WorldWideScience

Sample records for thermal gravimetric analysis

  1. Analysis of the thermal profiles and the charcoal gravimetric yield in three variations of rectangular brick

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rogerio Lima Mota de; Alves Junior, Edson; Mulina, Bruno Henrique Oliveira; Borges, Valerio Luiz; Carvalho, Solidonio Rodrigues de [Federal University of Uberlandia - UFU, MG (Brazil). School of Mechanical Engineering - FEMEC], e-mails: rogerio@mecanica.ufu.br, edson@mec.ufu.br, vlborges@mecanica.ufu.br, srcarvalho@mecanica.ufu.br

    2010-07-01

    Charcoal assumes a major role in Brazilian economic scenario. The procedure for obtaining charcoal consists in carbonization of wood at certain specific temperatures in kilns. This ancient process has a few joined technologies and the kilns for such practice do not have any control instruments, in their great majority, becoming dependent on the ability of its operators. However, in recent decades several studies have been developed to improve the practice as well as the equipment that involve and control the stages of charcoal production. In this sense, this work proposes the analysis of the thermal profiles and the gravimetric yield in three variations of a rectangular brick kiln called RAC220: traditional (without any type of instrumentation), instrumented with thermal sensors (RTD PT100) and adapted with gasifier. The goal is to correlate temperature, gravimetric yield and quality of the produced charcoal. Immediate analyses were performed to determine the amount of fixed carbon, volatile gases and ashes contents in charcoal. Through such measurement procedures, together with statistical analysis, the aim is to identify an important tool to reduce the time of charcoal production and also contributes to minimize losses and to increase the thermal efficiency of the production process. (author)

  2. Large-Scale Production of V6O13 Cathode Materials Assisted by Thermal Gravimetric Analysis-Infrared Spectroscopy Technology.

    Science.gov (United States)

    Liang, Han-Pu; Du, Jian; Jones, Timothy G J; Lawrence, Nathan S; Meredith, Andrew W

    2016-10-05

    The kilogram-scale fabrication of V6O13 cathode materials has been notably assisted by in situ thermal gravimetric analysis (TGA)-infrared spectroscopy (IR) technology. This technology successfully identified a residue of ammonium metavanadate in commercial V6O13, which is consistent with the X-ray photoelectron spectroscopy result. Samples of V6O13 materials have been fabricated and characterized by TGA-IR, scanning electron microscopy, and X-ray diffraction. The initial testing results at 125 °C have shown that test cells containing the sample prepared at 500 °C show up to a 10% increase in the initial specific capacity in comparison with commercial V6O13.

  3. Tablet Analysis Using Gravimetric Dilutions

    Science.gov (United States)

    Simonson, Larry A.

    2001-10-01

    This experiment introduces the concept of gravimetric dilutions in the context of tablet analysis. Caffeine tablets are analyzed by absorbance at 274 nm with reference to a standard calibration graph and tested for compliance with the USP criterion. All samples and standards are prepared using gravimetric dilutions without reference to volume or density. This experiment is appropriate for high school and college freshman chemistry courses and may be useful at higher levels. It is only necessary that students have had exposure to Beer's law.

  4. Decomposition of Copper (II) Sulfate Pentahydrate: A Sequential Gravimetric Analysis.

    Science.gov (United States)

    Harris, Arlo D.; Kalbus, Lee H.

    1979-01-01

    Describes an improved experiment of the thermal dehydration of copper (II) sulfate pentahydrate. The improvements described here are control of the temperature environment and a quantitative study of the decomposition reaction to a thermally stable oxide. Data will suffice to show sequential gravimetric analysis. (Author/SA)

  5. 40 CFR 1065.190 - PM-stabilization and weighing environments for gravimetric analysis.

    Science.gov (United States)

    2010-07-01

    ... environments for gravimetric analysis. 1065.190 Section 1065.190 Protection of Environment ENVIRONMENTAL... § 1065.190 PM-stabilization and weighing environments for gravimetric analysis. (a) This section describes the two environments required to stabilize and weigh PM for gravimetric analysis: the PM...

  6. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    Science.gov (United States)

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  7. Gravimetric analysis and differential scanning calorimetric studies on glycerin-induced skin hydration.

    Science.gov (United States)

    Lee, Ae-Ri Cho; Moon, Hee Kyung

    2007-11-01

    A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).

  8. Zero drift and solid Earth tide extracted from relative gravimetric data with principal component analysis

    Directory of Open Access Journals (Sweden)

    Hongjuan Yu

    2015-03-01

    Full Text Available Zero drift and solid Earth tide corrections to static relative gravimetric data cannot be ignored. In this paper, a new principal component analysis (PCA algorithm is presented to extract the zero drift and the solid Earth tide, as signals, from static relative gravimetric data assuming that the components contained in the relative gravimetric data are uncorrelated. Static relative gravity observations from Aug. 15 to Aug. 23, 2014 are used as statistical variables to separate the signal and noise with PCA to obtain desired signals. The results of the linear drift extracted by PCA are consistent with those calculated by the least squares linear fitting, and the differences only reach to 10−2 μGal/day order of magnitude. Furthermore, PCA is used to estimate the solid Earth tide from the relative gravimetric data corrected by the zero drift. The statistical results are consistent with the results derived from the solid Earth tide correction provided by the internal software of the CG-5 gravimeter (SCINTREX Limited Ontario Canada. The statistical results of the differences between the two methods are both less than 8 μGal, and the RMSs for 9 days are all less than 5 μGal.

  9. Analysis of Gravimetric and GPS/BM derived Geoids for Saudi Arabia

    Science.gov (United States)

    Alothman, Abdulaziz

    Historical gravity observations have been utilized to compute the gravimetric geoid for the kingdom of Saudi Arabia. Using the "remove and restore" techniques, the global geoid model (EGM2008) heights and free air anomaly have been computed using Moledensky formula. The gravimetric geoid model covers about 70 percent of the kingdom. Secondly, GNSS (GPS) space based observations along with the Bench Mark observations were also used to compute the geoid. Determination of GNSS/Benchmark geoid based on the vertical reference network of Saudi Arabia, which was built in early 1970's as first order vertical control network by spirit leveling based on tidal gauges along the Arabian Gulf and Red Sea. More than 5000 GPS/BM observations using the remove and restore techniques. The trend correction was applied using the least square method, and the high was implemented for high frequency correction. Analysis of the two geoids reveals some geoid biases, which is possibly due to the systematic errors in the gravity data. These biases lead to an error of few meters in the gravimetric geoid. The BM/GPS geoid covers more area of the kingdom with a standard deviation of about 20 cm and maximum error of 10 cm. the corrections to the global geoid, long wavelength and high frequency collocation signals, is about 2.5 m northwest region.

  10. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis.

    Science.gov (United States)

    Agrawal, Ankit; Chakraborty, Saikat

    2013-01-01

    This work uses thermo-gravimetric, differential thermo-gravimetric and differential thermal analyses to evaluate the kinetics of pyrolysis (in inert/N(2) atmosphere) and (oxidative) combustion of microalgae Chlorella vulgaris by heating from 50 to 800 °C at heating rates of 5-40 °C/min. This study shows that combustion produces higher biomass conversion than pyrolysis, and that three stages of decomposition occur in both cases, of which, the second one--consisting of two temperature zones--is the main stage of devolatization. Proteins and carbohydrates are decomposed in the first of the two zones at activation energies of 51 and 45 kJ/mol for pyrolysis and combustion, respectively, while lipids are decomposed in its second zone at higher activation energies of 64 and 63 kJ/mol, respectively. The kinetic expressions of the reaction rates in the two zones for pyrolysis and combustion have been obtained and it has been shown that increased heating rates result in faster and higher conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules.

    Science.gov (United States)

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H Amy; Ashley, Kevin

    2014-10-01

    An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 - 4 mg of National Institute of Standards and Technology Standard Reference Material ® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were housed within plastic closed-face cassette samplers (CFCs). A method detection limit (MDL) of 0,075 mg per sample was estimated. Precision S r at 0,5 - 4 mg per sample was 0,031 and the estimated bias was 0,058. Weight stability over 28 days was verified for both blanks and spiked capsules. Independent laboratory testing on blanks and field samples verified long-term weight stability as well as sampling and analysis precision and bias estimates. An overall precision estimate Ŝ rt of 0,059 was obtained. An accuracy measure of ±15,5% was found for the gravimetric method using PVC internal capsules.

  12. Determination of Crude Fat in Food Products by Supercritical Fluid Extraction and Gravimetric Analysis

    Science.gov (United States)

    Snow, Nicholas H.; Dunn, Maureen; Patel, Sohita

    1997-09-01

    The use of supercritical fluid extraction (SFE), a recently developed analytical extraction method, in the undergraduate instrumental analysis laboratory is demonstrated. Specifically, the extraction and gravimetric analysis of the fats from a common commercial confection was performed by several groups of undergraduates, and the extraction recoveries were evaluated. The percentage of fat by weight in the candy bar sample was determined to be 21 +/- 2 %, a value found to be in agreement with the product labeling. Under the extraction conditions used, complete extraction required 400-700 mL of supercritical carbon dioxide, applied to a 1.0 g sample of candy in several extraction steps. Data relating extraction recovery to the volume of carbon dioxide used for extraction is shown. SFE is shown to be a versatile addition to the undergraduate instrumental analysis laboratory, requiring a minimum of training and supervision. Finally, SFE can be extended to myriad physical and analytical measurements in the undergraduate laboratories. Examples derived from the current analytical literature are proposed.

  13. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    Science.gov (United States)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International

  14. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  15. The gravimetric geodesy investigation

    Science.gov (United States)

    Siry, J. W.

    1971-01-01

    The Gravimetric Geodesy Investigation which will utilize altimeter and satellite-to-satellite tracking data from GEOS-C, ATS-F, and other spacecraft as appropriate to improve our knowledge of the earth's gravitational field is discussed. This investigation is interrelated with the study of oceanographic phenomena such as those associated with tides and currents, hence the latter are considered together with gravitational effects in the analysis of the data. The oceanographic effects, each of the order of a meter or two in amplitude and with still smaller uncertainties does not seriously hamper the altimeter gravimetric studies at the five meter level. Laser and satellite-to-satellite tracking data, when combined with the altimeter results, should provide the basis for such studies over wide areas of the ocean surface. Laser and conventional geodetic tracking data from ISAGEX and succeeding campaigns will provide a valuable framework for these analyses.

  16. Spectrofluorometric and thermal gravimetric study on binding interaction of thiabendazole with hemoglobin on epoxy-functionalized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com; Ozmen, Mustafa

    2015-09-01

    The interaction of thiabendazole (Tbz) with hemoglobin (Hb) on epoxy-functionalized iron oxide nanoparticles was presented in this study. The binding capacity of Tbz was determined by measuring at an excitation wavelength of 299 nm using fluorescence spectroscopy. The thermodynamic parameters of the Hb–Tbz interaction were calculated from Stern–Volmer and van't Hoff equations. The values of enthalpy change, ∆H, and entropy change, ∆S, were found to be 0.20 kJ mol{sup −1} and 0.70 J mol{sup −1} K{sup −1}, respectively, which indicates that the hydrophilic interaction plays a main role in the binding process. The interaction ability was confirmed by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Also, the thermal behavior of the Hb–Tbz interaction on functionalized iron oxide nanoparticles was studied by using the thermogravimetric analysis (TGA) technique in the temperature range of 25–950 °C, and then the kinetic parameters for the thermal decomposition were determined using the Horowitz–Metzger method. - Highlights: • Hb was immobilized by covalent attachment on GPTS–SPIONs. • Interaction of Tbz with Hb–GPTS–SPIONs was studied. • Thermodynamic parameters for interaction were calculated. • Hydrophilic interaction plays a main role in the binding process.

  17. Spectrofluorometric and thermal gravimetric study on binding interaction of thiabendazole with hemoglobin on epoxy-functionalized magnetic nanoparticles.

    Science.gov (United States)

    Maltas, Esra; Ozmen, Mustafa

    2015-09-01

    The interaction of thiabendazole (Tbz) with hemoglobin (Hb) on epoxy-functionalized iron oxide nanoparticles was presented in this study. The binding capacity of Tbz was determined by measuring at an excitation wavelength of 299 nm using fluorescence spectroscopy. The thermodynamic parameters of the Hb-Tbz interaction were calculated from Stern-Volmer and van't Hoff equations. The values of enthalpy change, ∆H, and entropy change, ∆S, were found to be 0.20 kJ mol(-1) and 0.70 J mol(-1) K(-1), respectively, which indicates that the hydrophilic interaction plays a main role in the binding process. The interaction ability was confirmed by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Also, the thermal behavior of the Hb-Tbz interaction on functionalized iron oxide nanoparticles was studied by using the thermogravimetric analysis (TGA) technique in the temperature range of 25-950 °C, and then the kinetic parameters for the thermal decomposition were determined using the Horowitz-Metzger method. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Elemental carbon, organic carbon, and dust concentrations in snow measured with thermal optical and gravimetric methods: Variations during the 2007-2013 winters at Sapporo, Japan

    Science.gov (United States)

    Kuchiki, Katsuyuki; Aoki, Teruo; Niwano, Masashi; Matoba, Sumito; Kodama, Yuji; Adachi, Kouji

    2015-01-01

    mass concentrations of light-absorbing snow impurities at Sapporo, Japan, were measured during six winters from 2007 to 2013. Elemental carbon (EC) and organic carbon (OC) concentrations were measured with the thermal optical method, and dust concentration was determined by filter gravimetric measurement. The measurement results using the different filters were compared to assess the filtration efficiency. Adding NH4H2PO4 coagulant to melted snow samples improved the collection efficiency for EC particles by a factor of 1.45. The mass concentrations of EC, OC, and dust in the top 2 cm layer ranged in 0.007-2.8, 0.01-13, and 0.14-260 ppmw, respectively, during the six winters. The mass concentrations and their short-term variations were larger in the surface than in the subsurface. The snow impurity concentrations varied seasonally; that is, they remained relatively low during the accumulation season and gradually increased during the melting season. Although the surface snow impurities showed no discernible trend over the six winters, they varied from year to year, with a negative correlation between the snow impurity concentrations and the amount of snowfall. The surface snow impurities generally increased with the number of days elapsed since snowfall and showed a different rate for EC (1.44), OC (9.96), and dust (6.81). The possible processes causing an increase in surface snow impurities were dry deposition of atmospheric aerosols, melting of surface snow, and sublimation/evaporation of surface snow.

  19. A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate

    Directory of Open Access Journals (Sweden)

    Mario E. Gimenez

    2009-01-01

    Full Text Available A gravimetric study was carried out in a region of the Central Andean Range between 28∘ and 32∘ south latitudes and from 72∘ and 66∘ west longitudes. The seismological and gravimetrical Moho models were compared in a sector which coincides with the seismological stations of the CHARGE project. The comparison reveals discrepancies between the gravity Moho depths and those obtained from seismological investigations (CHARGE project, the latter giving deeper values than those resulting from the gravimetric inversion. These discrepancies are attenuated when the positive gravimetric effect of the Nazca plate is considered. Nonetheless, a small residuum of about 5 km remains beneath the Cuyania terrane region, to the east of the main Andean chain. This residuum could be gravimetrically justified if the existence of a high density or eclogitized portion of the lower crust is considered. This result differed from the interpretations from Project “CHARGE” which revealed that the entire inferior crust extending from the Precordillera to the occidental “Sierras Pampeanas” could be “eclogitized”. In this same sector, we calculated the effective elastic thickness (Te of the crust. These results indicated an anomalous value of Te = 30 km below the Cuyania terrane. This is further conclusive evidence of the fact that the Cuyania terrane is allochthonous, for which also geological evidences exist.

  20. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis.

    Science.gov (United States)

    Cheng, Tao; Rivard, Benoit; Sánchez-Azofeifa, Arturo G; Féret, Jean-Baptiste; Jacquemoud, Stephane; Ustin, Susan L

    2012-08-15

    Leaf water content is an important variable for understanding plant physiological properties. This study evaluates a spectral analysis approach, continuous wavelet analysis (CWA), for the spectroscopic estimation of leaf gravimetric water content (GWC, %) and determines robust spectral indicators of GWC across a wide range of plant species from different ecosystems. CWA is both applied to the Leaf Optical Properties Experiment (LOPEX) data set and a synthetic data set consisting of leaf reflectance spectra simulated using the leaf optical properties spectra (PROSPECT) model. The results for the two data sets, including wavelet feature selection and GWC prediction derived using those features, are compared to the results obtained from a previous study for leaf samples collected in the Republic of Panamá (PANAMA), to assess the predictive capabilities and robustness of CWA across species. Furthermore, predictive models of GWC using wavelet features derived from PROSPECT simulations are examined to assess their applicability to measured data. The two measured data sets (LOPEX and PANAMA) reveal five common wavelet feature regions that correlate well with leaf GWC. All three data sets display common wavelet features in three wavelength regions that span 1732-1736 nm at scale 4, 1874-1878 nm at scale 6, and 1338-1341 nm at scale 7 and produce accurate estimates of leaf GWC. This confirms the applicability of the wavelet-based methodology for estimating leaf GWC for leaves representative of various ecosystems. The PROSPECT-derived predictive models perform well on the LOPEX data set but are less successful on the PANAMA data set. The selection of high-scale and low-scale features emphasizes significant changes in both overall amplitude over broad spectral regions and local spectral shape over narrower regions in response to changes in leaf GWC. The wavelet-based spectral analysis tool adds a new dimension to the modeling of plant physiological properties with

  1. Analysis of thermal process of pozzolan production

    Directory of Open Access Journals (Sweden)

    Mejía De Gutiérrez, R.

    2004-06-01

    Full Text Available The objective of this study was evaluated the effect of heat treatment parameters on the pozzolanic activity of natural kaolin clays. The experimental design included three factors: kaolin type, temperature and time. Five types of Colombian kaolin clays were thermally treated from 400 to 1000 °C by 1, 2, and 3 hours. The raw materials and the products obtained were characterized by X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR and Differential Thermal / Thermo gravimetric Analysis (DTAJ TGA. The pozzolanic activity of thermally treated samples according to chemical and mechanical tests was investigated.

    El objetivo de este estudio fue caracterizar las variables de producción de un metacaolín de alta reactividad puzolánica. El diseño experimental utilizó un modelo factorial que consideró tres factores: tipo de caolín (C, temperatura y tiempo. A partir del conocimiento de las fuentes de caolín y el contacto con proveedores y distribuidores del producto a nivel nacional, se seleccionaron cinco muestras representativas de arcillas caoliníticas, las cuales se sometieron a un tratamiento térmico entre 400 y 1.000 ºC (seis niveles de temperatura y tres tiempos de exposición, 1, 2 y 3 horas. Los caolines de origen y los productos obtenidos de cada proceso térmico fueron evaluados mediante técnicas de tipo físico y químico, difracción de rayos X, infrarrojo FTIR, y análisis térmico diferencial (OTA, TGA. Complementariamente se evalúa la actividad puzolánica, tanto química como mecánica, del producto obtenido a diferentes temperaturas de estudio.

  2. Global detailed gravimetric geoid

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1974-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 x 1-deg mean free-air gravity anomaly data. The accuracy of the geoid is plus or minus 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe and Australia.

  3. Thermal microactuator dimension analysis

    Science.gov (United States)

    Azman, N. D.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    The focus of this study was to analyse the stress and thermal flow of thermal microactuator with different type of materials and parameter using COMSOL Multiphysics software. Simulations were conducted on the existing thermal actuator and integrated it to be more efficient, low cost and low power consumption. In this simulation, the U-shaped actuator was designed and five different materials of the microactuator were studied. The result showed that Si Polycrystalline was the most suitable material used to produce thermal actuator for commercialization.

  4. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    Science.gov (United States)

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  5. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester.

    Science.gov (United States)

    Tang, K P M; Wu, Y S; Chau, K H; Kan, C W; Fan, J T

    2015-04-15

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties.

  6. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester

    Science.gov (United States)

    Tang, K. P. M.; Wu, Y. S.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-01-01

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties. PMID:25875329

  7. G14A-06- Analysis of the DORIS, GNSS, SLR, VLBI and Gravimetric Time Series at the GGOS Core Sites

    Science.gov (United States)

    Moreaux, G.; Lemoine, F.; Luceri, V.; Pavlis, E.; MacMillan, D.; Bonvalot, S.; Saunier, J.

    2017-01-01

    Analysis of the time series at the 3-4 multi-technique GGOS sites to analyze and compare the spectral content of the space geodetic and gravity time series. Evaluate the level of agreement between the space geodesy measurements and the physical tie vectors.

  8. Gravimetric analysis for PM2.5 mass concentration based on year-round monitoring at an urban site in Beijing.

    Science.gov (United States)

    Wang, Yanli; Yang, Wen; Han, Bin; Zhang, Wenjie; Chen, Mindong; Bai, Zhipeng

    2016-02-01

    Daily PM2.5 (particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences (CRAES), in the northern part of the Beijing urban area, from December 2013 to April 2015. Two pairs of Teflon (T1/T2) and Quartz (Q1/Q2) samples were obtained, for a total number of 1352 valid filters. Results showed elevated pollution in Beijing, with an annual mean PM2.5 mass concentration of 102 μg/m(3). According to the calculated PM2.5 mass concentration, 50% of our sampling days were acceptable (PM2.5 250 μg/m(3)). Sampling interruption occurred frequently for the Teflon filter group (75%) in severe pollution periods, resulting in important data being missing. Further analysis showed that high PM2.5 combined with high relative humidity (RH) gave rise to the interruptions. The seasonal variation of PM2.5 was presented, with higher monthly average mass concentrations in winter (peak value in February, 422 μg/m(3)), and lower in summer (7 μg/m(3) in June). From May to August, the typical summer period, least severe pollution events were observed, with high precipitation levels accelerating the process of wet deposition to remove PM2.5. The case of February presented the most serious pollution, with monthly averaged PM2.5 of 181 μg/m(3) and 32% of days with severe pollution. The abundance of PM2.5 in winter could be related to increased coal consumption for heating needs. Copyright © 2015. Published by Elsevier B.V.

  9. Synthesis, mechanical, thermal and chemical properties of ...

    Indian Academy of Sciences (India)

    Cardanol, an excellent monomer for polymer production, has been isolated from CNSL and allowed to react with formaldehyde in a particular mole ratio in the presence of glutaric acid catalyst to give ... Differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) were undertaken for thermal characterization.

  10. Chemical Analysis of Different Parts of Date Palm (Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production

    OpenAIRE

    Ramadan A. Nasser; Mohamed Z. M. Salem; Salim Hiziroglu; Hamad A. Al-Mefarrej; Ahmed S. Mohareb; Manawwer Alam; Aref, Ibrahim M.

    2016-01-01

    The objective of the study was to analyze chemical structure of date palm (Phoenix dactylifera L.) by employing ultimate, proximate and thermo-gravimetric techniques. Samples from different anatomical parts of date palm, namely trunk, frond base, frond midrib, leaflets, coir, fruit stem, date stone, and fruit empty bunches were considered for the experiments. Based on the findings in this work palm leaflet samples gave the highest amount of extractives content (32.9%), followed by date palm s...

  11. Transient thermal analysis of a titanium multiwall thermal protection system

    Science.gov (United States)

    Blosser, M. L.

    1982-01-01

    The application of the SPAR thermal analyzer to the thermal analysis of a thermal protection system concept is discussed. The titanium multiwall thermal protection system concept consists of alternate flat and dimpled sheets which are joined together at the crests of the dimples and formed into 30 cm by 30 cm (12 in. by 12 in.) tiles. The tiles are mechanically attached to the structure. The complex tile geometry complicates thermal analysis. Three modes of heat transfer were considered: conduction through the gas inside the tile, conduction through the metal, and radiation between the various layers. The voids between the dimpled and flat sheets were designed to be small enough so that natural convection is insignificant (e.g., Grashof number 1000). A two step approach was used in the thermal analysis of the multiwall thermal protection system. First, an effective normal (through-the-thickness) thermal conductivity was obtained from a steady state analysis using a detailed SPAR finite element model of a small symmetric section of the multiwall tile. This effective conductivity was then used in simple one dimensional finite element models for preliminary analysis of several transient heat transfer problems.

  12. Offshore gravimetric and subsidence monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stenvold, Torkjell

    2008-06-15

    are discussed in Stenvold et al. (Chapter 2). A latitude dependence of the calibration scale factors of Scintrex gravimeters is shown for the first time. Chapter 5 contains the article 'Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements' by Nooner et al. (2007), published in the International Journal of Greenhouse Gas Control. In this article gravity measurements made on 30 seafloor stations above the CO2 bubble in 2002 and 2005 have been used to constrain the in-situ density of CO2 for models derived from seismic. The gravity responses of various numerical models are compared for the1999 to 2001 period. Note that time-lapse seismic for the 2002-2005 period was not available when this article was written. Chapter 6 contains the article 'Monitoring both gas production and CO2 injection at the Sleipner field using time-lapse gravimetry' by Alnes et al., submitted 29 February 2008 to Geophysics. This is a renewed analysis of the same gravity data as in the article by Nooner et al. (Chapter 5). Recently available 4D seismic, a more updated reservoir simulation model, and reprocessed gravity and pressure data give a new estimate of CO2 density. The observed gravity response between 2002 and 2005 from the underlying Ty Formation is shown for the first time. Chapter 7 contains the article 'Gravimetric monitoring of gas production from the Troll field' by Eiken et al., submitted 3 April 2008 to Geophysics. The gravity data is used to map and quantify water influx on Troll between 2002 and 2005. There is good agreement with well data and the amount of water influx agrees with material balance calculations. Chapter 8 contains the article 'Gravimetric monitoring of gas reservoir water influx' a combined flow- and gravity-modeling approach' by Stenvold et al., and was accepted for publication in January 2008 by Geophysics. It is to appear in an upcoming special section on

  13. Biomechanical assays amniotic membrane preserved in glycerol correlating with optical coherence tomography (OCT) and thermal gravimetric analysis (TG)

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Fernando Augusto N.; Santin, Stefany P.; Martino Junior, Antonio C.; Machado, Luci Diva B.; Freitas, Anderson Z.; Mathor, Monica B., E-mail: fernandonevessoares@yahoo.com.br [Instituto de Pesquisas Energetias Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Amnion or amniotic membranes (AM) are interchangeable terms used in the literature being internal part of the fetal membranes, non-vascular and multicellular tissue. The amnion has been widely used as a graft ophthalmic surgical as well as carrier substrate stem cell tissue equivalent for ocular surface reconstruction. The AM reduces scar formation and inflammation on the ocular surface, promotes epithelization also been used as a biological bandage covering the wound or burns, reducing dehydration and allowing regeneration of these areas. The amnion has usually 0.02 to 0.5 mm thick and consists of five subsequent layers: epithelium, basement membrane, compact layer, fibroblast layer and spongy layer. The mechanical strength from the membrane structure as well as the elasticity are factors attractive to the use of amnion as a surgical graft. Higher levels of rigidity and strength may improve the graft resistance necessary to resist the stress induced during growth of the new tissue formed. The amniotic membrane is obtained at elective caesarean section and subsequently, under sterile conditions, sectioned and separated from chorion and placenta, and free blood clots. The serological tests are done at the time of collection of tissue and 6 months after delivery to confirm the results. There are different methods for storing MA in tissue banks as fresh, high concentrations of glycerol, among others. The use of fresh membrane has some limitations due to the need to rapid use and high risk of contamination, however the amniotic membrane in glycerol has antiviral and antibacterial property which is dependent on the concentration, time and temperature. The AM used in transplants must be sterile to prevent the transmission of any disease. Although sterilization by radiation is an effective procedure, it can interfere on the membrane structure. Thus, verification of potential changes caused by ionizing radiation in amnion was made using the tensile test by calculating the Young's modulus, the OCT technique, to generate high-resolution images in real time being a non-destructive technique, thermogravimetry (TG) assessing the amount of water and rate of water output membranes after treatment with ionizing radiation, relating the possible changes with non-irradiated tissue. However the results of the tensile test had the same behavior compared to the values of total attenuation coefficient by OCT, in addition the dehydration rate analyzed by TG had no statistically significant variation to some radiation doses. (author)

  14. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  15. SPECTROSCOPIC STUDIES AND THERMAL ANALYSIS OF LEAD ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Lead, Tin, Schiff base, Infrared spectra, Thermal analysis. INTRODUCTION ... elemental analysis, infrared spectra as well as by their thermal analysis (DTA and TG). Analysis results are reported in Table 1. The percentage of lead and tin metals were determined using ..... PbO + 5C + 10C2H2 + N2 + CO.

  16. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  17. Thermal gradient analysis of solidifying casting

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2008-08-01

    Full Text Available For description of casting solidification and crystallization process the thermal derivative analysis (TDA is commonly used. Besides the process kinetics considered in TDA method to describe the solidification process, the thermal gradient analysis can be also used for this purpose [1, 2]. In conducted studies analysis of thermal gradient distribution inside the solidifying wedge casting was shown which enabled determination of heat flow intensity on casting section.

  18. Gravimetric determination of phospholipid concentration.

    Science.gov (United States)

    Tejera-Garcia, Roberto; Connell, Lisa; Shaw, Walter A; Kinnunen, Paavo K J

    2012-09-01

    Accurate determination of lipid concentrations is an obligatory routine in a research laboratory engaged in studies using this class of biomaterials. For phospholipids, this is frequently accomplished using the phosphate assay (Bartlett, G.R. Phosphorus Assay in Column Chromatography. J. Biol. Chem. 234, 466-468, 1959). Given the purity of the currently commercially available synthetic and isolated natural lipids, we have observed that determination of the dry weight of lipid stock solutions provides the fastest, most accurate, and generic method to assay their concentrations. The protocol described here takes advantage of the high resolution and accuracy obtained by modern weighing technology. We assayed by this technique the concentrations of a number of phosphatidylcholine samples, with different degrees of acyl chain saturation and length, and in different organic solvents. The results were compared with those from Bartlett assay, (31)P NMR, and Langmuir compression isotherms. The data obtained show that the gravimetric assay yields lipid concentrations with a resolution similar or better than obtained by the other techniques. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  20. Site Averaged Gravimetric Soil Moisture: 1989 (Betts)

    Data.gov (United States)

    National Aeronautics and Space Administration — Site averaged product of the gravimetric soil moisture collected during the 1987-1989 FIFE experiment. Samples were averaged for each site, then averaged for each...

  1. Site Averaged Gravimetric Soil Moisture: 1988 (Betts)

    Data.gov (United States)

    National Aeronautics and Space Administration — Site averaged product of the gravimetric soil moisture collected during the 1987-1989 FIFE experiment. Samples were averaged for each site, then averaged for each...

  2. Site Averaged Gravimetric Soil Moisture: 1987 (Betts)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Site averaged product of the gravimetric soil moisture collected during the 1987-1989 FIFE experiment. Samples were averaged for each site, then averaged...

  3. Site Averaged Gravimetric Soil Moisture: 1987 (Betts)

    Data.gov (United States)

    National Aeronautics and Space Administration — Site averaged product of the gravimetric soil moisture collected during the 1987-1989 FIFE experiment. Samples were averaged for each site, then averaged for each...

  4. Quick Spacecraft Thermal Analysis Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  5. Exergy analysis of thermal comfort

    OpenAIRE

    Prek, Matjaž

    2015-01-01

    Traditional methods of human thermal comfort are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, thesecond law of thermodynamics introduces the concept of exergy. It enables the determination of exergy consumption within the human body dependent on personal and environmental factors. We show that the existing methods of comfort assessment could be further expanded by t...

  6. Thermal strain analysis of optic fiber sensors.

    Science.gov (United States)

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  7. Thermal Strain Analysis of Optic Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ying Huang

    2013-01-01

    Full Text Available An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  8. Thermal Analysis of TRIO-CINEMA Mission

    Directory of Open Access Journals (Sweden)

    Jaegun Yoo

    2012-03-01

    Full Text Available Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO–CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average temperature of top and bottom solar panels from -70°C to -40°C and decrease the average temperature of the magnetometer from +93°C to -4°C using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.

  9. Thermal analysis of underground power cable system

    Science.gov (United States)

    Rerak, Monika; Ocłoń, Paweł

    2017-10-01

    The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.

  10. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel.

    Science.gov (United States)

    Robinson, T; Bronson, B; Gogolek, P; Mehrani, P

    2016-02-01

    Thermo-gravimetric analysis (TGA) is a useful method for characterizing fuels. In the past it has been applied to the study of refuse derived fuel (RDF) and related materials. However, the heterogeneity of RDF makes the preparation of small representative samples very difficult and this difficulty has limited the effectiveness of TGA for characterization of RDF. A TGA method was applied to a variety of materials prepared from a commercially available RDF using a variety of procedures. Applicability of TGA method to the determination of the renewable content of RDF was considered. Cryogenic ball milling was found to be an effective means of preparing RDF samples for TGA. When combined with an effective sample preparation, TGA could be used as an alternative method for assessing the renewable content of RDF. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. Thermal Analysis of a TREAT Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dionissios [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, Arthur E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  12. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil

    Directory of Open Access Journals (Sweden)

    Seme Youssef Reda

    2011-06-01

    Full Text Available In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG and Differential Scanning Calorimetry (DSC analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene, BHA (2, 3-tert-butyl-4-methoxyphenol, TBHQ (tertiary butyl hydroquinone, PG (propyl gallate - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.

  13. Thermal Analysis of AC Contactor Using Thermal Network Finite Difference Analysis Method

    Science.gov (United States)

    Niu, Chunping; Chen, Degui; Li, Xingwen; Geng, Yingsan

    To predict the thermal behavior of switchgear quickly, the Thermal Network Finite Difference Analysis method (TNFDA) is adopted in thermal analysis of AC contactor in the paper. The thermal network model is built with nodes, thermal resistors and heat generators, and it is solved using finite difference method (FDM). The main circuit and the control system are connected by thermal resistors network, which solves the problem of multi-sources interaction in the application of TNFDA. The temperature of conducting wires is calculated according to the heat transfer process and the fundamental equations of thermal conduction. It provides a method to solve the problem of boundary conditions in applying the TNFDA. The comparison between the results of TNFDA and measurements shows the feasibility and practicability of the method.

  14. Characterization of Nanocomposites by Thermal Analysis

    Science.gov (United States)

    Corcione, Carola Esposito; Frigione, Mariaenrica

    2012-01-01

    In materials research, the development of polymer nanocomposites (PN) is rapidly emerging as a multidisciplinary research field with results that could broaden the applications of polymers to many different industries. PN are polymer matrices (thermoplastics, thermosets or elastomers) that have been reinforced with small quantities of nano-sized particles, preferably characterized by high aspect ratios, such as layered silicates and carbon nanotubes. Thermal analysis (TA) is a useful tool to investigate a wide variety of properties of polymers and it can be also applied to PN in order to gain further insight into their structure. This review illustrates the versatile applications of TA methods in the emerging field of polymer nanomaterial research, presenting some examples of applications of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA) and thermal mechanical analysis (TMA) for the characterization of nanocomposite materials.

  15. Root cause analysis of thermal sleeve separation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J. C.; Jhung, M. J.; Yu, S. O.; Kim, H. J.; Yune, Y. K.; Park, J. Y

    2006-01-15

    Thermal sleeves in the shape of thin wall cylinder seated inside the nozzle part of each Safety Injection (SI) line at Pressurized Water Reactors (PWRs) have such functions as prevention and relief of potential excessive transient thermal stress in the wall of SI line nozzle part which is initially heated up with hot water flowing in the primary coolant piping system when cold water is injected into the system through the SI nozzles during the SI operation mode. Recently, mechanical failures that the sleeves were separated from the SI branch pipe and fell into the connected cold leg main pipe occurred in sequence at some typical PWR plants in Korea. To find out the root cause of thermal sleeve breakaway failures, the flow situation in the junction of primary coolant main pipe and SI branch pipe, and the vibration modal characteristics of the thermal sleeve are investigated in detail by using both Computational Fluid Dynamic (CFD) code and structure analysis finite element code. As the results, the transient response in fluid force exerting on the local part of thermal sleeve wall surface to the primary coolant flow through the pipe junction area during the normal reactor operation mode shows oscillatory characteristics with frequencies ranging from 17 to 18, which coincide with one of the lower mode natural frequencies of thermal sleeve having a pinned support condition on the circumferential prominence on the outer surface of thermal sleeve which is put into the circumferential groove on the inner surface of SI nozzle at the mid-height of the thermal sleeve. In addition, the variation of force on the thermal sleeve surface yields alternating torques in the directions of two rectangular axes which are perpendicular to the longitudinal axis of cylindrical thermal sleeve, which cause rolling, pitching and rotating motions of the thermal sleeve. Consequently, it is seen that this flow situation surrounding the thermal sleeve during the normal reactor operation can

  16. Thermal Analysis of Filler Reinforced Polymeric Composites

    Science.gov (United States)

    Ghadge, Mahesh Devidas

    compared with that predicted by mean field theories. At low volume fractions the FEM and mean field theory results are matching. However, at high volume fractions, the results obtained by the two methods are not in agreement. This is due to the fact that mean field theory do not consider the particle interactions happening at higher volume fractions. The present analysis can be used to tailor the thermal properties of ESBR for required thermal conductivity for a wide range of applications such as racing tires, electronic gadgets or aeronautical components. In addition, the proposed FEM models can be used to design and optimize the properties of new composite materials providing more insight into the thermal conductivity of composite polymers and aid in understanding heat transfer mechanism of reinforced polymers.

  17. Method of thermal derivative gradient analysis (TDGA

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2009-07-01

    Full Text Available In this work a concept of thermal analysis was shown, using for crystallization kinetics description the temperature derivatives after time and direction. Method of thermal derivative gradient analysis (TDGA is assigned for alloys and metals investigation as well as cast composites in range of solidification. The construction and operation characteristics were presented for the test stand including processing modules and probes together with thermocouples location. Authors presented examples of results interpretation for AlSi11 alloy castings with diversified wall thickness and at different pouring temperature.

  18. Thermal analysis of kieselguhr sludge

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2013-01-01

    Full Text Available It’s currently necessary to clarify the mechanisms of thermodynamic and mass transfer processes in capillary porous media. In this paper we obtain the thermogravimetric curves of evaporation drying kieselguhr sludge. It is also an analysis of the curves, allowing to choose the optimum conditions of drying.

  19. Gravimetric maps of the Central African Republic

    Science.gov (United States)

    Albouy, J.; Godivier, R. (Principal Investigator)

    1982-01-01

    Gravimetric maps of the Central African Republic are described including a map of Bouguer anomalies at 1/1,000,000 in two sections (eastern sheet, western sheet) and a map, in color, of Bouguer anomalies at 1/2,000,000. Instrumentation, data acquisition, calibration, and data correction procedures are discussed.

  20. The micro thermal analysis of polymers

    CERN Document Server

    Grandy, D B

    2002-01-01

    This study is concerned with the development of micro-thermal analysis as a technique for characterising heterogeneous polymers. It is divided into two main parts. In the first part, the use of miniature Wollaston wire near-field thermal probes mounted in an atomic force microscope (AFM) to carry out highly localised thermal analysis (L-TA) of amorphous and semi-crystalline polymers is investigated. Here, the temperature of the probe sensor or tip is scanned over a pre-selected temperature range while in contact with the surface of a sample. It is thereby used to heat a volume of material of the order of several cubic micrometres. The effect of the glass transition, cold crystallisation, melting and degree of crystallinity on L-TA measurements is investigated. The materials used are poly(ethylene terephthalate), polystyrene and fluorocarbon-coated poly(butylene terephthalate). The primary measurements are the micro- or localised analogues of thermomechanical analysis (L-TMA) and differential thermal analysis ...

  1. Micro-thermal analysis of polyester coatings

    NARCIS (Netherlands)

    Fischer, H.R.

    2010-01-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure

  2. Emplacement of ellipsoid-shaped (diapiric?) granite: Structural and gravimetric analysis of the Oulmès granite (Variscan Meseta, Morocco)

    Science.gov (United States)

    Tahiri, Abdelfatah; Simancas, J. Fernando; Azor, Antonio; Galindo-Zaldívar, Jesús; González Lodeiro, Francisco; El Hadi, Hassan; Martínez Poyatos, David; Ruiz-Constán, Ana

    2007-08-01

    The Oulmès granite is a NE-SW elongated stock intruded in Ordovician metasedimentary rocks which crop out at the core of a regional anticlinorium of the Moroccan Variscan Meseta. The stock, dated at around 300 Ma, is made up of peraluminous two-mica granite, with subordinate amounts of muscovite leucogranite. Mineral composition and textural features of both the granite and the thermal aureole enable us to constrain the P-T conditions during magma intrusion in ≈250-300 MPa and ≈600 °C at the contact between the granite and its host rock. Emplacement of the Oulmès granite postdates the main regional structures and is coeval with the late stages of Variscan compression. Prior to granite intrusion, the host rocks were affected by a main deformation phase responsible for the development of a penetrative slaty cleavage and regional-scale folds. Granite emplacement gave way to a 2 km-thick strain aureole, which includes both the uppermost part of the stock and the surrounding host rocks. The strain aureole is characterized by a gently-dipping planar-linear fabric with a generally weak N-S oriented stretching lineation. In the granite, the fabric of the strain aureole consists of a solid-state, locally mylonitic, foliation. In the host rocks, a secondary foliation develops which crenulates the older regional foliation. Magmatic structures, mainly consisting of steeply dipping N-S oriented magmatic foliation, are preserved in the central part of the pluton. The 3D shape of the granite has been modelled from gravity data and, together with the observed magmatic flow along subvertical planes and the strain recorded in the aureole, leads us to envisage a diapiric-dominated mechanism for the emplacement of the Oulmès granite. Drawing on the petrogenesis of peraluminous granites, the diapiric ascent of the granite probably has not exceeded 10 km.

  3. AUTOMATED GRAVIMETRIC MANAGEMENT OF SOLUTIONS .2. AUTOMATED GRAVIMETRIC APPROACH TO DIRECT POTENTIOMETRY AND KAPPA NUMBER DETERMINATION

    OpenAIRE

    Pasquini, C.; CUNHA, IBS

    1995-01-01

    The high-performance microcomputer controlled gravimetric-burette described in Part 1 has been employed to automate some routine analytical procedures, A direct potentiometric determination of fluoride ions in drinking water was developed to include an automatic calibration step, matrix adjustment and sample determination. Also the complex and cumbersome titrimetric procedure far determination of the kappa number (lignin content) in paper pulp, has been automated by using the gravimetric unit...

  4. Joint analysis of electric and gravimetric data for volcano monitoring. Application to data acquired at Vulcano Island (southern Italy) from 1993 to 1996

    Science.gov (United States)

    Di Maio, Rosa; Berrino, Giovanna

    2016-11-01

    Understanding the dynamics of volcanic-hydrothermal systems is a key factor for discriminating between magmatic and hydrothermal nature of the sources responsible for the unrest phenomena observed in active volcanic areas. Numerous studies of geophysical data monitoring in volcano-geothermal districts has indeed proven that close relationships exist between the volcanic and hydrothermal fluid circulation and the anomalous geophysical signals observed at the ground surface. In this paper, a simultaneous analysis that integrates resistivity and gravity data is suggested as a useful tool to infer a consistent conceptual model of hydrothermal volcanic systems and their evolution. An application of the proposed analysis to repeated resistivity and gravity measurements performed on Vulcano Island (Aeolian Archipelago, Sicily, southern Italy) is presented with the aim of gaining information on the dynamics of the volcanic-hydrothermal system. The examined period ranges from December 1993 to September 1996, when significant changes in chemical properties, temperatures and emission rates of La Fossa crater fumaroles were observed, all indicating an increase in the flux of hot deep magmatic gases. The results of our analysis, which refers to a profile located at the foot of the northwest flank of La Fossa cone, suggest that underground cyclic water-to-vapour transformations govern the shallow hydrothermal system dynamics, generally described by a negative correlation between the monitored resistivity and gravity data. The occurrence of positive correlations between the two analysed parameters could be ascribed to volcanic dynamics, which would mask the normal hydrological and hydrothermal system behaviour.

  5. Estimation of the gravimetric pole tide by stacking long time-series of GGP superconducting gravimeters

    Science.gov (United States)

    Ziegler, Yann; Hinderer, Jacques; Rogister, Yves; Rosat, Séverine

    2016-04-01

    We compute the gravimetric factor at the Chandler wobble (CW) frequency using time-series from superconducting gravimeters (SG) longer than a decade. We first individually process the polar motion and data at each individual gravity station to estimate the gravimetric factor amplitude and phase, then we make a global analysis by applying a stacking method to different subsets of up to seven SG stations. The stacking is an efficient way of getting rid of local effects and improving the signal-to-noise ratio of the combined data sets. Using the stacking method, we find a gravimetric factor amplitude and phase of 1.118 ± 0.016 and -0.45 ± 0.66 deg, respectively, which is smaller in amplitude than expected. The sources of error are then carefully considered. For both local and global analyses, the uncertainties on our results are reliably constrained by computing the standard deviation of the estimates of the gravimetric factor amplitude and phase for increasing length of the time-series. Constraints on the CW anelastic dissipation can be set since any departure of the gravimetric factor from its elastic value may provide some insights into the dissipative processes that occur at the CW period. In particular, assuming given rheological models for the Earth's mantle enables us to make the link between the gravimetric factor phase and the CW quality factor.

  6. 40 CFR 1065.290 - PM gravimetric balance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PM gravimetric balance. 1065.290... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Pm Measurements § 1065.290 PM gravimetric... measure PM, as described in § 1065.295, use a reference procedure based on a gravimetric balance for...

  7. Thermal analysis applied to irradiated propolis

    Science.gov (United States)

    Matsuda, Andrea Harumi; Machado, Luci Brocardo; del Mastro, Nélida Lucia

    2002-03-01

    Propolis is a resinous hive product, collected by bees. Raw propolis requires a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of propolis for food and pharmaceutical industries have led to increasing interest in its technological behavior. Thermal analysis is a chemical analysis that gives information about changes on heating of great importance for technological applications. Ground propolis samples were 60Co gamma irradiated with 0 and 10 kGy. Thermogravimetry curves shown a similar multi-stage decomposition pattern for both irradiated and unirradiated samples up to 600°C. Similarly, through differential scanning calorimetry , a coincidence of melting point of irradiated and unirradiated samples was found. The results suggest that the irradiation process do not interfere on the thermal properties of propolis when irradiated up to 10 kGy.

  8. Thermal analysis applied to irradiated propolis

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Andrea Harumi; Machado, Luci Brocardo; Mastro, N.L. del E-mail: nelida@usp.br

    2002-03-01

    Propolis is a resinous hive product, collected by bees. Raw propolis requires a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of propolis for food and pharmaceutical industries have led to increasing interest in its technological behavior. Thermal analysis is a chemical analysis that gives information about changes on heating of great importance for technological applications. Ground propolis samples were {sup 60}Co gamma irradiated with 0 and 10 kGy. Thermogravimetry curves shown a similar multi-stage decomposition pattern for both irradiated and unirradiated samples up to 600 deg. C. Similarly, through differential scanning calorimetry , a coincidence of melting point of irradiated and unirradiated samples was found. The results suggest that the irradiation process do not interfere on the thermal properties of propolis when irradiated up to 10 kGy.

  9. Gravimetric geoid in the Northwest Pacific Ocean

    Science.gov (United States)

    Watts, A. B.; Leeds, A. R.

    1977-01-01

    A total of 3708 1 x 1 deg free-air gravity anomaly averages have been used to construct a new 1 x 1 deg gravimetric geoid of the Northwest Pacific Ocean. The 1 x 1 deg averages are based on a compilation of 147,000 surface ship and pendulum gravity measurements. Difference geoid undulations range from a maximum of +19 m over the Hawaiian ridge to a minimum of -31 m over the junction of the Kuril and Aleutian trenches. The Hawaiian swell is associated with a geoidal high of up to +15 m with wavelengths of about 2200 km and the topographic rises seaward of deep-sea trenches are associated with geoidal highs of up to 4 m with wavelengths of about 220-900 km. The agreement between the gravimetric geoid and Skylab-4 and Geos-3 altimeter data is close for wavelengths greater than about 300 km but poor for shorter wavelengths.

  10. Detailed gravimetric geoid for the United States.

    Science.gov (United States)

    Strange, W. E.; Vincent, S. F.; Berry, R. H.; Marsh, J. G.

    1972-01-01

    A detailed gravimetric geoid was computed for the United States using a combination of satellite-derived spherical harmonic coefficients and 1 by 1 deg mean gravity values from surface gravimetry. Comparisons of this geoid with astrogeodetic geoid data indicate that a precision of plus or minus 2 meters has been obtained. Translations only were used to convert the NAD astrogeodetic geoid heights to geocentric astrogeodetic heights. On the basis of the agreement between the geocentric astrogeodetic geoid heights and the gravimetric geoid heights, no evidence is found for rotation in the North American datum. The value of the zero-order undulation can vary by 10 to 20 meters, depending on which investigator's station positions are used to establish it.

  11. Detailed gravimetric geoid computations in North America

    Science.gov (United States)

    Marsh, J. G.; Chang, E. S.

    1976-01-01

    A detailed gravimetric geoid has been computed for the Eastern United States and the Northwestern Atlantic Ocean by combining the Goddard Space Flight Center GEM-8 earth gravity model with the available 15 x 15 arcmin and 1 x 1 deg mean free air surface gravity observations. The short wavelength undulations were computed by applying Stokes' formula to the 15 x 15 arcmin and 1 x 1 deg surface data. The long wavelength undulations were provided by the GEM-8 model. The gravimetric geoid has been compared with Geoceiver derived and astrogeodetically determined geoid heights in the United States and the rms agreement is on the order of 1.5 meters. Excellent agreement in shape has been found between the detailed geoid and geoidal profiles derived from GEOS-III altimeter data in the Northwest Atlantic Ocean.

  12. Gravimetric gas determinations for volume calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, P.W.

    1991-12-31

    Gravimetric measurement of gases is one of the methods available for calibrating gas volumes. By inputting a known quantity of gas and measuring the resulting pressure and temperature, the system volume can be calculated using gas law principles. Historically, this method has been less accurate due to the difficulty in the mass determination. This difficulty comes from several sources. Two examples are the large tare weight of the gas container relative to the weight of gas and the external volume of the gas container relative to the standards. The application of a gravimetric gas determination to tank volume calibrations at the Savannah River Site is discussed. Mass determinations on a 25,000 gram gas container were such that a 1500 gram quantity of gas was routinely determined to within {plus_minus}0.2 gram at the 99% confidence level. The weighing design and the methods used to address the difficulties of the mass determination are detailed.

  13. Thermodynamical analysis of human thermal comfort

    OpenAIRE

    Prek, Matjaž

    2015-01-01

    Traditional methods of human thermal comfort analysis are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, the second law of thermodynamics introduces the useful concept of exergy. It enables the determination of the exergy consumption within the human body dependent on human and environmental factors. Human body exergy consumption varies with the combination of environ...

  14. Parameter Uncertainty for Repository Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Greenberg, Harris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dupont, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).

  15. QCM Thermo-Gravimetric Analysis (QTGA) Comparisons

    Science.gov (United States)

    Rosecrans, Glenn; Meadows, George

    2004-01-01

    The ASTM E-1559 apparatus has been used for years at NASA/Goddard Space Flight Center (GSFC) to determine in situ outgassing rate information, as well as pertinent in situ TML and multiple VCM values. The apparatus also affords the opportunity to experimentally compute the evaporation rates of molecular species that are reemitted as the Quartz Crystal Microbalances (QCMs) are gradually warmed up at some controlled temperature. Typically the molecular mass that accumulates onto the test QCMs are a compilation of species that are outgassing from the sample due to their respective activation energies and the desorption processes that the sample undergoes at various tested temperatures. It has been speculated that if there is too much molecular buildup of condensed water vapor (ice) onto the QCM crystal that a significantly higher temperature would be needed to break these "ice" bonds. ASTM E-1559 data plots will be used to demonstrate the thermogravimetric effects of water and other miscible molecular species with various water/ice thicknesses and at different evaporation rates.

  16. Saturn Ring Data Analysis and Thermal Modeling

    Science.gov (United States)

    Dobson, Coleman

    2011-01-01

    CIRS, VIMS, UVIS, and ISS (Cassini's Composite Infrared Specrtometer, Visual and Infrared Mapping Spectrometer, Ultra Violet Imaging Spectrometer and Imaging Science Subsystem, respectively), have each operated in a multidimensional observation space and have acquired scans of the lit and unlit rings at multiple phase angles. To better understand physical and dynamical ring particle parametric dependence, we co-registered profiles from these three instruments, taken at a wide range of wavelengths, from ultraviolet through the thermal infrared, to associate changes in ring particle temperature with changes in observed brightness, specifically with albedos inferred by ISS, UVIS and VIMS. We work in a parameter space where the solar elevation range is constrained to 12 deg - 14 deg and the chosen radial region is the B3 region of the B ring; this region is the most optically thick region in Saturn's rings. From this compilation of multiple wavelength data, we construct and fit phase curves and color ratios using independent dynamical thermal models for ring structure and overplot Saturn, Saturn ring, and Solar spectra. Analysis of phase curve construction and color ratios reveals thermal emission to fall within the extrema of the ISS bandwidth and a geometrical dependence of reddening on phase angle, respectively. Analysis of spectra reveals Cassini CIRS Saturn spectra dominate Cassini CIRS B3 Ring Spectra from 19 to 1000 microns, while Earth-based B Ring Spectrum dominates Earth-based Saturn Spectrum from 0.4 to 4 microns. From our fits we test out dynamical thermal models; from the phase curves we derive ring albedos and non-lambertian properties of the ring particle surfaces; and from the color ratios we examine multiple scattering within the regolith of ring particles.

  17. Thermal image analysis for detecting facemask leakage

    Science.gov (United States)

    Dowdall, Jonathan B.; Pavlidis, Ioannis T.; Levine, James

    2005-03-01

    Due to the modern advent of near ubiquitous accessibility to rapid international transportation the epidemiologic trends of highly communicable diseases can be devastating. With the recent emergence of diseases matching this pattern, such as Severe Acute Respiratory Syndrome (SARS), an area of overt concern has been the transmission of infection through respiratory droplets. Approved facemasks are typically effective physical barriers for preventing the spread of viruses through droplets, but breaches in a mask"s integrity can lead to an elevated risk of exposure and subsequent infection. Quality control mechanisms in place during the manufacturing process insure that masks are defect free when leaving the factory, but there remains little to detect damage caused by transportation or during usage. A system that could monitor masks in real-time while they were in use would facilitate a more secure environment for treatment and screening. To fulfill this necessity, we have devised a touchless method to detect mask breaches in real-time by utilizing the emissive properties of the mask in the thermal infrared spectrum. Specifically, we use a specialized thermal imaging system to detect minute air leakage in masks based on the principles of heat transfer and thermodynamics. The advantage of this passive modality is that thermal imaging does not require contact with the subject and can provide instant visualization and analysis. These capabilities can prove invaluable for protecting personnel in scenarios with elevated levels of transmission risk such as hospital clinics, border check points, and airports.

  18. Analysis of thermally loaded transmissive optical elements

    Science.gov (United States)

    Michels, Gregory J.; Genberg, Victor L.

    2013-09-01

    The performance metrics of many optical systems are affected by temperature changes in the system through different physical phenomena. Temperature changes cause materials to expand and contract causing deformations of optical components. The resulting stress states in transmissive optics can cause refractive changes that can affect optical performance. In addition, the temperature changes themselves can cause changes in the refractive properties of transmissive optics. Complex distributions of refractive indices that relate to the thermal profile, the thermo-optic refractive index profile, within the optical media can be predicted by the finite element method. One current technique for representing such refractive index profiles is through the generation of optical path difference (OPD) maps by integration along integration paths. While computationally efficient, this method has limitations in its ability to represent the effect of the index changes for rays associated with multiple field points and multiple wavelengths. A more complete representation of the thermo-optic refractive index profile may be passed to the optical analysis software through the use of a user defined gradient index material. The interface consists of a dynamic link library (DLL) which supplies indices of refraction to a user defined gradient index lens as ray tracing calculations are being performed. The DLL obtains its refractive index description from a database derived from the thermal analysis of the optics. This process allows optical analysis software to perform accurate ray tracing for an arbitrary refractive index profile induced by changes in temperature.

  19. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    Science.gov (United States)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  20. SPS extraction kicker magnet thermal analysis

    CERN Document Server

    Timmins, M

    2004-01-01

    As the SPS accelerator will be used for the CNGS project and as LHC injector, the proton beams passing through its extraction kickers will have a much higher intensity than in the past. The image currents generated by this beam may provoke a temperature increase in the magnet's ferrite core to temperatures above the Curie temperature, unless the heat produced is effectively removed. A further complication arises from the fact that a high voltage is applied to the ferrites. The solution adopted consists in transferring the heat via Aluminium Nitride insulators to a water cooling circuit. The heat transfer analysis and the calculated thermal distribution of the magnet are presented.

  1. Gravimetric determination of soil organic matter

    Directory of Open Access Journals (Sweden)

    M. Miyazawa

    2000-01-01

    Full Text Available Studies were carried out to evaluate a gravimetric method for the determination of soil organic matter by the mass loss at 300ºC. The gravimetric method was compared with Walkley-Black, using several brazilian soils with variable chemical and physical properties. Gravimetric method was positively correlated with Walkley-Black method with the following linear regression equation: y = 3.72x + 0.29, r = 0.94. The angular coefficient 3.72 for tropical soils was greater than those reported in the literature for temperate soils (from 1.68 to 2.13. The difference was due to greater oxidation degree of the organic matter. When compared with Walkley-Black method, gravimetric technique showed certain distinct advantages such as no environmental contamination with Cr6+ and improved laboratory safety eliminating the use of concentrated sulfuric acid.Avaliou-se o método de determinação gravimétrica da matéria orgânica do solo pela perda de massa por incineração a 300ºC e comparou-se com o carbono determinado pelo método Walkley-Black. Os dois métodos foram correlacionados positivamente com a seguinte equação de regressão linear: y = 3,720x + 0,2914. r = 0,937. O coeficiente. 3,720 foi maior do que os encontrados na literatura. que variaram de 1,68 a 2,13. Esta diferença foi atribuída ao maior grau de oxidação da matéria orgânica dos solos das regiões tropicais. O método de incineração é aplicável para determinação do C do solo em rotina. O método não contamina o meio ambiente com metal tóxico (Cr6+ e não oferece riscos aos analistas com o uso de ácido sulfúrico concentrado.

  2. Preliminary study of gravimetric anomalies in the Magallanes-Fagnano fault system, South America

    Directory of Open Access Journals (Sweden)

    Juan Manuel Alcacer

    2018-01-01

    Full Text Available The main objective of this research is to recognize several geological structures associated with the shear zones of the MFFS (Magallanes – Fagnano fault system by the analysis and interpretation of gravimetric anomalies. Besides, to compare the gravimetrical response of the cortical blocks that integrate the region under study, which is related to the different morphotectonic domains recognized in the region. This research was developed employing data obtained from World Gravity 1.0, which includes earth and satellite gravity data derived from the EGM2008 model. The study and interpretation of the MFFS from the analysis and processing of the gravimetric data, allowed appreciation of a noticeable correlation with the most superficial cortical structure.

  3. APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTOR MATERIALS ANALYSIS

    OpenAIRE

    Rosencwaig, A.

    1983-01-01

    Nonspectroscopic applications of thermal-wave physics, in particular those involving materials analysis through thermal-wave imaging, and quantitative thin-film thickness measurements, are described for the study of semiconductor materials and devices.

  4. Differential thermal analysis microsystem for explosive detection

    DEFF Research Database (Denmark)

    Olsen, Jesper Kenneth; Greve, Anders; Senesac, L.

    2011-01-01

    A micro differential thermal analysis (DTA) system is used for detection of trace explosive particles. The DTA system consists of two silicon micro chips with integrated heaters and temperature sensors. One chip is used for reference and one for the measurement sample. The sensor is constructed a...... of the Xsense project at the Technical University of Denmark (DTU) which combines four independent sensing techniques, these micro DNT sensors will be included in handheld explosives detectors with applications in homeland security and landmine clearance.......A micro differential thermal analysis (DTA) system is used for detection of trace explosive particles. The DTA system consists of two silicon micro chips with integrated heaters and temperature sensors. One chip is used for reference and one for the measurement sample. The sensor is constructed...... as a small silicon nitride membrane incorporating heater elements and a temperature measurement resistor. In this manuscript the DTA system is described and tested by measuring calorimetric response of 3 different kinds of explosives (TNT, RDX and PETN). This project is carried out under the framework...

  5. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    Science.gov (United States)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  6. Thermal analysis of superconducting undulator cryomodules

    Science.gov (United States)

    Shiroyanagi, Y.; Doose, C.; Fuerst, J.; Harkay, K.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.

    2015-12-01

    A cryocooler-cooled superconducting undulator (SCU0) has been operating in the Advanced Photon Source (APS) storage ring since January of 2013. Based on lessons learned from the construction and operation of SCU0, a second superconducting undulator (SCU1) has been built and cold tested stand-alone. An excess cooling capacity measurement and static heat load analysis show a large improvement of cryogenic performance of SCU1 compared with SCU0. ANSYS-based thermal analysis of these cryomodules incorporating all the cooling circuits was completed. Comparisons between measured and calculated temperatures at the three operating conditions of the cryomodule (static, beam heat only, beam heat and magnet current) will be presented.

  7. Thermal-Signature-Based Sleep Analysis Sensor

    Directory of Open Access Journals (Sweden)

    Ali Seba

    2017-10-01

    Full Text Available This paper addresses the development of a new technique in the sleep analysis domain. Sleep is defined as a periodic physiological state during which vigilance is suspended and reactivity to external stimulations diminished. We sleep on average between six and nine hours per night and our sleep is composed of four to six cycles of about 90 min each. Each of these cycles is composed of a succession of several stages of sleep that vary in depth. Analysis of sleep is usually done via polysomnography. This examination consists of recording, among other things, electrical cerebral activity by electroencephalography (EEG, ocular movements by electrooculography (EOG, and chin muscle tone by electromyography (EMG. Recordings are made mostly in a hospital, more specifically in a service for monitoring the pathologies related to sleep. The readings are then interpreted manually by an expert to generate a hypnogram, a curve showing the succession of sleep stages during the night in 30s epochs. The proposed method is based on the follow-up of the thermal signature that makes it possible to classify the activity into three classes: “awakening,” “calm sleep,” and “restless sleep”. The contribution of this non-invasive method is part of the screening of sleep disorders, to be validated by a more complete analysis of the sleep. The measure provided by this new system, based on temperature monitoring (patient and ambient, aims to be integrated into the tele-medicine platform developed within the framework of the Smart-EEG project by the SYEL–SYstèmes ELectroniques team. Analysis of the data collected during the first surveys carried out with this method showed a correlation between thermal signature and activity during sleep. The advantage of this method lies in its simplicity and the possibility of carrying out measurements of activity during sleep and without direct contact with the patient at home or hospitals.

  8. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  9. GEOID '88: A gravimetric geoid for Canada

    Science.gov (United States)

    Nagy, Dezso

    1989-01-01

    Using Stokes' formula, a gravimetric geoid was calculated for Canada. The input data are as follows: 15 x 15' block averages were used for Canada and the USA and 1 x 1 deg block averages and satellite model (GEM-T1) provided values for the remaining part of the Earth. The geoid was calculated at 6398 points covering the area within the points rho(sub i)(phi sub i; lambda sub i) (lambda is + west): rho sub 1(40,125); rho sub 2(75,184); rho sub 3(75,10); and rho sub 4(40,60). The computed geoid refers to the GRS1980 and reaches a local minimum of -47.3 meters around the western part of Hudson Bay. A contour map of the geoid is shown.

  10. Gravimetric examination of Hagia Sophia's subsurface structure

    Science.gov (United States)

    Friedrich, Jürgen; Gerstenecker, Carl; Gürkan, Onur

    1996-10-01

    The subsurface structure of Hagia Sophia, one of the oldest sacred monuments in the world built between 532 537 under the reign of Justinian in today's Istanbul, has been investigated by using two relative LaCoste-Romberg gravimeters in order to detect hidden cavities which have also served as earthquake dampers in similar constructions. On the building's ground floor a grid of 100 points with a grid size of about 4.m was measured. The mean gravimetric point error was ± 3.10-8 ms-2. The result of the examination is that cavities were not detected in the inner central part of Hagia Sophia with a larger diameter than 8.m down to a depth of about 20.m, and Hagia Sophia's foundation was found to be a slope of natural rock with a downward inclination to the East that has a small crest symmetrical to the building's East-West axis.

  11. Effect of C16TMA contents on the thermal stability of organo-bentonites: In situ X-ray diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kooli, Fethi, E-mail: fkooli@taibahu.edu.sa [Taibah University, Department of Chemistry, PO Box 30002, Al-Madinah Al-Munawwarah (Saudi Arabia)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer Organo-bentonites were prepared at C16TMABr/CEC ratios up to 11. Black-Right-Pointing-Pointer Disorder configuration of C16TMA cations was observed at higher C16TMABr/CEC ratios. Black-Right-Pointing-Pointer The evolved gases during the calcinations of organoclays were analyzed by MS-TG. Black-Right-Pointing-Pointer In situ XRD technique detected clearly the phase disorder in the range 50-150 Degree-Sign C. Black-Right-Pointing-Pointer Collapse of organoclays depended on the temperature and the used atmospheres. - Abstract: Different concentrations of cetyl trimethylammonium bromide solutions were cation exchanged with bentonite clay mineral, at room temperature. The resulting organoclays were characterized by elemental analysis C and N, X-ray diffraction and thermal gravimetric analysis. The evolved gases during the calcination of organoclays were identified by online mass spectrometry coupled with thermal gravimetry technique. Meanwhile, in situ X-ray diffraction was used to have insight on the thermal stability of the organoclays in air atmosphere. X-ray diffraction at room temperature indicated that a disorder transition phase from bilayer to paraffin configuration occurred at higher surfactant-cation exchange capacity ratios, with two phases at 3.25 and 2.00 nm, respectively. The in situ X-ray diffraction confirmed the presence of these two phases with improved reflections intensities in the range of 100-200 Degree-Sign C. Above this temperature, both phases collapsed due to the decomposition of the surfactants as recorded by mass spectrometry thermal gravimetric analysis.

  12. Thermal analysis of wood-steel hybrid construction

    OpenAIRE

    Fonseca, E.M.M.; Ramos, H.M.E.; Silva, H.J.G.; Ferreira, Débora

    2013-01-01

    The main objective of this work is to provide the thermal analysis in wood-steel hybrid elements for building constructions under fire conditions. A transient thermal analysis with nonlinear material behaviour will be solved with ANSYS program. The use of wood-steel hybrid models has major advantages as increased fire resistance, and improved high strength. Wood is a lightweight material, easy to assemble, great architectural features, thermal and acoustic characteristics. However, the high v...

  13. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available powder and a wax-based binder. The binder’s backbone component is a low density polyethylene (LDPE). Careful selection of thermal debinding parameters was guided by thermo- gravimetric analysis (TGA) results. The Taguchi method was used to determine...

  14. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  15. Analysis of thermally-degrading, confined HMX

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  16. An Integrated Approach to Thermal Analysis of Pharmaceutical Solids

    Science.gov (United States)

    Riley, Shelley R. Rabel

    2015-01-01

    A three-tiered experiment for undergraduate Instrumental Analysis students is presented in which students characterize the solid-state thermal behavior of an active pharmaceutical ingredient (acetaminophen) and excipient (a-lactose hydrate) using differential scanning calorimetry, thermogravimetric analysis, and thermal microscopy. Students are…

  17. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    Science.gov (United States)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  18. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    Science.gov (United States)

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  19. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  20. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  1. Thermal analysis of a hypersonic wing test structure

    Science.gov (United States)

    Sandlin, Doral R.; Swanson, Neil J., Jr.

    1989-01-01

    The three-dimensional finite element modeling techniques developed for the thermal analysis of a hypersonic wing test structure (HWTS) are described. The computed results are compared to measured test data. In addition, the results of a NASA two-dimensional parameter finite difference local thermal model and the results of a contractor two-dimensional lumped parameter finite difference local thermal model will be presented.

  2. The inverse gravimetric problem in gravity modelling

    Science.gov (United States)

    Sanso, F.; Tscherning, C. C.

    1989-01-01

    One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.

  3. Performance analysis of photovoltaic thermal air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sopian, K.; Yigit, K.S.; Liu, H.T.; Kakac, S.; Veziroglu, T.N. [Miami Univ., Coral Gables, FL (United States). Dept. of Mechanical Engineering

    1996-11-01

    The performance of single-pass and double-pass combined photovoltaic thermal collectors are analyzed with steady-state models. The working fluid is air and the models are based on energy conservation at various nodes of the collector. Closed form solutions have been obtained for the differential equations of both the single-pass and double-pass collectors. Comparisons are made between the performances of the two types of combined photovoltaic thermal collectors. The results show that the new design, the double-pass photovoltaic thermal collector, has superior performance. Important parameters for both types of collector are identified, and their effects on the performances of the two types of collectors are presented in detail. (author)

  4. Thermal analysis of LED lamps for optimal driver integration

    NARCIS (Netherlands)

    Perpiñà, X.; Werkhoven, R.J.; Vellvehi, M.; Jakovenko, J.; Jordà, X.; Kunen, J.M.G.; Bancken, P.; Bolt, P.J.

    2015-01-01

    This paper studies the thermal influence of a light-emitting diode (LED) driver on a retrofit LED lamp, also reporting on a procedure for its thermal characterization and multiscale modeling. In this analysis, temperature is measured by infrared thermography and monitoring specific locations with

  5. Lumped thermal capacitance analysis of transient heat conduction ...

    African Journals Online (AJOL)

    The thermal energy transferred by unsteady flow of the coolant to the vessel was determined as internal energy change. Numerical algorithms for Matlab Code were implemented to generate data for transient analysis and simulation. The simulations indicated that the temperature variations and the the-rmal stresses were ...

  6. Thermal analysis of cold vacuum drying of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G.

    1998-07-20

    The thermal analysis examined transient thermal and chemical behavior of the Multi canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with Mark IV N, Reactor spent fuel in four fuel baskets and one scrap basket. This analysis provides the basis for the MCO thermal behavior at the CVD Facility for its Phase 2 Safety Analysis Report (revision 4).

  7. Neutron diffraction and gravimetric study of the iron nitriding reaction under ammonia decomposition conditions.

    Science.gov (United States)

    Wood, Thomas J; Makepeace, Joshua W; David, William I F

    2017-10-18

    Ammonia decomposition over iron catalysts is known to be affected by whether the iron exists in elemental form or as a nitride. In situ neutron diffraction studies with simultaneous gravimetric analysis were performed on the nitriding and denitriding reactions of iron under ammonia decomposition conditions. The gravimetric analysis agrees well with the Rietveld analysis of the neutron diffraction data, both of which confirm that the form of the iron catalyst is strongly dependent on ammonia decomposition conditions. Use of ammonia with natural isotopic abundance as the nitriding agent means that the incoherent neutron scattering of any hydrogen within the gases present is able to be correlated to how much ammonia had decomposed. This novel analysis reveals that the nitriding of the iron occurred at exactly the same temperature as ammonia decomposition started. The iron nitriding and denitriding reactions are shown to be related to steps that take place during ammonia decomposition and the optimum conditions for ammonia decomposition over iron catalysts are discussed.

  8. Site Averaged Gravimetric Soil Moisture: 1987-1989 (Betts)

    Data.gov (United States)

    National Aeronautics and Space Administration — Site averaged product of the gravimetric soil moisture collected during the 1987-1989 FIFE experiment. Samples were averaged for each site, then averaged for each...

  9. Site Averaged Gravimetric Soil Moisture: 1987-1989 (Betts)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Site averaged product of the gravimetric soil moisture collected during the 1987-1989 FIFE experiment. Samples were averaged for each site, then averaged...

  10. BOREAS HYD-08 1994 Gravimetric Moss Moisture Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains the gravimetric moss data collected by HYD-08 at the Black Spruce and Joey Lake sites. It contains the weights of moss turves under two different...

  11. BOREAS HYD-08 1994 Gravimetric Moss Moisture Data

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains the gravimetric moss data collected by HYD-08 at the Black Spruce and Joey Lake sites. It contains the weights of moss turves under two different conditions.

  12. reduction of gravimetric data using an integrated computer programme

    African Journals Online (AJOL)

    2007-05-10

    or computer programmes). This work has succeeded in achieving this task through the design of _ an integrated computer programme, which combines all the corrections required for the refinement of raw gravimetric data ...

  13. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  14. Thermal CFD Analysis of Tubular Light Guides

    Directory of Open Access Journals (Sweden)

    Ondřej Šikula

    2013-12-01

    Full Text Available Tubular light guides are applicable for daylighting of windowless areas in buildings. Despite their many positive indoor climate aspects they can also present some problems with heat losses and condensation. A computer CFD model focused on the evaluation of temperature distribution and air flow inside tubular light guides of different dimensions was studied. The physical model of the tested light guides of lengths more than 0.60 m proves shows that Rayleigh numbers are adequate for a turbulent air flow. The turbulent model was applied despite the small heat flux differences between the turbulent and laminar model. The CFD simulations resulted into conclusions that the growing ratio of length/diameter increases the heat transmission loss/linear transmittance as much as by 50 percent. Tubular light guides of smaller diameters have lower heat transmission losses compared to the wider ones of the same lengths with the same outdoor temperature being taken into account. The simulation results confirmed the thermal bridge effect of the tubular light guide tube inside the insulated flat roof details. The thermal transmittance of the studied light guides in the whole roof area was substituted with the point thermal bridges. This substitution gives possibility for simple thermal evaluation of the tubular light pipes in roof constructions.

  15. Spectroscopic, morphological, thermal and dielectrical analysis of ...

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... thesis of composite is evident from FTIR, XRD and SEM characterization techniques. The composite shows improved thermal stability as compared with pure PTh, which opens the gate for the material to be used for high-temperature appli- cation purposes. Dielectric study shows that the presence of.

  16. Integration of Design, Thermal, Structural, and Optical Analysis, Including Thermal Animation

    Science.gov (United States)

    Amundsen, Ruth M.

    1993-01-01

    In many industries there has recently been a concerted movement toward 'quality management' and the issue of how to accomplish work more efficiently. Part of this effort is focused on concurrent engineering; the idea of integrating the design and analysis processes so that they are not separate, sequential processes (often involving design rework due to analytical findings) but instead form an integrated system with smooth transfers of information. Presented herein are several specific examples of concurrent engineering methods being carried out at Langley Research Center (LaRC): integration of thermal, structural and optical analyses to predict changes in optical performance based on thermal and structural effects; integration of the CAD design process with thermal and structural analyses; and integration of analysis and presentation by animating the thermal response of a system as an active color map -- a highly effective visual indication of heat flow.

  17. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    Science.gov (United States)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  18. a Study on the Thermal Vibration Analysis of the Graphite Disk Under Thermal Shock

    Science.gov (United States)

    Lee, Young-Shin; Kim, Jae-Hoon; Kim, Hyun-Soo; Kim, Duck-Hoi; Ku, Seong-Hoi; Moon, Soon-Il

    Graphite is applied to structural material of the high temperature reactor and nozzle of high energy rocket engine. The excessive vibration and stress field can be occurred for this material due to the severe thermal condition. In this study, the thermal stress and vibration characteristics of ATJ graphite under high temperature condition are investigated by finite element analysis (FEA). The specimen is designed as a disk shape in order to simulate the rocket nozzle combustion condition. The experiment of thermal heat is also conducted using by CO2 laser.

  19. Dynamic thermal analysis of machines in running state

    CERN Document Server

    Wang, Lihui

    2014-01-01

    With the increasing complexity and dynamism in today’s machine design and development, more precise, robust and practical approaches and systems are needed to support machine design. Existing design methods treat the targeted machine as stationery. Analysis and simulation are mostly performed at the component level. Although there are some computer-aided engineering tools capable of motion analysis and vibration simulation etc., the machine itself is in the dry-run state. For effective machine design, understanding its thermal behaviours is crucial in achieving the desired performance in real situation. Dynamic Thermal Analysis of Machines in Running State presents a set of innovative solutions to dynamic thermal analysis of machines when they are put under actual working conditions. The objective is to better understand the thermal behaviours of a machine in real situation while at the design stage. The book has two major sections, with the first section presenting a broad-based review of the key areas of ...

  20. A Multi-scale Approach to Urban Thermal Analysis

    Science.gov (United States)

    Gluch, Renne; Quattrochi, Dale A.

    2005-01-01

    An environmental consequence of urbanization is the urban heat island effect, a situation where urban areas are warmer than surrounding rural areas. The urban heat island phenomenon results from the replacement of natural landscapes with impervious surfaces such as concrete and asphalt and is linked to adverse economic and environmental impacts. In order to better understand the urban microclimate, a greater understanding of the urban thermal pattern (UTP), including an analysis of the thermal properties of individual land covers, is needed. This study examines the UTP by means of thermal land cover response for the Salt Lake City, Utah, study area at two scales: 1) the community level, and 2) the regional or valleywide level. Airborne ATLAS (Advanced Thermal Land Applications Sensor) data, a high spatial resolution (10-meter) dataset appropriate for an environment containing a concentration of diverse land covers, are used for both land cover and thermal analysis at the community level. The ATLAS data consist of 15 channels covering the visible, near-IR, mid-IR and thermal-IR wavelengths. At the regional level Landsat TM data are used for land cover analysis while the ATLAS channel 13 data are used for the thermal analysis. Results show that a heat island is evident at both the community and the valleywide level where there is an abundance of impervious surfaces. ATLAS data perform well in community level studies in terms of land cover and thermal exchanges, but other, more coarse-resolution data sets are more appropriate for large-area thermal studies. Thermal response per land cover is consistent at both levels, which suggests potential for urban climate modeling at multiple scales.

  1. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M

    2013-01-01

    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  2. Automated Gravimetric Management Of Solutions Part 2.* Automated Gravimetric Approach To Direct Potentiometry And Kappa Number Determination

    OpenAIRE

    Pasquini C.; Cunha I.B.S.

    1995-01-01

    The high-performance microcomputer controlled gravimetric burette described in Part 1 has been employed to automate some routine analytical procedures. A direct potentiometric determination of fluoride ions in drinking water was developed to include an automatic calibration step, matrix adjustment and sample determination. Also the complex and cumbersome titrimetric procedure for determination of the kappa number (lignin content) in paper pulp, has been automated by using the gravimetric unit...

  3. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  4. Shuttle TPS thermal performance and analysis methodology

    Science.gov (United States)

    Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.

    1983-01-01

    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.

  5. The Analysis of Thermal Comfort in Kitchen

    Science.gov (United States)

    Ilma Rahmillah, Fety; Hotma Uli Tumanggor, Agustina; Dila Sari, Amarria

    2017-06-01

    Human also has a thermoreceptor which is a non-specialized sensory receptor that has relative changes in temperature. Thermal comfort is a very important element for human body. Kitchen as an important part of a home is often forgotten. Cooking in the kitchen is a routine activity which is done from the morning until the evening; begin with preparing breakfast, lunch and dinner. The problem in this study was the occurance of heat when cooking in the kitchen without air conditioning in tropical countries. This research analyzes thermal comfort while doing cooking activities in conventional kitchen with gas stoves in tropical dry season. Two residential kitchens are observed by measuring the temperature and humidity as well as analyze other possible factors. Psychometric chart is used to assess the comfort zone in the kitchen. This research is using Predicted Mean Vote (PMV) Index and Predicted Percentage Dissatisfied (PPD) Index. By using online psychometric chart, the sensation is in warm condition with the range value of PMV between 1.73 up to 2.36 and PPD 63% untill 90%. However, 71% respondents perceived morning kitchen thermal as comfortable.

  6. Window design : visual and thermal consequences : analysis of the thermal and daylighting performance of windows

    NARCIS (Netherlands)

    Bergem-Jansen, P.M. van; Soeleman, R.S.

    1979-01-01

    Selected results of an analysis for the thermal and lighting requirements associated with windows in utility buildings are presented. This analysis concerns the effects of r¡indow size and shape, orientation and of different ways of supplementing the daylight by artifieial light for a typical office

  7. Resonant-Gravimetric Identification of Competitive Adsorption of Environmental Molecules.

    Science.gov (United States)

    Xu, Pengcheng; Xu, Tao; Yu, Haitao; Li, Xinxin

    2017-07-05

    Understanding competitive adsorption relationship among various ambient gases is important in adsorbing-material development for capturing environmentally harmful gas. For example, environmental interfering factors (e.g., moisture) can affect the competitive gas-molecule adsorption that needs to be clarified. Due to a lack of method to quantitatively study the dynamic adsorbing process (e.g., real-time-counting adsorbed molecule number), it is difficult to reveal the competitive adsorption mechanism. Still using conventional "trial-and-error" method hinders the development of high-performance adsorbing materials; thereby new technology is in high demand to address the issue. This study opens up a three-step resonant-gravimetric analysis method by using ultrasensitive resonant cantilevers. The three experimental steps are sequentially for qualitative analysis, quantitative determination, and thermodynamic-level identification about the competitive adsorption relationship among the environmental gas molecules. Previous studies indicate that the zeolitic-imidazolate framework (ZIF) of ZIF-8 nanocrystals has a low affinity to environmental CO 2 . This conclusion is confirmed in this study by evaluating ZIF-8 with the three experimental steps, sequentially for qualitative judgment of adsorbability, quantitative determination of hydrous molecule structure in real air, and quantitative extraction of thermodynamic enthalpy, ΔH°. By figuring out the competitive interface-adsorption relationship, we verified that ZIF-8 cannot adsorb CO 2 in real air. However, for the first time, ZIF-8 is identified as an excellent adsorbent to environmental NO 2 .

  8. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  9. Sessile droplet de-pinning: new life for gravimetric data.

    Science.gov (United States)

    Chan, Kwaichow B; Pierce, Scott M

    2007-02-01

    Using three different types of surfaces as exemplars, we report a gravimetric method as a viable tool for studying the de-pinning process. Namely, the de-pin time, tau(d) (the time required for a horizontal sessile droplet to de-pin at the triple phase line on a given substrate), is estimated without using a time consuming and expensive video imaging system. This is made possible by deciphering the non-linear portion of mass vs time data of an evaporating sessile droplet. Typical gravimetric glass-substrate evaporative mass loss vs time data has two regimes: a long, linear regime followed by a short, non-linear regime. Traditionally, researchers extract only the evaporation rate of a droplet from the linear regime but discard (by truncating the data) or ignore (thus deriving no information from) the non-linear regime. The origin of the linear to non-linear transition, found almost universally in gravimetric data, persists unremarked upon. By constructing three very different types of surfaces and comparing gravimetric data with video imaging data taken simultaneously, we report the transition is correlated to the onset of the de-pinning event in each case. This realization enables us to measure the de-pin time, tau(d), with gravimetric data only; i.e., without the video system, gathering more information from gravimetric data than previously considered. The method has application in estimating the de-pin time of a droplet deposited on a substrate that yields poor top-view contrast for videography, such as a water droplets on silicon wafers or glass substrates. Finally, gravimetric data is more accurate for evaporation modeling when substrate/droplet interaction areas are not circular.

  10. Comparison of gravimetric, creamatocrit and esterified fatty acid methods for determination of total fat content in human milk.

    Science.gov (United States)

    Du, Jian; Gay, Melvin C L; Lai, Ching Tat; Trengove, Robert D; Hartmann, Peter E; Geddes, Donna T

    2017-02-15

    The gravimetric method is considered the gold standard for measuring the fat content of human milk. However, it is labor intensive and requires large volumes of human milk. Other methods, such as creamatocrit and esterified fatty acid assay (EFA), have also been used widely in fat analysis. However, these methods have not been compared concurrently with the gravimetric method. Comparison of the three methods was conducted with human milk of varying fat content. Correlations between these methods were high (r(2)=0.99). Statistical differences (Pgravimetric method. Furthermore, the ease of operation and real-time analysis make the creamatocrit method preferable. Copyright © 2016. Published by Elsevier Ltd.

  11. The analysis of thermally stimulated processes

    CERN Document Server

    Chen, R; Pamplin, Brian

    1981-01-01

    Thermally stimulated processes include a number of phenomena - either physical or chemical in nature - in which a certain property of a substance is measured during controlled heating from a 'low' temperature. Workers and graduate students in a wide spectrum of fields require an introduction to methods of extracting information from such measurements. This book gives an interdisciplinary approach to various methods which may be applied to analytical chemistry including radiation dosimetry and determination of archaeological and geological ages. In addition, recent advances are included, such

  12. Analysis of a Radioisotope Thermal Rocket Engine

    Science.gov (United States)

    Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.

    2017-01-01

    The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.

  13. Development of thermal models of footwear using finite element analysis.

    Science.gov (United States)

    Covill, D; Guan, Z W; Bailey, M; Raval, H

    2011-03-01

    Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort.

  14. Project of new 1st order gravimetric network of the Republic of Slovenia

    OpenAIRE

    Koler, Božo; Medved, Klemen; Kuhar, Miran

    2006-01-01

    The project of a new gravimetric network of Slovenia is presented. It resulted from the needs for the new gravimetric and height systems of Slovenia, all parts of the new national coordinate system. The project of the gravimetric network is based on analyses of old gravimetric network and surveys carried out at the territory of the Republic of Slovenia. Besides, the geological assessment of suitability of the preserved and new planned gravimetric stations was completed.

  15. Thermal Hydraulic Analysis Using GIS on Application of HTR to Thermal Recovery of Heavy Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yangping Zhou

    2012-01-01

    Full Text Available At present, large water demand and carbon dioxide (CO2 emissions have emerged as challenges of steam injection for oil thermal recovery. This paper proposed a strategy of superheated steam injection by the high-temperature gas-cooled reactor (HTR for thermal recovery of heavy oil, which has less demand of water and emission of CO2. The paper outlines the problems of conventional steam injection and addresses the advantages of superheated steam injection by HTR from the aspects of technology, economy, and environment. A Geographic Information System (GIS embedded with a thermal hydraulic analysis function is designed and developed to analyze the strategy, which can make the analysis work more practical and credible. Thermal hydraulic analysis using this GIS is carried out by applying this strategy to a reference heavy oil field. Two kinds of injection are considered and compared: wet steam injection by conventional boilers and superheated steam injection by HTR. The heat loss, pressure drop, and possible phase transformation are calculated and analyzed when the steam flows through the pipeline and well tube and is finally injected into the oil reservoir. The result shows that the superheated steam injection from HTR is applicable and promising for thermal recovery of heavy oil reservoirs.

  16. Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers

    KAUST Repository

    Viržonis, Darius

    2014-04-08

    High-frequency (40 MHz) and low-frequency (7 MHz) capacitive micromachined ultrasound transducers (CMUT) were fabricated and tested for use in gravimetric detection of biomolecules. The low-frequency CMUT sensors have a gold-coated surface, while the high-frequency sensors have a silicon nitride surface. Both surfaces were functionalized with bovine leukemia virus antigen gp51 acting as the antigen. On addition of an a specific antibody labeled with horseradish peroxidase (HRP), the antigen/antibody complex is formed on the surface and quantified by HRP-catalyzed oxidation of tetramethylbenzidine. It has been found that a considerably smaller quantity of immuno complex is formed on the high frequency sensor surface. In parallel, the loading of the surface of the CMUT was determined via resonance frequency and electromechanical resistance readings. Following the formation of the immuno complexes, the resonance frequencies of the low-frequency and high-frequency sensors decrease by up to 420 and 440 kHz, respectively. Finite element analysis reveals that the loading of the (gold-coated) low frequency sensors is several times larger than that on high frequency sensors. The formation of the protein film with pronounced elasticity and stress on the gold surface case is discussed. We also discuss the adoption of this method for the detection of DNA using a hybridization assay following polymerase chain reaction.

  17. ISS-CREAM Thermal and Fluid System Design and Analysis

    Science.gov (United States)

    Thorpe, Rosemary S.

    2015-01-01

    Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.

  18. Analysis of Thermal Comfort in an Intelligent Building

    Science.gov (United States)

    Majewski, Grzegorz; Telejko, Marek; Orman, Łukasz J.

    2017-06-01

    Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  19. Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald

    Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.

  20. Thermal Analysis and Calorimetry Techniques for Catalytic Investigations

    Science.gov (United States)

    Le Parlouër, Pierre

    The use of thermal analysis and calorimetry techniques is quite an old and known field of applications for the catalytic investigations and many publications have been published on the various topics including analysis of catalysts, investigation of the processes during the preparation of catalysts, desactivation of catalysts and interaction of reactants or catalytic poisons with the catalysts. Differential thermal analysis, calorimetry and thermogravimetry are also used to characterize the catalysts, especially in the field of gas-solid and gas-liquid interactions. Since the last years, many technical improvements have appeared in the design and the use of thermal analyzers and calorimeters, particularly for the characterization of catalysts. This chapter gives a detailed overview of the uptodate thermal techniques covering various techniques including Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), the calorimetric techniques (including Isothermal Calorimetry, Titration Calorimetry), Thermogravimetric Analysis (TGA), the combined techniques (including TG-DTA and TG-DSC), the Evolved Gas Analysis (including TG-MS, TG-FTIR). Some examples of applications are given to illustrate the catalyst characterizations.

  1. Modelling Phase Change in a 3D Thermal Transient Analysis

    OpenAIRE

    Haque, EEU; Hampson, PR

    2016-01-01

    A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine) is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC) results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer) and adjacent (metal) s...

  2. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  3. Thermal analysis of spent nuclear fuels repository

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, F.; Salome, J.; Cardoso, F.; Velasquez, C.E.; Pereira, C. [Departamento de Engenharia Nuclear - Escola de Engenharia, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte MG, CEP 31270-901 (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores - CNPq, Asa Norte, Brazilia (Brazil); Viana, C. [Departamento de Engenharia Nuclear - Escola de Engenharia, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte MG, CEP 31270-901 (Brazil); Barros, G.P. [Comissao Nacional de Energia Nuclear-CNEN, Rua Gal Severiano, n 90 - Botafogo, 22290-901, Rio de Janeiro, RJ (Brazil)

    2016-07-01

    In the first part, Pressurized Water Reactor (PWR), Very High-Temperature Reactor (VHTR) and Accelerator-Driven Subcritical Reactor System (ADS) spent fuels (SF) were evaluated to the thermal of the spent fuel pool (SFP) without an external cooling system. The goal is to compare the water boiling time of the pool storing different types of spent nuclear fuels. This study used the software ANSYS Workbench 16.2 - student version. For the VHTR, two types of fuel were analyzed: (Th,TRU)O{sub 2} and UO{sub 2}. This part of the studies were performed for wet storage condition using a single type of SF and decay heat values at times t=0 and t=10 years after the reactor discharge. The ANSYS CFX module was used and the results show that the time that water takes to reach the boiling point varies from 2.4 minutes for the case of VHTR-(Th,TRU)O{sub 2} SF at time t=0 year after reactor discharge until 32.4 hours for the case of PWR SF at time t=10 years after the discharge reactor. The second part of this work consists of modeling a geological repository. Firstly, the temperature evaluation of the spent fuel from a PWR was analyzed. A PWR canister was simulated using the ANSYS transient thermal module. Then the temperature of canister could be computed during the time spent on a portion of a geological repository. The mean temperature on the canister surface increased during the first nine years, reaching a plateau at 35.5 C. degrees between the tenth and twentieth years after the geological disposal. The idea is to extend this study for the other systems analyzed in the first part. The idea is to include in the study, the spent fuels from VHTR and ADS and to compare the canister behavior using different spent fuels. (authors)

  4. Prediction of the biochar carbon stability by thermal analysis

    Science.gov (United States)

    Méndez, Ana; Cely, Paola; Plaza, César; Paz-Ferreiro, Jorge; Gascó, Gabriel

    2015-04-01

    Thermal analysis (DTA, DSC, TG and dTG) has been used for decades to characterize carbonaceous materials used as fuels (oil, coal). Our research group has used these techniques for the characterisation of different biochars in order to assess proportions of labile and recalcitrant organic matter and to study the evolution of soil organic matter in soils amended with biochar. Thermal analysis could be used to determine the proximate analysis, i.e., the percentage of humidity, volatile matter and fixed carbon or to calculate the thermostability index, previously identified as a reliable parameter for evaluating the level of stability of organic matter in organic wastes and biochar. Relationship between the stability of biochar, the raw material and the pyrolysis conditions could be established by thermal analysis techniques.

  5. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  6. Long term energy performance analysis of Egbin thermal power ...

    African Journals Online (AJOL)

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  7. Optical and Gravimetric Partitioning of Coastal Ocean Suspended Particulate Inorganic Matter (PIM)

    Science.gov (United States)

    Stavn, R. H.; Zhang, X.; Falster, A. U.; Gray, D. J.; Rick, J. J.; Gould, R. W., Jr.

    2016-02-01

    Recent work on the composition of suspended particulates of estuarine and coastal waters increases our capabilities to investigate the biogeochemal processes occurring in these waters. The biogeochemical properties associated with the particulates involve primarily sorption/desorption of dissolved matter onto the particle surfaces, which vary with the types of particulates. Therefore, the breakdown into chemical components of suspended matter will greatly expand the biogeochemistry of the coastal ocean region. The gravimetric techniques for these studies are here expanded and refined. In addition, new optical inversions greatly expand our capabilities to study spatial extent of the components of suspended particulate matter. The partitioning of a gravimetric PIM determination into clay minerals and amorphous silica is aided by electron microprobe analysis. The amorphous silica is further partitioned into contributions by detrital material and by the tests of living diatoms based on an empirical formula relating the chlorophyll content of cultured living diatoms in log phase growth to their frustules determined after gravimetric analysis of the ashed diatom residue. The optical inversion of composition of suspended particulates is based on the entire volume scattering function (VSF) measured in the field with a Multispectral Volume Scattering Meter and a LISST 100 meter. The VSF is partitioned into an optimal combination of contributions by particle subpopulations, each of which is uniquely represented by a refractive index and a log-normal size distribution. These subpopulations are aggregated to represent the two components of PIM using the corresponding refractive indices and sizes which also yield a particle size distribution for the two components. The gravimetric results of partitioning PIM into clay minerals and amorphous silica confirm the optical inversions from the VSF.

  8. Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  9. SUPERALLOYS: AN INTRODUCTION WITH THERMAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    S. S. Raza

    2015-09-01

    Full Text Available Nickel based superalloys are commonly used materials in the aero industry and more specifically in the hot section of aero engines. These nickel and nickel iron based superalloys are precipitation strengthened alloys with a face centered cubic gamma matrix. Alloy 718, Allvac 718Plus and Waspaloy have been of great interest in the present study. Alloy 718 is a precipitation strengthened nickel-iron based alloy having gamma double prime phase (Ni3Nb as a main strengthening phase up to 650 °C. Waspaloy, another precipitation strengthened nickel base superalloy, has a very good strength at temperatures up to ~750 °C whereas Allvac 718Plus is a newly developed nickel based precipitation strengthened superalloy which retains good mechanical properties at up to ~700 °C. These three alloys were investigated in terms of how their respective solidification process reveals upon cooling.Latent heat of soloidification has been estimated for all three alloys. Differential thermal analyses (DTA have been used to approach the task. It was seen that Waspaloy has the smallest solidification range whereas Allvac 718Plus has the largest solidification interval in comparison. 

  10. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and

  11. Combined Colorimetric and Gravimetric CMUT Sensor for Detection of Phenylacetone

    DEFF Research Database (Denmark)

    Mølgaard, Mathias Johannes Grøndahl; Laustsen, Milan; Thygesen, Ida Lysgaard

    2017-01-01

    The detection of phenylacetone is of interest as it is a common precursor for the synthesis of (meth)amphetamine. Resonant gravimetric sensors can be used to detect the mass and hereby the concentration of a gas while colorimetric arrays typically have an exceptional selectivity to the target...... analyte if the right colorimetric dyes are chosen. We present a sensor system consisting of a Capacitive Micromachined Ultrasonic Transducer (CMUT) and a colorimetric array for detection of phenylacetone. The CMUT is used as a resonant gravimetric gas sensor where the resonance frequency shift due to mass...

  12. Comparison of gravimetric geoids with GEOS 3 altimetric geoid

    Science.gov (United States)

    Chapman, M. E.; Talwani, M.

    1979-01-01

    The paper examines how well GEOS 3 radar altimeter estimates of geoid height compare with data from independently determined gravimetric geoids. To this end, GEOS 3 altimeter estimates of geoid height are compared with 1 by 1 deg gravimetric geoids in the North Atlantic, Northwest Pacific, and Indian oceans. There exist constant offsets and long-wavelength discrepancies between the two sets of data. Although some difficulties exist with constant offset and long-wavelength discrepancies, the GEOS 3 radar altimeter appears to detect geological features such as deep-sea trenches and is an excellent instrument for acquiring measurements of the shape of the ocean surface.

  13. A detailed gravimetric geoid from North America to Eurasia

    Science.gov (United States)

    Vincent, S. F.; Strange, W. E.; Marsh, J. G.

    1972-01-01

    A detailed gravimetric geoid of the United States, North Atlantic, and Eurasia, which was computed from a combination of satellite derived and surface gravity data, is presented. The precision of this detailed geoid is + or - 2 to + or - 3 m in the continents but may be in the range of 5 to 7 m in those areas where data is sparse. Comparisons of the detailed gravimetric geoid with results of Rapp, Fischer, and Rice for the United States, Bomford in Europe, and Heiskanen and Fischer in India are presented. Comparisons are also presented with geoid heights from satellite solutions for geocentric station coordinates in North America, the Caribbean, and Europe.

  14. Gravimetric enrichment of high lipid and starch accumulating microalgae.

    Science.gov (United States)

    Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad

    2015-11-01

    This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    Science.gov (United States)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  17. Thermal analysis of RFETS SS and C

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.S.

    2000-02-04

    In support of the gas generation test program (GGTP) for the 9975 shipping container, thermogravimetric analysis (TGA) was conducted. The objective of this activity was to determine the moisture content as an input to the gas generation model.

  18. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    Science.gov (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  19. Thermal Sensor Arrays for The Combinatorial Analysis of Thin Films

    Science.gov (United States)

    McCluskey, Patrick James

    2011-12-01

    Membrane-based thermal sensor arrays were developed for the high-throughput analysis of the thermophysical properties of thin films. The continuous growth of integrated circuits and microelectromechanical systems, as well as the development of functional materials and the optimization of materials properties, have produced the need for instruments capable of fast materials screening and analysis at reduced length scales. Two instruments were developed based on a similar architecture, one to measure thermal transport properties and the other to perform calorimetry measurements. Both have the capability to accelerate the pace of materials development and understanding using combinatorial measurement methods. The shared architecture of the instruments consists of a silicon-based micromachined array of thermal sensors. Each sensor consists of a SiN X membrane and a W heating element that also serves as a temperature gauge. The array design allows the simultaneous creation of a library of thin film samples by various deposition techniques while systematically varying a parameter of interest across the device. The membrane-based sensors have little thermal mass making them extremely sensitive to changes in thermal energy. The nano-thermal transport array has an array of sensors optimized for sensitivity to heat loss. The heat loss is determined from the temperature response of the sensor to an applied current. An analytical model is used with a linear regression analysis to fit the thermal properties of the samples to the temperature response. The assumptions of the analytical model are validated with a finite element model. Measured thermal properties include specific heat, thermal effusivity, thermal conductivity, and emissivity. The technique is demonstrated by measuring the thermal transport properties of sputter deposited Cu multilayers with a total film thickness from 15 to 470 nm. The experimental results compare well to a theory based on electronic thermal

  20. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    In both the materials, the crystal structure has been determined by X-ray single crystal analysis at room temperature (293 K). The compound structures consist of K + (or NH 4 + ) cations and double chains of CdCl 6 octahedra sharing one edge extending along b -axis. The mixture of KA + /NH 4 + cations are located ...

  1. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2011-01-15

    This study deals with preparation, characterization, thermal properties and thermal reliability of n-eicosane microcapsules as novel phase change material (PCM) for thermal energy storage. The microcapsulated PCMs were prepared by coating n-eicosane with polymethylmethacrylate (PMMA) shell. Fourier transform infrared (FT-IR), scanning electron microscope (SEM) and particle size distribution (PSD) analysis were used to characterize the PMMA/eicosane microcapsules as microcapsulated PCMs. The PSD analysis indicated that the average diameter of microcapsules was found to be 0.70 {mu}m under the stirring speed of 2000 rpm. Thermal properties and thermal reliability of the microcapsules were determined using differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) methods. From DSC analysis, the melting and freezing temperatures and the latent heats of the microcapsules were measured as 35.2 C and 34.9 C, 84.2 and -87.5 J/g, respectively. TGA analysis indicated that PMMA/eicosane microcapsules degrade in three steps at considerably high temperatures. Accelerated thermal cycling tests have been also applied to show the thermal reliability of the microcapsules. All results showed that thermal properties make the PMMA/eicosane microcapsules potential PCM for thermal energy storage. (author)

  2. Finite element thermal analysis of convectively-cooled aircraft structures

    Science.gov (United States)

    Wieting, A. R.; Thornton, E. A.

    1981-01-01

    The design complexity and size of convectively-cooled engine and airframe structures for hypersonic transports necessitate the use of large general purpose computer programs for both thermal and structural analyses. Generally thermal analyses are based on the lumped-parameter finite difference technique, and structural analyses are based on the finite element technique. Differences in these techniques make it difficult to achieve an efficient interface. It appears, therefore, desirable to conduct an integrated analysis based on a common technique. A summary is provided of efforts by NASA concerned with the development of an integrated thermal structural analysis capability using the finite element method. Particular attention is given to the development of conduction/forced-convection finite element methodology and applications which illustrate the capabilities of the developed concepts.

  3. Multidisciplinary Analysis of a Microsystem Device for Thermal Control

    Science.gov (United States)

    Moran, Matthew E.

    2002-07-01

    A microelectromechanical (MEMS) device is under development that uses the Stirling cycle to provide cooling or heating directly to a thermally loaded surface. This MEMS cooler can be used strictly in the cooling mode, or switched between cooling and heating modes in milliseconds for precise temporal and spatial temperature control. Potential applications include cooling and thermal control of: microsystems, electronics, sensors, biomedical devices, and spacecraft components. A primary challenge for further development is the multidisciplinary analysis required to characterize and optimize its performance. This paper describes the first-order thermodynamic analysis performed on the MEMS cooler and the resulting ideal performance curves generated. The basis for additional coupled analyses such as fluid/gas dynamics, thermal, electrostatic, structural, dynamic, material, and processing is addressed. Scaling issues relevant to the device and the breakdown of continuum theory in the micro-domain is also examined.

  4. Thermal analysis of nanofluids in microfluidics using an infrared camera.

    Science.gov (United States)

    Yi, Pyshar; Kayani, Aminuddin A; Chrimes, Adam F; Ghorbani, Kamran; Nahavandi, Saeid; Kalantar-zadeh, Kourosh; Khoshmanesh, Khashayar

    2012-07-21

    We present the thermal analysis of liquid containing Al(2)O(3) nanoparticles in a microfluidic platform using an infrared camera. The small dimensions of the microchannel along with the low flow rates (less than 120 μl min(-1)) provide very low Reynolds numbers of less than 17.5, reflecting practical parameters for a microfluidic cooling platform. The heat analysis of nanofluids has never been investigated in such a regime, due to the deficiencies of conventional thermal measurement systems. The infrared camera allows non-contact, three dimensional and high resolution capability for temperature profiling. The system was studied at different w/w concentrations of thermally conductive Al(2)O(3) nanoparticles and the experiments were in excellent agreement with the computational fluid dynamics (CFD) simulations.

  5. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... was developed in order to investigate the thermal behaviour of the solidifying metal. Three cylindrically shaped cast samples surrounded by different cooling materials were introduced in the same mould allowing a common metallurgical background for samples solidifying at different cooling rates. The proposed...

  6. Determination of Polymers Thermal Degradation by Color Change Analysis

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2016-01-01

    Full Text Available Context: It has been observed that thermal degradation of thermoplastic polymers, when they are reprocessed by injection, extrusion and extrusion / injection, undergo color changes in the product, although it not has been established as this change occurs. Method: It analyzed the effect on thermal degradation caused by polymer type, processing type, polymer grade, rotation speed of the extrusion screw and number of reprocessing, which is quantified by the color change using an empirical equation, with experimental data obtained by analysis through a microcolor colorimeter. Results: It was found that the color change analysis provides information about progress of the thermal degradation and stability of thermoplastic polymers, which are undergoing to multiple reprocessing events and processes. Conclusions: It was established that this technique can be implemented as a simple and efficient measure of thermoplastic products quality control, according to their color change.

  7. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    Science.gov (United States)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  8. QUANTITATIVE GRAVIMETRIC INTERPRETATION OF THE PTUJSKO POLJE AREA

    Directory of Open Access Journals (Sweden)

    Franjo Šumanovac

    1991-12-01

    Full Text Available Gravimetric anomalies were converted into depth contours by using the depth and density data from bore holes. Gravity modelling was performed in two- and threedimensions. The forms of the structures were obtained using the computation methods described. The work performed represent a contribution towards a better use of the gravity data (the paper is published in Croatian.

  9. QUANTITATIVE GRAVIMETRIC INTERPRETATION OF THE PTUJSKO POLJE AREA

    OpenAIRE

    Franjo Šumanovac; Željko Zagorac; Mladen Lukačević

    1991-01-01

    Gravimetric anomalies were converted into depth contours by using the depth and density data from bore holes. Gravity modelling was performed in two- and threedimensions. The forms of the structures were obtained using the computation methods described. The work performed represent a contribution towards a better use of the gravity data (the paper is published in Croatian).

  10. Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient.

    Science.gov (United States)

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2011-06-01

    Microvascular permeability to water is characterized by the microvascular filtration coefficient (K(f)). Conventional gravimetric techniques to estimate K(f) rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate K(f) estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce K(f) from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to K(f) and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of K(f) in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique.

  11. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  12. Gravimetric and Histologic Changes in Rat Testes Following Oral ...

    African Journals Online (AJOL)

    Hence the effect(s) of orally administered low doses of Congo red (CR) on rat testes was investigated using gravimetric and histologic methods. When compared to CR-free rats, the testes weights of rats exposed to 10, 20, 30 and 40mg CR/kg body weight (once a week for 6 weeks) significantly decreased (p < 0.05).

  13. Reduction Of Gravimetric Data Using An Integrated Computer ...

    African Journals Online (AJOL)

    Gravimetric method of geophysical prospecting requires a methodical combination of both field techniques and data processing. For example drift correction in data processing cannot be successfully carried out without an a priori well-structured observational sequence during field observation that takes cognisance of both ...

  14. Finite element analysis for dental implants subjected to thermal loads

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Khalili

    2013-10-01

    Full Text Available   Background and Aims: Dental implants have been studied for replacement of missing teeth for many years. Productivity of implants is extremely related to the stability and resistance under applied loads and the minimum stress in jaw bone. The purpose of this study was to study numerically the 3D model of implant under thermal loads.   Materials and Methods: Bone and the ITI implant were modeled in “Solidworks” software. To obtain the exact model, the bone was assumed as a linear orthotropic material. The implant system, including implant, abutment, framework and crown were modeled and located in the bone. After importing the model in Abaqus software, the material properties and boundary conditions and loads were applied and after meshing, the model was analyzed. In this analysis, the loads were applied in two steps. In the first step, the mechanical load was applied as tightening torque to the abutment and the abutment was tightened in the implant with 35 N.cm torque. In the second step, the thermal load originated from drinking cold and hot water was applied as thermal flux on the ceramic crown surface in this model.   Results: Thermal analysis results showed that the thermal gradient in the bone was about 5.5 and 4.9 degrees of centigrade in the case of drinking cold and hot water respectively , although the maximum gradient of the whole system was reduced to 14 degrees, which occurred, in the crown by drinking cold water.   Conclusion Thermal stresses were so small and it was because of the low thermal gradient. Maximum stresses occurred in the abutment were due to the tension preloads which were originated from the tightening torque.

  15. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Purpose: Cervical lesions are restored with class V preparation. The aim of this study was to use a three-dimensional finite element method to carry out a thermal analysis of the temperature and stress distributions of three different restorative materials used for class V cavities of maxillary molar teeth. Materials and Methods: ...

  16. Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis

    Science.gov (United States)

    Ferguson, Doug

    2016-01-01

    The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.

  17. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  18. ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014)

    NARCIS (Netherlands)

    Lever, T.; Haines, P.; Rouquerol, J.; Charsley, E.L.; Ekeren, P.J. van; Burlett, D.J.

    2014-01-01

    The widespread use of thermal analysis (TA) by scientists as a laboratory technique carries with it a working vocabulary. This document is intended to provide those working in the field with a consistent set of definitions to permit clear and precise communication as well as understanding. Included

  19. Measuring energy expenditure in sports by thermal video analysis

    DEFF Research Database (Denmark)

    Gade, Rikke; Larsen, Ryan Godsk; Moeslund, Thomas B.

    2017-01-01

    Estimation of human energy expenditure in sports and exercise contributes to performance analyses and tracking of physical activity levels. The focus of this work is to develop a video-based method for estimation of energy expenditure in athletes. We propose a method using thermal video analysis ...

  20. Estimation of the Gravimetric Pole Tide Using GGP Superconducting Gravimeters

    Science.gov (United States)

    Ziegler, Y.; Hinderer, J.; Rogister, Y. J.; Rosat, S.

    2013-12-01

    The movement of the Earth rotation axis induces a perturbation of the surface gravity field through (1) the variation of the centrifugal force along with (2) surface deformation and mass redistribution. This effect of the polar motion can be recovered from the gravimetric data and we usually estimate the amplitude Aobserved and the phase φobserved of the perturbation. Those values are compared to theoretical estimates Atheoretical and φtheoretical based on astronomically-determined time series of the pole position. In this work, we use superconducting gravimeter (SG) data from the Global Geodynamics Project (GGP) and Earth orientation parameters provided by the International Earth Rotation and Reference Systems Service (IERS). First, we compute the gravimetric factor δ = Aobserved/Atheoretical and phase lag κ = φobserved - φtheoretical at the Chandler period, which is approximately 14 months, using Strasbourg gravimetric data that span more than 15 years. We discuss the influence of the processing (filtering, drift and offsets removal), the importance of the corrections (atmospheric and hydrological loading, ocean pole tide) and the convergence with time of the computed values. Second, we extend the method to process jointly the gravity data from a set of SG stations and estimate a global gravimetric factor. We apply a spatial data weighting taking into account the latitude and longitude dependency, which is a degree-2, order-1, surface spherical harmonics, of the gravity perturbation related to polar motion. Third, we stack the resulting signal to improve the signal-to-noise ratio. The stacking method enables us to get rid of local effects that considerably affect the individual estimates of the gravimetric factor at the Chandler period. This method will provide a set of optimal amplitude factor and phase lag that we will compare to the results obtained for each station.

  1. Thermal Analysis of Bending Under Tension Test

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Martins, Paulo A.F.; Bay, Niels

    2014-01-01

    sometimes can cause lubricant film breakdown and galling. In order to replicate the production conditions in bending under tension testing it is thus important to control the tool/workpiece interface temperature. This can be done by pre-heating the tool, but it is essential that the interface temperature......The tribological conditions in deep drawing can be simulated in the Bending Under Tension test to evaluate the performance of new lubricants, tool materials, etc. Deep drawing production with automatic handling runs normally at high rate. This implies considerable heating of the tools, which...... during testing is similar to the one in the production tool. A universal sheet tribo-tester has been developed, which can run multiple tests automatically from coil. This allows emulating the temperature increase as in production. The present work performs finite element analysis of the evolution...

  2. Concrete containment analysis including thermal effects

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.

    1989-01-01

    Pretest predictions were made by the staff of the Engineering Mechanics Program at ANL for the response of the 1:6-scale reinforced concrete containment model that was tested to failure by liner tearing and leakage at the Sandia National Laboratories. Questions have been raised in regard to possible effects of temperature in combination with internal pressure on the behavior of the model. Specifically, if the containment had been subjected to elevated temperature as well as internal pressure, what differences in pressure capacity, failure mechanism and location would have been predicted when compared to the analysis of internal pressure alone. The purpose of this paper is to address these questions. 3 refs., 9 figs.

  3. Modelling Phase Change in a 3D Thermal Transient Analysis

    Directory of Open Access Journals (Sweden)

    E Haque

    2016-09-01

    Full Text Available A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer and adjacent (metal surfaces. Initial temperatures are established using a liner extrapolation based on experimental data. Results yield good correlation with experimental data.

  4. Modeling and analysis of AGS thermal shock experiments

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.; Kim, S.H.; Haines, J.R.

    1998-11-01

    An overview is provided on modeling and analysis of thermal shock experiments conducted with high-energy, short-pulse energy deposition in a mercury filled container in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). The simulation framework utilized along with results of simulations for pressure and strain profiles are presented. While the magnitude of peak strain predictions versus data are in reasonable agreement, the temporal variations were found to differ significantly in selected cases, indicating lack of modeling of certain physical phenomena or due to uncertainties in the experimental data gathering techniques. Key thermal-shock related issues and uncertainties are highlighted.

  5. Electrical and Thermal Performance Analysis for a Highly Concentrating Photovoltaic/Thermal System

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2015-01-01

    Full Text Available A 30 kW highly concentrating photovoltaic/thermal (HCPV/T system has been constructed and tested outdoors. The HCPV/T system consists of 32 modules, each of which consists of point-focus Fresnel lens and triple-junction solar cells with a geometric concentrating ratio of 1090x. The modules are connected to produce both electrical and thermal energy. Performance analysis has been conducted from the viewpoint of thermodynamics. The experimental results show that highest photovoltaic efficiency of 30% and instantaneous thermal efficiency of 30% can be achieved at the same time, which means the total solar energy conversion efficiency of the HCPV/T system is higher than 60%. The photovoltaic efficiency increases with direct irradiance when the direct irradiance is below 580 W/m2, but it remains nearly unchanged when the direct irradiation is higher than 580 W/m2. The instantaneous thermal efficiency decreases during water heating process. However, the electrical performance of the system is not affected obviously by water temperature. Highest exergetic efficiency of 35.4% can be produced by the HCPV/T system. The exergetic efficiency is mainly affected by irradiation level, which is similar to the characteristics of photovoltaic performance.

  6. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)

    1995-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  7. Advaced Spatio-Temporal Thermal Analysis of Electronic Systems

    Directory of Open Access Journals (Sweden)

    Miroslav Hrianka

    2003-01-01

    Full Text Available The article gives a brief review the of diagnostics and analysis possibilities by a spatio-temporal approach into electronic system in infrared bandwidth. The two dimensional image grabbed by the thermo vision camera provides information about the surface temperature distribution of an electronic system. The main idea is based on the analysis of the object which consists of a temporal sequence of a spatial thermal images. Advanced analysis is achieved by morphological image gradient spatio-temporal model: The mentioned method provides a total temperature system evaluation as well as it allows separate analysis in the chosen determined temperature area.

  8. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  9. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    Science.gov (United States)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  10. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    Science.gov (United States)

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  11. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).

    Science.gov (United States)

    Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S

    2016-12-01

    Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.

  12. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  13. Infrared thermal facial image sequence registration analysis and verification

    Science.gov (United States)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  14. Thermal Analysis of Nanofluids Using Modeling and Molecular Dynamics Simulation

    Science.gov (United States)

    Namboori, P. K. Krishnan; Vasavi, C. S.; Gopal, K. Varun; Gopakumar, Deepa; Ramachandran, K. I.; Narayanan, B. Sabarish

    2010-10-01

    Nanofluids are nanotechnology-based heat transfer fluids obtained by suspending nanometer-sized particles in conventional heat transfer fluids in a stable manner. In many of the physical phenomena such as boiling and properties such as latent heat, thermal conductivity and heat transfer coefficient, there is significant change on addition of nanoparticles. These exceptional qualities of Nanofluids mainly depend on the atomic level mechanisms, which in turn govern all mechanical properties like strength, Young's modulus, Poisson's ratio, compressibility etc. Control over the fundamental thermo physical properties of the working medium will help to understand these unique phenomena of nanofluids to a great extent. Macroscopic modeling approaches, which are based on conventional relations of thermodynamics, have been proved to be incompetent to explain this difference. Atomistic `modeling and simulation' has been emerged out as an efficient alternative for this. The enhancement of thermal conductivity of water by suspending nanoparticle inclusions has been experimented and proved to be an effective method of enhancing convective heat dissipation. This work mainly deals with characterization of the thermal conductivity of nanofluids. Nano particle sized aluminium oxide; copper oxide and titanium dioxide have been taken in this work for the analysis of thermal conductivity. The effect of thermal conductivity on parameters like volume concentration of the fluid, nature of particle material and size of the particle has been computationally formulated. It has been found that there is an increase in effective thermal conductivity of the fluid by the addition of nanomaterials ascertaining an improvement in the heat transfer behavior of nanofluids. This facilitates the reduction in size of such heat transfer systems (radiators) and lead to increased energy and fuel efficiency, lower pollution and improved reliability.

  15. Comparison between the theoretical and observed tidal gravimetric factors

    Science.gov (United States)

    Dehant, V.; Ducarme, B.

    1987-12-01

    At present there is a discrepancy of ˜ 1.5% between the Wahr's gravimetric factor and the observed one. The aim of this paper is to explain a part of this discrepancy. To compare correctly the theory and the observations, it is necessary to adopt a different definition of the tidal gravimetric factor δ. A new theoretical value is then computed at each tidal frequency, for an elliptical uniformly rotating Earth model. From the ICET data bank, we deduce an experimental model for five tidal waves by regression between all the observations currently available and the function of the latitude which enter in the theoretical form of δ. The latitude dependent part fits the theory and the discrepancy on the constant part is reduced by a factor of two. The remaining gap is 0.5% for O1, 0.4% for P1, 0.8% for K1 and 0.8% for M2.

  16. Silaffin peptides as a novel signal enhancer for gravimetric biosensors.

    Science.gov (United States)

    Nam, Dong Hyun; Lee, Jeong-O; Sang, Byoung-In; Won, Keehoon; Kim, Yong Hwan

    2013-05-01

    Application of biomimetic silica formation to gravimetric biosensors has been conducted for the first time. As a model system, silaffin peptides fused with green fluorescent protein (GFP) were immobilized on a gold quartz crystal resonator for quartz crystal microbalances using a self-assembled monolayer. When a solution of silicic acid was supplied, silica particles were successfully deposited on the Au surface, resulting in a significant change in resonance frequency (i.e., signal enhancement) with the silaffin-GFP. However, frequency was not altered when bare GFP was used as a control. The novel peptide enhancer is advantageous because it can be readily and quantitatively conjugated with sensing proteins using recombinant DNA technology. As a proof of concept, this study shows that the silaffin domains can be employed as a novel and efficient biomolecular signal enhancer for gravimetric biosensors.

  17. A detailed gravimetric geoid of North America, Eurasia, and Australia

    Science.gov (United States)

    Vincent, S.; Strange, W. E.

    1972-01-01

    A detailed gravimetric geoid of North America, the North Atlantic, Eurasia, and Australia computed from a combination of satellite-derived and surface 1 x 1 gravity data, is presented. Using a consistent set of parameters, this geoid is referenced to an absolute datum. The precision of this detailed geoid is + or - 2 meters in the continents but may be in the range of 5 to 7 meters in those areas where data was sparse. Comparisons of the detailed gravimetric geoid with results of Rice for the United States, Bomford and Fischer in Eurasia, and Mather in Australia are presented. Comparisons are also presented with geoid heights from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  18. Gravimetric imaging of partially molten bodies beneath the Bolivian Altiplano

    Science.gov (United States)

    del Potro, R.; Diez, M.; Gottsmann, J.; Camacho, A. J.; Sunagua, M.

    2011-12-01

    The presence of partial melt in the Earth's crust causes a decrease in density, and hence a density contrast, that generates a potential field anomaly. Gravimetric techniques can quantify such an anomaly and invert its signature to produce a subsurface density distribution model, from which images of anomalous density bodies can be isolated. Here, we present a 3D gravimetric image of four deep-rooted negative density bodies in the Central Volcanic Zone of the Andes in southern Bolivia, which we interpret to contain partial melt. The underlying gravimetric data were obtained by the combination of 143 new with 60 existing observation from previous regional surveys. The survey covers an area of ~5000 km2 that comprises the Central Andean Bouguer anomaly minima of about -450 μGal. After standard data reduction, the local residual gravity signal was inverted using a priori determined plausible density contrasts (±50 to ±300 kg m-3). The inversion routine builds a subsurface model (defined by the 3D aggregation of parallel-piped cells) based on a controlled 'growth' process of anomalous density bodies by means of an exploratory approach. Non-uniqueness is addressed by favouring solutions that balance minimum residuals and minimum number of anomalous bodies with minimum anomalous mass. Within the range of assumed density contrasts, all inversion models show the presence of the deep-rooted low-density bodies, providing a significant confidence level to the inversion results. Our favoured 3D model of the anomalous bodies is obtained from a negative density contrast of 150 kg m-3 that corresponds to bodies appear to connect the Altiplano-Puna Magma Body (AMPB) at ~20 km depth, to shallower (~5 km) pre-eruption levels beneath the Altiplano-Puna Volcanic Complex (APVC). One of the bodies is located beneath a large on-going ground uplift centred at Uturuncu volcano and the modelled ground deformation source lies within the gravimetrically imaged body of partial melt.

  19. Thermal analysis of cement pastes with superabsorbent polymers

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede; Lukosiute, Irena

    2013-01-01

    Thermal analysis of cement systems is very helpful in the understanding of many different properties of cementitious compounds, both for the original reacting compounds, and also for the resulting hydration products. Superabsorbent polymers can be added to cement systems with many different reasons......, so it is relevant that fundamental knowledge of this new compound on the development of hydration is well understood [1-3]. This paper reports research on thermal analysis of cement pastes with superabsorbent polymers. We have studied several parameters: the concentration of SAP in the system......, the effect of particle size distribution, and their influence on the hydration process with focus on cement-silica systems. This is done at different thermodynamic conditions, so the energy of activation in the different systems can be accessed. This paper provides information relevant to hydration modelling...

  20. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  1. Thermal analysis studies of poly(etheretherketone)/hydroxyapatite biocomposite mixtures.

    Science.gov (United States)

    Meenan, B J; McClorey, C; Akay, M

    2000-08-01

    Biocomposite formulations which have the potential to combine the proven mechanical performance of poly(etheretherketone) (PEEK) with the inherent bioactivity of hydroxyapatite (HA), may have a utility as load-bearing materials in a medical implant context. The effect of thermal processing on the relevant properties of the PEEK and/or HA components in any fabricated composite structure is, however, an important consideration for their effective exploitation. This paper reports the results of a detailed thermal characterization study of a series of PEEK/HA mixtures using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC). The TGA analyses show minimal weight loss for all of the mixtures and for a pure PEEK sample up to approximately 530 degrees C. Above this point there is a sharp on-set of decomposition for the PEEK component in each case. The temperature at which this feature occurs varies for each mixture in the approximate range 539-556 degrees C. This observation is supported by the presence of exotherms in the corresponding DSC scans, in the same temperature region, which are also assigned to PEEK decomposition. The temperature at which the degradation on-set occurs is found to decrease with increasing HA contribution. The use of the modulated DSC technique allows a number of important thermal events, not easily identifiable from the data obtained by the conventional method, to be clearly observed. In particular, the glass transition temperature (Tg) of the polymer can now be accurately determined. Using these thermal analysis data, calculations of the % crystallinity of PEEK in the mixtures have been made and compared with that of a 100% polymer sample. From these studies it is evident that the presence of HA does not adversely affect the degree of crystallinity of the PEEK component in the mixtures of interest over the thermal range studied. Copyright 2000 Kluwer Academic

  2. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.S.

    1994-08-23

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

  3. Thermal stress analysis of reusable surface insulation for shuttle

    Science.gov (United States)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1974-01-01

    An iterative procedure for accurately determining tile stresses associated with static mechanical and thermally induced internal loads is presented. The necessary conditions for convergence of the method are derived. An user-oriented computer program based upon the present method of analysis was developed. The program is capable of analyzing multi-tiled panels and determining the associated stresses. Typical numerical results from this computer program are presented.

  4. Thermal Analysis of Iodine Satellite (iSAT)

    Science.gov (United States)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  5. ICTAC Nomenclature of Thermal Analysis (IUPAC Recommendations 2014

    Directory of Open Access Journals (Sweden)

    Macan J. (translator

    2015-09-01

    Full Text Available The widespread use of thermal analysis (TA by scientists as a laboratory technique carries with it a working vocabulary. This document is intended to provide those working in the field with a consistent set of definitions to permit clear and precise communication as well as understanding. Included in the document are the definitions of 13 techniques, 54 terms within the glossary, as well as symbols and units.

  6. Discriminating DNA mismatches by electrochemical and gravimetric techniques.

    Science.gov (United States)

    Mazouz, Zouhour; Fourati, Najla; Zerrouki, Chouki; Ommezine, Asma; Rebhi, Lamia; Yaakoubi, Nourdin; Kalfat, Rafik; Othmane, Ali

    2013-10-15

    A silicon nitride functionalized electrode and a 104 MHz lithium tantalate (LiTaO₃) surface acoustic wave (SAW) sensor have been used to investigate target-probe recognition processes. Electrochemical and gravimetric measurements have been considered to monitor hybridization of single base mismatch (SBM) in synthetic oligonucleotides and single-nucleotide polymorphisms ApoE in real clinical genotypes. Obvious discrimination of SBM in nucleotides has been shown by both gravimetric and electrochemical techniques, without labeling nor amplification. Investigations on mismatches nature and position have also been considered. For guanine-adenine (GA), guanine-thymine (GT) and guanine-guanine (GG) mismatches, the sensors responses present a dependence upon positions. Considering the capacitance variations and hybridization rates, results showed that gravimetric transduction is more sensitive than electrochemical one. Moreover, the highest value of GT hybridization rate (in the middle position) was found in accordance with the nearest-neighbor model, where the considered configuration appears as the most thermodynamically stable. For the real samples, where the electrochemical transduction, by combining capacitance and flat-band potential measurements, were found more sensitive, the results show that the realized sensor permits an unambiguous discrimination of recognition between fully complementary, non-complementary and single base mismatched targets, and even between the combination of differently matched strands. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Systems Analysis for Thermal Infrared ` THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Sun, Jingye; Brindley, Helen E.; Liang, Xiaoxin; Lucyszyn, Stepan

    2015-05-01

    The ` THz Torch' concept was recently introduced by the authors for providing secure wireless communications over short distances within the thermal infrared (10-100 THz). Unlike conventional systems, thermal infrared can exploit front-end thermodynamics with engineered blackbody radiation. For the first time, a detailed power link budget analysis is given for this new form of wireless link. The mathematical modeling of a short end-to-end link is provided, which integrates thermodynamics into conventional signal and noise power analysis. As expected from the Friis formula for noise, it is found that the noise contribution from the pyroelectric detector dominates intrinsic noise. From output signal and noise voltage measurements, experimental values for signal-to-noise ratio (SNR) are obtained and compared with calculated predictions. As with conventional communications systems, it is shown for the first time that the measured SNR and measured bit error rate found with this thermodynamics-based system resembles classical empirical models. Our system analysis can serve as an invaluable tool for the development of thermal infrared systems, accurately characterizing each individual channel and, thus, enables the performance of multi-channel ` THz Torch' systems to be optimized.

  8. Engineering Aerothermal Analysis for X-34 Thermal Protection System Design

    Science.gov (United States)

    Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent

    1998-01-01

    Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier-Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.

  9. On the thermal stability of a radiating plasma subject to nonlocal thermal conduction. I - Linear analysis

    Science.gov (United States)

    Chun, E.; Rosner, R.

    1993-01-01

    We study the linear stability of an optically thin uniform radiating plasma subject to nonlocal heat transport. We derive the dispersion relation appropriate to this problem, and the marginal wavenumbers for instability. Our analysis indicates that nonlocal heat transport acts to reduce the stabilizing influence of thermal conduction, and that there are critical values for the electron mean free path such that the plasma is always unstable. Our results may be applied to a number of astrophysical plasmas, one such example being the halos of clusters of galaxies.

  10. Combined Gravimetric-Seismic Crustal Model for Antarctica

    Science.gov (United States)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2017-09-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24

  11. Combined Gravimetric-Seismic Crustal Model for Antarctica

    Science.gov (United States)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2018-01-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24

  12. Various startup system designs of HPLWR and their thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qi [School of Physics and Engineering, Sun Yat-sen University, Guangzhou (China); Cai, Jiejin, E-mail: chiven77@hotmail.com [School of Physics and Engineering, Sun Yat-sen University, Guangzhou (China); Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Guangzhou (China)

    2013-12-15

    Highlights: • An axial one-dimensional (1D) single channel model is developed for the HPLWR core. • Various startup systems for HPLWR have been investigated and found feasible. • Characteristics of the component required for HPLWR startup designs are studied. -- Abstract: This paper summarizes the results of various startup system designs and their thermal analysis of the high performance light water reactor (HPLWR) which is the European version of the various supercritical water cooled reactor proposals. In order to study the thermal-hydraulic characteristics of the HPLWR core, a simplified axial one-dimensional (1D) single channel model is developed, which consists of fuel, cladding, coolant and moderator. The model is verified by the related results of Seppälä (2008). Both constant pressure startup systems and sliding pressure startup systems of HPLWR are presented. In constant pressure startup system, the reactor starts at supercritical pressure. It appears that compared with other SCWR designs, the weight of the component required for constant pressure startup of HPLWR is medium and reasonable. Constant pressure startup systems are found feasible from thermal analysis. And for sliding pressure startup, the reactor starts at subcritical pressure. The adequate core power of 25% with 28% flow rate and a feedwater temperature of 280 °C are determined during pressurization phase. The thermal analysis results show that the sliding pressure startup systems for HPLWR are also feasible. Considering the same flow rate as the supercritical-pressure light water-cooled fast reactor (SCFR), the component weight required is reduced in HPLWR.

  13. Thermal transient analysis of steel hollow sections exposed to fire

    Directory of Open Access Journals (Sweden)

    Lenka Lausova

    2016-03-01

    Full Text Available The paper describes a study of non-uniform temperature distribution across the section of steel structures where elevated temperature causes additive internal forces due to restrained conditions. The work provides comparison of a heat field at the time of fire in the non-protected steel hollow cross-sections of different sizes. The study compares simplified calculations according to valid standard and numerical simulations in finite element analysis of steel structures exposed to fire loading from three sides. Numerical thermal analysis is also compared with results obtained from the fire testing in VSB-Technical University of Ostrava.

  14. Deformation analysis considering thermal expansion of injection mold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok [Samsung Electronics Co., LTD., Seoul (Korea, Republic of)

    2015-09-15

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

  15. Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    George OGUNTALA

    2017-08-01

    Full Text Available In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the thermal performance of the porous fin increases. The numerical solutions by the Haar wavelet collocation method are in good agreement with the standard numerical solutions.

  16. Kinetic study of Mongolian coals by thermal analysis

    Directory of Open Access Journals (Sweden)

    Jargalmaa S

    2018-02-01

    Full Text Available Thermal analysis was used for the thermal characterization of the coal samples. The experiments were performed to study the pyrolysis and gasification kinetics of typical Mongolian brown coals. Low rank coals from Shivee ovoo, Ulaan ovoo, Aduun chuluun and Baganuur deposits have been investigated. Coal samples were heated in the thermogravimetric apparatus under argon at a temperature ranges of 25-1020ºC with heating rates of 10, 20, 30 and 40ºC/min. Thermogravimetry (TG and derivative thermogravimetry (DTG were performed to measure weight changes and rates of weight losses used for calculating the kinetic parameters. The activation energy (Ea was calculated from the experimental results by using an Arrhenius type kinetic model.

  17. Thermal and Electrical Analysis of Mars Rover RTGs

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    2012-01-19

    The RTG designs described in the preceding paper in these proceedings were analyzed for their thermal and electrical performance. Each analysis consisted of coupled thermal, thermoelectric, and electrical analyses, using Fairchild-generated specialized computer codes. These were supplemented with preliminary structural and mass analyses. For each design, various cases representing different operating conditions (water-cooled/radiation-cooled, BOM/EOM, summer/winter, day/night) and different thermoelectric performance assumptions (from conservative to optimistic) were analyzed; and for every case, the heat flow rates, temperatures and electrical performance of each layer of thermoelectric elements and of the overall RTG were determined. The analyses were performed in great detail, to obtain accurate answers permitting meaningful comparisons between different designs. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments.

  18. Application of thermal analysis techniques in activated carbon production

    Science.gov (United States)

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  19. Fluid and thermal performance analysis of PMSM used for driving

    Science.gov (United States)

    Ding, Shuye; Cui, Guanghui; Li, Zhongyu; Guan, Tianyu

    2016-03-01

    The permanent magnet synchronous motor (PMSM) is widely used in ships under frequency conversion control system. The fluid flow performance and temperature distribution of the PMSM are difficult to clarify due to its complex structure and variable frequency control condition. Therefore, in order to investigate the fluid and thermal characteristics of the PMSM, a 50 kW PMSM was taken as an example in this study, and a 3-D coupling analysis model of fluid and thermal was established. The fluid and temperature fields were calculated by using finite volume method. The cooling medium's properties, such a velocity, streamlines, and temperature, were then analyzed. The correctness of the proposed model, and the rationality of the solution method, were verified by a temperature test of the PMSM. In this study, the changing rheology on the performance of the cooling medium and the working temperature of the PMSM were revealed, which could be helpful for designing the PMSM.

  20. Three years of high precision gravity measurements at the gravimetric station of Brasimone - Italy

    Directory of Open Access Journals (Sweden)

    G. Casula

    1998-06-01

    Full Text Available From August 1995 up to now, at the Enea Research Center of Brasimone, in the Italian Apennines between Bologna and Florence (Italy: 44º07'N, 11º.07'E, 890 m height, the superconducting gravimeter GWR model TT70 number T015 has been continuously recording the variation of the local gravity field, in the frame of the Global Geodynamics Project. The gravimetric laboratory, being a room of the disused nuclear power plant of Brasimone, is a very stable site, free from noise due to human activities. Data blocks of several months of continuous gravity records have been collected over a time span of three years, together with the meteorological data. The gravimeter has been calibrated at relative accuracy better than 0.3% with the aid of a mobile mass system, by imposed perturbations of the local gravity field and recording the gravimeter response. The results of this calibration technique were checked by two comparison experiments with absolute gravimeters performed during this period: the first, in May 1994 with the aid of the symmetrical rise and fall gravimeter of the Institute of Metrology Colonnetti of Turin, and the second in October 1997 involving an FG5 absolute gravimeter of the Institute de Physique du Globe of Strasbourg. The gravimeter signal was analysed to compute a high precision tidal model for Brasimone site. Starting from a set of gravimetric and atmospheric pressure data of high quality, relative to 46 months of observation, we performed the tidal analysis using Eterna 3.2 software to compute amplitudes, gravimetric factors and phases of the main waves of the Tamura catalogue. Finally a comparison experiment between two of the STS-1/VBB broadband seismometers of the MedNet project network and the gravity records relative to the Balleny Islands earthquake (March 25, 1998 were analysed to look for evidence of normal modes due to the free oscillations of the Earth.

  1. Integrated Software Environment for Pressurized Thermal Shock Analysis

    Directory of Open Access Journals (Sweden)

    Dino Araneo

    2011-01-01

    Full Text Available The present paper describes the main features and an application to a real Nuclear Power Plant (NPP of an Integrated Software Environment (in the following referred to as “platform” developed at University of Pisa (UNIPI to perform Pressurized Thermal Shock (PTS analysis. The platform is written in Java for the portability and it implements all the steps foreseen in the methodology developed at UNIPI for the deterministic analysis of PTS scenarios. The methodology starts with the thermal hydraulic analysis of the NPP with a system code (such as Relap5-3D and Cathare2, during a selected transient scenario. The results so obtained are then processed to provide boundary conditions for the next step, that is, a CFD calculation. Once the system pressure and the RPV wall temperature are known, the stresses inside the RPV wall can be calculated by mean a Finite Element (FE code. The last step of the methodology is the Fracture Mechanics (FM analysis, using weight functions, aimed at evaluating the stress intensity factor (KI at crack tip to be compared with the critical stress intensity factor KIc. The platform automates all these steps foreseen in the methodology once the user specifies a number of boundary conditions at the beginning of the simulation.

  2. Assessing swine thermal comfort by image analysis of postural behaviors.

    Science.gov (United States)

    Xin, H

    1999-01-01

    Postural behavior is an integral response of animals to complex environmental factors. Huddling, nearly contacting one another on the side, and spreading are common postural behaviors of group-housed animals undergoing cold, comfortable, and warm/hot sensations, respectively. These postural patterns have been routinely used by animal caretakers to assess thermal comfort of the animals and to make according adjustment on the environmental settings or management schemes. This manual adjustment approach, however, has the inherent limitations of daily discontinuity and inconsistency between caretakers in interpretation of the animal comfort behavior. The goal of this project was to explore a novel, automated image analysis system that would assess the thermal comfort of swine and make proper environmental adjustments to enhance animal wellbeing and production efficiency. This paper describes the progress and on-going work toward the achievement of our proposed goal. The feasibility of classifying the thermal comfort state of young pigs by neural network (NN) analysis of their postural images was first examined. It included exploration of using certain feature selections of the postural behavioral images as the input to a three-layer NN that was trained to classify the corresponding thermal comfort state as being cold, comfortable, or warm. The image feature selections, a critical step for the classification, examined in this study included Fourier coefficient (FC), moment (M), perimeter and area (P&A), and combination of M and P&A of the processed binary postural images. The result was positive, with the combination of M and P&A as the input feature to the NN yielding the highest correct classification rate. Subsequent work included the development of hardware and computational algorithms that enable automatic image segmentation, motion detection, and the selection of the behavioral images suitable for use in the classification. Work is in progress to quantify the

  3. Thermal Performance Analysis of a Geologic Borehole Repository

    Energy Technology Data Exchange (ETDEWEB)

    Reagin, Lauren [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-16

    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of two WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to

  4. Analysis of the variation of range parameters of thermal cameras

    Science.gov (United States)

    Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał

    2016-10-01

    Measured range characteristics may vary considerably (up to several dozen percent) between different samples of the same camera type. The question is whether the manufacturing process somehow lacks repeatability or the commonly used measurement procedures themselves need improvement. The presented paper attempts to deal with the aforementioned question. The measurement method has been thoroughly analyzed as well as the measurement test bed. Camera components (such as detector and optics) have also been analyzed and their key parameters have been measured, including noise figures of the entire system. Laboratory measurements are the most precise method used to determine range parameters of a thermal camera. However, in order to obtain reliable results several important conditions have to be fulfilled. One must have the test equipment capable of measurement accuracy (uncertainty) significantly better than the magnitudes of measured quantities. The measurements must be performed in a controlled environment thus excluding the influence of varying environmental conditions. The personnel must be well-trained, experienced in testing the thermal imaging devices and familiar with the applied measurement procedures. The measurement data recorded for several dozen of cooled thermal cameras (from one of leading camera manufacturers) have been the basis of the presented analysis. The measurements were conducted in the accredited research laboratory of Institute of Optoelectronics (Military University of Technology).

  5. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  6. Analysis of the thermal properties of nanomodified epoxy composite

    Directory of Open Access Journals (Sweden)

    FOMIN Nikolay Egorovich

    2014-02-01

    Full Text Available The paper presents the results of experimental research of epoxy composites modified by nanoparticles. The results were obtained by the method of thermogravimetric analysis. The dependences between the intensity of the processes of thermal degradation in the air and technological factors and content of nanoparticles have been determined. The optimal concentration of 5 types of nanomodifiers besed on carbon nanoclusters adducts, which are functionalized carbon compounds has been revealed. The obvious advantage of these modifiers is their high solubility in polar solvents, that makes the use of these modifiers easier and allows disusing the additional sonication. Investigation of thermooxidation processes of modified epoxy resins was performed in a dynamic mode using TGA/SDTA851e module of STARe System in the temperature range 25÷800⁰C in air atmosphere with simultaneous removal of the gaseous decomposition products. Aluminum oxide (Al₂O₃ was used as the etalon, the temperature speed set was 10 deg./min. It was found out that the process of thermal degradation consists of two stages. The first step is characterized by the main oxidative degradation of polymer and the loss of up to 80% of the original sample weight, the second step is accompanied by the further oxidative decomposition of epoxy composite related to the carbon skeleton destruction. It was proved experimentally that injection of modifiers changes thermal-oxidative decomposition processes and also changes specific energy of epoxy composite according to the type and concentration of nanomodifier. It was shown that the injection of optimal amounts of modifier allows increase of the thermal and energy characteristics, and as a result, the durability of epoxy coatings exposed to aggressive climatic factors.

  7. Structural analysis of a thermal insulation retainer assembly

    Science.gov (United States)

    Greene, William H.; Gray, Carl E., Jr.

    1989-01-01

    In January 1989 an accident occurred in the National Transonic Facility wind tunnel at NASA Langley Research Center that was believed to be caused by the failure of a thermal insulation retainer. A structural analysis of this retainer assembly was performed in order to understand the possible failure mechanisms. Two loading conditions are important and were considered in the analysis. The first is the centrifugal force due to the fact that this retainer is located on the fan drive shaft. The second loading is a differential temperature between the retainer assembly and the underlying shaft. Geometrically nonlinear analysis is required to predict the stiffness of this component and to account for varying contact regions between various components in the assembly. High, local stresses develop in the band part of the assembly near discontinuities under both the centrifugal and thermal loadings. The presence of an aluminum ring during a portion of the part's operating life was found to increase the stresses in other regions of the band. Under the centrifugal load, high bending stresses develop near the intersection of the band with joints in the assembly. These high bending stresses are believed to be the most likely cause for failure of the assembly.

  8. Exergetic analysis of parabolic trough solar thermal power plants

    Science.gov (United States)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.

    2014-12-01

    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  9. Thermal-mechanical coupled analysis of a brake disk rotor

    Science.gov (United States)

    Belhocine, Ali; Bouchetara, Mostefa

    2013-08-01

    The main purpose of this study is to analyze the thermomechanical behavior of the dry contact between the brake disk and pads during the braking phase. The simulation strategy is based on computer code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles The thermal-structural analysis is then used with coupling to determine the deformation and the Von Mises stress established in the disk, the contact pressure distribution in pads. The results are satisfactory when compared to those of the specialized literature.

  10. Thermal states of the Kitaev honeycomb model: Bures metric analysis

    Science.gov (United States)

    Abasto, Damian F.; Zanardi, Paolo

    2009-01-01

    We analyze the Bures metric over the canonical thermal states for the Kitaev honeycomb mode. In this way the effects of finite temperature on topological phase transitions can be studied. Different regions in the parameter space of the model can be clearly identified in terms of different temperature scaling behavior of the Bures metric tensor. Furthermore, we show a simple relation between the metric elements and the crossover temperature between the quasicritical and the quasiclassical regions. These results extend the analysis of Zhao and Zhou [e-print arXiv:/0803.0814v1] and Yang [Phys. Rev. A 78, 012304 (2008)] to finite temperatures.

  11. Thermal analysis of the airflow around ATLAS muon end cap

    CERN Document Server

    Gasser, D

    2003-01-01

    A thermal analysis of the airflow inside the UX15 cavern and through the ATLAS detector is presented. This study is done using a CFD (Computational Fluid Dynamics) model. This model includes a simplified geometry of the detector and the experimental cavern, the ventilation flow rate and the released heat dissipation figures are taken into account. This analysis aims at estimate the temperature gradients that develop in the muons end cap area. Indeed, light rays seen by CCD camera will be used in this area in order to align the muon chambers. The rays should not be too much distorted by temperature difference, which would hinder the chamber alignment. The simulation results show that a light ray projected through the whole end cap area should not encounter a gradient higher than 5 K. Nevertheless, the results of this analysis are valid if and only if the spaces represented as empty in the model are allowed to remain empty in ATLAS.

  12. Development of new automated piezoelectric gravimeter of aviation gravimetric system

    Directory of Open Access Journals (Sweden)

    Антон Валерьевич Коваль

    2015-05-01

    Full Text Available A new automated piezoelectric gravimeter of aviation gravimetric system (AGS, which has higher accuracy (1 mGal and speed (fully automated than known to date, is considered in this article. The principle of work of the piezoelectric gravimeter which based on the physical phenomenon of direct piezoelectric effect is described and its mathematical model is derived. It is established that by choosing the design parameters of the piezoelectric sensing element of piezoelectric gravimeter can set its own frequency of 0.1 rad / s and avoid the need for a low-pass filter in automated AGS

  13. A gravimetric 3D global inversion for cavity detection

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, A.G.; Vieira, R.; Montesinos, F.G. (Inst. de Astronomia y Geodesia, Madrid (Spain). Faculty de CC. Matematicas); Cuellar, V. (Lab. de Geotecnia del Centro de Estudios y Experimentacion de Obras Publicas, Madrid (Spain))

    1994-02-01

    A gravimetric survey, covering a site 200 m square, was carried out in order to locate karstic cavities. After eliminating the regional trend using a polynomial fit, the residual is modeled by least-squares prediction. Correlated signals for several wavelengths are detected. The inversion of these anomalies is performed by a global 3D adjustment using spherical bodies as models. The adjustment is repeated in order to obtain a stable configuration. The results show the probable presence of a system of cavities and galleries. Data collected from boreholes and the subsequent appearance of sink-holes are consistent with the results.

  14. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence

  15. Identification and analysis of factors affecting thermal shock resistance of ceramic materials in solar receivers

    Science.gov (United States)

    Hasselman, D. P. H.; Singh, J. P.; Satyamurthy, K.

    1980-01-01

    An analysis was conducted of the possible modes of thermal stress failure of brittle ceramics for potential use in point-focussing solar receivers. The pertinent materials properties which control thermal stress resistance were identified for conditions of steady-state and transient heat flow, convective and radiative heat transfer, thermal buckling and thermal fatigue as well as catastrophic crack propagation. Selection rules for materials with optimum thermal stress resistance for a particular thermal environment were identified. Recommendations for materials for particular components were made. The general requirements for a thermal shock testing program quantitatively meaningful for point-focussing solar receivers were outlined. Recommendations for follow-on theoretical analyses were made.

  16. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    The maximum thermal stress ratio positions inside the tube have been indicated as MX for all investigated cases. In the light of the thermal stress values, various designs can be applied to reduce thermal stress in grooved tubes. Keywords. Heat transfer; thermal stress; grooved tubes. 1. Introduction. Heat transfer in pipe flow ...

  17. Risk analysis of the thermal sterilization process. Analysis of factors affecting the thermal resistance of microorganisms.

    Science.gov (United States)

    Akterian, S G; Fernandez, P S; Hendrickx, M E; Tobback, P P; Periago, P M; Martinez, A

    1999-03-01

    A risk analysis was applied to experimental heat resistance data. This analysis is an approach for processing experimental thermobacteriological data in order to study the variability of D and z values of target microorganisms depending on the deviations range of environmental factors, to determine the critical factors and to specify their critical tolerance. This analysis is based on sets of sensitivity functions applied to a specific case of experimental data related to the thermoresistance of Clostridium sporogenes and Bacillus stearothermophilus spores. The effect of the following factors was analyzed: the type of target microorganism; nature of the heating substrate; pH, temperature; type of acid employed and NaCl concentration. The type of target microorganism to be inactivated, the nature of the substrate (reference or real food) and the heating temperature were identified as critical factors, determining about 90% of the alteration of the microbiological risk. The effect of the type of acid used for the acidification of products and the concentration of NaCl can be assumed to be negligible factors for the purposes of engineering calculations. The critical non-uniformity in temperature during thermobacteriological studies was set as 0.5% and the critical tolerances of pH value and NaCl concentration were 5%. These results are related to a specific case study, for that reason their direct generalization is not correct.

  18. Computation of improved tidal parameters at the gravimetric station of Brasimone

    Directory of Open Access Journals (Sweden)

    P. Baldi

    1997-06-01

    Full Text Available Since 1991 a GWR superconducting gravimeter has been working in a laboratory at the Brasimone ENEA Research Centre, near Bologna (Italy, in the frame of an experimental program to verify Newton's law over distances of the order of 10-100 m. Owing to the aim of the experiment, the gravimeter was moved to different laboratories in the same area, but from August 1995 to date it has been working continuously in the same laboratory in the frame of the preliminary program of the Global Geodynamics Project. The site, belonging to a building of a dismissed nuclear power plant, is free from noise due to human activities, and is thus highly suitable for recording Earth tides. Starting from a set of gravimetric and atmospheric pressure data of high quality relative to 22 months of observation, we performed the tidal analysis using Eterna 3.2 software in order to compute amplitudes, gravimetric factors and phases of the main waves of the Tamura 1987 catalogue. The accuracy of the method adopted for the calibration of the gravimeter, the values of the principal waves and the result of the computation of atmospheric pressure admittance are described.

  19. Activities of the gravimetric laboratory at Jozefosław Observatory

    Science.gov (United States)

    Barlik, Marcin; Olszak, Tomasz; Pachuta, Andrzej; Próchniewicz, Dominik; Rajner, Marcin

    2010-05-01

    Gravimetric laboratory located in the Józefosław Astro - Geodetic Obsevatory of the Warsaw University of Technology is appeared as an unique station in Poland, where the quasi - permanent absolute gravity determinations have been conducted as well as tidal observations. First AG observation has been started in nineties. Those investigations were performed using symmetric ballistic gravimeter ZZG constructed in Poland. Since 2005 AG FG-5 has been used for determinations of the absolute gravity with one month delay. At the tidal laboratory the tidal gravity observations have been also performed since 2002 using LC&R ET-36 gravimeter. The GNNS stations and additional devices are also installed at the observatory for environmental effects monitoring. Authors present results of gravity determinations as well as effects of geophysical phenomena appeared in non-tidal frequency bands. This elaboration deals also with the results of four years cycle of AG and seven years of ET gravimetric data. It presents result of the environmental parameters modelling as the seasonal loading effects induced by air pressure and ocean, ground water and soil moisture changes and a rainfall as well to the gravity changes. It also contains results of the time-frequency analysis gravity with correlation in others geodynamical parameters.

  20. THERMIT2. BWR & PWR Thermal-Hydraulic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kazimi, M.S.; Kao, S.P.; Kelly, J.E. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1992-02-27

    THERMIT2, the most recent release of THERMIT, is intended for thermal-hydraulic analysis of both boiling and pressurized water reactor cores. It solves the three-dimensional, two-fluid equations describing the two-phase flow and heat transfer dynamics in rectangular coordinates. The two-fluid model uses separate partial differential equations expressing conservation of mass, momentum, and energy for each fluid. By expressing the exchange of mass, momentum, and energy between the fluids with physically-based mathematical models, the relative motion and thermal non-equilibrium between the fluids can exist. THERMIT2 offers the choice of either pressure or velocity boundary conditions at the top and bottom of the core. THERMIT2 includes a two-phase turbulent mixing model which provides subchannel analysis capability. THERMIT2 also solves the radial heat conduction equations for fuel pin temperatures, and calculates the heat flux from fuel pin to coolant with appropriate heat transfer models described by a boiling curve.

  1. Thermal analysis of two-dimensional structures in fire

    Directory of Open Access Journals (Sweden)

    I. Pierin

    Full Text Available The structural materials, as reinforced concrete, steel, wood and aluminum, when heated have their mechanical proprieties degraded. In fire, the structures are subject to elevated temperatures and consequently the load capacity of the structural elements is reduced. The Brazilian and European standards show the minimal dimensions for the structural elements had an adequate bearing capacity in fire. However, several structural checks are not contemplated in methods provided by the standards. In these situations, the knowledge of the temperature distributions inside of structural elements as function of time of exposition is required. The aim of this paper is present software developed by the authors called ATERM. The software performs the thermal transient analysis of two-dimensional structures. The structure may be formed of any material and heating is provided by means of a curve of temperature versus time. The data input and the visualization of the results is performed thought the GiD software. Several examples are compared with software Super TempCalc and ANSYS. Some conclusions and recommendations about the thermal analysis are presented

  2. Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC

    Science.gov (United States)

    Scheinherrová, Lenka; Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2017-07-01

    Development of concrete technology and the availability of variety of materials such as silica fume, mineral microfillers and high-range water-reducing admixtures make possible to produce Ultra-High Performance Concrete (UHPC) with compressive strength higher than 160 MPa. However, UHPC is prone to spall under high temperatures what limits its use for special applications only, such as offshore and marine structures, industrial floors, security barriers etc. The spalling is caused by the thermal stresses due to the temperature gradient during heating, and by the splitting force owing to the release of water vapour. Hybrid fibre reinforcement based on combination of steel and polymer fibres is generally accepted by concrete community as a functional solution preventing spalling. In this way, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) is produced possessing high mechanical strength, durability and resistance to water and salt ingress. Since UHPFRC find use in construction industry in tunnel linings, precast tunnel segments, and high-rise buildings, its behaviour during the high-temperature exposure and its residual parameters are of the particular importance. On this account, Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) were done in the paper to identify the structural and chemical changes in UHPFRC during its high-temperature load. Based on the experimental results, several physical and chemical processes that studied material underwent at high-temperatures were recognized. The obtained data revealed changes in the composition of the studied material and allowed identification of critical temperatures for material damage.

  3. Time-Resolved Gravimetric Method To Assess Degassing of Roasted Coffee.

    Science.gov (United States)

    Smrke, Samo; Wellinger, Marco; Suzuki, Tomonori; Balsiger, Franz; Opitz, Sebastian E W; Yeretzian, Chahan

    2017-11-15

    During the roasting of coffee, thermally driven chemical reactions lead to the formation of gases, of which a large fraction is carbon dioxide (CO 2 ). Part of these gases is released during roasting while part is retained inside the porous structure of the roasted beans and is steadily released during storage or more abruptly during grinding and extraction. The release of CO 2 during the various phases from roasting to consumption is linked to many important properties and characteristics of coffee. It is an indicator for freshness, plays an important role in shelf life and in packaging, impacts the extraction process, is involved in crema formation, and may affect the sensory profile in the cup. Indeed, and in view of the multiple roles it plays, CO 2 is a much underappreciated and little examined molecule in coffee. Here, we introduce an accurate, quantitative, and time-resolved method to measure the release kinetics of gases from whole beans and ground coffee using a gravimetric approach. Samples were placed in a container with a fitted capillary to allow gases to escape. The time-resolved release of gases was measured via the weight loss of the container filled with coffee. Long-term stability was achieved using a customized design of a semimicro balance, including periodic and automatic zero value measurements and calibration procedures. The novel gravimetric methodology was applied to a range of coffee samples: (i) whole Arabica beans and (ii) ground Arabica and Robusta, roasted to different roast degrees and at different speeds (roast air temperatures). Modeling the degassing rates allowed structural and mechanistic interpretation of the degassing process.

  4. Thermal analysis of the ambient air around a particle detector

    CERN Document Server

    Gasser, D

    2003-01-01

    The ATLAS particle detector will be in operation at CERN in a few years. The so-called "end cap muon chambers", which form a sub-system of this detector, need to be aligned accurately by means of light rays. Despite the significant amount of heat released in the air by the detector, the rays must not be too much distorted by temperature difference. In order to predict ambient temperature gradient, a thermal analysis is done using a CFD (Computational Fluid Dynamics) model. Because of the complexity of ATLAS geometry, relevant assumptions need to be made in order to get a suitable model for numerical analysis and which give reliable results at the same time.

  5. Thermal stress analysis of the fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.

    1991-12-01

    This paper presents the results of a nonlinear finite-element analysis to determine the structural integrity of the walls of the nuclear fuel storage room in the Radio Isotope Power System Facility of the Fuels and Materials Examination Facility (FMEF) Project. The analysis was performed to assess the effects of thermal loading on the walls that would result from a loss-of-cooling accident. The results obtained from using the same three-dimensional finite-element model with different types of elements, the eight-node brick element and the nonlinear concrete element, and the calculated results using the analytical solutions, are compared. The concrete responses in terms of octahedral normal and shearing stresses are described. The crack and crush states of the concrete were determined on the basis of multiaxial failure criteria.

  6. Analysis of Thermal Performance in a Bidirectional Thermocycler by Including Thermal Contact Characteristics

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-12-01

    Full Text Available This paper illustrates an application of a technique for predicting the thermal characteristics of a bidirectional thermocycling device for polymerase chain reaction (PCR. The micromilling chamber is oscillated by a servo motor and contacted with different isothermal heating blocks to successfully amplify the DNA templates. Because a comprehensive database of contact resistance factors does not exist, it causes researchers to not take thermal contact resistance into consideration at all. We are motivated to accurately determine the thermal characteristics of the reaction chamber with thermal contact effects existing between the heater surface and the chamber surface. Numerical results show that the thermal contact effects between the heating blocks and the reaction chamber dominate the temperature variations and the ramping rates inside the PCR chamber. However, the influences of various temperatures of the ambient conditions on the sample temperature during three PCR steps can be negligible. The experimental temperature profiles are compared well with the numerical simulations by considering the thermal contact conductance coefficient which is empirical by the experimental fitting. To take thermal contact conductance coefficients into consideration in the thermal simulation is recommended to predict a reasonable temperature profile of the reaction chamber during various thermal cycling processes. Finally, the PCR experiments present that Hygromycin B DNA templates are amplified successfully. Furthermore, our group is the first group to introduce the thermal contact effect into theoretical study that has been applied to the design of a PCR device, and to perform the PCR process in a bidirectional thermocycler.

  7. Thermal hydraulic analysis of the JMTR improved LEU-core

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Toshio; Nagao, Yoshiharu; Komukai, Bunsaku; Naka, Michihiro; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takeda, Takashi [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokai, Ibaraki (Japan)

    2003-01-01

    After the investigation of the new core arrangement for the JMTR reactor in order to enhance the fuel burn-up and consequently extend the operation period, the ''improved LEU core'' that utilized 2 additional fuel elements instead of formerly installed reflector elements, was adopted. This report describes the results of the thermal-hydraulic analysis of the improved LEU core as a part of safety analysis for the licensing. The analysis covers steady state, abnormal operational transients and accidents, which were described in the annexes of the licensing documents as design bases events. Calculation conditions for the computer codes were conservatively determined based on the neutronic analysis results and others. The results of the analysis, that revealed the safety criteria were satisfied on the fuel temperature, DNBR and primary coolant temperature, were used in the licensing. The operation license of the JMTR with the improved LEU core was granted in March 2001, and the reactor operation with new core started in November 2001 as 142nd operation cycle. (author)

  8. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  9. Modeling and Analysis of AGS (1998) Thermal Shock Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R.; Kim, S.H.; Taleyarkhan, R.P.

    1999-11-14

    An overview is provided on modeling and analysis of thermal shock experiments conducted during 1998 with high-energy, short-pulse energy deposition in a mercury filled container in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). The simulation framework utilized along with the results of simulations for pressure and strain profiles are presented. While the magnitude of penk strain predictions versus data are in reasonable agreement, the temporal variations were found to differ significantly in selected cases, indicating lack of modeling of certain physical phenomena or due to uncertainties in the experimental data gathering techniques. Key thermal-shock related issues and uncertainties are highlighted. Specific experiments conducted at BNL's AGS facility during 1998 (the subject of this paper) involved high-energy (24 GeV) proton energy deposition in the mercury target over a time frame of - 0.1s. The target consisted of an - 1 m. long cylindrical stainless steel shell with a hemispherical dome at the leading edge. It was filled with mercury at room temperature and pressure. Several optical strain gages were attached to the surface of the steel target. Figure 1 shows a schematic representation of the test vessel along with the main dimensions and positions of three optical strain gages at which meaningful data were obtained. As

  10. FFTF horizontal sodium storage tank preliminary thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1995-02-21

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the drain tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The vertical tanks were the subject of a previous report and are not the subject of this report. The fourth tank is a horizontal cylindrical tank 18 feet in diameter, having an overall length of 31 feet and fabricated from carbon steel. The purpose of this work is to document the thermal analyses that were performed to ensure that the FFTF horizontal sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium drain tank is the type of insulation. The baseline case assumed four inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of four inches. Both cases assumed a total electrical trace heat load of 60 kW, evenly distributed on the tank heads and on the tank side wall (cylinder).

  11. FFTF vertical sodium storage tank preliminary thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1995-02-21

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall.

  12. Thermal analysis of disc brakes using finite element method

    Science.gov (United States)

    Jaenudin, Jamari, J.; Tauviqirrahman, M.

    2017-01-01

    Disc brakes are components of a vehicle that serve to slow or stop the rotation of the wheel. This paper discusses the phenomenon of heat distribution on the brake disc during braking. Heat distribution on the brake disc is caused by kinetic energy changing into mechanical energy. Energy changes occur during the braking process due to friction between the surface of the disc and a disc pad. The temperature resulting from this friction rises high. This thermal analysis on brake discs is aimed to evaluate the performance of an electric car in the braking process. The aim of this study is to analyze the thermal behavior of the brake discs using the Finite Element Method (FEM) through examining the heat distribution on the brake disc using 3-D modeling. Results obtained from the FEM reflect the effects of high heat due to the friction between the disc pad with the disc rotor. Results of the simulation study are used to identify the effect of the heat distribution that occurred during the braking process.

  13. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  14. Solar thermal plant impact analysis and requirements definition study

    Science.gov (United States)

    1982-01-01

    The technology and economics of solar thermal electric systems (STES) for electric power production is discussed. The impacts of and requirements for solar thermal electric power systems were evaluated.

  15. Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells

    Science.gov (United States)

    Shah, Krishna; Chalise, Divya; Jain, Ankur

    2016-10-01

    Thermal runaway is a well-known safety concern in Li-ion cells. Methods to predict and prevent thermal runaway are critically needed for enhanced safety and performance. While much work has been done on understanding the kinetics of various heat generation processes during thermal runaway, relatively lesser work exists on understanding how heat removal from the cell influences thermal runaway. Through a unified analysis of heat generation and heat removal, this paper derives and experimentally validates a non-dimensional parameter whose value governs whether or not thermal runaway will occur in a Li-ion cell. This parameter is named the Thermal Runaway Number (TRN), and comprises contributions from thermal transport within and outside the cell, as well as the temperature dependence of heat generation rate. Experimental data using a 26650 thermal test cell are in good agreement with the model, and demonstrate the dependence of thermal runaway on various thermal transport and heat generation parameters. This parameter is used to predict the thermal design space in which the cell will or will not experience thermal runaway. By combining all thermal processes contributing to thermal runaway in a single parameter, this work contributes towards a unified understanding of thermal runaway, and provides the fundamental basis for design tools for safe, high-performance Li-ion batteries.

  16. Occupancy Analysis of Sports Arenas Using Thermal Imaging

    DEFF Research Database (Denmark)

    Gade, Rikke; Jørgensen, Anders; Moeslund, Thomas B.

    2012-01-01

    . Reflections due to shiny surfaces are eliminated by analysing symmetric patterns. Occlusions are dealt with through a concavity anal- ysis of the binary regions. The system is tested in five different sports arenas, for more than three full weeks altogether. These tests showed that after a short......This paper presents a system for automatic analysis of the occupancy of sports arenas. By using a thermal camera for image capturing the number of persons and their location on the court are found without violating any privacy issues. The images are binarised with an automatic threshold method...... initialisation routine the system operates independent of the different environments. The system can very precisely distinguish between zero, some or many persons on the court and give a good indication of which parts of the court that has been used....

  17. Thermal analysis of microcrystalline cellulose prepared from esparto grass

    Directory of Open Access Journals (Sweden)

    Trache D.

    2013-07-01

    Full Text Available Alfa fibres are extracted from the plant Stippa tenacissima, or esparto grass (alfa is the Arab name for esparto, and grows in the dry regions of North Africa. It belongs to the graminacies family and grows to a height of about 1 m. These fibres are mostly used in the production of paper. Recently, they have been used as reinforcement in the production of biodegradable composites. The aim of the present work was to prepare microcrystalline cellulose from esparto grass using the hydrolysis process. The products obtained are characterized with thermogravimetric analysis. As a result, the thermal decomposing patterns of the cellulosic preparations, obtained by hydrochloric hydrolysis gave additional evidence to the relatively higher stability of the more crystalline cellulosic preparations. In the main decomposition stage, the cleavage of the glycosidic linkages of cellulose reduces the polymerization degree leading to the formation of CO2, H2O and other hydrocarbon derivatives.

  18. Determining in-situ thermal conductivity of coarse textured materials through numerical analysis of thermal

    Science.gov (United States)

    Saito, H.; Hamamoto, S.; Moldrup, P.; Komatsu, T.

    2013-12-01

    Ground source heat pump (GSHP) systems use ground or groundwater as a heat/cooling source, typically by circulating anti-freezing solution inside a vertically installed closed-loop tube known as a U-tube to transfer heat to/from the ground. Since GSHP systems are based on renewable energy and can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems, use of GSHP systems has been rapidly increasing worldwide. However, environmental impacts by GSHP systems including thermal effects on subsurface physical-chemical and microbiological properties have not been fully investigated. To rigorously assess GSHP impact on the subsurface environment, ground thermal properties including thermal conductivity and heat capacity need to be accurately characterized. Ground thermal properties were investigated at two experimental sites at Tokyo University of Agriculture and Technology (TAT) and Saitama University (SA), both located in the Kanto area of Japan. Thermal properties were evaluated both by thermal probe measurements on boring core samples and by performing in-situ Thermal Response Tests (TRT) in 50-80 m deep U-tubes. At both TAT and SU sites, heat-pulse probe measurements gave unrealistic low thermal conductivities for coarse textured materials (dominated by particles > 75 micrometers). Such underestimation can be partly due to poor contact between probe and porous material and partly to markedly decreasing sample water content during drilling, carrying, and storing sandy/gravelly samples. A more reliable approach for estimating in-situ thermal conductivity of coarse textured materials is therefore needed, and may be based on the commonly used TRT test. However, analyses of TRT data is typically based on Kelvin's line source model and provides an average (effective) thermal property for the whole soil profile around the U-tube but not for each geological layer. The main objective of this study was therefore to develop a method

  19. Precision gravimetric survey at the conditions of urban agglomerations

    Science.gov (United States)

    Sokolova, Tatiana; Lygin, Ivan; Fadeev, Alexander

    2014-05-01

    Large cities growth and aging lead to the irreversible negative changes of underground. The study of these changes at the urban area mainly based on the shallow methods of Geophysics, which extensive usage restricted by technogenic noise. Among others, precision gravimetry is allocated as method with good resistance to the urban noises. The main the objects of urban gravimetric survey are the soil decompaction, leaded to the rocks strength violation and the karst formation. Their gravity effects are too small, therefore investigation requires the modern high-precision equipment and special methods of measurements. The Gravimetry division of Lomonosov Moscow State University examin of modern precision gravimeters Scintrex CG-5 Autograv since 2006. The main performance characteristics of over 20 precision gravimeters were examined in various operational modes. Stationary mode. Long-term gravimetric measurements were carried at a base station. It shows that records obtained differ by high-frequency and mid-frequency (period 5 - 12 hours) components. The high-frequency component, determined as a standard deviation of measurement, characterizes the level of the system sensitivity to external noise and varies for different devices from 2 to 5-7 μGals. Midrange component, which closely meet to the rest of nonlinearity gravimeter drifts, is partially compensated by the equipment. This factor is very important in the case of gravimetric monitoring or observations, when midrange anomalies are the target ones. For the examined gravimeters, amplitudes' deviations, associated with this parameter may reach 10 μGals. Various transportation modes - were performed by walking (softest mode), lift (vertical overload), vehicle (horizontal overloads), boat (vertical plus horizontal overloads) and helicopter. The survey quality was compared by the variance of the measurement results and internal convergence of series. The measurement results variance (from ±2 to ±4 μGals) and its

  20. Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.

    Science.gov (United States)

    Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H

    2017-07-01

    Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by

  1. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin; Chu, Xiaodong; Li, Xuezhu [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@tsinghua.edu.cn [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). Black-Right-Pointing-Pointer Microcapsules using divinylbenzene as crosslinking agent have better quality. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has highest latent heat. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has greatest thermal stability. Black-Right-Pointing-Pointer Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA-DVB polymer was up to 248 Degree-Sign C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  2. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  3. CFD analysis of aircraft fuel tanks thermal behaviour

    Science.gov (United States)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D’Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  4. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Gu [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jhung, Myung Jo, E-mail: mjj@kins.re.k [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2011-01-15

    Research highlights: Temperature of surge line due to stratified flow is defined using CFD analysis. Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. Fatigue usage factors due to thermal stratification are relatively low. Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  5. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  6. Generic repository design concepts and thermal analysis (FY11).

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the

  7. Some technical details concerning a new method of gravimetric-seismic inversion

    DEFF Research Database (Denmark)

    Strykowski, Gabriel

    1999-01-01

    In this paper a number of technical details related to a new method of gravimetric-seismic inversion, which is still under development, are explained. Although the present contribution aims on providing general statements on how to formulate and solve complex gravimetric-seismic modeling; problem...

  8. Revised Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  9. Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis

    Science.gov (United States)

    Clayton, J. Louie

    2001-01-01

    This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.

  10. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  11. Simultaneous Thermal Analysis of Remediated Nitrate Salt Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-13

    The actinide engineering and science group (MET-1) have completed simultaneous thermal analysis and offgas analysis by mass spectrometry (STA-MS) of remediated nitrate salt (RNS) surrogates formulated by the high explosives science and technology group (M-7). The 1.0 to 1.5g surrogate samples were first analyzed as received, then a new set was analyzed with 100-200mL 10M HNO3 +0.3 MHF added, and a third set was analyzed after 200 mL of a concentrated Pu-AM spike (in 10M HNO3 +0.3 MHF) was added. The acid and spike solutions were formulated by the actinide analytical chemistry group (C-AAC) using reagent-grade HNO3 and HF, which was also used to dissolve a small quantity of mixed, high-fired PuO2/ AmO2 oxide.

  12. Thermal stress analysis of STS VOD ladle according to the reinforcement of back filler

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. W.; Bae, S. I.; Song, J. I. [Changwon National Univ., Changwon (Korea, Republic of); Ham, K. C. [Inha Technical College, Incheon (Korea, Republic of)

    2000-07-01

    We analyzed thermal stress of the STS VOD ladle by the variation of material property of refractory, and determined the location of back filler using FE analysis. Thermal distribution of refractory of ladle between hot face and back face were decreased by the increasing the thermal conductivity, and thermal stress of refractory were decreased about 2 to 4 times with the decreasing the young's modulus coefficients. Back filler, which is constructed to absorb the thermal expansion of dolomite refractory, has relatively low thermal conductivity. Inner side of refractory of ladle maintained high temperature, but temperature of outer side of ladle decreased low. Consequently, inner expansion and outer contraction were appeared, and thermal stress were increased, so thermal stress by the construction of back filler were increased.

  13. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    Science.gov (United States)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  14. Synthesis and Thermal Analysis of Vertically Aligned CNTS Grown on Copper Substrates (POSTPRINT)

    Science.gov (United States)

    2017-08-01

    AFRL-RQ-WP-TP-2017-0158 SYNTHESIS AND THERMAL ANALYSIS OF VERTICALLY ALIGNED CNTS GROWN ON COPPER SUBSTRATES (POSTPRINT) Levi Elston...AND SUBTITLE SYNTHESIS AND THERMAL ANALYSIS OF VERTICALLY ALIGNED CNTS GROWN ON COPPER SUBSTRATES (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...thermal interface material beyond synthesis . This effort extends prior work on carbon nanotube growth, by concentrating on ways to evaluate/measure CNT

  15. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  16. Using wavelet analysis to derive seepage rates from thermal records

    Science.gov (United States)

    Banzhaf, S.; Onderka, M.; Krein, A.; Scheytt, T.

    2012-04-01

    The use of thermal records to detect loosing and gaining reaches of streams and also to determine water fluxes between surface water and groundwater has attracted researchers in hydrological sciences worldwide. This method is attractive due to the high resolution and quality of the temperature data and the relatively low costs of the equipment needed to collect the data in the streambed and therefore is widely applied. Stream water temperature fluctuates on different time scales, with strong diurnal and seasonal fluctuations. When the temperature signal propagates into the aquifer, it is attenuated and shifted in time, where the degree of signal attenuation and its shift are determined by the fluid flow velocity, thermal properties of the sediment matrix, and the frequency of the temperature signal. High-frequency signals (diurnal or smaller) are damped more than low-frequency signals (seasonal or annual). Vertical fluxes can be estimated from the amplitude ratios of temperature oscillations measured between two depths in the stream bed by using the one-dimensional heat transport equation by STALLMAN (1965) when the sediment properties between this two depths are assumed to be homogeneous. However, before this calculations can be performed a time-frequency analysis has to be performed. In contrast to the Fourier transform, which is most common, the use of wavelets allows also to capture non steady-state frequency responses. This, of course, is a huge advantage of the wavelet analysis for hydrological applications as most environmental signals are non steady-state. Wavelet transform decomposes a signal into a time-frequency space and therefore localized intermittent periodicities in the signal can be detected. The wavelet power spectrum that is yielded then allows to separate these different periods, e.g. daily cycles and seasonal signals. To test this method, temperature data that was recorded for a period of 2 years in a stream and its riverbank at a field site in

  17. Analysis Methods of HTLS Conductors in Terms of Mechanical and Thermal Criteria

    Directory of Open Access Journals (Sweden)

    Paweł Kubek

    2013-03-01

    Full Text Available A thermal modernization allows increasing the thermal rating of the existing lines. This especially concerns the older overhead lines designed for the +40°C temperature conductor limit. This paper presents reconductoring as the attractive method of existing line thermal modernization. The article provides an overview of issues related to the selection of the HTLS conductor for thermal uprating of existing overhead transmission lines. Some aspects related to the extension of the thermal, electrical and mechanical models used so far for analysis of HTLS conductors are presented in the paper.

  18. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    Administrator

    fraction, particle size and shape of nanoparticles also influence the thermal conductivity enhancement of nano- fluids. Zhang et al (2007) investigated the heat transfer per- formance of TiO2/water nanofluid for various volume fractions and temperatures. They observed that the effec- tive thermal conductivities of nanofluids ...

  19. Analysis of thermal comfort in Lagos, Nigeria | Komolafe | Global ...

    African Journals Online (AJOL)

    This paper reports a thermal comfort survey conducted in three locations in Lagos between July 1996 and June 1997 in which 50 fully acclimatized subjects cast over 6,000 individual votes of their subjective assessments of the thermal environments. The survey covered only residential buildings constructed of sandcrete ...

  20. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    Science.gov (United States)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  1. Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P; Janowski, B; Todd, D; Liggat, J J

    2010-03-05

    Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation of the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.

  2. Analysis on energy consumption index system of thermal power plant

    Science.gov (United States)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  3. Monte Carlo analysis: error of extrapolated thermal conductivity from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    In this short report, we give an analysis of the extrapolated thermal conductivity of UO2 from earlier molecular dynamics (MD) simulations [1]. Because almost all material properties are functions of temperature, e.g. fission gas release, the fuel thermal conductivity is the most important parameter from a model sensitivity perspective [2]. Thus, it is useful to perform such analysis.

  4. Analysis of Thermal Stability of Different Counter on 28nm FPGA

    DEFF Research Database (Denmark)

    Gupta, Daizy; Yadav, Amit; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we are presenting the power analysis for thermal awareness of different counters. The technique we are using to do the analysis is based on 28 nm FPGA tech-nique. In this work during implementation on FPGA, we are going to analyze thermal stability of different counters in temperature...

  5. Application of InSAR and gravimetric surveys for developing construction codes in zones of land subsidence induced by groundwater extraction: case study of Aguascalientes, Mexico

    Science.gov (United States)

    Pacheco-Martínez, J.; Wdowinski, S.; Cabral-Cano, E.; Hernández-Marín, M.; Ortiz-Lozano, J. A.; Oliver-Cabrera, T.; Solano-Rojas, D.; Havazli, E.

    2015-11-01

    Interferometric Synthetic Aperture Radar (InSAR) has become a valuable tool for surface deformation monitoring, including land subsidence associated with groundwater extraction. Another useful tools for studying Earth's surface processes are geophysical methods such as Gravimetry. In this work we present the application of InSAR analysis and gravimetric surveying to generate valuable information for risk management related to land subsidence and surface faulting. Subsidence of the city of Aguascalientes, Mexico is presented as study case. Aguascalientes local governments have addressed land subsidence issues by including new requirements for new constructions projects in the State Urban Construction Code. Nevertheless, the resulting zoning proposed in the code is still subjective and not clearly defined. Our work based on gravimetric and InSAR surveys is aimed for improving the subsidence hazard zoning proposed in the State Urban Code in a more comprehensive way. The study includes a 2007-2011 ALOS InSAR time-series analysis of the Aguascalientes valley, an interpretation of the compete Bouguer gravimetric anomaly of the Aguascalientes urban area, and the application of time series and gravimetric anomaly maps for improve the subsidence hazard zoning of Aguascalientes City.

  6. Gravimetric preparation and characterization of primary reference solutions of molybdenum and rhodium.

    Science.gov (United States)

    Kaltenbach, Angela; Noordmann, Janine; Görlitz, Volker; Pape, Carola; Richter, Silke; Kipphardt, Heinrich; Kopp, Gernot; Jährling, Reinhard; Rienitz, Olaf; Güttler, Bernd

    2015-04-01

    Gravimetrically prepared mono-elemental reference solutions having a well-known mass fraction of approximately 1 g/kg (or a mass concentration of 1 g/L) define the very basis of virtually all measurements in inorganic analysis. Serving as the starting materials of all standard/calibration solutions, they link virtually all measurements of inorganic analytes (regardless of the method applied) to the purity of the solid materials (high-purity metals or salts) they were prepared from. In case these solid materials are characterized comprehensively with respect to their purity, this link also establishes direct metrological traceability to The International System of Units (SI). This, in turn, ensures the comparability of all results on the highest level achievable. Several national metrology institutes (NMIs) and designated institutes (DIs) have been working for nearly two decades in close cooperation with commercial producers on making an increasing number of traceable reference solutions available. Besides the comprehensive characterization of the solid starting materials, dissolving them both loss-free and completely under strict gravimetric control is a challenging problem in the case of several elements like molybdenum and rhodium. Within the framework of the European Metrology Research Programme (EMRP), in the Joint Research Project (JRP) called SIB09 Primary standards for challenging elements, reference solutions of molybdenum and rhodium were prepared directly from the respective metals with a relative expanded uncertainty associated with the mass fraction of U rel(w) < 0.05 %. To achieve this, a microwave-assisted digestion procedure for Rh and a hotplate digestion procedure for Mo were developed along with highly accurate and precise inductively coupled plasma optical emission spectrometry (ICP OES) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) methods required to assist with the preparation and as dissemination tools.

  7. Analysis of Thermal Radiation Effects on Temperatures in Turbine Engine Thermal Barrier Coatings

    Science.gov (United States)

    Siegel, Robert; Spuckler, Charles M.

    1998-01-01

    Thermal barrier coatings are important, and in some instances a necessity, for high temperature applications such as combustor liners, and turbine vanes and rotating blades for current and advanced turbine engines. Some of the insulating materials used for coatings, such as zirconia that currently has widespread use, are partially transparent to thermal radiation. A translucent coating permits energy to be transported internally by radiation, thereby increasing the total energy transfer and acting like an increase in thermal conductivity. This degrades the insulating ability of the coating. Because of the strong dependence of radiant emission on temperature, internal radiative transfer effects are increased as temperatures are raised. Hence evaluating the significance of internal radiation is of importance as temperatures are increased to obtain higher efficiencies in advanced engines.

  8. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    Directory of Open Access Journals (Sweden)

    Fadzil M. A.

    2017-01-01

    Full Text Available Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insulate a space from heat and sound. Fiberglass is flammable insulation material with R Value rated of R-2.9 to R-3.8 which meets the requirement in minimizing heat transfer. Finite element software, ABAQUS v6.13 employed for analyze non insulated wall and other insulated wall with different wall thicknesses. The several calculations related to overall heat movement, total energy consumption per unit area of wall, life cycle cost analysis and determination of optimal insulation thickness is calculated due to show the potential of the implementation in minimize heat transfer and generate potential energy saving in building operation. It is hoped that the study can contribute to better understanding on the potential building wall retrofitting works in increasing building serviceability and creating potential benefits for building owner.

  9. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  10. Thermal Analysis of Solid Fuels in an Inert Atmosphere

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Szumera, Magdalena; Środa, Katarzyna

    2017-12-01

    The paper takes the analysis of thermal studies of different types of fuels. It allowed diversification of fuels depending on their composition and origin. Consideration of coal, biomass and waste (coal mule, sewage sludge) as fuel is nowadays an important aspect of energy in our country. It should be emphasized that Poland power engineering is based up to 95% on coal - the primary fuel. Mining industry, forced to deliver power engineering more and better fuel, must however, use a deeper cleaning of coal. This results in a continuous increase waste in the form of mule flotation. The best method of disposing these mule is combustion and co-combustion with other fuels. On the other hand, commonly increasing awareness state of the environment and the need to reduce CO2 emissions energy industry have committed to implement alternative solutions in order to gain power, through, i.a.: development technologies use of biomass, which is one of the most promising renewable energy sources in Poland. The paper presents the results of research TG-DTA fuels made in an inert atmosphere.

  11. The thermal analysis and derivative bronzes cast to plaster moulds

    Directory of Open Access Journals (Sweden)

    B. Pisarek

    2009-07-01

    Full Text Available It plaster moulds gets casted the alloys of following metals: Al, Cu, Ag, Au in precise and artistic founding. The investigation of the crys-tallization of bronzes in hot plaster moulds the method of the thermal analysis and derivative (TDA was not realized out so far. Probe TDAg and tripod enabling the execution of measurements on inductive casting machine INDUTHERM-VC 500D were designed for this technology especially. It was confirmed that one the method TDA can identify the crystallization process of the bronze in hot plaster moulds. The investigations of the superficial distribution of the concentration of elements in the microstructure of the studied grades of the bronze on X-ray microanalizer were conducted. It results that they be subject to in bronze CuSn10-C (B10 and the CuSn5Zn5Pb5-C (B555 of strong microsegregation from conducted investigations: Pb, Sn and Sb. The single separates of intermetallic phase κ was identified in the bronze B10 rich first of all in Zn, Sn, Sb and Fe, and two intermetallic phase, one rich were identified in the bronze B555 first of all in Zn, Sb, (Nor, Fe and second rich in Sn, Sb, (Nor, Fe. The most homogeneous microstructure from the bronze CuAl10Fe5Ni5-C (BA1055 is characterizes among the studied grades of the bronze in the cast state.

  12. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  13. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    Science.gov (United States)

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  14. Stress analysis in curved composites due to thermal loading

    Science.gov (United States)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  15. A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites

    Directory of Open Access Journals (Sweden)

    F. Xie

    2016-06-01

    Full Text Available A facile and efficient approach to reduce graphene oxide with Al particles and potassium hydroxide was developed at moderate temperature and the graphene/epoxy composite was prepared by mould casting method. The as-prepared graphene has been confirmed by Transmission electron microscopy, Fourier transform infrared spectrometer, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Thermal gravimetric analysis. This provides a new green way to synthesize graphene with high surface area and opens another opportunity for the production of graphene. Effects of graphene on thermal conductivity, thermal stability and microstructures of the epoxy-based composite were also investigated. The results showed that thermal conductivity of the composite exhibited a remarkable improvement with increasing content of graphene and thermal conductivity could reach 1.192 W/(m*K when filled with 3 wt% graphene. Moreover, graphene/epoxy composite exhibits good thermal stability with 3 wt% graphene.

  16. Analysis of non-thermal velocities in the solar corona

    Directory of Open Access Journals (Sweden)

    L. Contesse

    2004-09-01

    Full Text Available We describe new ground-based spectroscopic observations made using a 40-cm aperture coronagraph over a whole range of radial distances (up to heights of 12' above the limb and along four different heliocentric directions N, E, S and W. The analysis is limited to the study of the brightest forbidden emission line of Fe XIV at 530.3nm, in order to reach the best possible signal-to-noise ratio. To make the results statistically more significant, the extracted parameters are averaged over the whole length of the slit, and measurements are repeated fives times at each position; the corresponding dispersions in the results obtained along the slit are given. Central line profile intensities and full line widths (FWHM are plotted and compared to measurements published by other authors closer to the limb. We found widths and turbulent (non-thermal velocities of significantly higher values above the polar regions, especially when a coronal hole is present along the line of sight. We do not see a definitely decreasing behaviour of widths and turbulent velocities in equatorial directions for larger radial distances, as reported in the literature, although lower values are measured compared to the values in polar regions. The variation in the high corona is rather flat and a correlation diagram indicates that it is different for different regions and different radial distances. This seems to be the first analysis of the profiles of this coronal line, up to large heights above the limb for both equatorial and polar regions.

  17. Laser metrology for a next generation gravimetric mission

    Science.gov (United States)

    Mottini, Sergio; Biondetti, Giorgio; Cesare, Stefano; Castorina, Giuseppe; Musso, Fabio; Pisani, Marco; Leone, Bruno

    2017-11-01

    Within the ESA technology research project "Laser Interferometer High Precision tracking for LEO", Thales Alenia Space Italia is developing a laser metrology system for a Next Generation Gravimetric Mission (NGGM) based on satellite-to-satellite tracking. This technique is based on the precise measurement of the displacement between two satellites flying in formation at low altitude for monitoring the variations of Earth's gravity field at high resolution over a long time period. The laser metrology system that has been defined for this mission consists of the following elements: • an heterodyne Michelson interferometer for measuring the distance variation between retroreflectors positioned on the two satellites; • an angle metrology for measuring the orientation of the laser beam in the reference frames of the two satellites; • a lateral displacement metrology for measuring the deviations of the laser beam axis from the target retro-reflector. The laser interferometer makes use of a chopped measurement beam to avoid spurious signals and nonlinearity caused by the unbalance between the strong local beam and the weak return beam. The main results of the design, development and test activities performed on the breadboard of the metrology system are summarized in this paper.

  18. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    Science.gov (United States)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  19. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    conducted exploring the effects of the following parameters: pigment (hollow spheres) volume concentration (PVC), average sphere size or sphere size distribution, thermal conductivities of binder and sphere wall material, and sphere wall thickness. All the parameters affected the thermal conductivity...... of an epoxy coating, but simulations revealed that the most important parameters are the PVC, the sphere wall thickness, and the sphere wall material. The model can be used, qualitatively, to get an indication of the effect of important model parameters on the thermal conductivity of an HS-based coating...

  20. Ablative Thermal Response Analysis Using the Finite Element Method

    Science.gov (United States)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  1. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    Science.gov (United States)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  2. Mars Phoenix Scout Thermal Evolved Gas Analyzer (TEGA) Database: Thermal Database Development and Analysis

    Science.gov (United States)

    Sutter, B.; Archer, D.; Niles, P. B.; Stein, T. C.; Hamara, D.; Boynton, W. V.; Ming, D. W.

    2017-01-01

    The Mars Phoenix Scout Lander mission in 2008 examined the history of water, searched for organics, and evaluated the potential for past/present microbial habitability in a martian arctic ice-rich soil [1]. The Thermal Evolved Gas Analyzer (TEGA) instrument measured the isotopic composition of atmospheric CO2 and detected volatile bearing mineralogy (perchlorate, carbonate, hydrated mineral phases) in the martian soil [2-7]. The TEGA data are archived at the Planetary Data System (PDS) Geosciences Node but are reported in forms that require further processing to be of use to the non-TEGA expert. The soil and blank TEGA thermal data are reported as duty cycle and must be converted to differential power (mW) to allow for enthalpy calculations of exothermic/endothermic transitions. The exothermic/endothermic temperatures are also used to determine what phases (inorganic/organic) are present in the sample. The objectives of this work are to: 1) Describe how interpretable thermal data can be created from TEGA data sets on the PDS and 2) Provide additional thermal data interpretation of two Phoenix soils (Baby Bear, Wicked Witch) and include interpretations from three unreported soils (Rosy Red 1, 2, and Burning Coals).

  3. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    Science.gov (United States)

    Cheng, H.; Li, H. B.; Zhang, W.; Wu, Z. Q.; Liu, B. R.

    2016-09-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure

  4. Analysis of regenerative thermal storage geometries for solar gas turbines

    CSIR Research Space (South Africa)

    Klein, P

    2014-08-01

    Full Text Available Ceramic heat regenerators are suited to providing thermal storage for concentrating solar power stations based on a recuperated gas turbine cycle. Randomly packed beds of spheres and saddles; honeycombs and checker bricks were identified...

  5. Variation in heat sink shape for thermal analysis

    Science.gov (United States)

    Wong, C. M.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Sauli, Z.

    2017-09-01

    The concern about the thermal performance of microelectronics is on the increase due to recent over-heating induced failures which have led to product recalls. Removal of excess heat from microelectronic systems with the use of heat sinks could improve thermal efficiency of the system. The shape of the heat sink model with difference fin configuration has significant influence on cooling performances. This paper investigates the effect of change in heat sink geometry on an electronic package through COMSOL Multiphysics software as well as the thermal performance of difference heat sink geometry corresponding to various air inlet velocities. Based on this study, plate fin heat sink has better thermal performance than strip pin fin and circular pin fin heat sink due to less obstruction of the heat sink design.

  6. Analysis and Experimental on Aircraft Insulation Thermal Bridge Effect

    Directory of Open Access Journals (Sweden)

    XIA Tian

    2017-06-01

    Full Text Available Two kinds of typical aircraft insulation structures were designed for the heat bridge in the metal ribs of aircraft insulation structures. In order to study the influence of heat bridge effect on thermal insulation performance, each configuration was analyzed by the transient heat transfer FEA, check point temperature was obtained in the hot surface temperature of 100 ℃, 200 ℃, 300 ℃, 424 ℃ respectively, and the validity of FEA was proved by insulation performance experiment. The result showed that the thermal bridge has a great influence to the insulation performance of insulation structure, and the thermal bridge influence should be considered adequately when the insulation structure designed. Additionally, the blocking method for thermal bridge is also put forward.

  7. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using......, to get an indication of the effect of important model parameters on the thermal conductivity of an insulation coating. With relevant data available for service life exposure conditions and raw material costs, the model can also be used as an optimization algorithm....... and experimental data with shell thickness and/or thermal conductivity of the shell as adjustable parameters. However, the experimental data was not sufficiently detailed to allow a separation of the effects of the two parameters. In the ideal case of no aerogel binder intrusion, a comparison with a coating...

  8. Recent advances on thermal analysis of stretchable electronics

    Directory of Open Access Journals (Sweden)

    Yuhang Li

    2016-01-01

    Full Text Available Stretchable electronics, which offers the performance of conventional wafer-based devices and mechanical properties of a rubber band, enables many novel applications that are not possible through conventional electronics due to its brittle nature. One effective strategy to realize stretchable electronics is to design the inorganic semiconductor material in a stretchable format on a compliant elastomeric substrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1–2 °C temperature increase is not allowed. This article reviews the recent advances in thermal management of stretchable inorganic electronics with focuses on the thermal models and their comparisons to experiments and finite element simulations.

  9. PCB-level Electro thermal Coupling Simulation Analysis

    Science.gov (United States)

    Zhou, Runjing; Shao, Xuchen

    2017-10-01

    Power transmission network needs to transmit more current with the increase of the power density. The problem of temperature rise and the reliability is becoming more and more serious. In order to accurately design the power supply system, we must consider the influence of the power supply system including Joule heat, air convection and other factors. Therefore, this paper analyzes the relationship between the electric circuit and the thermal circuit on the basis of the theory of electric circuit and thermal circuit.

  10. Analysis of thermal water utilization in the northeastern Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2012-12-01

    Full Text Available The presented research aims at identification of thermal water users in NE Slovenia, at finding type and amountof the produced thermal water as well as its utilization practice. The energetic overview has been upgradedby a description of current observational monitoring practice and thermal waste water management, but technologicalproblems of thermal water use and their mitigation are discussed also. We have ascertained that 14 of 26active geothermalwells tap the Mura Formation aquifer in which the only reinjection well is perforated also. Totalthermal water abstraction summed to 3.29 million m3 in 2011. Cascade use of thermal water is abundant, whereindividual space and sanitary water heating is followed by heating of spa infrastructure and balneology. Greenhouseheating systems and district heating were also identified. Operational monitoring of these geothermal wellsis generally insufficient, and geothermal aquifers are overexploited due to decades of historical water abstraction.All these facts indicate the need for applying appropriate measures which will improve their natural conditions aswell as simultaneously enable further and even higher thermal water utilization in the future.

  11. Fourier domain target transformation analysis in the thermal infrared

    Science.gov (United States)

    Anderson, D. L.

    1993-01-01

    Remote sensing uses of principal component analysis (PCA) of multispectral images include band selection and optimal color selection for display of information content. PCA has also been used for quantitative determination of mineral types and abundances given end member spectra. The preliminary results of the investigation of target transformation PCA (TTPCA) in the fourier domain to both identify end member spectra in an unknown spectrum, and to then calculate the relative concentrations of these selected end members are presented. Identification of endmember spectra in an unknown sample has previously been performed through bandmatching, expert systems, and binary classifiers. Both bandmatching and expert system techniques require the analyst to select bands or combinations of bands unique to each endmember. Thermal infrared mineral spectra have broad spectral features which vary subtly with composition. This makes identification of unique features difficult. Alternatively, whole spectra can be used in the classification process, in which case there is not need for an expert to identify unique spectra. Use of binary classifiers on whole spectra to identify endmember components has met with some success. These techniques can be used, along with a least squares fit approach on the endmembers identified, to derive compositional information. An alternative to the approach outlined above usese target transformation in conjunction with PCA to both identify and quantify the composition of unknown spectra. Preprocessing of the library and unknown spectra into the fourier domain, and using only a specific number of the components, allows for significant data volume reduction while maintaining a linear relationship in a Beer's Law sense. The approach taken here is to iteratively calculate concentrations, reducing the number of endmember components until only non-negative concentrations remain.

  12. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations.

    Science.gov (United States)

    Dai, Xiaojiao; Jiang, Yanyi; Hang, Chao; Bi, Zhiyi; Ma, Longsheng

    2015-02-23

    The temperature stability of optical reference cavities is significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In this paper, the thermal time constant and thermal sensitivity of reference cavities are analyzed when reference cavities respond to environmental perturbations via heat transfer of thermal conduction and thermal radiation separately. The analysis as well as simulation results indicate that a reference cavity enclosed in multiple layers of thermal shields with larger mass, higher thermal capacity and lower emissivity is found to have a larger thermal time constant and thus a smaller sensitivity to environmental temperature perturbations. The design of thermal shields for reference cavities may vary according to experimentally achievable temperature stability and the coefficient of thermal expansion of reference cavities. A temperature fluctuation-induced length instability of reference cavities as low as 6 × 10(-16) on a day timescale can be achieved if a two-layer thermal shield is inserted between a cavity with the coefficient of thermal expansion of 1 × 10(-10) /K and an outer vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours.

  13. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: a systematic review and meta-analysis.

    Science.gov (United States)

    Sanchis-Sánchez, Enrique; Vergara-Hernández, Carlos; Cibrián, Rosa M; Salvador, Rosario; Sanchis, Enrique; Codoñer-Franch, Pilar

    2014-10-01

    Musculoskeletal injuries occur frequently. Diagnostic tests using ionizing radiation can lead to problems for patients, and infrared thermal imaging could be useful when diagnosing these injuries. A systematic review was performed to determine the diagnostic accuracy of infrared thermal imaging in patients with musculoskeletal injuries. A meta-analysis of three studies evaluating stress fractures was performed and found a lack of support for the usefulness of infrared thermal imaging in musculoskeletal injuries diagnosis.

  14. Heat transfer analysis of skin during thermal therapy using thermal wave equation.

    Science.gov (United States)

    Kashcooli, Meisam; Salimpour, Mohammad Reza; Shirani, Ebrahim

    2017-02-01

    Specifying exact geometry of vessel network and its effect on temperature distribution in living tissues is one of the most complicated problems of the bioheat field. In this paper, the effects of blood vessels on temperature distribution in a skin tissue subjected to various thermal therapy conditions are investigated. Present model consists of counter-current multilevel vessel network embedded in a three-dimensional triple-layered skin structure. Branching angles of vessels are calculated using the physiological principle of minimum work. Length and diameter ratios are specified using length doubling rule and Cube law, respectively. By solving continuity, momentum and energy equations for blood flow and Pennes and modified Pennes bioheat equations for the tissue, temperature distributions in the tissue are measured. Effects of considering modified Pennes bioheat equation are investigated, comprehensively. It is also observed that blood has an impressive role in temperature distribution of the tissue, especially at high temperatures. The effects of different parameters such as boundary conditions, relaxation time, thermal properties of skin, metabolism and pulse heat flux on temperature distribution are investigated. Tremendous effect of boundary condition type at the lower boundary is noted. It seems that neither insulation nor constant temperature at this boundary can completely describe the real physical phenomena. It is expected that real temperature at the lower levels is somewhat between two predicted values. The effect of temperature on the thermal properties of skin tissue is considered. It is shown that considering temperature dependent values for thermal conductivity is important in the temperature distribution estimation of skin tissue; however, the effect of temperature dependent values for specific heat capacity is negligible. It is seen that considering modified Pennes equation in processes with high heat flux during low times is significant

  15. Thermal stress analysis of the NASA Dryden hypersonic wing test structure

    Science.gov (United States)

    Morris, Glenn

    1990-01-01

    Present interest in hypersonic vehicles has resulted in a renewed interest in thermal stress analysis of airframe structures. While there are numerous texts and papers on thermal stress analysis, practical examples and experience on light gage aircraft structures are fairly limited. A research program has been undertaken at General Dynamics to demonstrate the present state of the art, verify methods of analysis, gain experience in their use, and develop engineering judgement in thermal stress analysis. The approach for this project has been to conduct a series of analyses of this sample problem and compare analysis results with test data. This comparison will give an idea of how to use our present methods of thermal stress analysis, and how accurate we can expect them to be.

  16. Applications of sample-controlled thermal analysis (SCTA) to kinetic analysis and synthesis of materials

    OpenAIRE

    Pérez-Maqueda, Luis A.; Criado Luque, J.M.; Sánchez-Jiménez, P.E.; Diánez, M. J.

    2015-01-01

    The advantages of the sample-controlled thermal analysis (SCTA) for both the kinetic analysis of solid-state reactions and the synthesis of materials are reviewed. This method implies an intelligent control of the temperature by the solid-state reaction under study in such a way that the reaction rate as a function of the time fits a profile previously defined by the user. It has been shown that SCTA has important advantages for discriminating the kinetic model of solid-state reactions as com...

  17. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis

    Science.gov (United States)

    Popescu, Carmen-Mihaela; Navi, Parviz; Placencia Peña, María Inés; Popescu, Maria-Cristina

    2018-02-01

    Spruce wood samples were subjected to different conditions of thermal and hydro-thermal treatment by varying the temperature, relative humidity and period of exposure. The obtained treated samples were evaluated using near infrared spectroscopy (NIR), principal component analysis (PCA) and hierarchical cluster analysis (HCA) in order to evidence the structural changes which may occur during the applied treatment conditions. Following this, modification in all wood components were observed, modifications which were dependent on the temperature, amount of relative humidity and also the treatment time. Therefore, higher variations were evidenced for samples treated at higher temperatures and for longer periods. At the same time, the increase in the amount of water vapours in the medium induced a reduced rate of side chains and condensation reactions occurring in the wood structure. Further, by PCA and HCA was possible to discriminate the modifications in the wood samples according to treatment time and amount of relative humidity.

  18. A scaling analysis for thermal fragmentation on small airless bodies

    Science.gov (United States)

    El Mir, Charles; Hazeli, Kavan; Ramesh, KT; Delbo, Marco

    2016-10-01

    The presence of regolith on airless bodies has typically been attributed to impact ejecta re-accumulation and gradual breakdown of boulders by micrometeoritic impacts. However, ejecta velocities for small kilometer-sized asteroids often exceed the gravitational escape velocity, limiting to a great extent the amount of retained debris following a high-velocity impact event. Close-surface images of small (sub-km) asteroid surfaces have shown the presence of a coarse-grained regolith layer on these bodies, suggesting that a different mechanism could be involved in the regolith generation process.Recently, the existence of regolith on sufficiently small planetary bodies has also been attributed to cyclic stresses that develop within boulders due to the large diurnal temperature variation, which eventually lead to fracture by thermal fatigue. It was demonstrated that thermal fatigue can be orders of magnitude faster than fragmentation by classical impact mechanisms, in terms of breaking down cm-sized rocks on small airless bodies. Larger (10 cm-size) rocks were shown to potentially break up faster than smaller (cm) rocks, an observation that is in contrast to the predictions of mechanical disruption models. This observation is justified by the existence of higher internal thermal stresses resulting from the larger temperature gradient in bigger rocks, but it is not clear that this conclusion can be extrapolated or scaled for meter-sized boulders.In the current study, we present a computational and analytical approach that examines thermally driven crack growth within asteroidal rocks over a large range of lengthscales. We first examine the main length and timescales involved in the thermally-driven fatigue crack growth, and identify a critical lengthscale comparable to the thermal skin depth, after which thermal fatigue becomes slower, providing bounds on the thermal fragmentation mechanism. We also develop a simple scaling method to estimate the time required for

  19. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  20. Finite Element Analysis of PVC window profile &aluminium window profile with and without thermal break

    OpenAIRE

    ENG. Mohammad Buhemdi

    2016-01-01

    Examine a thermal analysis .Numerous analogies exist between thermal and structuralanalysis for PVC window profile &aluminium window profile with and without thermalbreak ,Finite Element Analysis, commonly called FEA, is a method of numerical analysis. FEA isused for solving problems in many engineering disciplines such as machine design,acoustics, electromagnetism, soil mechanics, fluid dynamics, and many others. Inmathematical terms, FEA is a numerical technique used for solving...

  1. Thermal analysis method of high capacity communications satellite with heat pipes

    Science.gov (United States)

    Tsunoda, Hiroaki; Nakajima, Katsuhiko; Miyasaka, Akihiro

    Thermal analysis method for heat pipe embedded communications equipment panel is treated in this paper. The main problem of the thermal analysis is how to construct the mathematical model under the limitation of computer CPU memory size. The mathematical model for the heat pipe embedded panel is first established based on the experiments. The essence of this method is to divide panel area into several small regions and perform thermal analysis independently using the fact of low thermal conductivity of honeycomb sandwich panel. To check the correctness of this method, the experiment using the test panel which thermally simulates the north communications equipment panel of two-ton class high capacity communications satellite has been conducted. The experiment shows the method works well.

  2. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, S; D' Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  3. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption.

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (∼100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ∼0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  4. A detailed gravimetric geoid of North America, the North Atlantic, Eurasia, and Australia

    Science.gov (United States)

    Marsh, J. G.

    1973-01-01

    A computer program was developed for the calculation of a goid based upon a combination of satellite and surface gravity data. A detailed gravimetric geoid of North America, the North Atlantic, Eurasia, and Australia was derived by using this program.

  5. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  6. Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles

    Science.gov (United States)

    Zhou, Chen; Wang, Zhijin; Hou, Tianjiao

    2017-11-01

    This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.

  7. Analysis of tracer and thermal transients during reinjection

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, I.

    1989-10-01

    This work studied tracer and thermal transients during reinjection in geothermal reserviors and developed a new technique which combines the results from interwell tracer tests and thermal injection-backflow tests to estimate the thermal breakthrough times. Tracer tests are essential to determine the degree of connectivity between the injection wells and the producing wells. To analyze the tracer return profiles quantitatively, we employed three mathematical models namely, the convection-dispersion (CD) model, matrix diffusion (MD) model, and the Avodnin (AD) model, which were developed to study tracer and heat transport in a single vertical fracture. We considered three types of tracer tests namely, interwell tracer tests without recirculation, interwell tracer tests with recirculation, and injection-backflow tracer tests. To estimate the model parameters, we used a nonlinear regression program to match tracer return profiles to the solutions.

  8. Thermal analysis and combustion kinetic of heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.G. [Centre for Petroleum Studies, State University of Campinas(Brazil); Vargas, J.A.V.; Trevisan, O.V. [Department of Petroleum Engineering, Faculty of Mechanical Engineering, State University of Campinas (Brazil)

    2011-07-01

    In the oilfield sector, a thermal method named in-situ combustion (ISC) is used as an enhanced recovery method. ISC consists of the injection of gas into the reservoir, a combustion front is created producing heat which reduces the oil viscosity. For this method to be successful, understanding of the thermal and kinetic parameters involved is required; the aim of this paper is to evaluate those parameters for different crude oils. Experiments were conducted using accelerating rate calorimetry on Brazilian heavy oil samples under a heat-wait-seek-mode. Results showed that accelerating rate calorimetry is efficient in resolving the three main regions of reaction of the oil and that between 200 degree C and 300 degree C oxygen addition reactions are dominant while bond scission reactions dominate from 350 degree C. This study demonstrated that accelerating rate calorimetry is an efficient method to determine thermal and kinetic parameters of oxidation reaction of heavy oil.

  9. STATISTICAL ANALYSIS OF A SODA LIME GLASS THERMAL SHOCK RESISTANCE

    Directory of Open Access Journals (Sweden)

    Gilbert FANTOZZI

    2011-09-01

    Full Text Available Comparatively to the as received soda lime glass samples, the strength distribution after thermal shocks showed the appearance of a second branch in the Weibull curves. This branch is observed for temperature differences (ΔT equal or higher than the critical temperature difference (ΔTc for both water and motor oil cooling baths. The dispersion is more spread out in these two baths in comparison with the olive oil bath probably because of more pronounced slow crack growth effect. The Weibull modulus varies according to the used cooling bath and the considered temperature difference. In the case of thermal shock caused by air blast cooling at T = 20°C, a bimodal distribution is observed for only the critical state. The initial cracking time, obtained by acoustic emission, corresponds to the unstable propagation of the most critical defect. The number of cracks induced by thermal shock is proportional to the number of acoustic events.

  10. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  11. Thermal analysis of a reflective baffle designed for space applications

    Science.gov (United States)

    Beck, T.; Lüthi, B. S.; Messina, G.; Piazza, D.; Seiferlin, K.; Thomas, N.

    2011-09-01

    The implementation and results from thermal mathematical modelling of a Stavroudis-type reflective baffle for the BepiColombo laser altimeter (BELA) are presented. BELA and other instruments on board the European Space Agency's Mercury Planetary Orbiter are exposed to a harsh environment in Mercury orbit. This environment is briefly discussed and the detailed design solution for the baffle is presented. Special attention has been paid to the implementation of the thermal model because specific approximations were required. The results of the thermal mathematical models show the temperature behaviour in orbit and the feasibility of the solution. The work has applications to future missions which will go inside the orbit of Venus (e.g. ESA's Solar Orbiter).

  12. Targets for bulk hydrogen analysis using thermal neutrons

    CERN Document Server

    Csikai, J; Buczko, C M

    2002-01-01

    The reflection property of substances can be characterized by the reflection cross-section of thermal neutrons, sigma subbeta. A combination of the targets with thin polyethylene foils allowed an estimation of the flux depression of thermal neutrons caused by a bulk sample containing highly absorbing elements or compounds. Some new and more accurate sigma subbeta values were determined by using the combined target arrangement. For the ratio, R of the reflection and the elastic scattering cross-sections of thermal neutrons, R=sigma subbeta/sigma sub E sub L a value of 0.60+-0.02 was found on the basis of the data obtained for a number of elements from H to Pb. Using this correlation factor, and the sigma sub E sub L values, the unknown sigma subbeta data can be deduced. The equivalent thicknesses, to polyethylene or hydrogen, of the different target materials were determined from the sigma subbeta values.

  13. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  14. A novel microfluidic system for the rapid analysis of protein thermal stability.

    Science.gov (United States)

    Yang, Xin; Liu, Jia; Xie, Ye Lei; Wang, Yang; Ying, Hong; Wu, Qiong; Huang, Wei; Jenkins, Gareth

    2014-06-07

    We describe a simple microfluidic device for the rapid analysis of protein thermal stability using a novel imaging method. The change in UV absorption upon thermal denaturation or aggregation of proteins is used to get a spatial image of proteins' folding or aggregation state along a linear temperature gradient.

  15. Homotopy analysis method for variable thermal conductivity heat flux gage with edge contact resistance

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Abdul [Gonzaga Univ., Spokane, WA (United States). Dept. of Mechanical Engineering; Khani, Farzad [Bakhtar Institute of Higher Education, Ilam (Iran, Islamic Republic of). Dept. of Mathematics; Darvishi, Mohammad Taghi [Razi Univ., Kermanshah (Iran, Islamic Republic of). Dept. of Mathematics

    2010-10-15

    The homotopy analysis method (HAM) has been used to develop an analytical solution for the thermal performance of a circular-thin-foil heat flux gage with temperature dependent thermal conductivity and thermal contact resistance between the edge of the foil and the heat sink. Temperature distributions in the foil are presented illustrating the effect of incident heat flux, radiation emission from the foil, variable thermal conductivity, and contact resistance between the foil and the heat sink. The HAM results agree up to four places of decimal with the numerical solutions generated using the symbolic algebra package Maple. This close comparison vouches for the high accuracy and stability of the analytic solution. (orig.)

  16. Nanostructural analysis of water distribution in hydrated multicomponent gels using thermal analysis and NMR relaxometry.

    Science.gov (United States)

    Codoni, Doroty; Belton, Peter; Qi, Sheng

    2015-06-01

    Highly complex, multicomponent gels and water-containing soft materials have varied applications in biomedical, pharmaceutical, and food sciences, but the characterization of these nanostructured materials is extremely challenging. The aim of this study was to use stearoyl macrogol-32 glycerides (Gelucire 50/13) gels containing seven different species of glycerides, PEG, and PEG-esters, as model, complex, multicomponent gels, to investigate the effect of water content on the micro- and nanoarchitecture of the gel interior. Thermal analysis and NMR relaxometry were used to probe the thermal and diffusional behavior of water molecules within the gel network. For the highly concentrated gels (low water content), the water activity was significantly lowered due to entrapment in the dense gel network. For the gels with intermediate water content, multiple populations of water molecules with different thermal responses and diffusion behavior were detected, indicating the presence of water in different microenvironments. This correlated with the network architecture of the freeze-dried gels observed using SEM. For the gels with high water content, increased quantities of water with similar diffusion characteristics as free water could be detected, indicating the presence of large water pockets in these gels. The results of this study provide new insights into structure of Gelucire gels, which have not been reported before because of the complexity of the material. They also demonstrate that the combination of thermal analysis and NMR relaxometry offers insights into the structure of soft materials not available by the use of each technique alone. However, we also note that in some instances the results of these measurements are overinterpreted and we suggest limitations of the methods that must be considered when using them.

  17. Investigation and analysis of human body thermal comfort in classroom

    Science.gov (United States)

    Zhai, Xue

    2017-05-01

    In this survey, we selected the 11th building of North China Electric Power University as the research object. Data were measured and distributed on each floor. We record the temperature of the classroom, humidity, wind speed, average radiation temperature and other environmental parameters. And we used spare time to create a questionnaire survey of the subjective feeling of the survey, to get everyone in the classroom TSV (hot feeling vote value) and TCV (thermal comfort vote). We analyzed the test data and survey data. What's more we discuss and reflect on the thermal comfort of the human body in different indoor temperature atmospheres.

  18. Analytical transient analysis of Peltier device for laser thermal tuning

    Science.gov (United States)

    Sheikhnejad, Yahya; Vujicic, Zoran; Almeida, Álvaro J.; Bastos, Ricardo; Shahpari, Ali; Teixeira, António L.

    2017-08-01

    Recently, industrial trends strongly favor the concepts of high density, low power consumption and low cost applications of Datacom and Telecom pluggable transceiver modules. Hence, thermal management plays an important role, especially in the design of high-performance compact optical transceivers. Extensive care should be taken on wavelength drift for thermal tuning lasers using thermoelectric cooler and indeed, accurate expression is needed to describe transient characteristics of the Peltier device to achieve maximum controllability. In this study, the exact solution of governing equation is presented, considering Joule heating, heat conduction, heat flux of laser diode and thermoelectric effect in one dimension.

  19. The development of a control system for gravimetric feeding of a twin screw extruder / Jordaan C.

    OpenAIRE

    Jordaan, Corrie.

    2012-01-01

    The control of gravimetric feeding is generally done by control systems which utilize feedback control. The main problem with these control systems is that they generally revert to volumetric feeding during the refilling cycle. Furthermore the control system software is proprietary information and therefore not in the public sector and also very expensive. The main purpose of the study was therefore to review the basics of gravimetric feeding and to apply the knowledge in the d...

  20. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks.

    Science.gov (United States)

    Gómez-Gualdrón, Diego A; Wang, Timothy C; García-Holley, Paula; Sawelewa, Ruth M; Argueta, Edwin; Snurr, Randall Q; Hupp, Joseph T; Yildirim, Taner; Farha, Omar K

    2017-10-04

    Metal-organic frameworks (MOFs) are porous crystalline materials that are promising for adsorption-based, on-board storage of hydrogen in fuel-cell vehicles. Volumetric and gravimetric hydrogen capacities are the key factors that determine the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor too heavy. Because the goals of maximizing MOF volumetric and gravimetric hydrogen adsorption loadings individually are incompatible, an in-depth understanding of the trade-off between MOF volumetric and gravimetric loadings is necessary to achieve the best compromise between these properties. Here we study, both experimentally and computationally, the trade-off between volumetric and gravimetric cryo-adsorbed hydrogen deliverable capacity by taking an isoreticular series of highly stable zirconium MOFs, NU-1101, NU-1102, and NU-1103 as a case study. These MOFs were studied under recently proposed operating conditions: 77 K/100 bar →160 K/5 bar. We found the difference between highest and lowest measured deliverable capacity in the MOF series to be ca. 40% gravimetrically, but only ca. 10% volumetrically. From our molecular simulation results, we found hydrogen "monolayer" adsorption to be proportional to the surface area, whereas hydrogen "pore filling" adsorption is proportional to the pore volume. Thus, we found that the higher variability in gravimetric deliverable capacity in contrast to the volumetric capacity, occurs due to the proportional relation between gravimetric surface area and pore volume in the NU-110x series in contrast to the inverse relation between volumetric surface area and void fraction. Additionally, we find better correlations with geometric surface areas than with BET areas. NU-1101 presents the highest measured volumetric performance with 46.6 g/L (9.1 wt %), whereas NU-1103 presents the highest gravimetric one

  1. Dynamic Analysis of the Titanium Alloy Plate under Thermal-acoustic Loadings

    Directory of Open Access Journals (Sweden)

    Zou Xuefeng

    2015-01-01

    Full Text Available Hypersonic vehicles structures suffer complex combined loadings generally. For the thin-walled structures and thermal protection systems of the aircraft, high temperature and intensity acoustic loadings are the significant factors that leading to their break. The object of this paper is typical simply supported titanium alloy plate, the finite element method was adopted to calculate the critical thermal buckling temperature the ordinal coupling method and Newmark method were adopted to calculate the thermal-acoustic dynamic response. Based on the FEM analysis, the power spectrum densities (PSD of center point was presented. Research results show that the thermal buckling of the typical simply supported titanium alloy plate occurs easily because of the low critical thermal buckling temperature, dynamic response of the thermal buckled plate suffering acoustic loads performs strong nonlinear characteristics and complex forms of exercise.

  2. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    Science.gov (United States)

    Balasubramaniam, R.; Wegeng, R. S.; Gokoglu, S. A.; Suzuki, N. H.; Sacksteder, K. R.

    2010-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can enable the operation of lightweight robotic rovers or other assets in cold, dark environments without incurring potential mass, cost, and risk penalties associated with various onboard sources of thermal energy. Thermal wadi-assisted lunar rovers can conduct a variety of long-duration missions including exploration site surveys; teleoperated, crew-directed, or autonomous scientific expeditions; and logistics support for crewed exploration. This paper describes a thermal analysis of thermal wadi performance based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. Analysis was performed for the lunar equatorial region and for a potential Outpost location near the lunar south pole. The results are presented in some detail in the paper and indicate that thermal wadis can provide the desired thermal energy reserve, with significant margin, for the survival of rovers or other equipment during periods of darkness.

  3. Thermal degradation analysis of pongamia pinnata oil as alternative ...

    Indian Academy of Sciences (India)

    In this paper the feasibility of non-edible pongamia pinnata oil (PPO) as an alternative liquid dielectric which can be used in distribution transformers is examined. Hence, electrical, physical and chemical properties have been measured for thermally aged (with and without catalytic added) pongamia pinnata oil (PPO) and ...

  4. Thermal analysis of line-defect photonic crystal lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Ottaviano, Luisa; Chen, Yaohui

    2015-01-01

    We report a systematic study of thermal effects in photonic crystal membrane lasers based on line-defect cavities. Two material platforms, InGaAsP and InP, are investigated experimentally and numerically. Lasers with quantum dot layers embedded in an InP membrane exhibit lasing at room temperature...

  5. Thermal comfort analysis of hostels in National Institute of ...

    Indian Academy of Sciences (India)

    Thermal comfort study was carried out in the hostels of National Institute of Technology Calicut,Kerala, which is located in a warm humid climatic zone of India. Measurements of ambient temperature, globe temperature, relative humidity, air velocity and illuminance were carried out in eight hostels, and in parallel a ...

  6. Microstructural analysis of thermal fatigue damage in 316L pipes

    OpenAIRE

    Gonzalez Sanchez, Sergio; Ruiz, Ana; Nilsson, Karl-Fredrik

    2013-01-01

    This report summarizes the data and main conclusions derived from microstructural characterisation of 316L pipes subjected to thermal fatigue with a peak temperature of 550°C. TOFD measurements are compared with measured crack depths from cut segments, and fracture mode and corrosion have been assessed by SEM and EDX, respectively.

  7. Analysis Of Electrical – Thermal Coupling Of Induction Machine ...

    African Journals Online (AJOL)

    The interaction of the Electrical and mechanical parts of Electrical machines gives rise to the heating of the machine's constituent parts. This consequently leads to an increase in temperature which if not properly monitored may lead to the breakdown of the machine. This paper therefore presents the Electrical and thermal ...

  8. Analysis of Nigeria research reactor-1 thermal power calibration methods

    Energy Technology Data Exchange (ETDEWEB)

    Agbo, Sunday Arome; Ahmed, Yusuf Aminu; Ewa, Ita Okon; Jibrin, Yahaya [Ahmadu Bello University, Zaria (Nigeria)

    2016-06-15

    This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  9. Thermogravimetric and differential thermal analysis of potassium bicarbonate contaminated cellulose

    Science.gov (United States)

    A. Broido

    1966-01-01

    When samples undergo a complicated set of simultaneous and sequential reactions, as cellulose does on heating, results of thermogravimetric and differential thermal analyses are difficult to interpret. Nevertheless, careful comparison of pure and contaminated samples, pyrolyzed under identical conditions, can yield useful information. In these experiments TGA and DTA...

  10. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    TEM image confirmed that the ends of MWCNTs were opened during their oxidation of them in HNO3 and TiO2 nanoparticles successfully attach to the outer surface of oxidized MWCNTs. Thermal conductivity measurements of nanofluids were analysed via two-factor completely randomized design and comparison of data ...

  11. Thermal degradation analysis of pongamia pinnata oil as alternative ...

    Indian Academy of Sciences (India)

    T Mariprasath

    Abstract. In this paper the feasibility of non-edible pongamia pinnata oil (PPO) as an alternative liquid dielectric which can be used in distribution transformers is examined. Hence, electrical, physical and chemical properties have been measured for thermally aged (with and without catalytic added) pongamia pinnata oil.

  12. Life cycle analysis of underground thermal energy storage

    NARCIS (Netherlands)

    Tomasetta, Camilla; van Ree, Derk; Griffioen, Jasper

    2015-01-01

    Underground Thermal Energy Storage (UTES) systems are used to buffer the seasonal difference between heat and cold supply and demand and, therefore, represent an interesting option to conserve energy. Even though UTES are considered environmental friendly solutions they are not completely free of

  13. Analysis of Non-contact Acousto Thermal Signature Data (Postprint)

    Science.gov (United States)

    2016-02-01

    experimental setup to quantify the thermal response consisted of an ultrasonic horn operating at 20 kHz, an IR camera, a flat specimen, and a servo...μm. To increase the emissivity , the specimen was painted black in the region of interest on the side of the specimen facing the IR camera. Data

  14. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  15. Implementation and evaluation of a gravimetric i.v. workflow software system in an oncology ambulatory care pharmacy.

    Science.gov (United States)

    Reece, Kelley M; Lozano, Miguel A; Roux, Ryan; Spivey, Susan M

    2016-02-01

    The implementation and evaluation of a gravimetric i.v. workflow software system in an oncology ambulatory care pharmacy are described. To estimate the risk involved in the sterile i.v. compounding process, a failure modes and effects analysis (FMEA) in the oncology ambulatory care pharmacy was performed. When a volumetric-based process was used to reconstitute vials, the actual concentration was unknown since an assumption must be made that the exact volume of diluent was used when reconstituting the drug. This gap in our process was discovered during the FMEA and was resolved with the implementation of an i.v. workflow software solution. The i.v. software system standardized preparation steps and documented each process step, enabling a systematic review of the metrics for safety, productivity, and drug waste. Over the study period, 15,843 doses were prepared utilizing the new technology, with a total of 1,126 errors (7%) detected by the workflow software during dose preparation. Barcode scanning detected 292 (26%) of the total errors, the gravimetric weighing step detected 797 (71%) deviation errors, and 37 (3%) errors were detected at the vial reconstitution step. All errors were detected during compounding, eliminating the need to correct errors after production. Technician production time decreased by 34%, and pharmacist checking time decreased by 37%. Implementation of a gravimetric-based software system that used barcode verification and real-time alerts improved the detection of errors in the chemotherapy preparation process when compared with self-reporting. Standardized workflow processes and the elimination of time-consuming manual steps increased productivity while vial management decreased costs. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  16. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    Science.gov (United States)

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  17. Thermal control analysis of a primary mirror for large-aperture telescope

    Science.gov (United States)

    Tan, Yufeng; Wang, Jihong; Ren, Ge; Xie, Zongliang; He, Bi

    2017-07-01

    Extraneous thermal loads on the primary mirror of a large-aperture telescope directly influence the optical performance of the telescope through temperature gradients within the mirror and thermal boundary layer at the face sheet. In this paper, we propose a new thermal control system consisting of a flushing and sucking system for eliminating the excessive heat of a primary mirror. First, a 2.8 m-aperture lightweighted primary mirror is fabricated. Second, a thermo-optic analysis using finite element analysis is conducted in natural and forced convection. Finally, the optical performance denoted by Zernike polynomials with and without our proposed thermal control system is evaluated and examined. The comparative results reveal that the image quality of the primary mirror in forced convection is significantly enhanced with obvious reduction of optical surface distortion, thereby demonstrating the effectiveness of our proposed thermal control system.

  18. Quantitative Analysis of the Relationship Between Microstructures and Thermal Conductivity for YSZ Coatings

    Science.gov (United States)

    Chen, Ning; Song, Xuemei; Liu, Ziwei; Lin, Chucheng; Zeng, Yi; Huang, Liping; Zheng, Xuebing

    2017-04-01

    The thermal conductivities of as-sprayed yttria-stabilized zirconia thermal barrier coating prepared by atmospheric plasma spraying at different temperatures are investigated based on quantitative microstructural analysis. Multiple linear regression is used to develop quantitative models which describe the relationship between multiple elements such as porosity, grain boundary density, monoclinic phase content, temperature and thermal conductivity. Results reveal that the thermal conductivity of the coating is mainly determined by the porosity and grain boundary density below 300 °C and by the monoclinic phase content above 800 °C. Furthermore, based on the significance testing analysis, the confidence interval under a confidence level of 95% at different temperatures enables researchers to predict the thermal conductivity based on microstructural information.

  19. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin, E-mail: shirleyqiu2009@gmail.com [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Lu, Lixin; Wang, Ju [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Tang, Guoyi [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-11-20

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g{sup −1}. • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g{sup −1}) and crystallization enthalpy (108.3 J g{sup −1}) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  20. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    National Research Council Canada - National Science Library

    Hawileh, Rami A; Rasheed, Hayder A

    2017-01-01

    ...) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves...

  1. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  2. Status and subjects of thermal-hydraulic analysis for next-generation LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were surveyed through about 5 years until March 1999 by subcommittee on improvement of reactor thermal-hydraulic analysis codes under the nuclear code committee in Japan Atomic Energy Research Institute. Based on the survey results and discussion, the status and subjects on system analysis for various types of proposed reactor were summarized in 1998 and those on multidimensional two-phase flow analysis were also reviewed, since the multidimensional analysis was recognized as one of the most important subjects through the investigation on system analysis. In this report, the status and subjects for the following were summarized from the survey results and discussion in 1998 and 1999; (1) BWR neutronic/thermal-hydraulic coupled analysis, (2) Evaluation of passive safety system performance and (3) Gas-liquid two-phase flow analysis. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs including test results from several large-scale facilities. We expect that the contents can offer a guideline to improve reactor thermal-hydraulic analysis codes in future. (author)

  3. Morphological and thermal properties of PLA/OMMT nanocomposites prepared via vane extruder

    Science.gov (United States)

    Luo, Y.; Liu, H. Y.; Zhang, G. Z.; Qu, J. P.

    2017-06-01

    Polylactide/Organo-Montmorillonite (PLA/OMMT) Nanocomposites were prepared by melting extrusion using a novel vane extruder (VE), which can induce global elongational flow. In the study, the influence of different concentrations of the OMMT on the morphological and thermal properties were investigated. The morphology and structure of the nanocomposites were evaluated using Fourier Transform Infrared Spectroscopy (FTIR), the X-ray diffraction (XRD) and transmission electron microscopy (TEM) respectively, whereas the thermal behaviors and thermal stabilities were characterized using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) respectively. The results illustrate that PLA/OMMT nanocomposites displayed clear intercalation and/or exfoliation structures. Interestingly, increasing the clay content did not lead to the agglomeration of OMMT layers. Moreover, the presence of nanoclay decreased the enthalpy of crystallization of PLA/OMMT composites. Also, the melting temperatures of the nanocomposites were reduced by the addition of nanoclay.

  4. Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup

    Directory of Open Access Journals (Sweden)

    Camelia Stanciu

    2017-01-01

    Full Text Available A simple effect one stage ammonia-water absorption cooling system fueled by solar energy is analyzed. The considered system is composed by a parabolic trough collector concentrating solar energy into a tubular receiver for heating water. This is stored in a fully mixed thermal storage tank and used in the vapor generator of the absorption cooling system. Time dependent cooling load is considered for the air conditioning of a residential two-storey house. A parametric study is performed to analyze the operation stability of the cooling system with respect to solar collector and storage tank dimensions. The results emphasized that there is a specific storage tank dimension associated to a specific solar collector dimension that could ensure the longest continuous startup operation of the cooling system when constant mass flow rates inside the system are assumed.

  5. Current research on shear buckling and thermal loads with PASCO - Panel analysis and sizing code

    Science.gov (United States)

    Stroud, W. J.; Greene, W. H.; Anderson, M. S.

    1984-01-01

    The stiffened composite structural panel analysis and sizing code designated 'PASCO' encompasses both the generality required for the exploitation of composite materials' design flexibility and an accurate buckling analysis for the detection of complex buckling modes. PASCO can accordingly design for buckling, frequency, material strength, and panel stiffness requirements. Attention is given to an additional thermal loading design capability. Design studies illustrate the importance of the multiple load condition capability when thermal loads are present.

  6. Coupled Radiation Transport/Thermal Analysis of the Radiation Shield for a Space Nuclear Reactor.

    Science.gov (United States)

    1985-07-01

    thermal analysis of radiation shield are those of Beiriger (1968) and Thompson and Schwab (1969). Belriger (1968) conducted a thermal analysis of Pb-W...regarding how the temperature values were generated were not reported. Thompson and Schwab (1969) examined the accuracy of several neu- tronic models in...Publishing Company, Inc., 1984. Bathe, Klaus -Jurgen, Finite Element Procedures in Engineering Analy- sis, New Jersey: Prentice Hall, Inc., 1982. deckurts, K.H

  7. Stress and Displacement Analysis of Microreactors during Thermal and Vacuum Loading

    Science.gov (United States)

    2017-09-07

    ARL-TR-8121 ● SEP 2017 US Army Research Laboratory Stress and Displacement Analysis of Microreactors during Thermal and Vacuum...is no longer needed. Do not return it to the originator. ARL-TR-8121 ● SEP 2017 US Army Research Laboratory Stress and...TITLE AND SUBTITLE Stress and Displacement Analysis of Microreactors during Thermal and Vacuum Loading 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  8. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    Science.gov (United States)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  9. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.

  10. Deformation Analysis of Impact Damaged Composite Tube Using Thermal Shearography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Koung Suk; Chang, Ho Seob; Jang, Su Ok; Jang, Wan Sik; Jung, Hyun Chul [Chosun University, Kwangju (Korea, Republic of); Lee, Seung Seok [Korea Research Institute of Standard and Science, Daejeon (Korea, Republic of)

    2008-06-15

    Composite materials are widely used as structural materials for aerospace engineering because of its excellent mechanical properties such as light weight, high stiffness, and low thermal expansion. In driving, impact damage is one of the common but dangerous damages, caused by internal failure of the laminas interface which is not detected by in the surface. Many techniques to detect defects or delaminate between laminates have been reported. Shearography is a kind of laser speckle pattern interferometry with the advantages of non-destructive, non-contact, high resolution and displacement slope measurement. In this paper, the shearography is used to evaluate non-destructively impact damaged surface of the composite material and a measuring method using shearography for the thermal deformation of an impact damaged composite material is discussed. The basic principles of the technique are also described briefly.

  11. Thermal analysis of the crotch absorber in APS

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, I.C.; Howell, J.

    1992-10-01

    A crotch absorber design for use in the Advanced Photon source (APS) has been proposed and analyzed. the absorber is placed downstream of sectors S2 and S4 in the curved storage ring chamber and will be subjected to a peak power of 120 W/mm{sup 2} per 100mA synchrotron radiation. A beryllium ring is brazed on the GlidCop cooling cylinder in order to diffuse the concentrated bending magnet heating. One concentric water channel and two annular return water channels are arranged in the GlidCop cylinder to enhance the cooling. A Bodner-Partom thermoviscoplastic constitutive equation and a modified Manson-Coffin fatigue relation are proposed to simulate the cyclic thermal loading, as well as to predict the thermal fatigue life of the crotch absorber. Results of temperature and stress using finite element computations are displayed and series of e-beam welder tests and microstructure measurements are reported.

  12. Thermal analysis of the crotch absorber in APS

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, I.C.; Howell, J.

    1992-01-01

    A crotch absorber design for use in the Advanced Photon source (APS) has been proposed and analyzed. the absorber is placed downstream of sectors S2 and S4 in the curved storage ring chamber and will be subjected to a peak power of 120 W/mm{sup 2} per 100mA synchrotron radiation. A beryllium ring is brazed on the GlidCop cooling cylinder in order to diffuse the concentrated bending magnet heating. One concentric water channel and two annular return water channels are arranged in the GlidCop cylinder to enhance the cooling. A Bodner-Partom thermoviscoplastic constitutive equation and a modified Manson-Coffin fatigue relation are proposed to simulate the cyclic thermal loading, as well as to predict the thermal fatigue life of the crotch absorber. Results of temperature and stress using finite element computations are displayed and series of e-beam welder tests and microstructure measurements are reported.

  13. A theoretical analysis of local thermal equilibrium in fibrous materials

    Directory of Open Access Journals (Sweden)

    Tian Mingwei

    2015-01-01

    Full Text Available The internal heat exchange between each phase and the Local Thermal Equilibrium (LTE scenarios in multi-phase fibrous materials are considered in this paper. Based on the two-phase heat transfer model, a criterion is proposed to evaluate the LTE condition, using derived characteristic parameters. Furthermore, the LTE situations in isothermal/adiabatic boundary cases with two different heat sources (constant heat flux and constant temperature are assessed as special transient cases to test the proposed criterion system, and the influence of such different cases on their LTE status are elucidated. In addition, it is demonstrated that even the convective boundary problems can be generally estimated using this approach. Finally, effects on LTE of the material properties (thermal conductivity, volumetric heat capacity of each phase, sample porosity and pore hydraulic radius are investigated, illustrated and discussed in our study.

  14. Postbuckling analysis of a thermally driven microbeam under realistic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tayefeh, Mohsen; Bahrami, Mohsen [Department of Mechanical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2006-04-01

    Thermal buckling behavior of line shape microactuators in a fully coupled field process is simulated. As a consequence of the miniaturizing, some effects belong to coupling of different physical fields appear, and some issues, which are minor at macroscopic scales, have to be taken into account. In order to have a robust design of these micro-systems, it is important to correctly analyze the coupling between electrical, thermal and mechanical fields. Rregarding effect of more physical aspects and ignoring the simplifying statements, the calculated results are consistent more with reported experimental measurements in the literature. recommended modifications not only improve the results to be consistent with experiments, but also play key roles for the development of MEMS actuators based on jouleheating effects such as Heactuators and Hexsil tweezers. While the simulation of micro actuators mostly consist of coupled field analyses, the results proves the requirement of transferring more detailed outputs from one field to another one as inputs.

  15. Thermal stress analysis of the SLAC fixed mask. Addendum

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.L.; Pierce, R.E.

    1985-07-25

    X-ray beams emerging from the new SLAC electron-positron storage ring (PEP) can impinge on the walls of tangential divertor channels. A fixed mask made of OFHC copper is installed in the channel to limit wall heating. The mask is cooled with water flowing axially at 30/sup 0/C. Beam strikes on the mask cause highly localized heating in the channel structure. Analyses were completed to determine the temperatures and thermally-induced stresses due to this heating. The current design and operating conditions should result in the entrance to the fixed mask operating at a peak temperature of 105/sup 0/C with a peak thermal stress at 26% of yield.

  16. Thermal extraction analysis of five Los Azufres production wells

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Paul; Quijano, Luis

    1995-01-26

    Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

  17. First wall thermal stress analysis for suddenly applied heat fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Dalessandro, J A

    1978-01-01

    The failure criterion for a solid first wall of an inertial confinement reactor is investigated. Analytical expressions for induced thermal stresses in a plate are given. Two materials have been chosen for this investigation: grade H-451 graphite and chemically vapor deposited (CVD) ..beta..-silicon carbide. Structural failure can be related to either the maximum compressive stress produced on the surface or the maximum tensile stress developed in the interior of the plate; however, it is shown that compressive failure would predominate. A basis for the choice of the thermal shock figure of merit, k(1 - ..nu..) sigma/E ..cap alpha.. kappa/sup 1/2/, is identified. The result is that graphite and silicon carbide rank comparably.

  18. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    OpenAIRE

    Fadzil M. A.; Norliyati M. A.; Hilmi M. A.; Ridzuan A. R.; Wan Ibrahim M. H.; Assrul R. Z.

    2017-01-01

    Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insula...

  19. Analysis of Nigeria Research Reactor-1 Thermal Power Calibration Methods

    Directory of Open Access Journals (Sweden)

    Sunday Arome Agbo

    2016-06-01

    Full Text Available This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1, a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW, half power (15 kW, and full power (30 kW. Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  20. A highly accurate method for determination of dissolved oxygen: gravimetric Winkler method.

    Science.gov (United States)

    Helm, Irja; Jalukse, Lauri; Leito, Ivo

    2012-09-05

    A high-accuracy Winkler titration method has been developed for determination of dissolved oxygen concentration. Careful analysis of uncertainty sources relevant to the Winkler method was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. The most important improvements were: gravimetric measurement of all solutions, pre-titration to minimize the effect of iodine volatilization, accurate amperometric end point detection and careful accounting for dissolved oxygen in the reagents. As a result, the developed method is possibly the most accurate method of determination of dissolved oxygen available. Depending on measurement conditions and on the dissolved oxygen concentration the combined standard uncertainties of the method are in the range of 0.012-0.018 mg dm(-3) corresponding to the k=2 expanded uncertainty in the range of 0.023-0.035 mg dm(-3) (0.27-0.38%, relative). This development enables more accurate calibration of electrochemical and optical dissolved oxygen sensors for routine analysis than has been possible before. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Thermal Analysis for the Dense Granular Target of CIADS

    Directory of Open Access Journals (Sweden)

    Kang Chen

    2016-01-01

    Full Text Available For the China Initiative Accelerator Driven System (CIADS, the energy of the protons is 250 MeV, and the current intensity will reach 10 milliamperes. A new concept of a dense granular spallation target is proposed for which the tungsten granules are chosen as the target material. After being bombarded with the accelerated protons from the accelerator, the tungsten granules with high-temperature flow out of the subcritical reactor and the heat is removed by the heat exchanger. One key issue of the target is to remove the 2.5 MW heat deposition safely. Another one is the heat exchange between the target and the subcritical reactor. Based on the model of effective thermal conductivity, a new thermal code is developed in Matlab. The new code is used to calculate the temperature field of the target area near active zone and it is partly verified by commercial CFD code Fluent. The result shows that the peak temperature of the target zone is nearly 740°C and the reactor and the target are proved to be uncoupled in thermal process.

  2. Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques

    Science.gov (United States)

    González-Henríquez, Carmen M.; Villegas-Opazo, Vanessa A.; Sagredo-Oyarce, Dallits H.; Sarabia-Vallejos, Mauricio A.; Terraza, Claudio A.

    2017-01-01

    Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed—like biosensors—based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures—with differences in its aliphatic chain length—present a co-existence of two thermal responses due to non-ideal mixing. PMID:28820461

  3. NOx Pollution Analysis for a Sulfur Recovery Unit Thermal Reactor

    Science.gov (United States)

    Yeh, Chun-Lang

    2017-12-01

    A sulfur recovery unit (SRU) thermal reactor is the most important equipment in a sulfur plant. It is negatively affected by high temperature operations. In this paper, NOx emissions from the SRU thermal reactors are simulated. Both the prototype thermal reactor and its modifications, including changing fuel mass fraction, changing inlet air quantity, changing inlet oxygen mole fraction, and changing burner geometry, are analyzed to investigate their influences on NOx emissions. In respect of the fuel mass fraction, the simulation results show that the highest NO emission occurs at a zone 1 fuel mass fraction of 0.375, around which the reactor maximum temperature and the zone 1 average temperature reach maximum values. Concerning the inlet air quantity, the highest NO emission occurs when the inlet air quantity is 2.4 times the designed inlet air quantity. This is very close to the inlet air quantity at which the maximum average temperature occurs. Regarding the inlet oxygen mole fraction, the NO emission increases as the inlet oxygen mole fraction increases. With regard to the burner geometry, the NO emission increases as the clearance of the burner acid gas tip increases. In addition, the NO emission increases as the swirling strength increases.

  4. Fluid-Structure Interaction Analysis for Pressurizer Surge Line subjected to Thermal Stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Gu; Jhung, Myung Jo; Yang, Chae Yong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    Fluid-Structure Interactions (FSIs) occurring inevitably in operating reactor component systems can cause excessive force or stress to the structures resulting in mechanical damages that may eventually threaten the structural integrity of components. To solve FSI problems, results from one field (fluid-thermal) analysis are applied as loads in other fields (structural) analysis. If two media with different densities flow inside a pipe, thermal stratification can occur. Warm water is lighter than cool water and therefore tends to float on top of the cooler and heavier water, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, differential thermal expansion of the pipe metal can cause the pipe to deflect significantly. Unexpected piping movements are highly undesirable because of potential high piping stress that may exceed design limits for fatigue and stress. In PWRs, there are great possibilities of occurrence of thermal stratification at the feed water lines of the steam generator, at the pressurizer surge line and at the injection pipes of the emergency core cooling systems. The most affected pipe by the thermal stratification is reported to be the pressurizer surge line. Therefore in this study, a thermal-stress simulation is performed using ANSYS FSI. For the pressurizer surge line, thermal loads are transferred from ANSYS CFX to ANSYS Multiphysics in order to determine the heat transfer between the fluid and the solid body. From this information, stresses are determined and ultimately a fatigue analysis is performed

  5. Using thermal analysis to evaluate the fire effects on organic matter content of Andisols

    Directory of Open Access Journals (Sweden)

    J. Neris

    2013-09-01

    Full Text Available Soil organic compounds play a relevant role in aggregate stability and thus, in the susceptibility of soils to erosion. Thermal analysis (N2 and air and chemical oxidation techniques (dichromate and permanganate oxidation were used to evaluate the effects of a forest fire on the organic matter of Andisols. Both thermal analysis and chemical methods showed a decrease in the organic matter content and an increase in the recalcitrance of the remaining organic compounds in the burned zones. Thermal analysis indicated an increase in the thermal stability of the organic compounds of fire-affected soils and a lower content of both labile and recalcitrant pools as a consequence of the fire. However, this decrease was relatively higher in the labile pool and lower in the recalcitrant one, indicative of an increase in the recalcitrance of the remaining organic compounds. Apparently, black carbon did not burn under our experimental conditions. Under N2, the results showed a lower labile and a higher recalcitrant and refractory contents in burned and some unburned soils, possibly due to the lower decomposition rate under N2 flux. Thermal analysis using O2 and the chemical techniques showed a positive relation, but noticeable differences in the total amount of the labile pool. Thermal analysis methods provide direct quantitative information useful to characterize the soil organic matter quality and to evaluate the effects of fire on soils.

  6. Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

    Science.gov (United States)

    Dec, John A.; Laub, Bernard; Braun, Robert D.

    2011-01-01

    The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.

  7. A mechanical-thermal noise analysis of a nonlinear microgyroscope

    Science.gov (United States)

    Lajimi, S. A. M.; Heppler, G. R.; Abdel-Rahman, E. M.

    2017-01-01

    The mechanical-thermal noise (MTN) equivalent rotation rate (Ωn) is computed by using the linear approximation of the system response and the nonlinear "slow" system. The slow system, which is obtained using the method of multiple scales, is used to identify the linear single-valued response of the system. The linear estimate of the noise equivalent rate fails as the drive direction stroke increases. It becomes imperative in these conditions to use a more complex nonlinear estimate of the noise equivalent rate developed here for the first time in literature. The proposed design achieves a high performance regarding noise equivalent rotation rate.

  8. Analysis of thermal performance of penetrated multi-layer insulation

    Science.gov (United States)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Yoo, Chai H.; Barrett, William E.

    1988-01-01

    Results of research performed for the purpose of studying the sensitivity of multi-layer insulation blanket performance caused by penetrations through the blanket are presented. The work described in this paper presents the experimental data obtained from thermal vacuum tests of various penetration geometries similar to those present on the Hubble Space Telescope. The data obtained from these tests is presented in terms of electrical power required sensitivity factors referenced to a multi-layer blanket without a penetration. The results of these experiments indicate that a significant increase in electrical power is required to overcome the radiation heat losses in the vicinity of the penetrations.

  9. Characterization of the antibiotic doripenem using physicochemical methods - chromatography, spectrophotometry, spectroscopy and thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Andreas S.L.; Mantovani, Luciano; Barbosa, Fabio; Sayago, Carla T.M.; Garcia, Cassia V.; Garcia, Favero R.; Silva, Fabiana E.B. da; Denardin, Elton L.G. [Universidade Federal do Pampa, Uruguaiana, RS (Brazil). Curso de Farmacia; Schapoval, Elfrides E.S. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Producao e Controle de Medicamentos

    2011-07-01

    Doripenem was characterized through physicochemical and spectroscopic techniques, as well as thermal analysis. TLC (Rf = 0.62) and HPLC (rt = 7.4 min) were found to be adequate to identify the drug. UV and infrared spectra showed similar profile between doripenem bulk and standard. The {sup 1}H and {sup 13}C NMR analysis revealed chemical shifts that allowed identifying the drug. Thermal analysis demonstrated three steps with mass loss, at 128, 178 and 276 degree C. The work was successfully applied to qualitative analysis of doripenem, showing the reported methods can be used for physicochemical characterization of doripenem. (author)

  10. An analysis of influential factors on outdoor thermal comfort in summer

    Science.gov (United States)

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships

  11. Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method

    Science.gov (United States)

    Nguyen, Huong Giang T.; Horn, Jarod C.; Thommes, Matthias; van Zee, Roger D.; Espinal, Laura

    2017-12-01

    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  12. International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned

    Science.gov (United States)

    Iovine, John

    2011-01-01

    The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.

  13. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties.

    Science.gov (United States)

    Ionita, Mariana; Pandele, Madalina Andreea; Iovu, Horia

    2013-04-15

    Sodium alginate/graphene oxide (Al/GO) nanocomposite films with different loading levels of graphene oxide were prepared by casting from a suspension of the two components. The structure, morphologies and properties of Al/GO films were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM), thermal gravimetric (TG) analysis, and tensile tests. The results revealed that hydrogen bonding and high interfacial adhesion between GO filler and Al matrix significantly changed thermal stability and mechanical properties of the nanocomposite films. The tensile strength (σ) and Young's modulus (E) of Al films containing 6 wt% GO increased from 71 MPa and 0.85 GPa to 113 MPa and 4.18 GPa, respectively. In addition, TG analysis showed that the thermal stability of Al/GO composite films was better than that of neat Al film. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  15. Thermal Analysis of Low Layer Density Multilayer Insulation Test Results

    Science.gov (United States)

    Johnson, Wesley L.

    2011-01-01

    Investigation of the thermal performance of low layer density multilayer insulations is important for designing long-duration space exploration missions involving the storage of cryogenic propellants. Theoretical calculations show an analytical optimal layer density, as widely reported in the literature. However, the appropriate test data by which to evaluate these calculations have been only recently obtained. As part of a recent research project, NASA procured several multilayer insulation test coupons for calorimeter testing. These coupons were configured to allow for the layer density to be varied from 0.5 to 2.6 layer/mm. The coupon testing was completed using the cylindrical Cryostat-l00 apparatus by the Cryogenics Test Laboratory at Kennedy Space Center. The results show the properties of the insulation as a function of layer density for multiple points. Overlaying these new results with data from the literature reveals a minimum layer density; however, the value is higher than predicted. Additionally, the data show that the transition region between high vacuum and no vacuum is dependent on the spacing of the reflective layers. Historically this spacing has not been taken into account as thermal performance was calculated as a function of pressure and temperature only; however the recent testing shows that the data is dependent on the Knudsen number which takes into account pressure, temperature, and layer spacing. These results aid in the understanding of the performance parameters of MLI and help to complete the body of literature on the topic.

  16. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  17. Numerical analysis of thermal decomposition for RDX, TNT, and Composition B

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Hyuk; Nyande, Baggie W. [Department of Chemical Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 305-719 (Korea, Republic of); Kim, Hyoun Soo; Park, Jung Su [Agency for Defence Development, 462 Jochiwon-gil, Yuseong-gu, Daejeon 305-150 (Korea, Republic of); Lee, Woo Jin [Hanwha corporation, 117 Yeosusandan 3-ro, Yeosu-si, Jeollanam-do (Korea, Republic of); Oh, Min, E-mail: minoh@hanbat.ac.kr [Department of Chemical Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 305-719 (Korea, Republic of)

    2016-05-05

    Highlights: • Reaction mechanism of thermal decomposition of military explosives is investigated. • Mathematical modeling of thermal decomposition are executed. • Commercial scale reactor is employed for demilitarization of waste explosives. • Dynamic response of thermal decomposition is examined in a reactor. - Abstract: Demilitarization of waste explosives on a commercial scale has become an important issue in many countries, and this has created a need for research in this area. TNT, RDX and Composition B have been used as military explosives, and they are very sensitive to thermal shock. For the safe waste treatment of these high-energy and highly sensitive explosives, the most plausible candidate suggested has been thermal decomposition in a rotary kiln. This research examines the safe treatment of waste TNT, RDX and Composition B in a rotary kiln type incinerator with regard to suitable operating conditions. Thermal decomposition in this study includes melting, 3 condensed phase reactions in the liquid phase and 263 gas phase reactions. Rigorous mathematical modeling and dynamic simulation for thermal decomposition were carried out for analysis of dynamic behavior in the reactor. The results showed time transient changes of the temperature, components and mass of the explosives and comparisons were made for the 3 explosives. It was concluded that waste explosives subject to heat supplied by hot air at 523.15 K were incinerated safely without any thermal detonation.

  18. An empirical analysis of thermal protective performance of fabrics used in protective clothing.

    Science.gov (United States)

    Mandal, Sumit; Song, Guowen

    2014-10-01

    Fabric-based protective clothing is widely used for occupational safety of firefighters/industrial workers. The aim of this paper is to study thermal protective performance provided by fabric systems and to propose an effective model for predicting the thermal protective performance under various thermal exposures. Different fabric systems that are commonly used to manufacture thermal protective clothing were selected. Laboratory simulations of the various thermal exposures were created to evaluate the protective performance of the selected fabric systems in terms of time required to generate second-degree burns. Through the characterization of selected fabric systems in a particular thermal exposure, various factors affecting the performances were statistically analyzed. The key factors for a particular thermal exposure were recognized based on the t-test analysis. Using these key factors, the performance predictive multiple linear regression and artificial neural network (ANN) models were developed and compared. The identified best-fit ANN models provide a basic tool to study thermal protective performance of a fabric. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. Optimum element density studies for finite-element thermal analysis of hypersonic aircraft structures

    Science.gov (United States)

    Ko, William L.; Olona, Timothy; Muramoto, Kyle M.

    1990-01-01

    Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.

  20. Thermal and mechanical analysis of the Faraday shield for the Compact Ignition Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Vesey, R.A.

    1988-02-01

    The antenna for the ion cyclotron resonance heating (ICRH) system of the Compact Ignition Tokamak (CIT) is protected from the plasma environment by a Faraday shield, an array of gas-cooled metallic tubes. The plasma side of the tubes is armored with graphite tiles, which can be either brazed or mechanically attached to the tube. The Faraday shield has been analyzed using finite element codes to model thermal and mechanical responses to typical CIT heating and disruption loads. Four representative materials (Inconel 718, tantalum-10 tungsten, copper alloy C17510, and molybdenum alloy TZM) and several combinations of tube and armor thicknesses were used in the thermal analysis, which revealed that maximum allowable temperatures were not exceeded for any of the four materials considered. The two-dimensional thermal stress analysis indicated Von Mises stresses greater than twice the yield stress for a tube constructed of Inconel 718 (the original design material) for the brazed-graphite design. Analysis of stresses caused by plasma disruption ()rvec J) )times) )rvec B)) loads eliminated the copper and molybdenum alloys as candidate tube materials. Of the four materials considered, tantalum-10 tungsten performed the best for a brazed graphite design, showing acceptable thermal stresses (69% of yield) and disruption stresses (42% of yield). A preliminary thermal analysis of the mechanically attached graphite scheme predicts minimal thermal stresses in the tube. The survivability of the graphite tubes in this scheme is yet to be analyzed. 8 refs., 19 figs., 2 tabs.

  1. Thermal Analysis and Correlation of the Mars Odyssey Spacecraft's Solar Array During Aerobraking Operations

    Science.gov (United States)

    Dec, John A.; Gasbarre, Joseph F.; George, Benjamin E.

    2002-01-01

    The Mars Odyssey spacecraft made use of multipass aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking operations provided an opportunity to apply advanced thermal analysis techniques to predict the temperature of the spacecraft's solar array for each drag pass. Odyssey telemetry data was used to correlate the thermal model. The thermal analysis was tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. Specifically, the thermal analysis predictions required a calculation of the spacecraft's velocity relative to the atmosphere, a prediction of the atmospheric density, and a prediction of the heat transfer coefficients due to aerodynamic heating. Temperature correlations were performed by comparing predicted temperatures of the thermocouples to the actual thermocouple readings from the spacecraft. Time histories of the spacecraft relative velocity, atmospheric density, and heat transfer coefficients, calculated using flight accelerometer and quaternion data, were used to calculate the aerodynamic heating. During aerobraking operations, the correlations were used to continually update the thermal model, thus increasing confidence in the predictions. This paper describes the thermal analysis that was performed and presents the correlations to the flight data.

  2. Determination of the mechanical, diffractometer and thermal properties of chitosan and hydroxypropyl methylcellulose films (HPMC); Determinacao das propriedades mecanicas, difratometricas e termicas de filmes de quitosana e hidroxipropilmetilcelulose (HPMC)

    Energy Technology Data Exchange (ETDEWEB)

    Rotta, Jefferson; Minatti, Edson, E-mail: jefferotta@yahoo.com.b [Universidade Federal de Santa Catarina (DQ/UFSC), Florianopolis, SC (Brazil). Dept. de Quimica; Barreto, Pedro L.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Ciencia dos Alimentos

    2009-07-01

    This work examined the mechanical, diffractometry and thermal properties of chitosan-hydroxypropyl methylcellulose (HPMC) films. The solutions of chitosan and hydroxypropyl methylcellulose were mixed at different proportions (100/0; 70/30; 50/50; 30/70 and 0/100) respectively, and 20 m L was casting at Petri dishes to posterior analysis of dried films. The miscibility of polymers has been assessed by X-ray diffraction, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). It was shown that although weak hydrogen bonding exists between the polymer functional groups, the films are not fully miscible at a dry state. (author)

  3. Advanced nanoporous materials for micro-gravimetric sensing to trace-level bio/chemical molecules.

    Science.gov (United States)

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-10-13

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing.

  4. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  5. Thermal Design and Analysis of an ISS Science Payload - SAGE III on ISS

    Science.gov (United States)

    Liles, Kaitlin, A. K.; Amundsen, Ruth M.; Davis, Warren T.; Carrillo, Laurie Y.

    2017-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be launched in the SpaceX Dragon vehicle in 2017 and mounted to an external stowage platform on the International Space Station (ISS) to begin its three-year mission. The SAGE III thermal team at NASA Langley Research Center (LaRC) worked with ISS thermal engineers to ensure that SAGE III, as an ISS payload, would meet requirements specific to ISS and the Dragon vehicle. This document presents an overview of the SAGE III thermal design and analysis efforts, focusing on aspects that are relevant for future ISS payload developers. This includes development of detailed and reduced Thermal Desktop (TD) models integrated with the ISS and launch vehicle models, definition of analysis cases necessary to verify thermal requirements considering all mission phases from launch through installation and operation on-orbit, and challenges associated with thermal hardware selection including heaters, multi-layer insulation (MLI) blankets, and thermal tapes.

  6. Thermal analysis on organic phase change materials for heat storage applications

    Science.gov (United States)

    Lager, Daniel

    2016-07-01

    In this paper, methodologies based on thermal analysis to evaluate specific heat capacity, phase transition enthalpies, thermal cycling stability and thermal conductivity of organic phase change materials (PCMs) are discussed. Calibration routines for a disc type heat flow differential scanning calorimetry (hf-DSC) are compared and the applied heating rates are adapted due to the low thermal conductivity of the organic PCMs. An assessment of thermal conductivity measurements based on "Laser Flash Analysis" (LFA) and the "Transient Hot Bridge" method (THB) in solid and liquid state has been performed. It could be shown that a disc type hf-DSC is a useful method for measuring specific heat capacity, melting enthalpies and cycling stability of organic PCM if temperature and sensitivity calibration are adapted to the material and quantity to be measured. The LFA method shows repeatable and reproducible thermal diffusivity results in solid state and a high effort for sample preparation in comparison to THB in liquid state. Thermal conductivity results of the two applied methods show large deviations in liquid phase and have to be validated by further experiments.

  7. Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA

    Directory of Open Access Journals (Sweden)

    Youqun Zhao

    2018-01-01

    Full Text Available A combination of Finite Element Method (FEM and Experiment Modal Analysis (EMA have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.

  8. Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA

    Science.gov (United States)

    Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji

    2018-01-01

    A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.

  9. Thermal Damage Analysis in Biological Tissues Under Optical Irradiation: Application to the Skin

    Science.gov (United States)

    Fanjul-Vélez, Félix; Ortega-Quijano, Noé; Solana-Quirós, José Ramón; Arce-Diego, José Luis

    2009-07-01

    The use of optical sources in medical praxis is increasing nowadays. In this study, different approaches using thermo-optical principles that allow us to predict thermal damage in irradiated tissues are analyzed. Optical propagation is studied by means of the radiation transport theory (RTT) equation, solved via a Monte Carlo analysis. Data obtained are included in a bio-heat equation, solved via a numerical finite difference approach. Optothermal properties are considered for the model to be accurate and reliable. Thermal distribution is calculated as a function of optical source parameters, mainly optical irradiance, wavelength and exposition time. Two thermal damage models, the cumulative equivalent minutes (CEM) 43 °C approach and the Arrhenius analysis, are used. The former is appropriate when dealing with dosimetry considerations at constant temperature. The latter is adequate to predict thermal damage with arbitrary temperature time dependence. Both models are applied and compared for the particular application of skin thermotherapy irradiation.

  10. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    Science.gov (United States)

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  11. Thermal Analysis of Implant-Defined Vertical Cavity Surface Emitting Laser Array

    Science.gov (United States)

    Xun, Meng; Xu, Chen; Xie, Yi-Yang; Deng, Jun; Xu, Kun; Chen, Hong-Da

    2015-01-01

    A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.

  12. An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH)2/MnO2@Carbon Nanotube and Activated Polyaniline-Derived Carbon.

    Science.gov (United States)

    Shen, Juanjuan; Li, Xiaocheng; Wan, Liu; Liang, Kun; Tay, Beng Kang; Kong, Lingbin; Yan, Xingbin

    2017-01-11

    Development of a supercapacitor device with both high gravimetric and volumetric energy density is one of the most important requirements for their practical application in energy storage/conversion systems. Currently, improvement of the gravimetric/volumetric energy density of a supercapacitor is restricted by the insufficient utilization of positive materials at high loading density and the inferior capacitive behavior of negative electrodes. To solve these problems, we elaborately designed and prepared a 3D core-shell structured Ni(OH) 2 /MnO 2 @carbon nanotube (CNT) composite via a facile solvothermal process by using the thermal chemical vapor deposition grown-CNTs as support. Owing to the superiorities of core-shell architecture in improving the service efficiency of pseudocapacitive materials at high loading density, the prepared Ni(OH) 2 /MnO 2 @CNT electrode demonstrated a high capacitance value of 2648 F g -1 (1 A g -1 ) at a high loading density of 6.52 mg cm -2 . Coupled with high-performance activated polyaniline-derived carbon (APDC, 400 F g -1 at 1 A g -1 ), the assembled Ni(OH) 2 /MnO 2 @CNT//APDC asymmetric device delivered both high gravimetric and volumetric energy density (126.4 Wh kg -1 and 10.9 mWh cm -3 , respectively), together with superb rate performance and cycling lifetime. Moreover, we demonstrate an effective approach for building a high-performance supercapacitor with high gravimetric/volumetric energy density.

  13. Exact Thermal Analysis of Functionally Graded Cylindrical and Spherical Vessels

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-07-01

    Full Text Available Thermal analyses of radially functionally graded (FG thick-walled a spherical vessel and an infinite cylindrical vessel or a circular annulus are conducted analytically by the steady-state 1-D Fourier heat conduction theory under Dirichlet’s boundary conditions. By employing simple-power material grading pattern the differential equations are obtained in the form of Euler-Cauchy types. Analytical solution of the differential equations gives the temperature field and the heat flux distribution in the radial direction in a closed form. Three different physical metal-ceramic pairs first considered to study the effect of the aspect ratio, which is defined as the inner radius to the outer radius of the structure, on the temperature and heat flux variation along the radial coordinate. Then a parametric study is performed with hypothetic inhomogeneity indexes for varying aspect ratios.

  14. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  15. Analysis on fibre orientation of thermal bonded nonwoven

    Science.gov (United States)

    Musa, Atiyyah; Gong, Rong Hugh; Nasir, Eryna; Baharudin, Aznin; Tulos, Najua

    2016-02-01

    The aim of this research is to produce some three-dimensional (3D) nonwoven fabrics with variation in weight and type of fibre and then analyse their fibre orientation distribution by fast Fourier Transform (FFT) method. Three different fibres were used: polyester, polypropylene and blended polyester and polypropylene. Fabric weight varied from 20 to 180 g/m2. The processes of web formation and consolidation were based on the principle of air-laid and hot through-air thermal bonding technique. The result of the fibre orientation showed a random distribution of the fibres for all the samples. It indicated that there was no relationship between the variables and fibre orientation distribution. The position of 3D web whether from the top or side part did not show any variation and thus they did not have the influence towards the fibre orientation.

  16. Solar thermal plant impact analysis and requirements definition

    Science.gov (United States)

    Gupta, Y. P.

    1980-01-01

    Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.

  17. Surface Response of Brominated Carbon Media on Laser and Thermal Excitation: Optical and Thermal Analysis Study

    OpenAIRE

    Volodymyr V. Multian; Kinzerskyi, Fillip E.; Anna V. Vakaliuk; Grishchenko, Liudmyla M.; Diyuk, Vitaliy E.; Boldyrieva, Olga Yu; Kozhanov, Vadim O.; Oleksandr V. Mischanchuk; Vladyslav V. Lisnyak; Gayvoronsky, Volodymyr Ya.

    2017-01-01

    The present study is objected to develop an analytical remote optical diagnostics of the functionalized carbons surface. Carbon composites with up to 1 mmol g?1 of irreversibly adsorbed bromine were produced by the room temperature plasma treatment of an activated carbon fabric (ACF) derived from polyacrylonitrile textile. The brominated ACF (BrACF) was studied by elastic optical scattering indicatrix analysis at wavelength 532 nm. The obtained data were interpreted within results of the ther...

  18. Thermal Analysis of the Decomposition of Ammonium Uranyl Carbonate (AUC) in Different Atmospheres

    DEFF Research Database (Denmark)

    Hälldahl, L.; Sørensen, Ole Toft

    1979-01-01

    The intermediate products formed during thermal decomposition of ammonium uranyl carbonate (AUC) in different atmospheres, (air, helium and hydrogen) have been determined by thermal analysis, (TG, and DTA) and X-ray analysis. The endproducts observed are U3O8 and UO2 in air/He and hydrogen......, respectively. The following intermediate products were observed in all atmospheres: http://www.sciencedirect.com.globalproxy.cvt.dk/cache/MiamiImageURL/B6THV-44K80TV-FB-1/0?wchp=dGLzVlz-zSkWW X-ray diffraction analysis showed that these phases were amorphous....

  19. Characterization of the antibiotic doripenem using physicochemical methods: chromatography, spectrophotometry, spectroscopy and thermal analysis

    OpenAIRE

    Andreas S. L. MENDEZ; Luciano Mantovani; Fábio Barbosa; Sayago,Carla T. M; Garcia, Cássia V.; Paula,Fávero R; Fabiana E. B. da Silva; Denardin, Elton L.G.; Schapoval,Elfrides E.S.

    2011-01-01

    Doripenem was characterized through physicochemical and spectroscopic techniques, as well as thermal analysis. TLC (Rf = 0.62) and HPLC (rt = 7.4 min) were found to be adequate to identify the drug. UV and infrared spectra showed similar profile between doripenem bulk and standard. The 1H and 13C NMR analysis revealed chemical shifts that allowed identifying the drug. Thermal analysis demonstrated three steps with mass loss, at 128, 178 and 276 oC. The work was successfully applied to qualita...

  20. Gravity effects obtained from global hydrology models in comparison with high precision gravimetric time series

    Science.gov (United States)

    Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin

    2010-05-01

    Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.

  1. Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control

    Directory of Open Access Journals (Sweden)

    L. Batet

    2007-11-01

    Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the Asociación Nuclear Ascó-Vandellòs (ANAV. ANAV is the consortium that runs the Ascó power plants (2 units and the Vandellòs-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000 MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.

  2. Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis

    NARCIS (Netherlands)

    Maucec, M.; Rigollet, C.

    The performance of a detection system based on the pulsed fast/thermal neutron analysis technique was assessed using Monte Carlo simulations. The aim was to develop and implement simulation methods, to support and advance the data analysis techniques of the characteristic gamma-ray spectra,

  3. Surface Response of Brominated Carbon Media on Laser and Thermal Excitation: Optical and Thermal Analysis Study.

    Science.gov (United States)

    Multian, Volodymyr V; Kinzerskyi, Fillip E; Vakaliuk, Anna V; Grishchenko, Liudmyla M; Diyuk, Vitaliy E; Boldyrieva, Olga Yu; Kozhanov, Vadim O; Mischanchuk, Oleksandr V; Lisnyak, Vladyslav V; Gayvoronsky, Volodymyr Ya

    2017-12-01

    The present study is objected to develop an analytical remote optical diagnostics of the functionalized carbons surface. Carbon composites with up to 1 mmol g-1 of irreversibly adsorbed bromine were produced by the room temperature plasma treatment of an activated carbon fabric (ACF) derived from polyacrylonitrile textile. The brominated ACF (BrACF) was studied by elastic optical scattering indicatrix analysis at wavelength 532 nm. The obtained data were interpreted within results of the thermogravimetric analysis, X-ray photoelectron spectroscopy and temperature programmed desorption mass spectrometry. The bromination dramatically reduces the microporosity producing practically non-porous material, while the incorporated into the micropores bromine induces the dielectric and structural impact on surface polarizability and conductivity due to the charging effect. We have found that the elastic optical scattering in proper solid angles in the forward and the backward hemispheres is sensitive to the kind of the bromine bonding, e.g., physical adsorption or chemisorption, and the bromination level, respectively, that can be utilized for the express remote fabrication control of the nanoscale carbons with given interfaces.

  4. Calibration of Soil Moisture Measurement Using Pr2 Moisture Meter and Gravimetric-Based Approaches

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2016-10-01

    Full Text Available The research study strongly focused on creating strong mechanism for measuring and evaluating soil moisture content comparing PR2 capacitance moisture meter and gravimetric approach. PR2 moisture meter shows a better performance accuracy of ± 6%; 0.06 m 3 /m 3 and intercept a0 =1.8; indicating the field is heavy clay. It measures to 1000 mm depth with high precision; while realistic result could not be obtained from gravimetric method at this measuring depth. Therefore, effective soil moisture measuring, monitoring and evaluation can be achieved with PR2 moisture meter.

  5. Thermal Analysis for Ion-Exchange Column System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  6. Dynamic mechanical thermal analysis of hypromellose 2910 free films.

    Science.gov (United States)

    Cespi, Marco; Bonacucina, Giulia; Mencarelli, Giovanna; Casettari, Luca; Palmieri, Giovanni Filippo

    2011-10-01

    It is common practice to coat oral solid dosage forms with polymeric materials for controlled release purposes or for practical and aesthetic reasons. Good knowledge of thermo-mechanical film properties or their variation as a function of polymer grade, type and amount of additives or preparation method is of prime importance in developing solid dosage forms. This work focused on the dynamic mechanical thermal characteristics of free films of hypromellose 2910 (also known as HPMC), prepared using three grades of this polymer from two different manufacturers, in order to assess whether polymer chain length or origin affects the mechanical or thermo-mechanical properties of the final films. Hypromellose free films were obtained by casting their aqueous solutions prepared at a specific concentrations in order to obtain the same viscosity for each. The films were stored at room temperature until dried and then examined using a dynamic mechanical analyser. The results of the frequency scans showed no significant differences in the mechanical moduli E' and E″ of the different samples when analysed at room temperature; however, the grade of the polymer affected material transitions during the heating process. Glass transition temperature, apparent activation energy and fragility parameters depended on polymer chain length, while the material brand showed little impact on film performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Rate process analysis of thermal damage in cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Sergio H; Nelson, J Stuart; Wong, Brian J F [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA (United States)

    2003-01-07

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x10{sup 70} s{sup -1} and E{sub a}=4.5x10{sup 5} J mole{sup -1}, were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure.

  8. Comparative analysis of thermal behavior in hollow nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Beatriz M. dos; Alvim, Antonio C.M., E-mail: bmachado@nuclear.ufrj.br, E-mail: aalvim@gmail.com [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-11-01

    The increase in energy demand in Brazil and in the world is a real problem and several solutions are being considered to mitigate it. Maximization of energy generation, within the safety standards of fuel resources already known, is one of them. In this respect, nuclear energy is a crucial technology to sustain energy demand on several countries. Performances of a solid cylindrical and an annular rod have been verified and compared; where it has been proven that the annular rod can reach a higher nominal power in relation to the solid one. In this paper, the temperature profiles of two distinct nuclear fuel pellets, one of them annular and the other in the shape of a hollow biconcave disc (like the cross section of a red blood cell), were compared to analyze the efficiency and safety of both. The finite differences method allowed the evaluation of the thermal behavior of these pellets, where one specific physical condition was analyzed, regarding convection and conduction at the lateral edges. The results show that the temperature profile of the hollow biconcave disc pellet is lower, about 70 deg C below, when compared to the temperature profile of the annular pellet, considering the same simulation parameters for both pellets. (author)

  9. A critical review on energy, exergy, exergoeconomic and economic (4-E analysis of thermal power plants

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2017-02-01

    Full Text Available The growing energy supply, demand has created an interest towards the plant equipment efficiency and the optimization of existing thermal power plants. Also, a thermal power plant dependency on fossil fuel makes it a little bit difficult, because of environmental impacts has been always taken into consideration. At present, most of the power plants are going to be designed by the energetic performance criterion which is based on the first law of thermodynamics. Sometimes, the system energy balance is not sufficient for the possible finding of the system imperfections. Energy losses taking place in a system can be easily determined by using exergy analysis. Hence, it is a powerful tool for the measurement of energy quality, thereby helps to make complex thermodynamic systems more efficient. Nowadays, economic optimization of plant is also a big problem for researchers because of the complex nature. At a viewpoint of this, a comprehensive literature review over the years of energy, exergy, exergoeconomic and economic (4-E analysis and their applications in thermal power plants stimulated by coal, gas, combined cycle and cogeneration system have been done thoroughly. This paper is addressed to those researchers who are doing their research work on 4-E analysis in various thermal power plants. If anyone extracts an idea for the development of the concept of 4-E analysis using this article, we will achieve our goal. This review also indicates the scope of future research in thermal power plants.

  10. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang

    2017-03-01

    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  11. Analysis on the effect of hypersonic vehicle's optical window on infrared thermal imaging system

    Science.gov (United States)

    Dong, Liquan; Han, Ying; Kong, Lingqin; Liu, Ming; Zhao, Yuejin; Zhang, Li; Li, Yanhong; Tian, Yi; Sa, Renna

    2015-08-01

    According to the aero-thermal effects and aero-thermal radiation effects of the optical window, the thermo-optic effect, the elasto-optical effect and the thermal deformation of the optical window are analyzed using finite element analysis method. Also, the peak value and its location of the point spread function, which is caused by the thermo-optic effect and the dome thermal deformation, are calculated with the variance of time. Furthermore, the temperature gradient influence to the transmission of optical window, the variation trend of transmission as well as optical window radiation with time are studied based on temperature distribution analysis. The simulations results show that: When the incident light is perpendicular to the optical window, image shift is mainly caused by its thermal deformation, and the value of image shift is very small. Image shift is determined only by the angle of the incident light. With a certain incident angle, image shift is not affected by the gradient refractive index change. The optical window transmission is mainly affected by temperature gradient and thus not neglectable to image quality. Therefore, the selection of window cooling methods, needs not only consider the window temperature but try to eliminate the temperature gradient. When calculating the thermal radiation, the optical window should be regarded as volume radiation source instead of surface radiator. The results provide the basis for the optical window design, material selection and the later image processing.

  12. TRANSITION AND DECOMPOSITION TEMPERATURES OF CEMENT PHASES - A COLLECTION OF THERMAL ANALYSIS DATA

    Directory of Open Access Journals (Sweden)

    Nick C. Collier

    2016-10-01

    Full Text Available Thermal analysis techniques provide the cement chemist with valuable tools to qualify and quantify the products formed during the hydration of cementitious materials. These techniques are commonly used alongside complimentary techniques such as X-ray diffraction and electron microscopy/energy dispersive spectroscopy to confirm the composition of phases present and identify amorphous material unidentified by other techniques. The most common thermal analysis techniques used by cement chemists are thermogravimetry, differential thermal analysis and differential scanning calorimetry. In order to provide a useful reference tool to the cement chemist, this paper provides a brief summary of the temperatures at which phase changes occur in the most common cement hydrates in the range 0-800°C in order to aid phase identification.

  13. Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yoggwang 3,4 Units

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.Y.; Choi, K.H.; Jee, M.H.; Chung, S.I. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    The objective of the study ''Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yonggwang 3,4 Units'' is to utilize computerized program to the performance test of the turbine cycle or the analysis of the operational status of the thermal plants. In addition, the result can be applicable to the analysis of the thermal output at the abnormal status and be a powerful tool to find out the main problems for such cases. As a results, the output of this study can supply the way to confirm the technical capability to operate the plants efficiently and to obtain the economic gains remarkably. (author). 27 refs., 73 figs., 6 tabs.

  14. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation

    KAUST Repository

    Qiu, Wulin

    2011-08-01

    Seven polyimides based on (4,4′-hexafluoroisopropylidene) diphthalic anhydride, 6FDA, with different chemical structures were synthesized in a single pot two-step procedure by first producing a high molecular weight polyamic acid (PAA), followed by reaction with acetic anhydride to produce polyimide (PI). The resulting polymers were characterized using thermal analysis techniques including TGA, derivative weight analysis, TGA-MS, and DSC. The decarboxylation-induced thermal cross-linking, ester cross-linking through a diol, and ion-exchange reactions of selected polyimide membranes were investigated. Cross-linking of polymer membranes was confirmed by solubility tests and CO 2 permeability measurements. The thermal analysis provides simple and timesaving opportunities to characterize the polymer properties, the ability to optimize polymer cross-linking conditions, and to monitor polymer functionalization to develop high performance polymeric membranes for gas separations. © 2011 Elsevier Ltd. All rights reserved.

  15. Investigating the provenance of thermal groundwater using compositional multivariate statistical analysis: a hydrogeochemical study from Ireland

    Science.gov (United States)

    Blake, Sarah; Henry, Tiernan; Murray, John; Flood, Rory; Muller, Mark R.; Jones, Alan G.; Rath, Volker

    2016-04-01

    The geothermal energy of thermal groundwater is currently being exploited for district-scale heating in many locations world-wide. The chemical compositions of these thermal waters reflect the provenance and hydrothermal circulation patterns of the groundwater, which are controlled by recharge, rock type and geological structure. Exploring the provenance of these waters using multivariate statistical analysis (MSA) techniques increases our understanding of the hydrothermal circulation systems, and provides a reliable tool for assessing these resources. Hydrochemical data from thermal springs situated in the Carboniferous Dublin Basin in east-central Ireland were explored using MSA, including hierarchical cluster analysis (HCA) and principal component analysis (PCA), to investigate the source aquifers of the thermal groundwaters. To take into account the compositional nature of the hydrochemical data, compositional data analysis (CoDa) techniques were used to process the data prior to the MSA. The results of the MSA were examined alongside detailed time-lapse temperature measurements from several of the springs, and indicate the influence of three important hydrogeological processes on the hydrochemistry of the thermal waters: 1) increased salinity due to evaporite dissolution and increased water-rock-interaction; 2) dissolution of carbonates; and 3) dissolution of metal sulfides and oxides associated with mineral deposits. The use of MSA within the CoDa framework identified subtle temporal variations in the hydrochemistry of the thermal springs, which could not be identified with more traditional graphing methods (e.g., Piper diagrams), or with a standard statistical approach. The MSA was successful in distinguishing different geological settings and different annual behaviours within the group of springs. This study demonstrates the usefulness of the application of MSA within the CoDa framework in order to better understand the underlying controlling processes

  16. Thermal Stress Analysis of Medium-Voltage Converters for Smart Transformers

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; De Carne, Giovanni

    2017-01-01

    A smart transformer (ST) can take over an important managing role in the future electrical distribution grid system and can provide many advanced grid services compared to the traditional transformer. However, the risk is that the advanced functionality is balanced out by a lower reliability....... To address this concern, this work conducts thermal stress analysis for a modular multilevel converter (MMC), which is a promising solution for the medium voltage stage of the ST. The focus is put on the mission profiles of the transformer and the impact on the thermal stress of power semiconductor devices....... Normal operation at different power levels and medium voltage grid faults in a feeder fed by a traditional transformer are considered as well as the electrical and the thermal stress of the disconnection and the reconnection procedures. For the validation, the thermal stress of one MMC cell is reproduced...

  17. Synthesis, characterization and thermal analysis of polyaniline/ZrO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shaoxu [Thermochemisty Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); College of Environmental Scinece and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Tan Zhicheng [Thermochemisty Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China) and College of Environmental Scinece and Engineering, Dalian Jiaotong University, Dalian 116028 (China)]. E-mail: tzc@dicp.ac.cn; Li Yansheng [College of Environmental Scinece and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Sun Lixian [Thermochemisty Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); Zhang Tao [Thermochemisty Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China)

    2006-02-15

    Conducting polyaniline-zirconium dioxide (PANI/ZrO{sub 2}) composites were synthesized by 'in situ' deposition technique in the presence of hydrochloric acid (HCl) as dopant by adding the fine grade powder (average particle size of approximately 20 nm) of ZrO{sub 2} into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD) and thermogravimetric analysis (TGA). TG curves and DTG curves of the composites suggest that the thermal degradation process of PANI/ZrO{sub 2} composites proceeds in two-steps and the composites are more thermally stable than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and ZrO{sub 2}, which restricts the thermal motion of PANI chains and shields the degradation of PANI in the composites.

  18. Real time thermal imaging for analysis and control of crystal growth by the Czochralski technique

    Science.gov (United States)

    Wargo, M. J.; Witt, A. F.

    1992-01-01

    A real time thermal imaging system with temperature resolution better than +/- 0.5 C and spatial resolution of better than 0.5 mm has been developed. It has been applied to the analysis of melt surface thermal field distributions in both Czochralski and liquid encapsulated Czochralski growth configurations. The sensor can provide single/multiple point thermal information; a multi-pixel averaging algorithm has been developed which permits localized, low noise sensing and display of optical intensity variations at any location in the hot zone as a function of time. Temperature distributions are measured by extraction of data along a user selectable linear pixel array and are simultaneously displayed, as a graphic overlay, on the thermal image.

  19. Thermal stress analysis method considering geometric effect of risers in sand mold casting process

    Directory of Open Access Journals (Sweden)

    S. Y. Kwak

    2014-11-01

    Full Text Available Solidification and fluid flow analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great influence on thermal phenomena. The analysis domain is dramatically expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation difficult. However, it is difficult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources.

  20. Thermal properties of flame retardant cotton fabric grafted by dimethyl methacryloyloxyethyl phosphate

    Directory of Open Access Journals (Sweden)

    Xing Tie-Ling

    2012-01-01

    Full Text Available Thermal properties of flame retardant cotton fabric grafted by dimethyl methacryloy-loxyethyl phosphate were investigated by the atom transfer radical polymerization method. Thermal gravimetric analysis was used to explore the thermal decomposition mode of flamed retardant cotton fabric. The weight loss rate of the flamed retardant cotton was bigger than that of the control cotton fabric, and a more final residual char of flamed retardant cotton was also observed. Flammability tests were used to study the flame retardance property of the flame retardant cotton fabric. The results showed that flamed retardant cotton fabric with 16.8% of weight gain could keep good flame retardance. Scanning electron microscope pictures were applied to investigate the morphology of residual char of the flame retardant samples.

  1. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy.

    Science.gov (United States)

    Wydra, Robert J; Kruse, Anastasia M; Bae, Younsoo; Anderson, Kimberly W; Hilt, J Zach

    2013-12-01

    In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe3O4) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55°C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy. © 2013.

  2. Thermal Structure Analysis of SIRCA Tile for X-34 Wing Leading Edge TPS

    Science.gov (United States)

    Milos, Frank S.; Squire, Thomas H.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    This paper will describe in detail thermal/structural analyses of SIRCA tiles which were performed at NASA Ames under the The Tile Analysis Task of the X-34 Program. The analyses used the COSMOS/M finite element software to simulate the material response in arc-jet tests, mechanical deflection tests, and the performance of candidate designs for the TPS system. Purposes of the analysis were to verify thermal and structural models for the SIRCA tiles, to establish failure criteria for stressed tiles, to simulate the TPS response under flight aerothermal and mechanical load, and to confirm that adequate safety margins exist for the actual TPS design.

  3. Neutronic and thermal hydraulic analysis for production of fission molybdenum-99 at Pakistan Research Reactor-1

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2008-02-15

    Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.

  4. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  5. Thermal analytical investigation of biopolymers and humic- and carbonaceous-based soil and sediment organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhang; Eugene J. LeBoeuf; Baoshan Xing [Vanderbilt University, Nashville, TN (United States). Department of Civil and Environmental Engineering

    2007-07-15

    Improved understanding of the physical, chemical, and thermodynamic properties of soil and sediment organic matter (SOM) is crucial in elucidating sorption mechanisms of hydrophobic organic compounds (HOCs) in soils and sediments. In this study, several thermoanalytical techniques, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), temperature-modulated differential scanning calorimetry (TMDSC), and thermal mechanical analysis (TMA) were applied to 13 different organic materials (three woods, two humic acids, three kerogens, and five black carbons) representing a spectrum of diagenetic and/or thermal histories. Samples included Pocahontas No. 3 bituminous coal. Second-order thermal transition temperatures (T{sub t}) were identified in most materials, where the highest observed T{sub t} values (typically characterized as glass transition temperatures (T{sub g})) were shown to closely relate to chemical characteristics of the organic samples as influenced by diagenetic or thermal alteration. Results further suggest a positive correlation between glass transition temperature and a defined diagenetic/thermal index, where humic-based SOM (e.g., humic and fulvic acids) possess lower transition temperatures than more 'mature' carbonaceous-based SOM (i.e., kerogens and black carbons). The observed higher thermal transition temperature of aliphatic-rich Green River shale kerogen (about 120{sup o}C) relative to that of aromatic-rich humic acids suggests that a sole correlation of aromaticity to thermal transition temperature may be inappropriate. 55 refs., 2 figs., 1 tab.

  6. Application of computational fluid dynamics methods to improve thermal hydraulic code analysis

    Science.gov (United States)

    Sentell, Dennis Shannon, Jr.

    A computational fluid dynamics code is used to model the primary natural circulation loop of a proposed small modular reactor for comparison to experimental data and best-estimate thermal-hydraulic code results. Recent advances in computational fluid dynamics code modeling capabilities make them attractive alternatives to the current conservative approach of coupled best-estimate thermal hydraulic codes and uncertainty evaluations. The results from a computational fluid dynamics analysis are benchmarked against the experimental test results of a 1:3 length, 1:254 volume, full pressure and full temperature scale small modular reactor during steady-state power operations and during a depressurization transient. A comparative evaluation of the experimental data, the thermal hydraulic code results and the computational fluid dynamics code results provides an opportunity to validate the best-estimate thermal hydraulic code's treatment of a natural circulation loop and provide insights into expanded use of the computational fluid dynamics code in future designs and operations. Additionally, a sensitivity analysis is conducted to determine those physical phenomena most impactful on operations of the proposed reactor's natural circulation loop. The combination of the comparative evaluation and sensitivity analysis provides the resources for increased confidence in model developments for natural circulation loops and provides for reliability improvements of the thermal hydraulic code.

  7. Analysis of convective longitudinal fin with temperature-dependent thermal conductivity and internal heat generation

    Directory of Open Access Journals (Sweden)

    M.G. Sobamowo

    2017-03-01

    Full Text Available In this study, analysis of heat transfer in a longitudinal rectangular fin with temperature-dependent thermal conductivity and internal heat generation was carried out using finite difference method. The developed systems of non-linear equations that resulted from the discretization using finite difference scheme were solved with the aid of MATLAB using fsolve. The numerical solution was validated with the exact solution for the linear problem. The developed heat transfer models were used to investigate the effects of thermo-geometric parameters, coefficient of heat transfer and thermal conductivity (non-linear parameters on the temperature distribution, heat transfer and thermal performance of the longitudinal rectangular fin. From the results, it shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin. Also, for the solution to be thermally stable, the fin thermo-geometric parameter must not exceed a specific value. However, it was established that the increase in temperature-dependent properties and internal heat generation values increases the thermal stability range of the thermo-geometric parameter. The results obtained in this analysis serve as basis for comparison of any other method of analysis of the problem.

  8. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  9. Structural, optical, thermal and Photocatalytic properties of ZnO nanoparticles of Betel Leave by using Green synthesis method

    Directory of Open Access Journals (Sweden)

    S. Rajesh

    2016-07-01

    Full Text Available In this present study reports the green synthesis of zinc oxide nanoparticles using Betel leaf extracts and zinc acetate. The functionalization of ZnO particles through Betel leaf extract mediated bio reduction of ZnO was investigated through X-ray diffraction, Field emission scanning electron microscopy, photoluminescence, thermal gravimetric-differential thermal analysis, hexagonal shaped ZnO-nanoparticles  with  size  about  50 nm  were synthesized and characterized using X-ray diffraction analysis. The diameter of the nanoparticles in the range of 50 nm was found from scanning electron microscopy study. Photo luminescence study reveals the blue emission at 463nm respectively. hermal gravimetric-differential thermal analysis show that the observed at 480oC, indicating that no decomposition occurs above this temperature. The photocatalytic degradation of methylene blue dye was examined using ZnO nanoparticles under solar as well as ultra violet light irradiation of the MB dye. The  method  stands out primarily due to the fact that it is eco-friendly and shuts down the demerits of conventional  physical  and  chemical  methods. These particles are anticipated to have extensive applications in various industries.

  10. The combination of GNSS-levelling data and gravimetric (quasi-) geoid heights in the presence of noise

    NARCIS (Netherlands)

    Klees, R.; Prutkin, I.

    2010-01-01

    We propose a methodology for the combination of a gravimetric (quasi-) geoid with GNSS-levelling data in the presence of noise with correlations and/or spatially varying noise variances. It comprises two steps: first, a gravimetric (quasi-) geoid is computed using the available gravity data, which,

  11. Comparing Gravimetric and Real-Time Sampling of PM2.5 Concentrations Inside Truck Cabins

    Science.gov (United States)

    Zhu, Ying; Smith, Thomas J.; Davis, Mary E.; Levy, Jonathan I.; Herrick, Robert; Jiang, Hongyu

    2012-01-01

    As part of a study on truck drivers’ exposure and health risk, pickup and delivery (P&D) truck drivers’ on-road exposure patterns to PM2.5 were assessed in five weeklong sampling trips in metropolitan areas of five U.S. cities from April to August of 2006. Drivers were sampled with real-time (DustTrak) and gravimetric samplers to measure average in-cabin PM2.5 concentrations and to compare their correspondence in moving trucks. In addition, GPS measurements of truck locations, meteorological data, and driver behavioral data were collected throughout the day to determine which factors influence the relationship between real-time and gravimetric samplers. Results indicate that the association between average real-time and gravimetric PM2.5 measurements on moving trucks was fairly consistent (Spearman rank correlation of 0.63), with DustTrak measurements exceeding gravimetric measurements by approximately a factor of 2. This ratio differed significantly only between the industrial Midwest cities and the other three sampled cities scattered in the South and West. There was also limited evidence of an effect of truck age. Filter samples collected concurrently with DustTrak measurements can be used to calibrate average mass concentration responses for the DustTrak, allowing for real-time measurements to be integrated into longer-term studies of inter-city and intra-urban exposure patterns for truck drivers. PMID:21991940

  12. Comparing gravimetric and real-time sampling of PM(2.5) concentrations inside truck cabins.

    Science.gov (United States)

    Zhu, Ying; Smith, Thomas J; Davis, Mary E; Levy, Jonathan I; Herrick, Robert; Jiang, Hongyu

    2011-11-01

    As part of a study on truck drivers' exposure and health risk, pickup and delivery (P&D) truck drivers' on-road exposure patterns to PM(2.5) were assessed in five, weeklong sampling trips in metropolitan areas of five U.S. cities from April to August of 2006. Drivers were sampled with real-time (DustTrak) and gravimetric samplers to measure average in-cabin PM(2.5) concentrations and to compare their correspondence in moving trucks. In addition, GPS measurements of truck locations, meteorological data, and driver behavioral data were collected throughout the day to determine which factors influence the relationship between real-time and gravimetric samplers. Results indicate that the association between average real-time and gravimetric PM(2.5) measurements on moving trucks was fairly consistent (Spearman rank correlation of 0.63), with DustTrak measurements exceeding gravimetric measurements by approximately a factor of 2. This ratio differed significantly only between the industrial Midwest cities and the other three sampled cities scattered in the South and West. There was also limited evidence of an effect of truck age. Filter samples collected concurrently with DustTrak measurements can be used to calibrate average mass concentration responses for the DustTrak, allowing for real-time measurements to be integrated into longer-term studies of inter-city and intra-urban exposure patterns for truck drivers.

  13. Comparison of gravimetric and spectroscopic approaches to quantify stratum corneum removed by tape-stripping.

    Science.gov (United States)

    Mohammed, D; Yang, Q; Guy, R H; Matts, P J; Hadgraft, J; Lane, M E

    2012-09-01

    Skin surface tape-stripping is an extensively used technique to examine the distribution profile, penetration and safety of various active compounds. It is also a widely accepted method to probe skin barrier properties and more specifically, those of the stratum corneum (SC). The amount of SC removed by tape-stripping is generally determined either gravimetrically or by extraction and measurement of SC proteins. A novel infra-red densitometry (IRD) technique has recently been introduced to measure SC protein content. In the present study, IRD was investigated as an alternative method to measure the mass of SC removed by tape-stripping. Tape-stripping experiments were conducted on human volunteers. The weight of the stratum corneum removed was assessed by the gravimetric approach and by IRD. Transepidermal water loss (TEWL) was also measured before and after each tape-strip. A linear correlation coefficient was obtained for the data from the gravimetric and IRD measurements (r(2)=0.65; n=240). IRD is therefore proposed as a rapid, non-destructive alternative to the gravimetric approach to estimate the amount of SC removed by tape-stripping in vivo. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A simple, gravimetric method to quantify inorganic carbon in calcareous soils

    Science.gov (United States)

    Total carbon (TC) in calcareous soils has two components: inorganic carbon (IC) as calcite and or dolomite and organic carbon (OC) in the soil organic matter. The IC must be measured and subtracted from TC to obtain OC. Our objective was to develop a simple gravimetric technique to quantify IC. Th...

  15. Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter

    Science.gov (United States)

    Takahashi, Katsuyuki; Minoura, Hiroaki; Sakamoto, Kazuhiko

    Continuous monitoring of the concentration of atmospheric particulate matter was carried out for 7 years by both gravimetric method and β-ray attenuation method (BAM) from a building rooftop in the Tokyo metropolitan area. The two methods showed a different tendency in each season: the data observed by BAM were higher than those by the gravimetric method in summer, and this difference was reversed in winter. The volatilization of ammonium salts accounted for only 30% of the difference between the monitoring methods in summer. Thus, we considered the differences in the water content measured by each method. The concentration difference between methods increased when relative humidity exceeded the deliquescence point of ammonium sulfate in summer, and the water content was estimated to be 30%. However, differences in relative humidity did not explain why the data obtained by the gravimetric method exceeded BAM data by 20-30% in winter. We found that the gravimetric measurements generally exceeded BAM measurements in winter if the ambient absolute humidity during particle collection was higher than the absolute humidity during sample weighing. The water content of atmospheric aerosols greatly influences their mass concentrations. Care must be taken when using mass concentration data for purposes such as evaluating health effects.

  16. Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States); Saha, Rohit [Cummins Inc., Columbus, IN (United States); Madurai Kumar, Mahesh [Cummins Inc., Columbus, IN (United States); Hwang, L. K [Cummins Inc., Columbus, IN (United States)

    2017-01-31

    Aerodynamic analysis of the medium-duty delivery truck was performed to achieve vehicle design optimization. Three dimensional CFD simulations were carried out for several improved designs, with a detailed external component analysis of wheel covers, side skirts, roof fairings, and rounded trailer corners. The overall averaged aerodynamics drag reduction through the design modifications were shown up to 22.3% through aerodynamic considerations alone, which is equivalent to 11.16% fuel savings. The main identified fuel efficiencies were based on second generation devices, including wheel covers, side skirts, roof fairings, and rounded trailer corners. The important findings of this work were; (i) the optimum curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm, (ii) aerodynamic drag reduction increases with dropping clearance of side skirts between wheels and ground, and (iii) aerodynamic drag reduction increases with an extension of front bumper towards the ground.

  17. Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells

    Science.gov (United States)

    Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu

    2017-09-01

    Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.

  18. Thermal analysis of pentaerythritol tetranitrate and development of a powder aging model

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey W [Los Alamos National Laboratory; Sandstrom, Mary M [Los Alamos National Laboratory; Giambra, Anna M [Los Alamos National Laboratory; Archuleta, Jose G [Los Alamos National Laboratory; Monroe, Deirde C [Los Alamos National Laboratory

    2009-01-01

    We have applied a range of different physical and thermal analysis techniques to characterize the thermal evolution of the specific surface area of pentaerythritol tetranitrate (PETN) powders. Using atomic force microscopy we have determined that the mass transfer mechanism leading to powder coarsening is probably sublimation and redeposition of PETN. Using thermogravimetric analysis we have measured vapor pressures of PETN powders whose aging will be simulated in future work. For one specific powder we have constructed an empirical model of the coarsening that is fit to specific surface area measurements at 60 C to 70 C to provide predictive capability of that powder's aging. Modulated differential scanning calorimetry and mass spectroscopy measurements highlight some of the thermal behavior of the powders and suggest that homologue-based eutectics and impurities are localized in the powder particles.

  19. Experimental and Transient Thermal Analysis of Heat Sink Fin for CPU processor for better performance

    Science.gov (United States)

    Ravikumar, S.; Subash Chandra, Parisaboina; Harish, Remella; Sivaji, Tallapaneni

    2017-05-01

    The advancement of the digital computer and its utilization day by day is rapidly increasing. But the reliability of electronic components is critically affected by the temperature at which the junction operates. The designers are forced to shorten the overall system dimensions, in extracting the heat and controlling the temperature which focus the studies of electronic cooling. In this project Thermal analysis is carried out with a commercial package provided by ANSYS. The geometric variables and design of heat sink for improving the thermal performance is experimented. This project utilizes thermal analysis to identify a cooling solution for a desktop computer, which uses a 5 W CPU. The design is able to cool the chassis with heat sink joined to the CPU is adequate to cool the whole system. This work considers the circular cylindrical pin fins and rectangular plate heat sink fins design with aluminium base plate and the control of CPU heat sink processes.

  20. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  1. Thermal analysis of reinforced concrete beams and frames

    Directory of Open Access Journals (Sweden)

    Essam H. El-Tayeb

    2017-04-01

    The obtained results of the studied cases reveal that material modeling of reinforced concrete beams and frames plays a major role in how these structures react to temperature variation. Cracking contributes to the release of significant portion of temperature restrain and in some cases this restrain is almost eliminated. The response of beams and frames deviates significantly based on the temperature gradient, linear or nonlinear; hence, the nonlinear temperature gradient which is the realistic profile is important to implement in the analysis.

  2. Development of Regulatory Thermal-Hydraulic Analysis System (RETAS)

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seung-Hoon; Kim, In-Goo; Kim, Hho-Jung; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-10-15

    A review is provided of the reasons why the Korea Institute of Nuclear Safety needs improvement of the existing codes employed for a regulatory audit. The proposed new organization of the codes, developed or to be developed, is presented together with illustrative applications. Inspection of the quality assurance activities is planned to ensure the robustness of MARS (Multi-dimensional Analysis for Reactor Safety) code, served as a pivot of the organization.

  3. MODELING, DYNAMIC AND THERMAL ANALYSIS OF THE PROTOTYPE MAGNETORHEOLOGICAL CLUTCH

    OpenAIRE

    Jerzy BAJKOWSKI

    2014-01-01

    This paper presents the complex results concerning the prototype clutch with magnetorheological (MR) fluid. The obtained characteristics depicts the dependencies between the clutch’s torque and: the intensity of the magnetic field induced by the coil current, as well as the rotational speed of the rotor, and the temperature of the fluid during exploitation. The research was conducted on the dedicated laboratory stand. The detailed analysis of the results is provided in the article.

  4. MODELING, DYNAMIC AND THERMAL ANALYSIS OF THE PROTOTYPE MAGNETORHEOLOGICAL CLUTCH

    Directory of Open Access Journals (Sweden)

    Jerzy BAJKOWSKI

    2014-06-01

    Full Text Available This paper presents the complex results concerning the prototype clutch with magnetorheological (MR fluid. The obtained characteristics depicts the dependencies between the clutch’s torque and: the intensity of the magnetic field induced by the coil current, as well as the rotational speed of the rotor, and the temperature of the fluid during exploitation. The research was conducted on the dedicated laboratory stand. The detailed analysis of the results is provided in the article.

  5. Thermal and structural analysis of a filter vessel ceramic tubesheet

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, R.H. [Mallett Technology, Inc., Research Triangle Park, NC (United States); Swindeman, R.W. [Oak Ridge National Lab., TN (United States); Zievers, J.F. [Industrial Filter & Pump Mfg. Co., Cicero, IL (United States)

    1995-08-01

    A ceramic tubesheet assembly for a hot gas filter vessel is analyzed using the finite element method to determine stresses under differential pressure loading. The stresses include local concentration effects. Selection of the stress measures for evaluation of structural integrity is discussed. Specification of stress limits based upon limited data is considered. Stress results from this ongoing design analysis technology project are shown for one design concept.

  6. Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis

    Science.gov (United States)

    Li, R.-T.; Khor, K. A.; Yu, L.-G.

    2016-12-01

    We investigated the research publications on thermal spray in the period of 1985-2015 using the data from Web of Science, Scopus and SciVal®. Bibliometrics analysis was employed to elucidate the country and institution distribution in various thermal spray research areas and to characterize the trends of topic change and technology progress. Results show that China, USA, Japan, Germany, India and France were the top countries in thermal spray research, and Xi'an Jiaotong University, Universite de Technologie Belfort-Montbeliard, Shanghai Institute of Ceramics, ETH Zurich, National Research Council of Canada, University of Limoges were among the top institutions that had high scholarly research output during 2005-2015. The terms of the titles, keywords and abstracts of the publications were analyzed by the Latent Dirichlet Allocation model and visually mapped using the VOSviewer software to reveal the progress of thermal spray technology. It is found that thermal barrier coating was consistently the main research area in thermal spray, and high-velocity oxy-fuel spray and cold spray developed rapidly in the last 10 years.

  7. Vacuum Insulation Panels: Analysis of the Thermal Performance of Both Single Panel and Multilayer Boards

    Directory of Open Access Journals (Sweden)

    Alfonso Capozzoli

    2015-03-01

    Full Text Available The requirements for improvement in the energy efficiency of buildings, mandatory in many EU countries, entail a high level of thermal insulation of the building envelope. In recent years, super-insulation materials with very low thermal conductivity have been developed. These materials provide satisfactory thermal insulation, but allow the total thickness of the envelope components to be kept below a certain thickness. Nevertheless, in order to penetrate the building construction market, some barriers have to be overcome. One of the main issues is that testing procedures and useful data that are able to give a reliable picture of their performance when applied to real buildings have to be provided. Vacuum Insulation Panels (VIPs are one of the most promising high performing technologies. The overall, effective, performance of a panel under actual working conditions is influenced by thermal bridging, due to the edge of the panel envelope and to the type of joint. In this paper, a study on the critical issues related to the laboratory measurement of the equivalent thermal conductivity of VIPs and their performance degradation due to vacuum loss has been carried out utilizing guarded heat flux meter apparatus. A numerical analysis has also been developed to study thermal bridging effect when VIP panels are adopted to create multilayer boards for building applications.

  8. Microbial community analysis of pH 4 thermal springs in Yellowstone National Park.

    Science.gov (United States)

    Jiang, Xiaoben; Takacs-Vesbach, Cristina D

    2017-01-01

    The pH of the majority of thermal springs in Yellowstone National Park (YNP) is from 1 to 3 and 6 to 10; relatively few springs (~5%) have a pH range of 4-5. We used 16S rRNA gene pyrosequencing to investigate microbial communities sampled from four pH 4 thermal springs collected from four regions of YNP that differed in their fluid temperature and geochemistry. Our results revealed that the composition of bacterial communities varied among the sites, despite sharing similar pH values. The taxonomic composition and metabolic functional potential of the site with the lowest temperature (55 °C), a thermal spring from the Seven Mile Hole (SMH) area, were further investigated using shotgun metagenome sequencing. The taxonomic classification, based on 372 Mbp of unassembled metagenomic reads, indicated that this community included a high proportion of Chloroflexi, Bacteroidetes, Proteobacteria, and Firmicutes. Functional comparison with other YNP thermal spring metagenomes indicated that the SMH metagenome was enriched in genes related to energy production and conversion, transcription, and carbohydrate transport. Analysis of genes involved in nitrogen metabolism revealed assimilatory and dissimilatory nitrate reduction pathways, whereas the majority of genes involved in sulfur metabolism were related to the reduction of sulfate to adenylylsulfate, sulfite, and H2S. Given that pH 4 thermal springs are relatively less common in YNP and thermal areas worldwide, they may harbor novel microbiota and the communities that inhabit them deserve further investigation.

  9. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  10. Early detection of metabolic and energy disorders by thermal time series stochastic complexity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lutaif, N.A. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Palazzo, R. Jr [Departamento de Telemática, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, Campinas, SP (Brazil); Gontijo, J.A.R. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil)

    2014-01-17

    Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.

  11. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  12. Forensic analysis methodology for thermal and chemical characterization of homemade explosives

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Ashot; Presser, Cary, E-mail: cpresser@nist.gov

    2014-01-20

    Highlights: • Identification of homemade explosives (HME) is critical for determining the origin of explosive precursor materials. • A novel laser-heating technique was used to obtain the thermal/chemical signatures of HME precursor materials. • Liquid-fuel saturation of the pores of a solid porous oxidizer affected the total specific heat release. • Material thermal signatures were dependent on sample mass and heating rate. • This laser-heating technique can be a useful diagnostic tool for characterizing the thermochemical behavior of HMEs. - Abstract: Forensic identification of homemade explosives is critical for determining the origin of the explosive materials and precursors, and formulation procedures. Normally, the forensic examination of the pre- and post-blast physical evidence lacks specificity for homemade-explosive identification. The focus of this investigation was to use a novel measurement technique, referred to as the laser-driven thermal reactor, to obtain the thermal/chemical signatures of homemade-explosive precursor materials. Specifically, nitromethane and ammonium nitrate were studied under a variety of operating conditions and protocols. Results indicated that liquid-fuel saturation of the internal pores of a solid particle oxidizer appear to be a limiting parameter for the total specific heat release during exothermic processes. Results also indicated that the thermal signatures of these materials are dependent on sample mass and heating rate, for which this dependency may not be detectable by other commercially available thermal analysis techniques. This study has demonstrated that the laser-driven thermal reactor can be a useful diagnostic tool for characterizing the thermal and chemical behavior of trace amounts of homemade-explosive materials.

  13. Microencapsulated n-octacosane as phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-10-15

    This study deals with preparation and characterization of polymethylmetracrylate (PMMA) microcapsules containing n-octacosane as phase change material for thermal energy storage. The surface morphology, particle size and particle size distribution (PSD) were studied by scanning electron microscopy (SEM). The chemical characterization of PMMA/octacosane microcapsules was made by FT-IR spectroscopy method. Thermal properties and thermal stability of microencapsulated octacosane were determined using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The melting and freezing temperatures and the latent heats of the microencapsulated octacosane as PCM were measured as 50.6 and 53.2 C, 86.4 and -88.5 J/g, respectively, by DSC analysis. TGA analysis indicated that the microencapsulated octacosane degrade in two steps and had good chemical stability. Thermal cycling test shows that the microcapsules have good thermal reliability with respect to the accelerated thermal cycling. Based on the results, it can be considered that the microencapsulated octacosane have good energy storage potential. (author)

  14. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation.

    Science.gov (United States)

    Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S

    2017-04-01

    In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, (H)NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and (H)NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Novel thermal imaging analysis technique for detecting inflammation in thyroid eye disease.

    Science.gov (United States)

    Di Maria, Costanzo; Allen, John; Dickinson, Jane; Neoh, Christopher; Perros, Petros

    2014-12-01

    The disease phase in thyroid eye disease (TED) is commonly assessed by clinical investigation of cardinal signs of inflammation and using the clinical activity score (CAS). Although CAS is the current gold standard, the clinical assessment would benefit if a more objective tool were available. The aim of this work was to explore the clinical value of a novel thermal imaging analysis technique to objectively quantify the thermal characteristics of the eye and peri-orbital region and determine the disease phase in TED. This was a cross-sectional study comparing consecutive patients with active TED (CAS ≥ 3/7) attending a tertiary center, with a group of consecutive patients with inactive TED (CAS <3). Thermal images were acquired from 30 TED patients, 17 with active disease and 13 with inactive disease. Patients underwent standard ophthalmological clinical assessments and thermal imaging. Five novel thermal eye parameters (TEP) were developed to quantify the thermal characteristics of the eyes in terms of the highest level of inflammation (TEP1), overall level of inflammation (TEP2), right-left asymmetry in the level of inflammation (TEP3), maximum temperature variability across the eyes (TEP4), and right-left asymmetry in the temperature variability (TEP5). All five TEP were increased in active TED. TEP1 gave the largest accuracy (77%) at separating the two groups, with 65% sensitivity and 92% specificity. A statistical model combining all five parameters increased the overall accuracy, compared to using only one parameter, to 93% (94% sensitivity and 92% specificity). All five of the parameters were also found to be increased in patients with chemosis compared to those without. The potential diagnostic value of this novel thermal imaging analysis technique has been demonstrated. Further investigation on a larger group of patients is necessary to confirm these results.

  16. DOE-Managed HLW and SNF Research: FY15 EBS and Thermal Analysis Work Package Status.

    Energy Technology Data Exchange (ETDEWEB)

    Matteo, Edward N. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report examines the technical elements necessary to evaluate EBS concepts and perform thermal analysis of DOE-Managed SNF and HLW in the disposal settings of primary interest – argillite, crystalline, salt, and deep borehole. As the disposal design concept is composed of waste inventory, geologic setting, and engineered concept of operation, the engineered barrier system (EBS) falls into the last component of engineered concept of operation. The waste inventory for DOE-Managed HLW and SNF is closely examined, with specific attention to the number of waste packages, the size of waste packages, and the thermal output per package. As expected, the DOE-Managed HLW and SNF inventory has a much smaller volume, and hence smaller number of canisters, as well a lower thermal output, relative to a waste inventory that would include commercial spent nuclear fuel (CSNF). A survey of available data and methods from previous studies of thermal analysis indicates that, in some cases, thermo-hydrologic modeling will be necessary to appropriately address the problem. This report also outlines scope for FY16 work -- a key challenge identified is developing a methodology to effectively and efficiently evaluate EBS performance in each disposal setting on the basis of thermal analyses results.

  17. Reduced order models for thermal analysis : final report : LDRD Project No. 137807.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E., Jr.; Gartling, David K.

    2010-09-01

    This LDRD Senior's Council Project is focused on the development, implementation and evaluation of Reduced Order Models (ROM) for application in the thermal analysis of complex engineering problems. Two basic approaches to developing a ROM for combined thermal conduction and enclosure radiation problems are considered. As a prerequisite to a ROM a fully coupled solution method for conduction/radiation models is required; a parallel implementation is explored for this class of problems. High-fidelity models of large, complex systems are now used routinely to verify design and performance. However, there are applications where the high-fidelity model is too large to be used repetitively in a design mode. One such application is the design of a control system that oversees the functioning of the complex, high-fidelity model. Examples include control systems for manufacturing processes such as brazing and annealing furnaces as well as control systems for the thermal management of optical systems. A reduced order model (ROM) seeks to reduce the number of degrees of freedom needed to represent the overall behavior of the large system without a significant loss in accuracy. The reduction in the number of degrees of freedom of the ROM leads to immediate increases in computational efficiency and allows many design parameters and perturbations to be quickly and effectively evaluated. Reduced order models are routinely used in solid mechanics where techniques such as modal analysis have reached a high state of refinement. Similar techniques have recently been applied in standard thermal conduction problems e.g. though the general use of ROM for heat transfer is not yet widespread. One major difficulty with the development of ROM for general thermal analysis is the need to include the very nonlinear effects of enclosure radiation in many applications. Many ROM methods have considered only linear or mildly nonlinear problems. In the present study a reduced order model is

  18. Analysis of thermal distribution in two end pumping Nd: YAG laser ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 3. Analysis of ... Abstract. There is a strong need for the optimized management of the thermal problem in Nd:YAG laser rod and for a powerful, fast, and accurate modelling tool capable of treating the heat source distribution very close to what it actually is.

  19. Thermal analysis of an HVAC system with TRV controlled hydronic radiator

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2010-01-01

    A model for an HVAC system is derived in this paper. The HVAC system consists of a room and a hydronic radiator with temperature regulating valve (TRV) which has a step motor to adjust the valve opening. The heating system and the room are simulated as a unit entity for thermal analysis...

  20. A study on the differential thermal analysis of clays and clay minerals

    NARCIS (Netherlands)

    Arens, P.L.

    1951-01-01

    Differential thermal analysis (DTA) as a method of analysing properties of chemical compounds, more especially of clay minerals, developed rapidly, but lack of quantitative interpretations left many problems to be studied. A historical review was presented, showing the purpose of the study.

  1. Stoichiometry of Zn(II)-heparin-glycine complex, determined using data from elemental and thermal analysis

    Science.gov (United States)

    Feofanova, M. A.; Skobin, M. I.; Kryukov, T. V.; Alekseev, V. G.; Ryasenskii, S. S.

    2017-10-01

    Ternary polymer Zn(II)-heparin-glycine complex with the composition {Na3[ZnHepGly]·H2O} n , where Hep4- is the monomer chain of a heparin polyanion and Gly- is the chain of a glycine anion, is isolated in a solid state from a water solution, and is characterized via elemental and thermal analysis.

  2. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-03-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized.

  3. Evaluation of a 2-step thermal method for separating organic and elemental carbon for radiocarbon analysis

    NARCIS (Netherlands)

    Dusek, U.; Monaco, M.; Prokopiou, M.; Gongriep, F.; Hitzenberger, R.; Meijer, H. A. J.; Röckmann, T.

    2014-01-01

    We thoroughly characterized a system for thermal separation of organic carbon (OC) and elemental carbon (EC) for subsequent radiocarbon analysis. Different organic compounds as well as ambient aerosol filter samples were introduced into an oven system and combusted to CO2 in pure O2. The main

  4. Thermal mechanically coupled finite element analysis in metal-forming processes

    NARCIS (Netherlands)

    van der Lugt, J.; Huetink, Han

    1986-01-01

    A combined Eulerian-Lagrangian finite element formulation is presented for the analysis of metal-forming, coupled with thermal effects. The procedure developed involves incrementally solving a coupled set of equations for both the displacement and the temperature. The material properties may be

  5. Thermal analysis of protruding surfaces in the JET divertor

    Science.gov (United States)

    Corre, Y.; Bunting, P.; Coenen, J. W.; Gaspar, J.; Iglesias, D.; Matthews, G. F.; Balboa, I.; Coffey, I.; Dejarnac, R.; Firdaouss, M.; Gauthier, E.; Jachmich, S.; Krieger, K.; Pitts, R. A.; Rack, M.; Silburn, S. A.; Contributors, JET

    2017-06-01

    Tungsten (W) melting is a major concern for next step fusion devices. Two ELM induced tungsten melting experiments have been performed in JET by introducing two special target plate lamellae designed to receive excessively high ELM transient power loads. The first experiment was performed in JET in 2013 using a special lamella with a sharp leading edge gradually varying from h  =  0.25 mm to 2.5 mm in order to maximise the temperature rise by exposure to the full parallel heat flux. ELM-induced transient melting has been successively achieved allowing investigation of the melt motion. However, using the available IR viewing geometry from the top, it was not possible to directly discriminate between the top and leading edge power loads. To improve the experimental validation of heat load and melt motion modelling codes, a new protruding W lamella with a 15° slope facing the toroidal direction has been installed for the 2015-16 campaigns, allowing direct, spatially resolved observation of the top surface and reduced sensitivity of the analysis to the surface incidence angle of the magnetic field. This paper reports on the results of these more recent experiments, with specific focus on IR data analysis and heat flux calculations during L-mode discharges in order to investigate the behaviour of the W lamella with steady state heat load, which is a prerequisite for the more complex ELMing H-mode discharges (including both, steady and transient heat loads). It shows that, at least in L-mode, the assumption of optical heat flux projection is justified.

  6. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    Energy Technology Data Exchange (ETDEWEB)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief

  7. Thermal hydraulic-Mechanic Integrated Simulation for Advanced Cladding Thermal Shock Fracture Analysis during Reflood Phase in LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seong Min; Lee, You Ho; Cho, Jae Wan; Lee, Jeong Ik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study suggested thermal hydraulic-mechanical integrated stress based methodology for analyzing the behavior of ATF type claddings by SiC-Duplex cladding LBLOCA simulation. Also, this paper showed that this methodology could predict real experimental result well. That concept for enhanced safety of LWR called Advanced Accident-Tolerance Fuel Cladding (ATF cladding, ATF) is researched actively. However, current nuclear fuel cladding design criteria for zircaloy cannot be apply to ATF directly because those criteria are mainly based on limiting their oxidation. So, the new methodology for ATF design criteria is necessary. In this study, stress based analysis methodology for ATF cladding design criteria is suggested. By simulating LBLOCA scenario of SiC cladding which is the one of the most promising candidate of ATF. Also we'll confirm our result briefly through comparing some facts from other experiments. This result is validating now. Some of results show good performance with 1-D failure analysis code for SiC fuel cladding that already developed and validated by Lee et al,. It will present in meeting. Furthermore, this simulation presented the possibility of understanding the behavior of cladding deeper. If designer can predict the dangerous region and the time precisely, it may be helpful for designing nuclear fuel cladding geometry and set safety criteria.

  8. Analysis of the thermal effect in diode end-pumped Er:YAG lasers by using Finite Element Method

    Science.gov (United States)

    Wang, Yujia; Wang, Qing; Na, QuanXin; Zhang, Yixuan; Gao, Mingwei; Zhang, Meng

    2018-01-01

    A new method for combining Finite Element Method (FEM) thermal analysis and thermo-mechanical coupling method for calculating the thermal lensing values in diode end-pumped Er:YAG lasers is proposed. A finite-element model is used to simulate the thermal effects in different Er:YAG crystals with pumping scenarios. The influences of pump powers, crystal absorption coefficients and crystal sizes on the Er:YAG thermal effects are discussed, and the relationship between the thermal effects and thermal lensing effects is analysed. A thermo-mechanical coupling model is also constituted for finite-element analysis based on the above results, and the focal length of the Er:YAG crystal with different pump powers are obtained by using this thermo-mechanical coupling model. The predicted thermal lensing values are compared with experimental results, which agree well with the simulated results.

  9. Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool

    Energy Technology Data Exchange (ETDEWEB)

    Alan Riga, D. [Professor of Chemistry, Cleveland State University and TechCon Inc., 6325 Aldenham Dr., Cleveland, OH 44143-3331 (United States)

    1998-12-21

    Interdisciplinary methods and thermal analytical techniques in particular are effective tools in aiding the identification and characterization of materials in question involved in civil or criminal law. Forensic material science uses systematic knowledge of the physical or material world gained through analysis, observation and experimentation. Thermal analytical data can be used to aid the legal system in interpreting technical variations in quite often a complex system.Calorimetry and thermal microscopic methods helped define a commercial product composed of alkanes that was involved in a major law suit. The solid-state structures of a number of normal alkanes have unique crystal structures. These alkanes melt and freeze below room temperature to more than 60C below zero. Mixtures of specific alkanes have attributes of pure chemicals. The X-ray diffraction structure of a mixture of alkanes is the same as a pure alkane, but the melting and freezing temperature are significantly lower than predicted. The jury ruled that the product containing n-alkanes had the appropriate melting characteristics. The thermal-physical properties made a commercial fluid truly unique and there was no advertising infringement according to the law and the jury trialA combination of thermogravimetry, differential thermal analysis, infrared spectroscopy and macrophotography were used to conduct an extensive modeling and analysis of physical evidence obtained in a mobile home fire and explosion. A person's death was allegedly linked to the misuse of a kerosene space heater. The thermal analytical techniques showed that external heating was the cause of the space heater's deformation, not a firing of the heater with gasoline and kerosene. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Thermal-hydraulic analysis of LTS cables for the DEMO TF coil using simplified models

    Directory of Open Access Journals (Sweden)

    Lewandowska Monika

    2017-03-01

    Full Text Available The conceptual design activities for the DEMOnstration reactor (DEMO – the prototype fusion power plant – are conducted in Europe by the EUROfusion Consortium. In 2015, three design concepts of the DEMO toroidal field (TF coil were proposed by Swiss Plasma Center (EPFL-SPC, PSI Villigen, Italian National Agency for New Technologies (ENEA Frascati, and Atomic Energy and Alternative Energies Commission (CEA Cadarache. The proposed conductor designs were subjected to complete mechanical, electromagnetic, and thermal-hydraulic analyses. The present study is focused on the thermal-hydraulic analysis of the candidate conductor designs using simplified models. It includes (a hydraulic analysis, (b heat removal analysis, and (c assessment of the maximum temperature and the maximum pressure in each conductor during quench. The performed analysis, aimed at verification whether the proposed design concepts fulfil the established acceptance criteria, provides the information for further improvements of the coil and conductors design.

  11. Finite element analysis of the distortion of a crystal monochromator from synchrotron radiation thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.R.; Hoyer, E.H.; Thompson, A.C.

    1985-10-01

    The first crystal of the Brown-Hower x-ray monochromator of the LBL-EXXON 54 pole wiggler beamline at Stanford Synchrotron Radiation Laboratory (SSRL) is subjected to intense synchrotron radiation. To provide an accurate thermal/structural analysis of the existing monochromator design, a finite element analysis (FEA) was performed. A very high and extremely localized heat flux is incident on the Si (220) crystal. The crystal, which possesses pronouncedly temperature-dependent orthotropic properties, in combination with the localized heat load, make the analysis ideally suited for finite element techniques. Characterization of the incident synchrotron radiation is discussed, followed by a review of the techniques employed in modeling the monochromator and its thermal/structural boundary conditions. The results of the finite element analysis, three-dimensional temperature distributions, surface displacements and slopes, and stresses, in the area of interest, are presented. Lastly, the effects these results have on monochromator output flux and resolution are examined.

  12. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Sands, M. D.

    1980-01-01

    This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

  13. Lab-scale thermal analysis of electronic waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong, E-mail: jhong@ustc.edu.cn; Yu, Han-Qing

    2016-06-05

    Highlights: • We provided the experimental evidence that WEEE can be recovered by pyrolysis method. • We explored the thermochemical behaviors of WEEE using online TG–FTIR–MS technology. • The intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs. - Abstract: In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric–fourier transform infrared–mass spectroscopy (TG–FTIR–MS) system, a high resolution gas chromatography/high resolution mass (HRGC–MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the ·Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.

  14. Thermal analysis of laser welding for ITER correction coil case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C., E-mail: fangchao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Y.T.; Wu, W.Y.; Wei, J.; Xin, J.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Wu, H.P.; Salminen, A. [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2015-11-15

    Highlights: • Morphology of simulated heat source is found to be close to the welded joint sample. • The FEA temperature distribution shows good agreement with experimental measurements. • Laser welding process used on ITER correction coil case will not harm the winding pack. - Abstract: This paper presents the simulation results of 3D finite element analysis (FEA) of laser welding processes for the ITER correction coil case welding; predicts the temperature distribution and compares it with the experimental result to evaluate the impact to the properties of winding pack during the welding process. A specimen of coil case was modeled and simulated by using specialized welding simulation software SYSWELD, Modeling used austenitic stainless steel 316LN as the specimen material and a 3D Conical Gaussian was used as a heat source model. A plate sample was welded before the FE modeling in order to obtain the laser welding parameters and the Gaussian parameters of molten pool. To verify the simulation results, a coil case sample was welded using laser welding with welding parameters that matched the model, and the corresponding temperature values were measured using thermocouples. Compared with the FEA results, it was found that the FEA temperature distribution shows good agreement with the experimental measurements and the laser welding process will not harm the winding pack.

  15. Current research on shear buckling and thermal loads with PASCO: Panel Analysis and Sizing Code

    Science.gov (United States)

    Stroud, W. J.; Greene, W. H.; Anderson, M. S.

    1981-01-01

    The PASCO computer program to obtain the detailed dimensions of optimum stiffened composite structural panels is described. Design requirements in terms of inequality constraints can be placed on buckling loads or vibration frequencies, lamina stresses and strains, and overall panel stiffness for each of many load conditions. General panel cross sections can be treated. An analysis procedure involving a smeared orthotropic solution was investigated. The conservatism in the VIPASA solution and the danger in a smeared orthotropic solution is explored. PASCO's capability to design for thermal loadings is also described. It is emphasized that design studies illustrate the importance of the multiple load condition capability when thermal loads are present.

  16. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  17. Studies on thermal neutron perturbation factor needed for bulk sample activation analysis

    CERN Document Server

    Csikai, J; Sanami, T; Michikawa, T

    2002-01-01

    The spatial distribution of thermal neutrons produced by an Am-Be source in a graphite pile was measured via the activation foil method. The results obtained agree well with calculated data using the MCNP-4B code. A previous method used for the determination of the average neutron flux within thin absorbing samples has been improved and extended for a graphite moderator. A procedure developed for the determination of the flux perturbation factor renders the thermal neutron activation analysis of bulky samples of unknown composition possible both in hydrogenous and graphite moderators.

  18. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Science.gov (United States)

    Quental, P. B.; Policarpo, H.; Luís, R.; Varela, P.

    2016-11-01

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  19. Experimental and numerical analysis of thermal striping in automotive brake discs

    OpenAIRE

    Augustins, L; Hild, Francois; Billardon, R; Boudevin, S

    2017-01-01

    International audience; In the present study, thermal striping development on friction bands of brake discs is investigated through an experimental and numerical analysis. A test consisting of a series of several hundred severe brakings was carried out on a specific bench at PSA Peugeot Citroën. The experimental observations of the crack network evolution and a numerical analysis of a brake disc with a single crack helped to propose a macroscopic criterion capable of predicting the criticalit...

  20. Evaluation of thermal properties of nanocomposites based on Ecobras matrix and vermiculite modified with alkyl phosphonium salt; Avaliacao das propriedades termicas dos nanocompositos de Ecobras e vermiculita modificada com sal alquil fosfonio

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcelo F.L. de; Leite, Marcia C.A.M., E-mail: marceloilha@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Braga, Fernanda C.F.; Oliveira, Marcia G. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The use of biodegradable polymers for producing nanocomposites with mineral fillers fetch the production of new materials with low cost and reduced environmental impact, combined with improvements in the mechanical and thermal properties. Nanocomposites based on Ecobras and vermiculite (VMT) modified with hexadecyl tributyl phosphonium bromide (Ph-VMT) were prepared by melt intercalation. The intercalation of Ph-VMT in Ecobras was characterized by X-ray diffraction (XRD). The thermal properties of Ecobras and their compositions were characterized by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The addition of VMT and Ph- VMT in Ecobras increases the crystallization temperature (Tc) and crystalline melting (Tm), as observed by DSC analysis. The result of the thermogravimetric analysis showed that the addition of Ph-VMT in Ecobras improved thermal stability of the nanocomposite. (author)