comparing it with several analytical solutions. An EGS case from Cooper Basin, Australia is simulated with 2D stochastically generated fracture model to study the characteristics of fluid flow, heat transfer and mechanical response in geothermal reservoir. The main parameters controlling the outlet temperature of EGS are also studied by sensitivity analysis. The results shows the significance of taking into account the THM coupling effects when investigating the efficiency and performance of EGS. - Highlights: • EGS reservoir comprising discrete fracture networks and matrix rock is modeled. • A THM coupling model is proposed for simulating the heat extraction in EGS. • The numerical model is validated by comparing with several analytical solutions. • A case study is presented for understanding the main characteristics of EGS. • The THM coupling effects are shown to be significant factors to EGS's running performance.
Thermal hydraulics in undergraduate nuclear engineering education
International Nuclear Information System (INIS)
Theofanous, T.G.
1986-01-01
The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future
Thermal-hydraulic analysis of nuclear reactors
Zohuri, Bahman
2015-01-01
This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...
Thermal-Hydraulic Experiment Facility (THEF)
International Nuclear Information System (INIS)
Martinell, J.S.
1982-01-01
This paper provides an overview of the Thermal-Hydraulic Experiment Facility (THEF) at the Idaho National Engineering Laboratory (INEL). The overview describes the major test systems, measurements, and data acquisition system, and presents objectives, facility configuration, and results for major experimental projects recently conducted at the THEF. Plans for future projects are also discussed. The THEF is located in the Water Reactor Research Test Facility (WRRTF) area at the INEL
Thermal-hydraulics of actinide burner reactors
International Nuclear Information System (INIS)
Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.
1989-07-01
As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)
Development of regulatory technology for thermal-hydraulic safety analysis
International Nuclear Information System (INIS)
Bang, Young Seok; Lee, S. H.; Ryu, Y. H.
2001-02-01
The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process
Thermal Hydraulic Design of PWT Accelerating Structures
Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan
2005-01-01
Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.
Study of thermal - hydraulic sensors signal fluctuations in PWR
International Nuclear Information System (INIS)
Hennion, F.
1987-10-01
This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions [fr
Review of computational thermal-hydraulic modeling
International Nuclear Information System (INIS)
Keefer, R.H.; Keeton, L.W.
1995-01-01
Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix
Mercury Thermal Hydraulic Loop (MTHL) Summary Report
Energy Technology Data Exchange (ETDEWEB)
Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wendel, Mark W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farquharson, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jallouk, Philip A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFee, Marshall T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruggles, Art E. [Univ. of Tennessee, Knoxville, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-03-01
The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.
Optimised Iteration in Coupled Monte Carlo - Thermal-Hydraulics Calculations
Hoogenboom, J. Eduard; Dufek, Jan
2014-06-01
This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration method are also tested and it is concluded that the presented iteration method is near optimal.
Thermal hydraulic model descrition of TASS/SMR
Energy Technology Data Exchange (ETDEWEB)
Yoon, Han Young; Kim, H. C.; Chung, Y. J.; Lim, H. S.; Yang, S. H
2001-04-01
The TASS/SMR code has been developed for the safety analysis of SMART. The governing equations were applied only to the primary coolant system in TASS which had been developed at KAERI. In TASS/SMR, the solution method is improved so that the primary and secondary coolant systems are solved simultaneously. Besides the solution method, thermal-hydraulic models are incorporated, in TASS/SMR, such as non-condensible gas model, helical steam generator heat transfer model, and passive residual heat removal system (PRHRS) heat transfer model for the application to SMART. The governing equtions of TASS/SMR are based on the drift-flux model so that the accidents and transients accompaning with two-phase flow can be analized. This report describes the governing equations and solution methods used in TASS/SMR and also includes the description for the thermal hydraulic models for SMART design.
A study on the thermal hydraulics in rod bundles
International Nuclear Information System (INIS)
Chung, Moon Ki; Yang, Sun Kyu
1989-03-01
In order to improve the thermal hydraulic characteristics of the nuclear reactor core, it is necessary to obtain better understanding of the coolant flow and the enthalpy distribution in complex rod bundle geometries. The purpose of this report is to obtain a comprehensive survey on the thermal hydraulic in rod bundles from both experimental and numerical point of view. From references on experimental study, measurement methods and results of the flow velocity and the pressure drop in the subchannels of rod bundles are expressed. The microscopic flow characteristics of the subchannels and spacer grid effect on the flow structure are described. Physical phenomena and measurement methods of the secondary flow are also described. From references on the numerical study, general numerical methods are expressed. Numerical studies on the laminar flow and turbulent flow such as 1-equation and 2-equation model are reviewed.(Author)
SBWR core thermal hydraulic analysis during startup
International Nuclear Information System (INIS)
Lin, J.H.; Huang, R.L.; Sawyer, C.D.
1993-01-01
This paper reports on a thermal hydraulic analysis of the SIMPLIFIED BOILING WATER REACTOR (SBWR) during startup. The potential instability during a SBWR startup has drawn the attention of designers, researchers, and engineers. It has not been a concern for a Boiling Water Reactor (BWR) with forced recirculation; however, for SBWR with natural circulation the concern exists. The concern is about the possibility of a geysering mode oscillation during SBWR startup from a cold temperature and a low system pressure with a low natural circulation flow rate. A thermal hydraulic analysis of the SBWR is performed in simulation of the startup using the TRACG computer code. The temperature, pressure, and reactor power profiles of SBWR during the startup are presented. The results are compared with the data of a natural circulation boiling water reactor, the DODEWAARD plant, in which no instabilities have been observed during many startups. It is shown that a SBWR startup which follows proper procedures, geysering and other modes of oscillations can be avoided
Thermal hydraulic design of PFBR core
International Nuclear Information System (INIS)
Roychowdhury, D.G.; Vinayagam, P.P.; Ravichandar, S.C.
2000-01-01
The thermal-hydraulic design of core is important in respecting temperature limits while achieving higher outlet temperature. This paper deals with the analytical process developed and implemented for analysing steady state thermal-hydraulics of PFBR core. A computer code FLONE has been developed for optimisation of flow allocation through the subassemblies (SA). By calibrating β n (ratio between the maximum channel temperature rise and SA average temperature rise) values with SUPERENERGY code and using these values in FLONE code, prediction of average and maximum coolant temperature distribution is found to be reasonably accurate. Hence, FLONE code is very powerful design tool for core design. A computer code SAPD has been developed to calculate the pressure drop of fuel and blanket SA. Selection of spacer wire pitch depends on the pressure drop, flow-induced vibration and the mixing characteristics. A parametric study was made for optimisation of spacer wire pitch for the fuel SA. Experimental programme with 19 pin-bundle has been undertaken to find the flow-induced vibration characteristics of fuel SA. Also, experimental programme has been undertaken on a full-scale model to find the pressure drop characteristics in unorificed SA, orifices and the lifting force on the SA. (author)
Thermal Hydraulic Tests for Reactor Core Safety
Energy Technology Data Exchange (ETDEWEB)
Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)
2007-06-15
The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.
BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test
International Nuclear Information System (INIS)
Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino
2002-01-01
Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)
Thermal-hydraulic tests for reactor safety system
International Nuclear Information System (INIS)
Chun, Se Young; Chung, Moon Ki; Baek, Won Pil
2002-05-01
Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena
Thermal hydraulic model validation for HOR mixed core fuel management
International Nuclear Information System (INIS)
Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de
1997-01-01
A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)
Thermal hydraulic reactor safety analyses and experiments
International Nuclear Information System (INIS)
Holmstroem, H.; Eerikaeinen, L.; Kervinen, T.; Kilpi, K.; Mattila, L.; Miettinen, J.; Yrjoelae, V.
1989-04-01
The report introduces the results of the thermal hydraulic reactor safety research performed in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1972-1987. Also practical applications i.e. analyses for the safety authorities and power companies are presented. The emphasis is on description of the state-of-the-art know how. The report describes VTT's most important computer codes, both those of foreign origin and those developed at VTT, and their assessment work, VTT's own experimental research, as well as international experimental projects and other forms of cooperation VTT has participated in. Appendix 8 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail.(orig.)
Proceedings of the 10. Meeting on Reactor Physics and Thermal Hydraulics
International Nuclear Information System (INIS)
Santos Bastos, W. dos
1995-01-01
These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods
International Nuclear Information System (INIS)
Sugawara, Yoshimasa; Yuki, Kazuhisa; Hashizume, Hidetoshi; Tanaka, Masa-aki; Muramatsu, Toshiharu
2004-10-01
In the region where two fluids with different temperatures mix, unstable fluid mixing like thermal striping occurs accompanying with unsteady temperature fluctuation of fluid. This temperature fluctuation is transported toward the surrounding area and becomes an important factor that induces thermal fatigue of structural materials, which sometimes results in crack generation of them. In fast breeder reactors that utilize liquid sodium as a coolant, the fluid temperature fluctuation could be easier to conduct toward the structural materials due to its high thermal conductivity, so that careful consideration for the thermal fatigue is required. In particular, since the low frequency band of temperature fluctuation strongly affects the thermal fatigue, evaluation and development of the relaxation and control methods for it become important issues. In this study, non-isothermal fluid mixing experiments in a T-junction area with a 90-degree bend upstream were carried out to estimate the fluid-temperature fluctuation in the vicinity of wall. The temperature fluctuations for various flow mixing conditions were measured, changing a velocity ratio and a pipe diameter ratio of a main pipe to a branch pipe to quantitatively evaluate the effect of a secondary flow on the temperature fluctuation. In addition, by analyzing both the visualization data taken by a PIV system and the temperature fluctuation data, it was attempted to construct a prediction formula for the temperature fluctuation. Our findings are summarized below. (1) Classifying the flow mixing pattern of jet flow running out from the branch pipe makes it possible to predict the maximum temperature fluctuation in the mixing area with higher accuracy by using the flow velocity ratio (0.2 -0.06 (d/D) 0.22 . Re-attachment Flow - deflecting Flow: Max(ΔTrms*)=0.64(v/V) -0.92 (d/D) 1.11 . (2) Prediction formulas for the maximum temperature fluctuation in the case of the curvature ratio of 1.0 are also constructed as
Energy Technology Data Exchange (ETDEWEB)
Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)
2002-03-01
This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)
International Nuclear Information System (INIS)
Luna, M.; Chavez, I.; Cajas, D.; Santos, R.
2015-01-01
The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m 2 *K, 3718 W/m 2 *K and 3042 W/m 2 *K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)
International Nuclear Information System (INIS)
Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki
2000-03-01
A quantitative evaluation on thermal striping, in which temperature fluctuation due to convective mixing among jets imposes thermal fatigue on structural components, is of importance for reactor safety. In the present study, a water experiment was performed on parallel triple-jet: cold jet at the center and hot jets in both sides. Three kinds of numerical analyses based on the finite difference method were carried out to compare the similarity with the experiment by use of respective different handling of turbulence such as a k-ε two equation turbulence model (k-ε Model), a low Reynolds number stress and heat flux equation model (LRSFM) and a direct numerical simulation (DNS). In the experiment, the jets were mainly mixed due to the coherent oscillation. The numerical result using k-ε Model could not reproduce the coherent oscillating motion of jets due to rolling-up fluid. The oscillations of the jets predicted by LRSFM and DNS were in good agreements with the experiment. The comparison between the coherent and random components in experimental temperature fluctuation obtained by using the phase-averaging shows that k-ε Model and LRSFM overestimated the random component and the coherent component respectively. The ratios of coherent to random components in total temperature fluctuation obtained from DNS were in good agreements with the experiment. The numerical analysis using DNS can reproduce the coherent oscillation of the jets and the coherent / random components in temperature fluctuation. The analysis using LRSFM could simulate the mixing process of the jets with the low frequency. (author)
Uncertainty Methods Framework Development for the TRACE Thermal-Hydraulics Code by the U.S.NRC
International Nuclear Information System (INIS)
Bajorek, Stephen M.; Gingrich, Chester
2013-01-01
The Code of Federal Regulations, Title 10, Part 50.46 requires that the Emergency Core Cooling System (ECCS) performance be evaluated for a number of postulated Loss-Of-Coolant-Accidents (LOCAs). The rule allows two methods for calculation of the acceptance criteria; using a realistic model in the so-called 'Best Estimate' approach, or the more prescriptive following Appendix K to Part 50. Because of the conservatism of Appendix K, recent Evaluation Model submittals to the NRC used the realistic approach. With this approach, the Evaluation Model must demonstrate that the Peak Cladding Temperature (PCT), the Maximum Local Oxidation (MLO) and Core-Wide Oxidation (CWO) remain below their regulatory limits with a 'high probability'. Guidance for Best Estimate calculations following 50.46(a)(1) was provided by Regulatory Guide 1.157. This Guide identified a 95% probability level as being acceptable for comparisons of best-estimate predictions to the applicable regulatory limits, but was vague with respect to acceptable methods in which to determine the code uncertainty. Nor, did it specify if a confidence level should be determined. As a result, vendors have developed Evaluation Models utilizing several different methods to combine uncertainty parameters and determine the PCT and other variables to a high probability. In order to quantify the accuracy of TRACE calculations for a wide variety of applications and to audit Best Estimate calculations made by industry, the NRC is developing its own independent methodology to determine the peak cladding temperature and other parameters of regulatory interest to a high probability. Because several methods are in use, and each vendor's methodology ranges different parameters, the NRC method must be flexible and sufficiently general. Not only must the method apply to LOCA analysis for conventional light-water reactors, it must also be extendable to new reactor designs and type of analyses where the acceptance criteria are less
Thermal hydraulic feasibility assessment of the spent nuclear fuel project
International Nuclear Information System (INIS)
Heard, F.J.
1996-01-01
A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The goal was to develop a series of thermal-hydraulic models that could respond to all process and safety related issues that may arise pertaining to the SNFP, as well as provide a basis for validation of the results. Results show that there is a reasonable envelope for process conditions and requirements that are thermally and hydraulically acceptable
Spent nuclear fuel storage pool thermal-hydraulic analysis
International Nuclear Information System (INIS)
Gay, R.R.
1984-01-01
Storage methods and requirements for spent nuclear fuel at U.S. commercial light water reactors are reviewed in Section 1. Methods of increasing current at-reactor storage capabilities are also outlined. In Section 2 the development of analytical methods for the thermal-hydraulic analysis of spent fuel pools is chronicled, leading up to a discussion of the GFLOW code which is described in Section 3. In Section 4 the verification of GFLOW by comparisons of the code's predictions to experimental data taken inside the fuel storage pool at the Maine Yankee nuclear power plant is presented. The predictions of GFLOW using 72, 224, and 1584 node models of the storage pool are compared to each other and to the experimental data. An example of thermal licensing analysis for Maine Yankee using the GFLOW code is given in Section 5. The GFLOW licensing analysis is compared to previous licensing analysis performed by Yankee Atomic using the RELAP-4 computer code
Thermal-hydraulic characteristic of the PGV-1000 steam generator
International Nuclear Information System (INIS)
Ubra, O.; Doubek, M.
1995-01-01
Horizontal steam generators are typical parts of nuclear power plants with pressure water reactor type VVER. By means of this computer program, a detailed thermal-hydraulic study of the horizontal steam generator PGV-1000 has been carried out and a special attention has been paid to the thermal-hydraulics of the secondary side. A set of important steam generator characteristics has been obtained and analyzed. Some of the interesting results of the analysis are presented in the paper. (author)
Process management using component thermal-hydraulic function classes
Morman, J.A.; Wei, T.Y.C.; Reifman, J.
1999-07-27
A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.
Process management using component thermal-hydraulic function classes
Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques
1999-01-01
A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.
INL Experimental Program Roadmap for Thermal Hydraulic Code Validation
Energy Technology Data Exchange (ETDEWEB)
Glenn McCreery; Hugh McIlroy
2007-09-01
Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related
Progress of the DUPIC fuel compatibility analysis (II) - thermal-hydraulics
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Choi, Hang Bok
2005-03-01
Thermal-hydraulic compatibility of the DUPIC fuel bundle with a 713 MWe Canada deuterium uranium (CANDU-6) reactor was studied by using both the single channel and sub-channel analysis methods. The single channel analysis provides the fuel channel flow rate, pressure drop, critical channel power, and the channel exit quality, which are assessed against the thermal-hydraulic design requirements of the CANDU-6 reactor. The single channel analysis by the NUCIRC code showed that the thermal-hydraulic performance of the DUPIC fuel is not different from that of the standard CANDU fuel. Regarding the local flow characteristics, the sub-channel analysis also showed that the uncertainty of the critical channel power calculation for the DUPIC fuel channel is very small. As a result, both the single and sub-channel analyses showed that the key thermal-hydraulic parameters of the DUPIC fuel channel do not deteriorate compared to the standard CANDU fuel channel.
Thermal-hydraulic modeling needs for passive reactors
International Nuclear Information System (INIS)
Kelly, J.M.
1997-01-01
The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken
Thermal-hydraulic modeling of porous bed reactors
International Nuclear Information System (INIS)
Araj, K.J.; Nourbakhsh, H.P.
1987-01-01
Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures
Thermal-hydraulic modeling needs for passive reactors
Energy Technology Data Exchange (ETDEWEB)
Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)
1997-07-01
The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.
Transitioning from interpretive to predictive in thermal hydraulic codes
International Nuclear Information System (INIS)
Mousseau, V.A.
2004-01-01
The current thermal hydraulic codes in use in the US, RELAP and TRAC, where originally written in the mid to late 1970's. At that time computers were slow, expensive, and had small memories. Because of these constraints, sacrifices had to be made, both in physics and numerical methods, which resulted in limitations on the accuracy of the solutions. Significant changes have occurred that induce very different requirements for the thermal hydraulic codes to be used for the future GEN-IV nuclear reactors. First, computers speed and memory grow at an exponential rate while the costs hold constant or decrease. Second, passive safety systems in modern designs stretch the length of relevant transients to many days. Finally, costs of experiments have grown very rapidly. Because of these new constraints, modern thermal hydraulic codes will be relied on for a significantly larger portion of bringing a nuclear reactor on line. Simulation codes will have to define in which part of state space experiments will be run. They will then have to be able to extend the small number of experiments to cover the large state space in which the reactors will operate. This data extrapolation mode will be referred to as 'predictive'. One of the keys to analyzing the accuracy of a simulation is to consider the entire domain being simulated. For example, in a reactor design where the containment is coupled to the reactor cooling system through radiative heat transfer, the accuracy of a transient includes the containment, the radiation heat transfer, the fluid flow in the cooling system, the thermal conduction in the solid, and the neutron transport in the reactor. All of this physics is coupled together in one nonlinear system through material properties, cross sections, heat transfer coefficients, and other mechanisms that exchange mass, momentum, and energy. Traditionally, these different physical domains, (containment, cooling system, nuclear fuel, etc.) have been solved in different
Determination of thermal-hydraulic loads on reactor internals in a DBA-situation
International Nuclear Information System (INIS)
Ville Lestinen; Timo Toppila
2005-01-01
Full text of publication follows: According to Finnish regulatory requirements, reactor internals have to stay intact in a design basis accident (DBA) situation, so that control rods can still penetrate into the core. To fulfill this demand some criteria must be followed in periodical in-service inspections. This is the motivation for studying and developing more detailed methods for analysis of thermal-hydraulic loads on reactor internals during the DBA-situation for the Loviisa NPP in Finland. The objective of this research program is to connect thermal-hydraulic and mechanical analysis methods with the goal to produce a reliable method for determination of thermal-hydraulic and mechanical loads on reactor internals in the accident situation. The tools studied are thermal-hydraulic system codes, computational fluid dynamics (CFD) codes and finite element analysis (FEA) codes. This paper concentrates mainly on thermal-hydraulic part of the research, but also the mechanical aspects are discussed. Firstly, the paper includes a short literary review of the available methods to analyse the described problem including both thermal-hydraulic and structural analysis parts. Secondly, different possibilities to carry out thermal-hydraulic analyses have been studied. The DBA-case includes complex physical phenomena and therefore modelling is difficult. The accident situation can be for example LLOCA. When the pipe has broken, the pressure decreases and water starts to evaporate, which consumes energy and that way limits the pressure decrease. After some period of time, the system reaches a new equilibrium state. To perform exact thermal-hydraulic analysis also two phase phenomena must be included. Therefore CFD codes are not capable of modelling the DBA situation very well, but the use of CFD codes requires that the effect of two phase flow must be added somehow. One method to calculate two phase phenomena with CFD codes is to use thermal-hydraulic system codes to calculate
Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code
International Nuclear Information System (INIS)
Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang
2005-01-01
Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent
Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)
2000-10-01
MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)
Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis
International Nuclear Information System (INIS)
Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu
2000-01-01
MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)
Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors
Energy Technology Data Exchange (ETDEWEB)
Baek, W. P.; Song, C. H.; Kim, Y. S. and others
2005-02-15
The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.
International Nuclear Information System (INIS)
Takenaka, Nobuyuki
1996-01-01
Neutron Radiography was applied to visualization of thermal hydraulic phenomena and measurement was carried out by image processing the visualized images. Since attenuation of thermal neutron rays is high in ordinary liquids like water and organic fluid while it is low in most of metals, liquid flow behaviors can be visualized through a metallic wall by neutron radiography. Measurement of void fraction and flow vector field which is important to study thermal hydraulic phenomena can be carried out by image processing the images obtained by the visualization. Various two-phase and liquid metal flows were visualized by a JRR-3M thermal neutron radiography system in the present study. Multi-dimensional void fraction distributions in two-phase flows and flow vector fields in liquid metals, which are difficult to measure by the other methods, were successfully measured by image processing. It was shown that neutron radiography was efficiently applicable to study thermal hydraulic phenomena. (author)
Thermal-hydraulics of the Loviisa reactor pressure vessel overcooling transients
International Nuclear Information System (INIS)
Tuomisto, Harri.
1987-06-01
In the Loviisa reactor pressure vessel safety analyses, the thermal-hydraulics of various overcooling transients has been evaluated to give pertinent initial data for fracture-mechanics calculations. The thermal-hydraulic simulations of the developed overcooling scenarios have been performed using best-estimate thermal-hydraulic computer codes. Experimental programs have been carried out to study phenomena related to natural circulation interruptions in the reactor coolant system. These experiments include buoyancy-induced phenomena such as thermal mixing and stratification of cold high-pressure safety injection water in the cold legs and the downcomer, and oscillations of the single-phase natural circulation. In the probabilistic pressurized thermal shock study, the Loviisa training simulator and the advanced system code RELAP5/MOD2 were utilized to simulate selected sequences. Flow stagnation cases were separately calculated with the REMIX computer program. The methods employed were assessed for these calculations against the plant data and own experiments
Full vessel CFD analysis on thermal-hydraulic characteristics of CPR1000 PWR
International Nuclear Information System (INIS)
Chao Yanmeng; Yang Lixin; Zhang Mingqian
2014-01-01
To obtain flow distributions and thermal-hydraulic properties in a full vessel PWR under limited computation ability and time, a full vessel simulation model of CPR1000 was built based on two simplification methods. One simplified the inner geometry of the control rod guide tubes using equivalent flow area. Another substituted the core by a porous domain to maintain the pressure drop and temperature rise. After the computation, global and localized flow distributions, hydraulic loads of some main assemblies were obtained, as well as other thermal-hydraulic properties. The results indicate the flow distribution in the full vessel is asymmetrical. Therefore it is essential to use the full vessel model to simulate. The calculated thermal-hydraulic characteristics agree well with the operation statistics, providing the reference data for the reactor safety operation. (authors)
Thermal hydraulic issues and challenges for current and new generation FBRs
Energy Technology Data Exchange (ETDEWEB)
Chellapandi, P.; Velusamy, K., E-mail: kvelu@igcar.gov.in
2015-12-01
Highlights: • We present challenges in thermal hydraulic design of sodium cooled fast reactors. • We present roadmap of Indian fast reactor program and innovative design concepts. • Analysis methodology for thermal striping and thermal stratification are highlighted. • Design solutions for gas entrainment are presented. • Experimental approaches for normal and post accident decay heat removal are highlighted. - Abstract: Pool type sodium cooled fast reactors pose several design challenges and among them, certain thermal hydraulics and structural mechanics issues are special. High frequency temperature fluctuations due to thermal striping, thermal stratifications and sodium free level fluctuations at the liquid–cover gas interfaces are to be investigated carefully to eliminate high cycle thermal fatigue of structures. Solutions to address the core thermal hydraulics call for high power computing. Innovative concepts and methods are developed to carry out plant dynamics and safety studies. Particularly, extensive numerical and experimental simulation techniques are needed for understanding and solving the gas entrainment mechanisms and its effects on core safety. Though decay heat removal through natural convection is achievable in a pool type SFR, demonstration of design solutions conceived in the reactor and performance of diverse systems under all operating conditions, especially over prolonged station blackout situations needs advanced CFD computations and should be validated by relatively large scale simulated experiments. These issues are addressed in this paper under five broad topics: special thermal hydraulic issues to be addressed in SFR, thermal hydraulic design and analysis, plant dynamics studies, safety studies and evolving thermal hydraulic studies for the future FBRs. The 500 MWe Prototype Fast Breeder Reactor (PFBR) is taken as the reference design for addressing the issues. Indian fast reactor programme is highlighted in the introduction
Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems
International Nuclear Information System (INIS)
Song, C. H.; Baek, W. P.; Chung, M. K.
2007-06-01
The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base
Horizontal steam generator PGV-1000 thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)
1995-12-31
A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.
Horizontal steam generator PGV-1000 thermal-hydraulic analysis
International Nuclear Information System (INIS)
Ubra, O.; Doubek, M.
1995-01-01
A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.)
Horizontal steam generator PGV-1000 thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Ubra, O [Skoda Company, Prague (Switzerland); Doubek, M [Czech Technical Univ., Prague (Switzerland)
1996-12-31
A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.
Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors
International Nuclear Information System (INIS)
Baek, Won Pil; Song, C. H.; Kim, Y. S.
2007-02-01
The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted
Current and anticipated uses of thermal hydraulic codes in Korea
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung-Doo; Chang, Won-Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-07-01
In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.
Thermal-hydraulics for space power, propulsion, and thermal management system design
International Nuclear Information System (INIS)
Krotiuk, W.J.
1990-01-01
The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation
Report on the thermal-hydraulics computational component
International Nuclear Information System (INIS)
Laughton, T.; Jones, B.G.
1996-01-01
The nodal methods computer code utilizing hexagonal geometry, which is being developed as part of this DOE contract, is called THMZ. The computational objective of the code is to calculate the steady-state thermal-hydraulic conditions in a hexagonal geometry reactor core given the appropriate initial conditions and the axial neutron flux profile. The latter is given by a companion nodal neutronics code which was developed in an earlier part of the contact. The joining of these two codes to provide a coupled analysis tool for hexagonal lattice cores is the ultimate objective of the contract and its follow-on work. The remaining part of this report presents the current status of the development and the results which have been obtained to date. These will appear in the MS thesis of Mr. Terrill Laughton in the Department of Nuclear Engineering which is currently in preparation
THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR
International Nuclear Information System (INIS)
C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER
2000-01-01
The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m 2 . A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m 2 . The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements
Thermal-Hydraulic Tests for Reactor Core Safety
International Nuclear Information System (INIS)
Chun, Se Young; Chung, Moon Ki; Baek, Won Pil and others
2005-04-01
The reflood experiments for single rod annulus geometry have been performed to investigate the effect of spacer grid on thermal-hydraulics under reflood conditions. The reflood experimental loop for 6x6 rod bundle with a spacer grid developed in Korea has been provided. About 8000 data points for Post-CHF heat transfer have been obtained from the experiments About 1400 CHF data points for 3x3 Water and 5x5 Freon rod bundles have been obtained. The existing evaluation methodology for core safety under return-to-power conditions has been investigated using KAERI low flow CHF database. The hydraulic tests for turbulence mixing characteristics in subchannel of 5x5 rod bundle have been carried out using advanced measurement technique, LVD and the database for various spacer grids have been provided. In order to measure the turbulence mixing characteristics in details, the hydraulic loop with a magnified 5x5 rod bundle has been prepared. The database which was constructed through a systematic thermal hydraulic tests for the reflood phenomenon, CHF, Post-CHF is surely to be useful to the industry field, the regulation body and the development of thermal-hydraulic analysis code
COOLOD, Steady-State Thermal Hydraulics of Research Reactors
International Nuclear Information System (INIS)
Kaminaga, Masanori
1997-01-01
1 - Description of program or function: The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is a revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode. A 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is a subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. 2 - Method of solution: The 'Heat Transfer Package' is a subprogram for calculating heat transfer coefficients, ONB temperature, heat flux at onset of flow instability and DNB heat flux. The 'Heat transfer package' was especially developed for research reactors which are operated under low pressure and low temperature conditions using plate-type fuel, just like the JRR-3M. Heat transfer correlations adopted in the 'Heat Transfer Package' were obtained or estimated based on the heat transfer experiments in which thermal-hydraulic features of the upgraded JRR-3 core were properly reflected. The 'Heat Transfer Package' is applicable to upward and downward flow
Thermal and hydraulic analyses of the System 81 cold traps
Energy Technology Data Exchange (ETDEWEB)
Kim, K.
1977-06-15
Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.
Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis
International Nuclear Information System (INIS)
Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika
2016-01-01
Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.
Thermal-hydraulic design of the 200 MW NHR
Energy Technology Data Exchange (ETDEWEB)
Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)
1997-09-01
The main problems regarding the AST-500 NHR thermal-hydraulics are considered. Basic thermal data of the reactor plant are given and peculiarities of coolant parameters at natural convection in the primary circuit are discussed. The in-reactor instrumentation system is briefly describes, as well as the results of natural-convective flow characteristics investigations using reactor test models. (author). 4 refs, 5 figs.
Development of thermal hydraulic evaluation code for CANDU reactors
International Nuclear Information System (INIS)
Kim, Man Woong; Yu, Seon Oh; Choi, Yong Seog; Shin, Chull; Hwang, Soo Hyun
2004-02-01
To enhance the safety of operating CANDU reactors, the establishment of the safety analysis codes system for CANDU reactors is in progress. As for the development of thermal-hydraulic analysis code for CANDU system, the studies for improvement of evaluation model inside RELAP/CANDU code and the development of safety assessment methodology for GSI (Generic Safety Issues) are in progress as a part of establishment of CANDU safety assessment system. To develop the 3-D thermal-hydraulic analysis code for moderator system, the CFD models for analyzing the CANDU-6 moderator circulation are developed. One model uses a structured grid system with the porous media approach for the 380 Calandria tubes in the core region. The other uses a unstructured grid system on the real geometry of 380 Calandria tubes, so that the detailed fluid flow between the Calandria tubes can be observed. As to the development of thermal-hydraulic analysis code for containment, the study on the applicability of CONTAIN 2.0 code to a CANDU containment was conducted and a simulation of the thermal-hydraulic phenomena during the accident was performed. Besides, the model comparison of ESFs (Engineered Safety Features) inside CONTAIN 2.0 code and PRESCON code has also conducted
Design and thermal-hydraulic calculation for EAST PFCs' baking
International Nuclear Information System (INIS)
Wan Xiaogang; Yao Damao
2006-01-01
According to the vacuum requirements for fusion in a tokamak device, the authors adopted a kind of gas flow baking technique in EAST. This paper presented the sketch design for EAST PFCs' baking, selected the specifications for the working gas. Calculated the hydraulic and thermal conditions in PFCs under baking, and simulated the results. (authors)
Thermal-hydraulic research plan for Babcock and Wilcox plants
International Nuclear Information System (INIS)
Lee, R.Y.
1988-02-01
This document presents a plan for thermal-hydraulic research for Babcock and Wilcox designed reactor systems. It describes the technical issues, regulatory needs, and the research necessary to address these needs. The plan also discusses the relationship between current and proposed research, and provides a tentative schedule to complete the required work
Thermal-hydraulic analysis for wire-wrapped PWR cores
Energy Technology Data Exchange (ETDEWEB)
Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2009-08-15
This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.
Nuclear power plant thermal-hydraulic performance research program plan
International Nuclear Information System (INIS)
1988-07-01
The purpose of this program plan is to present a more detailed description of the thermal-hydraulic research program than that provided in the NRC Five-Year Plan so that the research plan and objectives can be better understood and evaluated by the offices concerned. The plan is prepared by the Office of Nuclear Regulatory Research (RES) with input from the Office of Nuclear Reactor Regulation (NRR) and updated periodically. The plan covers the research sponsored by the Reactor and Plant Systems Branch and defines the major issues (related to thermal-hydraulic behavior in nuclear power plants) the NRC is seeking to resolve and provides plans for their resolution; relates the proposed research to these issues; defines the products needed to resolve these issues; provides a context that shows both the historical perspective and the relationship of individual projects to the overall objectives; and defines major interfaces with other disciplines (e.g., structural, risk, human factors, accident management, severe accident) needed for total resolution of some issues. This plan addresses the types of thermal-hydraulic transients that are normally considered in the regulatory process of licensing the current generation of light water reactors. This process is influenced by the regulatory requirements imposed by NRC and the consequent need for technical information that is supplied by RES through its contractors. Thus, most contractor programmatic work is administered by RES. Regulatory requirements involve the normal review of industry analyses of design basis accidents, as well as the understanding of abnormal occurrences in operating reactors. Since such transients often involve complex thermal-hydraulic interactions, a well-planned thermal-hydraulic research plan is needed
Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-
International Nuclear Information System (INIS)
Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho
1994-07-01
The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)
2013-02-05
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice of Meeting The Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and...
11. international topical meeting on nuclear reactor thermal-hydraulics (NURETH-11)
International Nuclear Information System (INIS)
Lemonnier, H.
2005-01-01
The main topics covered by the NURETH 11 meeting are the thermal-hydraulics of existing and future nuclear power plants as foreseen by the Generation IV worldwide initiative. Normal operation and accidental situations are also relevant topics of the Conference. The topics cover modeling, experiments, instrumentation and numerical simulations related to flow and heat transfer in nuclear reactors with a special emphasis on the advances of multiphase CFD methods. The first part of this Book of Abstracts enumerates the Organizing Scientific Societies, the Sponsors of the Conference, the Conference Chairs, and the members of the Steering Committee and of the Technical Program Committee. The second part of this Book of Abstracts contains the list of the titles of the contributed papers. Each item includes the log number of the paper, the abstract of which can therefore be easily located in the next section of this book. The titles of the papers have been sorted out by topics to provide a synthetic view of the contributions in a selected domain. The last section of this Book includes an index of authors and co-authors with a reference to the log number(s) of their contributed paper(s). Finally, the CD-Rom of the Conference Proceedings containing the full-length papers is inserted at the inside back cover. Sessions content: A - two-phase flow and heat transfer fundamentals: computational and mathematical techniques (numerical schemes, LBM, BEM, mesh-less, etc.); contact angle and wettability phenomena; experiments and data bases for the assessment and the verification of 3D models; flow regime identification and modelling; heat transfer near critical pressure and supercritical water reactors; interfacial area (data base, modeling, measurement techniques); instrumentation techniques; micro-scale basic phenomena, fluid flow and heat transfer; scaling methods; counter current flow; B - code developments: containment analysis; core thermal-hydraulics and subchannel analysis
Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR
International Nuclear Information System (INIS)
Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan
2014-01-01
Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)
Primary system thermal hydraulics of future Indian fast reactors
Energy Technology Data Exchange (ETDEWEB)
Velusamy, K., E-mail: kvelu@igcar.gov.in [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)
2015-12-01
Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.
Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly
International Nuclear Information System (INIS)
Liu, X.J.; Cheng, X.
2009-01-01
A new fuel assembly design for a thermal supercritical water cooled reactor (SCWR) core is proposed. Compared to the existing fuel assemblies, the present fuel assembly has two-rows of fuel rods between the moderator channels, to achieve a more uniform moderation for all fuel rod cells, and subsequently, a more uniform radial power distribution. In addition, a neutron-kinetics/thermal-hydraulics coupling method is developed, to analyze the neutron-physical and thermal-hydraulic behavior of the fuel assembly designs. This coupling method is based on the sub-channel analysis code COBRA-IV for thermal-hydraulics and the neutron-kinetics code SKETCH-N for neutron-physics. Both the COBRA-IV code and the SKETCH-N code are accordingly modified. An interface is established for the data transfer between these two codes. This coupling method is applied to both the one-row fuel assemblies (previous design) and the two-row fuel assemblies (present design). The performance of the two types of fuel assemblies is compared. The results show clearly that the two-row fuel assembly has more favorable neutron-physical and thermal-hydraulic characteristics than the one-row fuel assembly. The effect of various parameters on the fuel assembly performance is discussed. The coupling method is proven to be well suitable for further applications to SCWR fuel assembly design analysis
Thermal-hydraulic analysis of PWR small assembly for irradiation test of CARR
International Nuclear Information System (INIS)
Yin Hao; Zou Yao; Liu Xingmin
2015-01-01
The thermal-hydraulic behaviors of the PWR 4 × 4 small assembly tested in the high temperature and high pressure loop of China Advanced Research Reactor were analyzed. The CFD method was used to carry out 3D simulation of the model, thus detailed thermal-hydraulic parameters were obtained. Firstly, the simplified model was simulated to give the 3D temperature and velocity distributions and analyze the heat transfer process. Then the whole scale small assembly model was simulated and the simulation results were compared with those of simplified rod bundle model. Its flow behavior was studied and flow mixing characteristics of the grids were analyzed, and the mixing factor of the grid was calculated and can be used for further thermal-hydraulic study. It is shown that the highest temperature of the fuel rod meets the design limit and the mixing effect of the grid is obvious. (authors)
FX2-TH: a two-dimensional nuclear reactor kinetics code with thermal-hydraulic feedback
International Nuclear Information System (INIS)
Shober, R.A.; Daly, T.A.; Ferguson, D.R.
1978-10-01
FX2-TH is a two-dimensional, time-dependent nuclear reactor kinetics program with thermal and hydraulic feedback. The neutronics model used is multigroup neutron diffusion theory. The following geometry options are available: x, r, x-y, r-z, theta-r, and triangular. FX2-TH contains two basic thermal and hydraulic models: a simple adiabatic fuel temperature calculation, and a more detailed model consisting of an explicit representation of a fuel pin, gap, clad, and coolant. FX2-TH allows feedback effects from both fuel temperature (Doppler) and coolant temperature (density) changes. FX2-TH will calculate a consistent set of steady state conditions by iterating between the neutronics and thermal-hydraulics until convergence is reached. The time-dependent calculation is performed by the use of the improved quasistatic method. A disk editing capability is available. FX2-TH is operational on IBM system 360 or 370 computers and on the CDC 7600
First wall thermal hydraulic models for fusion blankets
International Nuclear Information System (INIS)
Fillo, J.A.
1980-01-01
Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization
Project W-320 thermal hydraulic model benchmarking and baselining
International Nuclear Information System (INIS)
Sathyanarayana, K.
1998-01-01
Project W-320 will be retrieving waste from Tank 241-C-106 and transferring the waste to Tank 241-AY-102. Waste in both tanks must be maintained below applicable thermal limits during and following the waste transfer. Thermal hydraulic process control models will be used for process control of the thermal limits. This report documents the process control models and presents a benchmarking of the models with data from Tanks 241-C-106 and 241-AY-102. Revision 1 of this report will provide a baselining of the models in preparation for the initiation of sluicing
Energy Technology Data Exchange (ETDEWEB)
Ahn, S.H., E-mail: k175ash@kins.re.kr [Korea Institute of Nuclear Safety (KINS) (Korea, Republic of); Aksan, N., E-mail: nusr.aksan@gmail.com [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Austregesilo, H., E-mail: henrique.austregesilo@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Bestion, D., E-mail: dominique.bestion@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Chung, B.D., E-mail: bdchung@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); D’Auria, F., E-mail: f.dauria@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Emonot, P., E-mail: philippe.emonot@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA NP (France); Hanninen, M., E-mail: markku.hanninen@vtt.fi [VTT Technical Research Centre of Finland (VTT) (Finland); Horvatović, I., E-mail: i.horvatovic@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Kim, K.D., E-mail: kdkim@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); Kovtonyuk, A., E-mail: a.kovtonyuk@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy)
2015-01-15
Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes.
Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor
International Nuclear Information System (INIS)
Vaiana, F.
2009-11-01
This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)
Thermal - hydraulic analysis of pressurizer water reactors using the model of open lateral boundary
International Nuclear Information System (INIS)
Borges, R.C.
1980-10-01
A computational method is developed for thermal-hydraulic analysis, where the channel may be analysed by more than one independent steps of calculation. This is made possible by the incorporation of the model of open lateral boundary in the code COBRA-IIIP, which permits the determination of the subchannel of an open lattice PWR core in a multi-step calculation. The thermal-hydraulic code COBRA-IIIP, developed at the Massachusetts Institute of Technology, is used as the basic model for this study. (Author) [pt
International Nuclear Information System (INIS)
Wataru, Masumi; Gomi, Yoshio; Yamakawa, Hidetsugu; Tsumune, Daisuke
1995-01-01
Natural UF6 is transported in a steel container from foreign countries to the enrichment plant in Japan. If the container meets fire accident, it is heated by fire (800degC) and rupture of the container may occur. For the safety point of view, it is necessary to know whether rupture occurs or not. Because UF6 has a radiological and chemical hazards, it is difficult to perform a demonstration test with UF6. So thermal calculation method has to be developed. The rupture is caused by UF6 gaseous pressure or volume expansion of liquid UF6. To know time history of internal pressure and temperature distribution in the container, it is important to evaluate thermal phenomena of UF6. When UF6 is heated, it changes from solid to liquid or gas at low temperature (64degC) and then its volume expands little by little. In this study, thermal calculation method has been developed taking phase change and thermal expansion of UF6 into account. In the calculation, a two-dimensional model is adopted and natural convection of liquid UF6 is analyzed. As a result of this study, numerical solutions have been obtained taking phase change and volume expansion into account. (author)
International Nuclear Information System (INIS)
Ha, Tae Wook; Jeong, Jae Jun; Choi, Ki Yong
2017-01-01
A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification
Energy Technology Data Exchange (ETDEWEB)
Ha, Tae Wook; Jeong, Jae Jun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)
2017-08-15
A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification.
Hierarchic modeling of heat exchanger thermal hydraulics
International Nuclear Information System (INIS)
Horvat, A.; Koncar, B.
2002-01-01
Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)
Thermal-hydraulics associated with nuclear education and research
International Nuclear Information System (INIS)
Yokobori, Seiichi
2011-01-01
This article was the rerecording of the author's lecture at the fourth 'Future Energy Forum' (aiming at improving nuclear safety and economics) held in December 2010. The lecture focused on (1) importance of thermal hydraulics associated with nuclear education and research (critical heat flux, two-phase flow and multiphase flow), (2) emerging trend of maintenance engineering (fluid induced vibration, flow accelerated corrosion and stress corrosion cracks), (3) fostering sensible nuclear engineer with common engineering sense, (4) balanced curriculum of basics and advanced research, (5) computerized simulation and fluid mechanics, (6) crucial point of thermo hydraulics education (viscosity, flux, steam and power generation), (7) safety education and human resources development (indispensable technologies such as defence in depth) and (8) topics of thermo hydraulics research (vortices of curbed pipes and visualization of two-phase flow). (T. Tanaka)
Thermal-hydraulic characteristics of double flat core HCLWR
International Nuclear Information System (INIS)
Sugimoto, Jun; Iwamura, Takamichi; Okubo, Tsutomu; Murao, Yoshio
1989-02-01
A thermal-hydraulic characteristics of double flat core high conversion light water reactor (HCLWR) is described. The concept of flat core proposed by Ishiguro et al. is to achieve negative void reactivity coefficient in tight lattice core, and at the same time, high conversion ratio and high burnup can be obtainable. The proposed double flat core HCLWR, based on these physical advantages and the consideration of safety assurance, aims at efficient use of the pressure vessel space to produce comparable thermal output as current 3-loop PWRs. The present work revealed the following items concerning the thermalhydraulic feasibility of the double flat core HCLWR: (1) Main thermal-hydraulic parameters of the plant can be almost the same as current PWRs, showing the use of PWR standard components without major modifications except in core region. (2) Heat removal from the fuel rod in a steady operational condition has enough margin to the critical heat flux (CHF) limit, which is evaluated with the existing CHF correlations. (3) The calculation by REFLA code shows that the maximum cladding temperature in LOCA-reflood is estimated to be far lower than the licensing criteria. It is therefore considered that the proposed double flat core HCLWR is feasible from the point of thermal-hydraulics. Since the available data base has certain applicational limit to the very short core as the present double flat core HCLWR, further detailed assessment is required. (author)
Thermal hydraulic feasibility assessment for the Spent Nuclear Fuel Project
International Nuclear Information System (INIS)
Heard, F.J.; Cramer, E.R.; Beaver, T.R.; Thurgood, M.J.
1996-01-01
A series of scoping analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The SNFP was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy's Hanford Site in Richland, Washington. The subject efforts focused on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms for each of the IPS operations and configurations, obtaining preliminary results for comparison with and verification of other analyses, and providing technology-based recommendations for consideration and incorporation into the design bases for the SNFP. The goal was to develop a series fo thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the SNFP. A series of sensitivity analyses were also performed to help identify those parameters that have the greatest impact on energy transfer and hence, temperature control. It is anticipated that the subject thermal-hydraulic models will form the basis for a series of advanced and more detailed models that will more accurately reflect the thermal performance of the IPS and alleviate the necessity for some of the more conservative assumptions and oversimplifications, as well as form the basis for the final process and safety analyses
VHTR core modeling: coupling between neutronic and thermal-hydraulics
International Nuclear Information System (INIS)
Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.
2005-01-01
Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)
International Nuclear Information System (INIS)
Ikeda, K.; Hoshi, M.
2001-01-01
Mitsubishi applied the Computational Fluid Dynamics (CFD) evaluation method for designing of the new lower pressure loss and higher DNB performance grid spacer. Reduction of pressure loss of the grid has been estimated by CFD. Also, CFD has been developed as a design tool to predict the coolant mixing ability of vane structures, that is to compare the relative peak spot temperatures around fuel rods at the same heat flux condition. These evaluations have been reflected to the new grid spacer design. The prototype grid was manufactured and some flow tests were performed to examine the thermal hydraulic performance, which were predicted by CFD. The experimental data of pressure loss was in good agreement with CFD prediction. The CFD prediction of flow behaviors at downstream of the mixing vanes was verified by detail cross-flow measurements at rod gaps by the rod LDV system. It is concluded that the applicability of the CFD evaluation method for the thermal hydraulic design of the grid is confirmed. (authors)
Thermal-hydraulic modeling of porous bed reactors
International Nuclear Information System (INIS)
Araj, K.J.; Nourbakhsh, H.P.
1987-01-01
Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs
Simulation of Thermal Hydraulic at Supercritical Pressures with APROS
Energy Technology Data Exchange (ETDEWEB)
Kurki, Joona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI02044 VTT (Finland)
2008-07-01
The proposed concepts for the fourth generation of nuclear reactors include a reactor operating with water at thermodynamically supercritical state, the Supercritical Water Reactor (SCWR). For the design and safety demonstrations of such a reactor, the possibility to accurately simulate the thermal hydraulics of the supercritical coolant is an absolute prerequisite. For this purpose, the one-dimensional two-phase thermal hydraulics solution of APROS process simulation software was developed to function at the supercritical pressure region. Software modifications included the redefinition of some parameters that have physical significance only at the subcritical pressures, improvement of the steam tables, and addition of heat transfer and friction correlations suitable for the supercritical pressure region. (author)
Thermal hydraulic simulation of the CANDU nuclear reactor
Energy Technology Data Exchange (ETDEWEB)
Carvalho, Athos M.S.S. de; Ramos, Mario C.; Costa, Antonella L.; Fernandes, Gustavo H.N., E-mail: athos1495@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Rio de janeiro, RJ (Brazil)
2017-07-01
The CANDU (Canada Deuterium Uranium) is a Canadian-designed power reactor of PHWR type (Pressurized Heavy Water Reactor) that uses heavy water (deuterium oxide) for moderator and coolant, and natural uranium for fuel. There are about 47 reactors of this type in operation around the world generating more than 23 GWe, highlighting the importance of this kind of device. In this way, the main purpose of this study is to develop a thermal hydraulic model for a CANDU reactor to aggregate knowledge in this line of research. In this way, a core modeling was performed using RELAP5-3D code. Results were compared with reference data to verify the model behavior in steady state operation. Thermal hydraulic parameters as temperature, pressure and mass flow rate were verified and the results are in good agreement with reference data, as it is being presented in this work. (author)
Equipping simulators with an advanced thermal hydraulics model EDF's experience
International Nuclear Information System (INIS)
Soldermann, R.; Poizat, F.; Sekri, A.; Faydide, B.; Dumas, J.M.
1997-01-01
The development of an accelerated version of the advanced CATHARe-1 thermal hydraulics code designed for EDF training simulators (CATHARE-SIMU) was successfully completed as early as 1991. Its successful integration as the principal model of the SIPA Post-Accident Simulator meant that its use could be extended to full-scale simulators as part of the renovation of the stock of existing simulators. In order to further extend the field of application to accidents occurring in shutdown states requiring action and to catch up with developments in respect of the CATHARE code, EDF initiated the SCAR Project designed to adapt CATHARE-2 to simulator requirements (acceleration, parallelization of the computation and extension of the simulation range). In other respects, the installation of SIPA on workstations means that the authors can envisage the application of this remarkable training facility to the understanding of thermal hydraulics accident phenomena
Outage Risk Assessment and Management (ORAM) thermal-hydraulics toolkit
International Nuclear Information System (INIS)
Denny, V.E.; Wassel, A.T.; Issacci, F.; Pal Kalra, S.
2004-01-01
A PC-based thermal-hydraulic toolkit for use in support of outage optimization, management and risk assessment has been developed. This mechanistic toolkit incorporates simple models of key thermal-hydraulic processes which occur during an outage, such as recovery from or mitigation of outage upsets; this includes heat-up of water pools following loss of shutdown cooling, inadvertent drain down of the RCS, boiloff of coolant inventory, heatup of the uncovered core, and reflux cooling. This paper provides a list of key toolkit elements, briefly describes the technical basis and presents illustrative results for RCS transient behavior during reflux cooling, peak clad temperatures for an uncovered core and RCS response to loss of shutdown cooling. (author)
Legal aspects of the hydraulic fracturing method
Directory of Open Access Journals (Sweden)
Marta Duraj
2011-12-01
Full Text Available In recent months the possibility of extracting shale gas by way of the hydraulic fracturing method in Poland as well as across EU territory has been widely discussed. The European Parliament is to decide whether to ban this method. There are various legal, ecological and economical aspects influencing European legislators. It is hard not to notice how strongly the anti- and pro- hydraulic fracturing lobbies are connected with business. At the moment there are no specific regulations that relate directly to this extraction method, neither in the EU as a whole nor in Poland. However, in Poland a new Geological and Mining Act is supposed to come into force on 1st January 2012, which will regulate natural gas extraction with a view to ensure proper extraction of shale gas in the near future. This article is aimed at showing Polish regulations, both planned and currently in force, as well as the relevant EU law in respect of shale gas extraction. The author would like to emphasize the need to create one coherent legislative regime which would enable entrepreneurs to commence extraction by way of hydraulic fracturing without creating a danger for the environment.
State of the art of thermal-hydraulics of BWRs
International Nuclear Information System (INIS)
Rouhani, Z.
1980-10-01
The present report is a summary review of the developments in the field of thermal-hydraulics of Boiling Water Reactors. It covers briefly the development of BWR systems, including some comparison of the main features of the modern BWRs that are marketed by different vendors. The analytical aspects of BWR are also covered briefly with some remarks on the problem areas and limitations in this field. (author)
Application of thermal-hydraulic codes in the nuclear sector
International Nuclear Information System (INIS)
Queral, C.; Coriso, M.; Garcia Sedano, P. J.; Ruiz, J. A.; Posada, J. M.; Jimenez Varas, G.; Sol, I.; Herranz, L. E.
2011-01-01
Use of thermal-hydraulic codes is extended all over many different aspects of nuclear engineering. This article groups and briefly describes the main features of some of the well known codes as an introduction to their recent applications in the Spain nuclear sector. the broad range and quality of applications highlight the maturity achieved both in industry and research organizations and universities within the Spanish nuclear sector. (Author)
Thermal-hydraulic interfacing code modules for CANDU reactors
Energy Technology Data Exchange (ETDEWEB)
Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others
1997-07-01
The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.
The analysis of thermal-hydraulic models in MELCOR code
Energy Technology Data Exchange (ETDEWEB)
Kim, M H; Hur, C; Kim, D K; Cho, H J [POhang Univ., of Science and TECHnology, Pohang (Korea, Republic of)
1996-07-15
The objective of the present work is to verify the prediction and analysis capability of MELCOR code about the progression of severe accidents in light water reactor and also to evaluate appropriateness of thermal-hydraulic models used in MELCOR code. Comparing the results of experiment and calculation with MELCOR code is carried out to achieve the above objective. Specially, the comparison between the CORA-13 experiment and the MELCOR code calculation was performed.
Thermal-hydraulic interfacing code modules for CANDU reactors
International Nuclear Information System (INIS)
Liu, W.S.; Gold, M.; Sills, H.
1997-01-01
The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis
CFD studies on thermal hydraulics of spallation targets
International Nuclear Information System (INIS)
Tak, N.I.; Batta, A.; Cheng, X.
2005-01-01
Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)
Thermal-Hydraulic Performance of Scrubbing Nozzle Used for CFVS
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun Chul; Lee, Doo Yong; Jung, Woo Young; Lee, Jong Chan; Kim, Gyu Tae [FNC TECH, Yongin (Korea, Republic of)
2016-05-15
A Containment Filtered Venting System (CFVS) is the most interested device to mitigate a threat against containment integrity under the severe accident of nuclear power plant by venting with the filtration of the fission products. FNC technology and partners have been developed the self-priming scrubbing nozzle used for the CFVS which is based on the venturi effect. The thermal-hydraulic performances such as passive scrubbing water suction as well as pressure drop across the nozzle have been tested under various thermal-hydraulic conditions. The two types of test section have been built for testing the thermal-hydraulic performance of the self-priming scrubbing nozzle. Through the visualization loop, the liquid suction performance through the slit, pressure drop across the nozzle are measured. The passive water suction flow through the suction slit at the throat is important parameter to define the scrubbing performance of the self-priming scrubbing nozzle. The water suction flow is increased with the increase of the overhead water level at the same inlet gas flow. It is not so much changed with the change of inlet gas flow at the overhead water level.
Views on the future of thermal hydraulic modeling
Energy Technology Data Exchange (ETDEWEB)
Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1997-07-01
It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.
Views on the future of thermal hydraulic modeling
International Nuclear Information System (INIS)
Ishii, M.
1997-01-01
It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes
International Nuclear Information System (INIS)
Choi, Sun Rock; Cho, Chung Ho; Kim, Sang Ji
2011-01-01
In an SFR core analysis, a hot channel factors (HCF) method is most commonly used to evaluate uncertainty. It was employed to the early design such as the CRBRP and IFR. In other ways, the improved thermal design procedure (ITDP) is able to calculate the overall uncertainty based on the Root Sum Square technique and sensitivity analyses of each design parameters. The Monte Carlo method (MCM) is also employed to estimate the uncertainties. In this method, all the input uncertainties are randomly sampled according to their probability density functions and the resulting distribution for the output quantity is analyzed. Since an uncertainty analysis is basically calculated from the temperature distribution in a subassembly, the core thermal-hydraulic modeling greatly affects the resulting uncertainty. At KAERI, the SLTHEN and MATRA-LMR codes have been utilized to analyze the SFR core thermal-hydraulics. The SLTHEN (steady-state LMR core thermal hydraulics analysis code based on the ENERGY model) code is a modified version of the SUPERENERGY2 code, which conducts a multi-assembly, steady state calculation based on a simplified ENERGY model. The detailed subchannel analysis code MATRA-LMR (Multichannel Analyzer for Steady-State and Transients in Rod Arrays for Liquid Metal Reactors), an LMR version of MATRA, was also developed specifically for the SFR core thermal-hydraulic analysis. This paper describes comparative studies for core thermal-hydraulic models. The subchannel analysis and a hot channel factors based uncertainty evaluation system is established to estimate the core thermofluidic uncertainties using the MATRA-LMR code and the results are compared to those of the SLTHEN code
Thermal-hydraulic investigations of fuel elements
International Nuclear Information System (INIS)
Rehme, K.; Weinberg, D.
1983-01-01
Extensive fluid-dynamic examining of flow distribution and turbulent flow distribution was done to control and safeguard calculation methods allowing the determination of three-dimensional flow distribution in fuel elements. Results show that the flow distribution greatly depends on the frequency of pulse exchange between subchannels in narrow rod grids. The comparison of these measured values to VELASCO's results shows that the calculation methods need to be considerably improved. The subchannel analysis proved to be very suitable to calculate mean flow temperatures conforming with the subchannel analysis principle. However, this does not include statements on wall temperatures occurring in the structures. Mean wall temperatures can be determined by empirical interrelationships for Nusseltnumbers. On the other hand, the calculation of detailed wall temperature distributions is not possible with the subchannel analysis unless it can be further improved due to more detailed measurement results. (orig.) [de
CFD thermal-hydraulic analysis of a CANDU fuel channel
International Nuclear Information System (INIS)
Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.
2009-01-01
This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)
Energy Technology Data Exchange (ETDEWEB)
Menzel, Francine; Sabundjian, Gaianê, E-mail: franmenzel@gmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); D’Auria, Francesco, E-mail: f.dauria@ing.unipi.it [University of Pisa, San Piero a Grado Nuclear Research Group (Italy)
2017-07-01
Nuclear thermal hydraulic and accident analysis are based in three pillar activities, which consists in: Scaling, Coupling and V and V. Each of them are established technology, with key documents to describe and widely used. The final goal of this work is to apply the BEPU methodology in all parts of FSAR where analytical techniques are needed (BEPU-FSAR) and for that the crucial step is the transfer of the BEPU concepts into the other areas. In this sense, the issue is how to adapt to other disciplines the pillar activities presented in the thermal hydraulic area. For that we need to identify which elements can be applied in the other areas, to show that the proposed methodology is feasible. This work aims to discuss the first steps towards a BEPU-FSAR methodology and to show that the Scaling, Coupling and V and V elements, currently done for thermal-hydraulic codes, can be also done for different codes, which are used to perform different analysis included on a FSAR of a generic plant. (author)
A THERMAL-HYDRAULIC SYSTEM FOR THE CONVERSION AND THE STORAGE OF ENERGY
Directory of Open Access Journals (Sweden)
MITRAN Tudor
2016-05-01
Full Text Available The paper proposes the concept design of a thermal-hydraulic system that converts the thermal energy (from the geothermal water, from the cooling water of power equipment, from exhaust gasses, and so. in hydrostatic energy, that is stored in a hydraulic accumulator. The hydraulic energy can be converted into electrical energy when needed.
NEPTUNE: A new software platform for advanced nuclear thermal hydraulics
International Nuclear Information System (INIS)
Guelfi, A.; Boucker, M.; Herard, J.M.; Peturaud, P.; Bestion, D.; Boudier, P.; Hervieu, E.; Fillion, P.; Grandotto, M.
2007-01-01
The NEPTUNE project constitutes the thermal-hydraulic part of the long-term Electricite de France and Commissariat a l'Energie Atomique joint research and development program for the next generation of nuclear reactor simulation tools. This program is also financially supported by the Institut de Radioprotection et Surete Nucleaire and AREVA NP. The project aims at developing a new software platform for advanced two-phase flow thermal hydraulics covering the whole range of modeling scales and allowing easy multi-scale and multidisciplinary calculations. NEPTUNE is a fully integrated project that covers the following fields: software development, research in physical modeling and numerical methods, development of advanced instrumentation techniques, and performance of new experimental programs. The analysis of the industrial needs points out that three main simulation scales are involved. The system scale is dedicated to the overall description of the reactor. The component or subchannel scale allows three-dimensional computations of the main components of the reactors: cores, steam generators, condensers, and heat exchangers. The current generation of system and component codes has reached a very high level of maturity for industrial applications. The third scale, computational fluid dynamics (CFD) in open medium, allows one to go beyond the limits of the component scale for a finer description of the flows. This scale opens promising perspectives for industrial simulations, and the development and validation of the NEPTUNE CFD module have been a priority since the beginning of the project. It is based on advanced physical models (two-fluid or multi field model combined with interfacial area transport and two-phase turbulence) and modern numerical methods (fully unstructured finite volume solvers). For the system and component scales, prototype developments have also started, including new physical models and numerical methods. In addition to scale
Application of CFD methods in research of SCWR thermo-hydraulics
International Nuclear Information System (INIS)
Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping
2013-01-01
The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)
International Nuclear Information System (INIS)
Ebert, D.
1997-07-01
This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts' meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes
Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition
International Nuclear Information System (INIS)
Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei
2015-01-01
Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor
Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)
2015-02-15
Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.
Energy Technology Data Exchange (ETDEWEB)
Ebert, D.
1997-07-01
This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.
Alternative solution algorithm for coupled thermal-hydraulic problems
International Nuclear Information System (INIS)
Farnsworth, D.A.; Rice, J.G.
1986-01-01
A thermal-hydraulic system involves flow of a fluid for which a combined solution of the continuity, momentum, and energy equations is required. When the solutions of the energy and momentum fields are dependent on each other, the system is said to be thermally coupled. A common problem encountered in the numerical solution of strongly coupled thermal-hydraulic problems is a very slow rate of convergence or a complete lack of convergence. Many times this degradation in convergence is due to the lack of true coupling between the energy and momentum fields during the iteration process. In the most widely used solution algorithms - such as the SIMPLE algorithm and its many variants - a sequential solution technique is required. That is, the solution process alternates between the flow and energy fields until a converged solution is obtained. This approach allows only implicit energy-momentum coupling. To improve the convergence rate for strongly coupled problems, a practical solution algorithm that can accommodate true energy-momentum coupling terms was developed. A complete simultaneous (versus sequential) solution of the governing conservation equations utilizing a line-by-line solution was developed and direct coupling terms between the momentum and energy fields were added utilizing a modified Newton-Raphson technique
Thermal Hydraulic Analysis on Containment Filtered Venting System
Energy Technology Data Exchange (ETDEWEB)
Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.
Applications for coupled core neutronics and thermal-hydraulic models
International Nuclear Information System (INIS)
Eller, J.
1996-01-01
The unprecedented increases in computing capacity that have occurred during the last decade have affected our sciences, and thus our lives, to an extent that is difficult to overstate. All indications are that this trend will continue for years to come. Nuclear reactor systems analysis is one of many areas of engineering that has changed dramatically as a result of this evolution. Our ability to model the various mechanical and physical systems in greater and greater detail has allowed significant improvements in operational efficiency in spite of increasing regulatory requirements. Many of these efficiencies result from the use of more complex and geometrically detailed computer modeling, which is used to justify a reduction or elimination of some of the conservatisms required by earlier, less sophisticated analyses. And more recently, as our industries open-quotes downsize,close quotes efforts are being made to find ways to use the ever-increasing computing capacity to design systems that accomplish more work, in less time, and with fewer people. The balance of this paper discusses some of the visions that Duke Power Company feels would most benefit their particular methodologies. One of the concepts receiving a lot of attention involves an automated coupling of a thermal-hydraulic plant systems analysis model to a three-dimensional core neutronics program. The thermal-hydraulic analysis of several postulated system transients incorporates large conservatisms because of limited ability to model complex time-dependent asymmetric heat sources in adequate geometric detail. For these transients, the core behavior is closely coupled with the thermal-hydraulic behavior of the total plant system and vice versa. Steam-line break, uncontrolled rod withdrawal, and rod drop anayses are likely to benefit most from this type of linked process
Energy Technology Data Exchange (ETDEWEB)
Sakai, Takaaki; Enuma, Yasuhiro [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Iwasaki, Takashi [Nuclear Energy System Inc., Tokyo (Japan); Ohyama, Kazuhiro [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)
2001-05-01
The feasibility study on future commercial fast breeder reactors in Japan has been conducted at JNC, in which various plant design options with all the possible coolant and fuel types are investigated to determine the conditions for the future detailed study. Lead-bismuth eutectic coolant has been selected as one of the possible coolant options. During the phase-I activity of the feasibility study in FY1999 and FY2000, several plant concepts, which were cooled by the heavy liquid metal coolant, were examined to evaluate the feasibility mainly with respect to economical competitiveness with other coolant reactors. A medium-scale (300 - 550 MWe) plant, cooled by a lead-bismuth natural circulation flow in a pool type vessel, was selected as the most possible plant concept for the heavy liquid metal coolant. Thus, a conceptual design study for a lead-bismuth-cooled, natural-circulation reactor of 400 MWe has been performed at JNC to identify remaining difficulties in technological aspect and its construction cost evaluation. In this report, a thermal-hydraulic analysis method for lead-bismuth-cooled, natural-circulation reactors is described. A Multi-dimensional Steam Generator analysis code (MSG) was applied to evaluate the natural circulation plant by combination with a flow-network-type, plant dynamics code (Super-COPD). By using this combined multi-dimensional plant dynamics code, decay heat removals, ULOHS and UTOP accidents were evaluated for the 100 MWe STAR-LM concept designed by ANL. In addition, decay heat removal by the Primary Reactor Auxiliary Cooling System (PRACS) in the 400 MWe lead-bismuth-cooled, natural-circulation reactor, being studied at JNC, was analyzed. In conclusion, it becomes clear that the combined multi-dimensional plant dynamics code is suitably applicable to analyses of lead-bismuth-cooled, natural-circulation reactors to evaluate thermal-hydraulic phenomena during steady-state and transient conditions. (author)
Techniques for the thermal/hydraulic analysis of LMFBR check valves
International Nuclear Information System (INIS)
Cho, S.M.; Kane, R.S.
1979-01-01
A thermal/hydraulic analysis of the check valves in liquid sodium service for LMFBR plants is required to provide temperature data for thermal stress analysis of the valves for specified transient conditions. Because of the complex three-dimensional flow pattern within the valve, the heat transfer analysis techniques for less complicated shapes could not be used. This paper discusses the thermal analysis techniques used to assure that the valve stress analysis is conservative. These techniques include a method for evaluating the recirculating flow patterns and for selecting appropriately conservative heat transfer correlations in various regions of the valve
Thermal hydraulic behavior evaluation of tank A-101
International Nuclear Information System (INIS)
Ogden, D.M.
1996-01-01
This report describes a new evaluation conducted to help understand the thermal-hydraulic behavior of tank A-101. Prior analysis of temperature data indicated that the dome space and upper waste layer was slowly increasing in temperature increases are due to increasing ambient temperatures and termination of forced ventilation. However, this analysis also indicates that other dome cooling processes are slowly decreasing, or some slow increase in heating is occurring at the waste surface. Dome temperatures are not decreasing at the rate expected as a forced ventilation termination effects are accounted for
Thermal-hydraulic analysis of PWR cores in transient condition
International Nuclear Information System (INIS)
Silva Galetti, M.R. da.
1984-01-01
A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt
Current Development and Trends in Thermal-Hydraulics
International Nuclear Information System (INIS)
Toth, I.
2008-01-01
A review of CSNI activities during the last two decades in the field of thermal-hydraulics and related topics has been extensively presented in sessions 2. to 9. New activities are in progress or planned partly based on recommendations of the CSNI Operating Plan and the CSNI SESAR SFEAR report, but also on requests coming from the member states. These activities are performed in the frame of the CSNI Working Group on the Analysis and Management of Accidents (GAMA) or in the frame of CSNI Projects. These actions are summarized in this paper.
Thermal-hydraulic considerations for particle bed reactors
Benenati, R.; Araj, K. J.; Horn, F.
In the design of particle bed reactor (PBR) cores, consideration must be given to the gas coolant channels and their configuration. Neutronics analysis provides the relative volume fractions of the component materials, but these must be arranged in such a manner as to allow proper cooling of all components by the gas flow at relatively low pressure drops. The thermal hydraulic aspects of this problem are addressed. A description of the computer model used in the analysis of the steady state condition is also included. Blowdown tests on hot particle bed fuel elements were carried out and are described.
Thermal hydraulic behavior of SCWR sliding pressure startup
International Nuclear Information System (INIS)
Fu Shengwei; Zhou Chong; Xu Zhihong; Yang Yanhua
2011-01-01
The modification to ATHLET-SC code is introduced in this paper, which realizes the simulation of trans-critical transients using two-phase model. With the modified code, the thermal-hydraulic dynamic behavior of the mixed SCWR core during the startup process is simulated. The startup process is similar to the design of SCLWR-H sliding pressure startup. The results show that maximum temperature of cladding-surface does not exceed 650℃ in the whole startup process, and the sudden change of water properties in the trans-critical transients will not cause harmful influence to the heat transfer of the fuel cladding. (authors)
Analysis of molten salt thermal-hydraulics using computational fluid dynamics
International Nuclear Information System (INIS)
Yamaji, B.; Csom, G.; Aszodi, A.
2003-01-01
To give a good solution for the problem of high level radioactive waste partitioning and transmutation is expected to be a pro missing option. Application of this technology also could extend the possibilities of nuclear energy. Large number of liquid-fuelled reactor concepts or accelerator driven subcritical systems was proposed as transmutors. Several of these consider fluoride based molten salts as the liquid fuel and coolant medium. The thermal-hydraulic behaviour of these systems is expected to be fundamentally different than the behaviour of widely used water-cooled reactors with solid fuel. Considering large flow domains three-dimensional thermal-hydraulic analysis is the method seeming to be applicable. Since the fuel is the coolant medium as well, one can expect a strong coupling between neutronics and thermal-hydraulics too. In the present paper the application of Computational Fluid Dynamics for three-dimensional thermal-hydraulics simulations of molten salt reactor concepts is introduced. In our past and recent works several calculations were carried out to investigate the capabilities of Computational Fluid Dynamics through the analysis of different molten salt reactor concepts. Homogenous single region molten salt reactor concept is studied and optimised. Another single region reactor concept is introduced also. This concept has internal heat exchanges in the flow domain and the molten salt is circulated by natural convection. The analysis of the MSRE experiment is also a part of our work since it may form a good background from the validation point of view. In the paper the results of the Computational Fluid Dynamics calculations with these concepts are presented. In the further work our objective is to investigate the thermal-hydraulics of the multi-region molten salt reactor (Authors)
Thermal-hydraulic tests on net divertor targets using swirl tubes
International Nuclear Information System (INIS)
Schlosser, J.; Chappuis, P.; Deschamps, P.; Massmann, P.; Falter, H.D.; Deschamps, G.H.
1991-01-01
Thermal-hydraulic tests have been carried out in collaboration between NET, CEA Cadarache and JET in order to find a cooling method capable of removing the high heat fluxes expected for the NET/ITER divertor. The goal was to evaluate by experiments the critical heat flux (CHF) and heat transfer in the subcooled boiling regime using twisted tapes as turbulence promoters and testing them under relevant thermal-hydraulic conditions. The CEA 200 kW Electron Beam (EB) facility and the 10 MW JET Neutral Beam (NB) test bed have been used to heat up the NET relevant test sections (TS) consisting of rectangular copper elements with circular internal channels. The TS have been exposed to the electron or ion beams under normal incidence. This paper reports the results of the experiments and of thermal analyses performed in support of the tests. The experimental CHF values have been benchmarked with the Tong-75 correlation
Optimized iteration in coupled Monte-Carlo - Thermal-hydraulics calculations
International Nuclear Information System (INIS)
Hoogenboom, J.E.; Dufek, J.
2013-01-01
This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration methods are also tested and it is concluded that the presented iteration method is near optimal. (authors)
Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model
Directory of Open Access Journals (Sweden)
Reza Akbari
2017-08-01
Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.
A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor
Energy Technology Data Exchange (ETDEWEB)
Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)
1998-03-01
The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.
Cross-cutting european thermal-hydraulics research for innovative nuclear systems
International Nuclear Information System (INIS)
Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.
2010-01-01
Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)
Thermal hydraulic evaluation of advanced wire-wrapped assemblies
International Nuclear Information System (INIS)
Wei, J.P.
1975-01-01
The thermal-hydraulic analyses presented in this report are based on application of the subchannel concept in association with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The interactions between subchannels are due to turbulent interchange, pressure-induced diversion crossflow, directed sweeping crossflow induced by the helical wire wrap, and transverse thermal conduction. The FULMIX-II computer program was successfully developed to perform the steady-state temperature predictions for LMFBR fuel assemblies with the reference straight-start design and the advanced wire-wrap designs. Predicted steady-state temperature profiles are presented for a typical CRBRP 217-rod wire-wrapped assembly with the selected wire-wrap designs
Hydraulic and thermal design of a gas microchannel heat exchanger
International Nuclear Information System (INIS)
Yang Yahui; Brandner, Juergen J; Morini, Gian Luca
2012-01-01
In this paper investigations on the design of a gas flow microchannel heat exchanger are described in terms of hydrodynamic and thermal aspects. The optimal choice for thermal conductivity of the solid material is discussed by analysis of its influences on the thermal performance of a micro heat exchanger. Two numerical models are built by means of a commercial CFD code (Fluent). The simulation results provide the distribution of mass flow rate, inlet pressure and pressure loss, outlet pressure and pressure loss, subjected to various feeding pressure values. Based on the thermal and hydrodynamic analysis, a micro heat exchanger made of polymer (PEEK) is designed and manufactured for flow and heat transfer measurements in air flows. Sensors are integrated into the micro heat exchanger in order to measure the local pressure and temperature in an accurate way. Finally, combined with numerical simulation, an operating range is suggested for the present micro heat exchanger in order to guarantee uniform flow distribution and best thermal and hydraulic performances.
Thermal hydraulics analysis of LIBRA-SP target chamber
International Nuclear Information System (INIS)
Mogahed, E.A.
1996-01-01
LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PEr-forated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625 degree C to avoid drastic deterioration of the metal's mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370 degree C, and the heat exchanger inlet coolant bulk temperature is 502 degree C. 4 refs., 6 figs., 2 tabs
Thermal hydraulic and safety analyses for Pakistan Research Reactor-1
International Nuclear Information System (INIS)
Bokhari, I.H.; Israr, M.; Pervez, S.
1999-01-01
Thermal hydraulic and safety analysis of Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel have been performed using computer code PARET. The present core comprises of 29 standard and 5 control fuel elements. Results of the thermal hydraulic analysis show that the core can be operated at a steady-state power level of 10 MW for a flow rate of 950 m 3 /h, with sufficient safety margins against ONB (onset of nucleate boiling) and DNB (departure from nucleate boiling). Safety analysis has been carried out for various modes of reactivity insertions. The events studied include: start-up accident; accidental drop of a fuel element in the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results indicate that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is therefore concluded that the reactor can be safely operated at 10 MW without compromising safety. (author)
Thermal hydraulic analysis of BWR containment venting system
International Nuclear Information System (INIS)
Baburajan, P.K.; Sharma, Prashant; Paul, U.K.; Gaikwad, Avinash
2015-01-01
Installation of additional containment filtered venting system (CFVS) is necessary to depressurize the containment to maintain its mechanical integrity due to over pressurization during severe accident condition. A typical venting system for BWR is modelled using RELAP5 and analysed to investigate the effect of various thermal hydraulic parameters on the operational parameters of the venting system. The venting system consists of piping from the containment to the scrubber tank and exit line from the scrubber tank. The scrubber tank is partially filled with water to enable the scrubbing action to remove the particulate radionuclides from the incoming containment air. The pipe line from the containment is connected to the venturi inlet and the throat of the venturi is open to the scrubber tank water inventory at designed submergence level. The exit of the venturi is open to scrubber tank water. Filters are used in the upper air space of the scrubber tank as mist separator before venting out the air into the atmosphere through the exit vent line. The effect of thermal hydraulic parameters such as inlet fluid temperature, inlet steam content and venturi submergence in the scrubber tank on the venting flow rate, exit steam content, scrubber tank inventory, overflow line and siphon breaker flow rate is analysed. Results show that inlet steam content and the venturi nozzle submergence influence the venting system parameters. (author)
LWR containment thermal hydraulic codes benchmark demona B3 exercise
International Nuclear Information System (INIS)
Della Loggia, E.; Gauvain, J.
1988-01-01
Recent discussion about the aerosol codes currently used for the analysis of containment retention capabilities have revealed a number of questions concerning the reliabilities and verifications of the thermal-hydraulic modules of these codes with respect to the validity of implemented physical models and the stability and effectiveness of numerical schemes. Since these codes are used for the calculation of the Source Term for the assessment of radiological consequences of severe accidents, they are an important part of reactor safety evaluation. For this reason the Commission of European Communities (CEC), following the recommendation mode by experts from Member Stades, is promoting research in this field with the aim also of establishing and increasing collaboration among Research Organisations of member countries. In view of the results of the studies, the CEC has decided to carry out a Benchmark exercise for severe accident containment thermal hydraulics codes. This exercise is based on experiment B3 in the DEMONA programme. The main objective of the benchmark exercise has been to assess the ability of the participating codes to predict atmosphere saturation levels and bulk condensation rates under conditions similar to those predicted to follow a severe accident in a PWR. This exercise follows logically on from the LA-4 exercise, which, is related to an experiment with a simpler internal geometry. We present here the results obtained so far and from them preliminary conclusions are drawn, concerning condensation temperature, pressure, flow rates, in the reactor containment
Finite volume thermal-hydraulics and neutronics coupled calculations - 15300
International Nuclear Information System (INIS)
Araujo Silva, V.; Campagnole dos Santos, A.A.; Mesquit, A.Z.; Bernal, A.; Miro, R.; Verdu, G.; Pereira, C.
2015-01-01
The computational power available nowadays allows the coupling of neutronics and thermal-hydraulics codes for reactor studies. The present methodology foresees at least one constraint to the separated codes in order to perform coupled calculations: both codes must use the same geometry, however, meshes can be different for each code as long as the internal surfaces stays the same. Using the finite volume technique, a 3D diffusion nodal code was implemented to deal with neutron transport. This code can handle non-structured meshes which allows for complicated geometries calculations and therefore more flexibility. A computational fluid dynamics (CFD) code was used in order to obtain the same level of details for the thermal hydraulics calculations. The chosen code is OpenFOAM, an open-source CFD tool. Changes in OpenFOAM allow simple coupled calculations of a PWR fuel rod with neutron transport code. OpenFOAM sends coolant density information and fuel temperature to the neutron transport code that sends back power information. A mapping function is used to average values when one node in one side corresponds to many nodes in the other side. Data is exchanged between codes by library calls. As the results of a fuel rod calculations progress, more complicated and processing demanding geometries will be simulated, aiming to the simulation of a real scale PWR fuel assembly
Advanced modelling and numerical strategies in nuclear thermal-hydraulics
International Nuclear Information System (INIS)
Staedtke, H.
2001-01-01
The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)
Scaling of Thermal-Hydraulic Phenomena and System Code Assessment
International Nuclear Information System (INIS)
Wolfert, K.
2008-01-01
In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.
Minerve: thermal-hydraulic phenomena simulation and virtual reality
International Nuclear Information System (INIS)
Laffont, A.; Pentori, B.
2003-01-01
MINERVE is a 3D interactive application representing the thermal-hydraulic phenomena happening in a nuclear plant. Therefore, the 3D geometric model of the French 900 MW PWR installations has been built. The users can interact in real time with this model to see at each step of the simulation what happens in the pipes. The thermal-hydraulic simulation is made by CATHARE-2, which calculates at every time step data on about one thousand meshes (the whole primary circuit, a part of the second circuit, and the Residual Heat Removal System). The simulation covers incidental and accidental cases on these systems. There are two main innovations in MINERVE: In the domain of nuclear plant's visualization, it is to introduce interactive 3D software mechanisms to visualize results of a physical simulation. In the domain of real-time 3D, it is to visualize fluids in a pipe, while they can have several configurations, like bubbles or single liquid phase. These mechanisms enable better comprehension and better visual representation of the possible phenomena. This paper describes the functionalities of MINERVE, and the difficulties to represent fluids with several characteristics like speed, configuration,..., in 3D. On the end, we talk about the future of MINERVE, and more widely of the possible futures of such an application in scientific visualization. (authors)
Minerve: thermal-hydraulic phenomena simulation and virtual reality
Energy Technology Data Exchange (ETDEWEB)
Laffont, A.; Pentori, B. [EDF R and D, EDF SEPTEN Electricity of France - Research and Development, Department SINETICS, 92 - Clamart (France)
2003-07-01
MINERVE is a 3D interactive application representing the thermal-hydraulic phenomena happening in a nuclear plant. Therefore, the 3D geometric model of the French 900 MW PWR installations has been built. The users can interact in real time with this model to see at each step of the simulation what happens in the pipes. The thermal-hydraulic simulation is made by CATHARE-2, which calculates at every time step data on about one thousand meshes (the whole primary circuit, a part of the second circuit, and the Residual Heat Removal System). The simulation covers incidental and accidental cases on these systems. There are two main innovations in MINERVE: In the domain of nuclear plant's visualization, it is to introduce interactive 3D software mechanisms to visualize results of a physical simulation. In the domain of real-time 3D, it is to visualize fluids in a pipe, while they can have several configurations, like bubbles or single liquid phase. These mechanisms enable better comprehension and better visual representation of the possible phenomena. This paper describes the functionalities of MINERVE, and the difficulties to represent fluids with several characteristics like speed, configuration,..., in 3D. On the end, we talk about the future of MINERVE, and more widely of the possible futures of such an application in scientific visualization. (authors)
Thermal-hydraulic codes validation for safety analysis of NPPs with RBMK
International Nuclear Information System (INIS)
Brus, N.A.; Ioussoupov, O.E.
2000-01-01
This work is devoted to validation of western thermal-hydraulic codes (RELAP5/MOD3 .2 and ATHLET 1.1 Cycle C) in application to Russian designed light water reactors. Such validation is needed due to features of RBMK reactor design and thermal-hydraulics in comparison with PWR and BWR reactors, for which these codes were developed and validated. These validation studies are concluded with a comparison of calculation results of modeling with the thermal-hydraulics codes with the experiments performed earlier using the thermal-hydraulics test facilities with the experimental data. (authors)
Proceedings of the 8. Brazilian Meeting on Reactor Physics and Thermal Hydraulics
International Nuclear Information System (INIS)
1991-01-01
Some papers about pressurized light water reactors, fast reactors, accident analysis, transients, research reactors, nuclear data collection, thermal hydraulics, reactor monitoring, neutronics are presented. (E.G.)
Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes
International Nuclear Information System (INIS)
Vitkova, M.; Kalchev, B.; Stefanova, S.
2006-01-01
The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed
International Nuclear Information System (INIS)
Narsilio, G A; Yun, T S; Kress, J; Evans, T M
2010-01-01
This paper summarizes a method to characterize conduction properties in soils at the particle-scale. The method set the bases for an alternative way to estimate conduction parameters such as thermal conductivity and hydraulic conductivity, with the potential application to hard-to-obtain samples, where traditional experimental testing on large enough specimens becomes much more expensive. The technique is exemplified using 3D synthetic grain packings generated with discrete element methods, from which 3D granular images are constructed. Images are then imported into the finite element analyses to solve the corresponding governing partial differential equations of hydraulic and thermal conduction. High performance computing is implemented to meet the demanding 3D numerical calculations of the complex geometrical domains. The effects of void ratio and inter-particle contacts in hydraulic and thermal conduction are explored. Laboratory measurements support the numerically obtained results and validate the viability of the new methods used herein. The integration of imaging with rigorous numerical simulations at the pore-scale also enables fundamental observation of particle-scale mechanisms of macro-scale manifestation.
International Nuclear Information System (INIS)
Ware, A.G.; Longhurst, G.R.
1981-12-01
This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available
Loss-of-Fluid Test findings in pressurized water reactor core's thermal-hydraulic behavior
International Nuclear Information System (INIS)
Russell, M.
1983-01-01
This paper summarizes the pressurized water reactor (PWR) core's thermal-hydraulic behavior findings from experiments performed at the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The potential impact of these findings on the safety and economics of PWR's generation of electricity is also discussed. Reviews of eight important findings in the core's physical behavior and in experimental methods are presented with supporting evidence
Energy Technology Data Exchange (ETDEWEB)
Ware, A.G.; Longhurst, G.R.
1981-12-01
This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.
Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report
International Nuclear Information System (INIS)
W.E. Lowry
2001-01-01
The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01
Neutronics and thermal-hydraulics analysis of KUHFR
Energy Technology Data Exchange (ETDEWEB)
Woodruff, W L [Argonne National Laboratory, Argonne, IL (United States); Mishima, K [KURRI, Osaka (Japan)
1983-08-01
control rod worth with reduced enrichment has not yet determined, but only a small decrease in worth is expected. These BOL boron poisoned fuels are also used as the fresh fuel feed for the equilibrium fuel cycle studies contained in this report. The first three cases shown have matching cycle lengths in the equilibrium cycle, while the last case has a considerably longer cycle length. These results are similarly reflected in the 'Maximum Cycle Lengths' shown for unpoisoned BOL cores. Thus, the first three case can be considered comparable. The last case might be considered as an option for an extended cycle length design. The cycle length for this case is increased by about 21%. Obviously, by decreasing the uranium density in the fuel meat (to 2.7 g/cm{sup 3}), the cycle length for this design could be reduced to match that of the other cases. Thermal-hydraulic calculations have been carried out in order to study the safety aspects of the use of reduced enrichment uranium fuel for the KUHFR. The calculations were based on what is outlined in the Safety Analysis Report for the KUHFR and also the IAEA Guidebook for the RERTR program. Only a few combinations of hydraulic parameters have been tested because the reactor safety cannot be discussed without any nuclear physics considerations. For example, any variations in fuel coolant channels may change not only flow velocities but also power peaking factors which may affect the assessment of reactor safety. For this reason, the thermal-hydraulic calculations were carried out only for those specific cases on which neutronics analysis has been already performed. Low enriched uranium (LEU) cases are also included in this study as initial feasibility studies for potential conversion. The computer code PLTEMP has been developed to calculate the flow distribution in the core, fuel plate temperatures and DNB heat fluxes.
Validation of containment thermal hydraulic computer codes for VVER reactor
Energy Technology Data Exchange (ETDEWEB)
Jiri Macek; Lubomir Denk [Nuclear Research Institute Rez plc Thermal-Hydraulic Analyses Department CZ 250 68 Husinec-Rez (Czech Republic)
2005-07-01
Full text of publication follows: The Czech Republic operates 4 VVER-440 units, two VVER-1000 units are being finalized (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppression system are modelled with COCOSYS and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems.An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. One of the important components of the VVER 440/213 NPP is its containment with pressure suppression system (bubble condenser). For safety analyses of this system, computer codes of the type MELCOR and COCOSYS are used in the Czech Republic. These codes were developed for containments of classic PWRs or BWRs. In order to apply these codes for VVER 440 systems, their validation on experimental facilities must be performed.The paper provides concise information on these activities of the NRI and its Thermal-hydraulics Department. The containment system of the VVER 440/213, its functions and approaches to solution of its safety is described with definition of acceptance criteria. A detailed example of the containment code validation on EREC Test facility (LOCA and MSLB) and the consequent utilisation of the results for a real NPP purposes is included. An approach to
Energy Technology Data Exchange (ETDEWEB)
Yu, C.; Matray, J.-M. [Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, (France); Yu, C.; Gonçalvès, J. [Aix Marseille Université UMR 6635 CEREGE Technopôle Environnement Arbois-Méditerranée Aix-en-Provence, Cedex 4 (France); and others
2017-04-15
The deep borehole (DB) experiment gave the opportunity to acquire hydraulic parameters in a hydraulically undisturbed zone of the Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Three methods were used to estimate hydraulic conductivity and specific storage values of the Opalinus Clay formation and its bounding formations through the 248 m deep borehole BDB-1: application of a Poiseuille-type law involving petrophysical measurements, spectral analysis of pressure time series and in situ hydraulic tests. The hydraulic conductivity range in the Opalinus Clay given by the first method is 2 × 10{sup -14}-6 × 10{sup -13} m s{sup -1} for a cementation factor ranging between 2 and 3. These results show low vertical variability whereas in situ hydraulic tests suggest higher values up to 7 × 10{sup -12} m s{sup -1}. Core analysis provides economical estimates of the homogeneous matrix hydraulic properties but do not account for heterogeneities at larger scale such as potential tectonic conductive features. Specific storage values obtained by spectral analysis are consistent and in the order of 10{sup -6} m{sup -1}, while formulations using phase shift and gain between pore pressure signals were found to be inappropriate to evaluate hydraulic conductivity in the Opalinus Clay. The values obtained are globally in good agreement with the ones obtained previously at the rock laboratory. (authors)
Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems
International Nuclear Information System (INIS)
Song, C. H.; Chung, M. K.; Park, C. K. and others
2005-04-01
The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved
Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems
Energy Technology Data Exchange (ETDEWEB)
Song, C. H.; Chung, M. K.; Park, C. K. and others
2005-04-15
The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.
International Nuclear Information System (INIS)
Syrmalenios, Panayotis
1973-01-01
This short research thesis aims at taking stock of problems raised by the discharge of high temperature water from a power plant into rivers, lakes and seas from a thermal and hydraulic point of view. The author proposes an overview of ecological, legal, and recirculation problems. He describes the various phenomena going along these discharges at the vicinity of the discharge and far from it. He also proposes an overview of methods used to study these thermal and hydraulic effects: 'in-situ' studies, experimental methods, theoretical methods. Appendices address floating jets and layered flows [fr
Thermal-hydraulic experiments and analyses on cold moderator
International Nuclear Information System (INIS)
Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsushi; Hino, Ryutaro
2001-01-01
A cold moderator using supercritical hydrogen is one of the key components in a MW-scale spallation target system, which directly affects the neutronic performance both in intensity and resolution. Since a hydrogen temperature rise in the moderator vessel affects the neutronic performance, it is necessary to suppress the local temperature rise within 3 K. In order to develop the conceptual design of the moderator structure in progress, the flow patterns were measured using a PIV (Particle Image Velocimeter) system under water flow conditions using a flat model that simulated a moderator vessel. From these results, the flow patterns (such as recirculation flows, stagnant flows etc.) were clarified. The hydraulic analytical results obtained using the STAR-CD code agreed well with experimental results. Thermal-hydraulic analyses in the moderator vessel were carried out using the STAR-CD code. Based on these results, we clarified the possibility of suppressing the local temperature rise to within 3 K under 2 MW operating conditions. In order to achieve the cost decreasing of the hydrogen loop, it is necessary to operate it reducing the hydrogen flow rate and the whole hydrogen mass. Then improved moderator concept using blowholes and a twisted tape was proposed, and we have tried to examine the effect of the blowing flow from the inlet pipe. From the experimental and analytical results, the blowing flow could be feasible for the suppression of the stagnant region. (author)
Coupled neutronic-thermal-hydraulics analysis in a coolant subchannel of a PWR using CFD techniques
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, Felipe P.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2017-07-01
The high capacity of Computational Fluid Dynamics code to predict multi-dimensional thermal-hydraulics behaviour and the increased availability of capable computer systems are making that method a good tool to simulate phenomena of thermal-hydraulics nature in nuclear reactors. However, since there are no neutron kinetics models available in commercial CFD codes to the present day, the application of CFD in the nuclear reactor safety analyses is still limited. The present work proposes the implementation of the point kinetics model (PKM) in ANSYS - Fluent to predict the neutronic behaviour in a Westinghouse Sequoyah nuclear reactor, coupling with the phenomena of heat conduction in the rod and thermal-hydraulics in the cooling fluid, via the reactivity feedback. Firstly, a mesh convergence and turbulence model study was performed, using the Reynolds-Average Navier-Stokes method, with square arrayed rod bundle featuring pitch to diameter ratio of 1:32. Secondly, simulations using the k-! SST turbulence model were performed with an axial distribution of the power generation in the fuel to analyse the heat transfer through the gap and cladding, and its in fluence on the thermal-hydraulics behaviour of the cooling fluid. The wall shear stress distribution for the centre-line rods and the dimensionless velocity were evaluated to validate the model, as well as the in fluence of the mass flow rate variation on the friction factor. The coupled model enabled to perform a dynamic analysis of the nuclear reactor during events of insertion of reactivity and shutdown of primary coolant pumps. (author)
Study of thermal-hydraulic characteristics in an LMFBR intermediate plenum
International Nuclear Information System (INIS)
Uotani, M.; Naohara, N.; Kinoshita, I.
1985-01-01
Experimental studies using water and liquid metal were conducted in order to investigate the thermal-hydraulic characteristics of an LMFBR intermediate plenum. The present study is an attempt to evaluate the effect of natural convection on the temperature field and to validate the prediction method of temperature profile in a thermally stratified cavity. The experimental results indicated that the effect of the natural convection on flow velocity and heat transfer in the cavity is reduced with increasing the modified stratification parameter. The calculation by FEM code and a simple 1-D model are effective to predict the temperature profile in the cavity
Thermal hydraulic and neutronic interaction in the rotating bed reactor
International Nuclear Information System (INIS)
Lee, C.C.
1986-01-01
Power transient characteristics in a rotating fluidized bed reactor (RBR) are investigated theoretically. A propellant flow perturbation is assumed to occur in an initially equilibrium state of the core. Transfer functions representing quasi-one-dimensional mutual feedback between thermal hydraulics and neutronics are developed and analyzed in the frequency domain. Neutronic responses are determined by Fermi-age theory for slowing down of fast neutrons and diffusion theory for thermal neutron distribution. Neutron leakage through the exhaust nozzle is accounted for by applying diffuse view factors similar to those applied in radiative heat transfer. The bed expansion behavior is described by a kinematic wave equation derived from the continuity of the gas phase. The drift flux approach is used to determine the yield fractions in the equilibrium bed. Thermal responses of fuel are evaluated by dividing it into several volume-averaged zones to better account for the transient effects over single zone models. Sample calculations are undertaken for the various operation conditions and design parameters of the RBR based on 250 MW/sub t/, 1000 MW/sub t/, and 5000 MW/sub t/ power reactors. The results show that power transients are dependent on the parametric changes of optical thickness and view factors
Development of thermal hydraulic analysis code for IHX of FBR
International Nuclear Information System (INIS)
Kumagai, Hiromichi; Naohara, Nobuyuki
1991-01-01
In order to obtain flow resistance correlations for thermal-hydrauric analysis code concerned with an intermediate heat exchanger (IHX) of FBR, the hydraulic experiment by air was carried out through a bundle of tubes arranged in an in-line and staggard fashion. The main results are summarized as follows. (1) On pressure loss per unit length of a tube bundle, which is densely a regular triangle arrangement, the in-line fashion is almost the same as the staggard one. (2) In case of 30deg sector model for IHX tube bundle, pressure loss is 1/3 in comparison with the in-line or staggard arrangement. (3) By this experimental data, flow resistance correlations for thermalhydrauric analysis code are obtained. (author)
Evolution of thermal-hydraulics testing in EBR-II
International Nuclear Information System (INIS)
Golden, G.H.; Planchon, H.P.; Sackett, J.I.; Singer, R.M.
1987-01-01
A thermal-hydraulics testing and modeling program has been underway at the Experimental Breeder Reactor-II (EBR-II) for 12 years. This work culminated in two tests of historical importance to commercial nuclear power, a loss of flow without scram and a loss of heat sink wihout scram, both from 100% initial power. These tests showed that natural processes will shut EBR-II down and maintain cooling without automatic control rod action or operator intervention. Supporting analyses indicate that these results are characteristic of a range of sizes of liquid metal cooled reactors (LMRs), if these reactors use metal driver fuel. This type of fuel is being developed as part of the Integral Fast Reactor Program at Argonne National Laboratory. Work is now underway at EBR-II to exploit the inherent safety of metal-fueled LMRs with regard to development of improved plant control strategies. (orig.)
submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems
Bottura, L
2016-01-01
Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...
Thermal hydraulic stability in a pressure tube nuclear reactor
International Nuclear Information System (INIS)
Villani, A.; Ravetta, R.; Mansani, L.
1986-01-01
The CIRENE plant which will undergo preoperational tests in the near future is equipped with a 40 MW(e) Heavy Water moderated Boiling Light Water cooled Reactor (HWBLWR); at the start-up and up to about 30 % of nominal power, the necessary low coolant density is obtained injecting into the core a mixture of liquid and steam. To verify the thermal-hydraulic stability of the plant in this situation, tests have been carried out in a facility simulating two full scale power channels; the system stability has been confirmed in the reference conditions, and is not reduced by even a significant reduction of the liquid flowrate, where a decrease in liquid temperature has some negative effect and steam flowrate has a small influence. (author)
GNPS 18-months fuel cycles core thermal hydraulic design
International Nuclear Information System (INIS)
Liu Changwen; Zhou Zhou
2002-01-01
GNPS begins to implement the 18-month fuel cycles from the initial annual reload at cycle 9, thus the initial core thermal hydraulic design is not valid any more. The new critical heat flux (CHF) correlation, FC, which is developed by Framatome, is used in the design, and the generalized statistical methodology (GSM) instead of the initial deterministic methodology is used to determine the DNBR design limit. As the AFA 2G and AFA 3G are mixed loaded in the transition cycle, it will result that the minimum DNBR in the mixed core is less than that of AFA 3G homogenous core, the envelop mixed core DNBR penalty is given. Consequently the core physical limit for mixed core and equilibrium cycles, and the new over temperature ΔT overpower ΔT are determined
Hydraulic modeling of thermal discharges into shallow, tidal affected streams
International Nuclear Information System (INIS)
Copp, H.W.; Shashidhara, N.S.
1981-01-01
A two-unit nuclear fired power plant is being constructed in western Washington state. Blowdown water from cooling towers will be discharged into the Chehalis River nearby. The location of a diffuser is some 21 miles upriver from Grays Harbor on the Pacific Ocean. Because the Chehalis River is classified as an excellent stream from the standpoint of water quality, State regulatory agencies required demonstration that thermal discharges would maintain water quality standards within fairly strict limits. A hydraulic model investigation used a 1:12 scale, undistorted model of a 1300-foot river reach in the vicinity of the diffuser. The model scale was selected to insure fully turbulent flows both in the stream and from the diffuser (Reynolds similitude). Model operation followed the densimetric Froude similitude. Thermistors were employed to measure temperatures in the model; measurements were taken by computer command and such measurements at some 250 positions were effected in about 2.5 seconds
Thermal hydraulic analysis of the encapsulated nuclear heat source
Energy Technology Data Exchange (ETDEWEB)
Sienicki, J.J.; Wade, D.C. [Argonne National Lab., IL (United States)
2001-07-01
An analysis has been carried out of the steady state thermal hydraulic performance of the Encapsulated Nuclear Heat Source (ENHS) 125 MWt, heavy liquid metal coolant (HLMC) reactor concept at nominal operating power and shutdown decay heat levels. The analysis includes the development and application of correlation-type analytical solutions based upon first principles modeling of the ENHS concept that encompass both pure as well as gas injection augmented natural circulation conditions, and primary-to-intermediate coolant heat transfer. The results indicate that natural circulation of the primary coolant is effective in removing heat from the core and transferring it to the intermediate coolant without the attainment of excessive coolant temperatures. (authors)
Validation of the TEXSAN thermal-hydraulic analysis program
International Nuclear Information System (INIS)
Burns, S.P.; Klein, D.E.
1992-01-01
The TEXSAN thermal-hydraulic analysis program has been developed by the University of Texas at Austin (UT) to simulate buoyancy driven fluid flow and heat transfer in spent fuel and high level nuclear waste (HLW) shipping applications. As part of the TEXSAN software quality assurance program, the software has been subjected to a series of test cases intended to validate its capabilities. The validation tests include many physical phenomena which arise in spent fuel and HLW shipping applications. This paper describes some of the principal results of the TEXSAN validation tests and compares them to solutions available in the open literature. The TEXSAN validation effort has shown that the TEXSAN program is stable and consistent under a range of operating conditions and provides accuracy comparable with other heat transfer programs and evaluation techniques. The modeling capabilities and the interactive user interface employed by the TEXSAN program should make it a useful tool in HLW transportation analysis
Scaling in nuclear reactor system thermal-hydraulics
International Nuclear Information System (INIS)
D'Auria, F.; Galassi, G.M.
2010-01-01
Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.
Scaling in nuclear reactor system thermal-hydraulics
Energy Technology Data Exchange (ETDEWEB)
D' Auria, F., E-mail: dauria@ing.unipi.i [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Galassi, G.M. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)
2010-10-15
Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.
ATLAS program for advanced thermal-hydraulic safety research
International Nuclear Information System (INIS)
Song, Chul-Hwa; Choi, Ki-Yong; Kang, Kyoung-Ho
2015-01-01
Highlights: • Major achievements of the ATLAS program are highlighted in conjunction with both developing advanced light water reactor technologies and enhancing the nuclear safety. • The ATLAS data was shown to be useful for the development and licensing of new reactors and safety analysis codes, and also for nuclear safety enhancement through domestic and international cooperative programs. • A future plan for the ATLAS testing is introduced, covering recently emerging safety issues and some generic thermal-hydraulic concerns. - Abstract: This paper highlights the major achievements of the ATLAS program, which is an integral effect test program for both developing advanced light water reactor technologies and contributing to enhancing nuclear safety. The ATLAS program is closely related with the development of the APR1400 and APR"+ reactors, and the SPACE code, which is a best-estimate system-scale code for a safety analysis of nuclear reactors. The multiple roles of ATLAS testing are emphasized in very close conjunction with the development, licensing, and commercial deployment of these reactors and their safety analysis codes. The role of ATLAS for nuclear safety enhancement is also introduced by taking some examples of its contributions to voluntarily lead to multi-body cooperative programs such as domestic and international standard problems. Finally, a future plan for the utilization of ATLAS testing is introduced, which aims at tackling recently emerging safety issues such as a prolonged station blackout accident and medium-size break LOCA, and some generic thermal-hydraulic concerns as to how to figure out multi-dimensional phenomena and the scaling issue.
Study on thermal-hydraulics during a PWR reflood phase
Energy Technology Data Exchange (ETDEWEB)
Iguchi, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-10-01
In-core thermal-hydraulics during a PWR reflood phase following a large-break LOCA are quite unique in comparison with two-phase flow which has been studied widely in previous researches, because the geometry of the flow path is complicated (bundle geometry) and water is at extremely low superficial velocity and almost under stagnant condition. Hence, some phenomena realized during a PWR reflood phase are not understood enough and appropriate analytical models have not been developed, although they are important in a viewpoint of reactor safety evaluation. Therefore, author investigated some phenomena specified as important issues for quantitative prediction, i.e. (1) void fraction in a bundle during a PWR reflood phase, (2) effect of radial core power profile on reflood behavior, (3) effect of combined emergency core coolant injection on reflood behavior, and (4) the core separation into two thermal-hydraulically different regions and the in-core flow circulation behavior observed during a combined injection PWR reflood phase. Further, author made analytical models for these specified issues, and succeeded to predict reflood behaviors at representative types of PWRs, i.e.cold leg injection PWRs and Combined injection PWRs, in good accuracy. Above results were incorporated into REFLA code which is developed at JAERI, and they improved accuracy in prediction and enlarged applicability of the code. In the present study, models were intended to be utilized in a practical use, and hence these models are simplified ones. However, physical understanding on the specified issues in the present study is basic and principal for reflood behavior, and then it is considered to be used in a future advanced code development and improvement. (author). 110 refs.
Study on the thermal-hydraulic stability of high burn up STEP III fuel in Japan
International Nuclear Information System (INIS)
Ishikawa, M.; Kitamura, H.; Toba, A.; Omoto, A.
2004-01-01
Japanese BWR utilities have performed a joint study of the Thermal Hydraulic Stability of High Burn up STEP III Fuel. In this study, the parametric dependency of thermal hydraulic stability threshold was obtained. It was confirmed through experiments that the STEP III Fuel has sufficient stability characteristics. (author)
International Nuclear Information System (INIS)
Waszink, R.P.; Hwang, J.Y.; Efferding, L.E.
1974-06-01
This is a preliminry thermal/hydraulic report reflecting work under Subtask 6.2 of Ref. 1.1. This report is an extension of the previous thermal/hydraulic design report. Parts of this report have been transmitted to GE. The detailed design basis, listed by source, is given. Additional details are discussed
Investigation of coupling scheme for neutronic and thermal-hydraulic codes
International Nuclear Information System (INIS)
Wang Guoli; Yu Jianfeng; Pen Muzhang; Zhang Yuman.
1988-01-01
Recently, a number of coupled neutronics/thermal-hydraulics codes have been used in reaction design and safty analysis, which have been obtained by coupling previous neutronic and thermal-hydraulic codes. The different coupling schemes affect computer time and accuracy of calculation results. Numberical experiments of several different coupling schemes and some heuristic results are described
Energy Technology Data Exchange (ETDEWEB)
Santos Bastos, W. dos
1995-12-31
These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods.
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-03-01
The present status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were summarized based on survey results and discussion by subcommittee on improvement of reactor thermal-hydraulic analysis codes under nuclear code committee in Japan Atomic Energy Research Institute. This survey was performed to promote the research of improvement of reactor thermal-hydraulic analysis codes in future. In the first part of this report, the status and subjects on system analysis and those on evaluation of passive safety system performance are summarized for various types of reactor proposed before. In the second part, the status and subjects on multidimensional two-phase flow analysis are reviewed, since the multidimensional analysis was recognized as one of most important subjects through the investigation in the first part. Besides, databases for bubbly flow and annular dispersed flow were explored, those are needed to assess and verify each multidimensional analytical method. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs and those include current findings for the development of multidimensional two-phase flow analytical method. Thus, we expect that the contents can offer various useful information against the improvement of reactor thermal-hydraulic analysis codes in future. (author)
Simulation of thermal-hydraulic process in reactor of HTR-PM based on flow and heat transfer network
International Nuclear Information System (INIS)
Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle
2012-01-01
The development of HTR-PM full scale simulator (FSS) is an important part in the project. The simulation of thermal-hydraulic process in reactor is one of the key technologies in the development of FSS. The simulation of thermal-hydraulic process in reactor was studied. According to the geometry structures and the characteristics of thermal-hydraulic process in reactor, the model was setup in components construction way. Based on the established simulation method of flow and heat transfer network, a Fortran code was developed and the simulation of thermal-hydraulic process was achieved. The simulation results of 50% FP steady state, 100% FP steady state and control rod mistakenly ascension accidents were given. The verification of simulation results was carried out by comparing with the design and analysis code THERMIX. The results show that the method and model based on flow and heat transfer network can meet the requirements of FSS and reflect the features of thermal-hydraulic process in HTR-PM. (authors)
Konev, V.; Polovnikov, E.; Krut, O.; Merdanov, Sh; Zakirzakov, G.
2017-07-01
It’s determined that the main part of trailbuilders operated in the North is the technology equipped by the hydraulic actuator. Further development of the northern territories will demand using of various means and ways machinery thermal preparation, and also the machinery of the northern fulfillment. On this basis problems in equipment operation are defined. One of the main is efficiency supplying of a hydraulic actuator. On the basis of the operating conditions’ analysis of trailbuilder hydraulic actuator operation it is determined, that under low negative temperatures the means of thermal preparation are necessary. The existing systems warm up only a hydraulic tank or warming up of the hydro equipment before the machinery operation is carried out under loading with intensive wears. Thus, with the purpose to raise the efficiency of thermal hydraulic actuator, operated far from stationary bases autonomous, energy saving, not expensive in creation and operation systems are necessary. In accordance with the analysis of means and ways of the thermal preparation of the hydraulic actuator and the thermal balance calculations of the (internal) combustion engine the system of the hydraulic actuator heating is offered and is being investigated. It contains a local hydraulic actuator warming up and the system of internal combustion engine heat utilization. Within research operation conditions of the local hydraulic actuator heating are viewed and determined, taking into account constructive changes to the local hydraulic actuator heating. Mathematical modelling of the heat technical process in the modernized hydraulic actuator is considered. As a result temperature changes of the heat-transfer and the hydraulic cylinder in time are determined. To check the theoretical researches and to define dependences on hydraulic actuator warming up, the experimental installation is made. It contains the measuring equipment, a small tank with the heat exchanger of the burnt gases
International Nuclear Information System (INIS)
Sanchez-Espinoza, V.H.; Jaeger, W.; Travleev, A.; Monti, L.; Doern, R.
2009-01-01
Many advanced reactor concepts are nowadays under investigations within the Generation IV international initiative as well as in European research programs including subcritical and critical fast reactor systems cooled by liquid metal, gas and supercritical water. The Institute of Neutron Physics and Reactor Technology (INR) at the Forschungszentrum Karlsruhe GmbH is involved in different European projects like IP EUROTRANS, ELSY, ESFR. The main goal of these projects is, among others, to assess the technical feasibility of proposed concepts regarding safety, economics and transmutation requirements. In view of increased computer capabilities, improved computational schemes, where the neutronic and the thermal hydraulic solution is iteratively coupled, become practicable. The codes ERANOS2.1 and TRACE are being coupled to analyze fuel assembly or core designs of lead-cooled fast reactors (LFR). The neutronic solution obtained with the coupled system for a LFR fuel assembly was compared with the MCNP5 solution. It was shown that the coupled system is predicting physically sound results. The iterative coupling scheme was realized using Perlscripts and auxiliary Fortran programs to ensure that the mapping between the neutronic and the thermal hydraulic part is consistent. The coupled scheme is very flexible and appropriate for the neutron physical and thermal hydraulic investigation of fuel assemblies and of cores of lead cooled fast reactors. The developed methods and the obtained results will be presented and discussed. (author)
Evaluation on thermal-hydraulic characteristics for passive safety device of APR1400
Energy Technology Data Exchange (ETDEWEB)
Yoo, Seong Yeon; Lee, S. H.; Son, M. K. [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Jee, M. S.; Chung, M. H. [Chungnam National Univ., Taejon (Korea, Republic of)
2001-07-15
To establish evaluation and verification guideline for the APR1400, thermal-hydraulic characteristics for fuel rod bundle, reactor vessel and fluidic device is analyzed using FLUENT. Scope and major results of research are as follows : Thermal-hydraulic characteristics for nuclear fuel rod bundle: design data for nuclear fuel rod bundle and structure are surveyed, and 3 x 3 sub-channel model is adopted to investigate the fluid flow and heat transfer characteristics in fuel rod bundle. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions. Thermal-hydraulic characteristics for reactor vessel: reactor vessel design data are surveyed to develop numerical model. Porous media model is applied for fuel rod bundle, and full-scale, three dimensional simulation is performed at actual operating conditions. Distributions of velocity, pressure and temperature are discussed. Flow characteristics for fluidic device: three dimensional numerical model for fluidic device is developed, and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics is analyzed at low and high flow rate conditions, respectively.
Evaluation of operational safety at Babcock and Wilcox Plants: Volume 2, Thermal-hydraulic results
International Nuclear Information System (INIS)
Wheatley, P.D.; Davis, C.B.; Callow, R.A.; Fletcher, C.D.; Dobbe, C.A.; Beelman, R.J.
1987-11-01
The Nuclear Regulatory Commission has initiated a research program to develop a methodology to assess the operational performance of Babcock and Wilcox plants and to apply this methodology on a trial basis. The methodology developed for analyzing Babcock and Wilcox plants integrated methods used in both thermal-hydraulics and human factors and compared results with information used in the assessment of risk. The integrated methodology involved an evaluation of a selected plant for each pressurized water reactor vendor during a limited number of transients. A plant was selected to represent each vendor, and three transients were identified for analysis. The plants were Oconee Unit 1 for Babcock and Wilcox, H.B. Robinson Unit 2 for Westinghouse, and Calvert Cliffs Unit 1 for Combustion Engineering. The three transients were a complete loss of all feedwater, a small-break loss-of-coolant accident, and a steam-generator overfill with auxiliary feedwater. Included in the integrated methodology was an assessment of the thermal-hydraulic behavior, including event timing, of the plants during the three transients. Thermal-hydraulic results are presented in this volume (Volume 2) of the report. 26 refs., 30 figs., 7 tabs
Energy Technology Data Exchange (ETDEWEB)
No, Hee Cheon; Kim, Sang Jae; Kim, Hyung Tae; Moon, Young Min [Korea Advanced Institute of Science and Technology, Taejon (Korea)
2000-04-01
An ultrasonic method is developed for the measurement of the two-phase mixture level in the reactor vessel or steam generator. The ultrasonic method is selected among the several non-nuclear two-phase mixture level measurement methods through two steps of selection procedure. A commercial ultrasonic level measurement method is modified for application into the high temperature, pressure, and other conditions. The calculation method of the ultrasonic velocity is modified to consider the medium as the homogeneous mixture of air and steam, and to be applied into the high temperature and pressure conditions. The cross-correlation technique is adopted as a detection method to reduced the effects of the attenuation and the diffused reflection caused by surface fluctuation. The waveguides are developed to reduce the loss of echo and to remove the effects of obstructs. The present experimental study shows that the developed ultrasonic method measures the two-phase mixture level more accurately than the conventional methods do. 21 refs., 60 figs., 13 tabs. (Author)
Energy Technology Data Exchange (ETDEWEB)
O' Brien, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su -Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2014-09-01
This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation
Development of realistic thermal hydraulic system analysis code
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, B. D; Kim, K. D. [and others
2002-05-01
The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.
Development of realistic thermal hydraulic system analysis code
International Nuclear Information System (INIS)
Lee, Won Jae; Chung, B. D; Kim, K. D.
2002-05-01
The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others
Compatibility analysis of DUPIC fuel(4) - thermal hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Jee Won; Chae, Kyung Myung; Choi, Hang Bok
2000-07-01
Thermal-hydraulic compatibility of the DUPIC fuel bundle in the CANDU reactor has been studied. The critical channel power, the critical power ratio, the channel exit quality and the channel flow are calculated for the DUPIC and the standard fuels by using the NUCIRC code. The physical models and associated parametric values for the NUCIRC analysis of the fuels are also presented. Based upon the slave channel analysis, the critical channel power and the critical power ratios have been found to be very similar for the two fuel types. The same dryout model is used in this study for the standard and the DUPIC fuel bundles. To assess the dryout characteristics of the DUPIC fuel bundle, the ASSERT-PV code has been used for the subchannel analysis. Based upon the results of the subchannel analysis, it is found that the dryout location and the power for the two fuel types are indeed very similar. This study shows that thermal performance of the DUPIC fuel is not significantly different from that of the standard fuel.
Hydraulic performance of compacted clay liners under simulated daily thermal cycles.
Aldaeef, A A; Rayhani, M T
2015-10-01
Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Yarlagadda, B.S.
1989-04-01
The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs
Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR
Energy Technology Data Exchange (ETDEWEB)
Jiang, Kecheng; Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Lin, Shuang [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)
2016-11-15
Highlights: • The 3D thermal hydraulic analysis on the whole module of WCCB is performed by CFD method. • Temperature field and mass flow distribution have been obtained. • The design of WCCB is reasonable from the perspective of thermal-hydraulics. • The scheme for further optimization has been proposed. - Abstract: The Water Cooled Ceramic Breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). The thermal-hydraulic analysis is essential because the blanket should remove the high heat flux from the plasma and the volumetric heat generated by neutrons. In this paper, the detailed three dimensional (3D) thermal hydraulic analysis on the whole module of WCCB blanket has been performed by Computational Fluid Dynamics (CFD) method, which is capable of solving conjugate heat transfer between solid structure and fluid. The main results, including temperature field, distribution of mass flow rate and coolant pressure drop, have been calculated simultaneously. These provides beneficial guidance data for the further structural optimization and for the design arrangement of primary and secondary circuit. Under the total heat source of 1.23 MW, the coolant mass flow rate of 5.457 kg/s is required to make coolant water corresponding to the Pressurized Water Reactor (PWR) condition (15.5 MPa, 285 °C–325 °C), generating the total coolant pressure drop (△P) of 0.467 MPa. The results show that the present structural design can make all the materials effectively cooled to the allowable temperature range, except for a few small modifications on the both sides of FW. The main components, including the first wall (FW), cooling plates (CPs), side wall (SWs)&stiffening plates (SPs) and the manifold(1–4), dominate 4.7%/41.7%/13%/40.6% of the total pressure drop, respectively. Additionally, the mass flow rate of each channel has been obtained, showing the peak relative deviation of 3.4% and 2% from the average for the paratactic
The Phebus FP thermal-hydraulic analysis with Melcor
International Nuclear Information System (INIS)
Akgane, Kikuo; Kiso, Yoshihiro; Fukahori, Takanori; Yoshino, Mamoru
1995-01-01
The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L'Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700 degrees C and 150 degrees C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment
The Phebus FP thermal-hydraulic analysis with Melcor
Energy Technology Data Exchange (ETDEWEB)
Akgane, Kikuo; Kiso, Yoshihiro [Nuclear Power Engineering Corporation, Tokyo (Japan); Fukahori, Takanori [Hitachi Engineering Company, Ltd., Hitachi-shi Ibaraki-ken (Japan); Yoshino, Mamoru [Nuclear Engineering Ltd., Tosabori Nishi-ku (Japan)
1995-09-01
The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L`Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700{degrees}C and 150{degrees}C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment.
Applications of the thermit code to 3D thermal hydraulic analysis of LWR cores
International Nuclear Information System (INIS)
Reed, W.H.
1979-01-01
The THERMIT code calculates the three-dimensional transient thermal hydraulic behavior of light water reactor cores. Its two-fluid dynamics equations for two-phase flow offer improved physical modelling capability needed in the context of calculation coupled to neutron kinetics for feedback. The numerical fluid dynamics method was chosen for reliability over a wider range of transients. An improved heat transfer numerical method is presented which gives better numerical stability and accuracy. A number of example calculations are discussed which give an idea of the power and flexibility of the code
On-Line Core Thermal-Hydraulic Model Improvement
International Nuclear Information System (INIS)
In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won
2007-02-01
The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS
VIPRE-01: A thermal-hydraulic code for reactor cores
International Nuclear Information System (INIS)
Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.; Nomura, K.K.
1989-08-01
The VIPRE-01 thermal hydraulics code for PWR and BWR analysis has undergone significant modifications and error correction. This manual for the updated code, designated as VIPRE-01 Mod-02, describes improvements that eliminate problems of slow convergence with the drift flux model in transient simulation. To update the VIPRE-01 code and its documentation the drift flux model of two-phase flow was implemented and error corrections developed during VIPRE-01 application were included. The project team modified the existing VIPRE-01 equations into drift flux model equations by developing additional terms. They also developed and implemented corrections for the errors identified during the last four years. They then validated the modified code against standard test data using selected test cases. The project team prepared documentation revisions reflecting code improvements and corrections to replace the corresponding sections in the original VIPRE documents. The revised VIPRE code, designated VIPRE-01 Mod-02, incorporates improvements that eliminate many shortcomings of the previous version. During the validation, the code produced satisfactory output compared with test data. The revised documentation is in the form of binder pages to replace existing pages in three of the original manuals
Thermal-hydraulic experiments for the PCHE type steam generator
International Nuclear Information System (INIS)
Shin, C. W.; No, H. C.
2015-01-01
Printed circuit heat exchanger (PCHE) manufactured by HEATRIC is a compact type of the mini-channel heat exchanger. The PCHE is manufactured by diffusion bonding of the chemically-etched plates, and has high heat transfer rate due to a large surface. Therefore, the size of heat exchanger can be reduced by 1/5 - 1/6 and PCHE can be operated under high pressure, high temperature and multi-phase flow. Under such merits, it is used as heat exchanger with various purposes of gas cycle and water cycle. Recently, it is newly suggested as an application of a steam generator. IRIS of MIT and FASES of KAIST conceptually adopted PCHE as a steam generator. When using boiling condition of micro-channel, flow instability is one of the critical issues. Instability may cause unstable mass flow rate, sudden temperature change and system control failure. However instability tests of micro channels using water are very limited because the previous studies were focused on a single tube or other fluid instead of water. In KAIST, we construct the test facility to study the thermal hydraulics and fluid dynamics of the heat exchanger, especially occurrence of instability. By inducing the pressure drop of inlet water, amplitude of oscillation declined by 90%. Finally, the throttling effect was experimentally confirmed that PCHE could be utilized as a steam generator
Thermal hydraulics model for Sandia's annular core research reactor
International Nuclear Information System (INIS)
Rao, Dasari V.; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.
1988-01-01
A thermal hydraulics model was developed for the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The coupled mass, momentum and energy equations for the core were solved simultaneously using an explicit forward marching numerical technique. The model predictions of the temperature rise across the central channel of the ACRR core were within ± 10 percent agreement with the in-core temperature measurements. The model was then used to estimate the coolant mass flow rate and the axial distribution of the cladding surface temperature in the central and average channels as functions of the operating power and the water inlet subcooling. Results indicated that subcooled boiling occurs at the cladding surface in the central channels of the ACRR at power levels in excess of 0.5 MW. However, the high heat transfer coefficient due to subcooled boiling causes the cladding temperature along most of the active fuel rod region to be quite uniform and to increase very little with the reactor power. (author)
Thermal hydraulics analysis of the Advanced High Temperature Reactor
Energy Technology Data Exchange (ETDEWEB)
Wang, Dean, E-mail: Dean_Wang@uml.edu [University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Yoder, Graydon L.; Pointer, David W.; Holcomb, David E. [Oak Ridge National Laboratory, 1 Bethel Valley RD #6167, Oak Ridge, TN 37831 (United States)
2015-12-01
Highlights: • The TRACE AHTR model was developed and used to define and size the DRACS and the PHX. • A LOFF transient was simulated to evaluate the reactor performance during the transient. • Some recommendations for modifying FHR reactor system component designs are discussed. - Abstract: The Advanced High Temperature Reactor (AHTR) is a liquid salt-cooled nuclear reactor design concept, featuring low-pressure molten fluoride salt coolant, a carbon composite fuel form with embedded coated particle fuel, passively triggered negative reactivity insertion mechanisms, and fully passive decay heat rejection. This paper describes an AHTR system model developed using the Nuclear Regulatory Commission (NRC) thermal hydraulic transient code TRAC/RELAP Advanced Computational Engine (TRACE). The TRACE model includes all of the primary components: the core, downcomer, hot legs, cold legs, pumps, direct reactor auxiliary cooling system (DRACS), the primary heat exchangers (PHXs), etc. The TRACE model was used to help define and size systems such as the DRACS and the PHX. A loss of flow transient was also simulated to evaluate the performance of the reactor during an anticipated transient event. Some initial recommendations for modifying system component designs are also discussed. The TRACE model will be used as the basis for developing more detailed designs and ultimately will be used to perform transient safety analysis for the reactor.
Nuclear reactor thermal hydraulics safety analysis and thoughts on FUKUSHIMA
International Nuclear Information System (INIS)
Ninokata, Hisashi
2012-01-01
The first part of this article is to show my thoughts on the accident at Fukushima Daiichi Nuclear Power Station. It is cited from a summary of my lecture talk in Indonesia, in the beginning of the last December, 2011. This talk was based on my previous lecture and seminar talks including those delivered at MIT, June 16, at the ANS Annual Meeting in Hollywood, Florida, June 28 at NURETH-13 in Toronto, September 27, and others. The content is based on the open and latest information available to date in Japan. It may contain some erroneous or uncertain information. I tried to minimize it to my best capability. Also I tried to eliminate any critical issues or opinions that may jeopardize some people who were involved in. The latter half of this article will be excerpts of my recent R and D activities related to the safety-by-design for sodium cooled fast reactors and light water reactors, thermal hydraulics analysis focusing on the simulation-based technology, in particular subchannel analysis and computational fluid dynamics. (J.P.N.)
Thermal hydraulic analysis of the JMTR improved LEU-core
Energy Technology Data Exchange (ETDEWEB)
Tabata, Toshio; Nagao, Yoshiharu; Komukai, Bunsaku; Naka, Michihiro; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takeda, Takashi [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokai, Ibaraki (Japan)
2003-01-01
After the investigation of the new core arrangement for the JMTR reactor in order to enhance the fuel burn-up and consequently extend the operation period, the ''improved LEU core'' that utilized 2 additional fuel elements instead of formerly installed reflector elements, was adopted. This report describes the results of the thermal-hydraulic analysis of the improved LEU core as a part of safety analysis for the licensing. The analysis covers steady state, abnormal operational transients and accidents, which were described in the annexes of the licensing documents as design bases events. Calculation conditions for the computer codes were conservatively determined based on the neutronic analysis results and others. The results of the analysis, that revealed the safety criteria were satisfied on the fuel temperature, DNBR and primary coolant temperature, were used in the licensing. The operation license of the JMTR with the improved LEU core was granted in March 2001, and the reactor operation with new core started in November 2001 as 142nd operation cycle. (author)
One-dimensional two-phase thermal hydraulics (ENSTA course)
International Nuclear Information System (INIS)
Olive, J.
1995-11-01
This course is part of the ENSTA 3rd year thermal hydraulics program (nuclear power option). Its purpose is to provide the theoretical basis and main physical notions pertaining to two-phase flow, mainly focussed on water-steam flows. The introduction describes the physical specificities of these flows, emphasizing their complexity. The mathematical bases are then presented (partial derivative equations), leading to a one-dimensional type, simplified description. Balances drawn up for a pipe length volume are used to introduce the mass conservation. motion and energy equations for each phase. Various postulates used to simplify two-phase models are presented, culminating in homogeneous model definitions and equations, several common examples of which are given. The model is then applied to the calculation of pressure drops in two-phase flows. This involves presenting the models most frequently used to represent pressure drops by friction or due to pipe irregularities, without giving details (numerical values of parameters). This chapter terminates with a brief description of static and dynamic instabilities in two-phase flows. Finally, heat transfer conditions frequently encountered in liquid-steam flows are described, still in the context of a 1D model. This chapter notably includes reference to under-saturated boiling conditions and the various forms of DNB. The empirical heat transfer laws are not discussed in detail. Additional material is appended, some of which is in the form of corrected exercises. (author). 6 appends
Development of fuel performance and thermal hydraulic technology
International Nuclear Information System (INIS)
Jung, Youn Ho; Song, K. N.; Kim, H. K. and others
2000-03-01
Space grid in LWR fuel assembly is a key structural component to support fuel rods and to enhance heat transfer from fuel rod to the coolant. Therefore, the original spacer grid has been developed. In addition, new phenomena in fuel behavior occurs at the high burnup, so that models to analyze those new phenomena were developed. Results of this project can be summarized as follows. - Seven different spacer grid candidates have been invented and submitted for domestic and US patents. Spacer grid test specimen(3x3 array and 5x5 array) were fabricated for each candidate and the mechanical tests were performed. - Basic technologies in the mechanical and thermal hydraulic behavior in the spacer grid development are studied and relevant test facilities were established - Fuel performance analysis models and programs were developed for the high burnup pellet and cladding, and fuel performance data base were compiled - Procedures of fuel characterization and in-/out of-pile tests were prepared - Conceptual design of fuel rod for integral PWR was carried out. (author)
Local thermal-hydraulic behaviour in tight 7-rod bundles
International Nuclear Information System (INIS)
Cheng, X.; Yu, Y.Q.
2009-01-01
Advanced water-cooled reactor concepts with tight lattices have been proposed worldwide to improve the fuel utilization and the economic competitiveness. In the present work, experimental investigations were performed on thermal-hydraulic behaviour in tight hexagonal 7-rod bundles under both single-phase and two-phase conditions. Freon-12 was used as working fluid due to its convenient operating parameters. Tests were carried out under both single-phase and two-phase flow conditions. Rod surface temperatures are measured at a fixed axial elevation and in various circumferential positions. Test data with different radial power distributions are analyzed. Measured surface temperatures of unheated rods are used for the assessment of and comparison with numerical codes. In addition, numerical simulation using sub-channel analysis code MATRA and the computational fluid dynamics (CFD) code ANSYS-10 is carried out to understand the experimental data and to assess the validity of these codes in the prediction of flow and heat transfer behaviour in tight rod bundle geometries. Numerical results are compared with experimental data. A good agreement between the measured temperatures on the unheated rod surface and the CFD calculation is obtained. Both sub-channel analysis and CFD calculation indicates that the turbulent mixing in the tight rod bundle is significantly stronger than that computed with a well established correlation.
Thermal hydraulics of accelerator driven system windowless targets
Directory of Open Access Journals (Sweden)
Bruno ePanella
2015-07-01
Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.
On-Line Core Thermal-Hydraulic Model Improvement
Energy Technology Data Exchange (ETDEWEB)
In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan; Hwang, Dae Hyun; Seo, Kyung Won
2007-02-15
The objective of this project is to implement a fast-running 4-channel based code CETOP-D in an advanced reactor core protection calculator system(RCOPS). The part required for the on-line calculation of DNBR were extracted from the source of the CETOP-D code based on analysis of the CETOP-D code. The CETOP-D code was revised to maintain the input and output variables which are the same as in CPC DNBR module. Since the DNBR module performs a complex calculation, it is divided into sub-modules per major calculation step. The functional design requirements for the DNBR module is documented and the values of the database(DB) constants were decided. This project also developed a Fortran module(BEST) of the RCOPS Fortran Simulator and a computer code RCOPS-SDNBR to independently calculate DNBR. A test was also conducted to verify the functional design and DB of thermal-hydraulic model which is necessary to calculate the DNBR on-line in RCOPS. The DNBR margin is expected to increase by 2%-3% once the CETOP-D code is used to calculate the RCOPS DNBR. It should be noted that the final DNBR margin improvement could be determined in the future based on overall uncertainty analysis of the RCOPS.
Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies
Energy Technology Data Exchange (ETDEWEB)
Han, Kyu Hyun [Korea Institute of Nuclear Safety, 19, Guseong-dong, Yuseong-gu, Daejeon, 305-338 (Korea, Republic of)
2008-07-01
Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)
Evaluation of hot spot factors for thermal and hydraulic design of HTTR
International Nuclear Information System (INIS)
Maruyama, So; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Sudo, Yukio; Murakami, Tomoyuki; Fujii, Sadao.
1993-01-01
High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal power and 950degC in reactor outlet coolant temperature. One of the major items in thermal and hydraulic design of the HTTR is to evaluate the maximum fuel temperature with a sufficient margin from a viewpoint of integrity of coated fuel particles. Hot spot factors are considered in the thermal and hydraulic design to evaluate the fuel temperature not only under the normal operation condition but also under any transient condition conservatively. This report summarizes the items of hot spot factors selected in the thermal and hydraulic design and their estimated values, and also presents evaluation results of the thermal and hydraulic characteristics of the HTTR briefly. (author)
Energy Technology Data Exchange (ETDEWEB)
Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)
1995-09-01
This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.
Energy Technology Data Exchange (ETDEWEB)
Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)
1995-09-01
This document, Volume 2, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
International Nuclear Information System (INIS)
Block, R.C.; Feiner, F.
1995-09-01
This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database
Energy Technology Data Exchange (ETDEWEB)
Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)
1995-09-01
This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Experimental studies on thermal hydraulic responses for transient operations of the SMART-P
International Nuclear Information System (INIS)
Choi, K.Y.; Park, H.S.; Cho, S.; Park, C.K.; Lee, S.J.; Song, C.H.; Chung, M.K.
2005-01-01
Full text of publication follows: Thermal hydraulic responses for transient operations of the SMART-P are experimentally investigated by using a integral effect test facility. This test facility (VISTA) has been constructed to simulate the SMART-P, which is a pilot plant of the SMART. The SMART-P is an advanced modular integral type pressurized water reactor (65 MWt) whose major RCS components, such as main coolant pumps, helical-coiled tube bundle steam generators and pressurizers, are contained in a reactor vessel. This integral design approach eliminates the large coolant loop piping, thus eliminates the occurrence of a large break LOCA. Passive Residual Heat Removal System (PRHRS) is installed to prevent overheating and over-pressurization of the primary system during accidental conditions. The PRHRS of the SMART-P removes the core decay heat by natural circulation of the two-phase fluid. The VISTA facility is a full height and 1/96 volume scaled test facility with respect to the SMART-P and will be used to understand the thermal-hydraulic responses following transients and finally to verify the system design of the SMART-P. The experimental data from the VISTA facility will be essential to system designers to resolve open issues relevant to the design of the SMART-P. The full functional control logics are implanted into the VISTA facility to cope with abnormal transients. The core of the facility can be selectively controlled by either a T-control or a T+N control method. The T-control method is a control method to adjust the core power according to the core exit coolant temperature and is designed to be used for high primary coolant flow conditions. On the other hand, the T+N control method is for low primary coolant flow conditions and it uses core exit temperature as well as core power itself as control inputs. The thermal hydraulic responses are carefully investigated according to different core control methods. Several experiments have been performed to
Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien
2016-04-01
The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user
Hydraulic method of working large super-drift pillars
Energy Technology Data Exchange (ETDEWEB)
Rad' ko, B.V.; Syroezhkin, P.V.; Durov, V.S.
1987-03-01
Describes the method of hydraulic coal extraction introduced in the Pioneer mine belonging to the Dobropol'eugol' coal association. This method was found to reduce the number of collection and ventilation roadways needed significantly, increase their stability, reduce coal loss and increase safety, particularly when mining pillars up to 80 m high. Large scale diagram of hydraulic mining layout shows: ventilation gate, hydraulic monitors, mine roadway, cross-cut, and collection roadways. A table shows pillar dimensions and depth and economic savings for different seams in the mine.
Optimal thermal-hydraulic performance for helium-cooled divertors
International Nuclear Information System (INIS)
Izenson, M.G.; Martin, J.L.
1996-01-01
Normal flow heat exchanger (NFHX) technology offers the potential for cooling divertor panels with reduced pressure drops (<0.5% Δp/p), reduced pumping power (<0.75% pumping/thermal power), and smaller duct sizes than conventional helium heat exchangers. Furthermore, the NFHX can easily be fabricated in the large sizes required for divertors in large tokamaks. Recent experimental and computational results from a program to develop NFHX technology for divertor coolings using porous metal heat transfer media are described. We have tested the thermal and flow characteristics of porous metals and identified the optimal heat transfer material for the divertor heat exchanger. Methods have been developed to create highly conductive thermal bonds between the porous material and a solid substrate. Computational fluid dynamics calculations of flow and heat transfer in the porous metal layer have shown the capability of high thermal effectiveness. An 18-kW NFHX, designed to meet specifications for the international Thermonuclear Experimental Reactor divertor, has been fabricated and tested for thermal and flow performance. Preliminary results confirm design and fabrication methods. 11 refs., 12 figs., 1 tab
Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991
International Nuclear Information System (INIS)
Wang, G.Y.; Shin, Y.W.; Moody, F.J.
1991-01-01
This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems
Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels
Energy Technology Data Exchange (ETDEWEB)
Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro, E-mail: duvan.castellanos@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: pedro.rossi@ufabc.edu.br, E-mail: pedro.carajilescov10@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharias, Modelagem e Ciências Sociais Aplicadas
2017-07-01
To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat
Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels
International Nuclear Information System (INIS)
Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro
2017-01-01
To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat
Efficient Geometry and Data Handling for Large-Scale Monte Carlo - Thermal-Hydraulics Coupling
Hoogenboom, J. Eduard
2014-06-01
Detailed coupling of thermal-hydraulics calculations to Monte Carlo reactor criticality calculations requires each axial layer of each fuel pin to be defined separately in the input to the Monte Carlo code in order to assign to each volume the temperature according to the result of the TH calculation, and if the volume contains coolant, also the density of the coolant. This leads to huge input files for even small systems. In this paper a methodology for dynamical assignment of temperatures with respect to cross section data is demonstrated to overcome this problem. The method is implemented in MCNP5. The method is verified for an infinite lattice with 3x3 BWR-type fuel pins with fuel, cladding and moderator/coolant explicitly modeled. For each pin 60 axial zones are considered with different temperatures and coolant densities. The results of the axial power distribution per fuel pin are compared to a standard MCNP5 run in which all 9x60 cells for fuel, cladding and coolant are explicitly defined and their respective temperatures determined from the TH calculation. Full agreement is obtained. For large-scale application the method is demonstrated for an infinite lattice with 17x17 PWR-type fuel assemblies with 25 rods replaced by guide tubes. Again all geometrical detailed is retained. The method was used in a procedure for coupled Monte Carlo and thermal-hydraulics iterations. Using an optimised iteration technique, convergence was obtained in 11 iteration steps.
Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations
International Nuclear Information System (INIS)
Pasamehmetoglu, K.O.; Shelton, J.D.
1998-01-01
The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report
Development of thermal hydraulic models for the reliable regulatory auditing code
Energy Technology Data Exchange (ETDEWEB)
Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2003-04-15
The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out.
Development of thermal hydraulic models for the reliable regulatory auditing code
International Nuclear Information System (INIS)
Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.
2003-04-01
The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out
Computational features of the MELT-III neutronics, thermal-hydraulics computer code system
International Nuclear Information System (INIS)
Wilburn, N.P.; Waltar, A.E.
1976-01-01
A multichannel, thermal-hydraulics, neutronic accident analysis program for simulating fast reactor behavior from a hypothetical accident inception to the start of core disassembly or to reactor shutdown is described
Validation of thermal hydraulic codes for fusion reactors safety
International Nuclear Information System (INIS)
Sardain, P.; Gulden, W.; Massaut, V.; Takase, K.; Merill, B.; Caruso, G.
2006-01-01
A significant effort has been done worldwide on the validation of thermal hydraulic codes, which can be used for the safety assessment of fusion reactors. This work is an item of an implementing agreement under the umbrella of the International Energy Agency. The European part is supported by EFDA. Several programmes related to transient analysis in water-cooled fusion reactors were run in order to assess the capabilities of the codes to treat the main physical phenomena governing the accidental sequences related to water/steam discharge into the vacuum vessel or the cryostat. The typical phenomena are namely the pressurization of a volume at low initial pressure, the critical flow, the flashing, the relief into an expansion volume, the condensation of vapor in a pressure suppression system, the formation of ice on a cryogenic structure, the heat transfer between walls and fluid in various thermodynamic conditions. · A benchmark exercise has been done involving different types of codes, from homogeneous equilibrium to six equations non-equilibrium models. Several cases were defined, each one focusing on a particular phenomenon. · The ICE (Ingress of Coolant Event) facility has been operated in Japan. It has simulated an in-vessel LOCA and the discharge of steam into a pressure suppression system. · The EVITA (European Vacuum Impingement Test Apparatus) facility has been operated in France. It has simulated ingress of coolant into the cryostat, i.e. into a volume at low initial pressure containing surfaces at cryogenic temperature. This paper gives the main lessons gained from these programs, in particular the possibilities for the improvement of the computer codes, extending their capabilities. For example, the water properties have been extended below the triple point. Ice formation models have been implemented. Work has also been done on condensation models. The remaining needs for R-and-D are also highlighted. (author)
VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling
International Nuclear Information System (INIS)
Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.
1983-04-01
VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail
Current and anticipated uses of thermal-hydraulic codes in NFI
Energy Technology Data Exchange (ETDEWEB)
Tsuda, K. [Nuclear Fuel Industries, Ltd., Tokyo (Japan); Takayasu, M. [Nuclear Fuel Industries, Ltd., Sennann-gun (Japan)
1997-07-01
This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.
Thermal-hydraulic code selection for modular high temperature gas-cooled reactors
Energy Technology Data Exchange (ETDEWEB)
Komen, E M.J.; Bogaard, J.P.A. van den
1995-06-01
In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).
International Nuclear Information System (INIS)
Akimoto, Hajime; Kukita; Ohnuki, Akira
1997-01-01
The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission's research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment
Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-
Energy Technology Data Exchange (ETDEWEB)
Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1995-06-01
The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).
International Nuclear Information System (INIS)
2001-05-01
An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for
International Nuclear Information System (INIS)
2001-01-01
An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for
A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J. Eduard, E-mail: J.E.Hoogenboom@tudelft.nl [Delft University of Technology (Netherlands); Ivanov, Aleksandar; Sanchez, Victor, E-mail: Aleksandar.Ivanov@kit.edu, E-mail: Victor.Sanchez@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Diop, Cheikh, E-mail: Cheikh.Diop@cea.fr [CEA/DEN/DANS/DM2S/SERMA, Commissariat a l' Energie Atomique, Gif-sur-Yvette (France)
2011-07-01
A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
More than 100 papers were presented. The meeting was divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling.
International Nuclear Information System (INIS)
2004-01-01
More than 100 papers were presented. The meeting was divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
More than 100 papers presented at the meeting were divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling.
International Nuclear Information System (INIS)
2004-01-01
More than 100 papers presented at the meeting were divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling
A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes
International Nuclear Information System (INIS)
Hoogenboom, J. Eduard; Ivanov, Aleksandar; Sanchez, Victor; Diop, Cheikh
2011-01-01
A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)
Thermal-hydraulic calculation and water hammer analysis on CEFR loop system
International Nuclear Information System (INIS)
Hao Pengfei; Zhang Xiwen; Cai Weidong; Wang Xuefang
1997-01-01
China Experimental Fast Reactor (CEFR) is one of the '863' High-technical Projects. It is necessary to study the hydraulic and thermal Characteristic of CEFR loop system in order to guarantee the safety of operation. The results of the thermal-hydraulic calculation have been given. The main points are as follows: 1. The simplified model is built according to the loop system of CEFR, and the calculation method which is called 'NODE'-'BRANCH' is applied. This method includes two aspects, one is the theoretical analysis that is based on fluid mechanics and heat transfer theory. The other is the engineering calculation. These two aspects are connected in the computation. On the basis of the work mentioned above, the stable state computation is presented. In order to prevent serious damage caused by power failure accident, the courses of surplus reactor heat removing through two different systems have been simulated in the computation. 2. By using the fluid dynamics theory, the simplified model and the equipment boundary conditions of loop system are given. The water hammer computation is processed during the valve closing and pump stopping accidents. Some pictures of water hammer wave are presented, and the most dangerous state in the accident is also given
3D thermal-hydraulic analysis on core of PWR nuclear power station
International Nuclear Information System (INIS)
Yao Zhaohui; Wang Xuefang; Shen Mengyu
1997-01-01
Thermal hydraulic analysis of core is of great importance in reactor safety analysis. A computer code, thermal hydraulic analysis porous medium analysis (THAPMA), has been developed to simulate the flow and heat transfer characteristics of reactor components. It has been proved reliable by several numerical tests. In the THAPMA code, a new difference scheme and solution method have been studied in developing the computer software. For the difference scheme, a second order accurate, high resolution scheme, called WSUC scheme, has been proposed. This scheme is total variation bounded and unconditionally stable in convective numeral stability. Numerical tests show that the WSUC is better in accuracy and resolution than the 1-st order upwind, 2-nd order upwind, SOUCUP by Zhu and Rodi. In solution method, a modified PISO algorithm is used, which is not only simpler but also more accurate and more rapid in convergence than the original PISO algorithm. Moreover, the modified PISO algorithm can effectively solve steady and transient state problem. Besides, with the THAPMA code, the flow and heat transfer phenomena in reactor core have been numerically simulated in the light of the design condition of Qinshan PWR nuclear power station (the second-term project). The simulation results supply a theoretical basis for the core design
How good are thermal-hydraulics codes for analyses of plant transients
International Nuclear Information System (INIS)
Fabic, S.
1996-01-01
In the early seventies, all thermal-hydraulics codes were based on the Homogeneous Equilibrium Model (HEM), represented by three conservation equations: mixture mass, momentum and energy. Various means were utilized to solve the resulting system of equations: finite differences in FLASH, SATAN, RELAP3 and RELAP4, method of characteristics in BLOWDWN2, loop momentum method in RAMONA and NORCOOL, and others. As the result the world came to regard HEM as too restrictive and the Two-Fluid model came into fashion, first featuring a six and later, a seven-equation model. New codes like KACHINA, TRAC and RELAP5 were developed also. Experience and comparisons with test data have recently forced us to wonder whether the ability to 'compute' while considering great many complexities, ran ahead of the ability to competently define various interactions between fluid phases and components that such complex codes require. The long running times are also a problem that needs to be resolved. More recent trends in the treatment of thermal-hydraulics in Power Plant Simulators and in Plant Analyzers will also be discussed
Review of turbulence modelling for numerical simulation of nuclear reactor thermal-hydraulics
International Nuclear Information System (INIS)
Bernard, J.P.; Haapalehto, T.
1996-01-01
The report deals with the modelling of turbulent flows in nuclear reactor thermal-hydraulic applications. The goal is to give tools and knowledge about turbulent flows and their modelling in practical applications for engineers, and especially nuclear engineers. The emphasize is on the theory of turbulence, the existing different turbulence models, the state-of-art of turbulence in research centres, the available models in the commercial code CFD-FLOW3D, and the latest applications of turbulence modelling in nuclear reactor thermal-hydraulics. It turns out that it is difficult to elaborate an universal turbulence model and each model has its advantages and drawbacks in each application. However, the increasing power of computers can permit the emergence of new methods of turbulence modelling such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) which open new horizons in this field. These latter methods are beginning to be available in commercial codes and are used in different nuclear applications such as 3-D modelling of the nuclear reactor cores and the steam generators. (orig.) (22 refs.)
Development of thermal-hydraulic models for the safety evaluation of CANDU reactors
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Young; Jung, Yun Sik; Hwang, Gi Suk; Kim, Nam Seok [Handong Univ., Pohang (Korea, Republic of); No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
2004-02-15
The objective of the present research is to evaluate the safety analysis for CANDU and to improve the Horizontal Stratification Entrainment Model (HSEM) of RELAP5/MOD3.3. This report includes two items the one is the experimental study of entrainment at horizontal pipe with {+-} 36 .deg. C , {+-} 72 .deg. C branch pies, the other is the model improvement of the moderator heat sink in the Calandria. The off-take experiments on onset of entrainment and branch quality were investigated by using water and air as working fluid, and the experimental data were compared by the previous correlations. The previous correlations could not expect experimental results, thus the weak points of the previous correlations were investigated. The improvement of the previous model continues as the next year research. The thermal hydraulic scaling analysis of SPEL, STERN and ideal linear scaling analysis have been studied. As a result, a new scaling method were needed to design a new experimental facility (HGU). A new scaling method with 1/8 length scale was applied. From these results, the thermal hydraulic model for CFD code simulation was designed and test apparatus has been made. The moderator temperature distribution experiments and CFD code simulation will be continued in next year.
Energy Technology Data Exchange (ETDEWEB)
Block, R.C.; Feiner, F. [American Nuclear Society, La Grange Park, IL (United States)
1995-09-01
Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers deal with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately.
International Nuclear Information System (INIS)
Block, R.C.; Feiner, F.
1995-09-01
Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers deal with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately
Influence of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink
International Nuclear Information System (INIS)
Om, N I; Gunnasegaran, P; Rajasegaran, S
2013-01-01
In this paper, the effect of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink (MCHS) is numerically investigated. This investigation covers Reynolds number in the range of 100 ≤ Re ≤ 1000 and pure water is used as a working fluid. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method (FVM). The water flow field and heat transfer performance inside the sinusoidal microchannels is simulated and the results are compared with the straight microchannels. The effect of using sinusoidal microchannels on temperature distribution, Nusselt number, friction factor and thermal resistance is presented in this paper. It is found that with same rectangular cross-section, sinusoidal microchannels have a better heat transfer performance compared to the straight microchannels.
Thermal hydraulic feasibility analysis of the IBED PHTS for ITER
Energy Technology Data Exchange (ETDEWEB)
Carloni, Dario, E-mail: dacarloni@gmail.com [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Pisa University, Via Diotisalvi 2, 56126 Pisa (Italy); Dell’Orco, Giovanni; Babulal, Gopalapillai; Somboli, Fabio; Serio, Luigi [ITER Organisation, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Paci, Sandro [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Pisa University, Via Diotisalvi 2, 56126 Pisa (Italy)
2013-10-15
One of the main challenges of the ITER fusion reactor is to effectively remove large amount of heat deposited to the surface of the plasma facing components. The tokamak cooling water system (TCWS) will accomplish the objective of removing about 1 GW of peak heat load from in-vessel components while maintaining pressures and temperatures of the coolant within acceptable and safe limits during different operational scenarios. A study of feasibility has been launched for the IBED PHTS (Integrated Blanket, Edge localized mode coils (ELMs) and Divertor Primary Heat Transfer System; it consists of five independent cooling trains (four operational and one in stand-by), one steam pressurizer, supply and return headers, ring manifolds and connections to the all in-vessel components (i.e. First Wall Blanket, Divertor, ELM, Diagnostics and other Ports clients). The dynamic behaviour of the IBED PHTS has been investigated by means of RELAP5{sup ®} code to simulate the response of the system during plasma pulse and baking operations. Due to the plasma heat deposition on the surfaces of the in-vessel components and subsequent increase in hot leg temperature, a large amount of water volume is transferred from the hot legs of the circuit to the surge-line of the pressurizer during each burn cycle. This causes rapid increase of pressure and temperature of the system and the following actions are proposed to counteract these variations: spray injection in the upper dome of the pressurizer from the Chemical and Volume Control System (CVCS) to reduce the pressure and active control of flow rates through heat exchangers and their bypass loops to regulate the heat transfer from the primary system to the environment via secondary and tertiary loops. This paper focuses on the prediction of the thermal hydraulic behaviour of the IBED PHTS during plasma pulses and baking scenarios, describing the various activity of the analysis, the geometrical assessment of the circuit and the modelling
Method to Estimate the Dissolved Air Content in Hydraulic Fluid
Hauser, Daniel M.
2011-01-01
In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated
Thermal-hydraulic analysis of spent fuel storage systems
International Nuclear Information System (INIS)
Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.
1987-01-01
This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs
Development of numerical simulation technology for high resolution thermal hydraulic analysis
International Nuclear Information System (INIS)
Yoon, Han Young; Kim, K. D.; Kim, B. J.; Kim, J. T.; Park, I. K.; Bae, S. W.; Song, C. H.; Lee, S. W.; Lee, S. J.; Lee, J. R.; Chung, S. K.; Chung, B. D.; Cho, H. K.; Choi, S. K.; Ha, K. S.; Hwang, M. K.; Yun, B. J.; Jeong, J. J.; Sul, A. S.; Lee, H. D.; Kim, J. W.
2012-04-01
A realistic simulation of two phase flows is essential for the advanced design and safe operation of a nuclear reactor system. The need for a multi dimensional analysis of thermal hydraulics in nuclear reactor components is further increasing with advanced design features, such as a direct vessel injection system, a gravity driven safety injection system, and a passive secondary cooling system. These features require more detailed analysis with enhanced accuracy. In this regard, KAERI has developed a three dimensional thermal hydraulics code, CUPID, for the analysis of transient, multi dimensional, two phase flows in nuclear reactor components. The code was designed for use as a component scale code, and/or a three dimensional component, which can be coupled with a system code. This report presents an overview of the CUPID code development and preliminary assessment, mainly focusing on the numerical solution method and its verification and validation. It was shown that the CUPID code was successfully verified. The results of the validation calculations show that the CUPID code is very promising, but a systematic approach for the validation and improvement of the physical models is still needed
Uncertainty analysis for results of thermal hydraulic codes of best-estimate-type
International Nuclear Information System (INIS)
Alva N, J.
2010-01-01
In this thesis, some fundamental knowledge is presented about uncertainty analysis and about diverse methodologies applied in the study of nuclear power plant transient event analysis, particularly related to thermal hydraulics phenomena. These concepts and methodologies mentioned in this work come from a wide bibliographical research in the nuclear power subject. Methodologies for uncertainty analysis have been developed by quite diverse institutions, and they have been widely used worldwide for application to results from best-estimate-type computer codes in nuclear reactor thermal hydraulics and safety analysis. Also, the main uncertainty sources, types of uncertainties, and aspects related to best estimate modeling and methods are introduced. Once the main bases of uncertainty analysis have been set, and some of the known methodologies have been introduced, it is presented in detail the CSAU methodology, which will be applied in the analyses. The main objective of this thesis is to compare the results of an uncertainty and sensibility analysis by using the Response Surface Technique to the application of W ilks formula, apply through a loss coolant experiment and an event of rise in a BWR. Both techniques are options in the part of uncertainty and sensibility analysis of the CSAU methodology, which was developed for the analysis of transients and accidents at nuclear power plants, and it is the base of most of the methodologies used in licensing of nuclear power plants practically everywhere. Finally, the results of applying both techniques are compared and discussed. (Author)
Energy Technology Data Exchange (ETDEWEB)
Page, R.; Jones, J.R.
1997-07-01
Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.
Thermal hydraulic and neutron kinetic coupled simulation of the IPR-R1 Triga reactor
Energy Technology Data Exchange (ETDEWEB)
Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia; Silva, Clarysson A.M. da; Veloso, Maria Auxiliadora F.; Soares, Humbero V., E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: clarysson@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: betovitor@ig.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq Rede), Rio de Janeiro, RJ (Brazil)
2013-07-01
The nuclear industry and the scientific community have turned the attention for the development of coupled 3D neutron kinetics (NK) and thermal-hydraulic (TH) system codes to investigate specific nuclear reactor transients. Improving in theoretical investigations of complex phenomena in nuclear reactor technology have been increased thanks to numerical methods and computational resources incorporated in nuclear codes. This paper presents a model for the IPR-R1 TRIGA research reactor using the RELAP5-3D 3.0 code. The development and the assessment of the thermal-hydraulic RELAP5 code model for the IPR-R1 have been validated for steady state and transient situations and the results were published in preceding works. Results of RELAP5-3D steady state and a transient case presented in this paper show good agreement with experimental data, validating then this model for point kinetic calculations. To supply adequate cross sections to the NK code, the WIMSD5 is being used. First results of steady state calculation using the 3D neutron modeling are being presented in this paper. (author)
International Nuclear Information System (INIS)
Page, R.; Jones, J.R.
1997-01-01
Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell 'B' Loss of offsite power fault transient
Thermal-hydraulic modeling of flow inversion in a research reactor
International Nuclear Information System (INIS)
Kazeminejad, H.
2008-01-01
The course of loss of flow accident and flow inversion in a pool type research reactor, with scram enabled under natural circulation condition is numerically investigated. The analyses were performed by a lumped parameters approach for the coupled kinetic-thermal-hydraulics, with continuous feedback due to coolant and fuel temperature effects. A modified Runge-Kutta method was adopted for a better solution to the set of stiff differential equations. Transient thermal-hydraulics during the process of flow inversion and establishment of natural circulation were considered for a 10-MW IAEA research reactor. Some important parameters such as the peak temperatures for the hot channel were obtained for both high-enriched and low enriched fuel. The model prediction is also verified through comparison with other computer code results reported in the literature for detailed simulations of loss of flow accidents (LOFA) and the agreement between the results for the peak clad temperatures and key parameters has been satisfactory. It was found that the flow inversion and subsequent establishment of natural circulation keep the peak cladding surface temperature below the saturation temperature to avoid the escalation of clad temperature to the level of onset of nucleate boiling and sub-cooled void formation to ensure the safe operation of the reactor
International Nuclear Information System (INIS)
Inasaka, Fujio; Nariai, Hideki
2000-01-01
At the Ship Research Institute, a series of the experimental studies on the thermal-hydraulic characteristics of an integrated type marine water reactor has been conducted. This current study aims at developing an intelligent information database program with the thermal-hydraulic characteristics of a future marine water reactor on the basis of the valuably experimental knowledge, which was obtained from the above-mentioned studies. In this paper, the experimental knowledge with the flow boiling of a once-through steam generator and the natural circulation of primary water under a ship rolling motion was converted into an intelligent information database program. The program was created as a Windows application using the Visual Basic. Main functions of the program are as follows: (1) steady state flow boiling analysis and determination of stability for any helical-coil type once-through steam generator design, (2) reference and graphic display of the experimental data, (3) reference of the information such as analysis method and experimental apparatus. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized reactor with helical-coil type steam generator. (author)
International Nuclear Information System (INIS)
Green, C.
1979-12-01
A set of FORTRAN subroutines is described for calculating water thermodynamic properties. These were written for use in a transient thermal-hydraulics program, where speed of execution is paramount. The choice of which subroutines to optimise depends on the primary variables in the thermal-hydraulics code. In this particular case the subroutine which has been optimised is the one which calculates pressure and specific enthalpy given the specific volume and the specific internal energy. Another two subroutines are described which complete a self-consistent set. These calculate the specific volume and the temperature given the pressure and the specific enthalpy, and the specific enthalpy and the specific volume given the pressure and the temperature (or the quality). The accuracy is high near the saturation lines, typically less than 1% relative error, and decreases as the fluid becomes more subcooled in the liquid region or more superheated in the steam region. This behaviour is inherent in the method which uses quantities defined on the saturation lines and assumes that certain derivatives are constant for excursions away from these saturation lines. The accuracy and speed of the subroutines are discussed in detail in this report. (author)
International Nuclear Information System (INIS)
Yudov, Y.V.
2001-01-01
The functional part of the KORSAR computer code is based on the computational unit for the reactor system thermal-hydraulics and other thermal power systems with water cooling. The two-phase flow dynamics of the thermal-hydraulic network is modelled by KORSAR in one-dimensional two-fluid (non-equilibrium and nonhomogeneous) approximation with the same pressure of both phases. Each phase is characterized by parameters averaged over the channel sections, and described by the conservation equations for mass, energy and momentum. The KORSAR computer code relies upon a novel approach to mathematical modelling of two-phase dispersed-annular flows. This approach allows a two-fluid model to differentiate the effects of the liquid film and droplets in the gas core on the flow characteristics. A semi-implicit numerical scheme has been chosen for deriving discrete analogs the conservation equations in KORSAR. In the semi-implicit numerical scheme, solution of finite-difference equations is reduced to the problem of determining the pressure field at a new time level. For the one-channel case, the pressure field is found from the solution of a system of linear algebraic equations by using the tri-diagonal matrix method. In the branched network calculation, the matrix of coefficients in the equations describing the pressure field is no longer tri-diagonal but has a sparseness structure. In this case, the system of linear equations for the pressure field can be solved with any of the known classical methods. Such an approach is implemented in the existing best-estimate thermal-hydraulic computer codes (TRAC, RELAP5, etc.) For the KORSAR computer code, we have developed a new non-iterative method for calculating the pressure field in the network of any topology. This method is based on the tri-diagonal matrix method and performs well when solving the thermal-hydraulic network problems. (author)
E-SCAPE: A scale facility for liquid-metal, pool-type reactor thermal hydraulic investigations
Energy Technology Data Exchange (ETDEWEB)
Van Tichelen, Katrien, E-mail: kvtichel@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Mirelli, Fabio, E-mail: fmirelli@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Greco, Matteo, E-mail: mgreco@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Viviani, Giorgia, E-mail: giorgiaviviani@gmail.com [University of Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy)
2015-08-15
Highlights: • The E-SCAPE facility is a thermal hydraulic scale model of the MYRRHA fast reactor. • The focus is on mixing and stratification in liquid-metal pool-type reactors. • Forced convection, natural convection and the transition are investigated. • Extensive instrumentation allows validation of computational models. • System thermal hydraulic and CFD models have been used for facility design. - Abstract: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a flexible fast-spectrum research reactor under design at SCK·CEN. MYRRHA is a pool-type reactor with lead bismuth eutectic (LBE) as primary coolant. The proper understanding of the thermal hydraulic phenomena occurring in the reactor pool is an important issue in the design and licensing of the MYRRHA system and liquid-metal cooled reactors by extension. Model experiments are necessary for understanding the physics, for validating experimental tools and to qualify the design for the licensing. The E-SCAPE (European SCAled Pool Experiment) facility at SCK·CEN is a thermal hydraulic 1/6-scale model of the MYRRHA reactor, with an electrical core simulator, cooled by LBE. It provides experimental feedback to the designers on the forced and natural circulation flow patterns. Moreover, it enables to validate the computational methods for their use with LBE. The paper will elaborate on the design of the E-SCAPE facility and its main parameters. Also the experimental matrix and the pre-test analysis using computational fluid dynamics (CFD) and system thermal hydraulics codes will be described.
Energy Technology Data Exchange (ETDEWEB)
Geffray, Clotaire Clement
2017-03-20
The work presented here constitutes an important step towards the validation of the use of coupled system thermal-hydraulics and computational fluid dynamics codes for the simulation of complex flows in liquid metal cooled pool-type facilities. First, a set of methods suited for uncertainty and sensitivity analysis and validation activities with regards to the specific constraints of the work with coupled and expensive-to-run codes is proposed. Then, these methods are applied to the ATHLET - ANSYS CFX model of the TALL-3D facility. Several transients performed at this latter facility are investigated. The results are presented, discussed and compared to the experimental data. Finally, assessments of the validity of the selected methods and of the quality of the model are offered.
FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's
International Nuclear Information System (INIS)
Stover, R.L.; Beaver, T.R.; Chang, S.C.
1983-01-01
The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met
COBRA-3M: a digital computer code for analyzing thermal-hydraulic behavior in pin bundles
International Nuclear Information System (INIS)
Marr, W.W.
1975-03-01
The COBRA-3M computer program is a modification of the thermal-hydraulic subchannel-analysis program COBRA-III. It includes detailed thermal models of fuel pin and duct wall. It is especially suitable for analyzing small pin bundles used in in-reactor or out-of-reactor experiments. (U.S.)
Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes
International Nuclear Information System (INIS)
Hwang, Moon Kyu; Park, Jee Won; Chung, Bub Dong; Kim, Soo Hyung; Kim, See Dal
2007-07-01
The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE
Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code
International Nuclear Information System (INIS)
Mur, J.; Meignin, J.C.
1997-07-01
Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.)
Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code
Energy Technology Data Exchange (ETDEWEB)
Mur, J. [Electricite de France (EDF), 78 - Chatou (France); Meignin, J.C. [Electricite de France (EDF), 69 - Villeurbanne (France)
1997-07-01
Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.) 8 refs.
Parametric study on thermal-hydraulic characteristics of high conversion light water reactor
International Nuclear Information System (INIS)
Mori, Takamasa; Nakagawa, Masayuki; Fujii, Sadao.
1988-11-01
To assess the feasibility of high conversion light water reactors (HCLWRs) from the thermal-hydraulic viewpoint, parametric study on thermal-hydraulic characteristics of HCLWR has been carried out by using a unit cell model. It is assumed that a HCLWR core is contained in a current 1000 MWe PWR plant. At the present study, reactor core parameters such as fuel pin diameter, pitch, core height and linear heat rate are widely and parametrically changed to survey the relation between these parameters and the basic thermal-hydraulic characteristics, i.e. maximum fuel temperature, minimum DNBR, reduction of reactor thermal output and so on. The validity of the unit cell model used has been ensured by comparison with the result of a subchannel analysis carried out for a whole core. (author)
Vorticity determination in a hydraulic jump by application of method ...
African Journals Online (AJOL)
The method of characteristics for solving systems of partial differential equations coupled with jump conditions is used in analysing flow downstream of a hydraulic jump instead of the normal analytical approach adopted in Hornung [1]. It is shown that the method of characteristics together with the jump conditions can ...
Advanced hydraulic fracturing methods to create in situ reactive barriers
International Nuclear Information System (INIS)
Murdoch, L.
1997-01-01
This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed
Status and subjects of thermal-hydraulic analysis for next-generation LWRs
International Nuclear Information System (INIS)
2000-03-01
The status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were surveyed through about 5 years until March 1999 by subcommittee on improvement of reactor thermal-hydraulic analysis codes under the nuclear code committee in Japan Atomic Energy Research Institute. Based on the survey results and discussion, the status and subjects on system analysis for various types of proposed reactor were summarized in 1998 and those on multidimensional two-phase flow analysis were also reviewed, since the multidimensional analysis was recognized as one of the most important subjects through the investigation on system analysis. In this report, the status and subjects for the following were summarized from the survey results and discussion in 1998 and 1999; (1) BWR neutronic/thermal-hydraulic coupled analysis, (2) Evaluation of passive safety system performance and (3) Gas-liquid two-phase flow analysis. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs including test results from several large-scale facilities. We expect that the contents can offer a guideline to improve reactor thermal-hydraulic analysis codes in future. (author)
Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors
Energy Technology Data Exchange (ETDEWEB)
Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)
2015-05-15
Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.
CCP Sensitivity Analysis by Variation of Thermal-Hydraulic Parameters of Wolsong-3, 4
Energy Technology Data Exchange (ETDEWEB)
You, Sung Chang [KHNP, Daejeon (Korea, Republic of)
2016-10-15
The PHWRs are tendency that ROPT(Regional Overpower Protection Trip) setpoint is decreased with reduction of CCP(Critical Channel Power) due to aging effects. For this reason, Wolsong unit 3 and 4 has been operated less than 100% power due to the result of ROPT setpoint evaluation. Typically CCP for ROPT evaluation is derived at 100% PHTS(Primary Heat Transport System) boundary conditions - inlet header temperature, header to header different pressure and outlet header pressure. Therefore boundary conditions at 100% power were estimated to calculate the thermal-hydraulic model at 100% power condition. Actually thermal-hydraulic boundary condition data for Wolsong-3 and 4 cannot be taken at 100% power condition at aged reactor condition. Therefore, to create a single-phase thermal-hydraulic model with 80% data, the validity of the model was confirmed at 93.8%(W3), 94.2%(W4, in the two-phase). And thermal-hydraulic boundary conditions at 100% power were calculated to use this model. For this reason, the sensitivities by varying thermal-hydraulic parameters for CCP calculation were evaluated for Wolsong unit 3 and 4. For confirming the uncertainties by variation PHTS model, sensitivity calculations were performed by varying of pressure tube roughness, orifice degradation factor and SG fouling factor, etc. In conclusion, sensitivity calculation results were very similar and the linearity was constant.
Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control
Directory of Open Access Journals (Sweden)
L. Batet
2007-11-01
Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the AsociaciÃƒÂ³n Nuclear AscÃƒÂ³-VandellÃƒÂ²s (ANAV. ANAV is the consortium that runs the AscÃƒÂ³ power plants (2 units and the VandellÃƒÂ²s-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000Ã¢Â€Â‰MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.
European liquid metal thermal-hydraulics R and D: present and future
International Nuclear Information System (INIS)
Roelofs, F.; Batta, A.; Bandini, G.; Van Tichelen, K.; Gerschenfeld, A.; Cheng, X.
2014-01-01
A large role is attributed in the future within the European Sustainable Nuclear Energy Technology Platform (SNE-TP) and especially the underlying European Sustainable Nuclear Industry Initiative (ESNII) to the application of fast reactors for sustainable nuclear energy production. Specifically, fast reactors are considered attractive because of their possibility to use natural resources efficiently and to reduce the volume and lifetime of nuclear waste. Currently four demonstration projects have a promising outlook in Europe, i.e. the ASTRID project in France, the MYRRHA project in Belgium, the ALFRED project developed in Europe and to be built in Romania, and the ELECTRA project in Sweden. Sodium and lead(-alloys) are envisaged as coolants for these reactors. Obviously, in the development of these reactors, thermal-hydraulics is recognized as a key challenge with emphasis on safety issues. This paper will discuss the present development status of liquid metal cooled reactor thermal-hydraulics as an outcome of the European 7. framework programme THINS (Thermal-Hydraulics for Innovative Nuclear Systems) project. The main project results with respect to liquid metal cooled reactors will be summarized, i.e. turbulence heat transfer model development, fuel assembly analysis, pool thermal-hydraulics, system behaviour, multi-phase physics, and multiscale thermal-hydraulics simulation. In conclusion, the main challenges for future developments will be indicated. Emphasis will be put on the important experimental and numerical challenges. (authors)
Study on thermal-hydraulic phenomena in porous media. Semiannual report 1997. Nov. to 1998. Mar
International Nuclear Information System (INIS)
Matui, Goichi; Monji, Hideaki; Sakakibara, Jun; Tanaka, Masa-aki; Kobayashi, Jun; Kamide, Hideki
1998-03-01
The objective of this study is to clarify the thermal-hydraulic phenomena in porous media and to develop the analytical method to predict the thermal-hydraulic field, deciding the maximum temperature on the fuel pin surface. FY 1998 is the first year of the 3 years plan. In this year period, based on the correspondence of Reynolds number between experimental facility and FBR, the design and construction of the test rig and experimental parameter examination were performed. The test section has rectangle two sub-channel geometry and is twenty times large-scale model. In this study, we use the Particle Image Velocimetry (PIV) analysis method to visualize the flow field in the porous media. The Pyrex grass spheres were used to construct the porous blockage. The refraction-rate matching between obstacle and fluid is important to measure the velocity field with the optical analysis method. As the working fluid, NaI solution was used. When the concentration of NaI is 56.4wt% in the solution, the refraction-rate is correspond to that of the Pyrex grass. The simple test loop was constructed and the experiment was performed to measure the velocity field with Laser Doppler Anemometer and PIV. The purpose of this experiment using the simple test loop is to develop the experimental method of flow visualization in the porous media used NaI solution as working fluid. As the result of experiment with the simple test loop, the vector field in the porous media was obtained and it is shown that the flow pattern with PIV analysis is qualitatively correct. This visualization method using the NaI solution is applicable to measure the flow field in the porous media. (J.P.N.)
Application of an accurate thermal hydraulics solver in VTT's reactor dynamics codes
International Nuclear Information System (INIS)
Rajamaeki, M.; Raety, H.; Kyrki-Rajamaeki, R.; Eskola, M.
1998-01-01
VTT's reactor dynamics codes are developed further and new more detailed models are created for tasks related to increased safety requirements. For thermal hydraulics calculations an accurate general flow model based on a new solution method PLIM has been developed. It has been applied in VTT's one-dimensional TRAB and three-dimensional HEXTRAN codes. Results of a demanding international boron dilution benchmark defined by VTT are given and compared against results of other codes with original or improved boron tracking. The new PLIM method not only allows the accurate modelling of a propagating boron dilution front, but also the tracking of a temperature front, which is missed by the special boron tracking models. (orig.)
Implementation of CFD module in the KORSAR thermal-hydraulic system code
Energy Technology Data Exchange (ETDEWEB)
Yudov, Yury V.; Danilov, Ilia G.; Chepilko, Stepan S. [Alexandrov Research Inst. of Technology (NITI), Sosnovy Bor (Russian Federation)
2015-09-15
The Russian KORSAR/GP (hereinafter KORSAR) computer code was developed by a joint team from Alexandrov NITI and OKB ''Gidropress'' for VVER safety analysis and certified by the Rostechnadzor of Russia in 2009. The code functionality is based on a 1D two-fluid model for calculation of two-phase flows. A 3D CFD module in the KORSAR computer code is being developed by Alexandrov NITI for representing 3D effects in the downcomer and lower plenum during asymmetrical loop operation. The CFD module uses Cartesian grid method with cut cell approach. The paper presents a numerical algorithm for coupling 1D and 3D thermal- hydraulic modules in the KORSAR code. The combined pressure field is calculated by the multigrid method. The performance efficiency of the algorithm for coupling 1D and 3D modules was demonstrated by solving the benchmark problem of mixing cold and hot flows in a T-junction.
Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System
International Nuclear Information System (INIS)
O'Brien, Robert C.; Klein, Andrew C.; Taitano, William T.; Gibson, Justice; Myers, Brian; Howe, Steven D.
2011-01-01
Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.
International Nuclear Information System (INIS)
Peng Muzhang; Zhang Quan; Wang Guoli; Zhang Yuman
1988-01-01
TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory
Energy Technology Data Exchange (ETDEWEB)
Muzhang, Peng; Quan, Zhang; Guoli, Wang; Yuman, Zhang
1988-03-01
TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory.
Test results of the new NSSS thermal-hydraulics program of the KNPEC-2 simulator
International Nuclear Information System (INIS)
Jeong, J. Z.; Kim, K. D.; Lee, M. S.; Hong, J. H.; Lee, Y. K.; Seo, J. S.; Kweon, K. J.; Lee, S. W.
2001-01-01
As a part of the KNPEC-2 Simulator Upgrade Project, KEPRI and KAERI have developed a new NSSS thermal-hydraulics program, which is based on the best-estimate system code, RETRAN. The RETRAN code was originally developed for realistic simulation of thermal-hydraulic transient in power plant systems. The capability of 'real-time simulation' and robustness' should be first developed before being implemented in full-scope simulators. For this purpose, we have modified the RETRAN code by (i) eliminating the correlations' discontinuities between flow regime maps, (ii) simplifying physical correlations, (iii) correcting errors in the original program, and (iv) others. This paper briefly presents the test results fo the new NSSS thermal-hydraulics program
Thermal hydraulic considerations in liquid-metal-cooled components of tokamak fusion reactors
International Nuclear Information System (INIS)
Picologlou, B.F.; Reed, C.B.; Hua, T.Q.
1989-01-01
The basic considerations of MHD thermal hydraulics for liquid-metal-cooled blankets and first walls of tokamak fusion reactors are discussed. The liquid-metal MHD program of Argonne National Laboratory (ANL) dedicated to analytical and experimental investigations of reactor relevant MHD flows and development of relevant thermal hydraulic design tools is presented. The status of the experimental program and examples of local velocity measurements are given. An account of the MHD codes developed to date at ANL is also presented as is an example of a 3-D thermal hydraulic analysis carried out with such codes. Finally, near term plans for experimental investigations and code development are outlined. 20 refs., 8 figs., 1 tab
International Nuclear Information System (INIS)
Kobayashi, Akira; Ohnishi, Yuzo
1986-01-01
The nonlinearity of material properties used in the coupled mechanical-hydraulic-thermal analysis is investigated from the past literatures. Some nonlinearity that is respectively effective for the system is introduced into our computer code for analysis such a coupling problem by using finite element method. And the effects of nonlinearity of each material property on the coupled behavior in rock mass are examined for simple model and Stripa project model with the computer code. (author)
Efficient numerical method for district heating system hydraulics
International Nuclear Information System (INIS)
Stevanovic, Vladimir D.; Prica, Sanja; Maslovaric, Blazenka; Zivkovic, Branislav; Nikodijevic, Srdjan
2007-01-01
An efficient method for numerical simulation and analyses of the steady state hydraulics of complex pipeline networks is presented. It is based on the loop model of the network and the method of square roots for solving the system of linear equations. The procedure is presented in the comprehensive mathematical form that could be straightforwardly programmed into a computer code. An application of the method to energy efficiency analyses of a real complex district heating system is demonstrated. The obtained results show a potential for electricity savings in pumps operation. It is shown that the method is considerably more effective than the standard Hardy Cross method still widely used in engineering practice. Because of the ease of implementation and high efficiency, the method presented in this paper is recommended for hydraulic steady state calculations of complex networks
Coupled 3D neutronics/thermal hydraulics modeling of the SAFARI-1 MTR
International Nuclear Information System (INIS)
Rosenkrantz, Adam; Avramova, Maria; Ivanov, Kostadin; Prinsloo, Rian; Botes, Danniëll; Elsakhawy, Khalid
2014-01-01
Highlights: • Development of 3D coupled neutronics/thermal–hydraulic model of SAFARI-1. • Verification of 3D steady-state NEM based neutronics model for SAFARI-1. • Verification of 3D COBRA-TF based thermal–hydraulic model of SAFARI-1. • Quantification of the effect of correct modeling of thermal–hydraulic feedback. - Abstract: The purpose of this study was to develop a coupled accurate multi-physics model of the SAFARI-1 Material Testing Reactor (MTR), a facility that is used for both research and the production of medical isotopes. The model was developed as part of the SAFARI-1 benchmarking project as a cooperative effort between the Pennsylvania State University (PSU) and the South African Nuclear Energy Corporation (Necsa). It was created using a multi-physics coupling of state of the art nuclear reactor simulation tools, consisting of a neutronics code and a thermal hydraulics code. The neutronics tool used was the PSU code NEM, and the results from this component were verified using the Necsa neutronics code OSCAR-4, which is utilized for SAFARI-1 core design and fuel management. On average, the multiplication factors of the neutronics models agreed to within 5 pcm and the radial assembly-averaged powers agreed to within 0.2%. The thermal hydraulics tool used was the PSU version of COBRA-TF (CTF) sub-channel code, and the results of this component were verified against another thermal hydraulics code, the RELAP5-3D system code, used at Necsa for thermal–hydraulics analysis of SAFARI-1. Although only assembly-averaged results from RELAP5-3D were available, they fell within the range of values for the corresponding assemblies in the comprehensive CTF solution. This comparison allows for the first time to perform a quantification of steady-state errors for a low-powered MTR with an advanced thermal–hydraulic code such as CTF on a per-channel basis as compared to simpler and coarser-mesh RELAP5-3D modeling. Additionally, a new cross section
European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems
Energy Technology Data Exchange (ETDEWEB)
Cheng, X., E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Batta, A. [Karlsruhe Institute of Technology (KIT) (Germany); Bandini, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Roelofs, F. [Nuclear Research and Consultancy Group (NRG) (Netherlands); Van Tichelen, K. [Studiecentrum voor Kernenergie – Centre d’étude de l’Energie Nucléaire (SCK-CEN) (Belgium); Gerschenfeld, A. [Commissariat à l’Energie Atomique (CEA) (France); Prasser, M. [Paul Scherrer Institute (PSI) (Switzerland); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) (Germany); Ma, W.M. [Kungliga Tekniska Högskolan (KTH) (Sweden)
2015-08-15
Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue.
Thermal hydraulic analyses of two fusion reactor first wall/blanket concepts
International Nuclear Information System (INIS)
Misra, B.; Maroni, V.A.
1978-01-01
A comparative study has been made of the thermal hydraulic performance of two liquid lithium blanket concepts for tokamak-type reactors. In one concept lithium is circulated through 60-cm deep cylindrical modules oriented so that the module axis is parallel to the reactor minor radius. In the other concept helium carrying channels oriented parallel to the first wall are used to cool a 60-cm thick stagnant lithium blanket. Paralleling studies were carried out wherein the thermal and structural properties of the construction materials were based on those projected for either solution-annealed 316-stainless steel or vanadium-base alloys. The effects of limitations on allowable peak structural temperature, material strength, thermal stress, coolant inlet temperature, and pumping power/thermal power ratio were evaluated. Consequences to thermal hydraulic performance resulting from the presence of or absence of a divertor were also investigated
Thermal hydraulic analyses of two fusion reactor first wall/blanket concepts
International Nuclear Information System (INIS)
Misra, B.; Maroni, V.A.
1977-01-01
A comparative study has been made of the thermal hydraulic performance of two liquid lithium blanket concepts for tokamak-type reactors. In one concept lithium is circulated through 60-cm deep cylindrical modules oriented so that the module axis is parallel to the reactor minor radius. In the other concept helium carrying channels oriented parallel to the first wall are used to cool a 60-cm thick stagnant lithium blanket. Paralleling studies were carried out wherein the thermal and structural properties of the construction materials were based on those projected for either solution-annealed 316-stainless steel or vanadium-base alloys. The effects of limitations on allowable peak structural temperature, material strength, thermal stress, coolant inlet temperature, and pumping power/thermal power ratio were evaluated. Consequences to thermal hydraulic performance resulting from the presence of or absence of a divertor were also investigated
International Nuclear Information System (INIS)
Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi
2011-01-01
Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)
Simulation of Thermal-hydraulic Process in Reactor of HTR-PM
International Nuclear Information System (INIS)
Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle
2014-01-01
This paper provides the physical process in the reactor of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) and introduces the standard operation conditions. The FORTRAN code developed for the thermal hydraulic module of Full-Scale Simulator (FSS) of HTR-PM is used to simulate two typical operation transients including cold startup process and cold shutdown process. And the results were compared to the safety analysis code, namely TINTE. The good agreement indicates that the code is applicable for simulating the thermal-hydraulic process in reactor of HTR-PM. And for long time transient process, the code shows good stability and convergence. (author)
TRAC-B thermal-hydraulic analysis of the Black Fox boiling water reactor
International Nuclear Information System (INIS)
Martin, R.P.
1993-05-01
Thermal-hydraulic analyses of six hypothetical accident scenarios for the General Electric Black Fox Nuclear Project boiling water reactor were performed using the TRAC-BF1 computer code. This work is sponsored by the US Nuclear Regulatory Commission and is being done in conjunction with future analysis work at the US Nuclear Regulatory Commission Technical Training Center in Chattanooga, Tennessee. These accident scenarios were chosen to assess and benchmark the thermal-hydraulic capabilities of the Black Fox Nuclear Project simulator at the Technical Training Center to model abnormal transient conditions
Light-water-reactor coupled neutronic and thermal-hydraulic codes
International Nuclear Information System (INIS)
Diamond, D.J.
1982-01-01
An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented
Energy Technology Data Exchange (ETDEWEB)
Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)
1997-07-01
The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
Energy Technology Data Exchange (ETDEWEB)
Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)
2008-02-15
Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
International Nuclear Information System (INIS)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries
International Nuclear Information System (INIS)
Guingo, M.; Baudry, C.; Hassanaly, M.; Lavieville, J.; Mechitouna, N.; Merigoux, N.; Mimouni, S.; Bestion, D.; Coste, P.; Morel, C.
2015-01-01
NEPTUNE CFD is a Computational Multi-(Fluid) Dynamics code dedicated to the simulation of multiphase flows, primarily targeting nuclear thermo-hydraulics applications, such as the departure from nuclear boiling (DNB) or the two-phase Pressurized Thermal Shock (PTS). It is co-developed within the joint research/development project NEPTUNE (AREVA, CEA, EDF, IRSN) since 2001. Over the years, to address the aforementioned applications, dedicated physical models and numerical methods have been developed and implemented in the code, including specific sets of models for turbulent boiling flows and two-phase non-adiabatic stratified flows. This paper aims at summarizing the current main modeling capabilities of the code, and gives an overview of the associated validation database. A brief summary of emerging applications of the code, such as containment simulation during a potential severe accident or in-vessel retention, is also provided. (authors)
Energy Technology Data Exchange (ETDEWEB)
Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui [Xi' an Jiaotong Univ. (China). State Key Laboratory of Multiphase Flow in Power Engineering
2016-05-15
Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.
Thermal hydraulic codes for LWR safety analysis - present status and future perspective
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H. [Commission of the European Union, Ispra (Italy)
1997-07-01
The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved.
2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL
Energy Technology Data Exchange (ETDEWEB)
Freels, James D [ORNL; Bodey, Isaac T [ORNL; Lowe, Kirk T [ORNL; Arimilli, Rao V [ORNL
2010-09-01
The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.
International Nuclear Information System (INIS)
Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui
2016-01-01
Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.
Thermal hydraulic codes for LWR safety analysis - present status and future perspective
International Nuclear Information System (INIS)
Staedtke, H.
1997-01-01
The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved
International Nuclear Information System (INIS)
Vaziri, N.; Erfani, A.; Monsefi, M.; Hajabri, A.
2008-01-01
In a reactor accident like loss of coolant accident , one or more signals may not be monitored by control panel for some reasons such as interruptions and so on. Therefore a fast alternative method could guarantee the safe and reliable exploration of nuclear power planets. In this study, we used artificial neural network with Elman recurrent structure to predict six thermal hydraulic signals in a loss of coolant accident after upper plenum break. In the prediction procedure, a few previous samples are fed to the artificial neural network and the output value or next time step is estimated by the network output. The Elman recurrent network is trained with the data obtained from the benchmark simulation of loss of coolant accident in VVER. The results reveal that the predicted values follow the real trends well and artificial neural network can be used as a fast alternative prediction tool in loss of coolant accident
Calculation of the thermal and hydraulic states in rod cluster cores of light-water reactors
International Nuclear Information System (INIS)
Teichel, H.
1977-01-01
For calculating the three-dimensional steady distribution of the thermal and hydraulic states in rod cluster cores of light-water reactors, the subchannel analysis programs COLA 1 and COLA 2 have been developed. Both programs contain a multitude of competing empirical correlations which may be used by choice. The programs COLA 1 and COLA 2 differ in the calculation method and in the treatment of the boundary condition 'equal pressure at the end of all cooling channels' governing the problem. All parts of the programs are identical. By means of recomputed experiments statements on the accuracy of the results to be expected can be made. In addition, the different suitability of both programs for different experimental conditions are shown. (orig.) [de
A model selection support system for numerical simulations of nuclear thermal-hydraulics
International Nuclear Information System (INIS)
Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Yoshikawa, Hidekazu; Wakabayashi, Jiro
1990-01-01
In order to execute efficiently a dynamic simulation of a large-scaled engineering system such as a nuclear power plant, it is necessary to develop intelligent simulation support system for all phases of the simulation. This study is concerned with the intelligent support for the program development phase and is engaged in the adequate model selection support method by applying AI (Artificial Intelligence) techniques to execute a simulation consistent with its purpose and conditions. A proto-type expert system to support the model selection for numerical simulations of nuclear thermal-hydraulics in the case of cold leg small break loss-of-coolant accident of PWR plant is now under development on a personal computer. The steps to support the selection of both fluid model and constitutive equations for the drift flux model have been developed. Several cases of model selection were carried out and reasonable model selection results were obtained. (author)
International Nuclear Information System (INIS)
Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.
1991-02-01
This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab
Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD
Energy Technology Data Exchange (ETDEWEB)
Trambauer, K. [GRS, Garching (Germany)
1997-07-01
The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.
Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts
International Nuclear Information System (INIS)
Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji
2010-01-01
The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study
Evaluation of thermal-hydraulic parameter uncertainties in a TRIGA research reactor
International Nuclear Information System (INIS)
Mesquita, Amir Z.; Costa, Antonio C.L.; Ladeira, Luiz C.D.; Rezende, Hugo C.; Palma, Daniel A.P.
2015-01-01
Experimental studies had been performed in the TRIGA Research Nuclear Reactor of CDTN/CNEN to find out the its thermal hydraulic parameters. Fuel to coolant heat transfer patterns must be evaluated as function of the reactor power in order to assess the thermal hydraulic performance of the core. The heat generated by nuclear fission in the reactor core is transferred from fuel elements to the cooling system through the fuel-cladding (gap) and the cladding to coolant interfaces. As the reactor core power increases the heat transfer regime from the fuel cladding to the coolant changes from single-phase natural convection to subcooled nucleate boiling. This paper presents the uncertainty analysis in the results of the thermal hydraulics experiments performed. The methodology used to evaluate the propagation of uncertainty in the results was done based on the pioneering article of Kline and McClintock, with the propagation of uncertainties based on the specification of uncertainties in various primary measurements. The uncertainty analysis on thermal hydraulics parameters of the CDTN TRIGA fuel element is determined, basically, by the uncertainty of the reactor's thermal power. (author)
International Nuclear Information System (INIS)
Norio, Kono; Kenji, Murai; Kaichiro, Misima; Takayuki, Suemura; Yoshiei, Akiyama; Keiichi, Hori
2001-01-01
In the present thermal hydraulic design of Pressurized Water Reactor (PWR), a departure from nucleate boiling (DNB) under anticipated transient conditions is not allowed. However, it is recognized that the DNB dose not cause a fuel rod failure immediately, and a suitable reactor trip can prevent the core from severe damages. If the fuel rod temperature under the post-DNB conditions can be accurately evaluated, the potentially existing margin in the present design method will be quantitatively assessed. To establish the heat transfer evaluation method on post-DNB event for PWR thermal hydraulic design, Nuclear Power Engineering Corporation (NUPEC) started a program, NUPEC Thermal Hydraulic Test to Evaluate Post-DNB Characteristics for PWR Fuel Assemblies (NUPEC-TH-P), in 1995 (hereinafter the year means fiscal year) under the sponsorship of Ministry of Economy, Trade and industry (METI). This program is now under going until 2001. This paper is to show the overall plan and the status of NUPEC-TH-P. (authors)
Thermal-hydraulic analysis of LTS cables for the DEMO TF coil using simplified models
Directory of Open Access Journals (Sweden)
Lewandowska Monika
2017-03-01
Full Text Available The conceptual design activities for the DEMOnstration reactor (DEMO – the prototype fusion power plant – are conducted in Europe by the EUROfusion Consortium. In 2015, three design concepts of the DEMO toroidal field (TF coil were proposed by Swiss Plasma Center (EPFL-SPC, PSI Villigen, Italian National Agency for New Technologies (ENEA Frascati, and Atomic Energy and Alternative Energies Commission (CEA Cadarache. The proposed conductor designs were subjected to complete mechanical, electromagnetic, and thermal-hydraulic analyses. The present study is focused on the thermal-hydraulic analysis of the candidate conductor designs using simplified models. It includes (a hydraulic analysis, (b heat removal analysis, and (c assessment of the maximum temperature and the maximum pressure in each conductor during quench. The performed analysis, aimed at verification whether the proposed design concepts fulfil the established acceptance criteria, provides the information for further improvements of the coil and conductors design.
Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10
International Nuclear Information System (INIS)
Lee, Y. G.; Kim, J. W.; Yoon, S. J.; Park, G. C.
2010-10-01
Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)
Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10
Energy Technology Data Exchange (ETDEWEB)
NONE
2010-10-15
Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)
Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors
Energy Technology Data Exchange (ETDEWEB)
Bodey, Isaac T [ORNL
2014-05-01
Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts
Thermal-hydraulic analysis of SMART steam generator tube rupture using TASS/SMR-S code
International Nuclear Information System (INIS)
Kim, Hee-Kyung; Kim, Soo Hyoung; Chung, Young-Jong; Kim, Hyeon-Soo
2013-01-01
Highlights: ► The analysis was performed from the viewpoint of primary coolant leakage. ► The thermal hydraulic responses and the maximum leakage have been identified. ► There is no direct release into the atmosphere caused by an SGTR accident. ► SMART safety system works well against an SGTR accident. - Abstract: A steam generator tube rupture (SGTR) accident analysis for SMART was performed using the TASS/SMR-S code. SMART with a rated thermal power of 330 MWt has been developed at the Korea Atomic Energy Research Institute. The TASS/SMR-S code can analyze the thermal hydraulic phenomena of SMART in a full range of reactor operating conditions. An SGTR is one of the most important accidents from a thermal hydraulic and radiological viewpoint. A conservative analysis against a SMART SGTR was performed. The major concern of this analysis is to find the thermal hydraulic responses and maximum leakage amount from a primary to a secondary side caused by an SGTR accident. A sensitivity study searching for the conservative thermal hydraulic conditions, break locations, reactivity and other conditions was performed. The dominant parameters related with the integral leak are the high RCS pressure, low core inlet coolant temperature and low break location of the SG cassette. The largest integral leak comes to 28 tons in the most conservative case during 1 h. But there is no direct release into the atmosphere because the secondary system pressure is maintained with a sufficient margin for the design pressure. All leaks go to the condenser. The analysis results show that the primary and secondary system pressures are maintained below the design pressure and the SMART safety system is working well against an SGTR accident
Engineering and thermal-hydraulic design of water cooled PFC for SST-1 tokamak
International Nuclear Information System (INIS)
Paritosh Chaudhuri; Santra, P.; Rabi Prakash, N.; Khirwadkar, S.; Arun Prakash, A.; Ramash, G.; Dubey, S.; Chenna Reddy, D.; Saxena, Y.C.
2005-01-01
plate is necessary for the efficient heat transfer from the tube to the back plate. The contact at the brazed joint of the tube to the backplate/heat sink is critical for the above application. The manufactured modules need to be evaluated for the quality of brazed joint. Using an infra-red-camera, spatial and temporal evaluation of the temperature profile has been studied under various flow parameters. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, erosion rate of the tiles, and tile fitting mechanism. A 2-D Finite Difference code has been developed to study of flow behavior and thermal response of PFC during cooling. The temperature distribution results for different PFC obtained by code were assessed by comparison with 2-D Finite Element (FE) method (using ANSYS). FE models have been developed to conduct the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The result of the calculation led to a good understanding of the flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal response on divertors has been performed both in steady state and transient case. Stress analyses also have been performed by ANSYS to investigate the thermal stress on different PFC during cooling. In this paper an optimized thermal-hydraulic design of PFC cooling and their thermal response will be discussed in detail. (authors)
International Nuclear Information System (INIS)
Reitsma, Frederik
2007-01-01
Description of benchmark: This international benchmark, concerns Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transients based on the PBMR-400 MW design. The deterministic neutronics, thermal-hydraulics and transient analysis tools and methods available to design and analyse PBMRs lag, in many cases, behind the state of the art compared to other reactor technologies. This has motivated the testing of existing methods for HTGRs but also the development of more accurate and efficient tools to analyse the neutronics and thermal-hydraulic behaviour for the design and safety evaluations of the PBMR. In addition to the development of new methods, this includes defining appropriate benchmarks to verify and validate the new methods in computer codes. The scope of the benchmark is to establish well-defined problems, based on a common given set of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark exercise has the following objectives: - Establish a standard benchmark for coupled codes (neutronics/thermal-hydraulics) for PBMR design; - Code-to-code comparison using a common cross section library ; - Obtain a detailed understanding of the events and the processes; - Benefit from different approaches, understanding limitations and approximations. Major Design and Operating Characteristics of the PBMR (PBMR Characteristic and Value): Installed thermal capacity: 400 MW(t); Installed electric capacity: 165 MW(e); Load following capability: 100-40-100%; Availability: ≥ 95%; Core configuration: Vertical with fixed centre graphite reflector; Fuel: TRISO ceramic coated U-235 in graphite spheres; Primary coolant: Helium; Primary coolant pressure: 9 MPa; Moderator: Graphite; Core outlet temperature: 900 C.; Core inlet temperature: 500 C.; Cycle type: Direct; Number of circuits: 1; Cycle
Energy Technology Data Exchange (ETDEWEB)
Bartzis, J G; Megaritou, A; Belessiotis, V
1987-09-01
THEAP-I is a computer code developed in NRCPS `DEMOCRITUS` with the aim to contribute to the safety analysis of the open pool research reactors. THEAP-I is designed for three dimensional, transient thermal/hydraulic analysis of a thermally interacting channel bundle totally immersed into water or air, such as the reactor core. In the present report the mathematical and physical models and methods of the solution are given as well as the code description and the input data. A sample problem is also included, refering to the Greek Research Reactor analysis, under an hypothetical severe loss of coolant accident.
A review on the thermal hydraulic characteristics of the air-cooled
Indian Academy of Sciences (India)
In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces (fins) is to ...
VIPRE-01: a thermal-hydraulic code for reactor cores. Volume 3: programmer's manual (Revision 2)
International Nuclear Information System (INIS)
Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.
1985-07-01
The VIPRE thermal-hydraulic computer code for PWR and BWR core analysis has undergone a detailed design review by a committee of experts. A new version of the code, incorporating the committee's recommendations, has been submitted for NRC review and issuance of a safety evaluation report. The changes in the programmers's manual are given
Thermal-hydraulic feedback model to calculate the neutronic cross-section in PWR reactions
International Nuclear Information System (INIS)
Santiago, Daniela Maiolino Norberto
2011-01-01
In neutronic codes,it is important to have a thermal-hydraulic feedback module. This module calculates the thermal-hydraulic feedback of the fuel, that feeds the neutronic cross sections. In the neutronic co de developed at PEN / COPPE / UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. We used the finite volume technique of discretized the equation of temperature distribution, while calculation the moderator coefficient of heat transfer, was carried out using the ASME table, and using some of their routines to our program. The model allows one to calculate an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the neutronic code. The results were compared with to the empirical model. Our results show that for the fuel elements near periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. The proposed model was validated by the neutronic simulator developed in the PEN / COPPE / UFRJ for analysis of PWR reactors. (author)
Thermal-hydraulic assessment of concrete storage cubicle with horizontal 3013 canisters
Energy Technology Data Exchange (ETDEWEB)
HEARD, F.J.
1999-04-08
The FIDAP computer code was used to perform a series of analyses to assess the thermal-hydraulic performance characteristics of the concrete plutonium storage cubicles, as modified for the horizontal placement of 3013 canisters. Four separate models were developed ranging from a full height model of the storage cubicle to a very detailed standalone model of a horizontal 3013 canister.
Validation of a thermal-hydraulic system code on a simple example
International Nuclear Information System (INIS)
Kopecek, Vit; Zacha, Pavel
2014-01-01
A mathematical model of a U tube was set up and the analytical solution was calculated and used in the assessment of the numerical solutions obtained by using the RELAP5 mod3.3 and TRACE V5 thermal hydraulics codes. A good agreement between the 2 types of calculation was obtained.
Trend analysis of troubles caused by thermal-hydraulic phenomena at nuclear power plants
International Nuclear Information System (INIS)
Komatsu, Teruo
2010-01-01
The Institute of Nuclear Safety System (INSS) is promoting researches to improve the safety and reliability of nuclear power plants. In the present study, our attention was focused on troubles attributed to thermal-hydraulic phenomena in particular, trend analysis were carried out to learn lessons from these troubles and to prevent their recurrence. Through our survey, we found the following two points. First, many thermal-hydraulics related troubles can be attributed to design faults, since we found some events in foreign countries took place after inadequate facility renovation. To ensure appropriate design verification, it is important to take account of state-of-the-art science and technology and at the same time to pay attention to the compatibility with the initial design concept. Second point, thermal-hydraulic related troubles are common and recurrent to nuclear power plants worldwide. Japanese utilities are planning to introduce some of overseas experiences to their plants, such as power uprate and renovations of aged facilities. It is important to learn lessons from experiences paying close attention continuously to overseas trouble events, including thermal-hydraulics related events, and to use them to improve safety and reliability of nuclear power plants. (author)
Survey of thermal-hydraulic models of commercial nuclear power plants
International Nuclear Information System (INIS)
Determan, J.C.; Hendrix, C.E.
1992-12-01
A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described
Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety
International Nuclear Information System (INIS)
Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.
1993-01-01
This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized
Thermal-hydraulic calculation and analysis for QNPP (Qinshan Nuclear Power Plant) containment
International Nuclear Information System (INIS)
Xie Hui; Zhou Jie; He Yingchao
1993-01-01
Three containment thermal-hydraulic codes CONTEMPT-LT/028, CONTEMPT-4/MOD3 and COMPARE are used to compute and analyse the Qinshan Nuclear Power Plant (QNPP) containment response under LOCA or MSLB conditions. An evaluation of the capability of containment of QNPP is given
Thermal-hydraulic assessment of concrete storage cubicle with horizontal 3013 canisters
International Nuclear Information System (INIS)
Heard, F.J.
1999-01-01
The FIDAP computer code was used to perform a series of analyses to assess the thermal-hydraulic performance characteristics of the concrete plutonium storage cubicles, as modified for the horizontal placement of 3013 canisters. Four separate models were developed ranging from a full height model of the storage cubicle to a very detailed standalone model of a horizontal 3013 canister
Energy Technology Data Exchange (ETDEWEB)
Falikov, A A; Vakhrushev, V V; Kuul, V S; Samoilov, O B; Tarasov, G I [OKBM, Nizhny Novgorod (Russian Federation)
1997-09-01
The paper briefly reviews the specific thermal-hydraulic problems for AST-type NHRs, the experimental investigations that have been carried out in the RF, and the design procedures and computer codes used for AST-500 thermohydraulic characteristics and safety validation. (author). 13 refs, 10 figs, 1 tab.
Transient thermal-hydraulic/neutronic analysis in a VVER-1000 reactor core
International Nuclear Information System (INIS)
Seyed khalil Mousavian; Mohammad Mohsen Ertejaei; Majid Shahabfar
2005-01-01
Full text of publication follows: Nowadays, coupled thermal-hydraulic and three-dimensional neutronic codes in order to consider different feedback effects is state of the art subject in nuclear engineering researches. In this study, RELAP5/COBRA and WIMS/CITATION codes are implemented to investigate the VVER-1000 reactor core parameters during Large Break Loss of Coolant Accident (LB-LOCA). In a LB-LOCA, the primary side pressure, coolant density and fuel temperature strongly decrease but the cladding temperature experiences a strong peak. For this purpose, the RELAP5 Best Estimate (BE) system code is used to simulate the LB-LOCA analysis in VVER-1000 nuclear thermal-hydraulic loops. Also, the modified COBRA-IIIc software as a sub-channel analysis code is applied for modeling of VVER-1000 reactor core. Moreover, WIMS and CITATION as a cross section and 3-D neutron flux codes are coupled with thermal-hydraulic codes with the aim of consider the spatial effects through the reactor core. For this reason, suitable software is developed to link and speed up the coupled thermalhydraulic and three-dimensional neutronic calculations. This software utilizes of external coupling concept in order to integrate thermal-hydraulic and neutronic calculations. (authors)
International Nuclear Information System (INIS)
Ohshima, Hiroyuki
2001-10-01
A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including the effect of the flow between wrapper-tube walls (inter-wrapper flow) under various reactor operation conditions. As appropriate boundary conditions in addition to a detailed modeling of the core are essential for accurate simulations of in-core thermal hydraulics, ACT consists of not only fuel assembly and inter-wrapper flow analysis modules but also a heat transport system analysis module that gives response of the plant dynamics to the core model. This report describes incorporation of a simplified model to the fuel assembly analysis module and program parallelization by a message passing method toward large-scale simulations. ACT has a fuel assembly analysis module which can simulate a whole fuel pin bundle in each fuel assembly of the core and, however, it may take much CPU time for a large-scale core simulation. Therefore, a simplified fuel assembly model that is thermal-hydraulically equivalent to the detailed one has been incorporated in order to save the simulation time and resources. This simplified model is applied to several parts of fuel assemblies in a core where the detailed simulation results are not required. With regard to the program parallelization, the calculation load and the data flow of ACT were analyzed and the optimum parallelization has been done including the improvement of the numerical simulation algorithm of ACT. Message Passing Interface (MPI) is applied to data communication between processes and synchronization in parallel calculations. Parallelized ACT was verified through a comparison simulation with the original one. In addition to the above works, input manuals of the core analysis module and the heat transport system analysis module have been prepared. (author)
Oyster Creek fuel thermal margin during core thermal-hydraulic oscillations
International Nuclear Information System (INIS)
Dougher, J.D.
1990-01-01
The Oyster Creek nuclear facility, a boiling water reactor (BWR)-2 plant type, has never experienced core thermal-hydraulic instability. Power oscillations, however, have been observed in other BWR cores both domestically and internationally. Two modes of oscillations have been observed, core wide and regional half-core. During core wide oscillations, the neutron flux in the core oscillates in the radial fundamental mode. During regional half-core oscillations, higher order harmonics in the radial plane result in out-of-phase oscillations with the neutron flux in one half of the core oscillating 180 deg out-of-phase with the neutron flux in the other half of the core. General Design Criteria 12 requires either prevention or detection and suppression of power oscillations which could result in violations of fuel design limits. Analyses performed by General Electric have demonstrated that for large-magnitude oscillations the potential exists for violation of the safety limit minimum critical power ratio (MCPR). However, for plants with a flow-biased neutron flux scram automatic mitigation of oscillations may be provided at an oscillation magnitude below that at which the safety limit is challenged. Plant-specific analysis for Oyster Creek demonstrates that the existing average power range monitor (APRM) system will sense and suppress power oscillations prior to violation of any safety limits
International Nuclear Information System (INIS)
Ohnuki, A.; Kureta, M.; Liu, W.; Tamai, H.; Akimoto, H.
2004-01-01
Research and development project for investigating thermal-hydraulic performance in tight-lattice rod bundles for Reduced-Moderation Water Reactor (RMWR) started at Japan Atomic Energy Research Institute (JAERI) in 2002. The RMWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured light-water reactor technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important issues for the RMWR because of the tight-lattice configuration. The project has mainly consisted of a large-scale thermal-hydraulic test and development of analytical methods named modeling engineering. In the large-scale test, 37-rod bundle experiments can be performed. Steady-state critical power experiments have been achieved in the test facility and the experimental data reveal the feasibility of RMWR
International Nuclear Information System (INIS)
Reitsma, F.; Han, J.; Ivanov, K.; Sartori, E.
2008-01-01
The PBMR is a High-Temperature Gas-cooled Reactor (HTGR) concept developed to be built in South Africa. The analysis tools used for core neutronic design and core safety analysis need to be verified and validated. Since only a few pebble-bed HTR experimental facilities or plant data are available the use of code-to-code comparisons are an essential part of the V and V plans. As part of this plan the PBMR 400 MW design and a representative set of transient cases is defined as an OECD benchmark. The scope of the benchmark is to establish a series of well-defined multi-dimensional computational benchmark problems with a common given set of cross-sections, to compare methods and tools in coupled neutronics and thermal hydraulics analysis with a specific focus on transient events. The OECD benchmark includes steady-state and transients cases. Although the focus of the benchmark is on the modelling of the transient behaviour of the PBMR core, it was also necessary to define some steady-state cases to ensure consistency between the different approaches before results of transient cases could be compared. This paper describes the status of the benchmark project and shows the results for the three steady state exercises defined as a standalone neutronics calculation, a standalone thermal-hydraulic core calculation, and a coupled neutronics/thermal-hydraulic simulation. (authors)
International Nuclear Information System (INIS)
Seubert, A.; Velkov, K.; Langenbuch, S.
2008-01-01
This paper describes the time-dependent 3D discrete ordinates transport code TORT-TD. Thermal-hydraulic feedback is considered by coupling TORT-TD with the thermal-hydraulics system code ATHLET. The coupled code TORT-TD/ATHLET allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. The nuclear cross sections are interpolated between pre-calculated table values of fuel temperature, moderator density and boron concentration. For verification of the implementation, selected test cases have been calculated by TORT-TD/ATHLET. They include a control rod ejection transient in a small PWR fuel assembly arrangement and a local boron concentration change in a single PWR fuel assembly. In the latter, special attention has been paid to study the influence of the thermal-hydraulic feedback modelling in ATHLET. The results obtained for a control rod ejection accident in a PWR quarter core demonstrate the applicability of TORT-TD/ATHLET. (authors)
Quantification of LOCA core damage frequency based on thermal-hydraulics analysis
International Nuclear Information System (INIS)
Cho, Jaehyun; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon
2017-01-01
Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety
Quantification of LOCA core damage frequency based on thermal-hydraulics analysis
Energy Technology Data Exchange (ETDEWEB)
Cho, Jaehyun, E-mail: chojh@kaeri.re.kr; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon
2017-04-15
Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety
Motion simulation of hydraulic driven safety rod using FSI method
International Nuclear Information System (INIS)
Jung, Jaeho; Kim, Sanghaun; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In
2013-01-01
Hydraulic driven safety rod which is one of them is being developed by Division for Reactor Mechanical Engineering, KAERI. In this paper the motion of this rod is simulated by fluid structure interaction (FSI) method before manufacturing for design verification and pump sizing. A newly designed hydraulic driven safety rod which is one of reactivity control mechanism is simulated using FSI method for design verification and pump sizing. The simulation is done in CFD domain with UDF. The pressure drop is changed slightly by flow rates. It means that the pressure drop is mainly determined by weight of moving part. The simulated velocity of piston is linearly proportional to flow rates so the pump can be sized easily according to the rising and drop time requirement of the safety rod using the simulation results
Thermal-hydraulic limitations on water-cooled limiters
International Nuclear Information System (INIS)
Cha, Y.S.; Misra, B.
1984-08-01
An assessment of the cooling requirements for fusion reactor components, such as the first wall and limiter/divertor, was carried out using pressurized water as the coolant. In order to establish the coolant operating conditions, a survey of the literature on departure from nucleate boiling, critical heat flux, asymmetrical heating and heat transfer augmentation techniques was carried out. The experimental data and the empirical correlations indicate that thermal protection for the fusion reactor components based on current design concepts can be provided with an adequate margin of safety without resorting to either high coolant velocities, excessive coolant pressures, or heat transfer augmentation techniques. If, however, the future designs require heat transfer enhancement techniques, experimental verification would be necessary since no data on heat transfer augmentation techniques exist for complex geometries, especially under asymmetrically heated conditions. Since the data presented herein concern primarily thermal protection, the final design should consider other factors such as thermal stresses, temperature limits, and fatigue
Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core
International Nuclear Information System (INIS)
Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park
2000-01-01
This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)
International Nuclear Information System (INIS)
Lightston, M.F.; Rock, R.
1996-01-01
This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles under steady-state conditions. The study, which is based on simulations performed using the ASSERT-PV thermal hydraulic code, consists of two main parts. In the first part the various physical mechanisms that contribute to coolant mixing are identified and their impact is isolated via ASSERT-PV simulations. The second part is concerned with development of a preliminary model suitable for use in the fuel and fuel channel code FACTAR to predict the thermal mixing that occurs between flow annuli. (author)
International Nuclear Information System (INIS)
Wagner, S.G.; Harris, K.P.; Mansur, J.M.
1981-01-01
PWR accident analyses for breaks in the secondary system are characterized by extreme cooling of the core, large inlet temperature gradients, asymmetric stuck control rods and primary coolant flow predictions ranging from a few percent of nominal to full flow. For several years Combustion Engineering has been using the Hermite code to compute reacitvities, power distributions and flow distributions in 3-D for far off nominal thermal-hydraulic and neutronic conditions. These 3-D methods, while costly, have been very successful in analyzing a large class of PWR secondary break accidents. They indicate a much reduced post-scram return-to-power compared to less detailed, bounding core average feedback methods. The availability of a growing number of 3-D calculations has made it possible to develop and benchmark faster running of 2-D methods which account for many of the same effects seen in 3-D. Two such methods are described and evaluated in this paper and one method is shown to be realiable over a wide range of conditions. (orig.) [de
Methods of forming thermal management systems and thermal management methods
Gering, Kevin L.; Haefner, Daryl R.
2012-06-05
A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
International Nuclear Information System (INIS)
Mylonakis, Antonios G.; Varvayanni, M.; Catsaros, N.
2017-01-01
Highlights: •A Newton-based Jacobian-free Monte Carlo/thermal-hydraulic coupling approach is introduced. •OpenMC is coupled with COBRA-EN with a Newton-based approach. •The introduced coupling approach is tested in numerical experiments. •The performance of the new approach is compared with the traditional “serial” coupling approach. -- Abstract: In the field of nuclear reactor analysis, multi-physics calculations that account for the bonded nature of the neutronic and thermal-hydraulic phenomena are of major importance for both reactor safety and design. So far in the context of Monte-Carlo neutronic analysis a kind of “serial” algorithm has been mainly used for coupling with thermal-hydraulics. The main motivation of this work is the interest for an algorithm that could maintain the distinct treatment of the involved fields within a tight coupling context that could be translated into higher convergence rates and more stable behaviour. This work investigates the possibility of replacing the usually used “serial” iteration with an approximate Newton algorithm. The selected algorithm, called Approximate Block Newton, is actually a version of the Jacobian-free Newton Krylov method suitably modified for coupling mono-disciplinary solvers. Within this Newton scheme the linearised system is solved with a Krylov solver in order to avoid the creation of the Jacobian matrix. A coupling algorithm between Monte-Carlo neutronics and thermal-hydraulics based on the above-mentioned methodology is developed and its performance is analysed. More specifically, OpenMC, a Monte-Carlo neutronics code and COBRA-EN, a thermal-hydraulics code for sub-channel and core analysis, are merged in a coupling scheme using the Approximate Block Newton method aiming to examine the performance of this scheme and compare with that of the “traditional” serial iterative scheme. First results show a clear improvement of the convergence especially in problems where significant
Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux
International Nuclear Information System (INIS)
Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng
2012-01-01
Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.
THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.
1984-07-01
The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.
THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code
International Nuclear Information System (INIS)
Vondy, D.R.
1984-07-01
The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations
Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block
International Nuclear Information System (INIS)
Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming
2013-01-01
As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)
Thermal-hydraulic calculations for KUHFR with reduced enrichment uranium fuel
International Nuclear Information System (INIS)
Mishima, Kaichiro; Shibata, Toshikazu.
1982-01-01
This report provides the preliminary results of the thermal-hydraulic calculations to study the safety aspects in fueling the KUHFR with reduced enrichment uranium. The calculations were based on what was outlined in the Safety Analysis Report for the KUHFR and the guidebook for research reactor core conversion, IAEA-TECDOC-233, published by the International Atomic Energy Agency. No significant differences in the thermal-hydraulic operating conditions have been found between HEU and MEU fuels. However, in LEU cases, the combination of three factors - larger power peaking with LEU fuel, smaller thermal conductivity of U 3 O 8 -Al fuel with high uranium densities, and thicker fuel meat - resulted in higher maximum fuel and surface temperatures with the LEU oxide fuel. (author)
International Nuclear Information System (INIS)
Fujiki, Kazuo; Asaka, Hideaki; Ishida, Toshihisa
1986-01-01
Thermal-hydraulic behaviors in the reactor of Nuclear Ship ''Mutsu'' were investigated through safety evaluation of operational transients by using RETRAN and COBRA-IV codes. The results were compared to the transient behaviors of typical commercial PWR and the characteristics of transient thermal-hydraulic behaviors in ship-loaded reactor were figured out. ''Mutsu'' reactor has larger thermal margin than commercial PWR because it is designed to be used as ship-propulsion power source in the load-following operation mode. This margin makes transient behavior in general milder than in commercial PWR but high opening pressure set point of main-steam safety valves leads poor heat-sink condition after reactor trip. The effects of other small-sized components are also investigated. The findings in the paper will be helpful in the design of future advanced reactor for nuclear ship. (author)
Single-channel model for steady thermal-hydraulic analysis in nuclear reactor
International Nuclear Information System (INIS)
Zhang Xiaoying; Huang Yuanyuan
2010-01-01
This article established a single-channel model for steady analysis in the reactor and an example of thermal-hydraulic analysis was made by using this model, including the Maximum heat flux density of fuel element, enthalpy, Coolant flow, various kinds of pressure drop, enthalpy increase in average tube and thermal tube. I also got the Coolant temperature distribution and the fuel element temperature distribution and analysis of the final result. The results show that some relevant parameters which we got in this paper are well coincide with the actual operating parameters. It is also show that the single-channel model can be used to the steady thermal-hydraulic analysis. (authors)
Gas-cooled reactor thermal-hydraulics using CAST3M and CRONOS2 codes
International Nuclear Information System (INIS)
Studer, E.; Coulon, N.; Stietel, A.; Damian, F.; Golfier, H.; Raepsaet, X.
2003-01-01
The CEA R and D program on advanced Gas Cooled Reactors (GCR) relies on different concepts: modular High Temperature Reactor (HTR), its evolution dedicated to hydrogen production (Very High Temperature Reactor) and Gas Cooled Fast Reactors (GCFR). Some key safety questions are related to decay heat removal during potential accident. This is strongly connected to passive natural convection (including gas injection of Helium, CO 2 , Nitrogen or Argon) or forced convection using active safety systems (gas blowers, heat exchangers). To support this effort, thermal-hydraulics computer codes will be necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Accurate and efficient modeling of heat transfer by conduction, convection or thermal radiation as well as energy storage are necessary requirements to obtain a high level of confidence in the thermal-hydraulic simulations. To achieve that goal a thorough validation process has to ve conducted. CEA's CAST3M code dedicated to GCR thermal-hydraulics has been validated against different test cases: academic interaction between natural convection and thermal radiation, small scale in-house THERCE experiments and large scale High Temperature Test Reactor benchmarks such as HTTR-VC benchmark. Coupling with neutronics is also an important modeling aspect for the determination of neutronic parameters such as neutronic coefficient (Doppler, moderator,...), critical position of control rods...CEA's CAST3M and CRONOS2 computer codes allow this coupling and a first example of coupled thermal-hydraulics/neutronics calculations has been performed. Comparison with experimental data will be the next step with High Temperature Test Reactor experimental results at nominal power
International Nuclear Information System (INIS)
Hyung, Jin Shim; Beom, Seok Han; Chang, Hyo Kim
2003-01-01
Monte Carlo (MC) power method based on the fixed number of fission sites at the beginning of each cycle is known to cause biases in the variances of the k-eigenvalue (keff) and the fission reaction rate estimates. Because of the biases, the apparent variances of keff and the fission reaction rate estimates from a single MC run tend to be smaller or larger than the real variances of the corresponding quantities, depending on the degree of the inter-generational correlation of the sample. We demonstrate this through a numerical experiment involving 100 independent MC runs for the neutronics analysis of a 17 x 17 fuel assembly of a pressurized water reactor (PWR). We also demonstrate through the numerical experiment that Gelbard and Prael's batch method and Ueki et al's covariance estimation method enable one to estimate the approximate real variances of keff and the fission reaction rate estimates from a single MC run. We then show that the use of the approximate real variances from the two-bias predicting methods instead of the apparent variances provides an efficient MC power iteration scheme that is required in the MC neutronics analysis of a real system to determine the pin power distribution consistent with the thermal hydraulic (TH) conditions of individual pins of the system. (authors)
International Nuclear Information System (INIS)
Oras, J.J.; Kuzay, T.M.; Kasza, K.E.
1988-01-01
Descriptions of the ANL thermal-hydraulic water models of both the PRISM and SAFR reactors are presented, together with results from Phases I and II of the thermal-hydraulic test program. Phenomena discovered during these tests and modeling results are presented. Overall, these efforts demonstrate the acceptable thermal-hydraulic performance of both the PRISM and SAFR concepts
International Nuclear Information System (INIS)
Jahanfarnia, G.; Zarifi, E.; Veysi, F.
2013-01-01
The aim of this study was to perform a thermal-hydraulic analysis of nanofluids as coolant in the Bushehr VVER-1000 reactor core using the porous media approach. Water-based nanofluids containing various volume fractions of Al 2 O 3 and TiO 2 nanoparticles were analyzed. The conservation equations were discretized by the finite volume method and solved by numerical methods. To validate the approaches applied in this study, the results of the model and COBRA-EN code were compared for pure water. The achieved results show that the temperature of the coolant increases with the concentration of the nanoparticles. (authors)
Challenges in thermal and hydraulic analysis of ADS target systems
International Nuclear Information System (INIS)
Groetzbach, G.; Batta, A.; Lefhalm, C.-H.; Otic, I.
2004-01-01
The liquid metal cooled spallation targets of Accelerator Driven nuclear reactor Systems obey high thermal loads; in addition some flow and cooling conditions are of a prototypical character; in contrast the operating conditions for the engaged materials are narrow; thus, the target development requires a very careful analysis by experimental and numerical means. Especially the cooling of the steel window, which is heated by the proton beam, needs special care. Some of the main goals of the experimental and numerical analyses of the thermal dynamics of those systems are discusses. The prediction of locally detached flows and of flows with larger recirculation areas suffers from insufficient turbulence modeling; this has to be compensated by using prototypical model experiments, e.g. with water, to select the adequate models and numerical schemes. The well known problems with the Reynolds analogy in predicting the heat transfer in liquid metals requires always prototypic liquid metal experiments to select and adapt the turbulent heat flux models. The uncertainties in liquid metal experiments cannot be neglected; so it is necessary to perform CFD calculations and experiments always hand in hand and to develop improve turbulent heat flux models. One contribution to an improved 3 or 4-equation model is deduced from recent Direct Numerical Simulation (DNS) data. (author)
International Nuclear Information System (INIS)
Jimenez, J.; Herrero, J. J.; Cuervo, D.; Aragones, J. M.
2010-10-01
Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)
Validation of coupled neutronic / thermal-hydraulic codes for VVER reactors. Final report
Energy Technology Data Exchange (ETDEWEB)
Mittag, S.; Grundmann, U.; Kliem, S.; Kozmenkov, Y.; Rindelhardt, U.; Rohde, U.; Weiss, F.-P.; Langenbuch, S.; Krzykacz-Hausmann, B.; Schmidt, K.-D.; Vanttola, T.; Haemaelaeinen, A.; Kaloinen, E.; Kereszturi, A.; Hegyi, G.; Panka, I.; Hadek, J.; Strmensky, C.; Darilek, P.; Petkov, P.; Stefanova, S.; Kuchin, A.; Khalimonchuk, V.; Hlbocky, P.; Sico, D.; Danilin, S.; Ionov, V.; Nikonov, S.; Powney, D.
2004-08-01
In recent years, the simulation methods for the safety analysis of nuclear power plants have been continuously improved to perform realistic calculations. Therefore in VALCO work package 2 (WP 2), the usual application of coupled neutron-kinetic / thermal-hydraulic codes to VVER has been supplemented by systematic uncertainty and sensitivity analyses. A comprehensive uncertainty analysis has been carried out. The GRS uncertainty and sensitivity method based on the statistical code package SUSA was applied to the two transients studied earlier in SRR-1/95: A load drop of one turbo-generator in Loviisa-1 (VVER-440), and a switch-off of one feed water pump in Balakovo-4 (VVER-1000). The main steps of these analyses and the results obtained by applying different coupled code systems (SMABRE - HEXTRAN, ATHLET - DYN3D, ATHLET - KIKO3D, ATHLET - BIPR-8) are described in this report. The application of this method is only based on variations of input parameter values. No internal code adjustments are needed. An essential result of the analysis using the GRS SUSA methodology is the identification of the input parameters, such as the secondary-circuit pressure, the control-assembly position (as a function of time), and the control-assembly efficiency, that most sensitively affect safety-relevant output parameters, like reactor power, coolant heat-up, and primary pressure. Uncertainty bands for these output parameters have been derived. The variation of potentially uncertain input parameter values as a consequence of uncertain knowledge can activate system actions causing quite different transient evolutions. This gives indications about possible plant conditions that might be reached from the initiating event assuming only small disturbances. In this way, the uncertainty and sensitivity analysis reveals the spectrum of possible transient evolutions. Deviations of SRR-1/95 coupled code calculations from measurements also led to the objective to separate neutron kinetics from
Sub-step methodology for coupled Monte Carlo depletion and thermal hydraulic codes
International Nuclear Information System (INIS)
Kotlyar, D.; Shwageraus, E.
2016-01-01
Highlights: • Discretization of time in coupled MC codes determines the results’ accuracy. • The error is due to lack of information regarding the time-dependent reaction rates. • The proposed sub-step method considerably reduces the time discretization error. • No additional MC transport solutions are required within the time step. • The reaction rates are varied as functions of nuclide densities and TH conditions. - Abstract: The governing procedure in coupled Monte Carlo (MC) codes relies on discretization of the simulation time into time steps. Typically, the MC transport solution at discrete points will generate reaction rates, which in most codes are assumed to be constant within the time step. This assumption can trigger numerical instabilities or result in a loss of accuracy, which, in turn, would require reducing the time steps size. This paper focuses on reducing the time discretization error without requiring additional MC transport solutions and hence with no major computational overhead. The sub-step method presented here accounts for the reaction rate variation due to the variation in nuclide densities and thermal hydraulic (TH) conditions. This is achieved by performing additional depletion and TH calculations within the analyzed time step. The method was implemented in BGCore code and subsequently used to analyze a series of test cases. The results indicate that computational speedup of up to a factor of 10 may be achieved over the existing coupling schemes.
Energy Technology Data Exchange (ETDEWEB)
Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Nicola, Giancarlo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge Fondation EDF, Ecole Centrale Paris and Supelec, Paris (France); Yu, Yu [School of Nuclear Science and Engineering, North China Electric Power University, 102206 Beijing (China)
2015-08-15
Highlights: • Uncertainties of TH codes affect the system failure probability quantification. • We present Finite Mixture Models (FMMs) for sensitivity analysis of TH codes. • FMMs approximate the pdf of the output of a TH code with a limited number of simulations. • The approach is tested on a Passive Containment Cooling System of an AP1000 reactor. • The novel approach overcomes the results of a standard variance decomposition method. - Abstract: For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) codes are used to predict system response in normal and accidental conditions. The assessment of the uncertainties of TH codes is a critical issue for system failure probability quantification. In this paper, we consider passive safety systems of advanced NPPs and present a novel approach of Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate the probability density function (i.e., the uncertainty) of the output of the passive safety system TH code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to calculate the saliency of the TH code input variables for identifying those that most affect the system functional failure. The novel approach is compared with a standard variance decomposition method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced Pressurized reactor AP1000.
Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket
International Nuclear Information System (INIS)
Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.
1980-09-01
The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design
Quality assurance of PTS thermal hydraulic calculations at BNL
International Nuclear Information System (INIS)
Rohatgi, U.S.; Pu, J.; Jo, J.; Saha, P.
1983-01-01
Rapid cooling of the reactor pressure vessel at high pressure has a potential of challenging the vessel integrity. This phenomenon is called overcooling or Pressurized Thermal Shock (PTS). The Nuclear Regulatory Commission (NRC) has selected three plants representing three types of PWRs in use for detailed PTS study. Oconee-1 (B and W), Calvert Cliffs (C.E.), and H.B. Robinson (Westinghouse). The Brookhaven National Laboratory (BNL) has been requested by NRC to review and compare the input decks developed at LANL and INEL, and to compare and explain the differences between the common calculations performed at these two laboratories. However, for the transients that will be computed by only one laboratory, a consistency check will be performed. So far only Oconee-1 calculations have been reviewed at BNL, and the results are presented here
Thermal hydraulics of accelerator driven system: validation and analysis
International Nuclear Information System (INIS)
Kumari, I.; Khanna, A.
2014-01-01
This paper presents validation of RELAP5/Mod4.0 code modified to incorporate Lead Bismuth Eutectic (LBE)fluid properties for simulation of Accelerator Driven System (ADS) against Barone's NACIE facility.Results of mass flow rates (MFR), Reynolds number, heat transfer coefficients, temperatures and temperature difference for three powers (10.8, 21.7 and 32.5 kW) under natural circulation of LBE match with Barone's values within 7%,18%,37%, 5% and 8% of relative error respectively. After this validation Indian ADS for thermal power of 15 kW has been simulated. Simulated profiles of temperature, MFR and pressure drop LBE and air are reported. Air and LBE temperatures of present work match with literature design values within 5% of relative error. (author)
A two-compartment thermal-hydraulic experiment (LACE-LA4) analyzed by ESCADRE code
International Nuclear Information System (INIS)
Passalacqua, R.
1994-01-01
Large scale experiments show that whenever a Loss of Coolant Accident (LOCA) occurs, water pools are generated. Stratifications of steam saturated gas develop above water pools causing a two-compartment thermal-hydraulics. The LACE (LWR Advanced Containment Experiment) LA4 experiment, performed at the Hanford Engineering Development Laboratory (HEDL), exhibited a strong stratification, at all times, above a growing water pool. JERICHO and AEROSOLS-B2 are part of the ESCADRE code system (Ensemble de Systemes de Codes d'Analyse d'accident Des Reacteurs A Eau), a tool for evaluating the response of a nuclear plant to severe accidents. These two codes are here used to simulate respectively the thermal-hydraulics and the associated aerosol behavior. Code results have shown that modelling large containment thermal-hydraulics without taking account of the stratification phenomenon leads to large overpredictions of containment pressure and temperature. If the stratification is modelled as a zone with a higher steam condensation rate and a higher thermal resistance, ESCADRE predictions match quite well experimental data. The stratification thermal-hydraulics is controlled by power (heat fluxes) repartition in the lower compartment between the water pool and the nearby walls. Therefore the total, direct heat exchange between the two compartment is reduced. Stratification modelling is believed to be important for its influence on aerosol behavior: aerosol deposition through the inter-face of the two subcompartments is improved by diffusiophoresis and thermophoresis. In addition the aerosol concentration gradient, through the stratification, will cause a driving force for motion of smaller particles towards the pool. (author)
Modeling thermal stress propagation during hydraulic stimulation of geothermal wells
Jansen, Gunnar; Miller, Stephen A.
2017-04-01
A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir
The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design
White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald
1988-01-01
The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.
Thermal-hydraulic effects of transition to improved System 80TM fuel
International Nuclear Information System (INIS)
Rodack, T.; Joffre, P.F.; Kapoor, R.K.
2004-01-01
ABB CE's improved System 80 TM PWR fuel design includes GUARDIAN debris-resistant features and laser-welded Zircaloy grids. The GUARDIAN features include an Inconel grid with debris-filtering features located just above the Lower End Fitting, and a solid fuel rod bottom end cap that extends above the filtering features. Tests and analyses were done to establish the impact of these design improvements on fuel assembly hydraulic performance. Further analysis was done to determine the mixed core thermal-hydraulic performance as the transition is made over two fuel cycles to a full core of the improved System 80 TM fuel. Results confirm that the Thermal-Hydraulic (T-H) effects of the reduction in hydraulic resistance between the improved and resident fuel due to the laser-welded Zircaloy grids offsets the effects of the increased resistance GUARDIAN grid. Therefore, the mechanically improved System 80 TM fuel can be implemented with no net impact on Departure from Nucleate Boiling (DNB) margin in transition cores. (author)
International Nuclear Information System (INIS)
2014-01-01
The 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-10) in Okinawa, Japan is sponsored by Atomic Energy Society of Japan, in cooperation with the International Atomic Energy Agency, and co-sponsored by American Nuclear Society Thermal Hydraulics Division among others. Enhanced safety and reducing cost are going together, which can be achieved through continued research and development efforts. NUTHOS keeps you abreast of the most updated information in the advancement of science and technology in nuclear thermal hydraulics, operations and safety, and provides you insights into the future. (J.P.N.)
The module CCM for the simulation of the thermal-hydraulic situation within a coolant channel
International Nuclear Information System (INIS)
Hoeld, A.
2000-01-01
A coolant channel module (Cc) will be presented which aim is to simulate, in a very general way, the thermal-hydraulic behaviour of single- and two-phase fluids flowing along a heated (or cooled) vertical, inclined or horizontal coolant channel. It is based on a theoretical drift-flux supported 3-equation mixture-fluid model describing the steady state and transient behaviour of characteristic thermal-hydraulic parameters of a single- and two-phase flow within such a channel. The module can be applied as an element within an overall theoretical model for large and complex plant assemblies (PWR and BWR core channels, parallel channels in 3D cores, primary and secondary sides of different steam generators types etc.). The model refers to a general (basic) coolant channel (BC) which can consists of different flow regimes. The BC has thus to be subdivided accordingly into a number of subchannels (SC-s). All of them can belong, however, to only two types of SC-s (single-phase fluid with subcooled water or superheated steam or a two-phase flow regime). For both of them the possibility of variable entrance or outlet positions has to be considered. For discretization purposes the BC (and thus also the SC-s) have to be subdivided into a number of (BC and SC) nodes, discretizing thus the conservation equations for mass, energy and momentum along these nodes by applying a very general spatial procedure, namely a 'modified finite volume method'. A special quadratic polygon approximation method (PAX procedure) helps then to establish a connection between nodal boundary and mean nodal parameters. Considering their constitutive equations (among them an adequate drift-flux correlation package) yields finally a set of non-linear algebraic and non-linear ordinary differential equations for the characteristic parameters of each of these SC nodes (mass flow, pressure drop, coolant temperature and/or void fraction). Based on this theory a code package (CCM) could be established
Flow resistance of orifices and spacers of BWR thermal-hydraulic and neutronic coupling loop
International Nuclear Information System (INIS)
Iguchi, Tadashi; Asaka, Hideaki; Nakamura, Hideo
2002-03-01
Authors are performing THYNC experiments to study thermal-hydraulic instability under neutronic and thermal-hydraulic coupling. In THYNC experiments, the orifices are installed at the exit of the test section and the spacers are installed in the test section, in order to properly simulate in-core thermal-hydraulics in the reactor core. It is necessary to know the flow resistance of the orifices and spacers for the analysis of THYNC experimental results. Consequently, authors measured the flow resistance of orifice and spacer under single-phase and two-phase flows. Using the experimental results, authors investigated the dependency of the flow resistances on the parameters, such as pressure, mass flux, an geometries. Furthermore, authors investigated the applicability of the basic two-phase flow models, for example the separate flow model, to the two-phase flow multiplier. As the result of the investigation on the single-phase flow experiment, it was found (1) that the effects of pressure and mass flux flow resistance are described by a function of Reynolds number, and (2) that flow resistances of the orifice and the spacer are calculated with the previous prediction methods. However, it was necessary to introduce an empirical coefficient, since it was difficult to predict accurately the flow resistance only with the previous prediction method due to the complicated geometry dependency, for example a flow area blockage ratio. On the other hand, according to the investigation on two-phase flow experiment, the followings were found. (1) Relation between the two-phase flow multiplier and the quality is regarded to be linear under pressure of 2MPa - 7MPa. The relation is dependent on pressure and geometry, and is little dependent on mass flux. (2) Relation between the two-phase flow multiplier and void fraction is little dependent on pressure, mass flux, and geometry under pressure of 0.2MPa - 7MPa and void fraction less than 0.6. The relation is less dependent on
International Nuclear Information System (INIS)
Singh, Tej; Kumar, Jainendra; Mazumdar, Tanay; Raina, V.K.
2013-01-01
Highlights: • A point reactor kinetics code coupled with thermal hydraulics of plate type fuel is developed. • This code is applicable for two phase flow of coolant. • Safety analysis of IAEA benchmark reactor core is carried out. • Results agree well with the results available in literature. - Abstract: A point reactor kinetics code SAC-RIT, acronym of Safety Analysis Code for Reactivity Initiated Transient, coupled with thermal hydraulics of two phase coolant flow for plate type fuel, is developed to calculate reactivity initiated transient analysis of nuclear research and test reactors. Point kinetics equations are solved by fourth order Runge Kutta method. Reactivity feedback effect is included into the code. Solution of kinetics equations gives neutronic power and it is then fed into a thermal hydraulic code where mass, momentum and thermal energy conservation equations are solved by explicit finite difference method to find out fuel, clad and coolant temperatures during transients. In this code, all possible flow regimes including laminar flow, transient flow and turbulent flow have been covered. Various heat transfer coefficients suitable for single liquid, sub-cooled boiling, saturation boiling, film boiling and single vapor phases are incorporated in the thermal hydraulic code
Thermal-hydraulic Experiments for Advanced Physical Model Development
International Nuclear Information System (INIS)
Song, Chul Hwa; Baek, W. P.; Yoon, B. J.
2010-04-01
The improvement of prediction models is needed to enhance the safety analysis capability through the fine measurements of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out used SUBO and DOBO. 2x2 and 6x6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle were focused on the break-up of droplets induced by a spacer grid in a rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) had been constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double -sensor optical void probe, Optic Rod, PIV technique and UBIM system
Thermal-hydraulic Experiments for Advanced Physical Model Development
International Nuclear Information System (INIS)
Song, Chulhwa
2012-04-01
The improvement of prediction models is needed to enhance the safety analysis capability through experimental database of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out with local two-phase interfacial structure test facilities. 2 Χ 2 and 6 Χ 6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. In order to develop a model for key phenomena of newly adapted safety system, experiments for boiling inside a pool and condensation in horizontal channel have been performed. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) was constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double-sensor optical void probe, Optic Rod, PIV technique and UBIM system
Thermal hydraulic study of a corium molten pool
International Nuclear Information System (INIS)
Pigny, S.; Grand, D.; Seiler, J.M.; Durin, M.
1993-01-01
The thermohydraulic behaviour of a mass of molten core is investigated, in the frame of PWR severe accidents studies. The corium may be located in the vessel lower head or in an external core-catcher. It is assumed to be present in the container instantaneously. Its motion is described by one velocity field. It may be homogeneous or made of two stratified fluids. The residual power is assumed to be constant and uniform in the UO 2 phase. The radiative losses and the external water-cooling are taken into account. The thermal resistance of a peripheral crust is considered. The influence of the crust on the pool geometry may be studied. The wall behaviour is analysed by a conduction calculation. The interest of a sacrificial layer is underlined, so as the necessity of a multicomponent multiphase model to study the behaviour of a core catcher. It is also concluded that some experiments are needed for code validation about volume heated natural convection and multiphase flows. (author). 14 figs., 3 refs
Spent-fuel pool thermal hydraulics: The evaporation question
International Nuclear Information System (INIS)
Yilmaz, T.P.; Lai, J.C.
1996-01-01
Many nuclear power plants are currently using dense fuel arrangements that increase the number of spent fuel elements stored in their spent-fuel pools (SFPs). The denser spent-fuel storage results in higher water temperatures, especially when certain event scenarios are analyzed. In some of these event scenarios, it is conservative to maximize the evaporation rate, while in other circumstances it is required to minimize the evaporation rates for conservatism. Evaporation is such a fundamental phenomenon that many branches of engineering developed various equations based on theory and experiments. The evaporation rates predicted by existing equations present a wide range of variation, especially at water temperatures >40 degrees C. Furthermore, a study on which equations provide the highest and lowest evaporation rates has not been done until now. This study explores the sensitivity of existing evaporation equations to various parameters and recommends the limiting evaporation equations for use in the solution of SFP thermal problems. Note that the results of this study may be applicable to a much wider range of applications from irrigation ponds, cooling lakes, and liquid-waste management to calculating adequate air exchange rate for swimming pools and health spas
Thermal-hydraulic and characteristic models for packed debris beds
International Nuclear Information System (INIS)
Mueller, G.E.; Sozer, A.
1986-12-01
APRIL is a mechanistic core-wide meltdown and debris relocation computer code for Boiling Water Reactor (BWR) severe accident analyses. The capabilities of the code continue to be increased by the improvement of existing models. This report contains information on theory and models for degraded core packed debris beds. The models, when incorporated into APRIL, will provide new and improved capabilities in predicting BWR debris bed coolability characteristics. These models will allow for a more mechanistic treatment in calculating temperatures in the fluid and solid phases in the debris bed, in determining debris bed dryout, debris bed quenching from either top-flooding or bottom-flooding, single and two-phase pressure drops across the debris bed, debris bed porosity, and in finding the minimum fluidization mass velocity. The inclusion of these models in a debris bed computer module will permit a more accurate prediction of the coolability characteristics of the debris bed and therefore reduce some of the uncertainties in assessing the severe accident characteristics for BWR application. Some of the debris bed theoretical models have been used to develop a FORTRAN 77 subroutine module called DEBRIS. DEBRIS is a driver program that calls other subroutines to analyze the thermal characteristics of a packed debris bed. Fortran 77 listings of each subroutine are provided in the appendix
Thermal-hydraulic and thermo-mechanical design of plasma facing components for SST-1 tokamak
International Nuclear Information System (INIS)
Chaudhuri, Paritosh; Santra, P.; Chenna Reddy, D.; Parashar, S.K.S.
2014-01-01
The Plasma Facing Components (PFCs) are one of the major sub-systems of ssT-1 tokamak. PFC of ssT-1 consisting of divertors, passive stabilizers, baffles and limiters are designed to be compatible for steady state operation. The main consideration in the design of the PFC cooling is the steady state heat removal of up to 1 MW/m 2 . The PFC has been designed to withstand the peak heat fluxes and also without significant erosion such that frequent replacement of the armor is not necessary. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to carry out the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal analysis of the PFC is carried out with the purpose of evaluating the thermal mechanical behavior of PFCs. The detailed thermal-hydraulic and thermo-mechanical designs of PFCs of ssT-1 are discussed in this paper. (authors)
International Nuclear Information System (INIS)
Shadid, J.N.; Smith, T.M.; Cyr, E.C.; Wildey, T.M.; Pawlowski, R.P.
2016-01-01
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
Scaling for integral simulation of thermal-hydraulic phenomena in SBWR during LOCA
Energy Technology Data Exchange (ETDEWEB)
Ishii, M.; Revankar, S.T.; Dowlati, R [Purdue Univ., West Layfayette, IN (United States)] [and others
1995-09-01
A scaling study has been conducted for simulation of thermal-hydraulic phenomena in the Simplified Boiling Water Reactor (SBWR) during a loss of coolant accident. The scaling method consists of a three-level scaling approach. The integral system scaling (global scaling or top down approach) consists of two levels, the integral response function scaling which forms the first level, and the control volume and boundary flow scaling which forms the second level. The bottom up approach is carried out by local phenomena scaling which forms the third level scaling. Based on this scaling study the design of the model facility called Purdue University Multi-Dimensional Integral Test Assembly (PUMA) has been carried out. The PUMA facility has 1/4 height and 1/100 area ratio scaling, corresponding to the volume scaling of 1/400. The PUMA power scaling based on the integral scaling is 1/200. The present scaling method predicts that PUMA time scale will be one-half that of the SBWR. The system pressure for PUMA is full scale, therefore, a prototypic pressure is maintained. PUMA is designed to operate at and below 1.03 MPa (150 psi), which allows it to simulate the prototypic SBWR accident conditions below 1.03 MPa (150 psi). The facility includes models for all components of importance.
Energy Technology Data Exchange (ETDEWEB)
Shadid, J.N., E-mail: jnshadi@sandia.gov [Sandia National Laboratories, Computational Mathematics Department (United States); Department of Mathematics and Statistics, University of New Mexico (United States); Smith, T.M. [Sandia National Laboratories, Multiphysics Applications Department (United States); Cyr, E.C. [Sandia National Laboratories, Computational Mathematics Department (United States); Wildey, T.M. [Sandia National Laboratories, Optimization and UQ Department (United States); Pawlowski, R.P. [Sandia National Laboratories, Multiphysics Applications Department (United States)
2016-09-15
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
International Nuclear Information System (INIS)
Shieh, D.J.; Upadhyaya, M.G.
1986-01-01
A method based on the extended Kalman filter is developed for the estimation of the core coolant mass flow rate in pressurized water reactors. The need for flow calibration can be avoided by a direct estimation of this parameter. A reduced-order neutronic and thermal-hydraulic model is developed for the Loss-of-Fluid Test (LOFT) reactor. The neutron detector and core-exit coolant temperature signals from the LOFT reactor are used as measurements in the parameter estimation algorithm. The estimation sensitivity to model uncertainties was evaluated using the ambiguity function analysis. This also provides a lower bound on the measurement sample size necessary to achieve a certain estimation accuracy. A sequential technique was developed to minimize the computational effort needed to discretize the continuous time equations, and thus achieve faster convergence to the true parameter value. The performance of the stochastic approximation method was first evaluated using simulated random data, and then applied to the estimation of coolant flow rate using the operational data from the LOFT reactor at 100 and 65% flow rate conditions
Thermal-hydraulic and aerosol containment phenomena modelling in ASTEC severe accident computer code
International Nuclear Information System (INIS)
Kljenak, Ivo; Dapper, Maik; Dienstbier, Jiri; Herranz, Luis E.; Koch, Marco K.; Fontanet, Joan
2010-01-01
Transients in containment systems of different scales (Phebus.FP containment, KAEVER vessel, Battelle Model Containment, LACE vessel and VVER-1000 nuclear power plant containment) involving thermal-hydraulic phenomena and aerosol behaviour, were simulated with the computer integral code ASTEC. The results of the simulations in the first four facilities were compared with experimental results, whereas the results of the simulated accident in the VVER-1000 containment were compared to results obtained with the MELCOR code. The main purpose of the simulations was the validation of the CPA module of the ASTEC code. The calculated results support the applicability of the code for predicting in-containment thermal-hydraulic and aerosol phenomena during a severe accident in a nuclear power plant.
A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes
Energy Technology Data Exchange (ETDEWEB)
Barber, D.A.; Miller, R.M.; Joo, H.G.; Downar, T.J. [Purdue Univ., West Lafayette, IN (United States). Dept. of Nuclear Engineering; Wang, W. [SCIENTECH, Inc., Rockville, MD (United States); Mousseau, V.A.; Ebert, D.D. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research
1999-03-01
A generalized interface module has been developed for the coupling of any thermal-hydraulics code to any spatial kinetics code. The coupling scheme was designed and implemented with emphasis placed on maximizing flexibility while minimizing modifications to the respective codes. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine software to manage cross-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCX, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for two NEACRP rod ejection benchmark problems and an NEA/OECD main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated, nonetheless, the capabilities of the coupled code are presented for a typical PWR system/core model.
A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes
International Nuclear Information System (INIS)
Barber, D.A.; Miller, R.M.; Joo, H.G.; Downar, T.J.; Mousseau, V.A.; Ebert, D.D.
1999-01-01
A generalized interface module has been developed for the coupling of any thermal-hydraulics code to any spatial kinetics code. The coupling scheme was designed and implemented with emphasis placed on maximizing flexibility while minimizing modifications to the respective codes. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine software to manage cross-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCX, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for two NEACRP rod ejection benchmark problems and an NEA/OECD main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated, nonetheless, the capabilities of the coupled code are presented for a typical PWR system/core model
Fuel management service for Tarapur Atomic Power Station core thermal hydraulics
International Nuclear Information System (INIS)
Saha, D.; Venkat Raj, V.; Markandeya, S.G.
1977-01-01
Core thermal hydraulic analysis forms an integral part of the fuel management service for the Tarapur reactors. A distinguishing feature of boiling water reactors is the dependence of core flow distribution on the power distribution. Because of the changes in the axial and radial power distribution from cycle to cycle as well as during the cycle and also the variations in leakage flow, it is necessary to evaluate the core thermal hydraulic parameters for every cycle. Some of the typical results obtained in the course of analysis for different cycles of both the units at Tarapur are presented. The use of MCPR (Minimum Critical Power Ratio), instead of MCHFR (Minimum Critical Heat Flux Ratio) as a figure of merit for fuel cladding integrity is also discussed. (K.B.)
Thermal hydraulic analyses of LVR-15 research reactor with IRT-M fuel
International Nuclear Information System (INIS)
Macek, J.
1997-01-01
The LVR-15 pool-type research reactor has been in operation at the Nuclear Research Institute at Rez since 1955. Following a number of reconstructions and redesigning, the current reactor power is 15 MW. Thermal hydraulic analyses to demonstrate that the core heat will be safely removed during operation as well as in accident situations were performed based on methodology which had been specifically developed for the LVR-15 research reactor. This methodology was applied to stationary thermal hydraulic computations, as well as to transients, particularly with reactivity failure and loss of circulation pumps emergencies. The applied methodology and the core configuration as used in the Safety Report are described. The initial and boundary conditions are then considered and the summary of the calculated failures with regard to the defined safety limits is presented. The results of the core configuration analyses are also discussed with respect to meeting the safety limits and to the applicability of the methodology to this purpose
Review of the nuclear reactor thermal hydraulic research in ocean motions
International Nuclear Information System (INIS)
Yan, B.H.
2017-01-01
The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.
A new approach to designing reduced scale thermal-hydraulic experiments
International Nuclear Information System (INIS)
Lapa, Celso M.F.; Sampaio, Paulo A.B. de; Pereira, Claudio M.N.A.
2004-01-01
Reduced scale experiments are often employed in engineering because they are much cheaper than real scale testing. Unfortunately, though, it is difficult to design a thermal-hydraulic circuit or equipment in reduced scale capable of reproducing, both accurately and simultaneously, all the physical phenomena that occur in real scale and operating conditions. This paper presents a methodology to designing thermal-hydraulic experiments in reduced scale based on setting up a constrained optimization problem that is solved using genetic algorithms (GAs). In order to demonstrate the application of the methodology proposed, we performed some investigations in the design of a heater aimed to simulate the transport of heat and momentum in the core of a pressurized water reactor (PWR) at 100% of nominal power and non-accident operating conditions. The results obtained show that the proposed methodology is a promising approach for designing reduced scale experiments
Review of the nuclear reactor thermal hydraulic research in ocean motions
Energy Technology Data Exchange (ETDEWEB)
Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn
2017-03-15
The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.
The SESAME project. State of the art liquid metal thermal hydraulics and beyond
Energy Technology Data Exchange (ETDEWEB)
Roelofs, F.; Shams, A.; Batta, A.; Moreau, V.; Di Piazza, I.; Gerschenfeld, A.; Planquart, P.; Tarantino, M. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)
2017-08-15
The European Sustainable Nuclear Industry Initiative (ESNII) aims at industrial application of fast reactor technology for a sustainable nuclear energy production. Currently four demonstration projects have a promising outlook in Europe, i.e. the ASTRID project in France, the MYRRHA project in Belgium, the ALFRED pan-European project to be realized in Romania, and SEALER in Sweden. Sodium and lead(-alloys) are envisaged as coolants for these reactors. Obviously, in the development of these reactors, thermal-hydraulics is recognized as a key challenge with emphasis on safety issues. This paper discusses the state-of-the-art knowledge with respect to experiments and simulation techniques as pursued in the Horizon 2020 SESAME (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors) project.
Thermal-hydraulic design concept of the solid-target system of spallation neutron source
International Nuclear Information System (INIS)
Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.
2001-01-01
In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)
Current and anticipated uses of thermal-hydraulic codes in Germany
Energy Technology Data Exchange (ETDEWEB)
Teschendorff, V.; Sommer, F.; Depisch, F.
1997-07-01
In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.
Development of thermal hydraulic models for the reliable regulatory auditing code
Energy Technology Data Exchange (ETDEWEB)
Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.; Lee, S. W. [Korea Automic Energy Research Institute, Taejon (Korea, Republic of)
2004-02-15
The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the second step of the 3 year project, and the main researches were focused on the development of downcorner boiling model. During the current year, the bubble stream model of downcorner has been developed and installed in he auditing code. The model sensitivity analysis has been performed for APR1400 LBLOCA scenario using the modified code. The preliminary calculation has been performed for the experimental test facility using FLUENT and MARS code. The facility for air bubble experiment has been installed. The thermal hydraulic phenomena for VHTR and super critical reactor have been identified for the future application and model development.
Development of steady thermal-hydraulic analysis code for China advanced research reactor
International Nuclear Information System (INIS)
Tian Wenxi; Qiu Suizheng; Guo Yun; Su Guanghui; Jia Dounan; Liu Tiancai; Zhang Jianwei
2006-01-01
A multi-channel model steady-state thermal-hydraulic analysis code was developed for China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed flow distribution in the core was obtained. The result shows that the structure size plays the most important role in flow distribution and the influence of core power could be neglected under single-phase flow. The temperature field of fuel element under unsymmetrical cooling condition was also obtained, which is necessary for the further study such as stress analysis etc. of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of hot channel was carried out and it is proved that all thermal-hydraulic parameters accord with the Safety Regulation of CARR. (authors)
Current status and future prospects for thermal-hydraulics and safety research
International Nuclear Information System (INIS)
Park, G.C.
2000-01-01
The present paper is to outline the current activities in Korea for the thermal-hydraulics and safety researches, and furthermore illuminate the future aspect of those field under the umbrella of worldwide nuclear prospect. In Korea, a long-term nuclear research plan has been established since 1992, which was recently funded with a fixed monetary rate of Korean won 1.20 per kWh of electricity produced with nuclear power. 11.5% of the fund is assigned for nuclear safety research in 6 areas. Under this program, 3 axes of research body (KAERI, KINS, University) has been operated with close cooperation. Their role, current activities and long-term plan of each body are introduced in the point of thermal-hydraulics' view. (author)
TEMP-M program for thermal-hydraulic calculation of fast reactor fuel assemblies
International Nuclear Information System (INIS)
Bogoslovskaya, C.P.; Sorokin, A.P.; Tikhomirov, B.B.; Titov, P.A.; Ushakov, P.A.
1983-01-01
TEMP-M program (Fortran, BESM-6 computer) for thermal-hydraulic calculation of fast reactor fuel assemblies is described. Results of calculation of temperature field in a 127 fuel element assembly of BN-600, reactor accomplished according to TEMP-N program are considered as an example. Algorithm, realized in the program, enables to calculate the distributions of coolant heating, fuel element temperature (over perimeter and length) and assembly shell temperature. The distribution of coolant heating in assembly channels is determined from a solution of the balance equation system which accounts for interchannel exchange, nonadiabatic conditions on the assembly shell. The TEMP-M program gives necessary information for calculation of strength, seviceability of fast reactor core elements, serves an effective instrument for calculations when projecting reactor cores and analyzing thermal-hydraulic characteristics of operating reactor fuel assemblies
International Nuclear Information System (INIS)
Banerjee, S.; Hassan, Y.A.
1995-01-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology's (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values
Thermal Hydraulic Assessment for Loss of SDCS Event During the Outage of CANDU Reactor
Energy Technology Data Exchange (ETDEWEB)
Kim, Jonghyun [Gnest, Inc. Taejon (Korea, Republic of); Lee, Kwangho; Oh, Haechol; Jun, Hwangyong [KEPRI, Taejon (Korea, Republic of)
2006-07-01
During the outage(overhaul) of the nuclear power plant, there are several operating states other than the full power state, that is 'Hot-Zero Power', 'Depressurized-Cooldown', and 'Partially Drained'. Until now safety assessment has not been done much for this operating state of CANDU type reactor worldwide. For the accuracy and confidence of PSA for the CANDU outage, the safety analysis is necessary. At the first stage, we analyzed the thermal hydraulic characteristics and safety of the postulated event of loss of shutdown cooling system (SDCS) during the partially drained state which is the longest one in the middle of outage period. As an analysis tool, this study uses the best estimate thermal hydraulic code, RELAP5/CANDU which was modified according to the CANDU specific characteristics and based on RELAP5.Mod3.
Development of best estimate auditing code for CANDU thermal hydraulic safety analysis
Energy Technology Data Exchange (ETDEWEB)
Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-04-15
The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is first step of the whole project, thus focus to the establishment of improvement area. The study was performed by reconsideration of the previous code assessment works and investigation of AECL design analysis tools. In order to identify the thermal hydraulic phenomena for events, the whole system of CANDU plant was divided into main functional systems and subcomponents. Each phenomena was addressed to the each subcomponent. FinaIly improvement areas of model development for auditing tool were established based on the identified phenomena.
International Nuclear Information System (INIS)
Krishna Chandran, R.; Ali, Seik Mansoor; Balasubramaniyan, V.
2014-01-01
This paper discusses the effect of a number of geometrical and thermal hydraulic parameters on the containment peak pressure following a simulated LOCA. The numerical studies are carried out using an inhouse containment thermal hydraulics program called 'THYCON' with focus only on the short term transient response. In order to highlight the effect of above variables, a geometrically scaled (1:270) model of a typical 220 MWe Indian PHWR containment is considered. The discussions in this paper are limited to explaining the influence of individual parameters by comparing with a base case value. It is essential to mention that the results presented here are not general and should be taken as indicative only. Nevertheless, these numerical studies give insight into short term containment response that would be useful to both the system designer as well as the regulator. (author)
Thermal-hydraulic software development for nuclear waste transportation cask design and analysis
International Nuclear Information System (INIS)
Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.
1991-01-01
This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs
Thermal-hydraulic investigations on the CEA-ENEA DEMO relevant helium cooled poloidal blanket
International Nuclear Information System (INIS)
Dell'Orco, G.; Polazzi, G.; Vallette, F.; Proust, E.; Eid, M.
1994-01-01
The CEA-ENEA design of an Helium Cooled Solid Breeder Blanket (HCSBB) for the DEMO reactor, with a breeder in tube (BIT) poloidal arrangement, is based on the use of lithium ceramic pellets, the ENEA γ-LiAlO 2 or the CEA Li 2 ZrO 3 . Due to the geometry of the DEMO reactor plasma chamber, these breeder bundles are adapted to the Vacuum Vessel with a strong poloidal curvature. This curvature influences the thermal-hydraulic behaviour of the coolant flowing inside the bundle. The paper presents the CEA-ENEA first results of the experimental and theoretical programme, aiming at optimizing the breeder module thermal hydraulic design. (author) 6 refs.; 7 figs.; 1 tab
Thermal hydraulics of sodium-cooled fast reactors - key issues and highlights
International Nuclear Information System (INIS)
Ninokata, H.; Kamide, H.
2011-01-01
In this paper key issues and highlighted topics in thermal hydraulics are discussed in connection to the current Japan's sodium-cooled fast reactor development efforts. In particular, design study and related researches of the Japan Sodium-cooled Fast Reactor (JSFR) are focused. Several innovative technologies, e.g., compact reactor vessel, two-loop system, fully natural circulation decay heat removal, and recriticality free core, have been investigated in order to reduce construction cost and to achieve higher level of reactor safety. Preliminary evaluations of innovative technologies to be applied to JSFR are on-going. Here, progress of design study is introduced. Then, research and development activities on the thermal hydraulics related to the innovative technologies are briefly reviewed. (author)
RAMONA-3B/MINET composite representation of BWR thermal-hydraulic systems
International Nuclear Information System (INIS)
Van Tuyle, G.J.; Slovik, G.; Cazzoli, E.G.; Nepsee, T.C.; Guppy, J.G.
1985-01-01
The modification and interfacing of two computer codes, RAMONA-3B and MINET, for the thermal hydraulic transient analysis of a Boiling Water Reactor nuclear steam supply system, is described. The RAMONA-3B code provides for multi-channel thermal hydraulics and three-dimensional (or one-dimensional) neutron kinetics analysis of a boiling water reactor core. The RAMONA-3B system representation terminates at the end of the steam line and at the junction of the feedwater line at the vessel inlet. By interfacing RAMONA-3B with MINET, a generic balance-of-plant systems analysis code, a complete BWR systems code with detailed core modeling was obtained. The result is a code of particular importance to the analysis of transients such as ATWS. A comparison between the 3-D and 1-D neutronics representation is provided, along with a test case utilizing the composite RAMONA-3B/MINET code
Energy Technology Data Exchange (ETDEWEB)
Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)
1995-09-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.
Current and anticipated uses of thermal-hydraulic codes in Germany
International Nuclear Information System (INIS)
Teschendorff, V.; Sommer, F.; Depisch, F.
1997-01-01
In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses
International Nuclear Information System (INIS)
Carlson, K.E.; Ransom, V.H.; Roth, P.A.
1987-03-01
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems that may be found in fusion reactors, space reactors, and other advanced systems. As an assessment of current capability the code was applied to a number of physical problems, both conceptual and actual experiments. Results indicate that the numerical solution to the basic conservation equations is technically sound, and that generally good agreement can be obtained when modeling relevant hydrodynamic experiments. The assessment also demonstrates basic fusion system modeling capability and verifies compatibility of the code with both CDC and CRAY mainframes. Areas where improvements could be made include constitutive modeling, which describes the interfacial exchange term. 13 refs., 84 figs
ATWS thermal-hydraulic analysis for Krsko Full Scope Simulator validation
International Nuclear Information System (INIS)
Parzer, I.; Kljenak, I.
2005-01-01
The purpose of this analysis was to simulate Anticipated Transient without Scram transient for Krsko NPP. The results of these calculations were used for annual ANSI/ANS validation of reactor coolant system thermal-hydraulic response predicted by Krsko Full Scope Simulator. For the thermal-hydraulic analyses the RELAP5/MOD3.3 code and the input model for NPP Krsko, delivered by NPP Krsko, was used. In the presented paper the most severe ATWS scenario has been analyzed, starting with the loss of Main Feedwater at both steam generators. Thus, gradual loss of secondary heat sink occurred. On top of that, control rods were not supposed to scram, leaving the chain reaction to be controlled only by inherent physical properties of the fuel and moderator and eventual actions of the BOP system. The primary system response has been studied assuming AMSAC availability. (author)
Full scale mock-up tests for rod bundle thermal-hydraulics in Japan
International Nuclear Information System (INIS)
Sugawara, S.
1995-01-01
This poster describes tests aimed at development and validation of principal design methodology of rod bundle thermal-hydraulics correlations. The works are based on domestic data base using the full-scale mock-up test facilities. The scope of the tests comprises DNB heat flux, transient DNB heat flux, post DNB heat transfer, pressure drop and void distribution. The works have been performed under collaboration among electric facilities, NPP vendors, universities, governmental corporations. 1 tab., 14 figs
ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor
Energy Technology Data Exchange (ETDEWEB)
Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)
2015-08-15
Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.
Thermal hydraulic analysis of Pb-Bi cooled HYPER fuel assemblies using SLTHEN code
International Nuclear Information System (INIS)
Tak, Nam Il; Song, Tae Y.; Park, Won S.; Kim, Chang Hyun
2002-12-01
In the present work, the existing SLTHEN code, which had been originally developed for subchannel analysis of sodium cooled fast reactors, was modified and applied to the Pb-Bi cooled HYPER core which consists of 237 fuel assemblies (TRU assemblies). In the analysis of single fuel assembly having chopped cosine power profile, the validation and the assessment of usefulness of the modified SLTHEN were focused. In the quantitative comparison, the results of the modified SLTHEN agreed well with those of analytical calculations and of MATRA. For the qualitative approaches, the sensitivity calculations for intra-assembly gap flow and turbulent mixing parameter were used. The sensitivity analysis results showed that the modified SLTHEN can provide reasonable simulations of subchannel thermal hydraulics. In particular, turbulent mixing parameter which is known as the most uncertain parameter in subchannel analyses did not affect largely the maximum cladding temperature. Therefore, it can be said that the results of single assembly show the usefulness of the modified SLTHEN code for thermal hydraulic analysis and design of HYPER under the conceptual design stage. In order to assess intra-assembly heat transfer, subchannel analyses were implemented for two types of 7 assemblies; 1) artificial 7 fuel assemblies to maximize intra-assembly heat transfer, 2) central 7 fuel assemblies in the HYPER reference core. The results showed that the modified SLTHEN can reasonably simulate intra-heat transfer and the amount of intra-assembly heat transfer is not so large in HYPER conditions. Particularly, intra-heat transfer did not affect the maximum coolant and the maximum cladding temperatures which are major parameters in conceptual core designs. The capability of full core thermal hydraulic analysis was confirmed by the analysis of 45 fuel assemblies in 1/6 HYPER core at the first cycle. The SLTHEN predicted that the reference design parameters are acceptable in terms of thermal
The thermal-hydraulic for the new technologies: the micro-fluidics
International Nuclear Information System (INIS)
Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J.
2000-01-01
The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)
Power transients of Ghana research reactor-1 using PARET/ANL thermal hydraulic code
International Nuclear Information System (INIS)
Ampomah-Amoaka, E.; Akaho, E.H.K.; Anim-Sampong, S.; Nyarko, B.J.B.
2010-01-01
PARET/ANL(Version 7.3 of 2007) thermal-hydraulic code was used to perform transient analysis of the Ghana Research Reactor-1.The reactivities inserted were 2.1mk and 4mk.The peak power of 5.81kW was obtained for 2.1 mk insertion whereas the peak power for 4mk insertion of reactivity was 92.32kW.These results compare closely with experiments and theoretical studies conducted previously.
Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor
International Nuclear Information System (INIS)
Ustun, G.; Durmayaz, A.
2002-01-01
Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor
International Nuclear Information System (INIS)
Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez; Universidade Federal de Pernambuco
2017-01-01
The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly "9"9Mo. Compare to multipurpose research reactors, an AHR dedicated for "9"9Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)
Energy Technology Data Exchange (ETDEWEB)
Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez, E-mail: milianperez89@gmail.com, E-mail: dmilian@instec.cu, E-mail: lorenapilar1109@gmail.com, E-mail: cabol@ufpe.br [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear
2017-11-01
The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly {sup 99}Mo. Compare to multipurpose research reactors, an AHR dedicated for {sup 99}Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)
PLUGM: a coupled thermal-hydraulic computer model for freezing melt flow in a channel
International Nuclear Information System (INIS)
Pilch, M.
1982-01-01
PLUGM is a coupled thermal-hydraulic computer model for freezing liquid flow and plugging in a cold channel. PLUGM is being developed at Sandia National Laboratories for applications in Sandia's ex-vessel Core Retention Concept Assessment Program and in Sandia's LMFBR Transition Phase Program. The purpose of this paper is to introduce PLUGM and demonstrate how it can be used in the analysis of two of the core retention concepts under investigation at Sandia: refractory brick crucibles and particle beds
Some neutronics and thermal-hydraulics codes for reactor analysis using personal computers
International Nuclear Information System (INIS)
Woodruff, W.L.
1990-01-01
Some neutronics and thermal-hydraulics codes formerly available only for main frame computers may now be run on personal computers. Brief descriptions of the codes are provided. Running times for some of the codes are compared for an assortment of personal and main frame computers. With some limitations in detail, personal computer versions of the codes can be used to solve many problems of interest in reactor analyses at very modest costs. 11 refs., 4 tabs
Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali
2014-05-01
In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to
International Nuclear Information System (INIS)
Guelfi, A.; Boucker, M.; Mimouni, S.; Bestion, D.; Boudier, P.
2005-01-01
The NEPTUNE project aims at building a new two-phase flow thermal-hydraulics platform for nuclear reactor simulation. EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) with the co-sponsorship of IRSN (Institut de Radioprotection et Surete Nucleaire) and FRAMATOME-ANP, are jointly developing the NEPTUNE multi-scale platform that includes new physical models and numerical methods for each of the computing scales. One usually distinguishes three different scales for industrial simulations: the 'system' scale, the 'component' scale (subchannel analysis) and CFD (Computational Fluid Dynamics). In addition DNS (Direct Numerical Simulation) can provide information at a smaller scale that can be useful for the development of the averaged scales. The NEPTUNE project also includes work on software architecture and research on new numerical methods for coupling codes since both are required to improve industrial calculations. All these R and D challenges have been defined in order to meet industrial needs and the underlying stakes (mainly the competitiveness and the safety of Nuclear Power Plants). This paper focuses on three high priority needs: DNB (Departure from Nucleate Boiling) prediction, directly linked to fuel performance; PTS (Pressurized Thermal Shock), a key issue when studying the lifespan of critical components and LBLOCA (Large Break Loss of Coolant Accident), a reference accident for safety studies. For each of these industrial applications, we provide a review of the last developments within the NEPTUNE platform and we present the first results. A particular attention is also given to physical validation and the needs for further experimental data. (authors)
Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate
Energy Technology Data Exchange (ETDEWEB)
Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)
2012-01-15
The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.
Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation
Energy Technology Data Exchange (ETDEWEB)
Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate.
The analysis of thermal-hydraulic performances of nuclear ship reactor
International Nuclear Information System (INIS)
Wakabayashi, Shinshichi; Hamada, Masao
1975-01-01
Thermal-hydraulic performances in the core of nuclear ship reactor was analysed by thermal-hydraulic analyser codes, AMRTC and COBRA-11+DNBCAL. This reactor is of a pressurized water type and incorporates the steam generator within the reactor vessel with the rated power of 330 MWt, which is developed by Nuclear Ship Research Panel Seven (NSR-7) in The Shipbuilding Research Association of Japan. Fuel temperature distributions, coolant temperature distributions, void fractions in coolant and minimum burn out ratio etc. were calculated. Results are as follows; a) The maximum temperature of fuel center is 1,472 0 C that corresponds to 53% as small as the melting point (2,800 0 C). b) Subcooled boiling exists in the core and the maximum void fraction is less than 4%. c) The minimum burn out ratio is not less than the minimum allowable limit of 1.25. It was found from the results of analysis that this reactor was able to be operated wide margin with respect to thermal-hydraulic design limits at the rated power. (auth.)
Real time thermal hydraulic model for high temperature gas-cooled reactor core
International Nuclear Information System (INIS)
Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng
2013-01-01
A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)
Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation
International Nuclear Information System (INIS)
Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo
2016-01-01
Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate
An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations
International Nuclear Information System (INIS)
Strizhov, V.; Kanukova, V.; Vinogradova, T.; Askenov, E.; Nikulshin, V.
1996-09-01
This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer from melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases
Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases
Energy Technology Data Exchange (ETDEWEB)
Yoo, J; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)
TRSM-a thermal-hydraulic real-time simulation model for PWR
International Nuclear Information System (INIS)
Zhou Weichang
1997-01-01
TRSM (a Thermal-hydraulic Real-time Simulation Model) has been developed for PWR real-time simulation and best-estimate prediction of normal operating and abnormal accident conditions. It is a non-equilibrium two phase flow thermal-hydraulic model based on five basic conservation equations. A drift flux model is used to account for the unequal velocities of liquid and gaseous mixture, with or without the presence of the noncondensibles. Critical flow models are applied for break flow and valve flow calculations. A 5-regime two phase heat convection model is applied for clad-to-coolant as well as fluid-to-tubing heat transfer. A rigorous reactor coolant pump model is used to calculate the pressure drop and rise for the suction and discharge ends with complete pump characteristics curves included. The TRSM model has been adapted in the full-scale training simulator of Qinshan Nuclear Power Plant 300 MW unit to simulate the thermal-hydraulic performance of the NSSS. The simulation results of a cold leg LOCA and a steam generator tube rupture (SGTR) accident are presented
Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)
International Nuclear Information System (INIS)
Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.
1994-08-01
We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)
Energy Technology Data Exchange (ETDEWEB)
Kang, Kyoungho; Seokcho; Park, Hyunsik; Choi, Namhyun; Park, Yusun; Kim, Jongrok; Bae, Byounguhn; Kim, Yeonsik; Choi, Kiyong; Song, Chulhwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
In this study, thermal-hydraulic integral effect test with the ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation) was performed for simulating a failure of CEDM penetration nozzle. The main objectives of the present test were not only to provide physical insight into the system response during a failure of CEDM penetration nozzle but also to establish an integral effect test database for the validation of the safety analysis codes. Furthermore, present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3. Thermal-hydraulic integral effect test with the ATLAS was performed for simulating a failure of CEDM penetration nozzle. Failure of two penetration nozzles of the CEDM in the APR1400 was simulated. Initial and boundary conditions were determined with respect to the reference conditions of the APR1400. However, with an aim of corresponding to the YGN-3 situation, the safety injection water was supplied via CLI mode. Compared to the cold leg break SBLOCA, the consequences of the event were milder in terms of a loop seal clearance, break flow rate, collapsed water level, and PCT. This could be mainly attributed to the small break flow rate in case of the failure in the RPV upper head. Present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3.
Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures
Directory of Open Access Journals (Sweden)
Alessandro Petruzzi
2008-01-01
Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.
Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor
International Nuclear Information System (INIS)
Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.
1994-05-01
The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan
Effect of the inlet throttling on the thermal-hydraulic instability of the natural circulation BWR
International Nuclear Information System (INIS)
Furuya, Masahiro; Inada, Fumio; Yoneda, Kimitoshi
1997-01-01
Although it is well-established that inlet restriction has a stabilizing for forced circulation BWR, the effect of inlet on the thermal-hydraulic stability of natural circulation BWR remains unknown since increasing inlet restriction affect thermal-hydraulic stability due to reduction of the recirculation flow rate. Therefore experiments have been conducted to investigate the effect of inlet restriction on the thermal-hydraulic stability. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation was described as a function of heat flux and inlet subcooling independent of inlet restriction. Stability maps in reference to the channel inlet subcooling, heat flux were presented for various inlet restriction which were carried out by an analysis based on the homogeneous flow various using this function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (author)
Methodology for thermal-hydraulics analysis of pool type MTR fuel research reactors
International Nuclear Information System (INIS)
Umbehaun, Pedro Ernesto
2000-01-01
This work presents a methodology developed for thermal-hydraulic analysis of pool type MTR fuel research reactors. For this methodology a computational program, FLOW, and a model, MTRCR-IEAR1 were developed. FLOW calculates the cooling flow distribution in the fuel elements, control elements, irradiators, and through the channels formed among the fuel elements and among the irradiators and reflectors. This computer program was validated against experimental data for the IEA-R1 research reactor core at IPEN-CNEN/SP. MTRCR-IEAR1 is a model based on the commercial program Engineering Equation Solver (EES). Besides the thermal-hydraulic analyses of the core in steady state accomplished by traditional computational programs like COBRA-3C/RERTR and PARET, this model allows to analyze parallel channels with different cooling flow and/or geometry. Uncertainty factors of the variables from neutronic and thermalhydraulic calculation and also from the fabrication of the fuel element are introduced in the model. For steady state analyses MTRCR-IEAR1 showed good agreement with the results of COBRA-3C/RERTR and PARET. The developed methodology was used for the calculation of the cooling flow distribution and the thermal-hydraulic analysis of a typical configuration of the IEA-R1 research reactor core. (author)
Validation of thermal hydraulic computer codes for advanced light water reactor
International Nuclear Information System (INIS)
Macek, J.
2001-01-01
The Czech Republic operates 4 WWER-440 units, two WWER-1000 units are being finalised (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppressure system are modelled with RALOC and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems. An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. The paper provides a concise information on these activities of the NRI and its Thermal-hydraulics Department. A detailed example of the system code validation and the consequent utilisation of the results for a real NPP purposes is included. (author)
Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases
Energy Technology Data Exchange (ETDEWEB)
Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Rohatgi, Upendra S.
2018-07-22
Nuclear reactor codes require validation with appropriate data representing the plant for specific scenarios. The thermal-hydraulic data is scattered in different locations and in different formats. Some of the data is in danger of being lost. A relational database is being developed to organize the international thermal hydraulic test data for various reactor concepts and different scenarios. At the reactor system level, that data is organized to include separate effect tests and integral effect tests for specific scenarios and corresponding phenomena. The database relies on the phenomena identification sections of expert developed PIRTs. The database will provide a summary of appropriate data, review of facility information, test description, instrumentation, references for the experimental data and some examples of application of the data for validation. The current database platform includes scenarios for PWR, BWR, VVER, and specific benchmarks for CFD modelling data and is to be expanded to include references for molten salt reactors. There are place holders for high temperature gas cooled reactors, CANDU and liquid metal reactors. This relational database is called The International Experimental Thermal Hydraulic Systems (TIETHYS) database and currently resides at Nuclear Energy Agency (NEA) of the OECD and is freely open to public access. Going forward the database will be extended to include additional links and data as they become available. https://www.oecd-nea.org/tiethysweb/
Thermal-hydraulic and neutronic considerations for designing a lithium-cooled tokamak blanket
International Nuclear Information System (INIS)
Chao, J.; Mikic, B.; Todreas, N.
1978-12-01
A methodology for the design of lithium cooled blankets is developed. The thermal-hydraulics, neutronics and interactions between them are extensively investigated. In thermal hydraulics, two models illustrate the methodology used to obtain the acceptable ranges for a set of design parameters. The methodology can be used to identify the limiting constraints for a particular design. A complete neutronic scheme is set up for the calculations of the volumetric heating rate as a function of the distance from the first wall, the breeding ratio as a function of the amount of structural material in the blanket, and the radiation damage in terms of atom displacements and gas production rate. Different values of the volume percent of Type-316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material which satisfies various thermal-hydraulic requirements. The role that the radiation damage plays in the overall design methodology is described. The product of the first wall lifetime and neutron loading is limited by the radiation damage which degrades the mechanical properties of the material
International Nuclear Information System (INIS)
Cha, J. E.; Kim, S. O.; Choi, H. L.; Kim, H. B.; Kim, H. W.; Lee, S. H.
2012-01-01
In this report, the thermal hydraulic and flow visualization experiment was described for the KALIMER-600 water-scaled model. In order to investigate a thermal hydraulic characteristics for the SFR KALIMER-600, which has been conceptually designed in the KAERI, a water-scaled 1/10 reactor vessel model was designed and prepared through the scaling analysis during three-years research. In this research, SFR Photos system, which has inherently very complicated the internal structures, was fabricated with a transparent vessel. It was shown that a serious of thermal hydraulic test was conducted within a short period if modeled with water than sodium. Natural circulation test was successfully performed with the modeled heater assembly and heat exchanger system coupled with cooling system. The water-scaled RSV experimental facility made in this research could be used to study the USA development for the future SFR system and utilized to analyze the flow characteristics before changing a main internal part of Photos system. It could also be used to test a pool-inspection study and a sensor selection study before large scale sodium experiment. The PCV system prepared in this research could be utilized to test other TSH experiment and temperature field measurement
300 kWt core conceptual model thermal/hydraulic characteristics
International Nuclear Information System (INIS)
Moody, E.
1971-01-01
The 300 kW(t), 199 element NASA-Lewis/AEC core conceptual model, has been analyzed to determine it's thermal-hydraulic characteristics using the GEOM-3 code. Stack-ups of tolerances and fuel rod asymmetry patterns were used to ascertain cross element Δ T's. Both zoned and uniform spacing were analyzed with a somewhat lower fuel temperature and cross element ΔT found for zoned spacing. With the models considered, the core design appears adequate to limit thermal gradients to approximately 32 0 F. Bypass flow should be controlled to prevent excessive edge element ΔT's. 11 references. (U.S.)
International Nuclear Information System (INIS)
Chae, Hee Taek; Seo, Chul Gyo; Park, Jong Hark; Park, Cheol; Vinh, Le Vinh; Nghiem, Huynh Ton; Dang, Vo Doan Hai
2007-08-01
The conceptual thermal hydraulics design analyses for the 20 MW reference AHR core have been jointly performed by the KAERI and DNRI(VAEC). The preliminary core thermal hydraulic characteristics and safety margins for the AHR core were studied for various core flow rates, fuel assembly powers and core inlet temperatures. Statistical method was applied to the thermal hydraulic design of the reactor core. The MATRA h subchannel code has been applied to evaluate the thermal hydraulic performances of the AHR and the resulting thermal margins of the core under the forced convection cooling mode during a nominal power operation and the natural circulation mode during a reactor shutdown condition. In addition, typical accident analyses were carried out for a loss of flow accident by a primary pump seizure and a reactivity induced accident by a CAR rod withdrawal during a normal full power operation. The normal full power operation of the AHR was ensured with a sufficient safety margin for the onset of nucleate boiling phenomena. The AHR also had a sufficient natural circulation cooling capability to cool the core without the onset of nucleate boiling in the channel after a normal reactor shutdown and the anticipated transients. It was confirmed by the typical accident analyses that the AHR core was sufficiently protected from the loss of flow by the primary cooling pump seizure and the overpower transients by the CAR withdrawal from the MCHFR and fuel temperature points of view
Energy Technology Data Exchange (ETDEWEB)
Saghafi, Mahdi [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Ghofrani, Mohammad Bagher, E-mail: ghofrani@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); D’Auria, Francesco [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, San Piero a Grado, Pisa (Italy)
2016-07-15
Highlights: • A thermal-hydraulic nodalization for PSB-VVER test facility has been developed. • Station blackout accident is modeled with the developed nodalization in MELCOR code. • The developed nodalization is qualified at both steady state and transient levels. • MELCOR predictions are qualitatively and quantitatively in acceptable range. • Fast Fourier Transform Base Method is used to quantify accuracy of code predictions. - Abstract: This paper deals with the development of a qualified thermal-hydraulic nodalization for modeling Station Black-Out (SBO) accident in PSB-VVER Integral Test Facility (ITF). This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant. In this regard, a nodalization has been developed for thermal-hydraulic modeling of the PSB-VVER ITF by MELCOR integrated code. The nodalization is qualitatively and quantitatively qualified at both steady-state and transient levels. The accuracy of the MELCOR predictions is quantified in the transient level using the Fast Fourier Transform Base Method (FFTBM). FFTBM provides an integral representation for quantification of the code accuracy in the frequency domain. It was observed that MELCOR predictions are qualitatively and quantitatively in the acceptable range. In addition, the influence of different nodalizations on MELCOR predictions was evaluated and quantified using FFTBM by developing 8 sensitivity cases with different numbers of control volumes and heat structures in the core region and steam generator U-tubes. The most appropriate case, which provided results with minimum deviations from the experimental data, was then considered as the qualified nodalization for analysis of SBO accident in the PSB-VVER ITF. This qualified nodalization can be used for modeling of VVER-1000 nuclear power plants when performing SBO accident analysis by MELCOR code.
An improved thermal-hydraulic modeling of the Jules Horowitz Reactor using the CATHARE2 system code
Energy Technology Data Exchange (ETDEWEB)
Pegonen, R., E-mail: pegonen@kth.se [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Bourdon, S.; Gonnier, C. [CEA, DEN, DER, SRJH, CEA Cadarache, 13108 Saint-Paul-lez-Durance Cedex (France); Anglart, H. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)
2017-01-15
Highlights: • An improved thermal-hydraulic modeling of the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during loss of flow accident. • The heat exchanger approach gives more realistic and less conservative results. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support current and future nuclear reactor designs. The reactor is under construction at the CEA Cadarache research center in southern France and is expected to achieve first criticality at the end of this decade. This paper presents an improved thermal-hydraulic modeling of the reactor using solely CATHARE2 system code. Up to now, the CATHARE2 code was simulating the full reactor with a simplified approach for the core and the boundary conditions were transferred into the three-dimensional FLICA4 core simulation. A new more realistic methodology is utilized to analyze the thermal-hydraulic simulation of the reactor during a loss of flow accident.
International Nuclear Information System (INIS)
Baek, Won Pil; Song, Chul Hwa; Jeong, Jae Jun; Choi, Ki Yong; Kang, Kyoung Ho
2004-07-01
1. Scope and Objectives of the Project - Successful holding of the NURETH-10 - Analysis of the international trends in technology development and applications for nuclear thermal-hydraulics - Establishment of the international cooperative network and cooperative research strategy between Korea and USA on nuclear thermal-hydraulics 2. Research Results - Successful holding of the NURETH-10 - Analysis of the international trends in technology development and applications for nuclear thermal-hydraulics: - Establishment of international cooperative network and cooperative research strategy focused between Korea and USA on nuclear thermal-hydraulics: 3. Application Plan of the Research Results - Utilization as the basic data/information in establishing the domestic R and D directions and the international cooperative research strategy, - Application of the relevant experiences and data bases of NURETH-10 for holding future international conferences, - Promote more effective and productive research cooperation between Korea and USA
Directory of Open Access Journals (Sweden)
Borsuk Grzegorz
2016-03-01
Full Text Available Clinker burning process has a decisive influence on energy consumption and the cost of cement production. A new problem is to use the process of decarbonization of alternative fuels from waste. These issues are particularly important in the introduction of a two-stage combustion of fuel in a rotary kiln without the typical reactor-decarbonizator. This work presents results of numerical studies on thermal-hydraulic phenomena in the riser chamber, which will be designed to burn fuel in the system where combustion air is supplied separately from the clinker cooler. The mathematical model is based on a combination of two methods of motion description: Euler description for the gas phase and Lagrange description for particles. Heat transfer between particles of raw material and gas was added to the numerical calculations. The main aim of the research was finding the correct fractional distribution of particles. For assumed particle distribution on the first stage of work, authors noted that all particles were carried away by the upper outlet to the preheater tower, what is not corresponding to the results of experimental studies. The obtained results of calculations can be the basis for further optimization of the design and operating conditions in the riser chamber with the implementation of the system.
International Nuclear Information System (INIS)
Bilbao y Leon, S.; Aksan, N.
2010-01-01
Ensuring the exchange of information and fostering the collaboration among Member States on the development of technology advances for future nuclear power plants are among the key roles of the IAEA. There is high interest internationally in both developing and industrialized countries in the design of innovative super-critical water-cooled reactors (SCWRs). This interest arises from the high thermal efficiencies (44-45%) and improved economic competitiveness promised by for this concept, utilizing and building on the recent developments of highly efficient fossil power plants. The SCWR is one of the six concepts included in the Generation-IV International Forum (GIF). Following the advice of the IAEA Nuclear Energy Dept.'s Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA is working on a Coordinated Research Project (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The second Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna (Austria)) in August 2009. This paper summarizes the current status of the CRP, as well as the major achievements to date. (authors)
Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core
Energy Technology Data Exchange (ETDEWEB)
Yamaji, Bogdan; Aszodi, Attila [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques
2017-09-15
In the paper measurement results of experimental modelling of a molten salt fast reactor concept will be presented and compared with three-dimensional computational fluid dynamics (CFD) simulation results. Purpose of this article is twofold, on one hand to introduce a geometry modification in order to avoid the disadvantages of the original geometry and discuss new measurement results. On the other hand to present an analysis in order to suggest a method of proper numerical modelling of the problem based on the comparison of calculation results and measurement data for the new, modified geometry. The investigated concept has a homogeneous cylindrical core without any internal structures. Previous measurements on the scaled and segmented plexiglas model of the concept core and simulation results have shown that this core geometry could be optimized for better thermal-hydraulics characteristics. In case of the original geometry strong undesired flow separation could develop, that could negatively affect the characteristics of the core from neutronics point of view as well. An internal flow distributor plate was designed and installed with the purpose of optimizing the flow field in the core by enhancing its uniformity. Particle image velocimetry (PIV) measurement results of the modified experimental model will be presented and compared to numerical simulation results with the purpose of CFD model validation.
Validation and applicability of the 3D core kinetics and thermal hydraulics coupled code SPARKLE
International Nuclear Information System (INIS)
Miyata, Manabu; Maruyama, Manabu; Ogawa, Junto; Otake, Yukihiko; Miyake, Shuhei; Tabuse, Shigehiko; Tanaka, Hirohisa
2009-01-01
The SPARKLE code is a coupled code system based on three individual codes whose physical models have already been verified and validated. Mitsubishi Heavy Industries (MHI) confirmed the coupling calculation, including data transfer and the total reactor coolant system (RCS) behavior of the SPARKLE code. The confirmation uses the OECD/NEA MSLB benchmark problem, which is based on Three Mile Island Unit 1 (TMI-1) nuclear power plant data. This benchmark problem has been used to verify coupled codes developed and used by many organizations. Objectives of the benchmark program are as follows. Phase 1 is to compare the results of the system transient code using point kinetics. Phase 2 is to compare the results of the coupled three-dimensional (3D) core kinetics code and 3D core thermal-hydraulics (T/H) code, and Phase 3 is to compare the results of the combined coupled system transient code, 3D core kinetics code, and 3D core T/H code as a total validation of the coupled calculation. The calculation results of the SPARKLE code indicate good agreement with other benchmark participants' results. Therefore, the SPARKLE code is validated through these benchmark problems. In anticipation of applying the SPARKLE code to licensing analyses, MHI and Japanese PWR utilities have established a safety analysis method regarding the calculation conditions such as power distributions, reactivity coefficients, and event-specific features. (author)
Summary of papers on current and anticipated uses of thermal-hydraulic codes
Energy Technology Data Exchange (ETDEWEB)
Caruso, R.
1997-07-01
The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especially faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).
International Nuclear Information System (INIS)
Batta, A.; Class, A.
2015-01-01
The first advanced design of accelerator-driven systems (ADS) is currently being built in SCK-CEN (Mol, Belgium): MYRRHA (Multi-purpose hybrid research reactor for high-tech applications). The experiment investigates the free surface design of the MYRRHA target. The free surface lead-bismuth eutectic (LBE) liquid metal experiment is a full-scale model of the concentric MYRRHA target. The design of the target is combined with CFD simulations using a volume of fluid method accounting for mass transfer across the free surface. The model used has been validated with water experimental results. The design of the target enables a high fluid velocity and a stable surface at the beam entry. In the current work, we present numerical results of Star- CD simulations employing a high-resolution interface-capturing scheme in conjunction with the cavitation model for the nominal operation conditions. Thermal hydraulic of the target is considered for the nominal flow rate and nominal heat load. Results show that the target has a very stable free surface configuration for the considered flow rate and heat load
Thyc, a 3D thermal-hydraulic code for rod bundles. Recent developments and validation tests
International Nuclear Information System (INIS)
Caremoli, C.; Rascle, P.; Aubry, S.; Olive, J.
1993-09-01
PWR or LMFBR cores or fuel assemblies, PWR steam generators, condensers, tubular heat exchangers, are basic components of a nuclear power plant involving two-phase flows in tube or rod bundles. A deep knowledge of the detailed flow patterns on the shell side is necessary to evaluate DNB margins in reactor cores, singularity effects (grids, wire spacers, support plates, baffles), corrosion on steam generator tube sheet, bypass effects and vibration risks. For that purpose, Electricite de France has developed, since 1986, a general purpose code named THYC (Thermal HYdraulic Code) designed to study three-dimensional single and two phase flows in rod or tube bundles (pressurized water reactor cores, steam generators, condensers, heat exchangers). It considers the three-dimensional domain to contain two kinds of components: fluid and solids. The THYC model is obtained by space-time averaging of the instantaneous equations (mass, momentum and energy) of each phase over control volumes including fluid and solids. This paper briefly presents the physical model and the numerical method used in THYC. Then, validation tests (comparison with experiments) and applications (coupling with three-dimensional neutronics code and DNB predictions) are presented. They emphasize the last developments and new capabilities of the code. (authors). 10 figs., 3 tabs., 21 refs
Parallel Computing Characteristics of Two-Phase Thermal-Hydraulics code, CUPID
International Nuclear Information System (INIS)
Lee, Jae Ryong; Yoon, Han Young
2013-01-01
Parallelized CUPID code has proved to be able to reproduce multi-dimensional thermal hydraulic analysis by validating with various conceptual problems and experimental data. In this paper, the characteristics of the parallelized CUPID code were investigated. Both single- and two phase simulation are taken into account. Since the scalability of a parallel simulation is known to be better for fine mesh system, two types of mesh system are considered. In addition, the dependency of the preconditioner for matrix solver was also compared. The scalability for the single-phase flow is better than that for two-phase flow due to the less numbers of iterations for solving pressure matrix. The CUPID code was investigated the parallel performance in terms of scalability. The CUPID code was parallelized with domain decomposition method. The MPI library was adopted to communicate the information at the interface cells. As increasing the number of mesh, the scalability is improved. For a given mesh, single-phase flow simulation with diagonal preconditioner shows the best speedup. However, for the two-phase flow simulation, the ILU preconditioner is recommended since it reduces the overall simulation time
International Nuclear Information System (INIS)
Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin
2011-01-01
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)
Summary of papers on current and anticipated uses of thermal-hydraulic codes
International Nuclear Information System (INIS)
Caruso, R.
1997-01-01
The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especially faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the 'user effect' is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices)
Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.
1997-01-01
This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.