WorldWideScience

Sample records for thermal fatigue damage

  1. Thermal stress analysis for fatigue damage evaluation at a mixing tee

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira

    2011-01-01

    Highlights: → Thermal stress and fatigue damage have been analyzed for a mixing tee. → Fatigue damage was accumulated near boundaries of the cold spot. → It was found that fatigue damage was brought about by fluctuation of cold spot. → Simple one-dimensional analysis could derive stress for fatigue evaluation. - Abstract: Fatigue cracks have been found at mixing tees where fluids of different temperature flow in. In this study, the thermal stress at a mixing tee was calculated by the finite element method using temperature transients obtained by a fluid dynamics simulation. The simulation target was an experiment for a mixing tee, in which cold water flowed into the main pipe from a branch pipe. The cold water flowed along the main pipe wall and caused a cold spot, at which the membrane stress was relatively large. Based on the evaluated thermal stress, the magnitude of the fatigue damage was assessed according to the linear damage accumulation rule and the rain-flow procedure. Precise distributions of the thermal stress and fatigue damage could be identified. Relatively large axial stress occurred downstream from the branch pipe due to the cold spot. The variation ranges of thermal stress and fatigue damage became large near the position 20 o from the symmetry line in the circumferential direction. The position of the cold spot changed slowly in the circumferential direction, and this was the main cause of the fatigue damage. The fatigue damage was investigated for various differences in the temperature between the main and branch pipes. Since the magnitude of accumulated damage increased abruptly when the temperature difference exceeded the value corresponding to the fatigue limit, it was suggested that the stress amplitude should be suppressed less than the fatigue limit. In the thermal stress analysis for fatigue damage assessment, it was found that the detailed three-dimensional structural analysis was not required. Namely, for the current case, a one

  2. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  3. Mesoscopic scale thermal fatigue damage

    International Nuclear Information System (INIS)

    Robertson, C.; Fissolo, A.; Fivel, M.

    2001-01-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  4. Mesoscopic scale thermal fatigue damage

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.; Fissolo, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Fivel, M. [Centre National de la Recherche Scientifique, CNRS-GPM2, 38 - Saint Martin d' Heres (France)

    2001-07-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  5. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  6. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    International Nuclear Information System (INIS)

    Fissolo, Antoine; Gourdin, Cedric; Vincent, Ludovic

    2009-01-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  7. Method for identification of fluid mixing zones subject to thermal fatigue damage

    International Nuclear Information System (INIS)

    Vole, O.; Beaud, F.

    2009-01-01

    High cycle thermal fatigue due to the mixing of hot and cold fluids may initiate cracking in pipes of safety related circuits. A method has been developed to identify such fluid mixing zones subjected to potential thermal fatigue damage. This method is based on a loading model and a mechanical model that depend on the main characteristics of the mixing zone and on the material properties. It is supported by a large experimental program. This method has been applied to all the mixing zones of safety related circuits of the EDF pressurised water reactors, allowing to identify sensitive zones and to apply an appropriate inspection program that ensures the control of the risk due to this damage mechanism. (authors)

  8. Damage assessment in multilayered MEMS structures under thermal fatigue

    Science.gov (United States)

    Maligno, A. R.; Whalley, D. C.; Silberschmidt, V. V.

    2011-07-01

    This paper reports on the application of a Physics of Failure (PoF) methodology to assessing the reliability of a micro electro mechanical system (MEMS). Numerical simulations, based on the finite element method (FEM) using a sub-domain approach was used to examine the damage onset due to temperature variations (e.g. yielding of metals which may lead to thermal fatigue). In this work remeshing techniques were employed in order to develop a damage tolerance approach based on the assumption that initial flaws exist in the multi-layered.

  9. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  10. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  11. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  12. Detection of thermal fatigue in composites by second harmonic Lamb waves

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Achenbach, Jan D

    2012-01-01

    Composite materials which are widely used in the aerospace industry, are usually subjected to frequent variation of temperature. Thermal cyclic loading may induce material degradation. Considering the long-term service of aircraft composites and the importance of safety in the aircraft industry, even a little damage that may be accumulative via thermal fatigue is often of great concern. Therefore, there is a demand to develop non-destructive approaches to evaluate thermal fatigue damage in an early stage. Due to the sensitivity of acoustic nonlinearity to micro-damage, the nonlinear ultrasonic technique has been explored as a promising tool for early detection of micro-damage. This paper investigates an experimental scheme for characterizing thermal fatigue damage in composite laminates using second harmonic Lamb waves. The present results show a monotonic increase of acoustic nonlinearity with respect to thermal fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and thermal fatigue cycles in carbon/epoxy laminates verifies that nonlinear Lamb waves can be used to assess thermal fatigue damage rendering improved sensitivity over conventional linear feature based non-destructive evaluation techniques. Velocity and attenuation based ultrasonic studies are carried out for comparison with the nonlinear ultrasonic approach and it is found that nonlinear acoustic parameters are more promising indicators of thermal fatigue damage than linear ones. (paper)

  13. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  14. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  15. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  16. Evaluation of fatigue damage induced by thermal striping in a T junction using the three dimensional coupling method and frequency response method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hye; Choi, Jae boong; Kim, Moon Ki [Sungkyunkwan Univ., Seoul (Korea, Republic of); Huh, Nam Su [Seoul Nat' l Univ., Seoul (Korea, Republic of); Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Thermal fatigue cracking induced by thermal stratification, cycling and striping have been observed in several PWR plants. Especially, thermal striping, the highly fluctuating thermal layer, became one of the significant problems, since it can cause un predicted high cycle thermal fatigue (HCTF) at piping systems. This problem are usually found in T junctions of energy cooling systems, where cold and hot flows with high level of turbulence mix together. Thermal striping can cause the networks of fatigue crack at the vicinity of weld parts and these cracks can propagate to significant depth in a relatively short time. Therefore, thermal striping and fatigue crack initiations should be predicted in advance to prevent the severe failure of piping systems. The final goal of this research is to develop a rational thermal and mechanical model considering thermohydraulic characteristics of thermal striping and an evaluation procedure to predict the initiation of thermal fatigue crack. As a first step, we evaluated the fatigue damage in a T junction using two widely used methods. Then, we analyzed the results of each method and conducted comparisons and verifications.

  17. Research and development studies for predicting the thermal fatigue

    International Nuclear Information System (INIS)

    Moulin, D.; Garnier, J.; Fissolo, A.; Lejeail, Y.; Stephan, J.M.; Moinereau, D.; Masson, J.

    2001-01-01

    This paper presents some studies in development or realized in the EDF and CEA laboratories, concerning the thermal fatigue damage in nuclear reactor components. The first part presents the basic principles and the methods of lifetime prediction. The second part gives some examples on sodium loop, water loop, welded junctions resistance to thermal fatigue and tests on fatigue specimen. (A.L.B.)

  18. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  19. Study of the damage processes induced by thermal fatigue in stainless steels F17TNb and R20-12 for automobile application; Etude de l'endommagement en fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, L.

    2004-12-15

    Thermal cycling is the main cause of fatigue failure in automobile exhaust manifolds for which the use of stainless steel now rivals that of cast iron which has been traditionally used. An original fatigue test has been developed by Ugine and ALZ, a stainless steel producer, so as to be able to compare different grades of stainless steel alloys. This test is representative of the thermal conditions encountered in the critical zones of exhaust manifolds. However, it has revealed significant differences in damage processes in the ferritic and austenitic grades tested. The subject of this thesis is the damage processes induced by thermal fatigue in stainless steels used for automotive exhaust manifolds. Two stainless steels were studied: a ferritic grade, F17TNb (17%Cr and stabilized with Ti and Nb), and an austenitic grade, R20-12, containing 20% Cr and 12% Ni. The first objective was to understand the different damage processes induced by thermal fatigue in the ferritic and austenitic grades. The second was to develop a numerical design tool of the thermally tested structures. (author)

  20. Probabilistic Fatigue Damage Program (FATIG)

    Science.gov (United States)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  1. Comparison of evaluation results of piping thermal fatigue evaluation method based on equivalent stress amplitude

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Kasahara, Naoto

    2012-01-01

    In recent years, reports have increased about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions. The Japan Society of Mechanical Engineers published the guideline which is an evaluation method of high cycle thermal fatigue damage at nuclear pipes. In order to justify safety margin and make the procedure of the guideline concise, this paper proposes a new evaluation method of thermal fatigue damage with use of the 'equivalent stress amplitude.' Because this new method makes procedure of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation. (author)

  2. On the estimation of durability during thermal fatigue tests

    International Nuclear Information System (INIS)

    Vashunin, A.I.; Kotov, P.I.

    1981-01-01

    It is shown that during thermal fatigue tests under conditions of varying loading rigidity the value of stored one-sided deformation in a fracture zone tends to the limit value of material ductility. Holding at Tsub(max) is semicycle of compression increases irreversible deformation on value of Atausub(confer)sup(a), which does not depend on loading rigidity. It is established that the Use of curves of thermal fatigue as basic ones for determination of resistance of non-isothermal low-cycle fatigue is possible only at values of stored quasistatical damage, constituting less than 5% from available ductility [ru

  3. Research and development studies for predicting the thermal fatigue; Etudes de R and D pour la prediction de la fatigue thermique

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D.; Garnier, J.; Fissolo, A.; Lejeail, Y. [CEA, 75 - Paris (France); Stephan, J.M.; Moinereau, D.; Masson, J. [Electricite de France, Les Renardieres, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    2001-07-01

    This paper presents some studies in development or realized in the EDF and CEA laboratories, concerning the thermal fatigue damage in nuclear reactor components. The first part presents the basic principles and the methods of lifetime prediction. The second part gives some examples on sodium loop, water loop, welded junctions resistance to thermal fatigue and tests on fatigue specimen. (A.L.B.)

  4. Avoiding thermal striping damage: Experimentally-based design procedures for high-cycle thermal fatigue

    International Nuclear Information System (INIS)

    Betts, C.; Judd, A.M.; Lewis, M.W.J.

    1994-01-01

    In the coolant circuits of a liquid metal cooled reactor (LMR), where there is turbulent mixing of coolant streams at different temperatures, there are temperature fluctuations in the fluid. If an item of the reactor structure is immersed in this fluid it will, because of the good heat transfer from the flowing liquid metal, experience surface temperature fluctuations which will induce dynamic surface strains. It is necessary to design the reactor so that these temperature fluctuations do not, over the life of the plant, cause damage. The purpose of this paper is to describe design procedures to prevent damage of this type. Two such procedures are given, one to prevent the initiation of defects in a nominally defect-free structure or to allow initiation only at the end of the component life, and the other to prevent significant growth of undetectable pre-existing defects of the order of 0.2 to 0.4 mm in depth. Experimental validation of these procedures is described, and the way they can be applied in practice is indicated. To set the scene the paper starts with a brief summary of cases in which damage of this type, or the need to avoid such damage, have had important effects on reactor operation. Structural damage caused by high-cycle thermal fatigue has had a significant adverse influence on the operation of LMRs on several occasions. It is necessary to eliminate the risk of such damage at the design stage. In the absence of detailed knowledge of the temperature history to which it will be subject, an LMR structure can be designed so that, if it is initially free of defects more than 0.1 mm deep, no such defects will be initiated by high-cycle fatigue. This can be done by ensuring that the maximum source temperature difference in the liquid metal is less than a limiting value, which depends on temperature. The limit is very low, however, and likely to be restrictive. This method, by virtue of its safety margin, takes into account pre-existing surface crack

  5. Thermal fatigue loading for a type 304-L stainless steel used for pressure water reactor: investigations on the effect of a nearly perfect biaxial loading, and on the cumulative fatigue life

    International Nuclear Information System (INIS)

    Fissolo, A.; Gourdin, C.; Bouin, P.; Perez, G.

    2010-01-01

    Fatigue-life curves are used in order to estimate crack-initiation, and also to prevent water leakage on Pressure Water Reactor pipes. Such curves are built exclusively from push-pull tests performed under constant and uniaxial strain or stress-amplitude. However, thermal fatigue corresponds to a nearly perfect biaxial stress state and severe loading fluctuations are observed in operating conditions. In this frame, these two aspects have been successively investigated in this paper: In order to investigate on potential difference between thermal fatigue and mechanical fatigue, tests have been carried out at CEA using thermal fatigue devices. They show that for an identical level of strain-amplitude, the number of cycles required to achieve crack-initiation is significantly lower under thermal fatigue. This enhanced damage results probably from a perfect biaxial state under thermal fatigue. In this frame, application of the multiaxial Zamrik's criterion seems to be very promising. In order to investigate on cumulative damage effect in fatigue, multi-level strain controlled fatigue tests have been performed. Experimental results show that linear Miner's rule is not verified. A loading sequence effect is clearly evidenced. The double linear damage rule ('DLDR') improves significantly predictions of fatigue-life. (authors)

  6. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  7. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    International Nuclear Information System (INIS)

    Haddar, N.

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  8. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  9. Assessment of creep-fatigue damage using the UK strain based procedure

    International Nuclear Information System (INIS)

    Bate, S.K.

    1997-01-01

    The UK strain based procedures have been developed for the evaluation of damage in structures, arising from fatigue cycles and creep processes. The fatigue damage is assessed on the basis of modelling crack growth from about one grain depth to an allowable limit which represents an engineering definition of crack formation. Creep damage is based up on the exhaustion of available ductility by creep strain accumulation. The procedures are applicable only when level A and B service conditions apply, as defined in RCC-MR or ASME Code Case N47. The procedures require the components of strain to be evaluated separately, thus they may be used with either full inelastic analysis or simplified methods. To support the development of the UK strain based creep-fatigue procedures an experimental program was undertaken by NNC to study creep-fatigue interaction of structures operating at high temperature. These tests, collectively known as the SALTBATH tests considered solid cylinder and tube-plate specimens, manufactured from Type 316 stainless steel. These specimens were subjected to thermal cycles between 250 deg. C and 600 deg. C. In all the cases the thermal cycle produces tensile residual stresses during dwells at 600 deg. C. One of the tube-plate specimens was used as a benchmark for validating the strain based creep fatigue procedures and subsequently as part of a CEC co-operative study. This benchmark work is described in this paper. A thermal and inelastic stress analysis was carried out using the finite element code ABAQUS. The inelastic behaviour of the material was described using the ORNL constitutive equations. A creep fatigue assessment using the strain based procedures has been compared with an assessment using the RCC-MR inelastic rules. The analyses indicated that both the UK strain based procedures and the RCC-MR rules were conservative, but the conservatism was greater for the RCC-MR rules. (author). 8 refs, 8 figs, 4 tabs

  10. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  11. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  12. Thermal and isothermal low cycle fatigue of MANET I and II

    International Nuclear Information System (INIS)

    Petersen, C.; Schmitt, R.; Garnier, D.

    1996-01-01

    Structural components of a DEMO-blanket are subjected during service to alternating thermal and mechanical stresses as a consequence of the pulsed reactor operation. Of particular concern is the fatigue endurance of martensitic steels like MANET under cyclic strains and stresses produced by these temperature changes. In order to design such structures, operating under combined mechanical and thermal cycling, fatigue life has to be calculated with reasonable accuracy. This paper proposes a description of thermal and isothermal mechanical low-cycle fatigue of MANET I and II steels using a single damage model, including plastic strain, temperature and strain rate as variables. This model presents notable advantages for the designer. As it corresponds to a single and continuous 'fatigue strength surface', it enables a reliable interpolation to be made throughout the studied domain of strains and temperatures, and allows for a reasonable extrapolation out of this domain, provided that no different metallurgical phenomena occur. (orig.)

  13. Fatigue behaviour of the austenitic steel 1.4550 under mechanical and thermal cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, D.; Fingerhuth, J.; Varfolomeev, I.; Moroz, S. [Fraunhofer Institute for Mechanics of Materials (IWM), Freiburg (Germany)

    2014-07-01

    Fatigue behaviour of the austenitic steel 1.4550 (X6CrNiNb18-10) under low-cycle fatigue and high-cycle thermal fatigue was investigated with in two research projects supported by the Federal Ministry of Economic Affairs and Energy and the Ministry of Education and Research. The objectives of the projects were the gain of deep understanding of the damage mechanisms under mechanical and thermal cyclic loading and the development of material models and simulation procedures for an improved lifetime assessment. In comparison to the advanced mechanism based material models engineering computational procedures were proven with respect to their applicability and conservatisms. For thermal cyclic loading, test equipment and technique were developed which allow for cyclic thermal loading with temperature ranges between 1 00 C and 300 C and frequencies between 0.1 and 1 Hz. As a result, tests with a temperature range of 150 C and lower showed no crack formation up to 300,000 cycles. For temperature ranges of 200 C and higher multiple crack patterns were observed with the deepest crack of about 1.3 mm after 1,000,000 cycles, whereas the difference in crack depth between 300,000 and 1,000,000 cycles was negligibly small. To model the fatigue lifetime, the D{sub TMF} damage parameter was applied to the low-cycle fatigue and the thermal, high frequent fatigue tests. For thermal fatigue, the analyses predicted in agreement with the tests crack initiation followed by crack propagation, subsequent retardation and arrest. This behaviour can be explained qualitatively and quantitatively using the methods of linear-elastic fracture mechanics, whereas the consideration of the interaction of multiple cracks is essential to describe the experimentally observed crack retardation. The results for thermal fatigue are in the scatterband of the mechanical p and thermo-mechanical fatigue results and the cycles to failure are 10 times higher than those estimated according to the KTA fatigue

  14. Fatigue behaviour of coke drum materials under thermal-mechanical cyclic loading

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-01-01

    Full Text Available Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in coke drums in the form of bulging and cracking. There were some studies on the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully developed to allow performing thermal-mechanical fatigue (TMF test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.

  15. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  16. Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification)

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2014-01-01

    Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation

  17. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue; Fatigue thermique d'un acier inoxydable austenitique 304L: simulation de l'amorcage et de la croissance des fissures courtes en fatigue isotherme et anisotherme

    Energy Technology Data Exchange (ETDEWEB)

    Haddar, N

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  18. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    Science.gov (United States)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  19. Thermography detection on the fatigue damage

    Science.gov (United States)

    Yang, Bing

    It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor

  20. Fatigue-Damage Estimation and Control for Wind Turbines

    OpenAIRE

    Barradas Berglind, Jose de Jesus

    2015-01-01

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control of their operation. Accordingly, the most recognized methods of fatigue-damage estimation are discussed in this thesis.In wind energy conversion systems there is an intrinsic trade-off between power generation m...

  1. Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper

    CERN Document Server

    Aicheler, M; Taborelli, M; Calatroni, S; Neupert, H; Wuensch, W; Sgobba, S

    2011-01-01

    Surface degradation due to cyclic thermal loading plays a major role in the Accelerating Structures (AS) of the future Compact Linear Collider (CLIC) In this article results on surface degradation of thermally cycled polycrystalline copper as a function of the orientation of surface grains are presented Samples with different grain sizes were subjected to thermal fatigue using two different methods and were then characterized using roughness measurements and Orientation Imaging Scanning-Electron-Microscopy (OIM-SEM) Samples fatigued by a pulsed laser show the same trend in the orientation-fatigue damage accumulation as the sample fatigued by pulsed Radio-Frequency-heating (RF) it is clearly shown that 11 1 1] surface grains develop significantly more damage than the surface grains oriented in {[}100] and three reasons for this behaviour are pointed out Based on observations performed near grain boundaries their role in the crack initiation process is discussed The results are in good agreement with previous f...

  2. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  3. Thermal fatigue cracking of austenitic stainless steels

    International Nuclear Information System (INIS)

    Fissolo, A.

    2001-01-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N i is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> N i , with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that

  4. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  5. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  6. A review of typical thermal fatigue failure models for solder joints of electronic components

    Science.gov (United States)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  7. Random accumulated damage evaluation under multiaxial fatigue loading conditions

    Directory of Open Access Journals (Sweden)

    V. Anes

    2015-07-01

    Full Text Available Multiaxial fatigue is a very important physical phenomenon to take into account in several mechanical components; its study is of utmost importance to avoid unexpected failure of equipment, vehicles or structures. Among several fatigue characterization tools, a correct definition of a damage parameter and a load cycle counting method under multiaxial loading conditions show to be crucial to estimate multiaxial fatigue life. In this paper, the SSF equivalent stress and the virtual cycle counting method are presented and discussed, regarding their physical foundations and their capability to characterize multiaxial fatigue damage under complex loading blocks. Moreover, it is presented their applicability to evaluate random fatigue damage.

  8. Creep-fatigue damage in austenitic stainless steels

    International Nuclear Information System (INIS)

    Rezgui, Brahim.

    1980-06-01

    This is a study of hold time effects on the low cycle fatigue (L.C.F.) properties of 316L austenitic stainless steel at 600 0 C in air. Results obtained for different plastic strain levels indicate that a tension hold time at peak strain lead to a reduction in fatigue life. The importance of this effect depend on the length of hold period, and also on the strain amplitude. No saturation had been observed. Metallographic and microstructural analysis of failed specimens indicates mechanisms by which failure is produced. For continuous cycling the fractures occurs by the initiation and the propagation of a trans-granular crack. Creep damage in the bulk of material is formed during periods of tensile stress relaxation; it causes a change in the failure mode which became intergranular. It is the interaction between this creep-damage and fatigue cracks which is partly responsable for the reduction in the fatigue life. Predictions based upon linear cumulative damage method indicate that virgin material properties may be irrelevant in creep-fatigue interactions [fr

  9. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  10. Thermal-mechanical and isothermal fatigue of IN 792 CC

    International Nuclear Information System (INIS)

    Beck, T.; Pitz, G.; Lang, K.-H.; Loehe, D.

    1997-01-01

    The cyclic deformation and lifetime behaviour of the cast Ni-base superalloy IN 792 CC was investigated both under thermal-mechanical fatigue (TMF) and isothermal fatigue (IF) conditions. During TMF the phase relations between temperature and mechanical strain were in-phase and out-of-phase, respectively. For both phase relations a similar cyclic deformation behaviour is observed. In all cases out-of-phase TMF causes tensile mean stresses, whereas in-phase TMF leads to compressive mean stresses. At T max below 800 C out-of-phase cycling results in smaller lifetimes than in-phase loading. In spite of the rather high compressive mean stresses developing at T max above 800 C, at these temperatures in-phase loading causes shorter lifetimes than out-of-phase TMF. This effect is due to the different damage mechanisms caused by in-phase and out-of-phase loadings: at higher T max considerable intergranular damage caused by in-phase loading reduces the lifetime below the respective values measured during out-of-phase TMF, after which no intergranular damage could be detected. A comparison of the TMF data with the cyclic deformation and lifetime behaviour under IF conditions shows that the material's reactions under TMF cannot be assessed satisfactorily by the results obtained from isothermal fatigue tests. (orig.)

  11. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  12. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  13. 77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...

    Science.gov (United States)

    2012-02-01

    ...-AJ52, 2120-AJ51 Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance and Fatigue Evaluation for Metallic Structures; Correction AGENCY: Federal Aviation Administration... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655), published December 1...

  14. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  15. Thermal stress analysis and thermo-mechanical fatigue for gas turbine blade

    International Nuclear Information System (INIS)

    Hyun, J. S.; Kim, B. S.; Kang, M. S.; Ha, J. S.; Lee, Y. S.

    2002-01-01

    The numerical analysis for gas turbine blades were carried out under several conditions by compounding temperature field, velocity field, thermal conduction of blade, and cooling heat transfer. The three types of 1,100 deg. C class 1st-stage gas turbine blades were analyzed. The analysis results are applied to the study on evaluating the remaining life for thermo-mechanical fatigue life. The thermo-mechanical fatigue experiments under out-of-phase and in-phase have been performed. The physical-based life prediction models which considered the contribution of different damage mechanisms have been applied. These models were applied to the temperature and strain rate dependences of isothermal cycling fatigue lives, and the strain-temperature history effect on the thermo-mechanical fatigue lives

  16. Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation

    Directory of Open Access Journals (Sweden)

    Rui JIAO

    2018-04-01

    Full Text Available Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve the accuracy and facilitate the application, this paper proposes an engineering approach to evaluate fatigue damage and predict fatigue life for critical structures in fatigue monitoring. In this approach, traditional nominal stress method is applied to back calculate the S-N curve parameters of the realistic structure details based on full-scale fatigue test data. Then the S-N curve and Miner’s rule are adopted in damage estimation and fatigue life analysis for critical locations under individual load spectra. The relationship between relative small crack length and fatigue life can also be predicted with this approach. Specimens of 7B04-T74 aluminum alloy and TA15M titanium alloy are fatigue tested under two types of load spectra, and there is a good agreement between the experimental results and analysis results. Furthermore, the issue concerning scatter factor in individual aircraft damage estimation is also discussed. Keywords: Fatigue damage, Fatigue monitoring, Fatigue test, Scatter factor, S-N curve

  17. Thermal fatigue evaluation of piping system Tee-connections

    International Nuclear Information System (INIS)

    Metzner, K.J.; Braillard, O.; Faidy, C.; Marcelles, I.; Solin, J.; Stumpfrock, L.

    2004-01-01

    Thermal fatigue is one significant long-term degradation mechanism nuclear power plants (NPP), in particular, as operating plants become older and life time extension activities have been initiated. In general, the common thermal fatigue issues are understood and controlled by plant instrumentation systems. However, incidents in some plants indicate that certain piping system Tees are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentation. The THERFAT project has been initiated to advance the accuracy and reliability of thermal fatigue load determination in engineering tools and research oriented approaches to outline a science based practical methodology for managing thermal fatigue risks in Tee-connections susceptible to high cyclic thermal fatigue. (orig.)

  18. Fatigue-Damage Estimation and Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....

  19. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  20. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  1. Damage and fatigue in cross-linked rubbers

    Science.gov (United States)

    Melnikov, Alexei

    Damage and fatigue of elastomers have not been fundamentally understood because of the complex nature of these materials. All currently existing models are completely phenomenological. Therefore two problems have been investigated in this research to address those fundamental issues. The first problem was creating an innovative concept with a mathematical modeling, which would be able to describe the damage using molecular characteristics of elastomers. The second problem is developing new approaches to study fatigue, and especially impact fatigue of elastomers. The following results have been obtained in this research. A theoretical model of damage has been developed which involves the basic molecular characteristics of cross-linked elastomers and takes into account the effects of viscoelasticity and stress-induced crystallization. This model was found very reliable and successful in description of numerous quasi-static simple extension experiments for monotonous and repeating loadings. It also roughly predicts in molecular terms the failure of elastomers with various degrees of cross-linking. Quasi-impact fatigue tests with different geometry of an indenter have also been performed. Some microscopic features of rubber damage have been investigated using optical microscopy and SEM. In particular, the accumulation of a completely de-vulcanized, liquid-like substance was observed under intense, multi-cycle impacts. All the findings discovered in quasi-impact experiments are consistent with the damage model predictions.

  2. Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: A comparison of thermal and uniaxial mechanical fatigue results

    International Nuclear Information System (INIS)

    Aicheler, Markus

    2010-01-01

    Surface state plays a major role in the crack nucleation process of pure metals in the High-Cycle-Fatigue (HCF) as well as in the Ultra-High-Cycle-Fatigue (UHCF) regime. Therefore, in studies dealing with HCF or UHCF, special attention is paid to the evolution of surface degradation during fatigue life. The accelerating structures of the future Compact Linear Collider (CLIC) under study at CERN will be submitted to a high number of thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. The number of cycles during the foreseen lifetime of CLIC reaches 2x10 11 . Fatigue may limit the lifetime of CLIC structures. In order to assess the effects of superficial fatigue, specific tests are defined and performed on polycrystalline Oxygen Free Electronic (OFE) grade Copper, a candidate material for the structures. Surface degradation depends on the orientation of near-surface grains. Copper samples thermally fatigued in two different fatigue experiments, pulsed laser and pulsed RF-heating, underwent postmortem Electron Backscattered Diffraction measurements. Samples fatigued by pulsed laser show the same trend in the orientation-fatigue damage behavior as samples fatigued by pulsed RF-heating. It is clearly observed that surface grains, oriented [1 1 1] with respect to the surface, show significantly more damage than surface grains oriented [1 0 0]. Results arising from a third fatigue experiment, the ultrasound (US) swinger, are compared to the results of the mentioned experiments. The US swinger is an uniaxial mechanical fatigue test enabling to apply within several days a total number of cycles representative of the life of the CLIC structures, thanks to a high repetition rate of 24 kHz. For comparison, laser fatigue experiments have much lower repetition rates. The dependence of surface degradation on grain orientation of samples tested by the US swinger was monitored during the fatigue life

  3. Fatigue life prediction of Ni-base thermal solar receiver tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hartrott, Philipp von; Schlesinger, Michael [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany); Uhlig, Ralf; Jedamski, Jens [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2010-07-01

    Solar receivers for tower type Solar Thermal Power Plants are subjected to complex thermo-mechanical loads including fast and severe thermo-mechanical cycles. The material temperatures can reach more than 800 C and fall to room temperature very quickly. In order to predict the fatigue life of a receiver design, receiver tubes made of Alloy 625 with a wall thickness of 0.5 mm were tested in isothermal and thermo-cyclic experiments. The number of cycles to failure was in the range of 100 to 100,000. A thermo-mechanical fatigue life prediction model was set up. The model is based on the cyclic deformation of the material and the damage caused by the growth of fatigue micro cracks. The model reasonably predicts the experimental results. (orig.)

  4. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    Science.gov (United States)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  5. Fatigue and damage tolerance scatter models

    Science.gov (United States)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  6. Simple Theory of Thermal Fatigue Caused by RF Pulse Heating

    CERN Document Server

    Kuzikov, S

    2004-01-01

    The projects of electron-positron linear colliders imply that accelerating structures and other RF components will undergo action of extremely high RF fields. Except for breakdown threat there is an effect of the damage due to multi-pulse mechanical stress caused by Ohmic heating of the skin layer. A new theory of the thermal fatigue is considered. The theory is based on consideration of the quasi-elastic interaction between neighbor grains of metal due to the expansion of the thermal skin-layer. The developed theory predicts a total number of the RF pulses needed for surface degradation in dependence on temperature rise, pulse duration, and average temperature. The unknown coefficients in the final formula were found, using experimental data obtained at 11.4 GHz for the copper. In order to study the thermal fatigue at higher frequencies and to compare experimental and theoretical results, the experimental investigation of degradation of the copper cavity exposed to 30 GHz radiation is carried out now, basing...

  7. Fatigue damage assessment under multi-axial non-proportional cyclic loading

    International Nuclear Information System (INIS)

    Mohta, Keshav; Gupta, Suneel K.; Jadhav, P.A.; Bhasin, V.; Vijayan, P.K.

    2016-01-01

    Detailed fatigue analysis is carried out for class I Nuclear Power Plant (NPP) components to rule out the fatigue failure during their design lifetime. ASME Boiler and Pressure Vessel code Section III NB, has provided two schemes for fatigue assessment, one for fixed principal directions (proportional) loading and the other for varying principal directions (non-proportional) loading conditions. Recent literature on multi-axial fatigue tests has revealed lower fatigue lives under nonproportional loading conditions. In an attempt to understand the loading parameter lowering the fatigue life, a finite element based study has been carried out. Here, fatigue damage in a tube has been correlated with the applied axial to shear strain ratio and phase difference between them. The FE analysis has used Chaboche nonlinear kinematic hardening rule to model material's realistic cyclic plastic deformation behavior. The ASME alternating stress intensity (based on linear elastic FEA) and the plastic strain energy dissipation (based on elastic-plastic FEA) have been considered to assess the per cycle fatigue damage. The study has revealed that ASME criteria predicts lower alternating stress intensity (fatigue damage parameter S alt ) for some cases of non-proportional loading than that predicted for corresponding proportional loading case. However, the actual fatigue damage is higher in non-proportional loading than that in corresponding proportional loading case. Further the fatigue damage of an NPP component under realistic multi-axial cyclic loading conditions has been assessed using some popular critical plane based models vis-à-vis ASME Sec. III criteria. (author)

  8. Fatigue Life of Postbuckled Structures with Indentation Damage

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  9. Metallurgical investigation of 2 austenitic stainless steel sodium mixers cracked in service by thermal fatigue

    International Nuclear Information System (INIS)

    Donati, J.R.; Keroulas, F.de; Masse, J.

    1979-01-01

    Two sodium mixers in the sodium heated steam generator test circuit at the EDF Renardieres centre developed leaks after approximately 7,000 hours operation under power. In both cases the investigation found cracking due to plastic fatigue caused by stresses of thermal origin. In one case the damage is explained solely by the size of the temperature oscillations; in the other case, unfavourable geometry reduced the duration of the initiation phase. Different types of cracking characteristic of thermal fatigue in sodium are presented. (author)

  10. Damage development in woven fabric composites during tension-tension fatigue

    DEFF Research Database (Denmark)

    Hansen, U.

    1999-01-01

    of the operating fatigue damage mechanism(s). Fatigue leads to a degradation of material properties. Consequently, in connection with impact induced local stress raisers, fatigue produces continuously changing non-uniform stress fields because of stress redistribution effects. Other models addressing evolution...... of fatigue damage in composite materials have not been able to simulate evolving nonuniform stress fields. Therefore. in the second part of this paper, an analytical/numerical approach capable of addressing these issues is also proposed.......Impacted woven fabric composites were tested in tension-tension fatigue. In contrast to results from static testing, the effects of low energy impact damage in a fatigue environment were found to be the critical element leading to failure of the specimen. This difference emphasizes the need...

  11. Thermal fatigue strength estimation of 2.25Cr-1Mo steel under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Kuwahara, Kazuo; Nitta, Akihito; Kitamura, Takayuki

    1980-01-01

    A 2-1/4Cr-1Mo steel is one of principal materials for high temperature equipments in nuclear and thermal power plants. The authors experimentally analyzed the high temperature fatigue strength and creep strength of a 2-1/4 Cr-1Mo steel main steam pipe which had been used in a thermal plant for operation up to 130,000 hours, and pointed out that the strain-range vs. life curves crossed each other due to the difference of temperature-strain phase in thermal fatigue. This suggests that it is difficult to estimate thermal fatigue life of steel materials having been subjected to different temperature-strain phase on the basis of isothermal low-cycle fatigue life at the upper limit temperature of thermal fatigue, and that it is urgently required to establish an appropriate method of evaluating thermal fatigue life. The authors attempted to prove that the strain range partitioning method used for the evaluation of thermal fatigue life in SUS 304 steels is applicable to this 2-1/4Cr-1Mo steel. Consequently, it was found that the thermal fatigue life could be estimated within a factor of 2.5 by the application of this method. (author)

  12. Fatigue damage mechanism and strength of woven laminates

    International Nuclear Information System (INIS)

    Xiao, J.; Bathias, C.

    1993-01-01

    The apparent secant stiffness changes with the cyclic number for both unnotched and notched woven laminated specimens (two orthotropic and one quasi-isotropic) during tensile fatigue test at a fixed ratio of maximum fatigue load to UTS were observed. The observable damage initiation and evolution as a function of the cyclic number were directly measured at the notched specimen surface with a video-camera system. The fatigue strengths of the unnotched and notched specimens were determined. The results show that the normalized apparent secant stiffness change curves as a function of cyclic numbers can be divided into three stages. For the first and the second stages in notched specimens and for total life of unnotched specimens, the damage has not been evidently observed and certainly verified with the traditional experimental methods such as radiography and microscopy although many acoustic emission signals can be obtained. The last stage for the notched specimens (N/Nf>0.4, the secant stiffness decreases fast) corresponds to the initiation and evolution of the observable damages. The fatigue strength of these woven composite laminates is dominated by the third stage during which the observable damage develops along the specimen ligament until fracture. During the third stage, a critical dimension at the specimen ligament and a life threshold can be found beyond which a final catastrophic fracture will immediately occur. The quasi-isotropic laminate is of a fatigue strength lower than the two orthotropic laminates of which the fatigue strengths are approaching to each other. The fatigue life is also influenced by the stacking sequences. (orig.)

  13. Mean stress and the exhaustion of fatigue-damage resistance

    Science.gov (United States)

    Berkovits, Avraham

    1989-01-01

    Mean-stress effects on fatigue life are critical in isothermal and thermomechanically loaded materials and composites. Unfortunately, existing mean-stress life-prediction methods do not incorporate physical fatigue damage mechanisms. An objective is to examine the relation between mean-stress induced damage (as measured by acoustic emission) and existing life-prediction methods. Acoustic emission instrumentation has indicated that, as with static yielding, fatigue damage results from dislocation buildup and motion until dislocation saturation is reached, after which void formation and coalescence predominate. Correlation of damage processes with similar mechanisms under monotonic loading led to a reinterpretation of Goodman diagrams for 40 alloys and a modification of Morrow's formulation for life prediction under mean stresses. Further testing, using acoustic emission to monitor dislocation dynamics, can generate data for developing a more general model for fatigue under mean stress.

  14. Fatigue damage of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  15. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  16. Fatigue Life of Postbuckled Structures with Indentation Damages

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  17. Thermal fatigue cracking of austenitic stainless steels; Fissuration en fatigue thermique des aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, A

    2001-07-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N{sub i} is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50{mu}m to 150{open_square}m long crack is observed. Additional SPLASH tests were performed for N >> N{sub i}, with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the

  18. Development of nondestructive evaluation of creep-fatigue damage in SUS316 stainless steel

    International Nuclear Information System (INIS)

    Shoji, Tetsuo; Kawahara, Tetsuji; Awano, Masakazu; Sato, Yasumoto

    1999-01-01

    Creep-fatigue is a fatal failure mode of high temperature structural materials. It is recognized that the law of linear damage, according to which creep-fatigue damage is expressed by the sum of the creep damage and the fatigue damage, is inadequate to evaluate creep-fatigue damage. This is due to the fact that the law of linear damage does not include the effect of interaction between the creep damage and the fatigue damage. Consequently, development of direct measurement of damage accumulation on the sample of interest is required for plant life evaluation. In this study, the induced current focusing potential drop (ICFPD) technique was used to evaluate the depth of small surface cracks in SUS316FR stainless steel which was subjected to creep-fatigue damage. It is shown that the potential drop increased during the micro-crack initiation and propagation. Correspondingly, the ICFPD technique applied to estimate micro-crack depth changes was used to accurately evaluate the residual life of creep-fatigue damaged structural materials. (author)

  19. Thermal fatigue and creep evaluation for the bed in tritium SDS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo-seok, E-mail: wschoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Park, Chang-gyu [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Ju, Yong-sun [KOASIS, Yuseong, Daejeon (Korea, Republic of); Kang, Hyun-goo; Jang, Min-ho; Yun, Sei-hun [National Fusion Research Institute, Yuseong, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • To evaluate the integrity of the ITER tritium SDS bed, three kinds of assessments were conducted. • The structural analysis showed that the stress induced from the thermal load and the internal pressure is within the design stress intensity. • The combined fatigue and creep assessment was also performed according to the procedure of ASME code Subsection NH. • A new operation procedure to obtain more integrity margin was recommended. • The other operation procedure could be considered which makes the rapid operation possible giving up the marginal integrity. - Abstract: The primary vessel of ITER tritium SDS bed is made of stainless steel. It is heated beyond 500 °C to desorb tritium. During this process the primary vessel is subject to thermal stress. And it is also subject to thermal fatigue by the iterative process of absorption and desorption. In addition, its operation temperature range is in the thermal creep temperature region. Therefore, the tritium SDS bed should have sufficient design stress intensity under the high temperature operating conditions. It should also be free of damage due to fatigue during the design life. Thermal analysis and structural analysis was performed using a finite element method to calculate the temperature and the stress distribution of the ITER tritium SDS bed due to the internal pressure and thermal loads. The thermal fatigue and creep effects were also evaluated since the tritium SDS bed was heated to hot temperature region where creep occurs. Based on the distribution of the primary stress and secondary stress results, two evaluation cross-sections were selected. The evaluation showed that the calculated value on the cross-sections satisfied all of the limits of the design code requirements.

  20. Fatigue Damage Estimation and Data-based Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen

    2015-01-01

    based on hysteresis operators, which can be used in control loops. The authors propose a data-based model predictive control (MPC) strategy that incorporates an online fatigue estimation method through the objective function, where the ultimate goal in mind is to reduce the fatigue damage of the wind......The focus of this work is on fatigue estimation and data-based controller design for wind turbines. The main purpose is to include a model of the fatigue damage of the wind turbine components in the controller design and synthesis process. This study addresses an online fatigue estimation method...... turbine components. The outcome is an adaptive or self-tuning MPC strategy for wind turbine fatigue damage reduction, which relies on parameter identification on previous measurement data. The results of the proposed strategy are compared with a baseline model predictive controller....

  1. Fatigue damage propagation in unidirectional glass fibre reinforced composites

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Alzamora Guzman, Vladimir Joel; Østergaard, R.C.

    2012-01-01

    bundles. The underlying mechanisms are examined using digital microscopy, and it is postulated that fatigue damage initiates due to stress concentrations between the backing (transverse) layer and the unidirectional layer, followed by a cyclic fretting and axial fibre debonding. This fretting mechanism......Damage progression in unidirectional glass fibre reinforced composites exposed to tension fatigue is investigated, and a quantitative explanation is given for the observed stiffness loss. The stiffness degradation during fatigue is directly related to fibre breaks in the load-carrying axial fibre...... needs further attention and understanding in order to improve the fatigue life-time of glass fibre reinforced composites....

  2. Assessment of corrosion and fatigue damage to light water reactor metal containments

    International Nuclear Information System (INIS)

    Sinha, U.P.; Shah, V.N.; Smith, S.K.

    1991-01-01

    This paper presents a generic procedure for estimating aging damage, evaluating structural integrity, and identifying mitigation activities for safe operation of boiling water reactor (BWR) Mark I metal containments and ice-condenser type pressurized water reactor (PWR) cylindrical metal containments. The mechanisms of concern that can cause aging damage to these two types of containments are corrosion and fatigue. Assessment of fatigue damage to bellows is also described. Assessment of corrosion and fatigue damage described in this paper include: containment design features that are relevant to aging assessment, several corrosion and fatigue mechanisms, inspection of corrosion and fatigue damage, and mitigation of damage caused by these mechanisms. In addition, synergistic interaction between corrosion and fatigue is considered. Possible actions for mitigating aging include enhanced inspection methods, maintenance activities based on operating experience, and supplementary surveillance programs. Field experience related to aging of metal containments is reviewed. Finally, conclusions and recommendations are presented

  3. Quantification of damage and fatigue life under random loading

    Directory of Open Access Journals (Sweden)

    Sahnoun ZENGAH

    2017-12-01

    Full Text Available The fatigue of components and structures under real stress is a very complex process that appears at the grain scale. The present work is to highlight a variable loading fatigue life prediction process using the Rain-flow cycle count method and cumulative damage models. Four damage cumulative models are retained and used to estimate the lifetime and to evaluate the indicator of the damage (D namely: the model Miner, the model of the damaged stress "DSM", the theory unified and finally Henry's law.

  4. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2013-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Based on above knowledge, improved methods for the JSME guideline and Numerical simulation methods for thermal fatigue evaluation were studied. Furthermore, probabilistic failure analysis approach with main influence parameters were investigated to be applied for the plant system safety. (author)

  5. Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30

    International Nuclear Information System (INIS)

    Klimkeit, B.; Castagnet, S.; Nadot, Y.; Habib, A. El; Benoit, G.; Bergamo, S.; Dumas, C.; Achard, S.

    2011-01-01

    Research highlights: → Final macroscopic cracking only affects the few last percent of the lifetime → Classical approach based on fracture surface observation is not sufficient to characterize micro-mechanisms → Different techniques (scanning electron microscopy, replica technique, infra-red imaging) are compared to the macroscopic mechanical behavior evolution (stiffness, viscous damping, ratcheting effect) → The influence of surrounding fibers on some observed damage processes is being evidenced for the first time. - Abstract: The fatigue damage of a glass-reinforced PolyButylene Terephthalate and PolyEthylene Terephthalate with the fiber volume fraction of 30% (PBT+PET GF30) is investigated by means of various techniques. Fatigue tests at R = 0.1 are carried out on dogbone specimens and tubular specimens with different fiber orientations. The macroscopic evolution of the material behavior is evaluated and fatigue damage mechanisms are observed with a replica technique, Infrared imaging and scanning electron microscopy. A fatigue damage scenario is finally proposed. It is shown that the propagation of a single macroscopic crack is not the major fatigue mechanism under fatigue loading. Damage is spatially distributed in the material and the classical circular crack at the end of the fiber is confirmed as the based fatigue mechanisms. It is also shown that the damage observed alongside the fibers is related to spatial distribution of fiber rather than stress distribution around one single fiber.

  6. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  7. Analysis of thermal fatigue events in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Thermal fatigue events, which may cause shutdown of nuclear power stations by wall-through-crack of pipes of RCRB (Reactor Coolant Pressure Boundary), are reported by licensees in foreign countries as well as in Japan. In this paper, thermal fatigue events reported in anomalies reports of light water reactors inside and outside of Japan are investigated. As a result, it is clarified that the thermal fatigue events can be classified in seven patterns by their characteristics, and the trend of the occurrence of the events in PWRs (Pressurized Water Reactors) has stronger co-relation to operation hours than that in BWRs (Boiling Water Reactors). Also, it is concluded that precise identification of locations where thermal fatigue occurs and its monitoring are important to prevent the thermal fatigue events by aging or miss modification. (author)

  8. Thermal fatigue evaluation of partially cooled pipes

    International Nuclear Information System (INIS)

    Kawasaki, N.; Kasahara, N.; Takasho, H.

    2004-01-01

    Concerning thermal striping phenomenon with a cold/hot spot, effect of the thermal spot on fatigue strength was investigated. The thermal spot causes membrane stress and enhances bending stress in the structure. Increased stress shortens the fatigue life and accelerates the crack propagation rate. The mechanism to increase stress was found to be the structural constraint of thermal strain by the thermal spot. To consider this mechanism, constraint efficiency factors were introduced to the thermal stress evaluation method based on frequency transfer functions developed by authors. Proposed method with these factors was validated through comparisons with cyclic FEA considering thermal spots. (orig.)

  9. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  10. Creep fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-01-01

    When structural components are subjected to severe cyclic loading conditions with intermittent periods of sustained loading at elevated temperature, the designer must guard against a failure mode caused by the interaction of time-dependent and time-independent deformation. This phenomena is referred to as creep-fatigue interaction. The most elementary form of interaction theory (called linear damage summation) is now embodied in the ASME Boiler and Pressure Vessel Code. In recent years, a competitor for the linear damage summation theory has emerged, called strainrange partitioning. This procedure is based upon the visualization of the cyclic strain in a uniaxial creep-fatigue test as a hysteresis loop, with the inelastic strains in the loop counter-balanced in one of two ways. The two theories are compared and contrasted in terms of ease of use, possible inconsistencies, and component life prediction. Future work to further test the damage theories is recommended

  11. Thermally induced high frequency random amplitude fatigue damage at sharp notches

    International Nuclear Information System (INIS)

    Lewis, M.W.J.

    1992-01-01

    Experiments have been performed using the SUPERSOMITE facility to investigate the initiation and growth of fatigue cracks at the tips of sharp surface notches subjected to random thermally-induced stress. The experimental situation is complex involving plasticity, random amplitude loading and heat transfer medium/surface coupling. Crack initiation and growth prediction have been considered using the Creager and Neuber methods to compute the strain ranges in the vicinity of the notch root. Good agreement has been obtained between the experimental results and theoretical predictions. The paper reports the results of the analysis of the notch behavior

  12. Development of probabilistic fatigue curve for asphalt concrete based on viscoelastic continuum damage mechanics

    Directory of Open Access Journals (Sweden)

    Himanshu Sharma

    2016-07-01

    Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution

  13. Thermal Fatigue of Die-Casting Dies: An Overview

    Directory of Open Access Journals (Sweden)

    Abdulhadi Hassan A.

    2016-01-01

    Full Text Available Coupled studies by experimental and numerical simulations are necessary for an increased understanding of the material behaviour as related to the interaction between the thermal and mechanical conditions. This paper focus on the mechanisms of thermal fatigue in the failure of dies and cores used in the die casting of aluminum alloys. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. Samples of various types of H13 steel were compared with a standard H13 steel by testing under identical thermal fatigue cycles. To determine the thermal constraint developed in the sample during the test, a finite difference technique was used to obtain the temperature distribution, based on temperature measurements at the boundaries. The resulting stresses and strains were computed, and the strain calculated at the edge or weakest point of the sample was used to correlate the number of cycles to crack initiation. As the strain at the edge increased, the number of cycles to failure decreased. The influence of various factors on thermal fatigue behavior was studied including austenitizing temperature, surface condition, stress relieving, casting, vacuum melting, and resulfurization. The thermal fatigue resistance improved as the austenitizing temperature increased from 1750 to 2050ºF.

  14. Integrated fatigue damage diagnosis and prognosis under uncertainties

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated fatigue damage diagnosis and prognosis framework is proposed in this paper. The proposed methodology integrates a Lamb wave-based damage detection...

  15. Fatigue damage modeling in solder interconnects using a cohesive zone approach

    NARCIS (Netherlands)

    Abdul-Baqi, A.J.J.; Schreurs, P.J.G.; Geers, M.G.D.

    2005-01-01

    The objective of this work is to model the fatigue damage process in a solder bump subjected to cyclic loading conditions. Fatigue damage is simulated using the cohesive zone methodology. Damage is assumed to occur at interfaces modeled through cohesive zones in the material, while the bulk material

  16. Damage evolution during fatigue in structural materials

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří; Petrenec, Martin

    2012-01-01

    Roč. 1, August (2012), s. 3-12 ISSN 2211-8128. [International Congress on Metallurgy and Materials - SAM/CONAMET 2011 /11./. Rosario, 18.10.2011-21.10.2011] R&D Projects: GA ČR GA106/09/1954 Institutional support: RVO:68081723 Keywords : cyclic plasticity * crack nucleation * crack growth * fatigue damage Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Fatigue damage of nuclear facilities; Endommagement par fatigue des installations nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  18. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    Science.gov (United States)

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  19. CFD-FEM coupling for accurate prediction of thermal fatigue

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Kuczaj, A.K.; Blom, F.J.; Church, J.M.; Komen, E.M.J.

    2009-01-01

    Thermal fatigue is a safety related issue in primary pipework systems of nuclear power plants. Life extension of current reactors and the design of a next generation of new reactors lead to growing importance of research in this direction. The thermal fatigue degradation mechanism is induced by temperature fluctuations in a fluid, which arise from mixing of hot and cold flows. Accompanied physical phenomena include thermal stratification, thermal striping, and turbulence [1]. Current plant instrumentation systems allow monitoring of possible causes as stratification and temperature gradients at fatigue susceptible locations [1]. However, high-cycle temperature fluctuations associated with turbulent mixing cannot be adequately detected by common thermocouple instrumentations. For a proper evaluation of thermal fatigue, therefore, numerical simulations are necessary that couple instantaneous fluid and solid interactions. In this work, a strategy for the numerical prediction of thermal fatigue is presented. The approach couples Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For the development of the computational approach, a classical test case for the investigation of thermal fatigue problems is studied, i.e. mixing in a T-junction. Due to turbulent mixing of hot and cold fluids in two perpendicularly connected pipes, temperature fluctuations arise in the mixing zone downstream in the flow. Subsequently, these temperature fluctuations are also induced in the pipes. The stresses that arise due to the fluctuations may eventually lead to thermal fatigue. In the first step of the applied procedure, the temperature fluctuations in both fluid and structure are calculated using the CFD method. Subsequently, the temperature fluctuations in the structure are imposed as thermal loads in a FEM model of the pipes. A mechanical analysis is then performed to determine the thermal stresses, which are used to predict the fatigue lifetime of the structure

  20. The effect of creep-fatigue damage relationships upon HTGR heat exchanger design

    International Nuclear Information System (INIS)

    Kozina, M.M.; King, J.H.; Basol, M.

    1984-01-01

    Materials for heat exchangers in the high temperature gas-cooled reactor (HTGR) are subjected to cyclic loading, extending the necessity to design against fatigue failure into the temperature region where creep processes become significant. Therefore, the fatigue life must be considered in terms of creep-fatigue interaction. In addition, since HTGR heat exchangers are subjected to holds at constant strain levels or constant stress levels in high-temperature environments, the cyclic life is substantially reduced. Of major concern in the design and analysis of HTGR heat exchangers is the accounting for the interaction of creep and fatigue. The accounting is done in conformance to the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Code Case N-47, which allows the use of the linear damage criterion for interaction of creep and fatigue. This method separates the damage incurred in the material into two parts: one due to fatigue and one due to creep. The summation of the creep-fatigue damage must be less than 1.0. Recent material test data have indicated that the assumption of creep and fatigue damage equals unity at failure may not always be valid for materials like Alloy 800H, which is used in the higher temperature sections of HTGR steam generators. Therefore, a more conservative creep-fatigue damage relationship was postulated for Alloy 800H. This more conservative bilinear damage relationship consists of a design locus drawn from D F =1.0, D C =0 to D F =0.1, D C =0.1 to D F =0, D C =1.0. D F is the fatigue damage and D C is the creep damage. A more conservative damage relationship for 2-1/4 Cr-1 Mo material consisted of including factors that degrade the fatigue curves. These revised relationships were used in a structural evaluation of the HTGR steam cycle/cogeneration (SC/C) steam generator design. The HTGR-SC/C steam generator, a once-through type, is comprised of an economizer-evaporator-superheater (ESS) helical bundle of 2-1/4 Cr-1

  1. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  2. Combined simulation of fatigue crack nucleation and propagation based on a damage indicator

    Directory of Open Access Journals (Sweden)

    M. Springer

    2016-10-01

    Full Text Available Fatigue considerations often distinguish between fatigue crack nucleation and fatigue crack propagation. The current work presents a modeling approach utilizing one Fatigue Damage Indicator to treat both in a unified way. The approach is implemented within the framework of the Finite Element Method. Multiaxial critical plane models with an extended damage accumulation are employed as Fatigue Indicators. Locations of fatigue crack emergence are predicted by these indicators and material degradation is utilized to model local material failure. The cyclic loading is continued on the now degraded structure and the next location prone to material failure is identified and degradation modeled. This way, fatigue crack propagation is represented by an evolving spatial zone of material failure. This propagating damage zone leads to a changing structural response of the pristine structure. By recourse to the Fatigue Damage Indicator a correlation between the number of applied load cycles and the changing structural behavior is established. Finally, the proposed approach is exemplified by cyclic bending experiments in the Low Cycle Fatigue regime

  3. Some aspects of thermal fatigue in stainless steel

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1987-01-01

    This paper is concerned with the analysis of failures in a moderator circuit branch piping of the ATUCHA-I pressurized heavy water reactor (PHWR), made of austenitic steel to DIN 1.4550 specification (similar to AISI 347). These failures are considered to result from a thermal fatigue processes induced by fluctuations in a zone where stratified temperature layers occurred -the fluctuations being associated with variations in the heavy water flow. The first section evaluates the possibility of cracking due to thermal fatigue phenomena and concludes that under service conditions a crack may be initiated and growth through 7 mm of the wall thickness of the pipe. Laboratory thermal fatigue tests that simulated the thermomechanical conditions for such a component, showed that the number of cycles required to initiate a thermal fatigue crack in a notched modified standard fatigue specimen was about 10 3 . This value may be used to give a conservative prediction of the number of thermal cycles for crack initiation in actual station piping, including those who suffered a cold plug condition which is produced in some emergency shut-down and valve testing situations. It was also demonstrated that beyond a crack depth of 7 mm stress corrosion cracking has the main process in further crack propagation. The relevance of this prediction has been confirmed by microfractographic observations, since the brittle nature of the fracture surfaces under service conditions appears very different from the transgranular ductile striations found in both thermal and mechanical fatigue test specimens as a result of environmental effects. (Author)

  4. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  5. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    International Nuclear Information System (INIS)

    Schuler, X.; Herter, K.H.; Moogk, S.; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M.

    2012-01-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  6. Probability-based assessment and maintenance of welded joints damaged by fatigue

    International Nuclear Information System (INIS)

    Cremona, C.; Lukic, M.

    1998-01-01

    This paper presents a probabilistic reliability assessment procedure for steel components damaged by fatigue. The study combines the structural reliability theory with a maintenance strategy. The fatigue assessment model is based on a modelisation of the fatigue phenomenon issued from the principles of fracture mechanics theory. The safety margin includes the crack growth propagation and allows to treat fatigue damage in a general manner. Damaging cycles and non damaging cycles are distinguished. The sensitivity study of the different parameters shows that some variables can be taken as deterministic. Applications are made on a welded joint 'stiffener/bottom-plate' of a typical steel bridge. The model is then used for taking into account inspection results. Non destructive inspection (NDI) techniques are also used for updating failure probabilities. The results show their ability to be inserted in a maintenance strategy for optimizing the next inspection time. This has led to define cost functions related to the total maintenance cost; this cost is then minimized for determining the optimal next inspection time. An example of welded joint cracked by fatigue highlights the different concepts. The approach presented in the paper is not only restrained to fatigue problems, but can be applied to a wide variety of degrading phenomena. (orig.)

  7. Fatigue damage in coarse-grained lean duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar; Hereñú, S.; Marinelli, M.C.; Alvarez-Armas, I.

    2016-04-06

    The present investigation is focused on assessing the effect of a thermal treatment for grain coarsening on the low cycle fatigue damage evolution in two types of Lean Duplex Stainless Steels (LDSSs). The dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Additionally, a detailed analysis of short crack initiated and grown during low cycle fatigue (LCF) is performed by means of optical and scanning electron (SEM) microscopy in combination with automated electron back-scattered diffraction (EBSD) technique. Though in both coarse-grained LDSSs the short cracks nucleate in the ferrite phase, in each steels its origin is different. The embrittlement caused by the Cr{sub 2}N precipitation and the plastic activity sustained by each phase can explain this difference. The propagation behavior of the short cracks present two alternative growing mechanisms: the crack grows along a favorable slip plane with high Schmid Factor (SF) or the crack alternates between two slip systems. In both cases, the crack follows the path with the smallest tilt angle (β) at a grain boundary.

  8. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Lu, T., E-mail: likesurge@sina.com

    2016-12-01

    Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue

  9. X-ray diffraction study of microstructural changes during fatigue damage initiation in steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, B., E-mail: bianca@lts.coppe.ufrj.br [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Lesage, J. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Pasqualino, I. [Subsea Technology Laboratory (LTS), Ocean Engineering Department, COPPE/Federal University of Rio de Janeiro, PO Box 68508, Cidade Universitaria, CEP 21945-970, Rio de Janeiro/RJ (Brazil); Benseddiq, N. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University of Lille 1, Boulevard Paul Langevin, Cite Scientifique, 59655 Villeneuve d' Ascq (France); Bemporad, E. [Interdepartmental Laboratory of Electron Microscopy (LIME), University of Rome TRE, Via Della Vasca Navale 79, 00146 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer In this work we study the fatigue damage evolution in an API 5L X60 steel. Black-Right-Pointing-Pointer Microstructural changes and residual stresses are evaluated during fatigue tests. Black-Right-Pointing-Pointer Microdeformations and macro residual stresses are estimated by X-ray diffraction. Black-Right-Pointing-Pointer Results are discussed in view of an indicator of fatigue damage initiation. Black-Right-Pointing-Pointer This indicator could allow the prediction of residual life before macrocracking. - Abstract: Steel pipes used in the oil and gas industry undergo the action of cyclic loads that can cause their failure by fatigue. A consistent evaluation of the fatigue damage during the initiation phase should fundamentally be based on a nanoscale approach, i.e., at the scale of the dislocation network, in order to take into account the micromechanisms of fatigue damage that precede macrocrack initiation and propagation until the final fracture. In this work, microstructural changes related to fatigue damage initiation are investigated in the API 5L X60 grade steel, used in pipe manufacturing. Microdeformations and macro residual stress are evaluated using X-ray diffraction in real time during alternating bending fatigue tests performed on samples cut off from an X60 steel pipe. The aim of this ongoing work is to provide ground for further development of an indicator of fatigue damage initiation in X60 steel. This damage indicator could allow a good residual life prediction of steel pipes previously submitted to fatigue loading, before macroscopic cracking, and help to increase the reliability of these structures.

  10. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, X.; Herter, K.H.; Moogk, S. [Stuttgart Univ. (Germany). MPA; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M. [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems

    2012-07-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  11. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  12. Optimal Inspection Planning for Fatigue Damage of Offshore Structures

    DEFF Research Database (Denmark)

    Madsen, H.O.; Sørensen, John Dalsgaard; Olesen, R.

    1990-01-01

    A formulation of optimal design, inspection and maintenance against damage caused by fatigue crack growth is formulated. A stochastic model for fatigue crack growth based on linear elastic fracture mechanics Is applied. Failure is defined by crack growth beyond a critical crack size. The failure ...

  13. Multi-cracking in uniaxial and biaxial fatigue of 304L stainless steel

    International Nuclear Information System (INIS)

    Rupil, J.

    2012-01-01

    When a mechanical part is subjected to a repeated mechanical stress, it may be damaged after a number of cycles by several cracks initiation and propagation of a main crack. This is the phenomenon of fatigue damage. The thesis deals specifically with possible damage to some components of nuclear plants due to thermal fatigue. Unlike conventional mechanical fatigue damage where a main crack breaks the part, the thermal fatigue damage usually results in the appearance of a surface crack network. Two aspects are discussed in the thesis. The first is the experimental study of fatigue multiple cracking stage also called multi-cracking. Two mechanical test campaigns with multi-cracking detection by digital image correlation were conducted. These campaigns involve uniaxial and equi-biaxial mechanical loads in tension/compression without mean stress. This work allows to monitor and to observe the evolution of different networks of cracks through mechanical solicitations. The second is the numerical simulation of the phenomenon of fatigue damage. Several types of model are used (stochastic, probabilistic, cohesive finite elements). The experimental results have led to identify a multiple crack initiation law in fatigue which is faced with the numerical results. This comparison shows the relevance of the use of an analytical probabilistic model to find statistical results on the density of cracks that can be initiated with thermal and mechanical fatigue loadings. (author) [fr

  14. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  15. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  16. Electrochemical behaviour of a stainless steel coating after thermal fatigue and thermal shocks

    International Nuclear Information System (INIS)

    Boudebane, A.; Darsouni, A.; Chadli, H.; Boudebane, S.

    2012-01-01

    This work aims to study of the influence of thermal fatigue and thermal shock on the corrosion behaviour of coated steel AISI 304L. The coating was welded by TIG welding on specimens in ferritic-pearlitic steel grade AISI 4140. The study concerns three different states of deposit: sensitized, sensitized and strain hardened in surface and no sensitized. We realized electrochemical corrosion in an aqueous solution of NaCl 34 g/l. The corrosion of the specimens were evaluated by comparing the potentiodynamic curves for different states of the coating. Firstly, electrochemical characterization of deposits has shown a localized intergranular corrosion. Furthermore, the increase in the number of cycles of thermal fatigue accelerates the dissolution of deposit. Thermal shocks tend to improve resistance to corrosion. Against, the mechanical treatment of surfaces by burnishing decreases the dissolution rate of deposit cycles in thermal fatigue. (authors)

  17. Estimation of Temperature Conductivity Coefficient Impact upon Fatigue Damage of Material

    International Nuclear Information System (INIS)

    Bibik, V; Galeeva, A

    2015-01-01

    In the paper we consider the peculiarities of adhesive wear of cutting tools. Simulation of heat flows in the cutting zone showed that, as thermal conduction and heat conductivity of tool material grow, the heat flows from the front and back surfaces to tool holder will increase and so, the temperature of the contact areas of the tool will lower. When estimating the adhesive wear rate of cemented-carbide tool under the cutting rates corresponding to the cutting temperature of up to 900 °C, it is necessary to take the fatigue character of adhesive wear into consideration. The process of accumulation and development of fatigue damage is associated with micro- and macroplastic flowing of material, which is determined by the processes of initiation, motion, generation, and elimination of line defects - dislocations. Density of dislocations grows with increase of the loading cycles amount and increase of load amplitude. Growth of dislocations density leads to loosening of material, formation of micro- and macrocracks. The heat capacity of material grows as the loosening continues. In the given paper the authors prove theoretically that temperature conductivity coefficient which is associated with heat capacity of material, decreases as fatigue wear grows. (paper)

  18. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  19. Onboard monitoring of fatigue damage rates in the hull girder

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    2011-01-01

    Most new advanced ships have extensive data collection systems to be used for continuous monitoring of engine and hull performance, for voyage performance evaluation etc. Such systems could be expanded to include also procedures for stress monitoring and for decision support, where the most...... critical wave-induced ship extreme responses and fatigue damage accumulation can be estimated for hypothetical changes in ship course and speed in the automatically estimated wave environment.The aim of this paper is to outline a calculation procedure for fatigue damage rate prediction in hull girders...... taking into account whipping stresses. It is conceptually shown how such a method, which integrates onboard estimation of sea states, can be used to deduce decision support with respect to the accumulated fatigue damage in the hull girder.The paper firstly presents a set of measured full-scale wave...

  20. Microstructure analysis and damage patterns of thermally cycled Ti–49.7Ni (at.%) wires

    International Nuclear Information System (INIS)

    Karhu, Marjaana; Lindroos, Tomi

    2012-01-01

    Long-term behaviour and fatigue endurance are the key issues in the utilization of SMA actuators, but systematic research work is still needed in this field. This study concentrates on the effects of three major design parameters on the long-term behaviour of binary Ti–49.7Ni-based actuators: the effect of the temperature interval used on thermal cycling, the effect of the stress level used and the effect of the heat-treatment state of the wire used. The long-term behaviour of the wires was studied in a custom-built fatigue test frame in which the wires were thermally cycled under a constant stress level. Before the fatigue testing, a series of heat treatments was carried out to generate optimal actuator properties for the wires. This paper concentrates on the systematic fractographic analysis of the fatigue fractured Ti–49.7Ni wires. The aim was to discover the relationships between the macro-scale behaviour and the microstructural changes of the material. During thermal cycling the surfaces of the Ti–49.7Ni wires were examined with an optical microscope. Clear connections between the detected surface defects and fracture nucleation sites were not established. Multiple cracks were initiated and grew during thermal cycling. SEM examinations showed that the fracture surfaces can be divided into different and separate zones: a smooth surface region with radial marks indicating the fatigue crack propagation area, a rougher ductile fracture surface region area and the roughest surface region on the interface of these two surfaces. It was detected that the size of the crack propagation area is related to the fatigue lives of the thermally cycled wires. Surface cracking and subsequent crack growth proved to be responsible for the accumulation of fatigue damage in the studied wires. It was detected from the fracture surface cross-sections that cracks were not initiated at the oxide layer. The major factor for nucleating the surface cracking and then shortening the

  1. Main factors of thermal fatigue failure induced by thermal striping and total simulation of thermal hydraulic and structural behaviors (research report)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Muramatsu, Toshiharu

    1999-01-01

    At incomplete mixing area of high temperature and low temperature fluids near the surface of structures, temperature fluctuation of fluid gives thermal fatigue damage to wall structures. This phenomenon is called thermal striping, which becomes sometimes a critical problem in LMFR plants. Since thermal striping phenomenon is characterized by the complex thermohydraulic and thermomechanical coupled problem, conventional evaluation procedures require mock-up experiments. In order to replace them by simulation-base methods, the authors have developed numerical simulation codes and applied them to analyze a tee junction of the PHENIX secondary circuit due to thermal striping phenomenon, in the framework of the IAEA coordinated research program (CRP). Through this analysis, thermohydraulic and thermomechanical mechanism of thermal striping phenomenon was clarified, and main factors on structural integrity was extracted in each stage of thermal striping phenomenon. Furthermore, simulation base evaluation methods were proposed taking above factors of structural integrity into account. Finally, R and D problems were investigated for future development of design evaluation methods. (author)

  2. Evaluation of fatigue damage of pressure vessel materials by observation of microstructures

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1994-01-01

    As the important factor as the secular change mode of pressure vessel materials, there is fatigue damage. In USA, there is the move to use LWRs by extending their life, and it becomes necessary to show the soundness of the structures of machinery and equipment for long period. For exactly evaluating the soundness of the structures of machinery and equipment, it is important to clarify the degree of secular deterioration of the materials. In this report, by limiting to the fatigue damage of LWR pressure vessel steel, the method of grasping the change of microstructure and the method of estimating the degree of fatigue damage from the change of microstructure are shown. The change of microstructure arising in materials due to fatigue advances in the following steps, namely, the multiplication of dislocations, the tangling of dislocations, the formation of cell structure, the turning of cells, the formation of microcracks, the growth of cracks and fracture. In the case of pressure vessel steel, due to the quenching and tempering, the cell structure is formed from the beginning, and the advance of fatigue is recognized as the increase of the turning angle of cell structures. The detection of fatigue damage by microstructure is reported. (K.I.)

  3. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  4. Fatigue damage characterization in plain-wave carbon-carbon fabric reinforced plastic composites

    International Nuclear Information System (INIS)

    Khan, Z.; Al-sulaiman, F.S.; Farooqi, J.K.

    1997-01-01

    In this paper fatigue damage mechanisms in 8 ply Carbon-Carbon Fabric reinforced Plastic Laminates obtained from polyester resin-prepreg plain weave carbon-carbon fabric layers have been investigated. Enhanced dye penetrant, X-ray radiography, optical microscopy, edge replication, and scanning electron fractography have been employed to examine the fatigue damage in three classes of laminates having the unidirectional (O)/sub delta/, the angle-plied (0,0,45,-45)/sub s/ fiber orientations. It is shown the laminates that have off axis plies, i.e.,0,0,45,-45), and (45,-45,0,0) /sub s/, the fatigue damage is initiated through matrix cracking. This matrix cracking induces fiber fracture in adjacent plies near the matrix crack tip. This event is followed by the man damage event of delamination of the stacked plies. It is shown that the delamination was the major damage mode, which caused the eventual fatigue failure in the angle-plied composites. The unidirectional composite (O)/sub delta/ laminates failed predominantly by lateral fracture instead of delamination. Fiber fracture was observed in the prime damage mode in unidirectional (O)/sub delta/ composite laminates. (author)

  5. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    Science.gov (United States)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  6. New fatigue damage analysis of complex engineering components based on FEM

    International Nuclear Information System (INIS)

    Ott, W.

    1987-05-01

    A new type of fatigue damage analysis for multiaxial elastoplastic conditions based on a three-dimensional finite element analysis has been developed. The analysis includes the material model after Mroz. The fatigue life evaluation in the critical areas is based on plastic work at these locations. The proposed damage concept can be applied to arbitrary multiaxial stress-strain paths. For the evaluation of the damage cycles in terms of closed stress-strain hysteresis loops are not required. The damage is determined on the basis of uniaxial material data (stress-strain curve, life to crack iniation curve). (orig./HP) [de

  7. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  8. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  9. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  10. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright

  11. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2014-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and many patterns, so that their problems still occur in spite of well-known issues. The guideline of the JSME (Japan Society of Mechanical Engineering) for estimation of thermal fatigue failures in piping system is employed as Japanese regulation. To improve this guideline, generation mechanisms of thermal load and fatigue failure have been investigated and summarized into the knowledgebase. And numerical simulation methods to replace experimental based methods were studied. Furthermore, probabilistic failure analysis approach with main influence parameters was investigated to be applied for the plant system safety. Thus, based on the knowledge, estimation methods revised from the JSME guideline were proposed. (author)

  12. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    Science.gov (United States)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  13. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    International Nuclear Information System (INIS)

    You, Jeong-Ha

    2014-01-01

    Highlights: • The surface heat flux load of 3.5 MW/m 2 produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m 2 ) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different damage

  14. Orientation dependence of the thermal fatigue of nickel alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dul' nev, R A; Svetlov, I L; Bychkov, N G; Rybina, T V; Sukhanov, N N

    1988-11-01

    The orientation dependence of the thermal stability and the thermal fatigue fracture characteristics of single crystals of MAR-M200 nickel alloy are investigated experimentally using X-ray diffraction analysis and optical and scanning electron microscopy. It is found that specimens with the 111-line orientation have the highest thermal stability and fatigue strength. Under similar test conditions, the thermal fatigue life of single crystals is shown to be a factor of 1.5-2 higher than that of the directionally solidified and equiaxed alloys. 6 references.

  15. Lifetime prediction of structures submitted to thermal fatigue loadings

    International Nuclear Information System (INIS)

    Amiable, S.

    2006-01-01

    The aim of this work is to predict the lifetime of structures submitted to thermal fatigue loadings. This work lies within the studies undertaken by the CEA on the thermal fatigue problems from the french reactor of Civaux. In particular we study the SPLASH test: a specimen is heated continuously and cyclically cooled down by a water spray. This loading generates important temperature gradients in space and time and leads to the initiation and the propagation of a crack network. We propose a new thermo-mechanical model to simulate the SPLASH experiment and we propose a new fatigue criterion to predict the lifetime of the SPLASH specimen. We propose and compare several numerical models with various complexity to estimate the mechanical response of the SPLASH specimen. The practical implications of this work are the reevaluation of the hypothesis used in the French code RCC, which are used to simulate thermal shock and to interpret the results in terms of fatigue. This work leads to new perspectives on the mechanical interpretation of the fatigue criterion. (author)

  16. An accurate fatigue damage model for welded joints subjected to variable amplitude loading

    Science.gov (United States)

    Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.

    2017-12-01

    Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.

  17. Detection of Fatigue Damage by Using High Frequency Nonlinear Laser Ultrasonic Signals

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Cheong, Yong Moo; Cha, Byung Heon

    2012-01-01

    The detection of fatigue damage for the components of a nuclear power plant is one of key techniques to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Laser ultrasound has attracted attention as a noncontact testing technique. Especially, laser ultrasonic signal has wide band frequency spectrum which can provide more accurate information for a testing material. The conventional linear ultrasonic technique is sensitive to gross defects or opened cracks whereas it is less sensitive to evenly distributed micro-cracks or degradation. An alternative technique to overcome this limitation is nonlinear ultrasound. The principal difference between linear and nonlinear technique is that in the latter the existence and characteristics of defects are often related to an acoustic signal whose frequency differs from that of the input signal. This is related to the radiation and propagation of finite amplitude, especially high power, ultrasound and its interaction with discontinuities, such as cracks, interfaces and voids. Since material failure or degradation is usually preceded by some kind of nonlinear mechanical behavior before significant plastic deformation or material damage occurs. The presence of nonlinear terms in the wave equation causes intense acoustic waves to generate new waves at frequencies which are multiples of the initial sound wave frequency. The nonlinear effect can exert a strong effect on the

  18. A thermodynamic approach to fatigue damage accumulation under variable loading

    International Nuclear Information System (INIS)

    Naderi, M.; Khonsari, M.M.

    2010-01-01

    We put forward a general procedure for assessment of damage evolution based on the concept of entropy production. The procedure is applicable to both constant- and variable amplitude loading. The results of a series of bending fatigue tests under both two-stage and three-stage loadings are reported to investigate the validity of the proposed methodology. Also presented are the results of experiments involving bending, torsion, and tension-compression fatigue tests with Al 6061-T6 and SS 304 specimens. It is shown that, within the range of parameters tested, the evolution of fatigue damage for these materials in terms of entropy production is independent of load, frequency, size, loading sequence and loading history. Furthermore, entropy production fractions of individual amplitudes sums to unity.

  19. Hull Girder Fatigue Damage Estimations of a Large Container Vessel by Spectral Analysis

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2013-01-01

    This paper deals with fatigue damage estimation from the analysis of full-scale stress measurements in the hull of a large container vessel (9,400 TEU) covering several months of operation. For onboard decision support and hull monitoring sys-tems, there is a need for a fast reliable method...... for esti-mation of fatigue damage in the ship hull. The objective of the study is to investigate whether the higher frequency contributions from the hydroelastic responses (springing and whipping) can satisfactory be included in the fatigue damage estimation by only a few parameters derived from the stress...

  20. Fatigue damage monitoring of structural aluminum alloys

    Directory of Open Access Journals (Sweden)

    С.Р. Ігнатович

    2004-01-01

    Full Text Available  Results of the experiments directed on creation of a new tool method of fatigue damage diagnostics and an estimation of a residual life of aviation designs are presented. It is shown, that the defo rmation relief formed on a surface of cladding  layer of sheets of constructional alloys Д-16АТ, 2024-Т3, 7075-Т6  can be considered as the metal damage indicator  under cyclically repeating loadings.

  1. Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel

    Czech Academy of Sciences Publication Activity Database

    Petráš, Roman; Škorík, Viktor; Polák, Jaroslav

    2016-01-01

    Roč. 650, JAN (2016), s. 52-62 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : thermomechanical fatigue * Sanicro 25 steel * damage mechanism * FIB cutting * localized oxidation-cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016

  2. Creep-fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-02-01

    ASME Code rules for design against creep-fatigue damage for Class 1 nuclear components operating at elevated temperatures are currently being studied by ASME working groups and task forces with a view toward major modification. In addition, the design rules being developed for Class 2 and Class 3 components would be affected by any major modifications of Class 1 Rules. The report represents an attempt to evaluate the differences between two competing procedures--linear damage summation and strainrange partitioning--for multiaxial stress conditions. A modified version of strainrange partitioning is also developed to alleviate some limitations on nonproportional loading

  3. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  4. Detection of fatigue damage of high and medium pressure rotor by X-ray diffraction method. Survey and research of nondestructive examination of thermal power generation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tatsuo; Suesada, Yasuhiko; Nishioka, Noriaki; Goto, Toru; Ito, Hitomi; Kadoya, Yoshikuni

    1987-03-25

    In recent years, the existing thermal power generation facilities have been required to be operated in securing dependability from the standpoints of the operating conditions which have been getting severer and the demands to use them for longer periods, accordingly it is hoped to establish the diagnostic technology of aged deterioration by the non-destructive examination method for the facilities. In the beginning of 1959 the Kansai Electric Power Co. surveyed the current situation of this technology at various thermal power generation turbine facilities and discovered that concerning the diagnostic technology of aged deterioration by the non-destructive examination method, there remained many matters untouched in the basic research field. The company consequently started a survey and research jointly with Mitsubishi Heavy Industries in the first half of 1959. This report summarizes the research on the detection of aged deterioration due to thermal fatigue of Cr-Mo-V rotor material by the X-ray diffraction method which was conducted during the full fiscal year of 1984 and the first half of FY 1985 as a part of the above joint research. With respect to the conditions for the detection method of thermal fatigue damages of dummy grooves of the high and medium pressure rotor by the application of the X-ray diffraction method, it is preferred to measure a diffraction strength curve of the diffraction surface by using a Co tube as X-ray tube and it is also desirable to use a position sensitive proportional counter tube for X-ray detector. (5 figs, 6 refs)

  5. Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model

    Directory of Open Access Journals (Sweden)

    Aifeng Huang

    2014-01-01

    Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.

  6. Thermal fatigue of austenitic stainless steel: influence of surface conditions through a multi-scale approach

    International Nuclear Information System (INIS)

    Le-Pecheur, Anne

    2008-01-01

    Some cases of cracking of 304L austenitic stainless steel components due to thermal fatigue were encountered in particular on the Residual Heat Removal Circuits (RHR) of the Pressurized Water Reactor (PWR). EDF has initiated a R and D program to understand assess the risks of damage on nuclear plant mixing zones. The INTHERPOL test developed at EDF is designed in order to perform pure thermal fatigue test on tubular specimen under mono-frequency thermal load. These tests are carried out under various loadings, surface finish qualities and welding in order to give an account of these parameters on crack initiation. The main topic of this study is the research of a fatigue criterion using a micro:macro modelling approach. The first part of work deals with material characterization (stainless steel 304L) emphasising the specificities of the surface roughness link with a strong hardening gradient. The first results of the characterization on the surface show a strong work-hardening gradient on a 250 microns layer. This gradient does not evolved after thermal cycling. Micro hardness measurements and TEM observations were intensively used to characterize this gradient. The second part is the macroscopic modelling of INTHERPOL tests in order to determine the components of the stress and strain tensors due to thermal cycling. The third part of work is thus to evaluate the effect of surface roughness and hardening gradient using a calculation on a finer scale. This simulation is based on the variation of dislocation density. A goal for the future is the determination of the fatigue criterion mainly based on polycrystalline modelling. Stocked energy or critical plane being available that allows making a sound choice for the criteria. (author)

  7. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  8. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  9. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Kim, Tae Hyun [Inha University, Incheon (Korea, Republic of)

    1999-12-15

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  10. Computational stress and damage modelling for rolling contact fatigue

    DEFF Research Database (Denmark)

    Cerullo, Michele

    Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate...... and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...

  11. Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom

    Science.gov (United States)

    2011-09-01

    other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic

  12. Environmental Assisted Fatigue Evaluation of Direct Vessel Injection Piping Considering Thermal Stratification

    International Nuclear Information System (INIS)

    Kim, Taesoon; Lee, Dohwan

    2016-01-01

    As the environmentally assisted fatigue (EAF) due to the primary water conditions is to be a critical issue, the fatigue evaluation for the components and pipes exposed to light water reactor coolant conditions has become increasingly important. Therefore, many studies to evaluate the fatigue life of the components and pipes in LWR coolant environments on fatigue life of materials have been conducted. Among many components and pipes of nuclear power plants, the direct vessel injection piping is known to one of the most vulnerable pipe systems because of thermal stratification occurred in that systems. Thermal stratification occurs because the density of water changes significantly with temperature. In this study, fatigue analysis for DVI piping using finite element analysis has been conducted and those results showed that the results met design conditions related with the environmental fatigue evaluation of safety class 1 pipes in nuclear power plants. Structural and fatigue integrity for the DVI piping system that thermal stratification occurred during the plant operation has conducted. First of all, thermal distribution of the piping system is calculated by computational fluid dynamic analysis to analyze the structural integrity of that piping system. And the fatigue life evaluation considering environmental effects was carried out. Our results showed that the DVI piping system had enough structural integrity and fatigue life during the design lifetime of 60 years

  13. Detection of Fatigue Damage by Using Frequency Attenuation of a Laser Ultrasonic Longitudinal Wave

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    The measurement of fatigue damage in nuclear power plant components is very important to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Ultrasound testing method has a variety of elastic waves, such as a longitudinal wave, a shear wave, a surface wave and a lamb wave. Also we can use various analysis methods, such as a velocity variation and a signal attenuation. Laser ultrasonic testing has attracted attention as a non-contact testing technique. This system consists of a pulse laser to remotely generate ultrasound and a laser interferometer to remotely measure the surface displacement due to the generated ultrasound. This noncontact testing technique has the following advantages over the conventional piezoelectric transducers. Firstly, the inspection system can be remotely operated for a structure in hostile environments, such as in high radioactivity, high temperatures and narrow spaces. Secondly, we can obtain lots of information from the received ultrasonic waveforms because the laser ultrasonic technique does not require fluid couplant which disturbs the ultrasonic waveforms. Thirdly, laser ultrasound has a wideband spectrum and a high spatial resolution. Therefore, the laser ultrasound provides more accurate information for a testing material and has potential for the detection of fatigue damage in various metals composing a nuclear power plant

  14. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  15. Thermal-structural Analysis and Fatigue Life Evaluation of a Parallel Slide Gate Valve in Accordance with ASME B and PVC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Han, Jeong Sam [Andong Nat’l Univ., Andong (Korea, Republic of); Jae Seung Choi [Key Valve Technologies Ltd., Siheung (Korea, Republic of)

    2017-02-15

    A parallel slide gate valve (PSGV) is located between the heat recovery steam generator (HRSG) and the steam turbine in a combined cycle power plant (CCPP). It is used to control the flow of steam and runs with repetitive operations such as startups, load changes, and shutdowns during its operation period. Therefore, it is necessary to evaluate the fatigue damage and the structural integrity under a large compressive thermal stress due to the temperature difference through the valve wall thickness during the startup operations. In this paper, the thermal-structural analysis and the fatigue life evaluation of a 16-inch PSGV, which is installed on the HP steam line, is performed according to the fatigue life assessment method described in the ASME B and PVC VIII-2; the method uses the equivalent stress from the elastic stress analysis.

  16. Three technical issues in fatigue damage assessment of nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Shah, V.N.

    1991-01-01

    This paper addresses three technical issues that affect the fatigue damage assessment of nuclear power plant components: the effect of the environment on the fatigue life, the importance of the loading sequence in calculating the fatigue crack-initiation damage, and the adequacy of current inservice inspection requirements and methods to characterize fatigue cracks. The environmental parameters that affect the fatigue life of carbon and low alloy steel components are the sulphur content in the steel, the temperature, the amount of dissolved oxygen in the coolant, and the presence of oxidizing agents such as copper oxide. The occurrence of large-amplitude stress cycles early in a component's life followed by low-amplitude stress cycles may cause crack initiation at a cumulative usage factor less than 1.0. The current inservice inspection requirements include volumetric inspections of welds but not of some susceptible sites in the base metal. In addition, the conventional ultrasonic testing techniques need to be improved for reliable detection and accurate sizing of fatigue cracks. 28 refs., 4 figs., 1 tab

  17. Comparative Study of Fatigue Damage Models Using Different Number of Classes Combined with the Rainflow Method

    Directory of Open Access Journals (Sweden)

    S. Zengah

    2013-06-01

    Full Text Available Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM, Henry model and Unified Theory (UT and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.

  18. Numerical modeling of thermal fatigue cracks from the viewpoint of eddy current testing

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Virkkunen, Iikka; Kemppainen, Mika

    2012-01-01

    This study discusses a suitable numerical modeling of a thermal fatigue crack from the viewpoint of eddy current testing. Five artificial thermal fatigue cracks, introduced into type 304L austenitic stainless steel plates with a thickness of 25 mm, are prepared; and eddy current inspections are carried out to gather signals using an absolute type pancake probe and a differential type plus point probe. Finite element simulations are then carried out to evaluate a proper numerical model of the thermal fatigue cracks. In the finite element simulations, the thermal fatigue cracks are modeled as a semi-elliptic planar region on the basis of the results of the destructive tests. The width and internal conductivity are evaluated by the simulations. The results of the simulations reveal that the thermal fatigue cracks are regarded as almost nonconductive when the internal conductivity is assumed to be uniform inside. (author)

  19. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1999-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  20. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1998-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  1. Effects of Various Factors on the Viv-Induced Fatigue Damage In The Cable Of Submerged Floating Tunnel

    Directory of Open Access Journals (Sweden)

    Luoa Gang

    2015-12-01

    Full Text Available According to the modal superposition method, the vortex vibration procedure of submerged floating tunnel cable was compiled using Matlab, based on the calculated results, the fatigue damage was predicted. The effects of various factors, such as cable density, cable length, and pretension and velocity distribution on vortex induced fatigue damage in the cable were studied. The results show that velocity distribution has more effect on the cable fatigue damage than cable length, cable density and pre-tension. Secondly, cable length has also relatively effect on the cable damage fatigue, cable density and pretension has limited in a certain range.

  2. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    Science.gov (United States)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the

  3. Image-based creep-fatigue damage mechanism investigation of Alloy 617 at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Fraaz; Dahire, Sonam; Liu, Yongming, E-mail: yongming.liu@asu.edu

    2017-01-02

    Alloy 617 is a primary candidate material to be used in the next generation of nuclear power plants. Structural materials for these plants are expected to undergo creep and fatigue at temperatures as high as 950 °C. This study uses a hybrid-control creep-fatigue loading profile, as opposed to the traditional strain-controlled loading, to generate creep dominated failure. Qualitative and quantitative image analysis through SEM, EDS, and EBSD, is used to show that hybrid control testing is capable of producing creep dominated failure and that time fraction approach is not a valid indicator of creep or fatigue dominated damage. The focus of image analysis is on surface fatigue cracks and internal creep voids. A creep-fatigue damage interaction diagram based on these micro-scale features is plotted. It is shown that the classical time fraction approach suggested by the ASME code does not agree with the experimental findings and has a poor correlation with observed microscale damage features. A new definition of creep damage fraction based on an effective hold time is found to correlate well with the micro-scale image analysis.

  4. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  5. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)

    2014-04-15

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.

  6. Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Gillespie Jr., John W.

    2014-01-01

    bundles. A simple stiffness spring model validates the stiffness loss observed. A fatigue damage scheme is presented, which suggests that damage initiates due to failure of the backing bundle causing a stress concentration in the axial load carrying fibres. This stress concentration, along with fretting...... fatigue, gives rise to axial fibre fractures and a loss of stiffness, eventually leading to final failure. The uniqueness of the present work is identification of the mechanisms associated with tension fatigue failure of unidirectional non-crimp fabrics used for wind turbine blades. The observed damage...

  7. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Korean University of Technology and Education, Cheonan (Korea, Republic of)

    2013-04-15

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  8. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    International Nuclear Information System (INIS)

    Yang, Seung Yong; Kim, No Hyu

    2013-01-01

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  9. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  10. Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing

    Science.gov (United States)

    2011-09-01

    isolated AO mode first arrival, recorded at PZT 2, is shown at 3 different fatigue levels. Figure 5. The area under the PSD curve, calculated twice...Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing B. L. GRISSO, G. PARK, L. W. SALVINO...with several challenges including limited performance knowledge of the materials, aluminum sensitization, structural fatigue performance, and

  11. Experimental investigation and analysis of damage evolution in concrete under high-cyclic fatigue loadings

    International Nuclear Information System (INIS)

    Thiele, Marc

    2016-01-01

    The main objective of this thesis is the fatigue behavior of concrete under high-cycle compressive loadings. Current knowledge about fatigue behavior of concrete is still incomplete. This concerns especially the process of fatigue which is preceding the fatigue failure. The leak of knowledge about fatigue behavior is opposed to the steady growing importance of this topic within the practice in civil engineering. Therefore, within this thesis a systematic and comprehensive investigation of the process of fatigue itself was done. This contributes to the better understanding of the progression of damage and the corresponding processes within the material. The experimental investigation consisted mainly of experiments with constant amplitude loadings in compression with cylindrical specimen made of normal strength concrete. Two differed load levels were used which resulted in numbers of cycles to failure of 10 6 and 10 7 as well as 10 3 and 10 4 . The experiments were done in combination with different types of nondestructive and destructive testing methods like strain measuring, deformation of surface, ultrasonic signals, acoustic emissions, optical microscopy and also scattering electron microscopy. To access some parameters of influence in relation to the fatigue behavior additional creep tests and also several tests with different scales of specimen were done. The fatigue process of concrete is determined as an evolution of damage that starts from the beginning of the loading process. This evolution has manifold and different influences on the different material properties of concrete. In this relation a major finding was that fatigue related damage leads to a transformation of the complete stress-strain-relationship. This relationship is also subjected to an evolution process. Due to the authors observations it could not be determined that the investigated changes in macroscopic material behavior are caused by a development of micro cracks within the material

  12. Numerical methods for the prediction of thermal fatigue due to turbulent mixing

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Blom, F.J.

    2011-01-01

    Research highlights: → Thermal fatigue due to turbulent mixing is caused by moving temperature spots on the pipe wall. → Passing temperature spots cause temperature fluctuations of sinusoidal nature. → Input parameters for a sinusoidal model can be obtained by linking it with a coupled CFD-FEM model. → Overconservatism of the sinusoidal method can be reduced, having more knowledge on thermal loads. - Abstract: Turbulent mixing of hot and cold flows is one of the possible causes of thermal fatigue in piping systems. Especially in primary pipework of nuclear power plants this is an important, safety related issue. Since the frequencies of the involved temperature fluctuations are generally too high to be detected well by common plant instrumentation, accurate numerical simulations are indispensable for a proper fatigue assessment. In this paper, a link is made between two such numerical methods: a coupled CFD-FEM model and a sinusoidal model. By linking these methods, more insight is obtained in the physical phenomenon causing thermal fatigue due to turbulent mixing. Furthermore, useful knowledge is acquired on the determination of thermal loading parameters, essential for reducing overconservatism, as currently present in simplified fatigue assessment methods.

  13. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  14. Evaluation of fatigue damage for wind turbine blades using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Hyun Sup; Ju, No Hoe [Korea Institute of Materials Science, Changwon (Korea, Republic of); So, Cheal Ho [Dongshin University, Naju (Korea, Republic of); Lee, Jong Kyu [Dept. of Physics, Pukyung National University, Busan (Korea, Republic of)

    2015-06-15

    In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel{sup s} total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

  15. Metallographic approach to the damage of austenitic stainless steels under plastic fatigue or under creep: description and physical interpretation of fatigue-creep-oxidation interactions

    International Nuclear Information System (INIS)

    Levaillant, Christophe

    1984-01-01

    This research thesis reports the study of interactions between fatigue, creep and oxidation in austenitic stainless steels which are to be used in the construction of fast breeder reactors. This study is addressed by means of low cycle plastic fatigue test with imposed strain, performed at 600 C with tensile relaxation hold times which may reach 24 hours. Continuous fatigue tests (without hold time) and pure creep tests have also been performed to define 'pure' fatigue damages and 'pure' creep damages. Two grades of Z3 CND 17-13 steel have been studied. Thus fracture mechanisms, crack initiation and propagation, and crack kinetic propagation have been studied. Metallographic measurements of damage have been performed. Damage types have been identified: propagation of cracks initiated at the surface, and intergranular de-cohesion within the material. An approximate modelling is proposed, as well as a critical comparison of various published models of fatigue-creep interaction. In order to predict structure lifetime, a new test methodology is proposed, based on experimental results

  16. Stochastic modeling of thermal fatigue crack growth

    CERN Document Server

    Radu, Vasile

    2015-01-01

    The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-or...

  17. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    Xu Feng; Wen Ting; Lu Tianjian; Seffen Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed.

  18. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  19. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Directory of Open Access Journals (Sweden)

    Pablo Zuluaga-Ramírez

    2015-11-01

    Full Text Available This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL and realistic variable amplitude loads (VAL, representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.

  20. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Science.gov (United States)

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  1. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  2. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  3. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    Science.gov (United States)

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  4. Cumulative damage fatigue tests on nuclear reactor Zircaloy-2 fuel tubes at room temperature and 3000C

    International Nuclear Information System (INIS)

    Pandarinathan, P.R.; Vasudevan, P.

    1980-01-01

    Cumulative damage fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature and 300 0 C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The cumulative cycle ratio at fracture for the Zircaloy-2 fuel tubes was found to depend on the sequence of loading, stress history, number of cycles of application of the pre-stress and the test temperature. A Hi-Lo type fatigue loading was found to be very much damaging at room temperature and this feature was not observed in the tests at 300 0 C. Results indicate significant differences in damage interaction and damage propagation under cumulative damage tests at room temperature and at 300 0 C. Block-loading fatigue tests are suggested as the best method to determine the life-time of Zircaloy-2 fuel tubes under random fatigue loading during their service in the reactor. (orig.)

  5. Study on determination of durability analysis process and fatigue damage parameter for rubber component

    International Nuclear Information System (INIS)

    Moon, Seong In; Cho, Il Je; Woo, Chang Su; Kim, Wan Doo

    2011-01-01

    Rubber components, which have been widely used in the automotive industry as anti-vibration components for many years, are subjected to fluctuating loads, often failing due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop a durability analysis process for vulcanized rubber components, that can predict fatigue life at the initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. Also, to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and normal and shear strain was proposed as the fatigue damage parameter for rubber components. Fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed

  6. Simplified methods to assess thermal fatigue due to turbulent mixing

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Timperi, A.

    2011-01-01

    Thermal fatigue is a safety relevant damage mechanism in pipework of nuclear power plants. A well-known simplified method for the assessment of thermal fatigue due to turbulent mixing is the so-called sinusoidal method. Temperature fluctuations in the fluid are described by a sinusoidally varying signal at the inner wall of the pipe. Because of limited information on the thermal loading conditions, this approach generally leads to overconservative results. In this paper, a new assessment method is presented, which has the potential of reducing the overconservatism of existing procedures. Artificial fluid temperature signals are generated by superposition of harmonic components with different amplitudes and frequencies. The amplitude-frequency spectrum of the components is modelled by a formula obtained from turbulence theory, whereas the phase differences are assumed to be randomly distributed. Lifetime predictions generated with the new simplified method are compared with lifetime predictions based on real fluid temperature signals, measured in an experimental setup of a mixing tee. Also, preliminary steady-state Computational Fluid Dynamics (CFD) calculations of the total power of the fluctuations are presented. The total power is needed as an input parameter for the spectrum formula in a real-life application. Solution of the transport equation for the total power was included in a CFD code and comparisons with experiments were made. The newly developed simplified method for generating the temperature signal is shown to be adequate for the investigated geometry and flow conditions, and demonstrates possibilities of reducing the conservatism of the sinusoidal method. CFD calculations of the total power show promising results, but further work is needed to develop the approach. (author)

  7. Fatigue damage mechanics of notched graphite-epoxy laminates

    Science.gov (United States)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  8. Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2016-04-01

    Full Text Available For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.

  9. Entropy-based Probabilistic Fatigue Damage Prognosis and Algorithmic Performance Comparison

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an...

  10. Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an...

  11. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  12. Thermal fatigue of refractory metal/graphite composites for fusion applications

    International Nuclear Information System (INIS)

    Smid, I; Nickel, H.; Kny, E.; Reheis, N.

    1995-01-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting composite tiles had a size of 50 mm x 50 mm with a graphite thickness of 10 mm and a TZM thickness of 5 mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and 'slow' peak energy deposition. The resulting damages and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes. Finally the influence of a hydrogen plasma on the adaptability of the investigated brazes in fusion devices is discussed. (author)

  13. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  14. Continuum damage mechanics based approach to the fatigue life prediction of cast aluminium alloy with considering the effect of porosity

    Directory of Open Access Journals (Sweden)

    Wang Xiaojia

    2018-01-01

    Full Text Available A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.

  15. Separation of surface, subsurface and volume fatigue damage effects in AISI 348 steel for power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Martin; Nowak, David; Walther, Frank [Technical Univ. Dortmund (Germany). Dept. of Materials Test Engineering (WPT); Starke, Peter [Saarland Univ., Saarbruecken (Germany). Chair of Non-Destructive Testing and Quality Assurance; Boller, Christian [Saarland Univ., Saarbruecken (Germany). Chair of Non-Destructive Testing and Quality Assurance; Fraunhofer IZFP, Saarbruecken (Germany)

    2016-08-01

    A wide range of industries including energy, chemistry, pharmacy, textiles, food and drink, pulp and paper, etc. is using stainless steels. Metastable austenitic steels such as used in power plants and chemical industry are subjected to cyclic mechanical and thermal loading in air as well as under the influence of corrosive media. This paper provides an overview on different nondestructive and electrochemical measurement techniques, which allow differentiating fatigue damage effects in total strain controlled multiple and constant amplitude tests with respect to damage appearance on surface, in subsurface area as well as in volume of specimens or components microstructure. In addition to conventional mechanical stress-strain hysteresis curves, electrical resistance, magnetic and open circuit potential measurements have been applied to characterize the cyclic deformation behavior of the metastable austenitic steel AISI 348 (X10CrNiNb18-9) in laboratory air and in distilled water. Based on these results obtained, the paper provides an outlook on the possibility for an efficient (remaining) fatigue life evaluation approach, which is adapted to the needs of the application areas.

  16. Fatigue damage evolution in quasi-unidirectional non-crimp fabric based composite materials for wind turbine blades

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    scales, the 3D x-ray computer tomography technique is used non-destructive to observe the fatigue damage evolution on the fiber and bundle scale. Those observations are then linked to the larger scales through mechanical testing of representative volumes of the non-crimp fabric bundle structure....... Numerically, those non-crimp fabric bundle structures extracted from the 3D x-ray scans can be used in a multi-scale based finite element models used for understanding the parameters controlling the fatigue damage evolutions. During tensiontension fatigue testing, the damage mechanism is shown...

  17. Thermal fatigue tests with actively cooled divertor mock-ups for ITER

    International Nuclear Information System (INIS)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B.; Ibbott, C.; Jacobson, D.; Le Marois, G.; Lind, A.; Lorenzetto, P.; Vieider, G.; Peacock, A.; Ploechl, L.; Severi, Y.; Visca, E.

    1998-01-01

    Mock-ups for high heat flux components with beryllium and CFC armour materials have been tested by means of the electron beam facility JUDITH. The experiments concerned screening tests to evaluate heat removal efficiency and thermal fatigue tests. CFC monoblocks attached to DS-Cu (Glidcop Al25) and CuCrZr tubes by active metal casting and Ti brazing showed the best thermal fatigue behaviour. They survived more than 1000 cycles at heat loads up to 25 MW m -2 without any indication of failure. Operational limits are given only by the surface temperature on the CFC tiles. Most of the beryllium mock-ups were of the flat tile type. Joining techniques were brazing, hot isostatic pressing (HIP) and diffusion bonding. HIPed and diffusion bonded Be/Cu modules have not yet reached the standards for application in high heat flux components. The limit of this production method is reached for heat loads of approximately 5 MW m -2 . Brazing with and without silver seems to be a more robust solution. A flat tile mock-up with CuMnSnCe braze was loaded at 5.4 MW m -2 for 1000 cycles without damage The first test with a beryllium monoblock joined to a CuCrZr tube by means of Incusil brazing shows promising results; it survived 1000 cycles at 4.5 MW m -2 without failure. (orig.)

  18. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  19. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongming [Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy; Oskay, Caglar [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2017-04-30

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage is directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of

  20. Aspects of fatigue life in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, H.

    2001-08-01

    that spinel appears when the Al content is lowered below 2 w/o in the bond coat. Here it was shown that a faster growing oxide, rich in Ni, Cr and Co forms at the interface. Al depletion is also linked to BC phases. Initially the bond coat is a {gamma}/{beta}-material possibly with very fine dispersed {gamma}. Simultaneously with Al-depletion the {beta}-phase is found to disappear. This occurs simultaneously with the formation of spinel. However, oxidation is not only a disadvantage. Low cycle fatigue tests reveal that oxide streaks within the bond coat will slow down crack growth due to crack deflection and crack branching. Therefore benefit of or damage from oxide growth on crack initiation and propagation is dependent on crack mode, spalling of the ceramic TC or growth of 'classic' cracks perpendicular to the surface. From the observations conclusions are drawn regarding fatigue behaviour of TBC systems. The basic idea is that all cracks leading to failure initiate in the thermally grown oxide. Following the initiation, they can, however, grow to form either delamination cracks leading to top coat spallation or cracks transverse to the surface leading to component failure.

  1. Magnetic characterization of creep-fatigue damage for energy structural materials

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Hashidate, Ryuta; Harada, Yoshihisa

    2012-01-01

    Magnetic characterization of creep-fatigue damage for welded specimens of austenitic stainless steel (SUS316FR) and high-chromium steel (Mod.9Cr-1Mo) steel was performed using magnetic force microscope and Hall sensor. In SUS316FR volume fraction of δ-ferrite at weld metal region decreased by creep or creep-fatigue and the remanent magnetic flux density at weld metal region also decreased. In Mod.9Cr-1Mo steel magnetic characteristics at weld metal region were different from those at base metal initially, however, during creep or creep fatigue the difference of magnetic characteristics between welded metal and base metal became small. It was found that the degradation mechanism for these energy structural materials during creep or creep fatigue could be clarified by magnetic characterization techniques. (author)

  2. How Thermal Fatigue Cycles Change the Rheological Behavior of Polymer Modified Bitumen?

    NARCIS (Netherlands)

    Glaoui, B.; Merbouh, M.; Van de Ven, M.F.C.; Chailleux, E.; Youcefi, A.

    2013-01-01

    The paper deals with the problem of thermal fatigue cycles phenomenon, which affects the performance of flexible pavement. The purpose of the paper is to extent the knowledge on the rheology of polymer modified bitumen which was affected by cycles of thermal fatigue. The aim of this research is to

  3. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    徐峰; 文婷; 卢天健; Seffen; Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great...

  4. THERMAL FATIGUE OF INCONEL ALLOY DA718

    Science.gov (United States)

    2016-10-27

    this material meets the required improvement and offers a low cost alternative to powder metallurgy Rene’95. However, its thermal fatigue resistance...chromel-alumel thermocouple, spot- welded to the mid-length of the specimen. The thermal strain, induced by the expansion and contraction of the...12 FOR OFFICIAL USE ONLY 13. J. F. Radavich, “The Physical Metallurgy of Cast and Wrought Alloy 718,” in Superalloy 718 – Metallurgy and

  5. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  6. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)

  7. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    Science.gov (United States)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  8. Study of system safety evaluation on LTO of national project. Thermal fatigue evaluation of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo

    2012-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Numerical simulation methods for thermal fatigue evaluation were studied to replace structural tests. Theses knowledge was utilized to validate and justify the JSME guideline. Furthermore, new studies have been launched to apply above knowledge to enhance plant system safety. (author)

  9. Thermal fatigue of refractory metal / graphite composites for fusion applications

    International Nuclear Information System (INIS)

    Smid, I.; Nickel, H.

    1989-01-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting composite tiles had a size of 50 mm x 50 mm with a graphite thickness of 10 mm and a TZM thickness of 5mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and 'slow' peak energy deposition. The resulting damages and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes. Finally the influence of a hydrogen plasma on the adaptability of the investigated brazes in fusion devices is discussed. 12 refs., 4 tabs., 4 figs. (Author)

  10. Thermal-mechanical fatigue of high temperature structural materials

    Science.gov (United States)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  11. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    Science.gov (United States)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-08-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  12. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    Science.gov (United States)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-01-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  13. Stress-based fatigue assessment of major component in NPP using modified Green's function approach

    International Nuclear Information System (INIS)

    Ko, Han Ok; Jhung, Myung Jo; Choi, Jae Boong

    2013-01-01

    In this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using a neural network (NN) and weight factor. To verify the modified GFA, thermal stresses by the proposed method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed to show applicability of them. In this paper, the modified GFA considering temperature-dependent material properties is proposed by using NN and weight factor. To verify the proposed method, thermal stresses by the modified Green's function are compared with those by FEM and the results between two methods show a good agreement. Finally, it is anticipated that more precise fatigue evaluation is performed by using the proposed method. Recently, 434 nuclear reactors are being operated in the world. Among them, about 40% reactors are being operated beyond their design life or will be approaching their life. During the long term operation, various degradation mechanisms are occurred. Fatigue damage caused by alternating operational stresses in terms of temperature or pressure change is the one of important damage mechanisms in the nuclear power plants (NPPs). Although components important to safety were designed to withstand the fatigue damage, cumulative usage factor (CUF) at some locations can exceed the design limit beyond the design life. So, it is necessary to monitor the fatigue damage of major components during the long term operation. Researches on fatigue monitoring system (FMS) have been widely performed. In USA, the FatiguePro was developed by EPRI and was applied to the CE, WEC, B and W and GE type reactors. In Korea, the Kori unit 1 which started commercial operation in 1978 is being operated beyond its design life. At the stage of the license renewal, various plans for degradation mechanisms were established and reviewed. And, in case of fatigue damage, to monitor the fatigue damage of major components

  14. Improvement in thermal fatigue resistance of cast iron piston; Chutetsu piston no tainetsu hiro sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Amano, K; Uosaki, Y; Takeshige, N [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Cast iron piston is superior in reduction of diesel engine emission to aluminum piston because of its characteristic of heat insulation. In order to study thermal fatigue characteristics of cast iron, thermal fatigue tests were carried out on two kinds of ferrite ductile cast iron. Differences between cast iron piston and aluminum piston in thermal fatigue resistance have been investigated by using FEM analysis. 5 refs., 14 figs., 1 tab.

  15. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  16. The origins of Asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure

    Science.gov (United States)

    Hazeli, Kavan; El Mir, Charles; Papanikolaou, Stefanos; Delbo, Marco; Ramesh, K. T.

    2018-04-01

    The distributions of size and chemical composition in regolith on airless bodies provide clues to the evolution of the solar system. Recently, the regolith on asteroid (25143) Itokawa, visited by the JAXA Hayabusa spacecraft, was observed to contain millimeter to centimeter sized particles. Itokawa boulders commonly display well-rounded profiles and surface textures that appear inconsistent with mechanical fragmentation during meteorite impact; the rounded profiles have been hypothesized to arise from rolling and movement on the surface as a consequence of seismic shaking. This investigation provides a possible explanation of these observations by exploring the primary crack propagation mechanism during thermal fatigue of a chondrite. Herein, we present the evolution of the full-field strains on the surface as a function of temperature and microstructure, and examine the crack growth during thermal cycling. Our experimental results demonstrate that thermal-fatigue-driven fracture occurs under these conditions. The results suggest that the primary fatigue crack path preferentially follows the interfaces between monominerals, leaving the minerals themselves intact after fragmentation. These observations are explained through a microstructure-based finite element model that is quantitatively compared with our experimental results. These results on the interactions of thermal fatigue cracking with the microstructure may ultimately allow us to distinguish between thermally induced fragments and impact products.

  17. Thermal mixing in T-junction piping system concerned with high-cycle thermal fatigue in structure

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Ohshima, Hiroyuki; Monji, Hideaki

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), a numerical simulation code 'MUGTHES' has been developed to investigate thermal striping phenomena caused by turbulence mixing of fluids in different temperature and to provide transient data for an evaluation method of high-cycle thermal fatigue. MUGTHES adopts Large Eddy Simulation (LES) approach to predict unsteady phenomena in thermal mixing and employs boundary fitted coordinate system to be applied to complex geometry in a power reactor. Numerical simulation of thermal striping phenomena in a T-junction piping system (T-pipe) is conducted. Boundary condition for the simulation is chosen from an existing water experiment in JAEA, named as WATLON experiment. In the numerical simulation, standard Smagorinsky model is employed as eddy viscosity model with the model coefficient of 0.14 (=Cs). Numerical results of MUGTHES are verified by the comparisons with experimental results of velocity and temperature. Through the numerical simulation in the T-pipe, applicability of MUGTHES to the thermal striping phenomena is confirmed and the characteristic large-scale eddy structure which dominates thermal mixing and may cause high-cycle thermal fatigue is revealed. (author)

  18. Creep/fatigue damage prediction of fast reactor components using shakedown methods

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    1997-01-01

    The present status of the shakedown method is reviewed, the application of the shakedown based principles to complex hardening and creep behaviour is described and justified and the prediction of damage against design criteria outlined. Comparisons are made with full inelastic analysis solutions where these are available and against damage assessments using elastic and inelastic design code methods. Current and future developments of the method are described including a summary of the advances made in the development of the post process ADAPT, which has enabled the method to be applied to complex geometry features and loading cases. The paper includes a review of applications of the method to typical Fast Reactor structural example cases within the primary and secondary circuits. For the primary circuit this includes structures such as the large diameter internal shells which are surrounded by hot sodium and subject to slow and rapid thermal transient loadings. One specific case is the damage assessment associated with thermal stratifications within sodium and the effects of moving sodium surfaces arising from reactor trip conditions. Other structures covered are geometric features within components such as the Above Core structure and Intermediate Heat Exchanger. For the secondary circuit the method has been applied to alternative and more complex forms of geometry namely thick section tubeplates of the Steam Generator and a typical secondary circuit piping run. Both of these applications are in an early stage of development but are expected to show significant advantages with respect to creep and fatigue damage estimation compared with existing code methods. The principle application of the method to design has so far been focused on Austenitic Stainless steel components however current work shows some significant benefits may be possible from the application of the method to structures made from Ferritic steels such as Modified 9Cr 1Mo. This aspect is briefly

  19. Study of regularities in propagation of thermal fatigue cracks

    International Nuclear Information System (INIS)

    Tachkova, N.G.; Sobolev, N.D.; Egorov, V.I.; Rostovtsev, Yu.V.; Ivanov, Yu.S.; Sirotin, V.L.

    1978-01-01

    Regularities in the propagation of thermal fatigue cracks in the Cr-Ni steels of the austenite class depending upon deformation conditions in the crack zone, have been considered. Thin-walled tube samples of the Kh16N40, Kh18N20 and Kh16N15 steels have been tested in the 10O reversible 400 deg C and 100 reversible 500 deg C regimes. The samples have possessed a slot-shaped stress concentrator. Stress intensity pseudocoefficient has been calculated for the correlation of experimental data. The formula for determining crack propagation rate has been obtained. The experiments permit to conclude that propagation rate of thermal fatigue cracks in the above steels depends upon the scope of plastic deformation during a cycle and stress intensity pseudocoefficient, and is determined by plastic deformation resistance during thermal cyclic loading

  20. Lifetime prediction of structures submitted to thermal fatigue loadings; Prediction de duree de vie de structures sous chargement de fatigue thermique

    Energy Technology Data Exchange (ETDEWEB)

    Amiable, S

    2006-01-15

    The aim of this work is to predict the lifetime of structures submitted to thermal fatigue loadings. This work lies within the studies undertaken by the CEA on the thermal fatigue problems from the french reactor of Civaux. In particular we study the SPLASH test: a specimen is heated continuously and cyclically cooled down by a water spray. This loading generates important temperature gradients in space and time and leads to the initiation and the propagation of a crack network. We propose a new thermo-mechanical model to simulate the SPLASH experiment and we propose a new fatigue criterion to predict the lifetime of the SPLASH specimen. We propose and compare several numerical models with various complexity to estimate the mechanical response of the SPLASH specimen. The practical implications of this work are the reevaluation of the hypothesis used in the French code RCC, which are used to simulate thermal shock and to interpret the results in terms of fatigue. This work leads to new perspectives on the mechanical interpretation of the fatigue criterion. (author)

  1. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    Directory of Open Access Journals (Sweden)

    Martin Felix Jørgensen

    2014-04-01

    Full Text Available This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind field, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Different turbulence levels are considered and the accumulated fatigue damage levels are compared. An example where the turbulence/fatigue sensitivity could be important, is in the middle of a big wind farm. Interior wind turbines in large wind farms will always operate in the wake of other wind turbines, causing increased turbulence and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced.

  2. Behaviour and fatigue damage study of cast aluminium alloys; Etude du comportement et de l'endommagement en fatigue d'alliages d'aluminium de fonderie

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, B.

    2004-02-15

    This study is aimed at determining the influence of chemical composition and heat treatment of cast aluminium alloys Al-Si-Cu-Mg on mechanical behaviour and fatigue life of structures. The industrial frame of this study concerns cylinder-heads of high efficiency diesel engines, for Renault and Montupet companies. The experimental means involved in this work are as well microscopic (TEM, microhardness, image analysis), mechanical (LCF and aniso-thermal tests, macro-hardness) and numerical (simulation of the stability of the hardening phases, behaviour and damage model identification, cylinder-head life time calculation). The link between micro and macro approaches is provided by the means of an internal microscopic variable representing thermal aging through coarsening of the precipitates and implemented into the macroscopic model. (author)

  3. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  4. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  5. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    Science.gov (United States)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  6. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    Science.gov (United States)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  7. Effect of additional holes on transient thermal fatigue life of gas turbine casing

    Directory of Open Access Journals (Sweden)

    H. Bazvandi

    2017-10-01

    Full Text Available Gas turbines casings are susceptible to cracking at the edge of eccentric pin hole, which is the most likely position for crack initiation and propagation. This paper describes the improvement of transient thermal fatigue crack propagation life of gas turbines casings through the application of additional holes. The crack position and direction was determined using non-destructive tests. A series of finite element patterns were developed and tested in ASTM-A395 elastic perfectly-plastic ductile cast iron. The effect of arrangement of additional holes on transient thermal fatigue behavior of gas turbines casings containing hole edge cracks was investigated. ABAQUS finite element package and Zencrack fracture mechanics code were used for modeling. The effect of the reduction of transient thermal stress distribution around the eccentric pin hole on the transient thermal fatigue crack propagation life of the gas turbines casings was discussed. The result shows that transient thermal fatigue crack propagation life could be extended by applying additional holes of larger diameter and decreased by increasing the vertical distance, angle, and distance between the eccentric pin hole and the additional holes. The results from the numerical predictions were compared with experimental data.

  8. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage

    International Nuclear Information System (INIS)

    Fournier, B.

    2007-09-01

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  9. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  10. Lifetime evaluation for thermal fatigue: application at the first wall of a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Merola, M.; Biggio, M.

    1989-01-01

    Thermal fatigue seems to be the most lifetime limiting phenomenon for the first wall of the next generation Tokamak fusion reactors. This work deals with the problem of the thermal fatigue in relation to the lifetime prediction of the fusion reactor first wall. The aim is to compare different lifetime methodologies among them and with experimental results. To fulfil this purpose, it has been necessary to develop a new numerical methodology, called reduced-3D, especially suitable for thermal fatigue problems

  11. Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces

    Science.gov (United States)

    Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen

    1998-03-01

    We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.

  12. Fatigue-damage evolution and damage-induced reduction of critical current of a Nb3Al superconducting composite

    International Nuclear Information System (INIS)

    Ochiai, S; Sekino, F; Sawada, T; Ohno, H; Hojo, M; Tanaka, M; Okuda, H; Koganeya, M; Hayashi, K; Yamada, Y; Ayai, N; Watanabe, K

    2003-01-01

    We have studied the fatigue-damage mechanism of a Nb 3 Al superconducting composite at room temperature, and the influences of the fatigue damages introduced at room temperature on the critical current at 4.2 K and the residual strength at room temperature. The main (largest) fatigue crack arose first in the clad copper and then extended into the inner core with an increasing number of stress cycles. The cracking of the Nb 3 Al filaments in the core region occurred at a late stage (around 60-90% of the fatigue life). Once the fracture of the core occurred, it extended very quickly, resulting in a quick reduction in critical current and the residual strength with increasing stress cycles. Such a behaviour was accounted for by the crack growth calculated from the S-N curves (the relation of the maximum stress to the number of stress cycles at failure) combined with the Paris law. The size and distribution of the subcracks along the specimen length, and therefore the reduction in critical current of the region apart from the main crack, were dependent on the maximum stress level. The large subcracks causing fracture of the Nb 3 Al filaments were formed when the maximum stress was around 300-460 MPa, resulting in large reduction in critical current, but not when the maximum stress was outside such a stress range

  13. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    Science.gov (United States)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  14. Prediction of fatigue damage in tapered laminates

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2017-01-01

    Effective implementation of ply-drops configurations substantially improve the damage tolerant design of flexible and aero-elastic wind turbine blades. Terminating a number of layers for an optimized blade design creates local bending effects. Inter-laminar stress states in tapered areas give rise...... to delamination and premature structural failure. Precise calculation of the stress levels for embedded ply-drops is required to predict failure initiation within acceptable limits. Multi-axial stress states in orthotropic laminates subjected to diverse loading mechanisms nucleate microscopic cracks....... By increasing the cracks density, damage occurs when residual material properties reduce to a critical level. Residual strength and stiffness of simple laminates are assigned in a set of fatigue failure criteria to assess the remaining life of the components by increasing number of loading cycles. The mode...

  15. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  16. Reducing uncertainty of Monte Carlo estimated fatigue damage in offshore wind turbines using FORM

    DEFF Research Database (Denmark)

    H. Horn, Jan-Tore; Jensen, Jørgen Juncher

    2016-01-01

    Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue...

  17. Investigation of thermal fatigue of chromium-molybdenum steels, used for calcining and agglomeration constructions

    International Nuclear Information System (INIS)

    Sinyavskij, D.P.; Gorkalo, A.P.

    1979-01-01

    The technique for investigating thermal fatigue of materials is described. The data on sample stress deformed state and current temperature values are taken from the local volume of the material studied. Results of investigating thermal fatigue of the 15KhMl and 20KhMl steels are presented

  18. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Science.gov (United States)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  19. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  20. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Schoebel, M., E-mail: michaels@mail.tuwien.ac.at [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Degischer, H.P. [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Vaucher, S. [Advanced Materials Processing, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Hofmann, M. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Lichtenbergstrasse 1, D-85747 Garching (Germany); Cloetens, P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble (France)

    2010-11-15

    Aluminum reinforced by 60 vol.% diamond particles has been investigated as a potential heat sink material for high power electronics. Diamond (CD) is used as reinforcement contributing its high thermal conductivity (TC {approx} 1000 W mK{sup -1}) and low coefficient thermal expansion (CTE {approx} 1 ppm K{sup -1}). An Al matrix enables shaping and joining of the composite components. Interface bonding is improved by limited carbide formation induced by heat treatment and even more by SiC coating of diamond particles. An AlSi7 matrix forms an interpenetrating composite three-dimensional (3D) network of diamond particles linked by Si bridges percolated by a ductile {alpha}-Al matrix. Internal stresses are generated during temperature changes due to the CTE mismatch of the constituents. The stress evolution was determined in situ by neutron diffraction during thermal cycling between room temperature and 350 deg. C (soldering temperature). Tensile stresses build up in the Al/CD composites: during cooling <100 MPa in a pure Al matrix, but around 200 MPa in the Al in an AlSi7 matrix. Compressive stresses build up in Al during heating of the composite. The stress evolution causes changes in the void volume fraction and interface debonding by visco-plastic deformation of the Al matrix. Thermal fatigue damage has been revealed by high resolution synchrotron tomography. An interconnected diamond-Si 3D network formed with an AlSi7 matrix promises higher stability with respect to cycling temperature exposure.

  1. Studying fatigue damage evolution in uni-directional composites using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    , it will be possible to lower the costs of energy for wind energy based electricity. In the present work, a lab-source x-ray computed tomography equipment (Zeiss Xradia 520 Versa) has been used in connection with ex-situ fatigue testing of uni-directional composites in order to identify fibre failure during...... comparable x-ray studies) have been used in order to ensure a representative test volume during the ex-situ fatigue testing. Using the ability of the x-ray computed tomography to zoom into regions of interest, non-destructive, the fatigue damage evolution in a repeating ex-situ fatigue loaded test sample has...... improving the fatigue resistance of non-crimp fabric used in the wind turbine industry can be made....

  2. Behaviour of Ti-doped CFCs under thermal fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Centeno, A. [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain); Pintsuk, G.; Linke, J. [Forschungszentrum Juelich GmbH, EURATOM Association, 52425 Juelich (Germany); Gualco, C. [Ansaldo Energia, I-16152 Genoa (Italy); Blanco, C., E-mail: clara@incar.csic.es [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain); Santamaria, R.; Granda, M.; Menendez, R. [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain)

    2011-01-15

    In spite of the remarkable progress in the design of in-vessel components for the divertor of the first International Thermonuclear Experimental Reactor (ITER), a great effort is still put into the development of manufacturing technologies for carbon armour with improved properties. Newly developed 3D titanium-doped carbon fibre reinforced composites and their corresponding undoped counterparts were brazed to a CuCrZr heat sink to produce actively cooled flat tile mock-ups. By exposing the mock-ups to thermal fatigue tests in an electron beam test facility, the material behaviour and the brazing between the individual constituents in the mock-up was qualified. The mock-ups with titanium-doped CFCs exhibited a significantly improved thermal fatigue resistance compared with those undoped materials. The comparison of these mock-ups with those produced using pristine NB31, one of the reference materials as plasma facing material for ITER, showed almost identical results, indicating the high potential of Ti-doped CFCs due to their improved thermal shock resistance.

  3. A study on damage and fatigue characteristics of plain woven carbon fiber reinforced composite material(I)

    International Nuclear Information System (INIS)

    Kim, Kwang Soo; Kim, Sang Tae

    1993-01-01

    The characteristics of damage and fatigue subjected to tensile fatigue loading in plain woven carbon fiber reinforced composite material were studied. Constant amplitude load of 90% stress of notch strength was applied to each specimen, which had different initial notch length, and crack dectectvie compliance curve was determined form load-displacement data. The effective crack length(a eff ) was obtained form this compliance curve and the effective crack growth could be divided to three-steps and explained separately. After cycling the shape of fatigue crack was observed by S.E.M.. Change of elastic modulus(E N ) during fatigue cycle was explained by repeated sudden-death medel. The material constant determined by Jen-Hsu model was more useful to evaluate damage than Wang-Chim model. (Author)

  4. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    Science.gov (United States)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  5. The strainrange conversion principle for treating cumulative fatigue damage in the creep range

    Science.gov (United States)

    Manson, S. S.

    1983-01-01

    A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.

  6. Study on cylindrical specimen subjected to oligocyclic thermal fatigue

    International Nuclear Information System (INIS)

    Cesari, F.; Battistella, P.; Quaranta, S.; Arduino, M.

    1993-01-01

    During the last years the development in the analysis of the thermal fatigue phenomenon was remarkable in particularly in industry. This improvement was more and more evident on the specific power of the engines, involving a general rise in the working temperature and in the stress level of oligocyclic thermal fatigue due to the start /stop of the engine. As far as this is concerned, the theoretical capabilities of the LIN (Nuclear Engineering Laboratory of Montecuccolino) has been requested in the frame of a collaboration with the IVECO Spa of Turin in view of verifying experimental data. The investigation of the thermal fatigue consequences has been undertaken by analyzing a cylindrical sample; its material was similar to that of the engine's head. Its was axially clamped in the two extremes and subjected to repeated thermal cycles. Beginning from the first experimental results supplied by IVECO, a theoretical - numerical campaign has been started in order to attempt a correct interpretation of the experimental behavior. The computer codes adopted in this study are mainly two typical FE programs (CASTEM and ANSYS) which have been carried out in parallel. First, both the physical and mechanical experimental conditions have been accurately reproduced in the model prepared for structural analysis. Second, several runs of calculations ware worked out to obtain a stress-strain description during some load - unload cycles. The material law is obviously non-linear because the strong variations in the temperature distributions cause high stress levels well above the yielding point

  7. Study on cylindrical specimen subjected to oligocyclic thermal fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Cesari, F; Battistella, P [Nuclear Engineering Laboratory ' Montecuccolino' , University of Bologna (Italy); Quaranta, S; Arduino, M [IVECO Engineering, Torino (Italy)

    1993-07-01

    During the last years the development in the analysis of the thermal fatigue phenomenon was remarkable in particularly in industry. This improvement was more and more evident on the specific power of the engines, involving a general rise in the working temperature and in the stress level of oligocyclic thermal fatigue due to the start /stop of the engine. As far as this is concerned, the theoretical capabilities of the LIN (Nuclear Engineering Laboratory of Montecuccolino) has been requested in the frame of a collaboration with the IVECO Spa of Turin in view of verifying experimental data. The investigation of the thermal fatigue consequences has been undertaken by analyzing a cylindrical sample; its material was similar to that of the engine's head. Its was axially clamped in the two extremes and subjected to repeated thermal cycles. Beginning from the first experimental results supplied by IVECO, a theoretical - numerical campaign has been started in order to attempt a correct interpretation of the experimental behavior. The computer codes adopted in this study are mainly two typical FE programs (CASTEM and ANSYS) which have been carried out in parallel. First, both the physical and mechanical experimental conditions have been accurately reproduced in the model prepared for structural analysis. Second, several runs of calculations ware worked out to obtain a stress-strain description during some load - unload cycles. The material law is obviously non-linear because the strong variations in the temperature distributions cause high stress levels well above the yielding point.

  8. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief; Watanabe, Naoyuki; Iwahori, Yutaka; Hoshi, Hikaru

    2014-01-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2

  9. Creep-fatigue life prediction for different heats of Type 304 stainless steel by linear-damage rule, strain-range partitioning method, and damage-rate approach

    International Nuclear Information System (INIS)

    Maiya, P.S.

    1978-07-01

    The creep-fatigue life results for five different heats of Type 304 stainless steel at 593 0 C (1100 0 F), generated under push-pull conditions in the axial strain-control mode, are presented. The life predictions for the various heats based on the linear-damage rule, strain-range partitioning method, and damage-rate approach are discussed. The appropriate material properties required for computation of fatigue life are also included

  10. Fundamental principles of the cyclic behaviour and the fatigue damage for metallic materials

    International Nuclear Information System (INIS)

    Vogt, J.B.

    2001-01-01

    The aim of this paper is a pedagogic presentation of the basic concepts concerning the cyclic behaviour and the fatigue damage of metallic materials in order to offer a better understand of mechanisms. The following aspects are taking into account: the fatigue fracture, the cyclic accommodation, the dislocations structures, the surface and bulk cracks and the influence of the medium. (A.L.B.)

  11. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    Science.gov (United States)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  12. Fatigue life determination by damage measuring in SAE 8620 specimens steel subjected to multiaxial experiments in neutral and corrosive environment

    International Nuclear Information System (INIS)

    Silva, Luiz L. da; Filho, Nelson do N.A.; Gomes, Paulo de T.V.; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    Fatigue is the fail phenomenon of a material subjected to cyclic loads. This phenomenon affects any component under loads (forces, temperatures, etc.) that changes in time. When there is a combined load, originating multiaxial fatigue, which is the most of the real loads, worst is the situation. Before the component fail, the fatigue phenomenon produces damages to its material and this is a cumulative process that could not be reduced. In the continuum mechanic context, material damage is defined as a parameter that reduces the component resistance and this could cause its fail. The process of damage measuring by changes in electrical resistance is used in this work, and from experimental results of SAE 8620 steel specimens subjected to multiaxial fatigue in corrosive and neutral environment, the remaining specimen time life could be determined. Each specimen has its initial electrical resistance measured and after a certain number of fatigue cycles stopping points, its electrical resistance was measured again. In order to study multiaxial fatigue in specimens, a machine that induces simultaneously bending and torsional loads in the specimen was developed. Air at the temperature range of 18 deg C and 20 deg C was considered neutral environment. The corrosive environment was a NaCl solution with a concentration of 3,5% in weigh. The experimental results showed that the measuring fatigue damage using the changes in electrical resistance is efficient and that is possible to estimate the effect of a corrosive environment in the fatigue damage. (author)

  13. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    2014-01-01

    This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind eld, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Dierent turbulence levels...... and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced)....

  14. Assessment of Pressure Fluctuation Effect for Thermal Fatigue in a T-junction Using Thermo-Hydro Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Jaebum; Kim, Jungwoo; Huh, Namsu [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Sunhye [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    As a result, when evaluating thermal fatigue for the mixing tee, temperature fluctuation is dominant for this phenomenon, it can be reasonably assumed that the pressure is constant on the pipe inner wall. Recently, thermal fatigue due to mixing of the fluids having different temperatures has been considered as an important issue on the fatigue evaluation of nuclear piping. Mainly, this phenomenon occurs in a T-junction operating with the fluids consisted of different temperatures. Because of the turbulent mixing of hot and cold water, the temperature on the inner wall of the pipe fluctuates rapidly, causing the variation of thermal stresses in the pipe and resulting in high cycle thermal fatigue. In practice, cracking by high cycle thermal fatigue is reported at a T-junction in the residual heat removal system at Civaux unit 1 in France. However, because of irregular flow inside the pipe, the pressure also fluctuates rapidly as well as temperature in the inner wall of the pipe. Therefore, in this paper, three-dimensional thermo-hydro analysis was performed for the mixing tee of the shutdown cooling system of the pressurized water reactor plant, examining the pressure variation at the pipe inner wall. Based on the analysis result, this study aims at assessing the pressure fluctuation effect on the thermal fatigue. In this paper, it is verified that there is pressure fluctuation as well as temperature on the inner wall of mixing tee operating with the fluids having different temperatures. However, since the amplitude of pressure is relatively smaller than design pressure of the shutdown cooling system, the effect wouldn't be important for the thermal fatigue.

  15. The effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses.

    Science.gov (United States)

    Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar

    2014-01-01

    Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Isfahan hospitals in 2012. To measure the SA, sleep quality, visual fatigue and thermal comfort, Spielberger state-trait anxiety inventory, Pittsburg sleep quality index, eye fatigue questionnaire and thermal comfort questionnaire were used respectively. The data were analyzed with descriptive statistics, student test and correlation analysis. Correlation between SA and sleep quality was -0.664(P thermal comfort was -0.276(P = 0.016) and between SA and eye fatigue was 0.57 (P thermal conditions and reduce state anxiety level can be reduce eye fatigue and increase the sleep quality in shift work nurses.

  16. Fatigue Damage Spectrum calculation in a Mission Synthesis procedure for Sine-on-Random excitations

    International Nuclear Information System (INIS)

    Angeli, Andrea; Troncossi, Marco; Cornelis, Bram

    2016-01-01

    In many real-life environments, certain mechanical and electronic components may be subjected to Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic (sinusoidal) contributions, in particular sine tones due to some rotating parts of the system (e.g. helicopters, engine-mounted components,...). These components must be designed to withstand the fatigue damage induced by the “composed” vibration environment, and qualification tests are advisable for the most critical ones. In the case of an accelerated qualification test, a proper test tailoring which starts from the real environment (measured vibration signals) and which preserves not only the accumulated fatigue damage but also the “nature” of the excitation (i.e. sinusoidal components plus random process) is important to obtain reliable results. In this paper, the classic time domain approach is taken as a reference for the comparison of different methods for the Fatigue Damage Spectrum (FDS) calculation in case of Sine-on-Random vibration environments. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is proposed. (paper)

  17. A new model for fatigue damage accumulation of austenitic stainless steel under variable amplitude loading

    International Nuclear Information System (INIS)

    Taheri, S.; Vincent, L.; Le-Roux, J.C.

    2013-01-01

    The application of Miner's rule using a loading issued from a mock-up of a RHR system (removal heat system) of PWR plant, made of 304 steel gives a very important non-conservative fatigue life in strain control when strain fatigue curve is used. This result is due to the absence of sequence effect in Miner's rule. Many non linear damage accumulation models have been proposed to get a sequence effect. Shortcomings of some non linear damage accumulation models are discussed. So Smith-Watson-Topper and Fatemi-Socie criterions with a linear damage accumulation rule are then applied to experimental data. A major issue is the need for an elastic-plastic constitutive law which is difficult to propose in the presence of high cycle secondary hardening observed in austenitic stainless steels. A conservative model for fatigue damage accumulation under variable amplitude loading is then proposed for austenitic stainless steels in strain control, which does not need a constitutive law, but takes into account plasticity through cyclic strain stress curve. The model uses a linear damage accumulation rule. This model is based on the fact that for stainless steels, pre-hardening is detrimental for fatigue life in strain control, while it is beneficial in stress control. In the presence of low mean stress, the model is approved based on a large number of tests. Moreover the model allows to explain the larger detrimental effect of a tension mean stress in strain control tests than in stress control tests. (authors)

  18. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  19. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  20. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    Science.gov (United States)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-04-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth™ technology to a PC.

  1. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    International Nuclear Information System (INIS)

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-01-01

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth TM technology to a PC

  2. Analysis of time domain active sensing data from CX-100 wind turbine blade fatigue tests for damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mi Jin [Dept. of Aerospace Engineering and LANL-CBNU Engineering Institute, Chunbuk National University, Jeonju (Korea, Republic of); Jung, Hwee Kwon; Park, Gyu Hae [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Taylor, Stuart G.; Farinholt, Kevin M. [The Engineering Institute, Los Alamos National Laboratory, Los Alamos (United States)

    2016-04-15

    This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.

  3. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy

    International Nuclear Information System (INIS)

    May, A.; Taleb, L.; Belouchrani, M.A.

    2013-01-01

    The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In first, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). In second, we have studied the behavior of the material in fatigue damage using the evolution of stiffness. Finally, microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in order to understand the evolution of fatigue damage during cyclic loading

  4. Damage assessment in CFRP laminates exposed to impact fatigue loading

    International Nuclear Information System (INIS)

    Tsigkourakos, George; Silberschmidt, Vadim V; Ashcroft, I A

    2011-01-01

    Demand for advanced engineering composites in the aerospace industry is increasing continuously. Lately, carbon fibre reinforced polymers (CFRPs) became one of the most important structural materials in the industry due to a combination of characteristics such as: excellent stiffness, high strength-to-weight ratio, and ease of manufacture according to application. In service, aerospace composite components and structures are exposed to various transient loads, some of which can propagate in them as cyclic impacts. A typical example is an effect of the wind gusts during flight. This type of loading is known as impact fatigue (IF); it is a repetition of low-energy impacts. Such loads can cause various types of damage in composites: fibre breaking, transverse matrix cracking, de-bonding between fibres and matrix and delamination resulting in reduction of residual stiffness and loss of functionality. Furthermore, this damage is often sub-surface, which reinforces the need for more regular inspection. The effects of IF are of major importance due its detrimental effect on the structural integrity of components that can be generated after relatively few impacts at low force levels compared to those in a standard fatigue regime. This study utilises an innovative testing system with the capability of subjecting specimens to a series of repetitive impacts. The primary subject of this paper is to assess the damaging effect of IF on the behaviour of drilled CFRP specimens, exposed to such loading. A detailed damage analysis is implemented utilising an X-ray micro computed tomography system. The main findings suggested that at early stages of life damage is governed by o degree splits along the length of the specimens resulting in a 20% reduction of stiffness. The final failure damage scenario indicated that transverse crasks in the 90 degree plies are the main reason for complete delamination which can be translated to a 50% stiffness reduction.

  5. Fatigue life estimation of MD36 and MD523 bogies based on damage accumulation and random fatigue theory

    International Nuclear Information System (INIS)

    Younesian, Davood; Solhmirzaei, Ali; Gachloo, Alireza

    2009-01-01

    Bogies are one of the multifunctional parts of trains which are extremely subjected to random loads. This type of oscillating and random excitation arises from irregularities of the track including rail surface vertical roughness, rail joints, variance in super-elevation, and also wheel imperfections like wheel flats and unbalancy. Since most of the prementioned sources have random nature, a random based theory should be applied for fatigue life estimation of the bogie frame. Two methods of fatigue life estimation are investigated in this paper. The first approach which is being implemented in time domain is based on the damage accumulation (DA) approach. Using Monte-Carlo simulation algorithm, the rail surface roughness is generated. Finite element (FE) model of the bogie is subjected to the generated random excitation in the first approach and the stress time histories are obtained, and consequently the fatigue life is estimated by using the rain-flow algorithm. In the second approach, the fatigue life is estimated in frequency domain. Power spectral density (PSD) of the stress is obtained by using the FE model of the bogie frame and the fatigue life is estimated using Rayleigh technique in random fatigue theory. A comprehensive parametric study is carried out and effects of different parameters like the train speeds and level of the rail surface vertical roughness on the estimated fatigue life are investigated

  6. Robust design and thermal fatigue life prediction of anisotropic conductive film flip chip package

    International Nuclear Information System (INIS)

    Nam, Hyun Wook

    2004-01-01

    The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF(Anisotropic Conductive Film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue life of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear bi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design Of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2 nd DOE was conducted to obtain RSM equation for the choose 3 design parameter. The coefficient of determination (R 2 ) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for Feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430μm, and 78μm, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter

  7. Recent developments of continuous damage approaches for the analysis of material behavior under fatigue-creep loading

    International Nuclear Information System (INIS)

    Bui-Quoc, T.

    1982-01-01

    A review is presented with an analysis of some recent methods proposed in the literature for predicting failure of materials under a cumulative damage effect due either to fatigue, to creep, or to fatigue-creep combinations. This review is focused on the continuous damage concepts because of their possibilities of application for a wide range of testing conditions. A discussion of the potential of each damage concept is made by examining the correlation between the resulting expressions and available experimental data. The paper also points out particularities encountered in the interpretation of some of the concepts reviewed

  8. Feasibility study on ductility exhaustion approach for creep-fatigue damage assessment of FBR 316 stainless steel using published data

    International Nuclear Information System (INIS)

    Nonaka, Isamu; Kitagawa, Masaki; Torihata, Shoji.

    1995-01-01

    In order to investigate the applicability of a ductility exhaustion rule to the creep-fatigue life assessment of FBR 316 stainless steel, a feasibility study using the published data was conducted. The assessment method was proposed based on the linear damage summation rule. In the proposed method, fatigue damage was calculated by Minor's rule and creep damage was calculated by a ductility exhaustion rule. The creep-fatigue lives in the published data were predicted by the proposed method. The results obtained are as follows: (1) All the data could be predicted within a factor of two on life by the proposed method. (2) The creep-fatigue lives under 10 minute strain hold at 550degC were overestimated, while those under 60 minute strain hold at 550degC and 600degC were estimated adequately. From the above facts, the proposed method seemed to be effective for the prediction of creep-fatigue life in which the creep damage was dominant and also the intergranular cracking was remarkable. (3) The creep damage was simultaneously calculated by the time fraction rule in order to compare with the ductility exhaustion role. All the data could be also predicted within a factor of two on life by this rule, but it tended to overestimate the life. (author)

  9. High Cycle Fatigue Performance in Laser Shock Peened TC4 Titanium Alloys Subjected to Foreign Object Damage

    Science.gov (United States)

    Luo, Sihai; Nie, Xiangfan; Zhou, Liucheng; Li, Yiming; He, Weifeng

    2018-03-01

    During their service, titanium alloys are likely to suffer from the foreign object damage (FOD), resulting in a decrease in their fatigue strength. Laser shock peening (LSP) has been proved to effectively increase the damage tolerance of military engine components by introducing a magnitude compressive residual stress in the near-surface layer of alloys. In this paper, smooth specimens of a TC4 titanium alloy were used and treated by LSP and subsequently exposed to FOD, which was simulated by firing a steel sphere with a nominal velocity of 300 m/s, at 90° with the leading edge of the LSP-treated region using a light gas gun. All impacted specimens were then subjected to fatigue loading. The results showed that LSP could effectively improve the fatigue strength of the damaged specimens. The effect of LSP on the fatigue strength was assessed through fracture observations, microhardness tests and residual stress analyses. The residual stresses due to the plastic deformation caused by LSP and the FOD impact, which were found to play a crucial role on the fatigue strength, were determined using the commercial software ABAQUS.

  10. Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems

    Science.gov (United States)

    Adler, Matthew Adam

    2009-12-01

    Better lifetime predictions of systems subjected to fatigue loading are needed in support of the optimization of the costs of life-cycle engineering. In particular, the climate is especially encouraging for the development of safer aircraft. One issue is that aircraft experience complex fatigue loading and current methods for the prediction of fatigue damage accumulation rely on intensive computational tools that are not currently carried onboard during flight. These tools rely on complex models that are made more difficult by the complicated load spectra themselves. This presents an overhead burden as offline analysis must be performed at an offsite facility. This architecture is thus unable to provide online, timely information for on-board use. The direct objective of this research was to facilitate the real-time fatigue damage assessments of on-board systems with a particular emphasis on aging aircraft. To achieve the objective, the goal of this research was to simplify flight spectra. Variable-amplitude spectra, in which the load changes on a cycle-by-cycle basis, cannot readily be supported by an onboard system because the models required to predict fatigue crack growth during variable-amplitude loading are too complicated. They are too complicated because variable-amplitude fatigue crack growth analysis must be performed on a cycle-by-cycle basis as no closed-form solution exists. This makes these calculations too time-consuming and requires impractical, heavy onboard systems or offsite facilities. The hypothesis is to replace a variable-amplitude spectrum with an equivalent constant-amplitude spectrum. The advantage is a dramatic reduction in the complexity of the problem so that damage predictions can be made onboard by simple, fast calculations in real-time without the need to add additional weight to the aircraft. The intent is to reduce the computational burden and facilitate on-board projection of damage evolution and prediction for the accurate

  11. Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available High-temperature mechanical properties of high-boron austenitic steels (HBASs were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800°C. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239 (0.19wt.% C to 302 (0.29wt.% C and 312 HV (0.37wt.% C; the tensile yield strength at 850 °C increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests (performed for 300 cycles from room temperature to 800 °C indicate that the degree of thermal fatigue of the HBAS with 0.29wt.% C (rating of 2–3 is superior to those of the alloys with 0.19wt.% (rating of 4–5 and 0.37wt.% (rating of 3–4 carbon. The main cause of this difference is the ready precipitation of M23(C,B6-type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys.

  12. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief

    2014-05-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2; \\'stitched 6 × 6\\') and densely stitched composite (SD = 0.111/mm2; \\'stitched 3 × 3\\') are tested and compared with composite without stitch thread (SD = 0.0; \\'unstitched\\'). The experiments show that the fatigue life of stitched 3 × 3 is moderately better than that of unstitched and stitched 6 × 6. Stitched 3 × 3 pattern is also able to postpone the stiffness degradation onset. The improvement of fatigue properties and postponement of stiffness degradation onset in stitched 3 × 3 is primarily due to an effective impediment of edge-delamination. Quantification of damage at various cycles and stress levels shows that stitch density primarily affects the growth rate of delamination. © 2014 Elsevier Ltd. All rights reserved.

  13. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  14. Evolution of thermal fatigue management of piping in US LWRs

    International Nuclear Information System (INIS)

    McDewitt, M.; Wolfe, K.; McGill, R.

    2015-01-01

    Fatigue usage caused by cyclic changes of thermally stratified reactor coolant in Light Water Reactor (LWR) pressure boundary piping was not an original consideration in US Nuclear Power Plant (NPP) designs. During the mid 1980's, several events involving cracking and leakage due to thermal cycling occurred in reactor coolant system branch piping at both US and International NPPs. In 1988, the US Nuclear Regulatory Commission (US NRC) issued Bulletin 88-08 to alert LWR licensees of the potential for piping failures due to stratified thermal cycling. In response to these events, the US nuclear industry developed initiatives to identify susceptible components and established measures to monitor and prevent future failures. These initiatives have been effective in preventing leakage events, but have also identified fewer defects than expected based on screening model predictions. Improved analytical techniques are being investigated to maintain program effectiveness while minimizing unnecessary non-destructive examinations. This paper discusses the evolution of the US thermal fatigue initiatives, and analytical concepts being evaluated to improve program efficiency. (authors)

  15. Proceedings of the specialists meeting on experience with thermal fatigue in LWR piping caused by mixing and stratification

    International Nuclear Information System (INIS)

    1998-01-01

    This specialists meeting on experience with thermal fatigue in LWR piping caused by mixing and stratification, was held in June 1998 in Paris. It included five sessions. Session 1: operating experience (7 papers): Historical perspective; EDF experience with local thermohydraulic phenomena in PWRs: impacts and strategies; Thermal fatigue in safety injection lines of French PWRs: technical problems, regulatory requirements, concerns about other areas; US NRC Regulatory perspective on unanticipated thermal fatigue in LWR piping; Failure to the Residual Heat Removal system suction line pipe in Genkai unit 1 caused by thermal stratification cycling; Emergency Core Cooling System pipe crack incident at Tihange unit 1; Two leakages induced by thermal stratification at the Loviisa power plant). Session 2: thermal hydraulic phenomena (5 papers): Thermal stratification in small pipes with respect to fatigue effects and so called 'Banana effect'; Thermal stratification in the surge line of the Korean next generation reactor; Thermal stratification in horizontal pipes investigated in UPTF-TRAM and HDR facilities; Research on thermal stratification in un-isolable piping of reactor pressure boundary; Thermal mixing phenomena in piping systems: 3D numerical simulation and design considerations. Session 3: response of material and structure (5 papers): Fatigue induced by thermal stratification, Results of tests and calculations of the COUFAST model; Laboratory simulation of thermal fatigue cracking as a basis for verifying life models; Thermo-mechanical analysis methods for the conception and the follow up of components submitted to thermal stratification transients; Piping analysis methods of a PWR surge line for stratified flow; The thermal stratification effect on surge lines, The VVER estimation. Session 4: monitoring aspects (4 papers): Determination of the thermal loadings affecting the auxiliary lines of the reactor coolant system in French PWR plants; Expected and

  16. Assessment of thermal fatigue crack propagation in safety injection PWR lines

    International Nuclear Information System (INIS)

    Simos, N.; Reich, M.; Costantino, C.J.; Hartzman, M.

    1990-01-01

    Cyclic thermal stratification resulting in alternating thermal stresses in pipe cross sections has been identified as the primary cause of high cycle thermal fatigue failure. A number of piping lines in operating plants around the world, susceptible to thermal stratification, have experienced circumferential cracking as a result of high levels of alternating bending stresses. This paper addresses the mechanisms of crack initiation and crack growth and provides estimates of fatigue cycles to failure for a typical safety injection line with such cyclic load history. Utilizing a 3-D finite element analysis, the temperature profile and the corresponding thermal stress field of a complete thermal cycle in a safety injection line consisting of a horizontal pipe section and an elbow, is obtained. Since the observed cracking occurred in the region of the elbow-to-horizontal pipe weld, the analysis performed assessed (1) the impact of the level of local geometric discontinuities on the initiation of an inside surface flaw is greatest and (2) the number of thermal cycles required to drive a small surface crack through the pipe wall. 12 refs., 14 figs., 2 tabs

  17. Thermal fatigue crack growth in mixing tees nuclear piping - An analytical approach

    International Nuclear Information System (INIS)

    Radu, V.

    2009-01-01

    The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. So-called sinusoidal methods represent a simplified approach in which the entire spectrum is replaced by a sine-wave variation of the temperature at the inner pipe surface. The need for multiple calculations in this process has lead to the development of analytical solutions for thermal stresses in a pipe subject to sinusoidal thermal loading, described in previous work performed at JRC IE Petten, The Netherlands, during the author's stage as seconded national expert. Based on these stress distributions solutions, the paper presents a methodology for assessment of thermal fatigue crack growth life in mixing tees nuclear piping. (author)

  18. Fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite

    International Nuclear Information System (INIS)

    Wang, P.C.; Jeng, S.M.; Yang, J.M.; Russ, S.M.

    1996-01-01

    The fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite under low cycle fatigue loading at room temperature was investigated. The fatigue test was conducted under a load-controlled mode with a load ratio (R) of 0.1, a frequency of 10 Hz, and a maximum applied stress ranging from 600 to 945 MPa. The stiffness reduction as well as the evolution of microstructural damage which includes matrix crack length, matrix crack density and interfacial debonding length as a function of fatigue cycles, and applied stresses were measured. An analytical model and a computer simulation were also developed to predict the residual stiffness and the post-fatigued tensile strength as a function of microstructural damage. Finally, a steady-state crack growth model proposed by Marshall et al. was used to predict the interfacial frictional stress and the critical crack length. Correlation between the theoretical predictions and experimental results were also discussed

  19. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    International Nuclear Information System (INIS)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young

    2016-01-01

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation

  20. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  1. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  2. Thermal fatigue behaviour for a 316 L type steel

    Science.gov (United States)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  3. Thermal fatigue analysis of vertical annulus with inner rotating cylinder induced by two temperature fluid mixing

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Tadashi

    2011-01-01

    Mechanical seal for nuclear reactor coolant recirculation pump must purge the cold water supply from the outside. The cold purge water is flowing into the hot water zone in the pump through a narrow gap between pump shaft and casing over. On the mixing region of the cold purge water and hot water in the narrow gap, the random level temperature fluctuation occurs on the structural metal surface of casing cover and pump shaft. Then it could lead to cyclic thermal stress and fatigue damage. The experiments and analysis have done, made clear the mechanism of generation of temperature fluctuations. Also, it was studied how to measure the structure of the mixing zone temperature control and how to prevent the occurrence of a large temperature fluctuation. In addition, it is proposed the method of evaluating a random temperature fluctuation by using the envelope curve and its fatigue by OOR counting to applying to the evaluation of the similar random fluid temperature fluctuation problems. (author)

  4. Hydrogen enhanced thermal fatigue of y-titanium aluminide

    NARCIS (Netherlands)

    Dunfee, William; Gao, Ming; Wei, Robert P.; Wei, W.

    1995-01-01

    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures

  5. The role of the axial heat fluxes in the thermal fatigue assessment of piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: Oriol.Costa@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon; Shawish, Samir El [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia)

    2013-08-15

    Highlights: ► Existence of axial heat flux in the fluid near the surface influences the inner wall temperature fluctuations. ► In addition to the axial heat flux, the effect of the temperature fluctuations frequency is also investigated. ► Inner wall thermocouple readings are more attenuated but slightly less delayed when considering the axial heat flux. ► Fluid-surface heat transfer coefficient effect on surface temperature amplitudes and phase delay is considered in a sensitivity analysis. -- Abstract: Thermal fatigue is a structural damage of materials induced by the cyclic thermal loads that are frequently generated by the changes of fluid temperature inside of pipes. Among the thermal fatigue assessment methods we find the one-dimensional (1D) approach. Thermal, mechanical and fatigue analyses are performed for the pipe wall assuming that the distribution of temperatures only varies along the wall thickness. On the other hand, pipe regions with higher stress oscillations are those where the fluid temperature changes spatially, meaning cold or hot spots near the pipe surface, and with low frequencies. Spatial fluid temperature differences generate heat fluxes within the pipe wall which can’t be reproduced with 1D methods. For this reason, the present work focuses on understanding the wall temperature distributions for different values of heat fluxes and frequencies of fluid temperature. Due to the implication in wall temperature measurements, the heat fluxes and frequencies effects on temperature readings of wall thermocouples are also investigated. In this paper, the influence of axial heat flux in a pipe wall is studied. The temperature distribution within the pipe wall is analyzed considering a fluid temperature signal in the proximity of the pipe surface with axial temperature dependence. The effect of the temperature fluctuations frequency is also investigated. The two-dimensional finite difference equations for the transient temperature of a

  6. The role of the axial heat fluxes in the thermal fatigue assessment of piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; Cizelj, Leon; Shawish, Samir El

    2013-01-01

    Highlights: ► Existence of axial heat flux in the fluid near the surface influences the inner wall temperature fluctuations. ► In addition to the axial heat flux, the effect of the temperature fluctuations frequency is also investigated. ► Inner wall thermocouple readings are more attenuated but slightly less delayed when considering the axial heat flux. ► Fluid-surface heat transfer coefficient effect on surface temperature amplitudes and phase delay is considered in a sensitivity analysis. -- Abstract: Thermal fatigue is a structural damage of materials induced by the cyclic thermal loads that are frequently generated by the changes of fluid temperature inside of pipes. Among the thermal fatigue assessment methods we find the one-dimensional (1D) approach. Thermal, mechanical and fatigue analyses are performed for the pipe wall assuming that the distribution of temperatures only varies along the wall thickness. On the other hand, pipe regions with higher stress oscillations are those where the fluid temperature changes spatially, meaning cold or hot spots near the pipe surface, and with low frequencies. Spatial fluid temperature differences generate heat fluxes within the pipe wall which can’t be reproduced with 1D methods. For this reason, the present work focuses on understanding the wall temperature distributions for different values of heat fluxes and frequencies of fluid temperature. Due to the implication in wall temperature measurements, the heat fluxes and frequencies effects on temperature readings of wall thermocouples are also investigated. In this paper, the influence of axial heat flux in a pipe wall is studied. The temperature distribution within the pipe wall is analyzed considering a fluid temperature signal in the proximity of the pipe surface with axial temperature dependence. The effect of the temperature fluctuations frequency is also investigated. The two-dimensional finite difference equations for the transient temperature of a

  7. Identification of error sources in fatigue analyses for thermal loadings

    International Nuclear Information System (INIS)

    Binder, Franz; Gantz, Dieter

    2006-09-01

    To identify thermal loadings (thermal shocks and thermal stratification), in German NPPs, special fatigue monitoring systems have been installed. The detailed temperature measurement uses sheathed thermocouples, which are located on the external component surface. Tightening straps are used for the widespread method of locking the thermocouples into position. The calculation of material fatigue for a loading sequence has to be carried out based on the measured temperature profile of the outer component surface. Should the analysis comply with the ASME III code, Section NB, alternatively the Articles NB-3200 or NB-3600 can be applied. In fatigue analyses based on the outer-surface temperature, the thermal situation at the inner-surface has to be determined (inverse temperature-field calculation). This leading analysis step is not regulated in the ASME III code. Using general purpose finite element programs, this problem cannot be explicitly solved, because it requires knowledge of the thermal situation at all boundaries (temperature or heat transfer). In the frequently practiced method in a finite element calculation, the inner surface temperature profile is varied until a satisfactory compliance of the calculated outer surface temperature with the measured profile is obtained. Since the input parameters are derived from a variable field, the variation process is large-scale and non-explicit (another input-configuration may cause a similar outer surface temperature). Furthermore, the remaining deviation cannot be quantified regarding the resulting error in the calculated material fatigue. Five typical thermocouple installation methods existing in German LWRs were compared and evaluated regarding the quality of outer surface temperature acquisition. With the evaluation of the experimental data, the essential finding is that for the test transients the maximum of the true outer surface temperature change rate is registered incorrectly with all thermocouple

  8. Rapid estimation of fatigue entropy and toughness in metals

    Energy Technology Data Exchange (ETDEWEB)

    Liakat, M.; Khonsari, M.M., E-mail: khonsari@me.lsu.edu

    2014-10-15

    Highlights: • A correlation is developed to predict fatigue entropy and toughness of metals. • Predictions are made based on the thermal response of the materials. • The trend of hysteresis energy and temperature evolutions is discussed. • Predicted results are found to be in good agreement to those measured. - Abstract: An analytical model and an experimental procedure are presented for estimating the rate and accumulation of thermodynamic entropy and fatigue toughness in metals subjected to cyclic uniaxial tension–compression tests. Entropy and plastic strain energy generations are predicted based on the thermal response of a specimen at different levels of material damage. Fatigue tests are performed with cylindrical dogbone specimens made of tubular low-carbon steel 1018 and solid medium-carbon steel 1045, API 5L X52, and Al 6061. The evolution of the plastic strain energy generation, temperature, and thermal response throughout a fatigue process are presented and discussed. Predicted entropy accumulation and fatigue toughness obtained from the proposed method are found to be in good agreement to those obtained using a load cell and an extensometer over the range of experimental and environmental conditions considered.

  9. Rapid estimation of fatigue entropy and toughness in metals

    International Nuclear Information System (INIS)

    Liakat, M.; Khonsari, M.M.

    2014-01-01

    Highlights: • A correlation is developed to predict fatigue entropy and toughness of metals. • Predictions are made based on the thermal response of the materials. • The trend of hysteresis energy and temperature evolutions is discussed. • Predicted results are found to be in good agreement to those measured. - Abstract: An analytical model and an experimental procedure are presented for estimating the rate and accumulation of thermodynamic entropy and fatigue toughness in metals subjected to cyclic uniaxial tension–compression tests. Entropy and plastic strain energy generations are predicted based on the thermal response of a specimen at different levels of material damage. Fatigue tests are performed with cylindrical dogbone specimens made of tubular low-carbon steel 1018 and solid medium-carbon steel 1045, API 5L X52, and Al 6061. The evolution of the plastic strain energy generation, temperature, and thermal response throughout a fatigue process are presented and discussed. Predicted entropy accumulation and fatigue toughness obtained from the proposed method are found to be in good agreement to those obtained using a load cell and an extensometer over the range of experimental and environmental conditions considered

  10. Estimates of thermal fatigue due to beam interruptions for an ALMR-type ATW

    International Nuclear Information System (INIS)

    Dunn, F. E.; Wade, D. C.

    1999-01-01

    Thermal fatigue due to beam interruptions has been investigated in a sodium cooled ATW using the Advanced Liquid Metal mod B design as a basis for the subcritical source driven reactor. A k eff of 0.975 was used for the reactor. Temperature response in the primary coolant system was calculated, using the SASSYS- 1 code, for a drop in beam current from full power to zero in 1 microsecond.. Temperature differences were used to calculate thermal stresses. Fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code were used to determine the number of cycles various components should be designed for, based on these thermal stresses

  11. Fatigue damage observed non-destructively in fibre composite coupon test specimens by X-ray CT

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2016-01-01

    This study presents a method for monitoring the 3D fatigue damage progression on a micro-structural level in a glass fibre/polymer coupon test specimen by means of laboratory X-ray Computed Tomography (CT). A modified mount and holder made for the standard test samples to fit into the X-ray CT...... scanner along with a tension clamp solution is presented. Initially, the same location of the test specimen is inspected by ex-situ X-ray CT during the fatigue loading history, which shows the damage progression on a micro-structural level. The openings of individual uni-directional (UD) fibre fractures...

  12. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  13. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  14. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER relevant conditions

    International Nuclear Information System (INIS)

    Youchison, D.L.; Guiniiatouline, R.; Watson, R.D.

    1994-01-01

    Thermal response and thermal fatigue tests of four 5 mm thick beryllium tiles on a Russian divertor mock-up were completed on the Electron Beam Test System at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an OFHC copper saddleblock and a DSCu (MAGT) tube containing a porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m 2 and surface temperatures near 300 degrees C using 1.4 MPa water at 5.0 m/s flow velocity and an inlet temperature of 8-15 degrees C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m 2 and surface temperatures up to 690 degrees C before debonding at 10 MW/m 2 . A third tile debonded after 9200 thermal fatigue cycles at 5 MW/m 2 , while another debonded after 6800 cycles. In all cases, fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. During thermal cycling, a gradual loss of porous coating produced increasing sample temperatures. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER relevant conditions without failure. However, the reliability of the diffusion bonded Joint remains a serious issue

  15. Approach for investigations of progressive fatigue damage in 3D in fibre composites using X-ray tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Jespersen, Kristine Munk

    (Jespersen & Mikkelsen, 2016) has been performed. An ex-situ study where it has been important to design a good gripping strategy inside the scanning machine. Doing this, it has been possible to scan the same region multiple times. Thereby, a progressive fatigue damage evolution has been observed.......Understanding fatigue damage initiation and evolution in the load carrying laminates inside wind turbine blade plays a key factor designing longer and lighter turbine blades. Thereby, it is possible to lower the Cost of Energy for the wind energy based electricity production either by simply...... building larger wind turbines or by upgrading existing turbines for lower wind classes’ . In the presented work, a Zeiss Xradia Versa 520 scanner has been used in connection with ex-situ fatigue testing with the purpose of identifying fibre failure during the fatigue loading. The load carrying laminates...

  16. In-Pile thermal fatigue of First Wall mock-ups under ITER relevant conditions

    International Nuclear Information System (INIS)

    Blom, F.; Schmalz, F.; Kamer, S.; Ketema, D.J.

    2006-01-01

    The objective of this study is to perform in-pile thermal fatigue testing of three actively cooled First Wall (FW) mock-ups to check the effect of neutron irradiation on the Be/CuCrZr joints under representative FW operation conditions. Three FW mock-ups with Beryllium armor tiles will be neutron irradiated at 1 dpa (in Be) with parallel thermal fatigue testing for 30,000 cycles. The temperatures, stress distributions and stress amplitudes at the Be/CuCrZr interface of the mock-ups will be as close as possible to the values calculated for ITER FW panels. For this objective the PWM mocks-up subjected to thermal fatigue will be integrated with high density (W) plates on the Be-side to provide heat flux by nuclear heating. The assembly will be placed in the pool-side facility of the HFR and thermal cycling is then arranged by mechanical movement towards and from the core box. As the thermal design of the irradiation rig is very critical a pilot-irradiation will be performed to cross check the models used in the thermal design of the rig. The project is currently in the design phase of both the pilot and actual irradiation rig. The irradiation of the actual rig is planned to start at mid 2007 and last for two years. (author)

  17. Effect of hardening induced by cold expansion on damage fatigue accumulation and life assessment of Aluminum alloy 6082 T6

    Directory of Open Access Journals (Sweden)

    Bendouba Mostefa

    2012-12-01

    Full Text Available Hole cold expansion (HCE is an effective method to extend the fatigue life of mechanical structures. During cold expansion process compressive residual stresses around the expanded hole are generated. The enhancement of fatigue life and the crack initiation and growth behavior of a holed specimen were investigated by using the 6082 Aluminum alloy. The present study suggests a simple technical method for enhancement of fatigue life by a cold expansion hole of pre-cracked specimen. Fatigue damage accumulation of cold expanded hole in aluminum alloy which is widely used in transportation and in aeronautics was analyzed. Experimental tests were carried out using pre-cracked SENT specimens. Tests were performed in two and four block loading under constant amplitude. These tests were performed by using two and four blocks under uniaxial constant amplitude loading. The increasing and decreasing loading were carried. The experimental results were compared to the damage calculated by the Miner's rule and a new simple fatigue damage indicator. This comparison shows that the 'damaged stress model', which takes into account the loading history, yields a good estimation according to the experimental results. Moreover, the error is minimized in comparison to the Miner's model.

  18. Probabilistic modeling of crack networks in thermal fatigue

    International Nuclear Information System (INIS)

    Malesys, N.

    2007-11-01

    Thermal superficial crack networks have been detected in mixing zone of cooling system in nuclear power plants. Numerous experimental works have already been led to characterize initiation and propagation of these cracks. The random aspect of initiation led to propose a probabilistic model for the formation and propagation of crack networks in thermal fatigue. In a first part, uniaxial mechanical test were performed on smooth and slightly notched specimens in order to characterize the initiation of multiple cracks, their arrest due to obscuration and the coalescence phenomenon by recovery of amplification stress zones. In a second time, the probabilistic model was established under two assumptions: the continuous cracks initiation on surface, described by a Poisson point process law with threshold, and the shielding phenomenon which prohibits the initiation or the propagation of a crack if this one is in the relaxation stress zone of another existing crack. The crack propagation is assumed to follow a Paris' law based on the computation of stress intensity factors at the top and the bottom of crack. The evolution of multiaxial cracks on the surface can be followed thanks to three quantities: the shielding probability, comparable to a damage variable of the structure, the initiated crack density, representing the total number of cracks per unit surface which can be compared to experimental observations, and the propagating crack density, representing the number per unit surface of active cracks in the network. The crack sizes distribution is also computed by the model allowing an easier comparison with experimental results. (author)

  19. Evaluation of fatigue-ratcheting damage of a pressurised elbow undergoing damage seismic inputs

    International Nuclear Information System (INIS)

    Dang Van, K.

    2000-01-01

    We present a simplified method to calculate the plastic ratchet of elbow-shaped pipes submitted to seismic loading and an internal pressure. This method is simplified in the sense that the value of the ratchet is obtained without the use of finite element method (FEM) calculations. Here we derive a formula and use it to evaluate the fatigue-ratcheting damage of an elbow. This approach is applicable to complex plastic response appropriately described by non-linear kinematics hardening, which is more realistic for stainless steel such as 316-L. (orig.)

  20. Thermal fatigue behaviour for a 316 L type steel

    International Nuclear Information System (INIS)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-01-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data. (orig.)

  1. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  2. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  3. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  4. Prediction of thermal fatigue life of ceramics

    International Nuclear Information System (INIS)

    Kamiya, N.; Kamigaito, O.

    1979-01-01

    On the assumption that the thermal fatigue life of ceramics is determined mainly by the duration over which a crack reaches a small critical length, a prediction of the life was made by application of fracture mechanics to ceramics based on subcritical crack growth. Approximated formulae were derived. Experimental examination showed that the formulae proved to be valid for glass, sintered mullite under moderate shock severity, and zirconia. Data given by other authors also prove their validity. The deviation of the life from the formulae for sintered mullite under a thermal shock of extremely low severty, suggests that a certain mechanism, for example strengthening, is needed to understand the life of the sintered mullite. (author)

  5. Thermal fatigue behavior of a SUS304 pipe under longitudinal cyclic movement of axial temperature distribution

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Ohtani, Tomomi; Takahashi, Yukio

    1996-01-01

    In a structural thermal fatigue test which imposed an oscillating axial temperature distribution on a SUS 304 pipe specimens, different crack initiation lives were observed between the inner and the outer surfaces, although the values of the von-Mises equivalent strain range calculated by FEM inelastic analysis were almost the same for both surfaces. The outer surface condition was an in-phase thermal cycle and an almost uniaxial cyclic stress (low hydrostatic stress). The inner surface condition was an out-of-phase thermal cycle and an almost equibiaxial cyclic stress (high hydrostatic stress). A uniaxial thermal fatigue test was performed under the simulated conditions of the outer and inner surfaces of the pipe specimen. The in-phase uniaxial thermal fatigue test result was in good agreement with the test result of the pipe specimen for the outer surface. The out-of-phase uniaxial thermal fatigue test which simulated the inner surface condition, showed a longer life than the in-phase uniaxial test, and thus contradicted the result of the structural model test. However, the structural model test life for the inner surface agreed well with the uniaxial experimental measurement when the strain range of the inner surface was corrected by a triaxiality factor

  6. Fatigue analysis - computation of the actual strain range using elastic calculations (factor Ke)

    International Nuclear Information System (INIS)

    Roche, R.L.

    1987-01-01

    Pressure vessels are not eternal, their life is not endless, but must be long enough for profitable use. Fatigue is the most important damage limiting life time. It is due to variable loading and especially to deformation-controlled loading like thermal dilatation (thermal stress). Hence, it is of prime importance to perform an fatigue analysis in the design phase in order to be sure the pressure vessel life meet requirement of the design specification. It is also useful to perform such an analysis for assessing the remaining life. To compute the fatigue damage, knowledge of the strain range is needed. As calculation taking into account non linear behavior of the material are very expensive and not always reliable, the current practice is using elastic computation. The aim of this paper is to discuss the methods for correcting the elastically calculated strain range and to propose a sound and practical method

  7. Fatigue Crack Growth in Bodies with Thermally Sprayed Coating

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Medřický, Jan; Tomek, L.; Siegl, J.; Mušálek, Radek; Curry, N.; Björklund, S.

    2016-01-01

    Roč. 25, 1-2 (2016), s. 311-320 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Thermal barrier coating * fatigue * crack growth * digital image correlation * digital image correlation Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0329-9

  8. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  9. Damage evolution during actuation fatigue in shape memory alloys (SPIE Best Student Paper Award)

    Science.gov (United States)

    Phillips, Francis R.; Wheeler, Robert; Lagoudas, Dimitris C.

    2018-03-01

    Shape Memory Alloys (SMAs) are unique materials able to undergo a thermomechanically induced, reversible phase transformation. Additionally, SMA are subject to two types of fatigue, that is structural fatigue due to cyclic loading as experienced by most materials, as well as actuation fatigue due to repeated thermally induced phase transformation. The evolution of multiple material characteristics is presented over the actuation fatigue lifetime of NiTiHf actuators, including the accumulation of irrecoverable strain, the evolution of internal voids, and the evolution of the effective modulus of the actuator. The results indicate that all three of these material characteristics are clearly interconnected and careful analysis of each of these characteristics can help to understand the evolution of the others, as well as help to understand how actuation fatigue leads to ultimate failure of the actuator.

  10. Effects of foreign object damage from small hard particles on the high-cycle fatigue life of titanium-(6)aluminum-(4)vanadium

    Science.gov (United States)

    Hamrick, Joseph L., II

    Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.

  11. Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxin; Yan, Qingzhi, E-mail: qzyan@ustb.edu.cn; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-15

    Highlights: • The potassium doped tungsten grade was achieved via swaging + rolling process. • The cracking threshold of the W–K alloy was in the range of 0.44–0.66 GW/m{sup 2}. • Recrystallization occurred at 0.66–1.1 GW/m{sup 2} during the thermal shock tests. • No cracks emerged during the thermal fatigue tests (0.44 GW/m{sup 2}, 1000 cycles). • Recrystallization occurred after 1000 cycles during the thermal fatigue tests. - Abstract: The potassium doped tungsten (W–K) grade was achieved via swaging + rolling process. The swaged + rolled W–K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W–K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m{sup 2} in a step of 0.22 GW/m{sup 2}. The cracking threshold was in the range of 0.44–0.66 GW/m{sup 2}. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66–1.1 GW/m{sup 2} basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m{sup 2} up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  12. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage; Fatigue-fluage des aciers martensitiques a 9-12% Cr: comportement et endommagement

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, B

    2007-09-15

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  13. A review of thermographic techniques for damage investigation in composites

    Directory of Open Access Journals (Sweden)

    Laura Vergani

    2014-01-01

    Full Text Available The aim of this work is a review of scientific results in the literature, related to the application of thermographic techniques to composite materials. Thermography is the analysis of the surface temperature of a body by infrared rays detection via a thermal-camera. The use of this technique is mainly based on the modification of the surface temperature of a material, when it is stimulated by means of a thermal or mechanical external source. The presence of defects, in fact, induces a localized variation in its temperature distribution and, then, the measured values of the surface temperature can be used to localize and evaluate the dimensions and the evolution of defects. In the past, many applications of thermography were proposed on homogeneous materials, but only recently this technique has also been extended to composites. In this work several applications of thermography to fibres reinforced plastics are presented. Thermographic measurements are performed on the surface of the specimens, while undergoing static and dynamic tensile loading. The joint analysis of thermal and mechanical data allows one to assess the damage evolution and to study the damage phenomenon from both mechanical and energetic viewpoints. In particular, one of the main issues is to obtain information about the fatigue behaviour of composite materials, by following an approach successfully applied to homogenous materials. This approach is based on the application of infrared thermography on specimens subjected to static or stepwise dynamic loadings and on the definition of a damage stress, D, that is correlated to the fatigue strength of the material. A wide series of experimental fatigue tests has been carried out to verify if the value of the damage stress, D, is correlated with the fatigue strength of the material. The agreement between the different values is good, showing the reliability of the presented thermographic techniques, to the study of composite

  14. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A F; Freris, L L; Graham, J M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  15. High cycle thermal fatigue: benchmark at a Te junction piping system of the nuclear power plant Phenix; Fatigue a grand nombre de cycles: benchmark d'un te de tuyauterie de la centrale Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Gelineau, O.; Simoneau, J.P. [NOVATOME, a Div. of Framatome, 69 - Lyon (France); Roubin, P. [CEA Cadarache, DER, 13 - Saint-Paul-lez-Durance (France)

    2001-07-01

    This paper presents the studies of the benchmark concerning a high cycle thermal fatigue problem. This benchmark is based on an industrial case, a Te junction piping system of the french FBR Phenix. The main objectives were the comparison of the different methods used by the participants and the analysis of the damage evaluation methods capacity compared to the observed phenomena. This study took place in an international framework with the United Kingdom, Italy, Japan, Korea, Russia, India and France. (A.L.B.)

  16. Strand Plasticity Governs Fatigue in Colloidal Gels

    Science.gov (United States)

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  17. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  18. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  19. Study of cumulative fatigue damage on an austenitic steel

    International Nuclear Information System (INIS)

    Baudry, G.; Amzallag, C.; Bernard, J.L.

    1984-01-01

    The validity of Palmgren-Miner rule is verified for working life between about 500 and 1,000,000 cycles for two damages: one corresponding to complete rupture of smooth test piece and the other corresponding to initiation of a fatigue crack in a high stress area. Material studied is a stainless steel Z3CND17-12 (AISI 316) used in nuclear industry. Validity of the rule is better verified in the case of small cracks than for a smooth sample. (15 references are given) [fr

  20. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  1. Effect of thermo-mechanical loading histories on fatigue crack growth behavior and the threshold in SUS 316 and SCM 440 steels. For prevention of high cycle thermal fatigue failures

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Muzvidziwa, Milton; Iwasaki, Akira; Kasahara, Naoto

    2014-01-01

    High cycle thermal fatigue failure of pipes induced by fluid temperature change is one of the interdisciplinary issues to be concerned for long term structural reliability of high temperature components in energy systems. In order to explore advanced life assessment methods to prevent the failure, fatigue crack propagation tests were carried out in a low alloy steel and an austenitic stainless steel under typical thermal and thermo-mechanical histories. Special attention was paid to both the effect of thermo-mechanical loading history on the fatigue crack threshold, as well as to the applicability of continuum fracture mechanics treatment to small or short cracks. It was shown experimentally that the crack-based remaining fatigue life evaluation provided more reasonable assessment than the traditional method based on the semi-empirical law in terms of 'usage factor' for high cycle thermal fatigue failure that is employed in JSME Standard, S017. The crack propagation analysis based on continuum fracture mechanics was almost successfully applied to the small fatigue cracks of which size was comparable to a few times of material grain size. It was also shown the thermo-mechanical histories introduced unique effects to the prior fatigue crack wake, resulting in occasional change in the fatigue crack threshold. (author)

  2. Revealing fatigue damage evolution in unidirectional composites for wind turbine blades using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    ’. Thereby, it will be possible to lower the cost of energy for wind energy based electricity. In the presented work, a lab-source x-ray computed tomography equipment (Zeiss Xradia 520 Versa) has been used in connection with ex-situ fatigue testing of uni-directional composites in order to identify fibre...... to other comparable x-ray studies) have been used in order to ensure a representative test volume during the ex-situ fatigue testing. Using the ability of the x-ray computed tomography to zoom into regions of interest, non-destructive, the fatigue damage evolution in a repeating ex-situ fatigue loaded test...... improving the fatigue resistance of non-crimp fabric used in the wind turbine industry can be made....

  3. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  4. High cycle fatigue properties of inconel 690

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Byong Whi; Kim, In Sup; Park, Chi Yong

    1997-01-01

    Inconel 690 is presently used as sleeve material and a replacement alloy in degraded steam generators, as well as the material for new steam generators. But Inconel 690 has low thermal conductivity which are 3-8% less than that of Inconel 600 at operating temperature. For the same power output, conduction area must be increased. As a result, more fluid induced vibration can cause a fatigue damage of Inconel 690. High cycle fatigue ruptures occurred in the U-bend regions of North Anna Unit 1 and Mihama Unit 2 steam generators. At this study, the effect of temperature on fatigue crack growth rate in Inconel 690 steam generator tube was investigated at various temperature in air environment. With increasing temperature, fatigue crack growth rate increased and grain size effect decreased. Chromium carbides which have large size and semi-continuous distribution in the grain boundaries decreased fatigue crack growth rate

  5. Thermomechanical fields measurement for fatigue investigation under cyclic thermal shocks

    International Nuclear Information System (INIS)

    Charbal, Ali

    2017-01-01

    Thermal fatigue occurs in nuclear power plant pipes. The temperature variations are due to the turbulent mixing of fluids that have different temperatures. Many experimental setups have been designed but the measured temperatures have only been punctual and out of the zone of interest (e.g., via thermocouples). The equivalent strain variation in the crack initiation region is calculated with numerical thermomechanical simulations. In many cases, the comparisons between numerical and experimental results have shown that the crack initiation predictions in thermal fatigue are non-conservative. a new testing setup is proposed where thermal shocks are applied with a pulsed laser beam while the thermal and kinematic fields on the specimen surface are measured with infrared (IR) and visible cameras, respectively. Experimental testings are performed and different measurement techniques for temperature and kinematic fields are used. IR camera and pyrometers allow to measure the temperature variations in the zone impacted by the laser beam. To estimate the absolute temperature, the surface emissivities at the respective wavelengths are determined by different methods. The absolute temperature field is then used to apply the actual thermal loading in a decoupled FE model after an identification process of the parameters of the laser beam. Once the thermal loading is generated based upon the experimental data, the stress and strain fields can be computed in the region of interest with an elastoplastic law.The experimental strain variations calculated from the DIC measurements are compared with the predictions obtained with the FE simulation. (author) [fr

  6. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  7. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  8. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  9. Damage morphology study of high cycle fatigued as-cast Mg–3.0Nd–0.2Zn–Zr (wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haiyan; Fu, Penghuai, E-mail: fph112sjtu@sjtu.edu.cn; Peng, Liming; Li, Zhenming; Pan, Jipeng; Ding, Wenjiang

    2016-01-15

    Laser scanning confocal microscopy (LSCM) and Electron back-scattered diffraction (EBSD) were applied to the study of surface morphology variation of as-cast Mg–3.0Nd–0.2Zn–Zr (NZ30K) (wt.%) alloy under tension-compression fatigue test at room temperature. Two kinds of typical damage morphologies were observed in fatigued NZ30K alloy: One was parallel lines on basal planes led by the cumulation of basal slips, called persistent slip markings (PSMs), and the other was lens shaped, thicker and in less density, led by the formation of twinning. The surface fatigue damage morphology evolution was analyzed in a statistical way. The influences of stress amplitude and grain orientation on fatigue deformation mechanisms were discussed and the non-uniform deformation among grains and the PSMs, within twinning were described quantitatively. - Highlights: • Fatigue morphology evolution was studied by Laser Scanning Confocal Microscopy. • 3D morphology of persistent slip markings and twins was characterized. • Non-uniform deformation among grains, the PSMs and twins were quantified. • Initiations of fatigue crack were clearly investigated.

  10. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains

    OpenAIRE

    Rasekhi Nejad, Amir; Gao, Zhen; Moan, Torgeir

    2014-01-01

    In this paper, a long-term fatigue damage analysis method for gear tooth root bending in wind turbine’s drivetrains is presented. The proposed method is established based on the ISO gear design codes which are basically developed for gears in general applications, not specifically for wind turbine gears. The ISO procedure is adapted and further improved to include the long-term fatigue damage of wind turbine’s gears. The load duration distribution (LDD) method is used to obtain the short-term...

  11. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  12. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  13. Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms

    Science.gov (United States)

    Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.

    2016-01-01

    Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model

  14. Surface-finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component

  15. Stochastic modelling of thermal fatigue crack growth for applying in the structural reliability of nuclear piping

    International Nuclear Information System (INIS)

    Radu, V.

    2016-01-01

    The problem of thermal fatigue in mixing areas arises in nuclear piping where a turbulent mixing or vortices produce rapid fluid temperature fluctuations with random frequencies. The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. To apply the Stochastic approach of thermal fatigue, a frequency temperature response function is proposed. For the elastic thermal stresses distribution solutions, the magnitude of the frequency response function is first derived and checked against the prediction by FEA. The connection between SIF.s power spectral density (PSD) and temperature.s PSD is assured with SIF frequency response function modulus. The frequency of the peaks of each magnitude for KI is supposed to be a stationary narrow-band Gaussian process. The probabilities of failure are estimated by means of the Monte Carlo methods considering a limit state function. (authors)

  16. Two different mechanisms of fatigue damage due to cyclic stress loading at 77 K for MOCVD-YBCO-coated conductors

    International Nuclear Information System (INIS)

    Sugano, M; Yoshida, Y; Hojo, M; Shikimachi, K; Hirano, N; Nagaya, S

    2008-01-01

    Tensile fatigue tests were carried out at 77 K for YBCO-coated conductors fabricated by metal-organic chemical vapor deposition (MOCVD). The S-N relationship, variation of critical current (I c ) during cyclic loading and microscopic fatigue damage were investigated. Fatigue strength at 10 6 cycles was evaluated to be σ max = 1300 MPa and 890 MPa under the stress ratios of 0.5 and 0.1. Two different mechanisms of fatigue damage, depending on the number of stress cycles to failure, were observed. In one of the fracture mechanisms, fatigue behavior is characterized by overall fracture which occurs at 10 4 -10 5 cycles. For these specimens, I c after unloading does not degrade before overall fracture. Although only shallow slip bands were found at the Ag surface, fatigue cracks were found on the Hastelloy C-276 surface of the fractured specimen. These results suggest that overall fracture due to cyclic stress was caused by fatigue of the Hastelloy substrate. In the other fracture mechanism, even though overall fracture did not occur at 10 6 cycles, a slight decrease of I c was detected after 10 5 cycles. No fatigue crack was found on the Hastelloy surface, while deep slip bands corresponding to the initial stage of fatigue crack were observed on the Ag surface. From these results, we concluded that I c degradation at a high cycle number is attributed to the fatigue of the Ag stabilizing layer

  17. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    Science.gov (United States)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  18. Application of positron annihilation line-shape analysis to fatigue damage for nuclear plant materials

    International Nuclear Information System (INIS)

    Maeda, N.; Uchida, M.; Ohta, Y.; Yoshida, K.

    1996-01-01

    Positron annihilation line-shape analysis is sufficiently sensitive to detect microstructural defects such as vacancies and dislocations. We are developing a portable positron annihilation system and applying this technique to fatigue damage in type 316 stainless steel and SA508 low alloy steel. The positron annihilation technique was found to be sensitive in the early fatigue life, i.e. up to 10% of the fatigue life, but showed little sensitivity in later stages of the fatigue life in type 316 stainless steel and SA508 low alloy steel. Type 316 stainless steel a higher positron annihilation sensitivity than that of SA508. It was considered that the amount of dislocation density change in the stainless steel was greater than that in the low alloy steel, because the initial microstructure contained a low dislocation density because of the solution heat treatment for the type 316 stainless steel. (orig.)

  19. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    Science.gov (United States)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  20. Damage assessment of low-cycle fatigue by crack growth prediction. Development of growth prediction model and its application

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2012-01-01

    In this study, the fatigue damage was assumed to be equivalent to the crack initiation and its growth, and fatigue life was assessed by predicting the crack growth. First, a low-cycle fatigue test was conducted in air at room temperature under constant cyclic strain range of 1.2%. The crack initiation and change in crack size during the test were examined by replica investigation. It was found that a crack of 41.2 μm length was initiated almost at the beginning of the test. The identified crack growth rate was shown to correlate well with the strain intensity factor, whose physical meaning was discussed in this study. The fatigue life prediction model (equation) under constant strain range was derived by integrating the crack growth equation defined using the strain intensity factor, and the predicted fatigue lives were almost identical to those obtained by low-cycle fatigue tests. The change in crack depth predicted by the equation also agreed well with the experimental results. Based on the crack growth prediction model, it was shown that the crack size would be less than 0.1 mm even when the estimated fatigue damage exceeded the critical value of the design fatigue curve, in which a twenty-fold safety margin was used for the assessment. It was revealed that the effect of component size and surface roughness, which have been investigated empirically by fatigue tests, could be reasonably explained by considering the crack initiation and growth. Furthermore, the environmental effect on the fatigue life was shown to be brought about by the acceleration of crack growth. (author)

  1. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    Science.gov (United States)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  2. Effect of thermal aging on the low cycle fatigue behavior of Z3CN20.09M cast duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weifeng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Tian, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Dunji, E-mail: djyu@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Weiwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Chen, Xu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-10-14

    Nuclear grade Z3CN20.09M cast duplex stainless steel exhibits enhanced cyclic stress response and prolonged low cycle fatigue life at room temperature after thermal aging at 400 °C for up to 6000 h. The threshold strain amplitude for the onset of secondary hardening is shifted to a lower value after thermal aging. Microstructural observations reveal that fatigue cracks tend to initiate from phase boundaries in virgin specimens, but to initiate in the ferrite phase in aged ones. Denser fatigue striations are found on the fracture surface of fatigued specimen subjected to longer thermal aging duration. These observations are explained in the context of thermal aging induced embrittlement of the ferrite phase and deformation induced martensitic phase transformation in the austenite phase.

  3. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    Science.gov (United States)

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  4. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  5. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-01-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of D c = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times. (paper)

  6. Simplified Model for Evaluation of VIV-induced Fatigue Damage of Deepwater Marine Risers

    Institute of Scientific and Technical Information of China (English)

    XUE Hong-xiang; TANG Wen-yong; ZHANG Sheng-kun

    2009-01-01

    A simplified empirical model for fatigue analysis of deepwater marine risers due to vortex-induced vibration (VIV) in non-uniform current is presented. A simplified modal vibration equation is employed according to the characteristics of deepwater top tensioned risers. The response amplitude of each mode is determined by a balance between the energy feeding into the riser over the lock-in regions and the energy dissipated by the fluid damping over the remainder based on the data from self-excited oscillation and forced oscillation experiments of rigid cylinders. Multi-modal VIV fatigue loading is obtained by the square root of the sum of squares approach.Compared with previous works, this model can take fully account of the main intrinsic natures of VIV for low mass ratio structures on lock-in regions, added mass and nonlinear fluid damping. In addition, a closed form solution of fatigue damage is presented for the case of a riser with uniform mass and cross-section oscillating in a uniform flow. Fatigue analysis of a typical deepwater riser operating in Gulf of Mexico and West Africa shows that the current velocity profiles affect the riser's fatigue life significantly and the most dangerous locations of the riser are also pointed out.

  7. Influence of microstructure of different stainless steels on their low cycle fatigue damage mechanisms

    International Nuclear Information System (INIS)

    Baffie, Natacha

    2002-01-01

    The present study is focused on understanding low cycle fatigue damage mechanisms in three different kind of stainless steels. In all structures, crack propagation is conditioned by microstructural barriers. In single phase austenitic alloys, short cracks initiation and growth are crystallographic. Cracks are arrested by grain and twin boundaries both at surface and in the bulk. Grain size refinement improve the fatigue life at applied Δε p . The second barrier in the bulk is shown to be very efficient because of the important number of misoriented grains. In the metastable austenitic alloy, the martensitic transformation induced by cyclic straining leads to significant modifications of damage mechanisms. The fatigue behaviour has been investigated between -50 deg. C and 120 deg. C. The γ→α' transformation takes place at the surface, in the bulk (except at 120 deg. C) and locally at the crack tip. At all temperatures, the amount of martensite formed and the fatigue life increase as the grain size decreases, even if at the same Δε p , the maximal stresses are considerably higher than in a stable γ. Short cracks growth takes place in transformed regions, γ→α' transformation being assisted by strain concentrations at the crack tip. This mechanism consumes a part of plastic deformation, which would have been available for crack propagation. Such a dynamic barrier can decrease crack propagation rate. The austenite grain size is shown to have a decisive influence both on the amount of martensite formed and on the fatigue resistance through the effect of γ grain boundaries as indirect barriers to the crack propagation. The fatigue life of the 475 deg. C aged α/γ alloy decreases sharply at high applied Δε p compared to the solution annealed one. This behaviour is explained by the modification of short cracks nucleation sites. Indeed, cleavage occurs in the hard and brittle α phase, even if plastic deformation is concentrated in γ phase. Then, easy

  8. The effect of surface corrosion damage on the fatigue life of 6061-T6 aluminum alloy extrusions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Matthew; Eason, Paul D.; Özdeş, Hüseyin; Tiryakioğlu, Murat, E-mail: m.tiryakioglu@unf.edu

    2017-04-06

    An investigation was performed where 6061-T6 extrusions were exposed to a 3.5% NaCl solution at pH 2 for 2 days and 24 days to create distinct surface flaws. The effect of these flaws on the rotating beam fatigue life was then investigated and analyzed by using Wöhler curves, Weibull statistics and scanning electron microscopy (SEM). It was determined that corrosion damage reduced the fatigue life significantly and specimens corroded for both 2-days and 24-days exhibited similar fatigue lives. Statistical analyses showed that fatigue life of all three datasets followed the 3-parameter Weibull distribution and the difference between the fatigue lives of two corroded datasets was statistically insignificant. Analysis of fracture surfaces showed that sizes of pits that led to fatigue crack initiation were very different in the two corroded datasets. Implications of the similarity in fatigue lives despite disparity in surface condition are discussed in detail in the paper.

  9. Damage Detection/Locating System Providing Thermal Protection

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Jones, Thomas W. (Inventor); Taylor, Bryant D. (Inventor); Qamar, A. Shams (Inventor)

    2010-01-01

    A damage locating system also provides thermal protection. An array of sensors substantially tiles an area of interest. Each sensor is a reflective-surface conductor having operatively coupled inductance and capacitance. A magnetic field response recorder is provided to interrogate each sensor before and after a damage condition. Changes in response are indicative of damage and a corresponding location thereof.

  10. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  11. A damage mechanics based general purpose interface/contact element

    Science.gov (United States)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  12. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  13. Evaluation of creep-fatigue life prediction methods for low-carbon/nitrogen-added SUS316

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1998-01-01

    Low-carbon/medium nitrogen 316 stainless steel called 316FR is a principal candidate for the high-temperature structural materials of a demonstration fast reactor plant. Because creep-fatigue damage is a dominant failure mechanism of the high-temperature materials subjected to thermal cycles, it is important to establish a reliable creep-fatigue life prediction method for this steel. Long-term creep tests and strain-controlled creep-fatigue tests have been conducted at various conditions for two different heats of the steel. In the constant load creep tests, both materials showed similar creep rupture strength but different ductility. The material with lower ductility exhibited shorter life under creep-fatigue loading conditions and correlation of creep-fatigue life with rupture ductility, rather than rupture strength, was made clear. Two kinds of creep-fatigue life prediction methods, i.e. time fraction rule and ductility exhaustion method were applied to predict the creep-fatigue life. Accurate description of stress relaxation behavior was achieved by an addition of 'viscous' strain to conventional creep strain and only the latter of which was assumed to contribute to creep damage in the application of ductility exhaustion method. The current version of the ductility exhaustion method was found to have very good accuracy in creep-fatigue life prediction, while the time fraction rule overpredicted creep-fatigue life as large as a factor of 30. To make a reliable estimation of the creep damage in actual components, use of ductility exhaustion method is strongly recommended. (author)

  14. The Effect of Hold Time on Creep-Fatigue in 9Cr-1Mo

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Tae Young; Kim, Dae Whan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Baek, Kyoung Ho [Chungnam National University, Daejeon (Korea, Republic of)

    2009-05-15

    9Cr-1Mo steel is a candidate material for reactor vessel for VHTR. Because 9Cr-1Mo steel has a good mechanical properties and a lower thermal expansion coefficient than austenitic stainless steel. The reactor vessel of VHTR is operated at about 450 .deg. C. At this temperature, fatigue occurs during start-up and cool-down, and creep occurs during normal operation. Creep-fatigue damage by the interaction between fatigue and creep is an important factor that limits VHTR reactor vessel life. In this study, Effect of hold time on low cycle fatigue behavior of 9Cr-1Mo at 600 .deg. C was investigated in air.

  15. The Effect of Hold Time on Creep-Fatigue in 9Cr-1Mo

    International Nuclear Information System (INIS)

    Oh, Tae Young; Kim, Dae Whan; Kim, Yong Wan; Baek, Kyoung Ho

    2009-01-01

    9Cr-1Mo steel is a candidate material for reactor vessel for VHTR. Because 9Cr-1Mo steel has a good mechanical properties and a lower thermal expansion coefficient than austenitic stainless steel. The reactor vessel of VHTR is operated at about 450 .deg. C. At this temperature, fatigue occurs during start-up and cool-down, and creep occurs during normal operation. Creep-fatigue damage by the interaction between fatigue and creep is an important factor that limits VHTR reactor vessel life. In this study, Effect of hold time on low cycle fatigue behavior of 9Cr-1Mo at 600 .deg. C was investigated in air

  16. Fatigue damage evaluation of stainless steel pipes in nuclear power plants using positron annihilation lineshape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Yasuhiro [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Nakamura, Noriko; Yusa, Satoru [Ishikawajima-Harima Heavy Industries Co., Tokyo (Japan)

    2002-09-01

    Since positron annihilation lineshape analysis can evaluate the degree of fatigue damage by detecting defects such as dislocations in metals, we applied this method to evaluate that in a type 316 stainless steel pipe which was used in the primary system of a nuclear power plant. Using {sup 68}Ge as a positron source, an energy spread of annihilation gamma ray peak from the material was measured and expressed as the S-parameter. Actual plant material cut from a surge line pipe of a pressurizer in a pressurized water reactor type nuclear power plant was measured by positron annihilation lineshape analysis and the S-parameter was obtained. Comparing the S-parameter with a relationship between the S-parameter and fatigue life ratio of the type 316 stainless steel, we evaluated the degree of fatigue damage of the actual material. Furthermore, to verify the evaluation, microstructures of the actual material were investigated with TEM (transmission electron microscope) to observe dislocation densities. As a result, a change in the S-parameter of the actual material from standard as-received material (type 316 stainless steel) was in the range from -0.0013 to 0.0014, while variations in the S-parameter of the standard as-received material were about {+-}0.002, and hence the differences between the actual material and the as-received material were negligible. Moreover, the dislocation density of the actual plant material observed with TEM was almost the same as that of the as-received one. In conclusion, we could confirm the applicability of the positron annihilation lineshape analysis to fatigue damage evaluation of stainless steel. (author)

  17. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  18. Numerical analysis of two experiments related to thermal fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Bieder, Ulrich; Errante, Paolo [DEN-STMF, Commissariat a l' Energie Atomique et aux Energies Alternatives, Universite Paris-Saclay, Gif-sur-Yvette (France)

    2017-06-15

    Jets in cross flow are of fundamental industrial importance and play an important role in validating turbulence models. Two jet configurations related to thermal fatigue phenomena are investigated: • T-junction of circular tubes where a heated jet discharges into a cold main flow and • Rectangular jet marked by a scalar discharging into a main flow in a rectangular channel. The T-junction configuration is a classical test case for thermal fatigue phenomena. The Vattenfall T-junction experiment was already subject of an OECD/NEA benchmark. A LES modelling and calculation strategy is developed and validated on this data. The rectangular-jet configuration is important for basic physical understanding and modelling and has been analyzed experimentally at CEA. The experimental work was focused on turbulent mixing between a slightly heated rectangular jet which is injected perpendicularly into the cold main flow of a rectangular channel. These experiments are analyzed for the first time with LES. The overall results show a good agreement between the experimental data and the CFD calculation. Mean values of velocity and temperature are well captured by both RANS calculation and LES. The range of critical frequencies and their amplitudes, however, are only captured by LES.

  19. Thermal stresses and cyclic creep-fatigue in fusion reactor blanket

    International Nuclear Information System (INIS)

    Liu, K.C.

    1977-01-01

    Thermal stresses in the first walls of fusion reactor blankets were studied in detail. ORNL multibucket modules are emphasized. Practicality of using the bucket module rather than other blanket designs is examined. The analysis shows that applying intelligent engineering judgment in design can reduce the thermal stresses significantly. Arrangement of coolant flow and distribution of temperature are reviewed. Creep-fatigue property requirements for a first wall are discussed on the basis of existing design rules and criteria. Some major questions are pointed out and experiments needed to resolve basic uncertainties relative to key design decisions are discussed

  20. Effect of unit size on thermal fatigue behavior of hot work steel repaired by a biomimetic laser remelting process

    Science.gov (United States)

    Cong, Dalong; Li, Zhongsheng; He, Qingbing; Chen, Dajun; Chen, Hanbin; Yang, Jiuzhou; Zhang, Peng; Zhou, Hong

    2018-01-01

    AISI H13 hot work steel with fatigue cracks was repaired by a biomimetic laser remelting (BLR) process in the form of lattice units with different sizes. Detailed microstructural studies and microhardness tests were carried out on the units. Studies revealed a mixed microstructure containing martensite, retained austenite and carbide particles with ultrafine grain size in units. BLR samples with defect-free units exhibited superior thermal fatigue resistance due to microstructure strengthening, and mechanisms of crack tip blunting and blocking. In addition, effects of unit size on thermal fatigue resistance of BLR samples were discussed.

  1. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Schmidt, A.; Riccardi, B.; Bobin-Vastra, I.

    2011-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  2. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  3. Frequency domain fatigue damage estimation methods suitable for deterministic load spectra

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.R.; Patel, M.H. [University Coll., Dept. of Mechanical Engineering, London (United Kingdom)

    2000-07-01

    The evaluation of fatigue damage due to load spectra, directly in the frequency domain, is a complex phenomena but with the benefit of significant computation time savings. Various formulae have been suggested but have usually relating to a specific application only. The Dirlik method is the exception and is applicable to general cases of continuous stochastic spectra. This paper describes three approaches for evaluating discrete deterministic load spectra generated by the floating wind turbine model developed the UCL/RAL research project. (Author)

  4. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  5. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  6. A study on the evolution of crack networks under thermal fatigue loading

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Taheri, Said

    2008-01-01

    The crack network is a typical cracking morphology caused by thermal fatigue loading. It was pointed out that the crack network appeared under relatively small temperature fluctuations and did not grow deeply. In this study, the mechanism of evolution of crack network and its influence on crack growth was examined by numerical calculation. First, the stress field near two interacting cracks was investigated. It was shown that there are stress-concentration and stress-shielding zones around interacting cracks, and that cracks can form a network under the bi-axial stress condition. Secondly, a Monte Carlo simulation was developed in order to simulate the initiation and growth of cracks under thermal fatigue loading and the evolution of the crack network. The local stress field formed by pre-existing cracks was evaluated by the body force method and its role in the initiation and growth of cracks was considered. The simulation could simulate the evolution of the crack network and change in number of cracks observed in the experiments. It was revealed that reduction in the stress intensity factor due to stress feature in the depth direction under high cycle thermal fatigue loading plays an important role in the evolution of the crack network and that mechanical interaction between cracks in the network affects initiation rather than growth of cracks. The crack network appears only when the crack growth in the depth direction is interrupted. It was concluded that the emergence of the crack network is preferable for the structural integrity of cracked components

  7. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  8. A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Chai, Wei

    2017-01-01

    •A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted.......•A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted....

  9. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana; Groat, Lee A.; Chudy, Thomas; Shelyug, Anna; Navrotsky, Alexandra; Ewing, Rodney C.; Schlüter, Jochen; Škoda, Radek; Bismayer, Ulrich

    2017-01-01

    Abstract

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10

  10. Multi-purpose fatigue sensor. Part 1. Uniaxial and multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    M.V. Karuskevich

    2016-10-01

    Full Text Available The paper describes the key principles and results of preliminary experiments aimed at the development of new technique for the fatigue life prediction under conditions of biaxial cyclic tension. The foundations of the method were developed early by the numerous tests with monitoring the process of surface deformation relief formation, which is proved to be an indicator of accumulated fatigue damage under uniaxial fatigue. The employed phenomenon was early applied for the development of a family of uniaxial loading fatigue sensors. The formation of strain induced relief has been recently taken into consideration as a part of damage accumulation criteria under biaxial fatigue as well. The home-made testing machine has been designed to implement combined bending and torsion loading that simulates loads experienced by an aircraft wing skin. The experimental evidences on formation and evolution of the deformation relief revealed under conditions of combined loading, supports the proposed concept of biaxial fatigue sensor

  11. Fatigue behavior of type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak fusion reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially the first wall and blanket. Type 316 stainless steel in the 20% cold-worked condition has been irradiated in the HFIR in order to introduce helium as well as displacement damage. A miniature hourglass specimen was developed for the reactor irradiations and subsequent fully reversed low cycle fatigue testing. For material irradiated and tested at 430 0 C in vacuum to a damage level of 7 to 15 dpa and containing 200 to 1000 appm He, a reduction in life by a factor of 3 to 10 was observed. An attempt was made to predict irradiated fatigue life by fitting data from irradiated material to a power law equation similar to the universal slopes equation and using ductility ratios from tensile tests to modify the equation for irradiated material

  12. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, L.; Wang, H.; Liaw, P. K.; Brooks, C. R.; Klarstrom, D. L.

    2001-09-01

    High-speed, high-resolution infrared thermography, as a noncontact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to high-cycle fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. A constitutive model was developed for predicting the thermal and mechanical responses of the ULTIMET alloy subjected to cyclic deformation. The model was constructed in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress-strain and temperature responses were found to be in good agreement with the experimental results. In addition, the change of temperature during fatigue was employed to reveal the accumulation of fatigue damage, and the measured temperature was utilized as an index for fatigue-life prediction.

  13. Damage formation, fatigue behavior and strength properties of ZrO_2-based ceramics

    International Nuclear Information System (INIS)

    Kozulin, A. A.; Kulkov, S. S.; Narikovich, A. S.; Leitsin, V. N.; Kulkov, S. N.

    2016-01-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO_2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10"5 stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  14. Damage identification of RC bridge decks under fatigue loading

    Directory of Open Access Journals (Sweden)

    Zanuy, C.

    2014-12-01

    Full Text Available The complex nature of structural phenomena still requires the comparison between numerical models and the real structural performance. Accordingly, many civil structures are monitored to detect structural damage and provide updated data for numerical models. Monitoring usually relies on the change of dynamic properties (experimental modal analysis. Regarding concrete structures, existing works have typically focused on the progressive decrease of natural frequencies under gradually increasing loads. In this paper, high-cycle fatigue effects are analyzed. An experimental campaign on specimens reproducing the top slab of concrete girders has been carried out, including fatigue tests and a reference static test. Impact-excitation tests were done at different stages to extract dynamic properties. Output-only models (only based on the structural response to an external excitation that is not measured were used as identification techniques. The evolution of dynamic properties was correlated with damage development, with emphasis on the fatigue process stages: crack formation, cyclic reduction of tension-stiffening and brittle fracture of the reinforcement.La naturaleza compleja de muchos fenómenos estructurales requiere que los modelos numéricos necesiten ser verificados con el comportamiento estructural real. Por ello, muchas estructuras son monitorizadas, tanto para detectar posibles daños estructurales como para proporcionar datos a incluir en los modelos. A menudo, la monitorización se basa en el cambio de las propiedades dinámicas mediante técnicas de análisis modal experimental. Con respecto al hormigón estructural, la mayoría de los trabajos existentes se ha centrado en el cambio de las frecuencias propias con cargas monótonamente crecientes. En este artículo se analizan los efectos de la fatiga. Se ha llevado a cabo una campaña experimental sobre piezas que reproducen la losa superior de tableros de puentes, realizándose ensayos

  15. Characterization and damage evaluation of advanced materials

    Science.gov (United States)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested

  16. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. Thermally activated behavior of the effective stress intensity at threshold

    International Nuclear Information System (INIS)

    Yu, W.; Esaklul, K.; Gerberich, W.W.

    1984-01-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity correlate to the thermal component of the flow stress. A fractographic study of the fatigue surface was performed. Water vapor in room air promotes the formation of oxide and intergranular crack growth. At lower temperatures, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks found on all three modes of fatigue crack growth suggest that fatigue crack growth controlled by the subcell structure near threshold. The effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity)

  17. Fatigue analysis through automated cycle counting using ThermAND

    International Nuclear Information System (INIS)

    Burton, G.R.; Ding, Y.; Scovil, A.; Yetisir, M.

    2008-01-01

    The potential for fatigue damage due to thermal transients is one of the degradation mechanisms that needs to be managed for plant components. The original design of CANDU stations accounts for projected fatigue usage for specific components over a specified design lifetime. Fatigue design calculations were based on estimates of the number and severity of expected transients for 30 years operation at 80% power. Many CANDU plants are now approaching the end of their design lives and are being considered for extended operation. Industry practice is to have a comprehensive fatigue management program in place for extended operation beyond the original design life. A CANDU-specific framework for fatigue management has recently been developed to identify the options for implementation, and the critical components and locations requiring long-term fatigue monitoring. An essential element of fatigue monitoring is to identify, count and monitor the number of plant transients to ensure that the number assumed in the original design is not exceeded. The number and severity of actual CANDU station thermal transients at key locations in critical systems have been assessed using ThermAND, AECL's health monitor for systems and components, based on archived station operational data. The automated cycle counting has demonstrated that actual transients are generally less numerous than the quantity assumed in the design basis, and are almost always significantly less severe. This paper will discuss the methodology to adapt ThermAND for automated cycle counting of specific system transients, illustrate and test this capability for cycle-based fatigue monitoring using CANDU station data, report the results, and provide data for stress-based fatigue calculations. (author)

  18. Modeling of the fatigue damage accumulation processes in the material of NPP design units under thermomechanical unstationary effects. Estimation of spent life and forecast of residual life

    International Nuclear Information System (INIS)

    Kiriushin, A.I.; Korotkikh, Yu.G.; Gorodov, G.F.

    2002-01-01

    Full text: The estimation problems of spent life and forecast of residual life of NPP equipment design units, operated at unstationary thermal force loads are considered. These loads are, as a rule, unregular and cause rotation of main stress tensor platforms of the most loaded zones of structural elements and viscoelastic plastic deformation of material in the places of stresses concentrations. The existing engineering approaches to the damages accumulation processes calculation in the material of structural units, their advantages and disadvantages are analyzed. For the processes of fatigue damages accumulation a model is proposed, which allows to take into account the unregular pattern of deformation multiaxiality of stressed state, rotation of main platforms, non-linear summation of damages at the loading mode change. The model in based on the equations of damaged medium mechanics, including the equations of viscoplastic deformation of the material and evolutionary equations of damages accumulation. The algorithms of spent life estimation and residual life forecast of the controlled equipment and systems zones are made on the bases of the given model by the known real history of loading, which is determined by real model of NPP operation. The results of numerical experiments on the basis of given model for various processes of thermal force loads and their comparison with experimental results are presented. (author)

  19. Creep-fatigue damage rules for advanced fast reactor design. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-03-01

    The IAEA, following the recommendations of the International Working Group on Fast Reactors, convened a Technical Committee Meeting on Creep-Fatigue Damage Rules to be used in Fast Reactor Design. The objective of the meeting was to review developments in design rules for creep-fatigue conditions and to identify any areas in which further work would be desirable. The meeting was hosted by AEA Technology, Risley, and held in Manchester, United Kingdom, 11-13 June 1996. It was attended by experts from the European Commission, France, India, Japan, the Republic of Korea, the Russian Federation and the United Kingdom. Refs, figs, tabs

  20. Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach

    International Nuclear Information System (INIS)

    Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.

    2010-01-01

    A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)

  1. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    Science.gov (United States)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  2. The effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses

    OpenAIRE

    Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar

    2014-01-01

    Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. Methods: This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Is...

  3. A study on creep-fatigue life analysis using a unified constitutive equation and a continuous damage law

    International Nuclear Information System (INIS)

    Hiroe, Tetsuyuki; Igari, Toshihide; Nakajima, Keiichi

    1986-01-01

    A newly developed type of life analysis is introduced using a unified constitutive equation and a continuous damage law on 2 1/4Cr - 1Mo steel at 600 deg C. the viscoplasticity theory based on total strain and overstress used for the rate effect at room temperature is extended for application to the inelastic analysis at elevated temperature, and the extended uniaxial model is shown to reproduce the inelastic stress and strain behavior with a strain rate change observed in the experiment. The incremental life prediction law is employed and its coupling with the viscoplasticity model produces both an inelastic stress-strain response and the damage accumulation, simultaneously and continuously. The life prediction for creep, fatigue and creep-fatigue loading shows good correspondence with the experimental data. (author)

  4. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    Science.gov (United States)

    Barbagallo, C.; Malgioglio, G. L.; Petrone, G.; Cammarata, G.

    2017-05-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers.

  5. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    International Nuclear Information System (INIS)

    Barbagallo, C; Petrone, G; Cammarata, G; Malgioglio, G L

    2017-01-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers. (paper)

  6. Tee-junction of LMFR secondary circuit involving thermal, thermomechanical and fracture mechanics assessment on a striping phenomenon

    International Nuclear Information System (INIS)

    Lee, H.-Y.; Kim, J.-B.; Yoo, B.

    2002-01-01

    This paper presents the thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the secondary piping of LMFR using Green's function method and standard FEM. The thermohydraulic loading conditions used in the present analysis are simplified sinusoidal thermal loads and the random type thermal loads. The thermomechanical fatigue damage was evaluated according to ASME code subsection NH. The results of fatigue analysis for the sinusoidal and random type load cases showed that fatigue failure would occur at a welded joint during 90 000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage of the operation. The fatigue crack was evaluated to propagate up to 5 mm along the thickness direction during the first 940.7 and 42 698.9 hours of operation for the sinusoidal and the random loading cases, respectively. However, it was evaluated that the crack would be arrested because of the low level of the primary stresses. The fatigue and crack propagation analyses for the random type loads were performed by Green's function method. (author)

  7. Non-local modelling of cyclic thermal shock damage including parameter estimation

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by

  8. Propagation of Reactions in Thermally-damaged PBX-9501

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Glascoe, E A; Kercher, J R; Willey, T M; Springer, H K; Greenwood, D W; Molitoris, J D; Smilowitz, L; Henson, B F; Maienschein, J L

    2010-03-05

    A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosive and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.

  9. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  10. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  11. Thermal fatigue crack growth analysis in a nozzle corner

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.

    1983-01-01

    Calculations of the crack growth under local thermal shock fatigue are performed. Estimates of crack growth are based on stress distributions obtained by a finite element analysis for thermal transients in the structure without crack. Stress intensity factors are calculated using interpolation formulae derived from known basic solutions for part-through cracks under constant and linearly varying load. The crack propagation at selected parts of the crack front is calculated stepwise by integration of the Paris law with material constants C and n interpolated from test results on compact specimens at constant temperatures. Experimental results for the model vessel test MB1 at an internal pressure of 14 N/mm 2 and a temperature of 320 0 C exposed to a repeated local spraying with cold water are presented and compared to predictions

  12. Non linear thermal behaviour induced by damage of ceramic matrix composite

    International Nuclear Information System (INIS)

    El-Yagoubi, J.

    2011-10-01

    In this work the relationship between the evolution of damage and the loss of thermal properties of Ceramic Matrix Composites is investigated by a multi-scale approach. Research are conducted both experimentally and theoretically. The implemented approach is to consider two significant scales (micro and meso) where different damage mechanisms are operating and then assess the effect on the effective thermal properties by homogenization techniques. Particular attention has been given to the development of a thorough experimental work combining various characterization tools (mechanical, thermal and microstructural). At the two aforementioned scales, an experimental setup was designed to perform thermal measurements on CMC under tensile test. Thermal diffusivity of mini-composites is estimated using Lock-in thermography. Also, transverse diffusivity mapping as well as global in-plane diffusivity of woven CMC are determined by suitable rear face flash methods. The evolution of damage is then derived from acoustic emission activity along with postmortem microstructural observations. Experimental results are systematically compared to simulations. At microscale, a micromechanical-based model is used to simulate the loss of thermal conductivity of a mini-composite under tensile test. At mesoscale, a multi-scale Finite Element Model is proposed to compute the effect of damage on thermal properties of woven CMC. (author) [fr

  13. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    Science.gov (United States)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  14. Design, simulation and fabrication of a flexible bond pad with a hollow annular protuberance to improve the thermal fatigue lifetime for through-silicon vias

    International Nuclear Information System (INIS)

    Wang, Guilian; Ding, Guifu; Luo, Jiangbo; Niu, Di; Zhao, Junhong; Zhao, Xiaolin; Wang, Yan; Liu, Rui

    2014-01-01

    This paper presents a flexible bond pad (FBP) with a hollow annular protuberance to improve the thermal fatigue lifetime for its application to through-silicon vias (TSVs). The hollow annular protuberance structure across the interface between the filled copper in TSV and silicon substrate not only isolates the FBP from stress/strain concentration regions (the corners of the TSV) but also disperses TSV-induced deformation. The plastic strain distributions of the FBP and conventional plate-type bond pad (CPBP) were simulated by finite element method (FEM) under the temperature cycles. Based on the simulation results, the thermal fatigue lifetimes of the CPBP and the FBP with different TSV diameters were predicted by the Coffin–Manson equation. The results indicate that thermal fatigue lifetimes of the FBP are significantly greater than those of the CPBP and their fatigue lifetimes both decrease with the increase of TSV diameter. To examine the reliability of the predicted results, the CPBP and the FBP with TSV diameter of 100 µm were fabricated by MEMS technology and temperature cycling tests (TCTs) were performed to obtain their thermal fatigue lifetimes. The test results are in good agreement with the numerical simulation results, and it shows that the proposed FBP can effectively improve the thermal fatigue lifetime for TSVs. (paper)

  15. On the permeability of thermally damaged PBX 9501

    Energy Technology Data Exchange (ETDEWEB)

    Zerkle, David K. [Decision Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Asay, Blaine W.; Parker, Gary R.; Dickson, Peter M. [Dynamic and Energetic Materials Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Smilowitz, Laura B.; Henson, Bryan F. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2007-06-15

    Theoretical analysis, modeling, and simulation are used to provide insight into the development of permeability during thermal damage of the high explosive PBX 9501. In a recently published article, Terrones et al. [1] conclude that samples of PBX 9501 thermally damaged at 186 C are not permeable to gas flow in a manner consistent with Darcy's Law. We disagree with their conclusion. We show that they have misreported data from the literature, and that their argument depends on a fluid flow model that is physically incorrect and is applied with inappropriate physical parameters. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. The working out of a design rule in case of structures submitted to thermal striping

    International Nuclear Information System (INIS)

    Lejeail, Y.

    1994-01-01

    Thermal striping is a complex phenomenon involving incomplete mixing of hot and cold jets of fluid near a component surface, thus submitted to random fast temperature fluctuations. Because of his nature, the zones where thermal striping can occur in a fast breeder reactor are well known; these areas can suffer fatigue damage. It has been studied by several authors and some thermomechanical design rules against this fatigue damage have been proposed. In the french point of view, the problem is the determination of the margin between the mean and the design strain controlled fatigue curves, giving the allowable maximum temperature range that a component can sustain during his life without crack initiation. The purpose of this paper is the presentation of literature results (particularly on uniaxial smooth specimens) concerning the effects of different factors such as surface finish, environment, weldments, ageing, scatter of fatigue results, prior high strain cycling...on the high temperature fatigue life, which are of first importance for the determination of design factors in case of thermal striping. The remaining question is the combination of these factors. For the analysis of thermal striping test results, it is of great interest and importance to compare the crack initiation cycles and to use a coherent strain for uniaxial and equibiaxial fatigue results, as we show in the interpretation of FAENA and SPLASH tests (performed respectively by Y. Bergamaschi and B. Marini). An analysis based on elastic calculations as proposed in the RCCMR design code gives a good correlation, despite the ambiguous choice of some coefficients in best fit analysis. This problem disappears entirely in case of high cycles/low temperature variations. Then we present a strategy for the accomplishment of simplified thermal striping tests on the FAENA sodium loop in view of acquiring a better design factor knowledge. With this experimental program, we intend to study the interaction of

  17. Fatigue evaluation of piping connections under thermal transients

    International Nuclear Information System (INIS)

    Aquino, C.T.E. de; Maneschy, J.E.

    1993-01-01

    In designing nuclear power plant piping, thermal transients, caused by non-steady operation conditions, should be considered. These events may reduce considerably the lifetime of the pipes, creating the necessity of using structural elements designed in such a way to minimize the acting thermal stresses. Typical examples of the usage of these elements are the connections between pipes of small and large diameters, in which it is usually used a weldolet. Nevertheless, in some situations, the thermal stresses caused by the transients are greater than the allowable limits, being, in this case, an alternative for best results, the introduction of a special fitting replacing the weldolet. Such a fitting is designed in a way to permit a better distribution of the stresses, reducing its maximum value to acceptable levels. This paper intends to present a fatigue evaluation of a connection, using the above mentioned fitting, when subjected to a load expressed in terms of a step thermal gradient, varying from 263 deg to 40 deg C. Two different methodologies are used in this analysis: (a) Determination of the temperature distribution from the heat transfer equations for piping, being the stresses calculated according to ASME III NB-3600. (b) Thermal and stress analyses using axisymmetric elements, according to the rules presented at ASME III NB-3200. In the first case, named simplified analysis, the computer code used is the PIPESTRESS, while in the second case, the ANSYS program was adopted

  18. Large eddy simulation of a T-Junction with upstream elbow: The role of Dean vortices in thermal fatigue

    International Nuclear Information System (INIS)

    Tunstall, R.; Laurence, D.; Prosser, R.; Skillen, A.

    2016-01-01

    Highlights: • A T-Junction with an upstream bend is studied using wall-resolved LES and POD. • The bend generates Dean vortices which remain prominent downstream of the junction. • Dean vortex swirl-switching results in an unsteady secondary flow about the pipe axis. • This provides a further mechanism for near-wall temperature fluctuations. • Upstream bends can have a crucial role in T-Junction thermal fatigue problems. - Abstract: Turbulent mixing of fluids in a T-Junction can generate oscillating thermal stresses in pipe walls, which may lead to high cycle thermal fatigue. This thermal stripping problem is an important safety issue in nuclear plant thermal-hydraulic systems, since it can lead to unexpected failure of the pipe material. Here, we carry out a large eddy simulation (LES) of a T-Junction with an upstream bend and use proper orthogonal decomposition (POD) to identify the dominant structures in the flow. The bend generates an unsteady secondary flow about the pipe axis, known as Dean vortex swirl-switching. This provides an additional mechanism for low-frequency near-wall temperature fluctuations downstream of the T-Junction, over those that would be produced by mixing in the same T-Junction with straight inlets. The paper highlights the important role of neighbouring pipe bends in T-Junction thermal fatigue problems and the need to include them when using CFD as a predictive tool.

  19. Probabilistic inference of fatigue damage propagation with limited and partial information

    Directory of Open Access Journals (Sweden)

    Huang Min

    2015-08-01

    Full Text Available A general method of probabilistic fatigue damage prognostics using limited and partial information is developed. Limited and partial information refers to measurable data that are not enough or cannot directly be used to statistically identify model parameter using traditional regression analysis. In the proposed method, the prior probability distribution of model parameters is derived based on the principle of maximum entropy (MaxEnt using the limited and partial information as constraints. The posterior distribution is formulated using the principle of maximum relative entropy (MRE to perform probability updating when new information is available and reduces uncertainty in prognosis results. It is shown that the posterior distribution is equivalent to a Bayesian posterior when the new information used for updating is point measurements. A numerical quadrature interpolating method is used to calculate the asymptotic approximation for the prior distribution. Once the prior is obtained, subsequent measurement data are used to perform updating using Markov chain Monte Carlo (MCMC simulations. Fatigue crack prognosis problems with experimental data are presented for demonstration and validation.

  20. Laser-induced thermal damage of skin. Final report, September 1976--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Takata, A.N.; Zaneveld, L.; Richter, W.

    1977-12-01

    A computerized model was developed for predicting thermal damage of skin by laser exposures. Thermal, optical, and physiological data are presented for the model. Model predictions of extent of irreversible damage were compared with histologic determinations of the extent of damage produced in pig skin by carbon dioxide and ruby lasers. (Author)

  1. Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM

    International Nuclear Information System (INIS)

    Arai, Masayuki; Ogata, Takashi; Nitta, Akito

    1995-01-01

    Structural components operating at high temperatures in power plants are subjected to interaction of thermal fatigue and creep which results in creep-fatigue damage. In evaluating the life of those components, it is important to understand microscopic damage evolution under creep-fatigue conditions. In this study, static creep and creep-fatigue tests with tensile holdtime were conducted on SUS304 stainless steel by using a high-temperature fatigue machine combined with a scanning electron microscope (SEM), and cavity growth and coalescence behaviors on surface grain boundaries were observed continuously by the SEM. Quantitative analysis of creep cavity growth based on the observation was made for comparison with theoretical growth models. As a result, it was found that grain boundary cavities nucleate at random and grow preferentially on grain boundaries in a direction almost normal to the stress axis. Under the creep condition, the cavities grow monotonously on grain boundaries while they remain the elliptical shape. On the other hand, under the creep-fatigue condition the cavities grow with an effect of local strain distribution around the grain boundary due to cyclic loading and the micro cracks of one grain-boundary length were formed by coalescence of the cavities. Also, cavity nucleation and growth rates for creep-fatigue were more rapid than those for static creep and the constrained cavity growth model coincided well with the experimental data for creep. (author)

  2. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  3. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    Science.gov (United States)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  4. Long-term behaviour of binary Ti–49.7Ni (at.%) SMA actuators—the fatigue lives and evolution of strains on thermal cycling

    International Nuclear Information System (INIS)

    Karhu, Marjaana; Lindroos, Tomi

    2010-01-01

    Long-term behaviour and fatigue endurance are the key issues in the utilization of SMA actuators, but systematic research work is still needed in this field. This study concentrates on the effects of three major design parameters on the long-term behaviour of binary Ti–49.7Ni-based actuators: the effect of the temperature interval used in thermal cycling, the effect of the stress level used and the effect of the heat-treatment state of the wire used. The long-term behaviour of the wires was studied in a custom-built fatigue test frame in which the wires were thermally cycled under a constant stress level. The fatigue lives of tested specimens and the evolution of transformation and plastic strains on thermal cycling were recorded. Before the fatigue testing, a series of heat treatments was carried out to generate optimal actuator properties for the wires. One of the major conclusions of the study is that the temperature interval used for thermal cycling has a major effect on fatigue endurance: decreasing the temperature interval used for thermal cycling increased the fatigue life markedly. When the transformation is complete, a 20 °C increase of the final temperature reduced the fatigue lives at the most by half for the studied Ti–49.7Ni wires. With partial transformations the effect is more distinct: even the 5 °C increase in the final temperature reduced the fatigue life by half. The stress level and heat-treatment state used had a marked effect on the actuator properties of the wires, but the effects on fatigue endurance were minor. The fatigue test results reveal that designing and controlling long-term behaviour of binary Ti–49.7Ni actuators is very challenging because the properties are highly sensitive to the heat-treatment state of the wires. Even 5 min longer heat-treatment time could generate, at the most, double plastic strain values and 30% lower stabilized transformation strain values. The amount of plastic strain can be stated as one of

  5. Lifetime distribution in thermal fatigue - a stochastic geometry approach

    International Nuclear Information System (INIS)

    Kullig, E.; Michel, B.

    1996-02-01

    The present report describes the interpretation approach for crack patterns which are generated on the smooth surface of austenitic specimens under thermal fatigue loading. A framework for the fracture mechanics characterization of equibiaxially loaded branched surface cracks is developed which accounts also for crack interaction effects. Advanced methods for the statistical evaluation of crack patterns using suitable characteristic quantities are developed. An efficient simulation procedure allows to identify the impact of different variables of the stochastic crack growth model with respect to the generated crack patterns. (orig.) [de

  6. Thermal healing of the sub-surface damage layer in sapphire

    International Nuclear Information System (INIS)

    Pinkas, Malki; Lotem, Haim; Golan, Yuval; Einav, Yeheskel; Golan, Roxana; Chakotay, Elad; Haim, Avivit; Sinai, Ela; Vaknin, Moshe; Hershkovitz, Yasmin; Horowitz, Atara

    2010-01-01

    The sub-surface damage layer formed by mechanical polishing of sapphire is known to reduce the mechanical strength of the processed sapphire and to degrade the performance of sapphire based components. Thermal annealing is one of the methods to eliminate the sub-surface damage layer. This study focuses on the mechanism of thermal healing by studying its effect on surface topography of a- and c-plane surfaces, on the residual stresses in surface layers and on the thickness of the sub-surface damage layer. An atomically flat surface was developed on thermally annealed c-plane surfaces while a faceted roof-top topography was formed on a-plane surfaces. The annealing resulted in an improved crystallographic perfection close to the sample surface as was indicated by a noticeable decrease in X-ray rocking curve peak width. Etching experiments and surface roughness measurements using white light interferometry with sub-nanometer resolution on specimens annealed to different extents indicate that the sub-surface damage layer of the optically polished sapphire is less than 3 μm thick and it is totally healed after thermal treatment at 1450 deg. C for 72 h.

  7. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  8. Uncovering the fatigue damage initiation and progression in uni-directional non-crimp fabric reinforced polyester composite

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Glud, Jens A.; Zangenberg, Jens

    2018-01-01

    The current work studies the fatigue damage initiation and progression in a quasi-unidirectional non-crimp fabric based fibre composite used for wind turbine blades. This is done by combining in situ transilluminated white light imagining (TWLI) with ex-situ X-ray computed tomography (CT) experim...

  9. Impact of Higher Fidelity Models on Simulation of Active Aerodynamic Load Control For Fatigue Damage Reduction

    NARCIS (Netherlands)

    Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2010-01-01

    Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to

  10. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S. [Tomsk State University, Tomsk, 634050 (Russian Federation); Narikovich, A. S.; Leitsin, V. N. [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kulkov, S. N., E-mail: kulkov@ispms.ru [Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2016-08-02

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  11. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    Science.gov (United States)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2010-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  12. Thermomechanical fatigue life prediction for several solders

    Science.gov (United States)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  13. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances.

    Science.gov (United States)

    Kim, Dong-Hee; Kim, Seok-Hwan; Jeong, Woo-Seok; Lee, Ha-Yan

    2013-12-01

    The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.

  14. A discrete element model for damage and fracture of geomaterials under fatigue loading

    Science.gov (United States)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  15. Roughness Effects on Fretting Fatigue

    Science.gov (United States)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  16. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  17. Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1990-01-01

    On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests. (orig.) [de

  18. Study on Blade Fatigue Life of Rotating Power Machinery

    Directory of Open Access Journals (Sweden)

    Fu Xi

    2016-01-01

    Full Text Available The linear damage model (LDM is widely applied in engineering calculation, but it does not consider the relationship between damage variable and load parameters. Therefore, the life prediction based on LDM is not satisfied for the aero-engine blades. Besides, it easily brings about error in predicting fatigue life by common nonlinear damage model which neglect the influence of torsional stress. Hence, a modified nonlinear continuum damage model (CDM is put forward based on Chaboche nonlinear damage model in this research. And to determine the damage and fatigue life of TC4 material used in aero-engine blades, axial tension and compression fatigue test is conducted. Compared with LDM results, the fatigue life prediction results of the modified CDM in this work show a good agreement with the tests data. So the correctness of the modified model is verified. Finally, the fatigue life of a certain aero-engine high pressure compressor blade is predicted by the modified nonlinear continuum damage model.

  19. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.

    1990-02-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. Besides a zero measurement, additional measurements on a 1:5 model vessel at JRC Ispra could not be carried out, because the planned fatigue tests were not performed by JRC Ispra during the research period

  20. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  1. Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Navrátilová, Lucie; Bokůvka, O.

    2011-01-01

    Roč. 528, - (2011), s. 7036-7040 ISSN 0921-5093 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained microstructure * ultrasonic fatigue * crack initiation * copper Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.003, year: 2011

  2. A comparison between Japanese and French A16 defect assessment procedures for thermal fatigue crack growth

    International Nuclear Information System (INIS)

    Wakai, T.; Horikiri, M.; Poussard, C.; Drubay, B.

    2005-01-01

    This paper presents the results of a benchmark on thermal fatigue crack growth evaluation for a thick-wall cylinder subjected to cyclic thermal transients. The simplified crack growth evaluation methods of both JNC in JAPAN and A16 procedures proposed by CEA in France are presented. The predictions obtained using both methods are compared with the experimental data. The JNC method, which accounts for the non-linear stress component provides predictions of crack advance in a good agreement with the experimental data. In contrast, significant differences are observed between the A16 predictions and the experimental data. The discrepancies are mainly due to the non-linear stress component which is not accounted for in the A16 method. When using the JNC stress intensity factor solution determined by finite element analysis to account for the non-linear stress component, the A16 method well predicts the thermal fatigue crack growth behavior

  3. Fatigue of LMFBR piping due to flow stratification

    International Nuclear Information System (INIS)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  4. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  5. Damage and service life of nickel-base alloys under thermal-mechanical fatigue stress at different phase positions; Schaedigung und Lebensdauer von Nickelbasislegierungen unter thermisch-mechanischer Ermuedungsbeanspruchung bei verschiedenen Phasenlagen

    Energy Technology Data Exchange (ETDEWEB)

    Guth, Stefan

    2016-07-01

    This work considers the behaviour of two nickel-base alloys (NiCr22Co12Mo9 and MAR-M247 LC) under thermo-mechanical fatigue loading with varying phase angles between mechanical strain and temperature. The investigations focus on the characterisation of microstructures and damage mechanisms as a function of the phase angle. Based on the results, a life prediction model is proposed.

  6. Fatigue-Prone Details in Steel Bridges

    Directory of Open Access Journals (Sweden)

    Mohsen Heshmati

    2012-11-01

    Full Text Available This paper reviews the results of a comprehensive investigation including more than 100 fatigue damage cases, reported for steel and composite bridges. The damage cases are categorized according to types of detail. The mechanisms behind fatigue damage in each category are identified and studied. It was found that more than 90% of all reported damage cases are of deformation-induced type and generated by some kind of unintentional or otherwise overlooked interaction between different load-carrying members or systems in the bridge. Poor detailing, with unstiffened gaps and abrupt changes in stiffness at the connections between different members were also found to contribute to fatigue cracking in many details.

  7. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    Science.gov (United States)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  8. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. thermally activated behavior of the effective stress intensity at threshold

    Science.gov (United States)

    Yu, W.; Esaklul, K.; Gerberich, W. W.

    1984-05-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature for a sequence of Fe-Si binary alloys and an HSLA steel. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity, which was obtained by subtracting the closure portion from the fatigue threshold, was examined. This effective stress intensity was found to correlate very well to the thermal component of the flow stress. A detailed fractographic study of the fatigue surface was performed. Water vapor in the room air was found to promote the formation of oxide and intergranular crack growth. At lower temperature, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks were found on all three modes of fatigue crack growth. The regular spacings between these lines and dislocation modeling suggested that fatigue crack growth was controlled by the subcell structure near threshold. A model based on the slip-off of dislocations was examined. From this, it is shown that the effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity).

  9. Parametric fuselage design : Integration of mechanics and acoustic & thermal insulation

    NARCIS (Netherlands)

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design

  10. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  11. Modelling of pavement materials on steel decks using the five-point bending test: Thermo mechanical evolution and fatigue damage

    International Nuclear Information System (INIS)

    Arnaud, L; Houel, A

    2010-01-01

    This paper deals with the modelling of wearing courses on steel orthotropic decks such as the Millau viaduct in France. This is of great importance when dealing with durability: due to the softness of such a support, the pavement is subjected to considerable strains that may generate top-down cracks in the layer at right angles of the orthotropic plate stiffeners and shear cracks at the interface between pavement and steel. Therefore, a five-point bending fatigue test was developed and improved since 2003 at the ENTPE laboratory, to test different asphalt concrete mixes. This study aims at modelling the mechanical behavior of the wearing course throughout the fatigue test by a finite element method (Comsol Multiphysics software). Each material - steel, sealing sheet, asphalt concrete layer - is considered and modelled. The modelling of asphalt concrete is complex since it is a heterogeneous material, a viscoelastic medium and it thermosensitive. The actual characteristics of the asphalt concrete (thermo physical parameter and viscoelastic complex modulus) are determined experimentally on cylindrical cores. Moreover, a damage law based on Miner's damage is included in the model. The modelling of the fatigue test leads to encouraging results. Finally, results from the model are compared to the experimental data obtained from the five-point bending fatigue test device. The experimental data are very consistent with the numerical simulation.

  12. Predictive FEM simulation of thermal shock damage in the refractory lining of steelmaking installations

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    Thermal shock damage in the refractory lining of steelmaking installations is modelled using an experimentally validated constitutive damage framework which is coupled incrementally with a thermo-elastic FE package. Both non-local elasticity-based damage induced by temperature gradients and thermal

  13. Computational predictive methods for fracture and fatigue

    Science.gov (United States)

    Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.

    1994-09-01

    The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.

  14. Comparing Fatigue Life Estimations of Composite Wind Turbine Blades using different Fatigue Analysis Tools

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro; Lennie, Matthew; Branner, Kim

    2015-01-01

    In this paper, fatigue lifetime prediction of NREL 5MW reference wind turbine is presented. The fatigue response of materials used in selected blade cross sections was obtained by applying macroscopic fatigue approaches and assuming uniaxial stress states. Power production and parked load cases...... suggested by the IEC 61400-1 standard were studied employing different load time intervals and by using two novel fatigue tools called ALBdeS and BECAS+F. The aeroelastic loads were defined thought aeroelastic simulations performed with both FAST and HAWC2 tools. The stress spectra at each layer were...... calculated employing laminated composite theory and beam cross section methods. The Palmgren-Miner linear damage rule was used to calculate the accumulation damage. The theoretical results produced by both fatigue tools proved a prominent effect of analysed design load conditions on the estimated lifetime...

  15. Pest damage assessment in fruits and vegetables using thermal imaging

    Science.gov (United States)

    Vadakkapattu Canthadai, Badrinath; Muthuraju, M. Esakki; Pachava, Vengalrao; Sengupta, Dipankar

    2015-05-01

    In some fruits and vegetables, it is difficult to visually identify the ones which are pest infested. This particular aspect is important for quarantine and commercial operations. In this article, we propose to present the results of a novel technique using thermal imaging camera to detect the nature and extent of pest damage in fruits and vegetables, besides indicating the level of maturity and often the presence of the pest. Our key idea relies on the fact that there is a difference in the heat capacity of normal and damaged ones and also observed the change in surface temperature over time that is slower in damaged ones. This paper presents the concept of non-destructive evaluation using thermal imaging technique for identifying pest damage levels of fruits and vegetables based on investigations carried out on random samples collected from a local market.

  16. Nonlinear aspects of structural fatigue damage assessment and accumulation

    International Nuclear Information System (INIS)

    Leis, B.N.

    1977-01-01

    The present paper reviews a recently developed concept for structural fatigue analysis which is capable of accounting for nonlinearities in both the above noted transformations. It is shown that, for cases where the local stressing and straining is proportional, the multiplicity of initiation sites and mechanisms observed to dominate structural fatigue resistance can be explained in terms of these additional nonlinearities. The ability of current concepts for structural fatigue analysis which account for nonlinear action to handle situaions where nonproportional stressing occurs in fatigue critical locations is next examined. Limitations in the assumptions made in fatigue analysis are shown to essentially preclude the application of present technology to that class of problems. A new approach whereby the present fatigue analysis procedures based on a deformation-type plasticity analysis can be extended to handle the nonproportional cycling by their application on a 'memory event' by 'memory event' basis is postulated and discussed in the context of a simple component

  17. Fatigue life assessment for pipeline welds by x-ray diffraction technique

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Yoo, Keun Bong

    2006-01-01

    The objective of this study is to estimate the feasibility of X-ray diffraction method application for fatigue life assessment of the high-temperature pipeline steel such as main steam pipe, re-heater pipe and header etc. in power plant. In this study, X-ray diffraction tests using various types of specimen simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages such as 1/4, l/2 and 3/4 of fatigue life, respectively. As a result off-ray diffraction tests for specimens simulated fatigue damages, we conformed that the variation of the full width at half maximum intensity decreased in proportion to the increase of fatigue life ratio. And also, He ratio of the full width at half maximum intensity due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationship, it was suggested that direct expectation of the life consumption rate was feasible.

  18. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Lowe, Tristan

    2016-01-01

    In this study, the progression of tension-tension fatigue (R=0.1) damage in a unidirectional (UD) composite made from a non-crimp glass fibre fabric used for wind turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT). Initially, a representative volume is examined at ...

  19. On-line fatigue monitoring and probabilistic assessment of margins

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, I. [Electricite de France, 93 - Saint-Denis (France). Direction des Etudes et Recherches; Morilhat, P. [Electricite de France, 93 - Saint-Denis (France). Direction des Etudes et Recherches

    1995-01-01

    An on-line computer-aided system has been developed by Electricite de France, the French utility, for fatigue monitoring of critical locations in the nuclear steam supply system. This tool, called a fatigue meter, includes as input data plant parameters and is based on some conservative assumptions at several steps of the damage assessment (thermal boundary conditions, stress computation,..). In this paper we present recent developments performed towards a better assessment of margins involved in the complete analysis. The methodology is illustrated with an example showing the influence of uncertainty in plant parameters on the final stress computed at a pressurized water reactor 900MW unit pressurizer surge line nozzle. A second example is shown to illustrate the possibility of defining some transient archetypes. ((orig.)).

  20. Model of thermal fatigue of a copper surface under the action of high-power microwaves

    Science.gov (United States)

    Kuzikov, S. V.; Plotkin, M. E.

    2007-10-01

    The accelerating structures of modern supercolliders, as well as the components of high-power microwave electron devices operated in strong cyclic electromagnetic fields should have long lifetimes. Along with the electric breakdown, the surfaces of these microwave components deteriorate and their lifetimes decrease due to thermal strains and subsequent mechanical loads on the surface metal layer. The elementary theory of thermal fatigue was developed in the 1970s. In particular, a model of metal as a continuous medium was considered. Within the framework of this model, thermal fatigue is caused by the strains arising between the hot surface layer and the cold internal layer of the metal. However, this theory does not describe all the currently available experimental data. In particular, the notion of “safe temperature” of the heating, i.e., temperature at which the surface is not destroyed during an arbitrarily long series of pulses, which was proposed in the theoretical model, is in poor agreement with the experiment performed in the Stanford Linear Accelerator Center (SLAC, USA). In this work, the thermal-fatigue theory is developed on the basis of consideration of the copper polycrystalline structure. The necessity to take it into account was demonstrated by the results of the SLAC experiment, in which a change in the mutual orientation of copper grains and the formation of cracks at their boundaries was recorded for the first time. The developed theory makes it possible to use the experimental data to refine the coefficients in the obtained formulas for the lifetime of the metal surface and to predict the number of microwave pulses before its destruction as a function of the radiation power, the surface-temperature increase at the pulse peak, and the pulse duration.

  1. Fatigue damage sensor and substatiation of its application. Communication 1

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Bojko, V.I.

    1985-01-01

    Basic characteristics are presented for the fatigue damage sensor at regular loading produced according to the technology developed at the Institute of Problems in Strength. It is shown that the sensor application potentialities may be extended at the exoense of using deformation multipliers. Loading frequency, temperature and cycle assymetry are studied for their effect on the sensor readings. It is established that the basic sensor characteristics are not affected by the cycle assymetry in the deformation range studied. Frequency and temperature variation ranges are determined where these parameters have no effect on the sensor readings. Ways for considering the effect of the studied factors, as well as the effect of a part stress concentration on sensor readings are shown when the sensor is applied for predicting a part

  2. Equi-biaxial loading effect on austenitic stainless steel fatigue life

    Directory of Open Access Journals (Sweden)

    C. Gourdin

    2016-10-01

    Full Text Available Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures. In some nuclear power plant components, the fatigue loading may be equibiaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equibiaxial tension. Two calibration tests (with strain gauges and image correlation were used to obtain the relationship between the imposed deflection and the radial strain on the FABIME2 specimen. A numerical study has confirmed this relationship. Biaxial fatigue tests are carried out on two austenitic stainless steels for different values of the maximum deflection, and with a load ratio equal to -1. The interpretation of the experimental results requires the use of an appropriate definition of strain equivalent. In nuclear industry, two kinds of definition are used: von Mises and TRESCA strain equivalent. These results have permitted to estimate the impact of the equibiaxiality on the fatigue life of components

  3. Fatigue life of fibre reinforced plastics at 295 K after thermal cycling between 295 K and 77 K

    Science.gov (United States)

    Belisario, G.; Caproni, F.; Marchetti, E.

    Results of low cycle three-point end fatigue tests at 295 K are reported. These were obtained from fibre reinforced plastics (FRP) flat specimens made of epoxy matrix reinforced with glass rovings only or glass rovings and Kevlar cloth. It is shown that previous thermal cycles between 295 K and 77 K exert an influence on the fatigue life as well on the acoustic emission results.

  4. The Effect of Fatigue Cracks on Fastener Flexibility, Load Distribution and Fatigue Crack Growth

    Science.gov (United States)

    2012-05-01

    Application of Damage Tolerance Concepts to Critical Engine Components”, “Damage Tolerance Concepts for Critical Engine Components, AGARD - CP 393”, NATO...railroad bridge [71]. The vast majority of fatigue tests during this period were of the rotating bending type [72, 73 ]. In these tests a specimen is...Experiment Station, University of Illinois, October 1921 73 . Mann, J. Y., Fatigue of Materials; An Introductory Text, Melbourne University Press, 1967

  5. Discrimination between Fatigue Cracking and Mechanical Damage in Aircraft Fastener Holes by Eddy-Current Phase Rotation

    Science.gov (United States)

    2016-08-01

    Science and Technology Organisation) EDM Electrodischarge machining FSH Full Screen Height on an eddy - current instrument IVD Ion Vapour...electromagnetic skin depth δ is 0.15 mm in the fastener holes3. 4.1 Bolt Hole Eddy Current Inspection Procedure 4.1.1 Calibration on Machined ...UNCLASSIFIED UNCLASSIFIED Discrimination between Fatigue Cracking and Mechanical Damage in Aircraft Fastener Holes by Eddy - Current Phase

  6. Effects of load and thermal histories on mechanical behavior of materials; Proceedings of the Symposium, Denver, CO, Feb. 25, 26, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, P.K.; Nicholas, T.

    1987-01-01

    This volume includes topics on fatigue crack propagation; isothermal and thermal-mechanical fatigue; and microstructure, fracture, and damage. Papers are presented on transients in fatigue crack growth, elevated-temperature fatigue crack propagation, the role of crack closure in crack retardation in P/M and I/M aluminum alloys, the acoustic interrogation of fatigue overload effects, and the effects of frequency and environment on crack growth in Inconel 718. Special attention is given to isothermal fatigue failure mechanisms in low-tin lead-based solder, the stress and strain controlled low-cycle fatigue of Pb-Sn solder for electronic packaging applications, load sequence effects on the deformation of isolated microplastic grains, and thermal fatigue of stainless steel. Other papers are on the influence of thermal aging on the creep crack growth behavior of a Cr-Mo steel, the effect of cyclic loading on the fracture toughness of a modified 4340 steel, and the effects of hot rolling condition and boron microalloying on phase transformation and microstructure in niobium-bearing interstitial free steel.

  7. IFMIF - Design Study for in Situ Creep Fatigue Tests

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Simakov, St.; Stratmanns, E.; Vladimirov, P.; Moeslang, A.

    2006-01-01

    While the high flux volume (20-50 dpa/fpy) of the International Fusion Materials Irradiation Facility (IFMIF) is dedicated to the irradiation of ∼ 1100 qualified specimens that will be post irradiation examined after disassembling in dedicated Hot Cells, various in situ experiments are foreseen in the medium flux volume (1-20 dpa/fpy). Of specific importance for structural lifetime assessments of fusion power reactors are instrumented in situ creep-fatigue experiments, as they can simulate realistically a superposition of thermal fatigue or creep fatigue and irradiation with fusion relevant neutrons. Based on former experience with in situ fatigue tests under high energy light ion irradiation, a design study has been performed to evaluate the feasibility of in situ creep fatigue tests in the IFMIF medium flux position. The vertically arranged test module for such experiments consists basically of a frame similar to a universal testing machine, but equipped with three pulling rods, driven by independent step motors, instrumentation systems and specimen cooling systems. Therefore, three creep fatigue specimens may be tested at one time in this apparatus. Each specimen is a hollow tube with coolant flow in the specimen interior to maintain individual specimen temperatures. The recently established IFMIF global 3D geometry model was used together the latest McDeLicious code for the neutral and charged particle transport calculations. These comprehensive neutronics calculations have been performed with a fine special resolution of 0.25 cm 3 , showing among others that the specimens will be irradiated with a homogeneous damage rate of up to 13(∼ 9%) dpa/fpy and a fusion relevant damage to helium ratio of 10-12 appm He/dpa. In addition, damage and gas production rates as well as the heat deposition in structural parts of the test module have been calculated. Despite of the vertical gradients in the nuclear heating, CFD code calculations with STAR-CD revealed very

  8. Interaction fatigue-creep-environment in an austenitic stainless steel Z2 CND 17-13 (Type 316 L) at 600 and 650 deg C. Microstructural evolution and damage

    International Nuclear Information System (INIS)

    Rezgui, B.

    1982-12-01

    The resistance of steel to continuous fatigue is directly related to its behaviour towards the surroundings (oxidation). This interaction considerably lowers resistance to crack initiation but has no effect on propagation, and rupture is transgranular. Conversely the influence of the environment is negligible under fatigue conditions with a hold time and rupture becomes intergranular whatever the surroudings. Cavities are created inside the material during the hold time and their interaction with each other and with cracks from the surface are the factors responsible for the degradation of fatigue properties. Transgranular rupture initiated in slip bands, which characterises damage by pure fatigue, is gradually replaced by intergranular rupture under fatigue with hold time. Meanwhile a new deformation mode appears: intergranular slip. The longer the hold time the stronger its effect, a tendency offset at high temperature. Hold time, temperature and deformation promote dynamic structural aging and restoration in the material. Since the mechanisms and kinetics of creep fatigue damage are different according to the deformation level and the hold time duration it would not be safe to extrapolate the results [fr

  9. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  10. Multi-scale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    International Nuclear Information System (INIS)

    Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.; Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.

    2010-01-01

    We present the latest advances of the multi-scale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multi-scale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This quantification allows the studying of how the clusterization of DNA lesions affects the lethality of damage. We discuss the first results of molecular dynamics simulations of ubiquitin in the environment of thermal spikes, predicted to occur in tissue for a short time after an ion's passage in the vicinity of the ions' tracks. (authors)

  11. FAMOSi: AREVA's new fatigue monitoring system

    International Nuclear Information System (INIS)

    Abib, E.; Heinz, B.

    2015-01-01

    With its local instrumentation, the Fatigue Monitoring System integrated (FAMOSi) is able to detect real thermal loadings like thermal stratification at the primary and secondary piping system. These thermal loadings are the basis for a reliable stress and fatigue evaluation and an essential part for plant lifetime extension programs. FAMOSi uses a fatigue estimation method for an on-line overview about the fatigue status of the plant's components. Detailed fatigue calculations under consideration of environmental assisted fatigue effects were done with the off-line part of the system. This contributes to optimize the operating modes or, to detect malfunctions of components like leaking valves. FAMOSi is used in several power plants in Europe and across the world to reach a better knowledge of plant behavior during start-up, shut-down, spray events or steam generator charging. In some lifetime extension programs, the exchange of heavy components could be avoided due to realistic stress and fatigue calculation based on real thermal loadings. Fatigue monitoring with FAMOSi contributes to cost savings, introduces condition based maintenance and provides a solid basis for life time extension. (authors)

  12. Effect of alumina-silica-zirconia eutectic ceramic thermal barrier coating on the low cycle fatigue behaviour of cast polycrystalline nickel-based superalloy at 900 °C

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Čelko, L.; Chráska, Tomáš; Šulák, Ivo; Gejdoš, P.

    2017-01-01

    Roč. 318, MAY (2017), s. 374-381 ISSN 0257-8972. [RIPT - International Meeting on Thermal Spraying /7./. Limoges, 09.12.2015-12.12.2015] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Thermal barrier coating * Nickel-based superalloy * Plasma spraying * High temperature fatigue * Fatigue life * Cyclic stress-strain curve Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFP-V) OBOR OECD: Audio engineering, reliability analysis; Audio engineering, reliability analysis (UFM-A); Audio engineering, reliability analysis (UFP-V) Impact factor: 2.589, year: 2016

  13. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  14. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  15. Assessment of Accrued Damage and Remaining Useful Life in Leadfree Electronics Subjected to Multiple Thermal Environments of Thermal Aging and Thermal Cycling

    Data.gov (United States)

    National Aeronautics and Space Administration — A method has been developed for prognostication of accrued prior damage in electronics subjected to overlapping sequential environments of thermal aging and thermal...

  16. Thermal fatigue cracking in T-fittings of feed water systems

    International Nuclear Information System (INIS)

    Oesterberg, J.

    1983-03-01

    The existence of thermal fatigue cracks can be determined by ultrasonic methods. The depth of the cracks will be of importance for evaluation of the seriousness of the situation. Currently, no method is available for determining depth of cracks without cutting and grinding. Methods for gaining information of crack depth have been discussed with leading European materials testing institutes. More elaborate ultrasonic methods have been tested with negative results. On testing signals from crack corners flood possible signals from the crack tips. At present no reliable technique based on ultrasonics exist (in Europe, that will give information of crack depth.(P.Aa.)

  17. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions in the LVR-15 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, Jan [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Entler, Slavomir, E-mail: slavomir.entler@cvrez.cz [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Vsolak, Rudolf; Klabik, Tomas [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Zlamal, Ondrej [CEZ, Duhova 2/1444, 140 53 Praha 4 (Czech Republic); Bellin, Boris; Zacchia, Francesco [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Irradiated thermal fatigue testing of the ITER primary first wall mock-ups. • Cyclic heat flux of 0.5 MW/m{sup 2} in the neutron field of the nuclear reactor core. • 17,040 thermal cycles. • Radiation damage in the range of 0.41–1.17 dpa depending on the material. - Abstract: The TW3 in-pile rig enabled the thermal fatigue testing of ITER primary first wall mock-ups in the core of the nuclear reactor. This experiment investigated the neutron irradiation influence on the design performance under high heat flux testing. A thermal flux of 0.5 MW/m{sup 2} in the neutron field of the core of the LVR-15 nuclear reactor was applied. Within the scope of the tests with simultaneous neutron irradiation, the TW3 rig reached a record of 17,040 thermal cycles with the radiation damage in the range of 0.41–1.17 dpa depending on the material. Even after a high number of thermal cycles, while being irradiated by neutrons, no damage of the tested mock-ups was visually observed. Further testing and analysis will follow in the Forschungszentrum Juelich.

  18. Quantification of LOCA core damage frequency based on thermal-hydraulics analysis

    International Nuclear Information System (INIS)

    Cho, Jaehyun; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon

    2017-01-01

    Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety

  19. Quantification of LOCA core damage frequency based on thermal-hydraulics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun, E-mail: chojh@kaeri.re.kr; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon

    2017-04-15

    Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety

  20. A new method for the experimental study of fatigue behaviour of thermoplastic materials

    Directory of Open Access Journals (Sweden)

    M. Sanità

    2008-10-01

    Full Text Available Nowadays most industrial realities undergo a strong push to improve cost-effectiveness, productivity and quality of manufactured products. In particular we focussed our attention in the area of design of plastic structural components, including both optimization of existing structures and design of new ones. In this case, but the following considerations have a more general value, these needs could be translated into demanding requirements of cost-effectiveness, weight reduction, reduced time-to-market with guarantee reliability. From a material perspective this means demanding mechanical performances, attention to safety margins and need of a better control of key design parameters. To obtain these results, we need to develop a new approach and effective tools in the design of plastic materials and components aimed at tailoring part behaviour to endurance and performance requirements.The target of the project is to find effective tools for predicting life endurance and damage evolution of plastic materials and components under mechanical/thermal service loading, in order to support the development of new material formulations and the design and optimization of structural components. In a particular way, we focussed our work in the characterization and modellization of materials durability and damage mechanisms.One of the main problems related to materials durability is due to fatigue failure. Fatigue process is a progressive weakening of a component with increasing time under load such that loads to be supported satisfactorily for short duration produce failure after long durations [1, 2, 3]. Fatigue failure should not be thought only as the breaking of the specimen into two separated pieces, but as a progressive material damage accumulation [2]. Material damage during fatigue loading manifests as progressive reduction of stiffness and as creep [5].As standard fatigue testing are expensive in terms of money and time, it is essential to develop

  1. Resistance of heat resisting steels and alloys to thermal and mechanical low-cycle fatigue

    International Nuclear Information System (INIS)

    Tulyakov, G.A.

    1980-01-01

    Carried out is a comparative evalUation of resistance of different materials to thermocyclic deformation and fracture on the base of the experimental data on thermal and mechanical low-cycle fatigUe. Considered are peculiarities of thermal fatigue resistance depending on strength and ductility of the material. It is shown, that in the range of the cycle small numbers before the fracture preference is given to the high-ductility cyclically strengthening austenitic steels of 18Cr-10Ni type with slight relation of yield strength to the σsub(0.2)/σsub(B) tensile strength Highly alloyed strength chromium-nickel steels, as well as cyclically destrengthening perlitic and ferritic steels with stronger σsub(0.2)/σsub(B) relation as compared with simple austenitic steels turn to be more long-lived in the range of the cycle great numbers berore fracture. Perlitic steels are stated to have the lowest parameter values of the K crack growth intensity under the similar limiting conditions of the experiment, while steels and alloys with austenite structure-higher values of the K parameter

  2. Reduction in thermal conductivity of ceramics due to radiation damage

    International Nuclear Information System (INIS)

    Klemens, P.G.; Hurley, G.F.; Clinard, F.W. Jr.

    1976-01-01

    Ceramics are required for a number of applications in fusion reactors. In several of these applications, the thermal conductivity is an important design parameter as it affects the level of temperature and thermal stress in service. Ceramic insulators are known to suffer substantial reduction in thermal conductivity due to neutron irradiation damage. The present study estimates the reduction in thermal conductivity at high temperature due to radiation induced defects. Point, extended, and extended partly transparent defects are considered

  3. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  4. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.; Voss, B.; Falk, L.

    1989-01-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to high-cycle fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. (orig.) [de

  5. Thermomechanical fatigue of Sn-37 wt.% Pb model solder joints

    International Nuclear Information System (INIS)

    Liu, X.W.; Plumbridge, W.J.

    2003-01-01

    The fatigue of Sn-37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain-stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 deg. C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu 6 Sn 5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling

  6. A review on fatigue life prediction methods for anti-vibration rubber materials

    Directory of Open Access Journals (Sweden)

    Xiaoli WANG

    2016-08-01

    Full Text Available Anti-vibration rubber, because of its superior elasticity, plasticity, waterproof and trapping characteristics, is widely used in the automotive industry, national defense, construction and other fields. The theory and technology of predicting fatigue life is of great significance to improve the durability design and manufacturing of anti-vibration rubber products. According to the characteristics of the anti-vibration rubber products in service, the technical difficulties for analyzing fatigue properties of anti-vibration rubber materials are pointed out. The research progress of the fatigue properties of rubber materials is reviewed from three angles including methods of fatigue crack initiation, fatigue crack propagation and fatigue damage accumulation. It is put forward that some nonlinear characteristics of rubber under fatigue loading, including the Mullins effect, permanent deformation and cyclic stress softening, should be considered in the further study of rubber materials. Meanwhile, it is indicated that the fatigue damage accumulation method based on continuum damage mechanics might be more appropriate to solve fatigue damage and life prediction problems for complex rubber materials and structures under fatigue loading.

  7. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    Science.gov (United States)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  8. Improved ultrasonic detection of fatigue cracks in Ti-6A1-4V by thermo-optical modulation

    International Nuclear Information System (INIS)

    Yan Zhongyu; Nagy, Peter B.

    2000-01-01

    Pulsed infrared laser irradiation was used to positively identify small fatigue cracks on the surface of fatigue damaged Ti-6Al-4V specimens. The resulting transient thermoelastic deformation perceptibly changes the opening of partially closed surface cracks without affecting other scatterers, such as surface grooves, corrosion pits, coarse grains, etc., that might hide the fatigue crack from ultrasonic detection. We found that this method, which was previously shown to be very effective in 2024 aluminum alloy, must be modified in order to successfully adapt it to Ti-6Al-4V titanium alloy, where significant thermo-optical modulation was found even from straight corners or open notches. This spurious modulation is caused by direct thermal modulation of the sound velocity in the intact material rather than thermal stresses via crack closure. Different methods have been developed to distinguished direct thermal modulation from crack-closure modulation due to thermoelastic stresses. It was found that the modified thermo-optical modulation method can increase the detectability of hidden fatigue cracks in Ti-6Al-4V specimens by approximately one order of magnitude. - This effort was sponsored by the Defense Advanced Research Projects Agency (DARPA) Multidisciplinary University Research Initiative (MURI), under Air Force Office of Scientific Research grant number F49620-96-1-0442

  9. Study on evolution of internal damage in CFRP in fatigue process; Hiro katei ni okeru CFRP no naibu sonsho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K. [Nagoya Univ. (Japan); Murakami, S. [Nagoya Univ. (Japan). Faculty of Engineering

    1998-05-15

    Development of internal damage evolution in plates and thin tubular speciments of CFRP laminates under static and dynamic loadings are discussed by means of Acoustic Emission measurements and micrographical observations. The mechanical behavior of three kinds of speciments, i.e. undamaged laminate plates [+45deg{sub 4}/-45deg{sub 4}]{sub s}, damaged plates [+45deg{sub 4}/-45deg{sub 4}]{sub s} subjected to drop-weight impact and undamaged tubular speciments [ 45deg]{sub 4}, under quasi-static and fatigue loadings is observed first. Then the mechanism of the resulting inelastic behavior and the change in the mechanical properties are discussed in relation to the evolution of internal damage. Finally the distribution and the evolution of matrix crecks and delamination in the sliced section of the speciments are measured quantitatively in several stages of fatigue process. The dependence of damage distribution on the loading condition is elucidated. Namely, in the case of the stress ratio R=-0.25, the growth of damage zone involving the main crack is localized, and the main crack forms large delamination. On the other hand, for the stress ratio R=0, small cracks are distributed sparsely, but the main crack is not observed until the final stage of the fatifue process. 8 refs., 12 figs.

  10. Fatigue analysis of the bow structure of FPSO

    Science.gov (United States)

    Hu, Zhi-Qiang; Gao, Zhen; Gu, Yong-Ning

    2003-06-01

    The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooring force consists of wave frequency force (WF) and 2nd draft low frequency force (LF)[3], which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooring forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSO’s bow structure can be observed.

  11. Application of a unified fatigue modelling to some thermomechanical fatigue problems

    International Nuclear Information System (INIS)

    Dang, K. van; Maitournam, H.; Moumni, Z.

    2005-01-01

    Fatigue under thermomechanical loadings is an important topic for nuclear industries. For instance, thermal fatigue cracking is observed in the mixing zones of the nuclear reactor. Classical computations using existing methods based on strain amplitude or fracture mechanics are not sufficiently predictive. In this paper an alternative approach is proposed based on a multiscale modelling thanks to shakedown hypothesis. Examples of predictive results are presented. Finally an application to the RHR problem is discussed. Main ideas of the fatigue modelling: Following an idea of Professor D. Drucker who wrote in 1963 'when applied to the microstructure there is a hope that the concept of endurance limit and shakedown are related, and that fatigue failure can be related to energy dissipated in idealized material when shakedown does not occur.' we have developed a theory of fatigue based on this concept which is different from classical fatigue approaches. Many predictive applications have been already done particularly for the automotive industry. Fatigue resistance of structures undergoing thermomechanical loadings in the high cycle regime as well as in the low cycle regime are calculated using this modelling. However, this fatigue theory is until now rarely used in nuclear engineering. After recalling the main points of the theory, we shall present some relevant applications which were done in different industrial sectors. We shall apply this modelling to the prediction of thermal cracking observed in the mixing zones of RHR. (authors)

  12. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  13. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  14. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  15. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  16. Experimental and numerical studies of various thermal sleeves subjected to severe cyclic thermal shocks

    International Nuclear Information System (INIS)

    Masson, J.C.; Moinereau, D.

    1990-01-01

    During the first operating years of nuclear power plants of different countries, damage was encountered on thermal sleeves used as nozzle protection. Following this discovery studies were initiated to determine the causes and to find solutions. At first a problem of vibration was found and easily solved by reducing gaps and reinforcing the welding of the sleeves. But preliminary tests with cyclic thermal shocks showed a risk of fatigue crack initiation and propagation both in the sleeve fixation and in the nozzle. Therefore a large research and development program was led principally by EDF laboratories of Les Renardieres, to demonstrate the absence of nocivity of thermal shocks during the plants life time [fr

  17. Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals

    Science.gov (United States)

    Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.

    2014-05-01

    The effect of thermal fatigue during tests of and single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the and samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a mixed brittle-ductile character

  18. Structural Technology Evaluation Analysis Program (STEAP). Task Order 0029: Thermal Stability of Fatigue Life-Enhanced Structures

    Science.gov (United States)

    2012-01-01

    thermal and mechanical effects. When studying the residual stress relaxation behavior of AISI 4140 steel under conventional fatigue at elevated...Vohringer and 28. E. Macherauch, “Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures

  19. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  20. Thermal fluctuation problems encountered in LMFRs

    International Nuclear Information System (INIS)

    Gelineau, O.; Sperandio, M.; Martin, P.; Ricard, J.B.; Martin, L.; Bougault, A.

    1994-01-01

    One of the most significant problems of LMFBRs deals with thermal fluctuations. The main reason is that LMFBRs operate with sodium coolant at very different temperatures which leads to the existence of several areas of transition between hot and cold sodium. These transitions areas which are the critical points, maybe found in the reactor block as well as in the secondary and auxiliary loops. The characteristics of these thermal fluctuations are not easy to quantify because of their complex (random) behaviour, and often demand the use of thermalhydraulic mock-up tests. A good knowledge of these phenomena is essential because of the potential high level of damage they can induce on structures. Two typical thermal fluctuation problems encountered on operation reactors are described. They were not originally anticipated at the design stage of the former Phenix and the latter Superphenix reactors. Description and the analyses performed to describe the damaging process are explained. A well known thermal fluctuation problem is presented. It is pointed out how the feedback from the damages observed on operating reactors is used to prevent the components from any high cycle fatigue

  1. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  2. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  3. Evaluation of long term creep-fatigue life for type 304 stainless steel

    International Nuclear Information System (INIS)

    Kawasaki, Hirotsugu; Ueno, Fumiyoshi; Aoto, Kazumi; Ichimiya, Masakazu; Wada, Yusaku

    1992-01-01

    The long term creep-fatigue life of type 304 stainless steel was evaluated by the creep-fatigue life prediction method based on a linear damage fraction rule. The displacement controlled creep-fatigue tests were carried out, and the time to failure of longer than 10000 hours was obtained. The creep damage of long term creep-fatigue was evaluated by taking into account the stress relaxation behavior with elastic follow-up during the hold period. The relationship between life reduction of creep-fatigue and fracture mode was provided by the creep cavity growth. The results of this study are summarized as follows; (1) The long term creep-fatigue data can be reasonably evaluated by the present method. The predicted lives were within a factor of 3 of the observed ones. (2) The present method provides the capability to predict the long term creep-fatigue life at lower temperatures as well as that at the creep dominant temperature. (3) The value of creep damage for the long term creep-fatigue data increased by elastic follow-up. The creep-fatigue damage diagram intercepted between 0.3 and 1 can represent the observed creep-fatigue damages. (4) The cavity growth depends on the hold time. The fracture of long term creep-fatigue is caused by the intergranular cavity growth. The intergranular fracture of creep-fatigue is initiated by the cavity growth and followed by the microcrack propagation along grain boundaries starting from creep cavities. (author)

  4. Areva fatigue concept. Fast fatigue evaluation, a new method for fatigue analysis

    International Nuclear Information System (INIS)

    Heinz, Benedikt; Bergholz, Steffen; Rudolph, Juergen

    2011-01-01

    Within the discussions on the long term operation (LTO) of nuclear power plants the ageing management is on the focus of that analysis. The knowledge of the operational thermal cyclic load data on components of the power plants and their evaluation in the fatigue analysis is a central concern. The changes in fatigue requirements (e.g. the consideration of environmentally assisted fatigue - EAF) recently discussed and LTO efforts are a strong motivation for the identification of margins in the existing fatigue analysis approaches. These margins should be considered within new approaches in order to obtain realistic (or more accurate) analysis results. Of course, these new analysis approaches have to be manageable and efficient. The Areva Fatigue Concept (AFC) offers the comprehensive conceptual basis for the consideration of fatigue on different levels and depths. The combination of data logging and automated fatigue evaluation are important modules of the AFC. Besides the established simplified stress based fatigue estimation Areva develops a further automated fatigue analysis method called Fast Fatigue Evaluation (FFE). This method comprises highly automated stress analyses at the fatigue relevant locations of the component. Hence, a component specific course of stress as a function of time is determined based on FAMOS or similar temperature measurement systems. The subsequent application of the rain flow cycle counting algorithm allows for the determination of the usage factor following the rules of the design code requirements. The new FFE approach constitutes a cycle counting method based on the real stresses in the component, and determined as result a rule-conformity cumulative usage factor. (orig.)

  5. Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experiments

    Science.gov (United States)

    Browning, J.; Daoud, A.; Meredith, P. G.; Mitchell, T. M.

    2017-12-01

    Volcanic and geothermal systems are in part controlled by the mechanical and thermal stresses acting on them and so it is important to understand the response of volcanic rocks to thermo-mechanical loading. One such response is the well-known `Kaiser stress-memory' effect observed under cyclic mechanical loading. By contrast, the presence of an analogous `Kaiser temperature-memory effect' during cyclic thermal loading has received little attention. We have therefore explored the possibility of a Kaiser temperature-memory effect using three igneous rocks of different composition, grain size and origin; Slaufrudalur Granophyre (SGP), Nea Kameni Andesite (NKA) and Seljadalur Basalt (SB). We present results from a series of thermal stressing experiments in which acoustic emissions (AE) were recorded contemporaneously with changing temperature. Samples of each rock were subjected to both a single heating and cooling cycle to a maximum temperature of 900 °C and multiple heating/cooling cycles to peak temperatures of 350°C, 500°C, 700°C and 900 °C (all at a constant rate of 1°C/min on heating and a natural cooling rate of memory effect in SGP, but not in either NKA and SB. We further find that the vast majority of thermal crack damage is generated upon cooling in the finer grained materials (NKA and SB), but that substantial thermal crack damage is generated during heating in the coarser grained SGP. The total amount of crack damage generated due to heating or cooling is dependent on the mineral composition and, most importantly, the grain size and arrangement, as well as the maximum temperature to which the rock is exposed. Knowledge of thermal stress history and the presence of a Kaiser temperature-memory effect is potentially important in understanding magma chamber dynamics, where the cyclic nature of mechanical and thermal inflation and deflation can lead to sequential accumulation of damage, potentially leading to critical rupture.

  6. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.

    Science.gov (United States)

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-06-17

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc. , it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  7. Analysis result for OECD benchmark on thermal fatigue problem

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira; Fujii, Yuzou

    2005-01-01

    The main objective of this analysis is to understand the crack growth behavior under three-dimensional (3D) thermal fatigue by conducting 3D crack initiation and propagation analyses. The possibility of crack propagation through the wall thickness of pipe, and the accuracy of the prediction of crack initiation and propagation are of major interest. In this report, in order to estimate the heat transfer coefficients and evaluate the thermal stress, conventional finite element analysis (FEA) is conducted. Then, the crack driving force is evaluated by using the finite element alternating method (FEAM), which can derive the stress intensity factor (SIF) under 3D mechanical loading based on finite element analysis without generating the mesh for a cracked body. Through these two realistic 3D numerical analyses, it has been tried to predict the crack initiation and propagation behavior. The thermal fatigue crack initiation and propagation behavior were numerically analyzed. The conventional FEA was conducted in order to estimate the heat transfer coefficient and evaluate the thermal stress. Then, the FEAM was conducted to evaluate the SIFs of surface single cracks and interacting multiple cracks, and crack growth was evaluated. The results are summarized as follows: 1. The heat transfer coefficients were estimated as H air = 40 W/m 2 K and H water = 5000 W/m 2 K. This allows simulation of the change in temperature with time at the crack initiation points obtained by the experiment. 2. The maximum stress occurred along the line of symmetry and the maximum Mises equivalent stress was 572 MPa. 3. By taking the effect of mean stress into account according to the modified Goodman diagram, the equivalent stress range and the number of cycles to crack initiation were estimated as 1093 MPa and 3.8x10 4 , respectively, although the tensile strength was assumed to be 600 MPa. 4. It was shown from the evaluated SIFs that longitudinal cracks can penetrate the wall of the pipe

  8. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  9. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  10. Fatigue Damage Evolution in Fibre Composites for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk

    on the micro-scale in the non-crimp fabric based composites used for wind turbine blades. The results show that fibre fractures in the unidirectional (UD) load carrying fibre bundles initiate from off-axis cracks in the thin supporting backing fibre bundles. With an increasing number of fatigue load cycles......, the UD fibre fractures progress gradually into the thickness direction of the UD fibre bundles, which eventually results in final fracture of the fibre composite. It is also found that the UD fibre fracture regions generally grow larger and initiate earlier at cross-over regions of the backing fibre...... bundles than at single backing fibre bundle regions. Furthermore, UD Fibre fractures are only observed to initiate at locations where the backing fibre bundles are ‘in contact’ with a UD fibre bundle. By observing the damage progression in 3D, it is also clear that the UD fibre fractures initiated...

  11. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  12. CFD modeling of thermal mixing in a T-junction geometry using LES model

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Hueseyin, E-mail: huseyinayhan@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey); Soekmen, Cemal Niyazi, E-mail: cemalniyazi.sokmen@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer CFD simulations of temperature and velocity fluctuations for thermal mixing cases in T-junction are performed. Black-Right-Pointing-Pointer It is found that the frequency range of 2-5 Hz contains most of the energy; therefore, may cause thermal fatigue. Black-Right-Pointing-Pointer This study shows that RANS based calculations fail to predict a realistic mixing between the fluids. Black-Right-Pointing-Pointer LES model can predict instantaneous turbulence behavior. - Abstract: Turbulent mixing of fluids at different temperatures can lead to temperature fluctuations at the pipe material. These fluctuations, or thermal striping, inducing cyclical thermal stresses and resulting thermal fatigue, may cause unexpected failure of pipe material. Therefore, an accurate characterization of temperature fluctuations is important in order to estimate the lifetime of pipe material. Thermal fatigue of the coolant circuits of nuclear power plants is one of the major issues in nuclear safety. To investigate thermal fatigue damage, the OECD/NEA has recently organized a blind benchmark study including some of results of present work for prediction of temperature and velocity fluctuations performing a thermal mixing experiment in a T-junction. This paper aims to estimate the frequency of velocity and temperature fluctuations in the mixing region using Computational Fluid Dynamics (CFD). Reynolds Averaged Navier-Stokes and Large Eddy Simulation (LES) models were used to simulate turbulence. CFD results were compared with the available experimental results. Predicted LES results, even in coarse mesh, were found to be in well-agreement with the experimental results in terms of amplitude and frequency of temperature and velocity fluctuations. Analysis of the temperature fluctuations and the power spectrum densities (PSD) at the locations having the strongest temperature fluctuations in the tee junction shows that the frequency range of 2-5 Hz

  13. Contact fatigue of human enamel: Experiments, mechanisms and modeling.

    Science.gov (United States)

    Gao, S S; An, B B; Yahyazadehfar, M; Zhang, D; Arola, D D

    2016-07-01

    Cyclic contact between natural tooth structure and engineered ceramics is increasingly common. Fatigue of the enamel due to cyclic contact is rarely considered. The objectives of this investigation were to evaluate the fatigue behavior of human enamel by cyclic contact, and to assess the extent of damage over clinically relevant conditions. Cyclic contact experiments were conducted using the crowns of caries-free molars obtained from young donors. The cuspal locations were polished flat and subjected to cyclic contact with a spherical indenter of alumina at 2Hz. The progression of damage was monitored through the evolution in contact displacement, changes in the contact hysteresis and characteristics of the fracture pattern. The contact fatigue life diagram exhibited a decrease in cycles to failure with increasing cyclic load magnitude. Two distinct trends were identified, which corresponded to the development and propagation of a combination of cylindrical and radial cracks. Under contact loads of less than 400N, enamel rod decussation resisted the growth of subsurface cracks. However, at greater loads the damage progressed rapidly and accelerated fatigue failure. Overall, cyclic contact between ceramic appliances and natural tooth structure causes fatigue of the enamel. The extent of damage is dependent on the magnitude of cyclic stress and the ability of the decussation to arrest the fatigue damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. X-ray diffraction study of microstructural changes during fatigue damage initiation in pipe steels: Role of the initial dislocation structure

    International Nuclear Information System (INIS)

    Pinheiro, B.; Lesage, J.; Pasqualino, I.; Bemporad, E.; Benseddiq, N.

    2013-01-01

    The present work is the second part of an ongoing study of microstructural changes during fatigue damage initiation in pipe steels [B. Pinheiro et al., Mat. Sci. Eng., A 532 (2012) 158–166]. Microdeformations and residual stresses (macrostresses) are evaluated by X-ray diffraction during alternating bending fatigue tests on samples taken from an API 5L X60 grade steel pipe. Microdeformations are evaluated from the full width at half maximum (FWHM) of the diffraction peak and residual stresses are estimated from the peak shift. Here, to understand the role of the initial dislocation structure, annealed samples are considered. As previously found for as-machined samples, the evolution of microdeformations shows three regular successive stages, but now with an increase during the first stage. The amplitude of each stage is accentuated with increasing stress amplitude, while its duration is reduced. Residual stresses show a similar trend, with stages of the same durations than those observed for FWHM, respectively. Additionally, changes in density and distribution of dislocations are observed by transmission electron microscopy combined with the technique of focused ion beam. The results are very encouraging for the development of a future indicator of fatigue damage initiation for pipe steels based on microstructural changes measured by X-ray diffraction

  15. X-ray diffraction study of microstructural changes during fatigue damage initiation in pipe steels: Role of the initial dislocation structure

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, B., E-mail: bianca@lts.coppe.ufrj.br [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University Lille 1, Boulevard Paul Langevin, Cité Scientifique, 59655 Villeneuve d' Ascq (France); Lesage, J. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University Lille 1, Boulevard Paul Langevin, Cité Scientifique, 59655 Villeneuve d' Ascq (France); Pasqualino, I. [Subsea Technology Laboratory (LTS), Ocean Engineering Department, COPPE/Federal University of Rio de Janeiro, PO Box 68508, Cidade Universitária, CEP 21945-970, Rio de Janeiro/RJ (Brazil); Bemporad, E. [University of Rome “ROMA TRE”, Mechanical and Industrial Eng. Dept., Via Vasca Navale 79, 00146 Rome (Italy); Benseddiq, N. [Laboratory of Mechanics of Lille (LML), UMR CNRS 8107, University Lille 1, Boulevard Paul Langevin, Cité Scientifique, 59655 Villeneuve d' Ascq (France)

    2013-09-15

    The present work is the second part of an ongoing study of microstructural changes during fatigue damage initiation in pipe steels [B. Pinheiro et al., Mat. Sci. Eng., A 532 (2012) 158–166]. Microdeformations and residual stresses (macrostresses) are evaluated by X-ray diffraction during alternating bending fatigue tests on samples taken from an API 5L X60 grade steel pipe. Microdeformations are evaluated from the full width at half maximum (FWHM) of the diffraction peak and residual stresses are estimated from the peak shift. Here, to understand the role of the initial dislocation structure, annealed samples are considered. As previously found for as-machined samples, the evolution of microdeformations shows three regular successive stages, but now with an increase during the first stage. The amplitude of each stage is accentuated with increasing stress amplitude, while its duration is reduced. Residual stresses show a similar trend, with stages of the same durations than those observed for FWHM, respectively. Additionally, changes in density and distribution of dislocations are observed by transmission electron microscopy combined with the technique of focused ion beam. The results are very encouraging for the development of a future indicator of fatigue damage initiation for pipe steels based on microstructural changes measured by X-ray diffraction.

  16. Establishment of a JSME code for the evaluation of high-cycle thermal fatigue in mixing tees

    International Nuclear Information System (INIS)

    Moriya, Shoichi; Fukuda, Toshihiko; Matsunaga, Tomoya; Hirayama, Hiroshi; Shiina, Kouji; Tanimoto, Koichi

    2004-01-01

    This paper describes a JSME code for high-cycle thermal fatigue evaluation by thermal striping in mixing tees with hot and cold water flows. The evaluation of thermal striping in a mixing tee has four steps to screen design parameters one-by-one according to the severity of the thermal load assessed from design conditions using several evaluation charts. In order to make these charts, visualization tests with acrylic pipes and temperature measurement tests with metal pipes were conducted. The influence of the configurations of mixing tees, flow velocity ratio, pipe diameter ratio and so on was examined from the results of the experiments. This paper makes a short mention of the process of providing these charts. (author)

  17. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens

    Energy Technology Data Exchange (ETDEWEB)

    Spanrad, S. [Mechanical Behaviour of Materials Laboratory, Department of Mechanical and Design Engineering, University of Portsmouth (United Kingdom); Tong, J., E-mail: jie.tong@port.ac.uk [Mechanical Behaviour of Materials Laboratory, Department of Mechanical and Design Engineering, University of Portsmouth (United Kingdom)

    2011-02-25

    Research highlights: {yields} A study of deformation in a generic LSPed aerofoil specimen subjected to high speed head-on and 45 deg. impacts, and subsequently fatigue loading. {yields} Characterisation of damage features considering geometry of the projectile, impact angle and impact velocity. {yields} Onset and early crack growth due to FOD in LSPed samples compared to those without LSP subjected to cubical impacts under simulated service loading conditions. - Abstract: Foreign object damage (FOD) has been identified as one of the primary life limiting factors for fan and compressor blades, with the leading edge of aerofoils particularly susceptible to such damage. In this study, a generic aerofoil specimen of Ti-6Al-4V alloy was used. The specimens were treated by laser shock peening (LSP) to generate compressive residual stresses in the leading edge region prior to impact. FOD was simulated by firing a cubical projectile at the leading edge using a laboratory gas gun at 200 m/s, head-on; and at 250 m/s, at an angle of 45 deg. The specimens were then subjected to 4-point bend fatigue testing under high cycle (HCF), low cycle (LCF) and combined LCF and HCF loading conditions. Scanning electron microscopy (SEM) was used to characterise the damage features due to FOD. Crack initiation and early crack growth due to FOD and subsequent fatigue growth were examined in detail. The results were compared between the two impact conditions; and with those from samples without LSP treatment as well as those impacted with spherical projectiles. The results seem to suggest that LSP has improved the crack growth resistance post FOD. Delayed onset of crack initiation was observed in LSPed samples compared to those without LSP under similar loading conditions. Damage features depend on the geometry of the projectile, the impact angle as well as the impact velocity.

  18. Some numerical approaches of creep, thermal shock, damage

    Indian Academy of Sciences (India)

    Creep can be satisfactorily described by a kinematic hardening, and exhibits different creep rates in tension and compression. Concerning the thermal shock of materials, the numerical approach depends whether or not the material is able to develop a sprayed out damage, leading to micro- or macro-cracking. Finally ...

  19. Study on Standard Fatigue Vehicle Load Model

    Science.gov (United States)

    Huang, H. Y.; Zhang, J. P.; Li, Y. H.

    2018-02-01

    Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.

  20. The Damage Effects in Steel Bridges under Highway Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, Jette Andkjær

    1996-01-01

    In the present investigation, fatigue damage accumulation in steel bridges under highway random loading is studied. In the experimental part of the investigation, fatigue test series on welded plate test specimens have been carried through. The fatigue tests have been carried out using load histo...... indicate that the linear fatigue damage accumulation formula, which is normally used in the design against fatigue in steel bridges, may give results, which are unconservative.......In the present investigation, fatigue damage accumulation in steel bridges under highway random loading is studied. In the experimental part of the investigation, fatigue test series on welded plate test specimens have been carried through. The fatigue tests have been carried out using load...