WorldWideScience

Sample records for thermal fatigue caused

  1. Simple Theory of Thermal Fatigue Caused by RF Pulse Heating

    CERN Document Server

    Kuzikov, S

    2004-01-01

    The projects of electron-positron linear colliders imply that accelerating structures and other RF components will undergo action of extremely high RF fields. Except for breakdown threat there is an effect of the damage due to multi-pulse mechanical stress caused by Ohmic heating of the skin layer. A new theory of the thermal fatigue is considered. The theory is based on consideration of the quasi-elastic interaction between neighbor grains of metal due to the expansion of the thermal skin-layer. The developed theory predicts a total number of the RF pulses needed for surface degradation in dependence on temperature rise, pulse duration, and average temperature. The unknown coefficients in the final formula were found, using experimental data obtained at 11.4 GHz for the copper. In order to study the thermal fatigue at higher frequencies and to compare experimental and theoretical results, the experimental investigation of degradation of the copper cavity exposed to 30 GHz radiation is carried out now, basing...

  2. Proceedings of the specialists meeting on experience with thermal fatigue in LWR piping caused by mixing and stratification

    International Nuclear Information System (INIS)

    1998-01-01

    This specialists meeting on experience with thermal fatigue in LWR piping caused by mixing and stratification, was held in June 1998 in Paris. It included five sessions. Session 1: operating experience (7 papers): Historical perspective; EDF experience with local thermohydraulic phenomena in PWRs: impacts and strategies; Thermal fatigue in safety injection lines of French PWRs: technical problems, regulatory requirements, concerns about other areas; US NRC Regulatory perspective on unanticipated thermal fatigue in LWR piping; Failure to the Residual Heat Removal system suction line pipe in Genkai unit 1 caused by thermal stratification cycling; Emergency Core Cooling System pipe crack incident at Tihange unit 1; Two leakages induced by thermal stratification at the Loviisa power plant). Session 2: thermal hydraulic phenomena (5 papers): Thermal stratification in small pipes with respect to fatigue effects and so called 'Banana effect'; Thermal stratification in the surge line of the Korean next generation reactor; Thermal stratification in horizontal pipes investigated in UPTF-TRAM and HDR facilities; Research on thermal stratification in un-isolable piping of reactor pressure boundary; Thermal mixing phenomena in piping systems: 3D numerical simulation and design considerations. Session 3: response of material and structure (5 papers): Fatigue induced by thermal stratification, Results of tests and calculations of the COUFAST model; Laboratory simulation of thermal fatigue cracking as a basis for verifying life models; Thermo-mechanical analysis methods for the conception and the follow up of components submitted to thermal stratification transients; Piping analysis methods of a PWR surge line for stratified flow; The thermal stratification effect on surge lines, The VVER estimation. Session 4: monitoring aspects (4 papers): Determination of the thermal loadings affecting the auxiliary lines of the reactor coolant system in French PWR plants; Expected and

  3. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  4. Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification)

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2014-01-01

    Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation

  5. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  6. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  7. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  8. Thermal fatigue evaluation of partially cooled pipes

    International Nuclear Information System (INIS)

    Kawasaki, N.; Kasahara, N.; Takasho, H.

    2004-01-01

    Concerning thermal striping phenomenon with a cold/hot spot, effect of the thermal spot on fatigue strength was investigated. The thermal spot causes membrane stress and enhances bending stress in the structure. Increased stress shortens the fatigue life and accelerates the crack propagation rate. The mechanism to increase stress was found to be the structural constraint of thermal strain by the thermal spot. To consider this mechanism, constraint efficiency factors were introduced to the thermal stress evaluation method based on frequency transfer functions developed by authors. Proposed method with these factors was validated through comparisons with cyclic FEA considering thermal spots. (orig.)

  9. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  10. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  11. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  12. Does Corruption Cause Aid Fatigue?

    DEFF Research Database (Denmark)

    Bauhr, Monika; Charron, Nicholas; Nasiritousi, Naghmeh

    2013-01-01

    Does perceived corruption in recipient countries reduce support for foreign aid in donor countries? This under-explored yet salient question is examined using the 2009 Eurobarometer survey for the 27 EU countries. We suggest that perceived corruption can cause aid fatigue but that this relationship...... is highly contextualized. The results show that perceptions about corruption in developing countries reduce overall support for aid among respondents in donor countries. However, this effect is mitigated by country and contextual-level effects and different understandings of what we call the “aid-corruption...... paradox,” namely that the need for foreign aid is often the greatest in corrupt environments. Three different dynamics of the aid-corruption paradox influence support for aid: moral, pragmatic, and strategic understandings. In EU-15 countries, the effect of perceived corruption in recipient states on aid...

  13. Analysis of thermal fatigue events in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Thermal fatigue events, which may cause shutdown of nuclear power stations by wall-through-crack of pipes of RCRB (Reactor Coolant Pressure Boundary), are reported by licensees in foreign countries as well as in Japan. In this paper, thermal fatigue events reported in anomalies reports of light water reactors inside and outside of Japan are investigated. As a result, it is clarified that the thermal fatigue events can be classified in seven patterns by their characteristics, and the trend of the occurrence of the events in PWRs (Pressurized Water Reactors) has stronger co-relation to operation hours than that in BWRs (Boiling Water Reactors). Also, it is concluded that precise identification of locations where thermal fatigue occurs and its monitoring are important to prevent the thermal fatigue events by aging or miss modification. (author)

  14. Mesoscopic scale thermal fatigue damage

    International Nuclear Information System (INIS)

    Robertson, C.; Fissolo, A.; Fivel, M.

    2001-01-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  15. Mesoscopic scale thermal fatigue damage

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.; Fissolo, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Fivel, M. [Centre National de la Recherche Scientifique, CNRS-GPM2, 38 - Saint Martin d' Heres (France)

    2001-07-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  16. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2013-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Based on above knowledge, improved methods for the JSME guideline and Numerical simulation methods for thermal fatigue evaluation were studied. Furthermore, probabilistic failure analysis approach with main influence parameters were investigated to be applied for the plant system safety. (author)

  17. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2014-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and many patterns, so that their problems still occur in spite of well-known issues. The guideline of the JSME (Japan Society of Mechanical Engineering) for estimation of thermal fatigue failures in piping system is employed as Japanese regulation. To improve this guideline, generation mechanisms of thermal load and fatigue failure have been investigated and summarized into the knowledgebase. And numerical simulation methods to replace experimental based methods were studied. Furthermore, probabilistic failure analysis approach with main influence parameters was investigated to be applied for the plant system safety. Thus, based on the knowledge, estimation methods revised from the JSME guideline were proposed. (author)

  18. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  19. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  20. CFD-FEM coupling for accurate prediction of thermal fatigue

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Kuczaj, A.K.; Blom, F.J.; Church, J.M.; Komen, E.M.J.

    2009-01-01

    Thermal fatigue is a safety related issue in primary pipework systems of nuclear power plants. Life extension of current reactors and the design of a next generation of new reactors lead to growing importance of research in this direction. The thermal fatigue degradation mechanism is induced by temperature fluctuations in a fluid, which arise from mixing of hot and cold flows. Accompanied physical phenomena include thermal stratification, thermal striping, and turbulence [1]. Current plant instrumentation systems allow monitoring of possible causes as stratification and temperature gradients at fatigue susceptible locations [1]. However, high-cycle temperature fluctuations associated with turbulent mixing cannot be adequately detected by common thermocouple instrumentations. For a proper evaluation of thermal fatigue, therefore, numerical simulations are necessary that couple instantaneous fluid and solid interactions. In this work, a strategy for the numerical prediction of thermal fatigue is presented. The approach couples Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For the development of the computational approach, a classical test case for the investigation of thermal fatigue problems is studied, i.e. mixing in a T-junction. Due to turbulent mixing of hot and cold fluids in two perpendicularly connected pipes, temperature fluctuations arise in the mixing zone downstream in the flow. Subsequently, these temperature fluctuations are also induced in the pipes. The stresses that arise due to the fluctuations may eventually lead to thermal fatigue. In the first step of the applied procedure, the temperature fluctuations in both fluid and structure are calculated using the CFD method. Subsequently, the temperature fluctuations in the structure are imposed as thermal loads in a FEM model of the pipes. A mechanical analysis is then performed to determine the thermal stresses, which are used to predict the fatigue lifetime of the structure

  1. THERMAL FATIGUE OF INCONEL ALLOY DA718

    Science.gov (United States)

    2016-10-27

    this material meets the required improvement and offers a low cost alternative to powder metallurgy Rene’95. However, its thermal fatigue resistance...chromel-alumel thermocouple, spot- welded to the mid-length of the specimen. The thermal strain, induced by the expansion and contraction of the...12 FOR OFFICIAL USE ONLY 13. J. F. Radavich, “The Physical Metallurgy of Cast and Wrought Alloy 718,” in Superalloy 718 – Metallurgy and

  2. Compassion Fatigue: Description, Causes and Prevention

    Directory of Open Access Journals (Sweden)

    Duygu Hicdurmaz

    2015-09-01

    Full Text Available Nowadays, paralel to prolonging life time, illness experience can change life of everyone who takes care of the individual directly or indirectly. Prolonging of this time for patient, simultaneously causes prolonging of the time for the care and treatment providers and them to be with the patient more during illness and suffering process. Caring for chronically ill individuals by getting aware of that they won't be able to recover completely, causes them to experience various problems called compassion fatigue. Compasion fatigue is described as the natural feeling and behaviour arising from knowing the traumatizing events which a significant other has experienced; as the stress arising from helping or wanting to help a traumatized individual. The aim of this review is to describe compassion fatigue, explain the concepts with which it is related, and by this way to increase the awareness of professionals who work in helping professions. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2015; 7(3.000: 295-303

  3. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  4. Research and development studies for predicting the thermal fatigue

    International Nuclear Information System (INIS)

    Moulin, D.; Garnier, J.; Fissolo, A.; Lejeail, Y.; Stephan, J.M.; Moinereau, D.; Masson, J.

    2001-01-01

    This paper presents some studies in development or realized in the EDF and CEA laboratories, concerning the thermal fatigue damage in nuclear reactor components. The first part presents the basic principles and the methods of lifetime prediction. The second part gives some examples on sodium loop, water loop, welded junctions resistance to thermal fatigue and tests on fatigue specimen. (A.L.B.)

  5. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  6. Comparison of evaluation results of piping thermal fatigue evaluation method based on equivalent stress amplitude

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Kasahara, Naoto

    2012-01-01

    In recent years, reports have increased about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions. The Japan Society of Mechanical Engineers published the guideline which is an evaluation method of high cycle thermal fatigue damage at nuclear pipes. In order to justify safety margin and make the procedure of the guideline concise, this paper proposes a new evaluation method of thermal fatigue damage with use of the 'equivalent stress amplitude.' Because this new method makes procedure of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation. (author)

  7. Study on cylindrical specimen subjected to oligocyclic thermal fatigue

    International Nuclear Information System (INIS)

    Cesari, F.; Battistella, P.; Quaranta, S.; Arduino, M.

    1993-01-01

    During the last years the development in the analysis of the thermal fatigue phenomenon was remarkable in particularly in industry. This improvement was more and more evident on the specific power of the engines, involving a general rise in the working temperature and in the stress level of oligocyclic thermal fatigue due to the start /stop of the engine. As far as this is concerned, the theoretical capabilities of the LIN (Nuclear Engineering Laboratory of Montecuccolino) has been requested in the frame of a collaboration with the IVECO Spa of Turin in view of verifying experimental data. The investigation of the thermal fatigue consequences has been undertaken by analyzing a cylindrical sample; its material was similar to that of the engine's head. Its was axially clamped in the two extremes and subjected to repeated thermal cycles. Beginning from the first experimental results supplied by IVECO, a theoretical - numerical campaign has been started in order to attempt a correct interpretation of the experimental behavior. The computer codes adopted in this study are mainly two typical FE programs (CASTEM and ANSYS) which have been carried out in parallel. First, both the physical and mechanical experimental conditions have been accurately reproduced in the model prepared for structural analysis. Second, several runs of calculations ware worked out to obtain a stress-strain description during some load - unload cycles. The material law is obviously non-linear because the strong variations in the temperature distributions cause high stress levels well above the yielding point

  8. Study on cylindrical specimen subjected to oligocyclic thermal fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Cesari, F; Battistella, P [Nuclear Engineering Laboratory ' Montecuccolino' , University of Bologna (Italy); Quaranta, S; Arduino, M [IVECO Engineering, Torino (Italy)

    1993-07-01

    During the last years the development in the analysis of the thermal fatigue phenomenon was remarkable in particularly in industry. This improvement was more and more evident on the specific power of the engines, involving a general rise in the working temperature and in the stress level of oligocyclic thermal fatigue due to the start /stop of the engine. As far as this is concerned, the theoretical capabilities of the LIN (Nuclear Engineering Laboratory of Montecuccolino) has been requested in the frame of a collaboration with the IVECO Spa of Turin in view of verifying experimental data. The investigation of the thermal fatigue consequences has been undertaken by analyzing a cylindrical sample; its material was similar to that of the engine's head. Its was axially clamped in the two extremes and subjected to repeated thermal cycles. Beginning from the first experimental results supplied by IVECO, a theoretical - numerical campaign has been started in order to attempt a correct interpretation of the experimental behavior. The computer codes adopted in this study are mainly two typical FE programs (CASTEM and ANSYS) which have been carried out in parallel. First, both the physical and mechanical experimental conditions have been accurately reproduced in the model prepared for structural analysis. Second, several runs of calculations ware worked out to obtain a stress-strain description during some load - unload cycles. The material law is obviously non-linear because the strong variations in the temperature distributions cause high stress levels well above the yielding point.

  9. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, X.; Herter, K.H.; Moogk, S. [Stuttgart Univ. (Germany). MPA; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M. [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems

    2012-07-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  10. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    International Nuclear Information System (INIS)

    Schuler, X.; Herter, K.H.; Moogk, S.; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M.

    2012-01-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  11. Stochastic modeling of thermal fatigue crack growth

    CERN Document Server

    Radu, Vasile

    2015-01-01

    The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-or...

  12. Study of system safety evaluation on LTO of national project. Thermal fatigue evaluation of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo

    2012-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Numerical simulation methods for thermal fatigue evaluation were studied to replace structural tests. Theses knowledge was utilized to validate and justify the JSME guideline. Furthermore, new studies have been launched to apply above knowledge to enhance plant system safety. (author)

  13. Thermal fatigue cracking of austenitic stainless steels

    International Nuclear Information System (INIS)

    Fissolo, A.

    2001-01-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N i is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> N i , with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that

  14. Prediction of thermal fatigue life of ceramics

    International Nuclear Information System (INIS)

    Kamiya, N.; Kamigaito, O.

    1979-01-01

    On the assumption that the thermal fatigue life of ceramics is determined mainly by the duration over which a crack reaches a small critical length, a prediction of the life was made by application of fracture mechanics to ceramics based on subcritical crack growth. Approximated formulae were derived. Experimental examination showed that the formulae proved to be valid for glass, sintered mullite under moderate shock severity, and zirconia. Data given by other authors also prove their validity. The deviation of the life from the formulae for sintered mullite under a thermal shock of extremely low severty, suggests that a certain mechanism, for example strengthening, is needed to understand the life of the sintered mullite. (author)

  15. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  16. Thermal-mechanical and isothermal fatigue of IN 792 CC

    International Nuclear Information System (INIS)

    Beck, T.; Pitz, G.; Lang, K.-H.; Loehe, D.

    1997-01-01

    The cyclic deformation and lifetime behaviour of the cast Ni-base superalloy IN 792 CC was investigated both under thermal-mechanical fatigue (TMF) and isothermal fatigue (IF) conditions. During TMF the phase relations between temperature and mechanical strain were in-phase and out-of-phase, respectively. For both phase relations a similar cyclic deformation behaviour is observed. In all cases out-of-phase TMF causes tensile mean stresses, whereas in-phase TMF leads to compressive mean stresses. At T max below 800 C out-of-phase cycling results in smaller lifetimes than in-phase loading. In spite of the rather high compressive mean stresses developing at T max above 800 C, at these temperatures in-phase loading causes shorter lifetimes than out-of-phase TMF. This effect is due to the different damage mechanisms caused by in-phase and out-of-phase loadings: at higher T max considerable intergranular damage caused by in-phase loading reduces the lifetime below the respective values measured during out-of-phase TMF, after which no intergranular damage could be detected. A comparison of the TMF data with the cyclic deformation and lifetime behaviour under IF conditions shows that the material's reactions under TMF cannot be assessed satisfactorily by the results obtained from isothermal fatigue tests. (orig.)

  17. Thermal fatigue evaluation of piping system Tee-connections

    International Nuclear Information System (INIS)

    Metzner, K.J.; Braillard, O.; Faidy, C.; Marcelles, I.; Solin, J.; Stumpfrock, L.

    2004-01-01

    Thermal fatigue is one significant long-term degradation mechanism nuclear power plants (NPP), in particular, as operating plants become older and life time extension activities have been initiated. In general, the common thermal fatigue issues are understood and controlled by plant instrumentation systems. However, incidents in some plants indicate that certain piping system Tees are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentation. The THERFAT project has been initiated to advance the accuracy and reliability of thermal fatigue load determination in engineering tools and research oriented approaches to outline a science based practical methodology for managing thermal fatigue risks in Tee-connections susceptible to high cyclic thermal fatigue. (orig.)

  18. Thermal stress analysis for fatigue damage evaluation at a mixing tee

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira

    2011-01-01

    Highlights: → Thermal stress and fatigue damage have been analyzed for a mixing tee. → Fatigue damage was accumulated near boundaries of the cold spot. → It was found that fatigue damage was brought about by fluctuation of cold spot. → Simple one-dimensional analysis could derive stress for fatigue evaluation. - Abstract: Fatigue cracks have been found at mixing tees where fluids of different temperature flow in. In this study, the thermal stress at a mixing tee was calculated by the finite element method using temperature transients obtained by a fluid dynamics simulation. The simulation target was an experiment for a mixing tee, in which cold water flowed into the main pipe from a branch pipe. The cold water flowed along the main pipe wall and caused a cold spot, at which the membrane stress was relatively large. Based on the evaluated thermal stress, the magnitude of the fatigue damage was assessed according to the linear damage accumulation rule and the rain-flow procedure. Precise distributions of the thermal stress and fatigue damage could be identified. Relatively large axial stress occurred downstream from the branch pipe due to the cold spot. The variation ranges of thermal stress and fatigue damage became large near the position 20 o from the symmetry line in the circumferential direction. The position of the cold spot changed slowly in the circumferential direction, and this was the main cause of the fatigue damage. The fatigue damage was investigated for various differences in the temperature between the main and branch pipes. Since the magnitude of accumulated damage increased abruptly when the temperature difference exceeded the value corresponding to the fatigue limit, it was suggested that the stress amplitude should be suppressed less than the fatigue limit. In the thermal stress analysis for fatigue damage assessment, it was found that the detailed three-dimensional structural analysis was not required. Namely, for the current case, a one

  19. Evolution of thermal fatigue management of piping in US LWRs

    International Nuclear Information System (INIS)

    McDewitt, M.; Wolfe, K.; McGill, R.

    2015-01-01

    Fatigue usage caused by cyclic changes of thermally stratified reactor coolant in Light Water Reactor (LWR) pressure boundary piping was not an original consideration in US Nuclear Power Plant (NPP) designs. During the mid 1980's, several events involving cracking and leakage due to thermal cycling occurred in reactor coolant system branch piping at both US and International NPPs. In 1988, the US Nuclear Regulatory Commission (US NRC) issued Bulletin 88-08 to alert LWR licensees of the potential for piping failures due to stratified thermal cycling. In response to these events, the US nuclear industry developed initiatives to identify susceptible components and established measures to monitor and prevent future failures. These initiatives have been effective in preventing leakage events, but have also identified fewer defects than expected based on screening model predictions. Improved analytical techniques are being investigated to maintain program effectiveness while minimizing unnecessary non-destructive examinations. This paper discusses the evolution of the US thermal fatigue initiatives, and analytical concepts being evaluated to improve program efficiency. (authors)

  20. Identification of error sources in fatigue analyses for thermal loadings

    International Nuclear Information System (INIS)

    Binder, Franz; Gantz, Dieter

    2006-09-01

    To identify thermal loadings (thermal shocks and thermal stratification), in German NPPs, special fatigue monitoring systems have been installed. The detailed temperature measurement uses sheathed thermocouples, which are located on the external component surface. Tightening straps are used for the widespread method of locking the thermocouples into position. The calculation of material fatigue for a loading sequence has to be carried out based on the measured temperature profile of the outer component surface. Should the analysis comply with the ASME III code, Section NB, alternatively the Articles NB-3200 or NB-3600 can be applied. In fatigue analyses based on the outer-surface temperature, the thermal situation at the inner-surface has to be determined (inverse temperature-field calculation). This leading analysis step is not regulated in the ASME III code. Using general purpose finite element programs, this problem cannot be explicitly solved, because it requires knowledge of the thermal situation at all boundaries (temperature or heat transfer). In the frequently practiced method in a finite element calculation, the inner surface temperature profile is varied until a satisfactory compliance of the calculated outer surface temperature with the measured profile is obtained. Since the input parameters are derived from a variable field, the variation process is large-scale and non-explicit (another input-configuration may cause a similar outer surface temperature). Furthermore, the remaining deviation cannot be quantified regarding the resulting error in the calculated material fatigue. Five typical thermocouple installation methods existing in German LWRs were compared and evaluated regarding the quality of outer surface temperature acquisition. With the evaluation of the experimental data, the essential finding is that for the test transients the maximum of the true outer surface temperature change rate is registered incorrectly with all thermocouple

  1. A review of typical thermal fatigue failure models for solder joints of electronic components

    Science.gov (United States)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  2. Fatigue evaluation of piping connections under thermal transients

    International Nuclear Information System (INIS)

    Aquino, C.T.E. de; Maneschy, J.E.

    1993-01-01

    In designing nuclear power plant piping, thermal transients, caused by non-steady operation conditions, should be considered. These events may reduce considerably the lifetime of the pipes, creating the necessity of using structural elements designed in such a way to minimize the acting thermal stresses. Typical examples of the usage of these elements are the connections between pipes of small and large diameters, in which it is usually used a weldolet. Nevertheless, in some situations, the thermal stresses caused by the transients are greater than the allowable limits, being, in this case, an alternative for best results, the introduction of a special fitting replacing the weldolet. Such a fitting is designed in a way to permit a better distribution of the stresses, reducing its maximum value to acceptable levels. This paper intends to present a fatigue evaluation of a connection, using the above mentioned fitting, when subjected to a load expressed in terms of a step thermal gradient, varying from 263 deg to 40 deg C. Two different methodologies are used in this analysis: (a) Determination of the temperature distribution from the heat transfer equations for piping, being the stresses calculated according to ASME III NB-3600. (b) Thermal and stress analyses using axisymmetric elements, according to the rules presented at ASME III NB-3200. In the first case, named simplified analysis, the computer code used is the PIPESTRESS, while in the second case, the ANSYS program was adopted

  3. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  4. Numerical methods for the prediction of thermal fatigue due to turbulent mixing

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Blom, F.J.

    2011-01-01

    Research highlights: → Thermal fatigue due to turbulent mixing is caused by moving temperature spots on the pipe wall. → Passing temperature spots cause temperature fluctuations of sinusoidal nature. → Input parameters for a sinusoidal model can be obtained by linking it with a coupled CFD-FEM model. → Overconservatism of the sinusoidal method can be reduced, having more knowledge on thermal loads. - Abstract: Turbulent mixing of hot and cold flows is one of the possible causes of thermal fatigue in piping systems. Especially in primary pipework of nuclear power plants this is an important, safety related issue. Since the frequencies of the involved temperature fluctuations are generally too high to be detected well by common plant instrumentation, accurate numerical simulations are indispensable for a proper fatigue assessment. In this paper, a link is made between two such numerical methods: a coupled CFD-FEM model and a sinusoidal model. By linking these methods, more insight is obtained in the physical phenomenon causing thermal fatigue due to turbulent mixing. Furthermore, useful knowledge is acquired on the determination of thermal loading parameters, essential for reducing overconservatism, as currently present in simplified fatigue assessment methods.

  5. On the estimation of durability during thermal fatigue tests

    International Nuclear Information System (INIS)

    Vashunin, A.I.; Kotov, P.I.

    1981-01-01

    It is shown that during thermal fatigue tests under conditions of varying loading rigidity the value of stored one-sided deformation in a fracture zone tends to the limit value of material ductility. Holding at Tsub(max) is semicycle of compression increases irreversible deformation on value of Atausub(confer)sup(a), which does not depend on loading rigidity. It is established that the Use of curves of thermal fatigue as basic ones for determination of resistance of non-isothermal low-cycle fatigue is possible only at values of stored quasistatical damage, constituting less than 5% from available ductility [ru

  6. Thermal Fatigue of Die-Casting Dies: An Overview

    Directory of Open Access Journals (Sweden)

    Abdulhadi Hassan A.

    2016-01-01

    Full Text Available Coupled studies by experimental and numerical simulations are necessary for an increased understanding of the material behaviour as related to the interaction between the thermal and mechanical conditions. This paper focus on the mechanisms of thermal fatigue in the failure of dies and cores used in the die casting of aluminum alloys. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. Samples of various types of H13 steel were compared with a standard H13 steel by testing under identical thermal fatigue cycles. To determine the thermal constraint developed in the sample during the test, a finite difference technique was used to obtain the temperature distribution, based on temperature measurements at the boundaries. The resulting stresses and strains were computed, and the strain calculated at the edge or weakest point of the sample was used to correlate the number of cycles to crack initiation. As the strain at the edge increased, the number of cycles to failure decreased. The influence of various factors on thermal fatigue behavior was studied including austenitizing temperature, surface condition, stress relieving, casting, vacuum melting, and resulfurization. The thermal fatigue resistance improved as the austenitizing temperature increased from 1750 to 2050ºF.

  7. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  8. Fatigue behaviour of coke drum materials under thermal-mechanical cyclic loading

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-01-01

    Full Text Available Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in coke drums in the form of bulging and cracking. There were some studies on the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully developed to allow performing thermal-mechanical fatigue (TMF test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.

  9. Fatigue caused by temperature changes in mixing tees

    International Nuclear Information System (INIS)

    Rothenhoefer, Horst

    2010-01-01

    Unexpected damages at mixing tees in piping systems in the past, one of them in the French NPP Civaux, raised questions concerning the basic cause for these events. Assumptions lead to the postulation of a ''new'' degradation mechanism which was called ''striping'', mainly based on thermal fluctuations in the mixing zone of hot and cold fluid which would be transferred to the internal wall of the pipe resulting in High Cycle Fatigue (HCF). Experiments and CFD simulations have been performed to understand the degradation mechanism behind the damages in order to find adequate measures to control that mechanism in future. The knowledge and assessment of all relevant degradation mechanisms is prerequisite for the application of the Integrity Concept, part of the German KTA 3201.4. In this paper numerous publications concerning striping are reviewed and assessed. The published experiments and simulations are separated into two main groups. The first group should help to understand the details of the mixing fluid flow and the corresponding thermal fluctuations. The second group should verify the damage mechanism of local thermal cycles as a HCF load. Latest simulation results and a detailed assessment of the heat transfer between fluid and structure are explained to understand and describe the degradation mechanism of striping and to define adequate measures for failure prevention. It is shown that if the procedure of monitoring and assessment, including the optimization of operational modes, is applied, which some utilities have been practicing for many years, the ''new'' degradation mechanism of striping is covered as well. Finally the conclusions are validated by transferring them to real damages proving that with the new knowledge the damages can be explained and the Integrity Concept can still be applied if the guidelines are realized in practice. (orig.)

  10. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  11. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  12. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Korean University of Technology and Education, Cheonan (Korea, Republic of)

    2013-04-15

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  13. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    International Nuclear Information System (INIS)

    Yang, Seung Yong; Kim, No Hyu

    2013-01-01

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  14. Metallurgical investigation of 2 austenitic stainless steel sodium mixers cracked in service by thermal fatigue

    International Nuclear Information System (INIS)

    Donati, J.R.; Keroulas, F.de; Masse, J.

    1979-01-01

    Two sodium mixers in the sodium heated steam generator test circuit at the EDF Renardieres centre developed leaks after approximately 7,000 hours operation under power. In both cases the investigation found cracking due to plastic fatigue caused by stresses of thermal origin. In one case the damage is explained solely by the size of the temperature oscillations; in the other case, unfavourable geometry reduced the duration of the initiation phase. Different types of cracking characteristic of thermal fatigue in sodium are presented. (author)

  15. Some aspects of thermal fatigue in stainless steel

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1987-01-01

    This paper is concerned with the analysis of failures in a moderator circuit branch piping of the ATUCHA-I pressurized heavy water reactor (PHWR), made of austenitic steel to DIN 1.4550 specification (similar to AISI 347). These failures are considered to result from a thermal fatigue processes induced by fluctuations in a zone where stratified temperature layers occurred -the fluctuations being associated with variations in the heavy water flow. The first section evaluates the possibility of cracking due to thermal fatigue phenomena and concludes that under service conditions a crack may be initiated and growth through 7 mm of the wall thickness of the pipe. Laboratory thermal fatigue tests that simulated the thermomechanical conditions for such a component, showed that the number of cycles required to initiate a thermal fatigue crack in a notched modified standard fatigue specimen was about 10 3 . This value may be used to give a conservative prediction of the number of thermal cycles for crack initiation in actual station piping, including those who suffered a cold plug condition which is produced in some emergency shut-down and valve testing situations. It was also demonstrated that beyond a crack depth of 7 mm stress corrosion cracking has the main process in further crack propagation. The relevance of this prediction has been confirmed by microfractographic observations, since the brittle nature of the fracture surfaces under service conditions appears very different from the transgranular ductile striations found in both thermal and mechanical fatigue test specimens as a result of environmental effects. (Author)

  16. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  17. Chronic Fatigue Syndrome: Searching for the Cause and Treatment.

    Science.gov (United States)

    Eichner, Edward R.

    1989-01-01

    Chronic fatigue syndrome became known nationally in l985 with a pseudoepidemic in a Nevada resort community. Initially and erroneously linked to the Epstein-Barr virus, the cause of this puzzling syndrome and the mind-body connection are areas of controversy and research. (Author/SM)

  18. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  19. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  20. Lifetime prediction of structures submitted to thermal fatigue loadings

    International Nuclear Information System (INIS)

    Amiable, S.

    2006-01-01

    The aim of this work is to predict the lifetime of structures submitted to thermal fatigue loadings. This work lies within the studies undertaken by the CEA on the thermal fatigue problems from the french reactor of Civaux. In particular we study the SPLASH test: a specimen is heated continuously and cyclically cooled down by a water spray. This loading generates important temperature gradients in space and time and leads to the initiation and the propagation of a crack network. We propose a new thermo-mechanical model to simulate the SPLASH experiment and we propose a new fatigue criterion to predict the lifetime of the SPLASH specimen. We propose and compare several numerical models with various complexity to estimate the mechanical response of the SPLASH specimen. The practical implications of this work are the reevaluation of the hypothesis used in the French code RCC, which are used to simulate thermal shock and to interpret the results in terms of fatigue. This work leads to new perspectives on the mechanical interpretation of the fatigue criterion. (author)

  1. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  2. Hydrogen enhanced thermal fatigue of y-titanium aluminide

    NARCIS (Netherlands)

    Dunfee, William; Gao, Ming; Wei, Robert P.; Wei, W.

    1995-01-01

    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures

  3. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  4. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  5. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  6. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  7. Study of regularities in propagation of thermal fatigue cracks

    International Nuclear Information System (INIS)

    Tachkova, N.G.; Sobolev, N.D.; Egorov, V.I.; Rostovtsev, Yu.V.; Ivanov, Yu.S.; Sirotin, V.L.

    1978-01-01

    Regularities in the propagation of thermal fatigue cracks in the Cr-Ni steels of the austenite class depending upon deformation conditions in the crack zone, have been considered. Thin-walled tube samples of the Kh16N40, Kh18N20 and Kh16N15 steels have been tested in the 10O reversible 400 deg C and 100 reversible 500 deg C regimes. The samples have possessed a slot-shaped stress concentrator. Stress intensity pseudocoefficient has been calculated for the correlation of experimental data. The formula for determining crack propagation rate has been obtained. The experiments permit to conclude that propagation rate of thermal fatigue cracks in the above steels depends upon the scope of plastic deformation during a cycle and stress intensity pseudocoefficient, and is determined by plastic deformation resistance during thermal cyclic loading

  8. Thermal fatigue strength estimation of 2.25Cr-1Mo steel under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Kuwahara, Kazuo; Nitta, Akihito; Kitamura, Takayuki

    1980-01-01

    A 2-1/4Cr-1Mo steel is one of principal materials for high temperature equipments in nuclear and thermal power plants. The authors experimentally analyzed the high temperature fatigue strength and creep strength of a 2-1/4 Cr-1Mo steel main steam pipe which had been used in a thermal plant for operation up to 130,000 hours, and pointed out that the strain-range vs. life curves crossed each other due to the difference of temperature-strain phase in thermal fatigue. This suggests that it is difficult to estimate thermal fatigue life of steel materials having been subjected to different temperature-strain phase on the basis of isothermal low-cycle fatigue life at the upper limit temperature of thermal fatigue, and that it is urgently required to establish an appropriate method of evaluating thermal fatigue life. The authors attempted to prove that the strain range partitioning method used for the evaluation of thermal fatigue life in SUS 304 steels is applicable to this 2-1/4Cr-1Mo steel. Consequently, it was found that the thermal fatigue life could be estimated within a factor of 2.5 by the application of this method. (author)

  9. Electrochemical behaviour of a stainless steel coating after thermal fatigue and thermal shocks

    International Nuclear Information System (INIS)

    Boudebane, A.; Darsouni, A.; Chadli, H.; Boudebane, S.

    2012-01-01

    This work aims to study of the influence of thermal fatigue and thermal shock on the corrosion behaviour of coated steel AISI 304L. The coating was welded by TIG welding on specimens in ferritic-pearlitic steel grade AISI 4140. The study concerns three different states of deposit: sensitized, sensitized and strain hardened in surface and no sensitized. We realized electrochemical corrosion in an aqueous solution of NaCl 34 g/l. The corrosion of the specimens were evaluated by comparing the potentiodynamic curves for different states of the coating. Firstly, electrochemical characterization of deposits has shown a localized intergranular corrosion. Furthermore, the increase in the number of cycles of thermal fatigue accelerates the dissolution of deposit. Thermal shocks tend to improve resistance to corrosion. Against, the mechanical treatment of surfaces by burnishing decreases the dissolution rate of deposit cycles in thermal fatigue. (authors)

  10. Thermal mixing in T-junction piping system concerned with high-cycle thermal fatigue in structure

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Ohshima, Hiroyuki; Monji, Hideaki

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), a numerical simulation code 'MUGTHES' has been developed to investigate thermal striping phenomena caused by turbulence mixing of fluids in different temperature and to provide transient data for an evaluation method of high-cycle thermal fatigue. MUGTHES adopts Large Eddy Simulation (LES) approach to predict unsteady phenomena in thermal mixing and employs boundary fitted coordinate system to be applied to complex geometry in a power reactor. Numerical simulation of thermal striping phenomena in a T-junction piping system (T-pipe) is conducted. Boundary condition for the simulation is chosen from an existing water experiment in JAEA, named as WATLON experiment. In the numerical simulation, standard Smagorinsky model is employed as eddy viscosity model with the model coefficient of 0.14 (=Cs). Numerical results of MUGTHES are verified by the comparisons with experimental results of velocity and temperature. Through the numerical simulation in the T-pipe, applicability of MUGTHES to the thermal striping phenomena is confirmed and the characteristic large-scale eddy structure which dominates thermal mixing and may cause high-cycle thermal fatigue is revealed. (author)

  11. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  12. Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: A comparison of thermal and uniaxial mechanical fatigue results

    International Nuclear Information System (INIS)

    Aicheler, Markus

    2010-01-01

    Surface state plays a major role in the crack nucleation process of pure metals in the High-Cycle-Fatigue (HCF) as well as in the Ultra-High-Cycle-Fatigue (UHCF) regime. Therefore, in studies dealing with HCF or UHCF, special attention is paid to the evolution of surface degradation during fatigue life. The accelerating structures of the future Compact Linear Collider (CLIC) under study at CERN will be submitted to a high number of thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. The number of cycles during the foreseen lifetime of CLIC reaches 2x10 11 . Fatigue may limit the lifetime of CLIC structures. In order to assess the effects of superficial fatigue, specific tests are defined and performed on polycrystalline Oxygen Free Electronic (OFE) grade Copper, a candidate material for the structures. Surface degradation depends on the orientation of near-surface grains. Copper samples thermally fatigued in two different fatigue experiments, pulsed laser and pulsed RF-heating, underwent postmortem Electron Backscattered Diffraction measurements. Samples fatigued by pulsed laser show the same trend in the orientation-fatigue damage behavior as samples fatigued by pulsed RF-heating. It is clearly observed that surface grains, oriented [1 1 1] with respect to the surface, show significantly more damage than surface grains oriented [1 0 0]. Results arising from a third fatigue experiment, the ultrasound (US) swinger, are compared to the results of the mentioned experiments. The US swinger is an uniaxial mechanical fatigue test enabling to apply within several days a total number of cycles representative of the life of the CLIC structures, thanks to a high repetition rate of 24 kHz. For comparison, laser fatigue experiments have much lower repetition rates. The dependence of surface degradation on grain orientation of samples tested by the US swinger was monitored during the fatigue life

  13. Thermomechanical fields measurement for fatigue investigation under cyclic thermal shocks

    International Nuclear Information System (INIS)

    Charbal, Ali

    2017-01-01

    Thermal fatigue occurs in nuclear power plant pipes. The temperature variations are due to the turbulent mixing of fluids that have different temperatures. Many experimental setups have been designed but the measured temperatures have only been punctual and out of the zone of interest (e.g., via thermocouples). The equivalent strain variation in the crack initiation region is calculated with numerical thermomechanical simulations. In many cases, the comparisons between numerical and experimental results have shown that the crack initiation predictions in thermal fatigue are non-conservative. a new testing setup is proposed where thermal shocks are applied with a pulsed laser beam while the thermal and kinematic fields on the specimen surface are measured with infrared (IR) and visible cameras, respectively. Experimental testings are performed and different measurement techniques for temperature and kinematic fields are used. IR camera and pyrometers allow to measure the temperature variations in the zone impacted by the laser beam. To estimate the absolute temperature, the surface emissivities at the respective wavelengths are determined by different methods. The absolute temperature field is then used to apply the actual thermal loading in a decoupled FE model after an identification process of the parameters of the laser beam. Once the thermal loading is generated based upon the experimental data, the stress and strain fields can be computed in the region of interest with an elastoplastic law.The experimental strain variations calculated from the DIC measurements are compared with the predictions obtained with the FE simulation. (author) [fr

  14. Thermal fatigue behaviour for a 316 L type steel

    Science.gov (United States)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  15. Thermal fatigue behaviour for a 316 L type steel

    International Nuclear Information System (INIS)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-01-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data. (orig.)

  16. Fatigue Crack Growth in Bodies with Thermally Sprayed Coating

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Medřický, Jan; Tomek, L.; Siegl, J.; Mušálek, Radek; Curry, N.; Björklund, S.

    2016-01-01

    Roč. 25, 1-2 (2016), s. 311-320 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Thermal barrier coating * fatigue * crack growth * digital image correlation * digital image correlation Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0329-9

  17. Fatigue life prediction of Ni-base thermal solar receiver tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hartrott, Philipp von; Schlesinger, Michael [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany); Uhlig, Ralf; Jedamski, Jens [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2010-07-01

    Solar receivers for tower type Solar Thermal Power Plants are subjected to complex thermo-mechanical loads including fast and severe thermo-mechanical cycles. The material temperatures can reach more than 800 C and fall to room temperature very quickly. In order to predict the fatigue life of a receiver design, receiver tubes made of Alloy 625 with a wall thickness of 0.5 mm were tested in isothermal and thermo-cyclic experiments. The number of cycles to failure was in the range of 100 to 100,000. A thermo-mechanical fatigue life prediction model was set up. The model is based on the cyclic deformation of the material and the damage caused by the growth of fatigue micro cracks. The model reasonably predicts the experimental results. (orig.)

  18. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  19. Assessment of thermal fatigue crack propagation in safety injection PWR lines

    International Nuclear Information System (INIS)

    Simos, N.; Reich, M.; Costantino, C.J.; Hartzman, M.

    1990-01-01

    Cyclic thermal stratification resulting in alternating thermal stresses in pipe cross sections has been identified as the primary cause of high cycle thermal fatigue failure. A number of piping lines in operating plants around the world, susceptible to thermal stratification, have experienced circumferential cracking as a result of high levels of alternating bending stresses. This paper addresses the mechanisms of crack initiation and crack growth and provides estimates of fatigue cycles to failure for a typical safety injection line with such cyclic load history. Utilizing a 3-D finite element analysis, the temperature profile and the corresponding thermal stress field of a complete thermal cycle in a safety injection line consisting of a horizontal pipe section and an elbow, is obtained. Since the observed cracking occurred in the region of the elbow-to-horizontal pipe weld, the analysis performed assessed (1) the impact of the level of local geometric discontinuities on the initiation of an inside surface flaw is greatest and (2) the number of thermal cycles required to drive a small surface crack through the pipe wall. 12 refs., 14 figs., 2 tabs

  20. Lifetime evaluation for thermal fatigue: application at the first wall of a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Merola, M.; Biggio, M.

    1989-01-01

    Thermal fatigue seems to be the most lifetime limiting phenomenon for the first wall of the next generation Tokamak fusion reactors. This work deals with the problem of the thermal fatigue in relation to the lifetime prediction of the fusion reactor first wall. The aim is to compare different lifetime methodologies among them and with experimental results. To fulfil this purpose, it has been necessary to develop a new numerical methodology, called reduced-3D, especially suitable for thermal fatigue problems

  1. Improvement in thermal fatigue resistance of cast iron piston; Chutetsu piston no tainetsu hiro sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Amano, K; Uosaki, Y; Takeshige, N [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Cast iron piston is superior in reduction of diesel engine emission to aluminum piston because of its characteristic of heat insulation. In order to study thermal fatigue characteristics of cast iron, thermal fatigue tests were carried out on two kinds of ferrite ductile cast iron. Differences between cast iron piston and aluminum piston in thermal fatigue resistance have been investigated by using FEM analysis. 5 refs., 14 figs., 1 tab.

  2. Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces

    Science.gov (United States)

    Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen

    1998-03-01

    We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.

  3. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  4. Behaviour of Ti-doped CFCs under thermal fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Centeno, A. [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain); Pintsuk, G.; Linke, J. [Forschungszentrum Juelich GmbH, EURATOM Association, 52425 Juelich (Germany); Gualco, C. [Ansaldo Energia, I-16152 Genoa (Italy); Blanco, C., E-mail: clara@incar.csic.es [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain); Santamaria, R.; Granda, M.; Menendez, R. [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain)

    2011-01-15

    In spite of the remarkable progress in the design of in-vessel components for the divertor of the first International Thermonuclear Experimental Reactor (ITER), a great effort is still put into the development of manufacturing technologies for carbon armour with improved properties. Newly developed 3D titanium-doped carbon fibre reinforced composites and their corresponding undoped counterparts were brazed to a CuCrZr heat sink to produce actively cooled flat tile mock-ups. By exposing the mock-ups to thermal fatigue tests in an electron beam test facility, the material behaviour and the brazing between the individual constituents in the mock-up was qualified. The mock-ups with titanium-doped CFCs exhibited a significantly improved thermal fatigue resistance compared with those undoped materials. The comparison of these mock-ups with those produced using pristine NB31, one of the reference materials as plasma facing material for ITER, showed almost identical results, indicating the high potential of Ti-doped CFCs due to their improved thermal shock resistance.

  5. Assessment of Pressure Fluctuation Effect for Thermal Fatigue in a T-junction Using Thermo-Hydro Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Jaebum; Kim, Jungwoo; Huh, Namsu [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Kim, Sunhye [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    As a result, when evaluating thermal fatigue for the mixing tee, temperature fluctuation is dominant for this phenomenon, it can be reasonably assumed that the pressure is constant on the pipe inner wall. Recently, thermal fatigue due to mixing of the fluids having different temperatures has been considered as an important issue on the fatigue evaluation of nuclear piping. Mainly, this phenomenon occurs in a T-junction operating with the fluids consisted of different temperatures. Because of the turbulent mixing of hot and cold water, the temperature on the inner wall of the pipe fluctuates rapidly, causing the variation of thermal stresses in the pipe and resulting in high cycle thermal fatigue. In practice, cracking by high cycle thermal fatigue is reported at a T-junction in the residual heat removal system at Civaux unit 1 in France. However, because of irregular flow inside the pipe, the pressure also fluctuates rapidly as well as temperature in the inner wall of the pipe. Therefore, in this paper, three-dimensional thermo-hydro analysis was performed for the mixing tee of the shutdown cooling system of the pressurized water reactor plant, examining the pressure variation at the pipe inner wall. Based on the analysis result, this study aims at assessing the pressure fluctuation effect on the thermal fatigue. In this paper, it is verified that there is pressure fluctuation as well as temperature on the inner wall of mixing tee operating with the fluids having different temperatures. However, since the amplitude of pressure is relatively smaller than design pressure of the shutdown cooling system, the effect wouldn't be important for the thermal fatigue.

  6. Evaluation of fatigue damage induced by thermal striping in a T junction using the three dimensional coupling method and frequency response method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hye; Choi, Jae boong; Kim, Moon Ki [Sungkyunkwan Univ., Seoul (Korea, Republic of); Huh, Nam Su [Seoul Nat' l Univ., Seoul (Korea, Republic of); Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Thermal fatigue cracking induced by thermal stratification, cycling and striping have been observed in several PWR plants. Especially, thermal striping, the highly fluctuating thermal layer, became one of the significant problems, since it can cause un predicted high cycle thermal fatigue (HCTF) at piping systems. This problem are usually found in T junctions of energy cooling systems, where cold and hot flows with high level of turbulence mix together. Thermal striping can cause the networks of fatigue crack at the vicinity of weld parts and these cracks can propagate to significant depth in a relatively short time. Therefore, thermal striping and fatigue crack initiations should be predicted in advance to prevent the severe failure of piping systems. The final goal of this research is to develop a rational thermal and mechanical model considering thermohydraulic characteristics of thermal striping and an evaluation procedure to predict the initiation of thermal fatigue crack. As a first step, we evaluated the fatigue damage in a T junction using two widely used methods. Then, we analyzed the results of each method and conducted comparisons and verifications.

  7. Lifetime distribution in thermal fatigue - a stochastic geometry approach

    International Nuclear Information System (INIS)

    Kullig, E.; Michel, B.

    1996-02-01

    The present report describes the interpretation approach for crack patterns which are generated on the smooth surface of austenitic specimens under thermal fatigue loading. A framework for the fracture mechanics characterization of equibiaxially loaded branched surface cracks is developed which accounts also for crack interaction effects. Advanced methods for the statistical evaluation of crack patterns using suitable characteristic quantities are developed. An efficient simulation procedure allows to identify the impact of different variables of the stochastic crack growth model with respect to the generated crack patterns. (orig.) [de

  8. Damage assessment in multilayered MEMS structures under thermal fatigue

    Science.gov (United States)

    Maligno, A. R.; Whalley, D. C.; Silberschmidt, V. V.

    2011-07-01

    This paper reports on the application of a Physics of Failure (PoF) methodology to assessing the reliability of a micro electro mechanical system (MEMS). Numerical simulations, based on the finite element method (FEM) using a sub-domain approach was used to examine the damage onset due to temperature variations (e.g. yielding of metals which may lead to thermal fatigue). In this work remeshing techniques were employed in order to develop a damage tolerance approach based on the assumption that initial flaws exist in the multi-layered.

  9. Analysis on causes of visual fatigue in 3 502 cases

    Directory of Open Access Journals (Sweden)

    Yue-Lan Feng

    2016-02-01

    Full Text Available AIM:To observe the reason of visual fatigue in Inner Mongolian in order to provide the epidemiological data for the prevention and treatment of asthenopia.METHODS:This was a retrospective case-controlled study. From January 2011 to December 2014, all the clinical data of 3 502 patients who were diagnosed as asthenopia aged 7~50 was analyzed. The subjects were divided into 4 groups according to the age:(17~20 years old: 712 cases;(221~30 years old: 603 cases;(331~40 years old:694 cases;(441~50 years old:1 493 cases. The patients were examed for the conditions of anterior and posterior segment, Schirmer Ⅰ test, break-up time, computer optometry, subjective refraction, horizontal convergence and divergence, distance and near phoria, near point of convergence, accommodative convergence/accommodation ratio, accommodative facility, relative accommodation, amplitude of accommodation and accommodative response. The causes for asthenopia were analyzed by Kruskal-wallis H test first, then comparisons among groups were conducted by Nemenyi test. RESULTS:The causes for asthenopia were eye-related diseases(49.37%, ametropia(23.36%, accommodation and convergence function problem(21.70%, disorders of extraocular muscles function(5.57%. Kruskal-wallis H test showed significant differences on the prevalence of asthenopia caused by different reasons of the four groups(PPCONCLUSION: The causes of asthenopia are eye-related diseases, ametropia, accommodation and convergence function problem and disorders of extraocular muscles function.

  10. Thermal fatigue cracking of austenitic stainless steels; Fissuration en fatigue thermique des aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, A

    2001-07-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N{sub i} is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50{mu}m to 150{open_square}m long crack is observed. Additional SPLASH tests were performed for N >> N{sub i}, with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the

  11. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism

    NARCIS (Netherlands)

    Louwerens, M.; Appelhof, B.C.; Verloop, H.; Medici, M.; Peeters, R.P.; Visser, T.J.; Boelen, A.; Fliers, E.; Smit, J.W.A.; Dekkers, O.M.

    2012-01-01

    OBJECTIVE: Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and fatigue-related

  12. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism

    NARCIS (Netherlands)

    Louwerens, Marloes; Appelhof, Bente C.; Verloop, Herman; Medici, Marco; Peeters, Robin P.; Visser, Theo J.; Boelen, Anita; Fliers, Eric; Smit, Johannes W. A.; Dekkers, Olaf M.

    2012-01-01

    Objective: Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and fatigue-related

  13. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    Science.gov (United States)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  14. Thermal fatigue crack growth analysis in a nozzle corner

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.

    1983-01-01

    Calculations of the crack growth under local thermal shock fatigue are performed. Estimates of crack growth are based on stress distributions obtained by a finite element analysis for thermal transients in the structure without crack. Stress intensity factors are calculated using interpolation formulae derived from known basic solutions for part-through cracks under constant and linearly varying load. The crack propagation at selected parts of the crack front is calculated stepwise by integration of the Paris law with material constants C and n interpolated from test results on compact specimens at constant temperatures. Experimental results for the model vessel test MB1 at an internal pressure of 14 N/mm 2 and a temperature of 320 0 C exposed to a repeated local spraying with cold water are presented and compared to predictions

  15. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  16. A study on the evolution of crack networks under thermal fatigue loading

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Taheri, Said

    2008-01-01

    The crack network is a typical cracking morphology caused by thermal fatigue loading. It was pointed out that the crack network appeared under relatively small temperature fluctuations and did not grow deeply. In this study, the mechanism of evolution of crack network and its influence on crack growth was examined by numerical calculation. First, the stress field near two interacting cracks was investigated. It was shown that there are stress-concentration and stress-shielding zones around interacting cracks, and that cracks can form a network under the bi-axial stress condition. Secondly, a Monte Carlo simulation was developed in order to simulate the initiation and growth of cracks under thermal fatigue loading and the evolution of the crack network. The local stress field formed by pre-existing cracks was evaluated by the body force method and its role in the initiation and growth of cracks was considered. The simulation could simulate the evolution of the crack network and change in number of cracks observed in the experiments. It was revealed that reduction in the stress intensity factor due to stress feature in the depth direction under high cycle thermal fatigue loading plays an important role in the evolution of the crack network and that mechanical interaction between cracks in the network affects initiation rather than growth of cracks. The crack network appears only when the crack growth in the depth direction is interrupted. It was concluded that the emergence of the crack network is preferable for the structural integrity of cracked components

  17. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    International Nuclear Information System (INIS)

    Fissolo, Antoine; Gourdin, Cedric; Vincent, Ludovic

    2009-01-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  18. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  19. Numerical analysis of two experiments related to thermal fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Bieder, Ulrich; Errante, Paolo [DEN-STMF, Commissariat a l' Energie Atomique et aux Energies Alternatives, Universite Paris-Saclay, Gif-sur-Yvette (France)

    2017-06-15

    Jets in cross flow are of fundamental industrial importance and play an important role in validating turbulence models. Two jet configurations related to thermal fatigue phenomena are investigated: • T-junction of circular tubes where a heated jet discharges into a cold main flow and • Rectangular jet marked by a scalar discharging into a main flow in a rectangular channel. The T-junction configuration is a classical test case for thermal fatigue phenomena. The Vattenfall T-junction experiment was already subject of an OECD/NEA benchmark. A LES modelling and calculation strategy is developed and validated on this data. The rectangular-jet configuration is important for basic physical understanding and modelling and has been analyzed experimentally at CEA. The experimental work was focused on turbulent mixing between a slightly heated rectangular jet which is injected perpendicularly into the cold main flow of a rectangular channel. These experiments are analyzed for the first time with LES. The overall results show a good agreement between the experimental data and the CFD calculation. Mean values of velocity and temperature are well captured by both RANS calculation and LES. The range of critical frequencies and their amplitudes, however, are only captured by LES.

  20. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  1. Research and development studies for predicting the thermal fatigue; Etudes de R and D pour la prediction de la fatigue thermique

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D.; Garnier, J.; Fissolo, A.; Lejeail, Y. [CEA, 75 - Paris (France); Stephan, J.M.; Moinereau, D.; Masson, J. [Electricite de France, Les Renardieres, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    2001-07-01

    This paper presents some studies in development or realized in the EDF and CEA laboratories, concerning the thermal fatigue damage in nuclear reactor components. The first part presents the basic principles and the methods of lifetime prediction. The second part gives some examples on sodium loop, water loop, welded junctions resistance to thermal fatigue and tests on fatigue specimen. (A.L.B.)

  2. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  3. American Ginseng in Treating Patients With Fatigue Caused by Cancer

    Science.gov (United States)

    2016-12-19

    Chronic Myeloproliferative Disorders; Fatigue; Leukemia; Lymphoma; Lymphoproliferative Disorder; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Precancerous Condition; Unspecified Adult Solid Tumor, Protocol Specific

  4. How Thermal Fatigue Cycles Change the Rheological Behavior of Polymer Modified Bitumen?

    NARCIS (Netherlands)

    Glaoui, B.; Merbouh, M.; Van de Ven, M.F.C.; Chailleux, E.; Youcefi, A.

    2013-01-01

    The paper deals with the problem of thermal fatigue cycles phenomenon, which affects the performance of flexible pavement. The purpose of the paper is to extent the knowledge on the rheology of polymer modified bitumen which was affected by cycles of thermal fatigue. The aim of this research is to

  5. Investigation of thermal fatigue of chromium-molybdenum steels, used for calcining and agglomeration constructions

    International Nuclear Information System (INIS)

    Sinyavskij, D.P.; Gorkalo, A.P.

    1979-01-01

    The technique for investigating thermal fatigue of materials is described. The data on sample stress deformed state and current temperature values are taken from the local volume of the material studied. Results of investigating thermal fatigue of the 15KhMl and 20KhMl steels are presented

  6. Simplified methods to assess thermal fatigue due to turbulent mixing

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Timperi, A.

    2011-01-01

    Thermal fatigue is a safety relevant damage mechanism in pipework of nuclear power plants. A well-known simplified method for the assessment of thermal fatigue due to turbulent mixing is the so-called sinusoidal method. Temperature fluctuations in the fluid are described by a sinusoidally varying signal at the inner wall of the pipe. Because of limited information on the thermal loading conditions, this approach generally leads to overconservative results. In this paper, a new assessment method is presented, which has the potential of reducing the overconservatism of existing procedures. Artificial fluid temperature signals are generated by superposition of harmonic components with different amplitudes and frequencies. The amplitude-frequency spectrum of the components is modelled by a formula obtained from turbulence theory, whereas the phase differences are assumed to be randomly distributed. Lifetime predictions generated with the new simplified method are compared with lifetime predictions based on real fluid temperature signals, measured in an experimental setup of a mixing tee. Also, preliminary steady-state Computational Fluid Dynamics (CFD) calculations of the total power of the fluctuations are presented. The total power is needed as an input parameter for the spectrum formula in a real-life application. Solution of the transport equation for the total power was included in a CFD code and comparisons with experiments were made. The newly developed simplified method for generating the temperature signal is shown to be adequate for the investigated geometry and flow conditions, and demonstrates possibilities of reducing the conservatism of the sinusoidal method. CFD calculations of the total power show promising results, but further work is needed to develop the approach. (author)

  7. Prediction of mechanical fatigue caused by multiple random excitations

    NARCIS (Netherlands)

    Bonte, M.H.A.; de Boer, Andries; Liebregts, R.

    2004-01-01

    A simulation method is presented for the fatigue analysis of automotive and other products that are subjected to multiple random excitations. The method is denoted as frequency domain stress-life fatigue analysis and was implemented in the automotive industry at DAF Trucks N.V. in Eindhoven, The

  8. Causes of extreme fatigue in underperforming athletes - a synthesis ...

    African Journals Online (AJOL)

    Furthermore, it has recently been demonstrated that exogenous administration of interleukin-6 (IL-6) increases the sensation of fatigue during exercise. In light of current cytokine and chronic fatigue syndrome research, this article reviews and updates the cytokine theories that attempt to explain the aetiology of the ...

  9. Numerical modeling of thermal fatigue cracks from the viewpoint of eddy current testing

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Virkkunen, Iikka; Kemppainen, Mika

    2012-01-01

    This study discusses a suitable numerical modeling of a thermal fatigue crack from the viewpoint of eddy current testing. Five artificial thermal fatigue cracks, introduced into type 304L austenitic stainless steel plates with a thickness of 25 mm, are prepared; and eddy current inspections are carried out to gather signals using an absolute type pancake probe and a differential type plus point probe. Finite element simulations are then carried out to evaluate a proper numerical model of the thermal fatigue cracks. In the finite element simulations, the thermal fatigue cracks are modeled as a semi-elliptic planar region on the basis of the results of the destructive tests. The width and internal conductivity are evaluated by the simulations. The results of the simulations reveal that the thermal fatigue cracks are regarded as almost nonconductive when the internal conductivity is assumed to be uniform inside. (author)

  10. Aspects of fatigue life in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, H.

    2001-08-01

    Thermal barrier coatings (TBC) are applied on hot components in airborne and land based gas turbines when higher turbine inlet temperature, meaning better thermal efficiency, is desired. The TBC is mainly applied to protect underlying material from high temperatures, but also serves as a protection from the aggressive corrosive environment. Plasma sprayed coatings are often duplex TBC's with an outer ceramic top coat (TC) made from partially stabilised zirconia - ZrO{sub 2} + 6-8% Y{sub 2}O{sub 3}. Below the top coat there is a metallic bond coat (BC). The BC is normally a MCrAlX coating (M=Ni, Co, Fe... and X=Y, Hf, Si ... ). In gas turbine components exposed to elevated temperatures nickel-based superalloys are commonly adopted as load carrying components. In the investigations performed here a commercial wrought Ni-base alloy Haynes 230 has been used as substrate for the TBC. As BC a NiCoCrAlY serves as a reference material and in all cases 7% Yttria PS zirconia has been used. Phase development and failure mechanisms in APS TBC during service-like conditions, have been evaluated in the present study. This is done by combinations of thermal cycling and low cycle fatigue tests. The aim is to achieve better knowledge regarding how, when and why thermal barrier coatings fail. As a final outcome of the project a model capable of predicting fatigue life of a given component will help engineers and designers of land based gas turbines for power generation to better optimise TBC's. In the investigations it is seen that TBC life is strongly influenced by oxidation of the BC and interdiffusion between BC and the substrate. The bond coat is known to oxidise with time at high temperature. The initial oxide found during testing is alumina. With increased time at high temperature Al is depleted from the bond coat due to inter-diffusion and oxidation. Oxides others than alumina start to form when the Al content is reduced below a critical limit. It is here believed

  11. Thermal-mechanical fatigue of high temperature structural materials

    Science.gov (United States)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  12. Root cause analysis of thermal sleeve separation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J. C.; Jhung, M. J.; Yu, S. O.; Kim, H. J.; Yune, Y. K.; Park, J. Y

    2006-01-15

    Thermal sleeves in the shape of thin wall cylinder seated inside the nozzle part of each Safety Injection (SI) line at Pressurized Water Reactors (PWRs) have such functions as prevention and relief of potential excessive transient thermal stress in the wall of SI line nozzle part which is initially heated up with hot water flowing in the primary coolant piping system when cold water is injected into the system through the SI nozzles during the SI operation mode. Recently, mechanical failures that the sleeves were separated from the SI branch pipe and fell into the connected cold leg main pipe occurred in sequence at some typical PWR plants in Korea. To find out the root cause of thermal sleeve breakaway failures, the flow situation in the junction of primary coolant main pipe and SI branch pipe, and the vibration modal characteristics of the thermal sleeve are investigated in detail by using both Computational Fluid Dynamic (CFD) code and structure analysis finite element code. As the results, the transient response in fluid force exerting on the local part of thermal sleeve wall surface to the primary coolant flow through the pipe junction area during the normal reactor operation mode shows oscillatory characteristics with frequencies ranging from 17 to 18, which coincide with one of the lower mode natural frequencies of thermal sleeve having a pinned support condition on the circumferential prominence on the outer surface of thermal sleeve which is put into the circumferential groove on the inner surface of SI nozzle at the mid-height of the thermal sleeve. In addition, the variation of force on the thermal sleeve surface yields alternating torques in the directions of two rectangular axes which are perpendicular to the longitudinal axis of cylindrical thermal sleeve, which cause rolling, pitching and rotating motions of the thermal sleeve. Consequently, it is seen that this flow situation surrounding the thermal sleeve during the normal reactor operation can

  13. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    Science.gov (United States)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  14. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  15. Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available High-temperature mechanical properties of high-boron austenitic steels (HBASs were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800°C. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239 (0.19wt.% C to 302 (0.29wt.% C and 312 HV (0.37wt.% C; the tensile yield strength at 850 °C increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests (performed for 300 cycles from room temperature to 800 °C indicate that the degree of thermal fatigue of the HBAS with 0.29wt.% C (rating of 2–3 is superior to those of the alloys with 0.19wt.% (rating of 4–5 and 0.37wt.% (rating of 3–4 carbon. The main cause of this difference is the ready precipitation of M23(C,B6-type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys.

  16. Thermal fatigue of refractory metal / graphite composites for fusion applications

    International Nuclear Information System (INIS)

    Smid, I.; Nickel, H.

    1989-01-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting composite tiles had a size of 50 mm x 50 mm with a graphite thickness of 10 mm and a TZM thickness of 5mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and 'slow' peak energy deposition. The resulting damages and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes. Finally the influence of a hydrogen plasma on the adaptability of the investigated brazes in fusion devices is discussed. 12 refs., 4 tabs., 4 figs. (Author)

  17. Orientation dependence of the thermal fatigue of nickel alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dul' nev, R A; Svetlov, I L; Bychkov, N G; Rybina, T V; Sukhanov, N N

    1988-11-01

    The orientation dependence of the thermal stability and the thermal fatigue fracture characteristics of single crystals of MAR-M200 nickel alloy are investigated experimentally using X-ray diffraction analysis and optical and scanning electron microscopy. It is found that specimens with the 111-line orientation have the highest thermal stability and fatigue strength. Under similar test conditions, the thermal fatigue life of single crystals is shown to be a factor of 1.5-2 higher than that of the directionally solidified and equiaxed alloys. 6 references.

  18. Thermal fatigue behavior of US and Russian grades of beryllium

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 KW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degrees C for each pass of the beam. Large thermal stress in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S-300F-H, Sr-200, I-400, extruded high purity. HIP'd sperical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be(SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  19. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism

    NARCIS (Netherlands)

    J.W.K. Louwerens; B.C. Appelhof (Bente); H. Verloop (Herman); M. Medici (Marco); R.P. Peeters (Robin); T.J. Visser (Theo); A. Boelen (Anita); E. Fliers (Eric); J.W.A. Smit (Jan); O.M. Dekkers (Olaf)

    2012-01-01

    textabstractObjective: Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and

  20. Detection of thermal fatigue in composites by second harmonic Lamb waves

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Achenbach, Jan D

    2012-01-01

    Composite materials which are widely used in the aerospace industry, are usually subjected to frequent variation of temperature. Thermal cyclic loading may induce material degradation. Considering the long-term service of aircraft composites and the importance of safety in the aircraft industry, even a little damage that may be accumulative via thermal fatigue is often of great concern. Therefore, there is a demand to develop non-destructive approaches to evaluate thermal fatigue damage in an early stage. Due to the sensitivity of acoustic nonlinearity to micro-damage, the nonlinear ultrasonic technique has been explored as a promising tool for early detection of micro-damage. This paper investigates an experimental scheme for characterizing thermal fatigue damage in composite laminates using second harmonic Lamb waves. The present results show a monotonic increase of acoustic nonlinearity with respect to thermal fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and thermal fatigue cycles in carbon/epoxy laminates verifies that nonlinear Lamb waves can be used to assess thermal fatigue damage rendering improved sensitivity over conventional linear feature based non-destructive evaluation techniques. Velocity and attenuation based ultrasonic studies are carried out for comparison with the nonlinear ultrasonic approach and it is found that nonlinear acoustic parameters are more promising indicators of thermal fatigue damage than linear ones. (paper)

  1. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism.

    Science.gov (United States)

    Louwerens, Marloes; Appelhof, Bente C; Verloop, Herman; Medici, Marco; Peeters, Robin P; Visser, Theo J; Boelen, Anita; Fliers, Eric; Smit, Johannes W A; Dekkers, Olaf M

    2012-12-01

    Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and fatigue-related symptoms. Furthermore, the relationship between fatigue and the TSH receptor (TSHR)-Asp727Glu polymorphism, a common genetic variant of the TSHR, was analyzed. A cross-sectional study was performed in 278 patients (140 patients treated for differentiated thyroid carcinoma (DTC) and 138 with autoimmune hypothyroidism (AIH)) genotyped for the TSHR-Asp727Glu polymorphism. The multidimensional fatigue inventory (MFI-20) was used to assess fatigue, with higher MFI-20 scores indicating more fatigue-related complaints. MFI-20 scores were related to disease status and Asp727Glu polymorphism status. AIH patients scored significantly higher than DTC patients on all five MFI-20 subscales (P<0.001), independent of clinical and thyroid hormone parameters. The frequency of the TSHR-Glu727 allele was 7.2%. Heterozygous DTC patients had more favorable MFI-20 scores than wild-type DTC patients on four of five subscales. The modest effect of the TSHR-Asp727Glu polymorphism on fatigue was found in DTC patients only. AIH patients had significantly higher levels of fatigue compared with DTC patients, which could not be attributed to clinical or thyroid hormone parameters. The modest effect of the TSHR-Asp727Glu polymorphism on fatigue in DTC patients should be confirmed in other cohorts.

  2. Analysis result for OECD benchmark on thermal fatigue problem

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira; Fujii, Yuzou

    2005-01-01

    The main objective of this analysis is to understand the crack growth behavior under three-dimensional (3D) thermal fatigue by conducting 3D crack initiation and propagation analyses. The possibility of crack propagation through the wall thickness of pipe, and the accuracy of the prediction of crack initiation and propagation are of major interest. In this report, in order to estimate the heat transfer coefficients and evaluate the thermal stress, conventional finite element analysis (FEA) is conducted. Then, the crack driving force is evaluated by using the finite element alternating method (FEAM), which can derive the stress intensity factor (SIF) under 3D mechanical loading based on finite element analysis without generating the mesh for a cracked body. Through these two realistic 3D numerical analyses, it has been tried to predict the crack initiation and propagation behavior. The thermal fatigue crack initiation and propagation behavior were numerically analyzed. The conventional FEA was conducted in order to estimate the heat transfer coefficient and evaluate the thermal stress. Then, the FEAM was conducted to evaluate the SIFs of surface single cracks and interacting multiple cracks, and crack growth was evaluated. The results are summarized as follows: 1. The heat transfer coefficients were estimated as H air = 40 W/m 2 K and H water = 5000 W/m 2 K. This allows simulation of the change in temperature with time at the crack initiation points obtained by the experiment. 2. The maximum stress occurred along the line of symmetry and the maximum Mises equivalent stress was 572 MPa. 3. By taking the effect of mean stress into account according to the modified Goodman diagram, the equivalent stress range and the number of cycles to crack initiation were estimated as 1093 MPa and 3.8x10 4 , respectively, although the tensile strength was assumed to be 600 MPa. 4. It was shown from the evaluated SIFs that longitudinal cracks can penetrate the wall of the pipe

  3. Causes of extreme fatigue in underperforming athletes – a synthesis ...

    African Journals Online (AJOL)

    Institute of Biomedical and Biological Sciences, Department of Sport and Exercise Sciences, University of Portsmouth, UK. 2. Tshwane University of ... including fatigue, reflect classic neurovegetative features of ..... and depressed team athlete.

  4. Model of thermal fatigue of a copper surface under the action of high-power microwaves

    Science.gov (United States)

    Kuzikov, S. V.; Plotkin, M. E.

    2007-10-01

    The accelerating structures of modern supercolliders, as well as the components of high-power microwave electron devices operated in strong cyclic electromagnetic fields should have long lifetimes. Along with the electric breakdown, the surfaces of these microwave components deteriorate and their lifetimes decrease due to thermal strains and subsequent mechanical loads on the surface metal layer. The elementary theory of thermal fatigue was developed in the 1970s. In particular, a model of metal as a continuous medium was considered. Within the framework of this model, thermal fatigue is caused by the strains arising between the hot surface layer and the cold internal layer of the metal. However, this theory does not describe all the currently available experimental data. In particular, the notion of “safe temperature” of the heating, i.e., temperature at which the surface is not destroyed during an arbitrarily long series of pulses, which was proposed in the theoretical model, is in poor agreement with the experiment performed in the Stanford Linear Accelerator Center (SLAC, USA). In this work, the thermal-fatigue theory is developed on the basis of consideration of the copper polycrystalline structure. The necessity to take it into account was demonstrated by the results of the SLAC experiment, in which a change in the mutual orientation of copper grains and the formation of cracks at their boundaries was recorded for the first time. The developed theory makes it possible to use the experimental data to refine the coefficients in the obtained formulas for the lifetime of the metal surface and to predict the number of microwave pulses before its destruction as a function of the radiation power, the surface-temperature increase at the pulse peak, and the pulse duration.

  5. Environmental Assisted Fatigue Evaluation of Direct Vessel Injection Piping Considering Thermal Stratification

    International Nuclear Information System (INIS)

    Kim, Taesoon; Lee, Dohwan

    2016-01-01

    As the environmentally assisted fatigue (EAF) due to the primary water conditions is to be a critical issue, the fatigue evaluation for the components and pipes exposed to light water reactor coolant conditions has become increasingly important. Therefore, many studies to evaluate the fatigue life of the components and pipes in LWR coolant environments on fatigue life of materials have been conducted. Among many components and pipes of nuclear power plants, the direct vessel injection piping is known to one of the most vulnerable pipe systems because of thermal stratification occurred in that systems. Thermal stratification occurs because the density of water changes significantly with temperature. In this study, fatigue analysis for DVI piping using finite element analysis has been conducted and those results showed that the results met design conditions related with the environmental fatigue evaluation of safety class 1 pipes in nuclear power plants. Structural and fatigue integrity for the DVI piping system that thermal stratification occurred during the plant operation has conducted. First of all, thermal distribution of the piping system is calculated by computational fluid dynamic analysis to analyze the structural integrity of that piping system. And the fatigue life evaluation considering environmental effects was carried out. Our results showed that the DVI piping system had enough structural integrity and fatigue life during the design lifetime of 60 years

  6. Thermal stress and creep fatigue limitations in first wall design

    International Nuclear Information System (INIS)

    Majumdar, S.; Misra, B.; Harkness, S.D.

    1977-01-01

    The thermal-hydraulic performance of a lithium cooled cylindrical first wall module has been analyzed as a function of the incident neutron wall loading. Three criteria were established for the purpose of defining the maximum wall loading allowable for modules constructed of Type 316 stainless steel and a vanadium alloy. Of the three, the maximum structural temperature criterion of 750 0 C for vanadium resulted in the limiting wall loading value of 7 MW/m 2 . The second criterion limited thermal stress levels to the yield strength of the alloy. This led to the lowest wall loading value for the Type 316 stainless steel wall (1.7 MW/m 2 ). The third criterion required that the creep-fatigue characteristics of the module allow a lifetime of 10 MW-yr/m 2 . At wall temperatures of 600 0 C, this lifetime could be achieved in a stainless steel module for wall loadings less than 3.2 MW/m 2 , while the same lifetime could be achieved for much higher wall loadings in a vanadium module

  7. Probabilistic modeling of crack networks in thermal fatigue

    International Nuclear Information System (INIS)

    Malesys, N.

    2007-11-01

    Thermal superficial crack networks have been detected in mixing zone of cooling system in nuclear power plants. Numerous experimental works have already been led to characterize initiation and propagation of these cracks. The random aspect of initiation led to propose a probabilistic model for the formation and propagation of crack networks in thermal fatigue. In a first part, uniaxial mechanical test were performed on smooth and slightly notched specimens in order to characterize the initiation of multiple cracks, their arrest due to obscuration and the coalescence phenomenon by recovery of amplification stress zones. In a second time, the probabilistic model was established under two assumptions: the continuous cracks initiation on surface, described by a Poisson point process law with threshold, and the shielding phenomenon which prohibits the initiation or the propagation of a crack if this one is in the relaxation stress zone of another existing crack. The crack propagation is assumed to follow a Paris' law based on the computation of stress intensity factors at the top and the bottom of crack. The evolution of multiaxial cracks on the surface can be followed thanks to three quantities: the shielding probability, comparable to a damage variable of the structure, the initiated crack density, representing the total number of cracks per unit surface which can be compared to experimental observations, and the propagating crack density, representing the number per unit surface of active cracks in the network. The crack sizes distribution is also computed by the model allowing an easier comparison with experimental results. (author)

  8. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Science.gov (United States)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  9. Avoiding thermal striping damage: Experimentally-based design procedures for high-cycle thermal fatigue

    International Nuclear Information System (INIS)

    Betts, C.; Judd, A.M.; Lewis, M.W.J.

    1994-01-01

    In the coolant circuits of a liquid metal cooled reactor (LMR), where there is turbulent mixing of coolant streams at different temperatures, there are temperature fluctuations in the fluid. If an item of the reactor structure is immersed in this fluid it will, because of the good heat transfer from the flowing liquid metal, experience surface temperature fluctuations which will induce dynamic surface strains. It is necessary to design the reactor so that these temperature fluctuations do not, over the life of the plant, cause damage. The purpose of this paper is to describe design procedures to prevent damage of this type. Two such procedures are given, one to prevent the initiation of defects in a nominally defect-free structure or to allow initiation only at the end of the component life, and the other to prevent significant growth of undetectable pre-existing defects of the order of 0.2 to 0.4 mm in depth. Experimental validation of these procedures is described, and the way they can be applied in practice is indicated. To set the scene the paper starts with a brief summary of cases in which damage of this type, or the need to avoid such damage, have had important effects on reactor operation. Structural damage caused by high-cycle thermal fatigue has had a significant adverse influence on the operation of LMRs on several occasions. It is necessary to eliminate the risk of such damage at the design stage. In the absence of detailed knowledge of the temperature history to which it will be subject, an LMR structure can be designed so that, if it is initially free of defects more than 0.1 mm deep, no such defects will be initiated by high-cycle fatigue. This can be done by ensuring that the maximum source temperature difference in the liquid metal is less than a limiting value, which depends on temperature. The limit is very low, however, and likely to be restrictive. This method, by virtue of its safety margin, takes into account pre-existing surface crack

  10. The predictive value of fatigue for nonfatal ischemic heart disease and all-cause mortality

    DEFF Research Database (Denmark)

    Ekmann, Anette; Osler, Merete; Avlund, Kirsten

    2012-01-01

    IHD were asked if they felt fatigued. Information on IHD diagnosis and all-cause mortality was register based. The Cox proportional hazard model was used to test the association at 4-year follow-up. Results Fatigue was associated with hospitalization for nonfatal IHD (hazard ratio [HR] = 1.98, 95...

  11. An investigation of wall temperature characteristics to evaluate thermal fatigue at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi; Takenaka, Nobuyuki

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids mix. In this study, wall temperature characteristics at a T-junction pipe were investigated to improve the evaluation method for thermal fatigue. The stainless steel test section consisted of a horizontal main pipe (diameter, 150 mm) and a T-junction connected to a vertical branch pipe (diameter, 50 mm). The inlet flow velocities in the main and branch pipes were set to 0.99 m/s and 0.66 m/s respectively to produce a wall jet pattern in which the jet from the branch pipe was bent by the main pipe flow and made to flow along the pipe wall. The temperature difference was 34.1 K. A total of 148 thermocouples were installed to measure the wall temperature on the pipe inner surface in the downstream region. The maximum of temperature fluctuation intensity on the pipe inner surface was measured as 5% of the fluid temperature difference at the inlets. The dominant frequency of the large temperature fluctuations in the region downstream from z = 0.5D m was equal to 0.2 of the Strouhal number, which was equal to the frequency caused by the vortex streets generated around the jet flow. The large temperature fluctuation was also observed with the period of about 10 s. The fluctuation was caused by spreading of the heated region in the circumferential direction. (author)

  12. Study on heat transfer characteristics in a mixing tee pipe to evaluate for thermal fatigue

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2016-01-01

    Thermal fatigue racking may initiate at a tee pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress fluctuations are caused by movement of a hot spot on the pipe inner surface. It is important to investigate the heat transfer from the fluid to the structure around the hot spot. The heat transfer characteristic in the mixing tee pipe was investigated by tests in this study. The unsteady heat transfer coefficients around the hot spot were estimated with the fluid and wall temperature, which were measured with thermocouples. The estimated heat transfer coefficient varied from 1.2 to 3.5 times of the steady state heat transfer coefficient. The heat transfer coefficient was 2.9 times of the steady state value at the position for the maximum stress fluctuation, which was calculated with the measured wall temperature distribution. (author)

  13. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    International Nuclear Information System (INIS)

    Haddar, N.

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  14. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1998-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  15. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1999-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  16. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  17. Thiopurines, a previously unrecognised cause for fatigue in patients with inflammatory bowel disease.

    Science.gov (United States)

    Lee, Thomas W T; Iser, John H; Sparrow, Miles P; Newnham, Evan D; Headon, Belinda J; Gibson, Peter R

    2009-09-01

    Active inflammatory bowel disease, anaemia, iron deficiency and depression, alone or in combination, are known contributing factors of fatigue in inflammatory bowel disease. However, in some patients, fatigue cannot be attributed to known causes. Thiopurines are not a recognized cause. To describe the clinical scenario of a series of patients where thiopurines were the likely cause of fatigue. The clinical scenario of 5 patients was examined with specific reference to the temporal association of thiopurine therapy with fatigue, the effect of its withdrawal and rechallenge, and drug specificity. The onset of severe fatigue was related to the introduction of azathioprine or 6-mercaptopurine, rapid relief was experienced on its withdrawal in all patients, and fatigue rapidly occurred on rechallenge. The speed of onset was rapid in two patients and in the context of gradual withdrawal of moderate steroid dose, but recurred rapidly on rechallenge when not on steroids. Marked fatigue is a previously unrecognized adverse effect of thiopurines. It does not appear to be drug-specific. Its onset might be masked by concurrent steroid therapy.

  18. Thermal and isothermal low cycle fatigue of MANET I and II

    International Nuclear Information System (INIS)

    Petersen, C.; Schmitt, R.; Garnier, D.

    1996-01-01

    Structural components of a DEMO-blanket are subjected during service to alternating thermal and mechanical stresses as a consequence of the pulsed reactor operation. Of particular concern is the fatigue endurance of martensitic steels like MANET under cyclic strains and stresses produced by these temperature changes. In order to design such structures, operating under combined mechanical and thermal cycling, fatigue life has to be calculated with reasonable accuracy. This paper proposes a description of thermal and isothermal mechanical low-cycle fatigue of MANET I and II steels using a single damage model, including plastic strain, temperature and strain rate as variables. This model presents notable advantages for the designer. As it corresponds to a single and continuous 'fatigue strength surface', it enables a reliable interpolation to be made throughout the studied domain of strains and temperatures, and allows for a reasonable extrapolation out of this domain, provided that no different metallurgical phenomena occur. (orig.)

  19. Radiology reading-caused fatigue and measurement of eye strain with critical flicker fusion frequency

    International Nuclear Information System (INIS)

    Maeda, Eriko; Yoshikawa, Takeharu; Hayashi, Naoto; Akai, Hiroyuki; Hanaoka, Shouhei; Sasaki, Hiroki; Matsuda, Izuru; Yoshioka, Naoki; Ohtomo, Kuni

    2011-01-01

    The aim of this study was to investigate eye fatigue that could impair diagnostic accuracy by measuring the critical flicker fusion frequency (CFFF) before and after reading. CFFF was measured before and after about 4 h of health checkup reading in seven healthy volunteer radiologists. A questionnaire was also completed on duration of sleep the night before the experiment, average duration of sleep, and subjective fatigue using a visual analog scale (corrected to a 0-1 scale, 0 indicating the worst fatigue ever experienced). After-reading subjective fatigue was significantly greater (before 0.52±0.15, after 0.42±0.15), and CFFF was significantly lower (before 40.9±2.4, after 39.9±2.0). There was no significant correlation between subjective fatigue and CFFF, either before or after or between before- and after-reading differences in subjective fatigue and CFFF. Shorter duration of sleep the night before significantly correlated with lower CFFF (Pearson's correlation coefficient): before 0.42, P=0.0047; after 0.52, P=0.0003. CFFF declines after reading and can be considered useful as an indicator of fatigue induced by radiology reading. CFFF declines significantly when sleep is reduced the day before reading without correlation with subjective fatigue, meaning that sleep deprivation can cause an unaware decline in visual function. (author)

  20. Fatigue behaviour of the austenitic steel 1.4550 under mechanical and thermal cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, D.; Fingerhuth, J.; Varfolomeev, I.; Moroz, S. [Fraunhofer Institute for Mechanics of Materials (IWM), Freiburg (Germany)

    2014-07-01

    Fatigue behaviour of the austenitic steel 1.4550 (X6CrNiNb18-10) under low-cycle fatigue and high-cycle thermal fatigue was investigated with in two research projects supported by the Federal Ministry of Economic Affairs and Energy and the Ministry of Education and Research. The objectives of the projects were the gain of deep understanding of the damage mechanisms under mechanical and thermal cyclic loading and the development of material models and simulation procedures for an improved lifetime assessment. In comparison to the advanced mechanism based material models engineering computational procedures were proven with respect to their applicability and conservatisms. For thermal cyclic loading, test equipment and technique were developed which allow for cyclic thermal loading with temperature ranges between 1 00 C and 300 C and frequencies between 0.1 and 1 Hz. As a result, tests with a temperature range of 150 C and lower showed no crack formation up to 300,000 cycles. For temperature ranges of 200 C and higher multiple crack patterns were observed with the deepest crack of about 1.3 mm after 1,000,000 cycles, whereas the difference in crack depth between 300,000 and 1,000,000 cycles was negligibly small. To model the fatigue lifetime, the D{sub TMF} damage parameter was applied to the low-cycle fatigue and the thermal, high frequent fatigue tests. For thermal fatigue, the analyses predicted in agreement with the tests crack initiation followed by crack propagation, subsequent retardation and arrest. This behaviour can be explained qualitatively and quantitatively using the methods of linear-elastic fracture mechanics, whereas the consideration of the interaction of multiple cracks is essential to describe the experimentally observed crack retardation. The results for thermal fatigue are in the scatterband of the mechanical p and thermo-mechanical fatigue results and the cycles to failure are 10 times higher than those estimated according to the KTA fatigue

  1. Estimates of thermal fatigue due to beam interruptions for an ALMR-type ATW

    International Nuclear Information System (INIS)

    Dunn, F. E.; Wade, D. C.

    1999-01-01

    Thermal fatigue due to beam interruptions has been investigated in a sodium cooled ATW using the Advanced Liquid Metal mod B design as a basis for the subcritical source driven reactor. A k eff of 0.975 was used for the reactor. Temperature response in the primary coolant system was calculated, using the SASSYS- 1 code, for a drop in beam current from full power to zero in 1 microsecond.. Temperature differences were used to calculate thermal stresses. Fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code were used to determine the number of cycles various components should be designed for, based on these thermal stresses

  2. Stochastic modelling of thermal fatigue crack growth for applying in the structural reliability of nuclear piping

    International Nuclear Information System (INIS)

    Radu, V.

    2016-01-01

    The problem of thermal fatigue in mixing areas arises in nuclear piping where a turbulent mixing or vortices produce rapid fluid temperature fluctuations with random frequencies. The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. To apply the Stochastic approach of thermal fatigue, a frequency temperature response function is proposed. For the elastic thermal stresses distribution solutions, the magnitude of the frequency response function is first derived and checked against the prediction by FEA. The connection between SIF.s power spectral density (PSD) and temperature.s PSD is assured with SIF frequency response function modulus. The frequency of the peaks of each magnitude for KI is supposed to be a stationary narrow-band Gaussian process. The probabilities of failure are estimated by means of the Monte Carlo methods considering a limit state function. (authors)

  3. The thermal fatigue behaviour of creep-resistant Ni-Cr cast steel

    Directory of Open Access Journals (Sweden)

    B. Piekarski

    2007-12-01

    Full Text Available The study gives a summary of the results of industrial and laboratory investigations regarding an assessment of the thermal fatigue behaviour of creep-resistant austenitic cast steel. The first part of the study was devoted to the problem of textural stresses forming in castings during service, indicating them as a cause of crack formation and propagation. Stresses are forming in carbides and in matrix surrounding these carbides due to considerable differences in the values of the coefficients of thermal expansion of these phases. The second part of the study shows the results of investigations carried out to assess the effect of carbon, chromium and nickel on crack resistance of austenitic cast steel. As a criterion of assessment the amount and propagation rate of cracks forming in the specimens as a result of rapid heating followed by cooling in running water was adopted. Tests were carried out on specimens made from 11 alloys. The chemical composition of these alloys was comprised in a range of the following values: (wt-%: 18-40 %Ni, 17-30 %Cr, 1.2-1.6%Si and 0.05-0.6 %C. The specimens were subjected to 75 cycles of heating to a temperature of 900oC followed by cooling in running water. After every 15 cycles the number of the cracks was counted and their length was measured. The results of the measurements were mathematically processed. It has been proved that the main factor responsible for an increase in the number of cracks is carbon content in the alloy. In general assessment of the results of investigations, the predominant role of carbon and of chromium in the next place in shaping the crack behaviour of creep-resistant austenitic cast steel should be stressed. Attention was also drawn to the effect of high-temperature corrosion as a factor definitely deteriorating the cast steel resistance to thermal fatigue.

  4. Service Life Of Main Piping Component Due To Low Thermal Stresses.Fatigue

    International Nuclear Information System (INIS)

    Miroshnik, R.; Jeager, A.; Ben Haim, H.

    1998-01-01

    The paper deals with estimating the service life of the power station Main piping component and describing the repair process for extending of its service life. After a long period of service, several circular fatigue cracks have been discovered at the bottom of the Main piping component chamber. Finite element analyses of transient thermal stresses, caused by power station startup, are carried out in the paper. The calculation results show good agreement between the theoretical locations of the maximum stresses and the actual locations of the cracks. There is a good agreement between theoretical evaluation and actual service life, as well. The possibility of machining out the cracks in order to prevent their growing is examined here. The machining enables us to extend the power station component's life service

  5. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  6. Robust design and thermal fatigue life prediction of anisotropic conductive film flip chip package

    International Nuclear Information System (INIS)

    Nam, Hyun Wook

    2004-01-01

    The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF(Anisotropic Conductive Film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue life of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear bi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design Of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2 nd DOE was conducted to obtain RSM equation for the choose 3 design parameter. The coefficient of determination (R 2 ) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for Feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430μm, and 78μm, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter

  7. Clinical observation of vitamin B12 eye drops for vision fatigue caused by visual display terminals

    Directory of Open Access Journals (Sweden)

    Qiang Guo

    2016-07-01

    Full Text Available AIM: To investigate the clinical effect of vitamin B12 eye drops for vision fatigue caused by visual display terminals(VDT. METHODS: Totally 50 patients(100 eyeswith vision fatigue caused by VDT were averagely divided into two groups. The control group were treated with normal saline,the treatment group were treated with vitamin B12 eye drops,3 times per day, one drop each time, continuous for 60d. Accommodative parameters and Schirmer Ⅰtest were measured and analyzed before and after treatment. RESULTS:After treatment, the results of Schirmer Ⅰtest, accommodative amplitude and accommodative facility of the treatment group were higher than those of the control group(all PPCONCLUSION: Vitamin B12 eye drops can lessen symptoms of dry eye, improve accommodative function and treat vision fatigue caused by VDT.

  8. Thermal cycling fatigue of organic thermal interface materials using a thermal-displacement measurement technique

    Science.gov (United States)

    Steill, Jason Scott

    The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.

  9. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  10. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  11. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    Science.gov (United States)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  12. Thermal fatigue behavior of a SUS304 pipe under longitudinal cyclic movement of axial temperature distribution

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Ohtani, Tomomi; Takahashi, Yukio

    1996-01-01

    In a structural thermal fatigue test which imposed an oscillating axial temperature distribution on a SUS 304 pipe specimens, different crack initiation lives were observed between the inner and the outer surfaces, although the values of the von-Mises equivalent strain range calculated by FEM inelastic analysis were almost the same for both surfaces. The outer surface condition was an in-phase thermal cycle and an almost uniaxial cyclic stress (low hydrostatic stress). The inner surface condition was an out-of-phase thermal cycle and an almost equibiaxial cyclic stress (high hydrostatic stress). A uniaxial thermal fatigue test was performed under the simulated conditions of the outer and inner surfaces of the pipe specimen. The in-phase uniaxial thermal fatigue test result was in good agreement with the test result of the pipe specimen for the outer surface. The out-of-phase uniaxial thermal fatigue test which simulated the inner surface condition, showed a longer life than the in-phase uniaxial test, and thus contradicted the result of the structural model test. However, the structural model test life for the inner surface agreed well with the uniaxial experimental measurement when the strain range of the inner surface was corrected by a triaxiality factor

  13. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  14. Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.

    Science.gov (United States)

    Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul

    2014-12-01

    This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The origins of Asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure

    Science.gov (United States)

    Hazeli, Kavan; El Mir, Charles; Papanikolaou, Stefanos; Delbo, Marco; Ramesh, K. T.

    2018-04-01

    The distributions of size and chemical composition in regolith on airless bodies provide clues to the evolution of the solar system. Recently, the regolith on asteroid (25143) Itokawa, visited by the JAXA Hayabusa spacecraft, was observed to contain millimeter to centimeter sized particles. Itokawa boulders commonly display well-rounded profiles and surface textures that appear inconsistent with mechanical fragmentation during meteorite impact; the rounded profiles have been hypothesized to arise from rolling and movement on the surface as a consequence of seismic shaking. This investigation provides a possible explanation of these observations by exploring the primary crack propagation mechanism during thermal fatigue of a chondrite. Herein, we present the evolution of the full-field strains on the surface as a function of temperature and microstructure, and examine the crack growth during thermal cycling. Our experimental results demonstrate that thermal-fatigue-driven fracture occurs under these conditions. The results suggest that the primary fatigue crack path preferentially follows the interfaces between monominerals, leaving the minerals themselves intact after fragmentation. These observations are explained through a microstructure-based finite element model that is quantitatively compared with our experimental results. These results on the interactions of thermal fatigue cracking with the microstructure may ultimately allow us to distinguish between thermally induced fragments and impact products.

  16. Effect of additional holes on transient thermal fatigue life of gas turbine casing

    Directory of Open Access Journals (Sweden)

    H. Bazvandi

    2017-10-01

    Full Text Available Gas turbines casings are susceptible to cracking at the edge of eccentric pin hole, which is the most likely position for crack initiation and propagation. This paper describes the improvement of transient thermal fatigue crack propagation life of gas turbines casings through the application of additional holes. The crack position and direction was determined using non-destructive tests. A series of finite element patterns were developed and tested in ASTM-A395 elastic perfectly-plastic ductile cast iron. The effect of arrangement of additional holes on transient thermal fatigue behavior of gas turbines casings containing hole edge cracks was investigated. ABAQUS finite element package and Zencrack fracture mechanics code were used for modeling. The effect of the reduction of transient thermal stress distribution around the eccentric pin hole on the transient thermal fatigue crack propagation life of the gas turbines casings was discussed. The result shows that transient thermal fatigue crack propagation life could be extended by applying additional holes of larger diameter and decreased by increasing the vertical distance, angle, and distance between the eccentric pin hole and the additional holes. The results from the numerical predictions were compared with experimental data.

  17. Large Eddy Simulation of a thermal mixing tee in order to assess the thermal fatigue

    International Nuclear Information System (INIS)

    Galpin, J.; Simoneau, J.P.

    2011-01-01

    Highlights: → In this study, we perform a Large Eddy Simulation of a mixing tee, for which experimental thermal statistics are available. → A special methodology has been set up for comparing properly the fluctuations with the experiment. → A comparison between the Smagorinsky and the structure-function sub-grid scale model is achieved out. → Slight better predictions are obtained with the structure-function model. → The possibility to reduce the computational domain by prescribing synthetic turbulence at the inlet is tested. First results are encouraging and underline the advantage of considering this technique instead of a standard noise at the entrance of the domain. - Abstract: The present paper deals with thermal fatigue phenomenon, and more particularly with the numerical simulation using Large Eddy Simulation technique of a mixing tee, for which experimental thermal statistics are available. The sensitivity to the sub-grid scale closure is first evaluated by comparing the experimental statistics with the numerical results obtained via both the Smagorinsky and the structure-function models. Because of a difference of temporal resolution between the experiment and the simulation, the direct comparison of the fluctuations is not possible. Therefore, a methodology based on filtering the numerical results is proposed in order to achieve a proper comparison. The comparison of the numerical results with the experiment suggests that slight better predictions are obtained with the structure-function model even if the dependency of the results to the sub-grid scale model is low. Then, the possibility to reduce the fluid computational domain by prescribing synthetic turbulence at the inlet is tested. First results are encouraging and underline the advantage of considering this technique instead of a standard noise at the entrance of the domain. All the simulations are conducted with the commercial CFD code STAR-CD.

  18. Workplace aggression as cause and effect: Emergency nurses' experiences of working fatigued.

    Science.gov (United States)

    Wolf, Lisa A; Perhats, Cydne; Delao, Altair M; Clark, Paul R

    2017-07-01

    Emergency nursing requires acute attention to detail to provide safe and effective care to potentially unstable or critically ill patients; this requirement may be significantly impaired by physical and mental fatigue. There is a lack of evidence regarding the effects of fatigue caused by factors other than a sleep deficit (e.g., emotional exhaustion). Fatigue affects nurses' ability to work safely in the emergency care setting and potentially impacts their health and quality of life outside of work. This was the qualitative arm of a mixed methods study; we used a qualitative exploratory design with focus group data from a sample of 16 emergency nurses. Themes were identified using an inductive approach to content analysis. The following themes were identified: "It's a weight on your back;" "Competitive nursing;" "It's never enough;" "You have to get away;" and "Engagement as a solution." Our participants reported high levels of fatigue, which compromised patient care, had a negative effect on their personal lives, and created a toxic unit environment. They reported lateral violence as both the cause and effect of mental and emotional fatigue, suggesting that unit culture affects nurses and the patients they care for. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Thermal stress analysis and thermo-mechanical fatigue for gas turbine blade

    International Nuclear Information System (INIS)

    Hyun, J. S.; Kim, B. S.; Kang, M. S.; Ha, J. S.; Lee, Y. S.

    2002-01-01

    The numerical analysis for gas turbine blades were carried out under several conditions by compounding temperature field, velocity field, thermal conduction of blade, and cooling heat transfer. The three types of 1,100 deg. C class 1st-stage gas turbine blades were analyzed. The analysis results are applied to the study on evaluating the remaining life for thermo-mechanical fatigue life. The thermo-mechanical fatigue experiments under out-of-phase and in-phase have been performed. The physical-based life prediction models which considered the contribution of different damage mechanisms have been applied. These models were applied to the temperature and strain rate dependences of isothermal cycling fatigue lives, and the strain-temperature history effect on the thermo-mechanical fatigue lives

  20. Fatigue

    Science.gov (United States)

    ... sleep. Fatigue is a lack of energy and motivation. Drowsiness and apathy (a feeling of not caring ... Call your provider right away if you have any of the following: Confusion or dizziness Blurred vision Little or no urine, or recent ...

  1. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  2. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Schoebel, M., E-mail: michaels@mail.tuwien.ac.at [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Degischer, H.P. [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Vaucher, S. [Advanced Materials Processing, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Hofmann, M. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Lichtenbergstrasse 1, D-85747 Garching (Germany); Cloetens, P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble (France)

    2010-11-15

    Aluminum reinforced by 60 vol.% diamond particles has been investigated as a potential heat sink material for high power electronics. Diamond (CD) is used as reinforcement contributing its high thermal conductivity (TC {approx} 1000 W mK{sup -1}) and low coefficient thermal expansion (CTE {approx} 1 ppm K{sup -1}). An Al matrix enables shaping and joining of the composite components. Interface bonding is improved by limited carbide formation induced by heat treatment and even more by SiC coating of diamond particles. An AlSi7 matrix forms an interpenetrating composite three-dimensional (3D) network of diamond particles linked by Si bridges percolated by a ductile {alpha}-Al matrix. Internal stresses are generated during temperature changes due to the CTE mismatch of the constituents. The stress evolution was determined in situ by neutron diffraction during thermal cycling between room temperature and 350 deg. C (soldering temperature). Tensile stresses build up in the Al/CD composites: during cooling <100 MPa in a pure Al matrix, but around 200 MPa in the Al in an AlSi7 matrix. Compressive stresses build up in Al during heating of the composite. The stress evolution causes changes in the void volume fraction and interface debonding by visco-plastic deformation of the Al matrix. Thermal fatigue damage has been revealed by high resolution synchrotron tomography. An interconnected diamond-Si 3D network formed with an AlSi7 matrix promises higher stability with respect to cycling temperature exposure.

  3. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  4. Thermal fatigue crack growth in mixing tees nuclear piping - An analytical approach

    International Nuclear Information System (INIS)

    Radu, V.

    2009-01-01

    The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. So-called sinusoidal methods represent a simplified approach in which the entire spectrum is replaced by a sine-wave variation of the temperature at the inner pipe surface. The need for multiple calculations in this process has lead to the development of analytical solutions for thermal stresses in a pipe subject to sinusoidal thermal loading, described in previous work performed at JRC IE Petten, The Netherlands, during the author's stage as seconded national expert. Based on these stress distributions solutions, the paper presents a methodology for assessment of thermal fatigue crack growth life in mixing tees nuclear piping. (author)

  5. Simplified thermal fatigue evaluations using the GLOSS method

    International Nuclear Information System (INIS)

    Adinarayana, N.; Seshadri, R.

    1996-01-01

    The Generalized Local Stress Strain (GLOSS) method has been extended to include thermal effects in addition to mechanical loadings. The method, designated as Thermal-GLOSS, has been applied to several pressure component configuration of practical interest. The inelastic strains calculated by the Thermal-GLOSS method has been compared with the Molski-Glinka method, the Neuber formula and the inelastic finite element analysis results, and found to give consistently good estimates. This is pertinent to power plant equipment

  6. In-Pile thermal fatigue of First Wall mock-ups under ITER relevant conditions

    International Nuclear Information System (INIS)

    Blom, F.; Schmalz, F.; Kamer, S.; Ketema, D.J.

    2006-01-01

    The objective of this study is to perform in-pile thermal fatigue testing of three actively cooled First Wall (FW) mock-ups to check the effect of neutron irradiation on the Be/CuCrZr joints under representative FW operation conditions. Three FW mock-ups with Beryllium armor tiles will be neutron irradiated at 1 dpa (in Be) with parallel thermal fatigue testing for 30,000 cycles. The temperatures, stress distributions and stress amplitudes at the Be/CuCrZr interface of the mock-ups will be as close as possible to the values calculated for ITER FW panels. For this objective the PWM mocks-up subjected to thermal fatigue will be integrated with high density (W) plates on the Be-side to provide heat flux by nuclear heating. The assembly will be placed in the pool-side facility of the HFR and thermal cycling is then arranged by mechanical movement towards and from the core box. As the thermal design of the irradiation rig is very critical a pilot-irradiation will be performed to cross check the models used in the thermal design of the rig. The project is currently in the design phase of both the pilot and actual irradiation rig. The irradiation of the actual rig is planned to start at mid 2007 and last for two years. (author)

  7. Thermal fatigue and creep evaluation for the bed in tritium SDS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo-seok, E-mail: wschoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Park, Chang-gyu [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Ju, Yong-sun [KOASIS, Yuseong, Daejeon (Korea, Republic of); Kang, Hyun-goo; Jang, Min-ho; Yun, Sei-hun [National Fusion Research Institute, Yuseong, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • To evaluate the integrity of the ITER tritium SDS bed, three kinds of assessments were conducted. • The structural analysis showed that the stress induced from the thermal load and the internal pressure is within the design stress intensity. • The combined fatigue and creep assessment was also performed according to the procedure of ASME code Subsection NH. • A new operation procedure to obtain more integrity margin was recommended. • The other operation procedure could be considered which makes the rapid operation possible giving up the marginal integrity. - Abstract: The primary vessel of ITER tritium SDS bed is made of stainless steel. It is heated beyond 500 °C to desorb tritium. During this process the primary vessel is subject to thermal stress. And it is also subject to thermal fatigue by the iterative process of absorption and desorption. In addition, its operation temperature range is in the thermal creep temperature region. Therefore, the tritium SDS bed should have sufficient design stress intensity under the high temperature operating conditions. It should also be free of damage due to fatigue during the design life. Thermal analysis and structural analysis was performed using a finite element method to calculate the temperature and the stress distribution of the ITER tritium SDS bed due to the internal pressure and thermal loads. The thermal fatigue and creep effects were also evaluated since the tritium SDS bed was heated to hot temperature region where creep occurs. Based on the distribution of the primary stress and secondary stress results, two evaluation cross-sections were selected. The evaluation showed that the calculated value on the cross-sections satisfied all of the limits of the design code requirements.

  8. Basic thermal–mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxin; Yan, Qingzhi, E-mail: qzyan@ustb.edu.cn; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-15

    Highlights: • The potassium doped tungsten grade was achieved via swaging + rolling process. • The cracking threshold of the W–K alloy was in the range of 0.44–0.66 GW/m{sup 2}. • Recrystallization occurred at 0.66–1.1 GW/m{sup 2} during the thermal shock tests. • No cracks emerged during the thermal fatigue tests (0.44 GW/m{sup 2}, 1000 cycles). • Recrystallization occurred after 1000 cycles during the thermal fatigue tests. - Abstract: The potassium doped tungsten (W–K) grade was achieved via swaging + rolling process. The swaged + rolled W–K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W–K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m{sup 2} in a step of 0.22 GW/m{sup 2}. The cracking threshold was in the range of 0.44–0.66 GW/m{sup 2}. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66–1.1 GW/m{sup 2} basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m{sup 2} up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  9. A comparison between Japanese and French A16 defect assessment procedures for thermal fatigue crack growth

    International Nuclear Information System (INIS)

    Wakai, T.; Horikiri, M.; Poussard, C.; Drubay, B.

    2005-01-01

    This paper presents the results of a benchmark on thermal fatigue crack growth evaluation for a thick-wall cylinder subjected to cyclic thermal transients. The simplified crack growth evaluation methods of both JNC in JAPAN and A16 procedures proposed by CEA in France are presented. The predictions obtained using both methods are compared with the experimental data. The JNC method, which accounts for the non-linear stress component provides predictions of crack advance in a good agreement with the experimental data. In contrast, significant differences are observed between the A16 predictions and the experimental data. The discrepancies are mainly due to the non-linear stress component which is not accounted for in the A16 method. When using the JNC stress intensity factor solution determined by finite element analysis to account for the non-linear stress component, the A16 method well predicts the thermal fatigue crack growth behavior

  10. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    Science.gov (United States)

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-01-01

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. PMID:25192315

  11. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    Directory of Open Access Journals (Sweden)

    Jae Won Bang

    2014-09-01

    Full Text Available With the development of 3D displays, user’s eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs, biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR, facial temperature (FT, and a subjective evaluation (SE score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively.

  12. Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals

    Science.gov (United States)

    Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.

    2014-05-01

    The effect of thermal fatigue during tests of and single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the and samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a mixed brittle-ductile character

  13. Thermal fatigue of austenitic stainless steel: influence of surface conditions through a multi-scale approach

    International Nuclear Information System (INIS)

    Le-Pecheur, Anne

    2008-01-01

    Some cases of cracking of 304L austenitic stainless steel components due to thermal fatigue were encountered in particular on the Residual Heat Removal Circuits (RHR) of the Pressurized Water Reactor (PWR). EDF has initiated a R and D program to understand assess the risks of damage on nuclear plant mixing zones. The INTHERPOL test developed at EDF is designed in order to perform pure thermal fatigue test on tubular specimen under mono-frequency thermal load. These tests are carried out under various loadings, surface finish qualities and welding in order to give an account of these parameters on crack initiation. The main topic of this study is the research of a fatigue criterion using a micro:macro modelling approach. The first part of work deals with material characterization (stainless steel 304L) emphasising the specificities of the surface roughness link with a strong hardening gradient. The first results of the characterization on the surface show a strong work-hardening gradient on a 250 microns layer. This gradient does not evolved after thermal cycling. Micro hardness measurements and TEM observations were intensively used to characterize this gradient. The second part is the macroscopic modelling of INTHERPOL tests in order to determine the components of the stress and strain tensors due to thermal cycling. The third part of work is thus to evaluate the effect of surface roughness and hardening gradient using a calculation on a finer scale. This simulation is based on the variation of dislocation density. A goal for the future is the determination of the fatigue criterion mainly based on polycrystalline modelling. Stocked energy or critical plane being available that allows making a sound choice for the criteria. (author)

  14. Study of the neuroendocrine and immunologic mechanism of fatigue caused by military operations

    Directory of Open Access Journals (Sweden)

    Xin LI

    2012-01-01

    Full Text Available Objective  To observe the regularity of the changes in neuroendocrine-immune system caused by fatigue due to military operations, and explore the mechanism by which fatigue occurs in military operations. Methods  The subjects were 240 soldiers belonging to a field artillery force. The medical history and physical examination were taken before military operations, and fatigue assessment scale was accomplished as well. The following variables were measured in all the subjects: pituitary-adrenal [adrenocorticotropic hormone (ACTH, cortical hormone (B, 24-h urinary free cortisol (UFC], pituitary-gonadal [luteinizing hormone (LH, testosterone (T, estradiol (E2], pituitary-thyroid functions [serum thyroid stimulating hormone (TSH, tetraiodothyronine (TT4, triiodothyronine (TT3, free thyroxine (FT4, and free triiodothyronine (FT3], and cellular immune parameters (CD3+, CD4+, CD8+, CD4+/CD8+, B, NK. After 7 d of large-scale and high-intensity field exercises, the above variables were again measured in all the subjects. Results  After high-intensity military operations, the unpleasant feelings were significantly increased, and the compulsive and psychotic scores significantly decreased in the soldiers. In addition, the pituitary-adrenal and pituitary-gonadal hormone levels also decreased (all PPPConclusion  The depressed psychological tolerance in soldiers is the psychological factor of fatigue after a high-intensity military operation. The hypocorticoidism and inhibition of hypothalamic-pituitary-gonadal axis are the pathophysiological basis of military operation fatigue. Suppression of immune function is an important reason for an increase of susceptibility to disease after high-intensity military operations.

  15. Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach

    International Nuclear Information System (INIS)

    Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.

    2010-01-01

    A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)

  16. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Schmidt, A.; Riccardi, B.; Bobin-Vastra, I.

    2011-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  17. Method for identification of fluid mixing zones subject to thermal fatigue damage

    International Nuclear Information System (INIS)

    Vole, O.; Beaud, F.

    2009-01-01

    High cycle thermal fatigue due to the mixing of hot and cold fluids may initiate cracking in pipes of safety related circuits. A method has been developed to identify such fluid mixing zones subjected to potential thermal fatigue damage. This method is based on a loading model and a mechanical model that depend on the main characteristics of the mixing zone and on the material properties. It is supported by a large experimental program. This method has been applied to all the mixing zones of safety related circuits of the EDF pressurised water reactors, allowing to identify sensitive zones and to apply an appropriate inspection program that ensures the control of the risk due to this damage mechanism. (authors)

  18. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  19. The effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses

    OpenAIRE

    Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar

    2014-01-01

    Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. Methods: This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Is...

  20. Fatigue Stress Fracture of the Talar Body: An Uncommon Cause of Ankle Pain.

    Science.gov (United States)

    Kim, Young Sung; Lee, Ho Min; Kim, Jong Pil; Moon, Han Sol

    2016-01-01

    Fatigue stress fractures of the talus are rare and usually involve the head of the talus in military recruits. We report an uncommon cause of ankle pain due to a fatigue stress fracture of the body of the talus in a 32-year-old male social soccer player. Healing was achieved after weightbearing suppression for 6 weeks. Although rare, a stress fracture of the body of the talus should be considered in an athlete with a gradual onset of chronic ankle pain. Magnetic resonance imaging and bone scan are useful tools for early diagnosis. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Thermal stresses and cyclic creep-fatigue in fusion reactor blanket

    International Nuclear Information System (INIS)

    Liu, K.C.

    1977-01-01

    Thermal stresses in the first walls of fusion reactor blankets were studied in detail. ORNL multibucket modules are emphasized. Practicality of using the bucket module rather than other blanket designs is examined. The analysis shows that applying intelligent engineering judgment in design can reduce the thermal stresses significantly. Arrangement of coolant flow and distribution of temperature are reviewed. Creep-fatigue property requirements for a first wall are discussed on the basis of existing design rules and criteria. Some major questions are pointed out and experiments needed to resolve basic uncertainties relative to key design decisions are discussed

  2. The effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses.

    Science.gov (United States)

    Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar

    2014-01-01

    Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Isfahan hospitals in 2012. To measure the SA, sleep quality, visual fatigue and thermal comfort, Spielberger state-trait anxiety inventory, Pittsburg sleep quality index, eye fatigue questionnaire and thermal comfort questionnaire were used respectively. The data were analyzed with descriptive statistics, student test and correlation analysis. Correlation between SA and sleep quality was -0.664(P thermal comfort was -0.276(P = 0.016) and between SA and eye fatigue was 0.57 (P thermal conditions and reduce state anxiety level can be reduce eye fatigue and increase the sleep quality in shift work nurses.

  3. Lifetime prediction of structures submitted to thermal fatigue loadings; Prediction de duree de vie de structures sous chargement de fatigue thermique

    Energy Technology Data Exchange (ETDEWEB)

    Amiable, S

    2006-01-15

    The aim of this work is to predict the lifetime of structures submitted to thermal fatigue loadings. This work lies within the studies undertaken by the CEA on the thermal fatigue problems from the french reactor of Civaux. In particular we study the SPLASH test: a specimen is heated continuously and cyclically cooled down by a water spray. This loading generates important temperature gradients in space and time and leads to the initiation and the propagation of a crack network. We propose a new thermo-mechanical model to simulate the SPLASH experiment and we propose a new fatigue criterion to predict the lifetime of the SPLASH specimen. We propose and compare several numerical models with various complexity to estimate the mechanical response of the SPLASH specimen. The practical implications of this work are the reevaluation of the hypothesis used in the French code RCC, which are used to simulate thermal shock and to interpret the results in terms of fatigue. This work leads to new perspectives on the mechanical interpretation of the fatigue criterion. (author)

  4. Effect of unit size on thermal fatigue behavior of hot work steel repaired by a biomimetic laser remelting process

    Science.gov (United States)

    Cong, Dalong; Li, Zhongsheng; He, Qingbing; Chen, Dajun; Chen, Hanbin; Yang, Jiuzhou; Zhang, Peng; Zhou, Hong

    2018-01-01

    AISI H13 hot work steel with fatigue cracks was repaired by a biomimetic laser remelting (BLR) process in the form of lattice units with different sizes. Detailed microstructural studies and microhardness tests were carried out on the units. Studies revealed a mixed microstructure containing martensite, retained austenite and carbide particles with ultrafine grain size in units. BLR samples with defect-free units exhibited superior thermal fatigue resistance due to microstructure strengthening, and mechanisms of crack tip blunting and blocking. In addition, effects of unit size on thermal fatigue resistance of BLR samples were discussed.

  5. Anisotropy effects during dwell-fatigue caused by δ-phase orientation in forged Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Saarimäki, Jonas, E-mail: jonas.saarimaki@liu.se [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Colliander, Magnus Hörnqvist [Department of Applied Physics, Chalmers University of Technology, SE-41296 Göteborg (Sweden); GKN Aerospace Engine Systems, R& T Centre, SE-46181 Trollhättan (Sweden); Moverare, Johan J. [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden)

    2017-04-24

    Inconel 718 is a commonly used superalloy for turbine discs in the gas turbine industry. Turbine discs are often subjected to dwell-fatigue as a result of long constant load cycles. The effect of anisotropy on dwell-fatigue cracking in forged turbine discs have not yet been thoroughly investigated. Crack propagation behaviour was characterised using compact tension (CT) samples cut in different orientations from a real turbine disc forging. Samples were also cut in two different thicknesses in order to investigate the influence of plane strain and plane stress condition on the crack propagation rates. The samples were subjected to dwell-fatigue tests at 550 °C with 90 s or 2160 s dwell-times at maximum load. Microstructure characterisation was done using scanning electron microscopy (SEM) techniques such as electron channelling contrast imaging (ECCI), electron backscatter diffraction (EBSD), and light optical microscopy (LOM). The forged alloy exhibits strong anisotropic behaviour caused by the non-random δ-phase orientation. When δ-phases were oriented perpendicular compared to parallel to the loading direction, the crack growth rates were approximately ten times faster. Crack growth occurred preferably in the interface between the γ-matrix and the δ-phase.

  6. Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper

    CERN Document Server

    Aicheler, M; Taborelli, M; Calatroni, S; Neupert, H; Wuensch, W; Sgobba, S

    2011-01-01

    Surface degradation due to cyclic thermal loading plays a major role in the Accelerating Structures (AS) of the future Compact Linear Collider (CLIC) In this article results on surface degradation of thermally cycled polycrystalline copper as a function of the orientation of surface grains are presented Samples with different grain sizes were subjected to thermal fatigue using two different methods and were then characterized using roughness measurements and Orientation Imaging Scanning-Electron-Microscopy (OIM-SEM) Samples fatigued by a pulsed laser show the same trend in the orientation-fatigue damage accumulation as the sample fatigued by pulsed Radio-Frequency-heating (RF) it is clearly shown that 11 1 1] surface grains develop significantly more damage than the surface grains oriented in {[}100] and three reasons for this behaviour are pointed out Based on observations performed near grain boundaries their role in the crack initiation process is discussed The results are in good agreement with previous f...

  7. Study of the thermal noise caused by inhomogeneously distributed loss

    CERN Document Server

    Yamamoto, K; Ando, M; Kawabe, K; Tsubono, K

    2002-01-01

    The normal modal expansion is the most frequently used method to estimate the thermal noise of interferometric gravitational wave detectors. However, the method does not agree with new estimation methods, direct approaches, when the loss is distributed inhomogeneously. We have checked the modal expansion and direct approaches experimentally using a mechanical oscillator, such as a mirror. The experiments showed that the modal expansion is invalid. On the other hand, the measured spectra are consistent with the direct approaches. We calculated the thermal noise of a real mirror with inhomogeneous loss using the direct approaches. This calculation showed that the thermal motions caused by loss in the reflective coating and at coil-magnet actuators are comparable with the sensitivity goals of future gravitational wave detector projects. In addition, according to our calculation, a mechanical loss may cause much larger or much smaller thermal motion than is expected in modal expansion, depending on the loss distr...

  8. Thermal fatigue loading for a type 304-L stainless steel used for pressure water reactor: investigations on the effect of a nearly perfect biaxial loading, and on the cumulative fatigue life

    International Nuclear Information System (INIS)

    Fissolo, A.; Gourdin, C.; Bouin, P.; Perez, G.

    2010-01-01

    Fatigue-life curves are used in order to estimate crack-initiation, and also to prevent water leakage on Pressure Water Reactor pipes. Such curves are built exclusively from push-pull tests performed under constant and uniaxial strain or stress-amplitude. However, thermal fatigue corresponds to a nearly perfect biaxial stress state and severe loading fluctuations are observed in operating conditions. In this frame, these two aspects have been successively investigated in this paper: In order to investigate on potential difference between thermal fatigue and mechanical fatigue, tests have been carried out at CEA using thermal fatigue devices. They show that for an identical level of strain-amplitude, the number of cycles required to achieve crack-initiation is significantly lower under thermal fatigue. This enhanced damage results probably from a perfect biaxial state under thermal fatigue. In this frame, application of the multiaxial Zamrik's criterion seems to be very promising. In order to investigate on cumulative damage effect in fatigue, multi-level strain controlled fatigue tests have been performed. Experimental results show that linear Miner's rule is not verified. A loading sequence effect is clearly evidenced. The double linear damage rule ('DLDR') improves significantly predictions of fatigue-life. (authors)

  9. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  10. A study on variations of the low cycle fatigue life of a high pressure turbine nozzle caused by inlet temperature profiles and installation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Aero-propulsion Research Office, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [School of Mechanical and Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  11. A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [Pusan National Univ., Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  12. Thermal fatigue cracking in T-fittings of feed water systems

    International Nuclear Information System (INIS)

    Oesterberg, J.

    1983-03-01

    The existence of thermal fatigue cracks can be determined by ultrasonic methods. The depth of the cracks will be of importance for evaluation of the seriousness of the situation. Currently, no method is available for determining depth of cracks without cutting and grinding. Methods for gaining information of crack depth have been discussed with leading European materials testing institutes. More elaborate ultrasonic methods have been tested with negative results. On testing signals from crack corners flood possible signals from the crack tips. At present no reliable technique based on ultrasonics exist (in Europe, that will give information of crack depth.(P.Aa.)

  13. Thermally induced high frequency random amplitude fatigue damage at sharp notches

    International Nuclear Information System (INIS)

    Lewis, M.W.J.

    1992-01-01

    Experiments have been performed using the SUPERSOMITE facility to investigate the initiation and growth of fatigue cracks at the tips of sharp surface notches subjected to random thermally-induced stress. The experimental situation is complex involving plasticity, random amplitude loading and heat transfer medium/surface coupling. Crack initiation and growth prediction have been considered using the Creager and Neuber methods to compute the strain ranges in the vicinity of the notch root. Good agreement has been obtained between the experimental results and theoretical predictions. The paper reports the results of the analysis of the notch behavior

  14. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  15. Fatigue life of fibre reinforced plastics at 295 K after thermal cycling between 295 K and 77 K

    Science.gov (United States)

    Belisario, G.; Caproni, F.; Marchetti, E.

    Results of low cycle three-point end fatigue tests at 295 K are reported. These were obtained from fibre reinforced plastics (FRP) flat specimens made of epoxy matrix reinforced with glass rovings only or glass rovings and Kevlar cloth. It is shown that previous thermal cycles between 295 K and 77 K exert an influence on the fatigue life as well on the acoustic emission results.

  16. Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends

    Science.gov (United States)

    Coyle, Richard J.; Sweatman, Keith; Arfaei, Babak

    2015-09-01

    Thermal fatigue is a major source of failure of solder joints in surface mount electronic components and it is critically important in high reliability applications such as telecommunication, military, and aeronautics. The electronic packaging industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu alloys first established as replacements for eutectic SnPb. This paper discusses the results from Pb-free solder joint reliability programs sponsored by two industry consortia. The characteristic life in accelerated thermal cycling is reported for 12 different Pb-free solder alloys and a SnPb control in 9 different accelerated thermal cycling test profiles in terms of the effects of component type, accelerated thermal cycling profile and dwell time. Microstructural analysis on assembled and failed samples was performed to investigate the effect of initial microstructure and its evolution during accelerated thermal cycling test. A significant finding from the study is that the beneficial effect of Ag on accelerated thermal cycling reliability (measured by characteristic lifetime) diminishes as the severity of the accelerated thermal cycling, defined by greater ΔT, higher peak temperature, and longer dwell time increases. The results also indicate that all the Pb-free solders are more reliable in accelerated thermal cycling than the SnPb alloy they have replaced. Suggestions are made for future work, particularly with respect to the continued evolution of alloy development for emerging application requirements and the value of using advanced analytical methods to provide a better understanding of the effect of microstructure and its evolution on accelerated thermal cycling performance.

  17. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue; Fatigue thermique d'un acier inoxydable austenitique 304L: simulation de l'amorcage et de la croissance des fissures courtes en fatigue isotherme et anisotherme

    Energy Technology Data Exchange (ETDEWEB)

    Haddar, N

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  18. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  19. Thermal gradients caused by the CANDU moderator circulation

    International Nuclear Information System (INIS)

    Mohindra, V.K.; Vartolomei, M.A.; Scharfenberg, R.

    2008-01-01

    The heavy water moderator circulation system of a CANDU reactor, maintains calandria moderator temperature at power-dependent design values. The temperature differentials between the moderator and the cooler heavy water entering the calandria generate thermal gradients in the reflector and moderator. The resultant small changes in thermal neutron population are detected by the out-of-core ion chambers as small, continuous fluctuations of the Log Rate signals. The impact of the thermal gradients on the frequency of the High Log Rate fluctuations and their amplitude is relatively more pronounced for Bruce A as compared to Bruce B reactors. The root cause of the Log Rate fluctuations was investigated using Bruce Power operating plant information data and the results of the investigation support the interpretation based on the thermal gradient phenomenon. (author)

  20. Investigation of V and V process for thermal fatigue issue in a sodium cooled fast reactor – Application of uncertainty quantification scheme in verification and validation with fluid-structure thermal interaction problem in T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp

    2014-11-15

    Highlights: • Outline of numerical simulation code MUGTHES for fluid-structure thermal interaction was described. • The grid convergence index (GCI) method was applied according to the ASME V and V-20 guide. • Uncertainty of MUGTHES can be successfully quantified for thermal-hydraulic problems and unsteady heat conduction problems in the structure. • Validation for fluid-structure thermal interaction problem in a T-junction piping system was well conducted. - Abstract: Thermal fatigue caused by thermal mixing phenomena is one of the most important issues in design and safety assessment of fast breeder reactors. A numerical simulation code MUGTHES consisting of two calculation modules for unsteady thermal-hydraulics analysis and unsteady heat conduction analysis in structure has been developed to predict thermal mixing phenomena and to estimate thermal response of structure under the thermal interaction between fluid and structure fields. Although verification and validation (V and V) of MUGTHES has been required, actual procedure for uncertainty quantification is not fixed yet. In order to specify an actual procedure of V and V, uncertainty quantifications with the grid convergence index (GCI) estimation according to the existing guidelines were conducted in fundamental laminar flow problems for the thermal-hydraulics analysis module, and also uncertainty for the structure heat conduction analysis module and conjugate heat transfer model was quantified in comparison with the theoretical solutions of unsteady heat conduction problems. After the verification, MUGTHES was validated for a practical fluid-structure thermal interaction problem in T-junction piping system compared with measured results of velocity and temperatures of fluid and structure. Through the numerical simulations in the verification and validation, uncertainty of the code was successfully estimated and applicability of the code to the thermal fatigue issue was confirmed.

  1. The role of the axial heat fluxes in the thermal fatigue assessment of piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: Oriol.Costa@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon; Shawish, Samir El [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia)

    2013-08-15

    Highlights: ► Existence of axial heat flux in the fluid near the surface influences the inner wall temperature fluctuations. ► In addition to the axial heat flux, the effect of the temperature fluctuations frequency is also investigated. ► Inner wall thermocouple readings are more attenuated but slightly less delayed when considering the axial heat flux. ► Fluid-surface heat transfer coefficient effect on surface temperature amplitudes and phase delay is considered in a sensitivity analysis. -- Abstract: Thermal fatigue is a structural damage of materials induced by the cyclic thermal loads that are frequently generated by the changes of fluid temperature inside of pipes. Among the thermal fatigue assessment methods we find the one-dimensional (1D) approach. Thermal, mechanical and fatigue analyses are performed for the pipe wall assuming that the distribution of temperatures only varies along the wall thickness. On the other hand, pipe regions with higher stress oscillations are those where the fluid temperature changes spatially, meaning cold or hot spots near the pipe surface, and with low frequencies. Spatial fluid temperature differences generate heat fluxes within the pipe wall which can’t be reproduced with 1D methods. For this reason, the present work focuses on understanding the wall temperature distributions for different values of heat fluxes and frequencies of fluid temperature. Due to the implication in wall temperature measurements, the heat fluxes and frequencies effects on temperature readings of wall thermocouples are also investigated. In this paper, the influence of axial heat flux in a pipe wall is studied. The temperature distribution within the pipe wall is analyzed considering a fluid temperature signal in the proximity of the pipe surface with axial temperature dependence. The effect of the temperature fluctuations frequency is also investigated. The two-dimensional finite difference equations for the transient temperature of a

  2. The role of the axial heat fluxes in the thermal fatigue assessment of piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; Cizelj, Leon; Shawish, Samir El

    2013-01-01

    Highlights: ► Existence of axial heat flux in the fluid near the surface influences the inner wall temperature fluctuations. ► In addition to the axial heat flux, the effect of the temperature fluctuations frequency is also investigated. ► Inner wall thermocouple readings are more attenuated but slightly less delayed when considering the axial heat flux. ► Fluid-surface heat transfer coefficient effect on surface temperature amplitudes and phase delay is considered in a sensitivity analysis. -- Abstract: Thermal fatigue is a structural damage of materials induced by the cyclic thermal loads that are frequently generated by the changes of fluid temperature inside of pipes. Among the thermal fatigue assessment methods we find the one-dimensional (1D) approach. Thermal, mechanical and fatigue analyses are performed for the pipe wall assuming that the distribution of temperatures only varies along the wall thickness. On the other hand, pipe regions with higher stress oscillations are those where the fluid temperature changes spatially, meaning cold or hot spots near the pipe surface, and with low frequencies. Spatial fluid temperature differences generate heat fluxes within the pipe wall which can’t be reproduced with 1D methods. For this reason, the present work focuses on understanding the wall temperature distributions for different values of heat fluxes and frequencies of fluid temperature. Due to the implication in wall temperature measurements, the heat fluxes and frequencies effects on temperature readings of wall thermocouples are also investigated. In this paper, the influence of axial heat flux in a pipe wall is studied. The temperature distribution within the pipe wall is analyzed considering a fluid temperature signal in the proximity of the pipe surface with axial temperature dependence. The effect of the temperature fluctuations frequency is also investigated. The two-dimensional finite difference equations for the transient temperature of a

  3. Thermal fatigue tests with actively cooled divertor mock-ups for ITER

    International Nuclear Information System (INIS)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B.; Ibbott, C.; Jacobson, D.; Le Marois, G.; Lind, A.; Lorenzetto, P.; Vieider, G.; Peacock, A.; Ploechl, L.; Severi, Y.; Visca, E.

    1998-01-01

    Mock-ups for high heat flux components with beryllium and CFC armour materials have been tested by means of the electron beam facility JUDITH. The experiments concerned screening tests to evaluate heat removal efficiency and thermal fatigue tests. CFC monoblocks attached to DS-Cu (Glidcop Al25) and CuCrZr tubes by active metal casting and Ti brazing showed the best thermal fatigue behaviour. They survived more than 1000 cycles at heat loads up to 25 MW m -2 without any indication of failure. Operational limits are given only by the surface temperature on the CFC tiles. Most of the beryllium mock-ups were of the flat tile type. Joining techniques were brazing, hot isostatic pressing (HIP) and diffusion bonding. HIPed and diffusion bonded Be/Cu modules have not yet reached the standards for application in high heat flux components. The limit of this production method is reached for heat loads of approximately 5 MW m -2 . Brazing with and without silver seems to be a more robust solution. A flat tile mock-up with CuMnSnCe braze was loaded at 5.4 MW m -2 for 1000 cycles without damage The first test with a beryllium monoblock joined to a CuCrZr tube by means of Incusil brazing shows promising results; it survived 1000 cycles at 4.5 MW m -2 without failure. (orig.)

  4. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  5. Resistance of heat resisting steels and alloys to thermal and mechanical low-cycle fatigue

    International Nuclear Information System (INIS)

    Tulyakov, G.A.

    1980-01-01

    Carried out is a comparative evalUation of resistance of different materials to thermocyclic deformation and fracture on the base of the experimental data on thermal and mechanical low-cycle fatigUe. Considered are peculiarities of thermal fatigue resistance depending on strength and ductility of the material. It is shown, that in the range of the cycle small numbers before the fracture preference is given to the high-ductility cyclically strengthening austenitic steels of 18Cr-10Ni type with slight relation of yield strength to the σsub(0.2)/σsub(B) tensile strength Highly alloyed strength chromium-nickel steels, as well as cyclically destrengthening perlitic and ferritic steels with stronger σsub(0.2)/σsub(B) relation as compared with simple austenitic steels turn to be more long-lived in the range of the cycle great numbers berore fracture. Perlitic steels are stated to have the lowest parameter values of the K crack growth intensity under the similar limiting conditions of the experiment, while steels and alloys with austenite structure-higher values of the K parameter

  6. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER relevant conditions

    International Nuclear Information System (INIS)

    Youchison, D.L.; Guiniiatouline, R.; Watson, R.D.

    1994-01-01

    Thermal response and thermal fatigue tests of four 5 mm thick beryllium tiles on a Russian divertor mock-up were completed on the Electron Beam Test System at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an OFHC copper saddleblock and a DSCu (MAGT) tube containing a porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m 2 and surface temperatures near 300 degrees C using 1.4 MPa water at 5.0 m/s flow velocity and an inlet temperature of 8-15 degrees C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m 2 and surface temperatures up to 690 degrees C before debonding at 10 MW/m 2 . A third tile debonded after 9200 thermal fatigue cycles at 5 MW/m 2 , while another debonded after 6800 cycles. In all cases, fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. During thermal cycling, a gradual loss of porous coating produced increasing sample temperatures. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER relevant conditions without failure. However, the reliability of the diffusion bonded Joint remains a serious issue

  7. Heat losses in power boilers caused by thermal bridges

    Directory of Open Access Journals (Sweden)

    Kocot Monika

    2017-01-01

    Full Text Available In this article the analysis of heat losses caused by thermal bridges that occur in the steam boiler OP-140 is presented. Identification of these bridges were conducted with use of thermographic camera. Heat losses were evaluated based on methodology of VDI 4610 standard, but instead of its simplified equations, criterial equations based on Nusselt number were used. Obtained values of annual heat losses and heat flux density corresponding to the fully insulated boiler surfaces were compared to heat losses generated by thermal bridges located in the same areas. The emphasis is put on the role of industrial insulation in heat losses reduction.

  8. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  9. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  10. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  11. Cyclic Fatigue Resistance of Novel Rotary Files Manufactured from Different Thermal Treated Nickel-Titanium Wires in Artificial Canals.

    Science.gov (United States)

    Karataşlıoglu, E; Aydın, U; Yıldırım, C

    2018-02-01

    The aim of this in vitro study was to compare the static cyclic fatigue resistance of thermal treated rotary files with a conventional nickel-titanium (NiTi) rotary file. Four groups of 60 rotary files with similar file dimensions, geometries, and motion were selected. Groups were set as HyFlex Group [controlled memory wire (CM-Wire)], ProfileVortex Group (M-Wire), Twisted File Group (R-Phase Wire), and OneShape Group (conventional NiTi wire)] and tested using a custom-made static cyclic fatigue testing apparatus. The fracture time and fragment length of the each file was also recorded. Statistical analysis was performed using one-way analysis of variance and Tukey's test at the 95% confidence level (P = 0.05). The HyFlex group had a significantly higher mean cyclic fatigue resistance than the other three groups (P Wire alloy represented the best performance in cyclic fatigue resistance, and NiTi alloy in R-Phase had the second highest fatigue resistance. CM and R-Phase manufacturing technology processed to the conventional NiTi alloy enhance the cyclic fatigue resistance of files that have similar design and size. M-wire alloy did not show any superiority in cyclic fatigue resistance when compared with conventional NiTi wire.

  12. Main factors of thermal fatigue failure induced by thermal striping and total simulation of thermal hydraulic and structural behaviors (research report)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Muramatsu, Toshiharu

    1999-01-01

    At incomplete mixing area of high temperature and low temperature fluids near the surface of structures, temperature fluctuation of fluid gives thermal fatigue damage to wall structures. This phenomenon is called thermal striping, which becomes sometimes a critical problem in LMFR plants. Since thermal striping phenomenon is characterized by the complex thermohydraulic and thermomechanical coupled problem, conventional evaluation procedures require mock-up experiments. In order to replace them by simulation-base methods, the authors have developed numerical simulation codes and applied them to analyze a tee junction of the PHENIX secondary circuit due to thermal striping phenomenon, in the framework of the IAEA coordinated research program (CRP). Through this analysis, thermohydraulic and thermomechanical mechanism of thermal striping phenomenon was clarified, and main factors on structural integrity was extracted in each stage of thermal striping phenomenon. Furthermore, simulation base evaluation methods were proposed taking above factors of structural integrity into account. Finally, R and D problems were investigated for future development of design evaluation methods. (author)

  13. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. Thermally activated behavior of the effective stress intensity at threshold

    International Nuclear Information System (INIS)

    Yu, W.; Esaklul, K.; Gerberich, W.W.

    1984-01-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity correlate to the thermal component of the flow stress. A fractographic study of the fatigue surface was performed. Water vapor in room air promotes the formation of oxide and intergranular crack growth. At lower temperatures, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks found on all three modes of fatigue crack growth suggest that fatigue crack growth controlled by the subcell structure near threshold. The effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity)

  14. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    Science.gov (United States)

    Barbagallo, C.; Malgioglio, G. L.; Petrone, G.; Cammarata, G.

    2017-05-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers.

  15. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    International Nuclear Information System (INIS)

    Barbagallo, C; Petrone, G; Cammarata, G; Malgioglio, G L

    2017-01-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers. (paper)

  16. Thermal fatigue analysis of vertical annulus with inner rotating cylinder induced by two temperature fluid mixing

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Tadashi

    2011-01-01

    Mechanical seal for nuclear reactor coolant recirculation pump must purge the cold water supply from the outside. The cold purge water is flowing into the hot water zone in the pump through a narrow gap between pump shaft and casing over. On the mixing region of the cold purge water and hot water in the narrow gap, the random level temperature fluctuation occurs on the structural metal surface of casing cover and pump shaft. Then it could lead to cyclic thermal stress and fatigue damage. The experiments and analysis have done, made clear the mechanism of generation of temperature fluctuations. Also, it was studied how to measure the structure of the mixing zone temperature control and how to prevent the occurrence of a large temperature fluctuation. In addition, it is proposed the method of evaluating a random temperature fluctuation by using the envelope curve and its fatigue by OOR counting to applying to the evaluation of the similar random fluid temperature fluctuation problems. (author)

  17. Structural Technology Evaluation Analysis Program (STEAP). Task Order 0029: Thermal Stability of Fatigue Life-Enhanced Structures

    Science.gov (United States)

    2012-01-01

    thermal and mechanical effects. When studying the residual stress relaxation behavior of AISI 4140 steel under conventional fatigue at elevated...Vohringer and 28. E. Macherauch, “Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures

  18. Thermal Exposure and Environment Effects on Tension, Fracture and Fatigue of 5XXX Alloys Tested in Different Orientations

    Science.gov (United States)

    2017-12-27

    Thermal Exposure and Environment Effects on Tension, Fracture and Fatigue of 5XXX Alloys Tested in Different Orientations Sb. GRANT NUMBER ONR-N000 14...e.g.Hl31, HI 16, HI 28), thermal exposure conditions (i .e. time, temperature), and environment (e.g. dry air, humid air, solutions) on the... environmental cracking susceptibility at different load ing rates in both the S-T and L-T orientations. Experiments were conducted using slow strain rate

  19. Thermal fatigue crack growth on a thick wall tube containing a semi elliptical circumferential crack

    International Nuclear Information System (INIS)

    Deschanels, H.; Wakai, T.; Lacire, M.H.; Michel, B.

    2001-01-01

    In order to check the ability of the simplified assessment procedure (A16 guide) to predict fatigue crack growth, a benchmark problem was conducted. This work is carried out under the project ''agreement on the Exchange of Information and Collaboration in the field of Research and Development of Fast Breeder Reactor (FBR) between Europe (EU) and Japan''. Experimental work is conducted by PNC using Air cooled Thermal transient Test Facility (ATTF). Specimen is a thick wall tube containing a semi elliptical (3-D) circumferential crack and subjected to cyclic thermal transients. The constitutive material is the 304 austenitic stainless steel type SUS304. Due to thermal shock (650 C-300 C) the stress distribution through the wall is non-linear and well approximated using a 3 rd order polynomial. When comparing computations and tests data we observe a good agreement for the crack propagation in length. In crack depth, accurate results are obtained in the first part of the test, but on the later stage of the experiment the computations slightly underestimate the propagation (deep crack). In addition, we notice the importance of good evaluation of fracture mechanics parameters for non-linear stress distribution through the wall. At present A16 guide handbook gives stress intensity factor solutions for non-linear stress distribution through the wall. (author)

  20. Thermal fatigue equipment to test joints of materials for high heat flux components

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Orsini, A.; Riccardi, B.; Sacchetti, M.

    2000-01-01

    The activity, carried out in the framework of an ITER divertor task, was aimed at defining a suitable method in order to qualify junctions between armour materials and heat sink of plasma-facing components (PFCs) mock-ups. An equipment able to perform thermal fatigue testing by electrical heating and active water-cooling was constructed and a standard for the sample was defined. In this equipment, during operation cycles, two samples are heated by thermal contact up to a relevant temperature value (350 deg. C) and then the water flow is switched on, thus producing fast cooling with time constants and gradients close to the real operating conditions. The equipment works with a test cycle of about 60 s and is suitable for continuous operation. A complete test consists of about 10000 cycles. After the assembling, the equipment and the control software were optimized to obtain a good reliability. Preliminary tests on mock-ups with flat CFC tiles joined to copper heat sink were performed. Finite-elements calculations were carried out in order to estimate the value of the thermal stresses arising close to the joint under the transient conditions that are characteristic of this equipment

  1. Thermal fatigue of refractory metal/graphite composites for fusion applications

    International Nuclear Information System (INIS)

    Smid, I; Nickel, H.; Kny, E.; Reheis, N.

    1995-01-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting composite tiles had a size of 50 mm x 50 mm with a graphite thickness of 10 mm and a TZM thickness of 5 mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and 'slow' peak energy deposition. The resulting damages and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes. Finally the influence of a hydrogen plasma on the adaptability of the investigated brazes in fusion devices is discussed. (author)

  2. Mechanical characterization of W-armoured plasma-facing components after thermal fatigue

    International Nuclear Information System (INIS)

    Serret, D; Richou, M; Missirlian, M; Loarer, T

    2011-01-01

    The future fusion device ITER is aimed at demonstrating the scientific and technical feasibility of fusion power. Tens of thousands of W-armoured plasma-facing components (PFCs) will be installed in the vertical targets of the ITER divertor and subjected to a high heat flux. The purpose of this paper is to present the results of mechanical and microstructural characterization of tungsten PFCs after thermal fatigue tests. On each component, Vickers hardness measurements are made. In parallel, the mean grain diameter in the corresponding zone of tungsten material is determined. The empirical Hall-Petch relation was adapted to experimental data. However, due to the plateau effect on recrystallization hardness, this relation does not seem to be relevant once recrystallization is complete: a new approach is proposed for predicting the margin to the tungsten melting onset.

  3. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degree C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP'd spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  4. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    Science.gov (United States)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  5. Large eddy simulation of a T-Junction with upstream elbow: The role of Dean vortices in thermal fatigue

    International Nuclear Information System (INIS)

    Tunstall, R.; Laurence, D.; Prosser, R.; Skillen, A.

    2016-01-01

    Highlights: • A T-Junction with an upstream bend is studied using wall-resolved LES and POD. • The bend generates Dean vortices which remain prominent downstream of the junction. • Dean vortex swirl-switching results in an unsteady secondary flow about the pipe axis. • This provides a further mechanism for near-wall temperature fluctuations. • Upstream bends can have a crucial role in T-Junction thermal fatigue problems. - Abstract: Turbulent mixing of fluids in a T-Junction can generate oscillating thermal stresses in pipe walls, which may lead to high cycle thermal fatigue. This thermal stripping problem is an important safety issue in nuclear plant thermal-hydraulic systems, since it can lead to unexpected failure of the pipe material. Here, we carry out a large eddy simulation (LES) of a T-Junction with an upstream bend and use proper orthogonal decomposition (POD) to identify the dominant structures in the flow. The bend generates an unsteady secondary flow about the pipe axis, known as Dean vortex swirl-switching. This provides an additional mechanism for low-frequency near-wall temperature fluctuations downstream of the T-Junction, over those that would be produced by mixing in the same T-Junction with straight inlets. The paper highlights the important role of neighbouring pipe bends in T-Junction thermal fatigue problems and the need to include them when using CFD as a predictive tool.

  6. Study of the damage processes induced by thermal fatigue in stainless steels F17TNb and R20-12 for automobile application; Etude de l'endommagement en fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, L.

    2004-12-15

    Thermal cycling is the main cause of fatigue failure in automobile exhaust manifolds for which the use of stainless steel now rivals that of cast iron which has been traditionally used. An original fatigue test has been developed by Ugine and ALZ, a stainless steel producer, so as to be able to compare different grades of stainless steel alloys. This test is representative of the thermal conditions encountered in the critical zones of exhaust manifolds. However, it has revealed significant differences in damage processes in the ferritic and austenitic grades tested. The subject of this thesis is the damage processes induced by thermal fatigue in stainless steels used for automotive exhaust manifolds. Two stainless steels were studied: a ferritic grade, F17TNb (17%Cr and stabilized with Ti and Nb), and an austenitic grade, R20-12, containing 20% Cr and 12% Ni. The first objective was to understand the different damage processes induced by thermal fatigue in the ferritic and austenitic grades. The second was to develop a numerical design tool of the thermally tested structures. (author)

  7. Effect of thermal strain on structure and polarization fatigue of CSD-derived PbZr0.53Ti0.47O3/LaNiO3 hetero-structures

    International Nuclear Information System (INIS)

    Wang, G.S.; Remiens, D.; Dogheche, E.; Dong, X.L.

    2007-01-01

    PbZr 0.53 Ti 0.47 O 3 /LaNiO 3 (PZT/LNO) hetero-structures have been successfully deposited on MgO, SrTiO 3 , Al 2 O 3 and Si substrate by chemical solution routes, respectively. The X-ray diffraction measurements show that out-of-plane lattice parameters of PZT increase as increase of thermal expansion coefficient of substrate. Polarization fatigues of Pt/PZT/LNO capacitors are strongly affected by the thermal strain caused by difference of thermal expansion coefficient between PZT and substrate materials. High fatigue resistance of Pt/PZT/LNO can be obtained by using substrate with similar thermal expansion coefficient as PZT. (orig.)

  8. Effect of thermo-mechanical loading histories on fatigue crack growth behavior and the threshold in SUS 316 and SCM 440 steels. For prevention of high cycle thermal fatigue failures

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Muzvidziwa, Milton; Iwasaki, Akira; Kasahara, Naoto

    2014-01-01

    High cycle thermal fatigue failure of pipes induced by fluid temperature change is one of the interdisciplinary issues to be concerned for long term structural reliability of high temperature components in energy systems. In order to explore advanced life assessment methods to prevent the failure, fatigue crack propagation tests were carried out in a low alloy steel and an austenitic stainless steel under typical thermal and thermo-mechanical histories. Special attention was paid to both the effect of thermo-mechanical loading history on the fatigue crack threshold, as well as to the applicability of continuum fracture mechanics treatment to small or short cracks. It was shown experimentally that the crack-based remaining fatigue life evaluation provided more reasonable assessment than the traditional method based on the semi-empirical law in terms of 'usage factor' for high cycle thermal fatigue failure that is employed in JSME Standard, S017. The crack propagation analysis based on continuum fracture mechanics was almost successfully applied to the small fatigue cracks of which size was comparable to a few times of material grain size. It was also shown the thermo-mechanical histories introduced unique effects to the prior fatigue crack wake, resulting in occasional change in the fatigue crack threshold. (author)

  9. Towards the prediction of thermal fatigue cracks networks development; Vers la prediction de l'apparition de reseau de fissures en fatigue thermique

    Energy Technology Data Exchange (ETDEWEB)

    Osterstock, St. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMA), 91 - Gif-sur-Yvette (France)

    2008-07-01

    In the framework of the influence of the surface and the structure of materials used in the cooling system of reactor, Depres studied in 2004 at the CEA, the evolution of the microstructure inside the surface grains under a thermal fatigue loading, from dynamic of dislocations calculation. In this context the aim of this study is to bring experimental elements of validation of the numerical results obtained by Depres and to verify if these elements allow the prediction of cracks networks apparition. (A.L.B.)

  10. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    Science.gov (United States)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  11. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  12. Fatigue crack growth rate behaviour of friction-stir aluminium alloy AA2024-T3 welds under transient thermal tensioning

    International Nuclear Information System (INIS)

    Ilman, M.N.; Kusmono,; Iswanto, P.T.

    2013-01-01

    Highlights: • FSW enables unweldable aircraft material AA2024-T3 to be welded without cracking. • FSW applied to aircraft structure is required to have superior fatigue resistance. • Transient thermal tensioning (TTT) is being developed for stress relieving in FSW. • The fatigue crack growth rates of FSW joints under TTT are studied. - Abstract: Friction stir welding (FSW) has become a serious candidate technology to join metallic fuselage panels for the next generation of civil aircrafts. However, residual stress introduced during welding which subsequently affects fatigue performance is still a major problem that needs to be paid attention. The present investigation aims to improve fatigue crack growth resistance of friction stir aluminium alloy AA2024-T3 welds using transient thermal tensioning (TTT) treatment. In this investigation, aluminium alloy AA2024-T3 plates were joined using FSW process with and without TTT. The welding parameters used including tool rotation speed (Rt) and the plate travelling speed (v) were 1450 rpm and 30 mm/min respectively. The TTT treatments were carried out by heating both sides of friction stir weld line using moving electric heaters ahead of, beside and behind the tool at a heating temperature of 200 °C. Subsequently, a sequence of tests was carried out including microstructural examination, hardness measurement, tensile test and fatigue crack growth rate (FCGR) test in combination with fractography using scanning electron microscopy (SEM). The FCGR test was carried out using a constant amplitude fatigue experiment with stress ratio (R) of 0.1 and frequency (f) of 11 Hz whereas specimens used were centre-crack tension (CCT) type with the initial crack located at the weld nugget. Results of this investigation showed that at low ΔK, typically below 9 MPa m 0.5 , the friction stir welds under TTT treatments lowered fatigue crack growth rate (da/dN) and the lowest (da/dN) was achieved as the heaters were located ahead of

  13. Side Effects: Fatigue

    Science.gov (United States)

    Fatigue is a common side effect of many cancer treatments such as chemotherapy, radiation therapy, immunotherapy, and surgery. Anemia and pain can also cause fatigue. Learn about symptoms and way to manage fatigue.

  14. Effect of thermal aging on the low cycle fatigue behavior of Z3CN20.09M cast duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weifeng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Tian, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Dunji, E-mail: djyu@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Weiwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Chen, Xu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-10-14

    Nuclear grade Z3CN20.09M cast duplex stainless steel exhibits enhanced cyclic stress response and prolonged low cycle fatigue life at room temperature after thermal aging at 400 °C for up to 6000 h. The threshold strain amplitude for the onset of secondary hardening is shifted to a lower value after thermal aging. Microstructural observations reveal that fatigue cracks tend to initiate from phase boundaries in virgin specimens, but to initiate in the ferrite phase in aged ones. Denser fatigue striations are found on the fracture surface of fatigued specimen subjected to longer thermal aging duration. These observations are explained in the context of thermal aging induced embrittlement of the ferrite phase and deformation induced martensitic phase transformation in the austenite phase.

  15. Radiotherapy does not cause increase psychological fatigue in prostate cancer patients: a prospective study

    International Nuclear Information System (INIS)

    Monga, Uma; Kerrigan, Anthony J.; Monga, Trilok N.

    1997-01-01

    Objectives: The origin of fatigue, a common symptom in cancer patients undergoing radiotherapy(RT), remains unresolved. The objectives of this study were to evaluate subjective fatigue in patients with localized prostate cancer utilizing validated instruments and to examine the relationship of fatigue with radiotherapy. Methods: Instruments used included: Piper Fatigue Scale (PFS), Beck Depression Inventory (BDI), Epworth Sleepiness Scale (ESS) and Functional Assessment of Cancer Therapy - Prostate (FACT-P). Patients are evaluated before radiation therapy (PRT), at 4 weeks' (RT4), at completion of RT (7-8 weeks, RTC) of radiotherapy, and at 4 weeks follow-up (RTF). Seventeen prostate cancer subjects with a mean age of 64.6 years (range 55-73) were assessed. Results: PRT median scores on BDI, PFS, ESS, FACT(G), and FACT (P) were 4.00, 2.41, 6.0, 94, and 130 respectively. No significant changes in these scores were noted at RT4, RTC and RTF. Significant negative relationship was noted between PFS and physical well being sub-scale of FACT (G) at PRT(r=-0.76), RTC(r=-0.58), and RTF(r=-0.86). On BDI, four subjects reported depressive symptoms PRT. Two of these four subjects also scored higher on PFS. However, no significant changes were noted on their BDI and PFS scores during the study. No other patients reported depressive symptoms during treatment. Conclusions: These findings indicate: (1) No significant change in the baseline scores of fatigue and psychological measures during radiotherapy. (2) Self reported fatigue is not common in our patient population. (3) A significant relationship exists between scores on PFS and Physical well being sub-scale of FACT (G). Relationship between PFS, FACT-P and psychological functioning, severity of disease and PSA levels will also be presented

  16. Life Management Technique of Thermal Fatigue for SMST Boiler Tube at Different Heating Zone Using Smithy Furnace

    OpenAIRE

    Shekhar Pal,; Pradeep Suman

    2014-01-01

    This paper highlights on the evaluation of thermal fatigue failure for SMST (Salzgitter Mannesmann strain less boiler tube) DMV 304 HCu boiler tube using life management technique by using of smithy furnace. Boiler tubes are highly affected by operating conditions like, high temperature and high pressure. So it needs periodic checking for the purpose of safety and health assessment of the plant. So using this technique we can identify the degradation of tubes at microstructure...

  17. Subjective sensation on sleep, fatigue, and thermal comfort in winter shelter-analogue settings

    Science.gov (United States)

    Maeda, Kazuki; Mochizuki, Yosuke; Tsuzuki, Kazuyo; Nabeshima, Yuki

    2017-10-01

    We aimed to examine sleep in shelter-analogue settings in winter to determine the subjective sensation and environmental conditions in evacuation shelters. Twelve young healthy students took part in the sleep study of two nights for seven hours from Midnight to 7 AM in the gymnasium. One night the subject used a pair of futons and on the other the subject used the emergency supplies of four blankets and a set of portable partitions. During the night, air temperature, humidity and air velocity were measured in the area around the sleeping subjects. Sleep parameters measured by actigraphy, skin temperature, microclimate temperature, rectal temperature, and the heart rates of the subjects were continuously measured and recorded during the sleeping period. The subjects completed questionnaires regarding their thermal comfort and subjective sleep before and after the sleep. The subjects felt more coldness on their head and peripheral parts of the body using the emergency blankets than the futon during the sleep. Moreover, fatigue was felt more on the lower back and lower extremities from using emergency blankets than the futon after sleep. However, the sleep efficiency index and subjective sleep evaluation by OSA questionnaire did not reveal any good correlationship. The emergency supplies should be examined for their suitability to provide comfortable and healthy sleep in the shelter-analogue settings.

  18. Stereomicroscopic evaluation of defects caused by torsional fatigue in used hand and rotary nickel-titanium instruments.

    Science.gov (United States)

    Asthana, Geeta; Kapadwala, Marsrat I; Parmar, Girish J

    2016-01-01

    The aim of this study was to evaluate defects caused by torsional fatigue in used hand and rotary nickel-titanium (Ni-Ti) instruments by stereomicroscopic examination. One hundred five greater taper Ni-Ti instruments were used including Protaper universal hand (Dentsply Maillefer, Ballaigues, Switzerland), Protaper universal rotary (Dentsply Maillefer, Ballaigues, Switzerland), and Revo-S rotary (MicroMega, Besançon, France) files. Files were used on lower anterior teeth. After every use, the files were observed with both naked eyes and stereomicroscope at 20× magnification (Olympus, Shinjuku, Tokyo, Japan) to evaluate defects caused by torsional fatigue. Scoring was assigned to each file according to the degree of damage. The results were statistically analyzed using the Mann-Whitney U test and the Kruskal-Wallis test. A greater number of defects were seen under the stereomicroscope than on examining with naked eyes. However, the difference in methods of evaluation was not statistically significant. Revo-S files showed minimum defects, while Protaper universal hand showed maximum defects. The intergroup comparison of defects showed that the bend in Protaper universal hand instruments was statistically significant. Visible defects in Ni-Ti files due to torsional fatigue were seen by naked eyes as well as by stereomicroscope. This study emphasizes that all the files should be observed before and after every instrument cycle to minimize the risk of separation.

  19. Establishment of a JSME code for the evaluation of high-cycle thermal fatigue in mixing tees

    International Nuclear Information System (INIS)

    Moriya, Shoichi; Fukuda, Toshihiko; Matsunaga, Tomoya; Hirayama, Hiroshi; Shiina, Kouji; Tanimoto, Koichi

    2004-01-01

    This paper describes a JSME code for high-cycle thermal fatigue evaluation by thermal striping in mixing tees with hot and cold water flows. The evaluation of thermal striping in a mixing tee has four steps to screen design parameters one-by-one according to the severity of the thermal load assessed from design conditions using several evaluation charts. In order to make these charts, visualization tests with acrylic pipes and temperature measurement tests with metal pipes were conducted. The influence of the configurations of mixing tees, flow velocity ratio, pipe diameter ratio and so on was examined from the results of the experiments. This paper makes a short mention of the process of providing these charts. (author)

  20. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  1. Thermal fatigue crack growth tests and analyses of thick wall cylinder made of Mod.9Cr–1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Takashi, E-mail: wakai.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan); Inoue, Osamu [IX Knowledge Inc., 3-22-23 MSC Center Bldg, Kaigan Minato-ku, Tokyo 1080022 Japan (Japan); Ando, Masanori; Kobayashi, Sumio [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan)

    2015-12-15

    Highlights: • A thermal fatigue crack growth test was performed using Mod.9Cr–1Mo steel cylinder. • Axial/circumferential notches were machined on the inner surface of the cylinder. • Simplified analytical results were compared to the test data. • Crack length could not be predicted by the analyses because of crack conjunctions. • If there are no surface cracks, the calculations might agree with the observations. - Abstract: In Japan, the basic designing works for a demonstration plant of Japan Sodium cooled Fast Reactor (JSFR) are now conducted. JSFR is an advanced loop type reactor concept. To enhance the safety and the economic competitiveness, JSFR employs modified 9% chromium–1% molybdenum (Mod.9Cr–1Mo) steel as a material for coolant pipes and components, because the steel has both excellent high temperature strength and thermal properties. The steel has been standardized as a nuclear material in Japan Society of Mechanical Engineers (JSME) code in 2012. In JSFR pipes, demonstration of Leak Before Break (LBB) aspect is strongly expected because the safety assessment may be performed on the premise of leak rate where the LBB aspect is assured. Although the authors have already performed a series of thermal fatigue crack growth tests of austenitic stainless steel cylinders (Wakai et al., 2005), crack growth behavior in the structures made of Mod.9Cr–1Mo steel has not been investigated yet. Especially for the welded joints of Mod.9Cr–1Mo steel, “Type-IV” cracking may occur at heat affected zone (HAZ). Therefore, this study performed a series of thermal fatigue crack growth tests of thick wall cylinders made of Mod.9Cr–1Mo steel including welds, to obtain the crack growth data under cyclic thermal transients. The test results were compared to the analytical results obtained from JAEA's simplified methods (Wakai et al., 2005).

  2. Design, simulation and fabrication of a flexible bond pad with a hollow annular protuberance to improve the thermal fatigue lifetime for through-silicon vias

    International Nuclear Information System (INIS)

    Wang, Guilian; Ding, Guifu; Luo, Jiangbo; Niu, Di; Zhao, Junhong; Zhao, Xiaolin; Wang, Yan; Liu, Rui

    2014-01-01

    This paper presents a flexible bond pad (FBP) with a hollow annular protuberance to improve the thermal fatigue lifetime for its application to through-silicon vias (TSVs). The hollow annular protuberance structure across the interface between the filled copper in TSV and silicon substrate not only isolates the FBP from stress/strain concentration regions (the corners of the TSV) but also disperses TSV-induced deformation. The plastic strain distributions of the FBP and conventional plate-type bond pad (CPBP) were simulated by finite element method (FEM) under the temperature cycles. Based on the simulation results, the thermal fatigue lifetimes of the CPBP and the FBP with different TSV diameters were predicted by the Coffin–Manson equation. The results indicate that thermal fatigue lifetimes of the FBP are significantly greater than those of the CPBP and their fatigue lifetimes both decrease with the increase of TSV diameter. To examine the reliability of the predicted results, the CPBP and the FBP with TSV diameter of 100 µm were fabricated by MEMS technology and temperature cycling tests (TCTs) were performed to obtain their thermal fatigue lifetimes. The test results are in good agreement with the numerical simulation results, and it shows that the proposed FBP can effectively improve the thermal fatigue lifetime for TSVs. (paper)

  3. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    Science.gov (United States)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  4. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. thermally activated behavior of the effective stress intensity at threshold

    Science.gov (United States)

    Yu, W.; Esaklul, K.; Gerberich, W. W.

    1984-05-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature for a sequence of Fe-Si binary alloys and an HSLA steel. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity, which was obtained by subtracting the closure portion from the fatigue threshold, was examined. This effective stress intensity was found to correlate very well to the thermal component of the flow stress. A detailed fractographic study of the fatigue surface was performed. Water vapor in the room air was found to promote the formation of oxide and intergranular crack growth. At lower temperature, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks were found on all three modes of fatigue crack growth. The regular spacings between these lines and dislocation modeling suggested that fatigue crack growth was controlled by the subcell structure near threshold. A model based on the slip-off of dislocations was examined. From this, it is shown that the effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity).

  5. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  6. Performance study of K{sub e} factors in simplified elastic plastic fatigue analyses with emphasis on thermal cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Hermann, E-mail: hermann.lang@areva.com [AREVA NP GmbH, PEEA-G, Henri-Dunant-Strasse 50, 91058 Erlangen (Germany); Rudolph, Juergen; Ziegler, Rainer [AREVA NP GmbH, PEEA-G, Henri-Dunant-Strasse 50, 91058 Erlangen (Germany)

    2011-08-15

    As code-based fully elastic plastic code conforming fatigue analyses are still time consuming, simplified elastic plastic analysis is often applied. This procedure is known to be overly conservative for some conditions due to the applied plastification (penalty) factor K{sub e}. As a consequence, less conservative fully elastic plastic fatigue analyses based on non-linear finite element analyses (FEA) or simplified elastic plastic analysis based on more realistic K{sub e} factors have to be used for fatigue design. The demand for more realistic K{sub e} factors is covered as a requirement of practical fatigue analysis. Different code-based K{sub e} procedures are reviewed in this paper with special regard to performance under thermal cyclic loading conditions. Other approximation formulae such as those by Neuber, Seeger/Beste or Kuehnapfel are not evaluated in this context because of their applicability to mechanical loading excluding thermal cyclic loading conditions typical for power plant operation. Besides the current code-based K{sub e} corrections, the ASME Code Case N-779 (e.g. Adam's proposal) and its modification in ASME Section VIII is considered. Comparison of elastic plastic results and results from the Rules for Nuclear Facility Components and Rules for Pressure Vessels reveals a considerable overestimation of usage factor in the case of ASME III and KTA 3201.2 for the examined examples. Usage factors according to RCC-M, Adams (ASME Code Case N-779), ASME VIII (alternative) and EN 13445-3 are essentially comparable and less conservative for these examples. The K{sub v} correction as well as the applied yield criterion (Tresca or von Mises) essentially influence the quality of the more advanced plasticity corrections (e.g. ASME Code Case N-779 and RCC-M). Hence, new proposals are based on a refined K{sub v} correction.

  7. Performance study of Ke factors in simplified elastic plastic fatigue analyses with emphasis on thermal cyclic loading

    International Nuclear Information System (INIS)

    Lang, Hermann; Rudolph, Juergen; Ziegler, Rainer

    2011-01-01

    As code-based fully elastic plastic code conforming fatigue analyses are still time consuming, simplified elastic plastic analysis is often applied. This procedure is known to be overly conservative for some conditions due to the applied plastification (penalty) factor K e . As a consequence, less conservative fully elastic plastic fatigue analyses based on non-linear finite element analyses (FEA) or simplified elastic plastic analysis based on more realistic K e factors have to be used for fatigue design. The demand for more realistic K e factors is covered as a requirement of practical fatigue analysis. Different code-based K e procedures are reviewed in this paper with special regard to performance under thermal cyclic loading conditions. Other approximation formulae such as those by Neuber, Seeger/Beste or Kuehnapfel are not evaluated in this context because of their applicability to mechanical loading excluding thermal cyclic loading conditions typical for power plant operation. Besides the current code-based K e corrections, the ASME Code Case N-779 (e.g. Adam's proposal) and its modification in ASME Section VIII is considered. Comparison of elastic plastic results and results from the Rules for Nuclear Facility Components and Rules for Pressure Vessels reveals a considerable overestimation of usage factor in the case of ASME III and KTA 3201.2 for the examined examples. Usage factors according to RCC-M, Adams (ASME Code Case N-779), ASME VIII (alternative) and EN 13445-3 are essentially comparable and less conservative for these examples. The K v correction as well as the applied yield criterion (Tresca or von Mises) essentially influence the quality of the more advanced plasticity corrections (e.g. ASME Code Case N-779 and RCC-M). Hence, new proposals are based on a refined K v correction.

  8. Thermal fatigue in mixing tees: A step by step simplified procedure

    International Nuclear Information System (INIS)

    Faidy, Claude

    2003-01-01

    Following the CIVAUX 1 incident of a leak on RHR system, EDF has developed a step by step procedure to screen and analyse similar locations: mixing tees with long duration at high ΔT between the 2 fluids. The paper present the procedure, the background of the methodology and few R and D work that support this procedure. The procedure is based on: screening criteria on maximum DT and minimum duration. screening criteria without any duration consideration, only DT and material. a simplified and conservative estimation of a usage factor. a detailed analysis of usage factor and crack growth rate, based on specific data collection of operating transients. Around that procedure EDF launched an R and D program on fatigue curves and fatigue reduction factors for high cycle fatigue. The procedure is compared with field experience and recent R and D fatigue tests. (author)

  9. Qinshan phase II extension nuclear power project thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong; Ai Honglei

    2010-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid brings on global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor, the loadings at connections of surge line to main pipe and RCP and the displacements of surge line at supports are obtained. (authors)

  10. A heavy heart; A massive right atrial myxoma causing fatigue and shortness of breath.

    LENUS (Irish Health Repository)

    Leonard, S

    2010-03-01

    Cardiac myxomas are rare. The clinical diagnosis of an atrial myxoma may occur in an asymptomatic patient but may also present with cardiac failure, syncope, arrythmias, or with vascular evidence of tumour embolisation. The delay in diagnosis from presentation is approximately ten months. We present the case of a 53-year-old woman who attended our Emergency Department with dyspnoea, fatigue and left sided chest pain. Investigations revealed a massive right atrial myxoma. The tumour was resected successfully. Emergency Physicians should be aware of the subtle ways in which an atrial myxoma can present because of the potential for fatal outcomes.

  11. The Change of the Seebeck Coefficient Due to Neutron Irradiation and Thermal Fatigue of Nuclear Reactor Pressure Vessel Steel and its Application to the Monitoring of Material Degradation

    International Nuclear Information System (INIS)

    Niffenegger, M.; Reichlin, K.; Kalkhof, D.

    2002-05-01

    The monitoring of material degradation, that might be caused by neutron irradiation and thermal fatigue, is an important topic in lifetime extension of nuclear power plants. We therefore investigated the application of the Seebeck effect for determining material degradation of common reactor pressure vessel steel. The Seebeck coefficient (SC) of several irradiated Charpy specimens made from Japanese JRQ-steel were measured. The specimens suffered a fluence from 0 up to 4.5 x 10 19 neutrons per cm 2 with energies higher than 1 MeV. The measured changes of the SC within this range were about 500 nV, increasing continuously in the range under investigation. Some indications of saturation appeared at fluencies larger than 4.55 x 10 19 neutrons per cm 2 . We obtained a linear dependency between the SC and the temperature shift ΔT 41 of the Charpy-Energy- Temperature curve which is widely used to characterize material embrittlement. Similar measurements were performed on specimens made from the widely used austenitic steel X6CrNiTi18-10 (according to DIN 1.4541) that were fatigued by applying a cyclic strain amplitude of 0.28%. For this kind of fatigue the observed change of SC was somewhat smaller than for the irradiated specimens. Further investigations were made to quantify the size of the gage volume in which the thermoelectric power is generated. It appeared that the information gathered from a Thermo Electric Power (TEP) measurement is very local. To overcome this problem we propose a novel TEP-method using a Thermoelectric Scanning Microscope (TSM). We finally conclude that the change of the SC has a potential for monitoring of material degradation due to neutron irradiation and thermal fatigue, but it has to be taken into account that several influencing parameters could contribute to the TEP in either an additional or extinguishing manner. A disadvantage of the method is the requirement of a clean surface without any oxide layer. A part of this disadvantage can

  12. Effects of irradiation and thermal aging upon fatigue-crack growth behavior of reactor pressure boundary materials. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    James, L. A.

    1978-10-01

    Two processes that have the potential to produce degradation in the properties of pressure boundary materials are neutron irradiation and long-time thermal aging. This paper uses linear-elastic fracture mechanics techniques to assess the effect of these two processes upon the fatigue-crack growth behavior of a number of alloys commonly employed in reactor pressure boundaries. The materials evaluated include ferritic steels, austenitic stainless steels, and nickel-base alloys typical of those employed in a number of reactor types including water-cooled, gas-cooled, and liquid-metal-cooled designs.

  13. A hydro-thermo-mechanics analyze of the thermal fatigue in the mixing tee junction

    International Nuclear Information System (INIS)

    Gourdin, C.; Chapuliot, S.; Magnaud, J.P.; Payen, T.

    2003-01-01

    Work presented here, has been achieved at Cea, and is related to the comprehension of the mechanisms leading to cracking under thermal loading in the zones of mixing. The main objective of this work is to analyze, by computation, the thermal loading induced by the turbulent mixing following a tee junction and to explain how it can create cracking, from the internal skin of the component to a leakage, as it was observed in Civaux Power Plant in 1998. The phenomenon is still today not completely understood. One of the principal reasons to this partial incomprehension undoubtedly resides in the multi-field aspect of the loading and of the associated damage, utilizing three different and complementary scientific disciplines: thermohydraulics, thermomechanics and material science. The presentation proposed here, consists in connecting the analyses resulting from these various fields. The first part concentrates on thermohydraulics simulations. The choice of an adequate modeling is discussed on the basis of observed cracking in order to highlight phenomena of large scale beats, which are supposed one of the major causes leading to the failure of the structures. The second part deals with the use of the temperature fields obtained in the first part in order to carry out thermomechanical simulations. All these simulations are 3-dimensional and represent the complex geometry of Civaux RRA piping line, including a tee junction and elbows, water flow velocity. Mean and temperatures variations, mean and stresses variations are also presented. As final results make it possible to determine a map of the damage associated with these complex thermal loading. (authors)

  14. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes

    Directory of Open Access Journals (Sweden)

    Aoki Kosuke

    2012-07-01

    Full Text Available Abstract Background Muscle contraction during short intervals of intense exercise causes oxidative stress, which can play a role in the development of overtraining symptoms, including increased fatigue, resulting in muscle microinjury or inflammation. Recently it has been said that hydrogen can function as antioxidant, so we investigated the effect of hydrogen-rich water (HW on oxidative stress and muscle fatigue in response to acute exercise. Methods Ten male soccer players aged 20.9 ± 1.3 years old were subjected to exercise tests and blood sampling. Each subject was examined twice in a crossover double-blind manner; they were given either HW or placebo water (PW for one week intervals. Subjects were requested to use a cycle ergometer at a 75 % maximal oxygen uptake (VO2 for 30 min, followed by measurement of peak torque and muscle activity throughout 100 repetitions of maximal isokinetic knee extension. Oxidative stress markers and creatine kinase in the peripheral blood were sequentially measured. Results Although acute exercise resulted in an increase in blood lactate levels in the subjects given PW, oral intake of HW prevented an elevation of blood lactate during heavy exercise. Peak torque of PW significantly decreased during maximal isokinetic knee extension, suggesting muscle fatigue, but peak torque of HW didn’t decrease at early phase. There was no significant change in blood oxidative injury markers (d-ROMs and BAP or creatine kinease after exercise. Conclusion Adequate hydration with hydrogen-rich water pre-exercise reduced blood lactate levels and improved exercise-induced decline of muscle function. Although further studies to elucidate the exact mechanisms and the benefits are needed to be confirmed in larger series of studies, these preliminary results may suggest that HW may be suitable hydration for athletes.

  15. Thermal bridges. Causes and impacts, information on reduction and avoidance; Waermebruecken. Ursachen und Auswirkungen, Hinweise zur Verringerung und Vermeidung

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Wolfgang; Born, Rolf

    2012-11-15

    Thermal bridges increase the heat demand, affect the thermal comfort, facilitate mould cultures and cause structural damage. Many thermal bridges can be avoided by proper building construction details. At least the impact of thermal bridges can be avoided.

  16. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    Science.gov (United States)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  17. Long-term behaviour of binary Ti–49.7Ni (at.%) SMA actuators—the fatigue lives and evolution of strains on thermal cycling

    International Nuclear Information System (INIS)

    Karhu, Marjaana; Lindroos, Tomi

    2010-01-01

    Long-term behaviour and fatigue endurance are the key issues in the utilization of SMA actuators, but systematic research work is still needed in this field. This study concentrates on the effects of three major design parameters on the long-term behaviour of binary Ti–49.7Ni-based actuators: the effect of the temperature interval used in thermal cycling, the effect of the stress level used and the effect of the heat-treatment state of the wire used. The long-term behaviour of the wires was studied in a custom-built fatigue test frame in which the wires were thermally cycled under a constant stress level. The fatigue lives of tested specimens and the evolution of transformation and plastic strains on thermal cycling were recorded. Before the fatigue testing, a series of heat treatments was carried out to generate optimal actuator properties for the wires. One of the major conclusions of the study is that the temperature interval used for thermal cycling has a major effect on fatigue endurance: decreasing the temperature interval used for thermal cycling increased the fatigue life markedly. When the transformation is complete, a 20 °C increase of the final temperature reduced the fatigue lives at the most by half for the studied Ti–49.7Ni wires. With partial transformations the effect is more distinct: even the 5 °C increase in the final temperature reduced the fatigue life by half. The stress level and heat-treatment state used had a marked effect on the actuator properties of the wires, but the effects on fatigue endurance were minor. The fatigue test results reveal that designing and controlling long-term behaviour of binary Ti–49.7Ni actuators is very challenging because the properties are highly sensitive to the heat-treatment state of the wires. Even 5 min longer heat-treatment time could generate, at the most, double plastic strain values and 30% lower stabilized transformation strain values. The amount of plastic strain can be stated as one of

  18. Effect of autoclave sterilization on the cyclic fatigue resistance of thermally treated Nickel-Titanium instruments.

    Science.gov (United States)

    Zhao, D; Shen, Y; Peng, B; Haapasalo, M

    2016-10-01

    To compare the cyclic fatigue resistance of HyFlex CM, Twisted Files (TF), K3XF, Race, and K3, and evaluate the effect of autoclave sterilization on the cyclic fatigue resistance of these instruments both before and after the files were cycled. Five types of NiTi instruments with similar size 30, .06 taper were selected: HyFlex CM, TF, K3XF, Race and K3. Files were tested in a simulated canal with a curvature of 60° and a radius of 3 mm. The number of cycles to failure of each instrument was determined to evaluate cyclic fatigue resistance. Each type of instruments was randomly divided into four experimental groups: group 1 (n = 20), unsterilized instruments; group 2 (n = 20), pre-sterilized instruments subjected to 10 cycles of autoclave sterilization; group 3 (n = 20), instruments tested were sterilized at 25%, 50% and 75% of the mean cycles to failure as determined in group 1, and then cycled to failure; group 4 (n = 20), instruments cycled in the same manner as group 3 but without sterilization. The fracture surfaces of instruments were examined by scanning electron microscopy (SEM). HyFlex CM, TF and K3XF had significantly higher cyclic fatigue resistance than Race and K3 in the unsterilized group 1 (P Autoclave sterilization significantly increased the MCF of HyFlex CM and K3XF (P Autoclaving extended the cyclic fatigue life of HyFlex CM and K3XF. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...... to seafarer fatigue. Materials and methods: A literature study was conducted aiming to collect publications that address risk factors for fatigue, short-term and long-term consequences for health and safety, and options for fatigue mitigation at sea. Due to the limited number of publications that deals...... with seafarers, experiences from other populations sharing the same exposures (e.g. shift work) were also included when appropriate. Results: Work at sea involves multiple risk factors for fatigue, which in addition to acute effects (e.g., impaired cognition, accidents) contributes through autonomic, immunologic...

  20. Corrosion fatigue in LP steam turbine blading - experiences, causes and appropriate measures; Korrosionsutmattning i aangturbinskovlar - Erfarenheter, inverkande faktorer och moejliga aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Tavast, J [ABB STAL AB, Finspaang (Sweden)

    1996-12-01

    Corrosion fatigue in LP steam turbine blading was reviewed together with result of tests performed in order to find blade materials with improved resistance against this. According to international experience, corrosion fatigue of 12Cr steam turbine blades in the transition zone between dry and wet steam, is one of the major causes, if not the major cause, for unavailability of steam turbines. Corrosion fatigue in LP blading is a frequent problem also in Swedish and Finnish nuclear power plants, especially in turbines of type D54 in BWR-plants. Corrosion fatigue has also been discovered in at least one type of nuclear turbine. Initiation times have been very long and the varying experiences in different types of turbines may simply reflect differing initiation times. Corrosion fatigue may therefore become more frequent in other types of turbines in the future. The type of water treatment (BWR/PWR) and possibly temperature after reheating seem to influence the risk for corrosion fatigue. Influence of inleakage of cooling water is less clear for these nuclear plants. The long initiation times together with the fact that very few of the cracked blades have actually failed, indicate that the cracks initiate and/or propagate during transients. Extensive laboratory tests show that there are alternative blade materials available with improved resistance against corrosion fatigue, with the most promising being 15/5 PH and A905, together with Ti6Al4V. The Ti alloy shows the best resistance against corrosion fatigue in most environments and is already used in some turbines. Disadvantage is a higher cost and possible need for redesign of the blades. The alternative materials are recommended for use for blades in the transition zone between dry and wet steam in LP turbines. The main disadvantage is a lack of references, even if 15%5 PH has been used to a very limited extent. 40 refs, 24 figs, 12 tabs, 9 appendices

  1. Comparison between FEM and high heat flux thermal fatigue testing results of ITER divertor plasma facing mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Crescenzi, F., E-mail: fabio.crescenzi@enea.it; Roccella, S.; Visca, E.; Moriani, A.

    2014-10-15

    Highlights: • Divertor is an important part of the ITER machine. • Finite element analysis allows designers to explore multiple design options, reducing physical prototypes and optimizing design performance. • The hydraulic thermal-mechanical analysis performed by ANSYS and the test results on small-scale mock-ups manufactured by HRP were compared. • FEA results confirmed many experimental data, then it could be very useful for next design optimization. - Abstract: The divertor is one of the most challenging components of “DEMO” the next step ITER machine, so many tasks regarding modeling and experiments have been made in the past years to assess manufacturing processes, materials and thus the life-time of the components. In this context the finite element analysis (FEA) allows designers to explore multiple design options, to reduce physical prototypes and to optimize design performance. The comparison between the hydraulic thermal-mechanical analysis performed by ANSYS WORKBENCH 14.5 and the test results [1] on small-scale mock-ups manufactured with the Hot Radial Pressing (HRP) [2] technology is presented in this paper. During the thermal fatigue testing in the Efremov TSEFEY facility to assess the heat flux load-carrying capability of the mock-ups, only the surface temperature was measured, so the FEA was important because it allowed to know any other information (temperature inside the materials, local water temperature, local stress, etc.). FEA was performed coupling the thermal-hydraulic analysis, that calculated the temperature distributions on the components and the heat transfer coefficient (HTC) between water and heat sink tube, with the mechanical analysis. The comparison between analysis and testing results was based on the temperature maps of the loaded surface and on number of the cycles supported during the testing and those predicted by the mechanical analysis using the experimental fatigue curves for CuCrZr-IG, that is the structural

  2. Inhaled β-agonist therapy and respiratory muscle fatigue as under-recognised causes of lactic acidosis.

    Science.gov (United States)

    Lau, Emily; Mazer, Jeffrey; Carino, Gerardo

    2013-10-14

    A 49-year-old man with chronic obstructive pulmonary disease (COPD) presented with significant tachypnoea, fevers, productive cough and increased work of breathing for the previous 4 days. Laboratory data showed elevated lactate of 3.2 mEq/L. Continuous inhaled ipratropium and albuterol nebuliser treatments were administered. Lactate levels increased to 5.5 and 3.9 mEq/L, at 6 and 12 h, respectively. No infectious source was found and the lactic acidosis cleared as the patient improved. The lactic acidosis was determined to be secondary to respiratory muscle fatigue and inhaled β-agonist therapy, two under-recognised causes of lactic acidosis in patients presenting with respiratory distress. Lactic acidosis is commonly used as a clinical marker for sepsis and shock, but in the absence of tissue hypoperfusion and severe hypoxia, alternative aetiologies for elevated levels should be sought to avoid unnecessary and potentially harmful medical interventions.

  3. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Lu, T., E-mail: likesurge@sina.com

    2016-12-01

    Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue

  4. Accelerated fatigue testing of LM 19.1 blades

    DEFF Research Database (Denmark)

    Kristensen, Ole Jesper Dahl; Jørgensen, E.

    2003-01-01

    A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A/S of Lunderskov, Denmark were subjected to a series of flapwise fatigue tests. The object of these fatigue tests is to evaluate the impact of an increased load on the blade in afatigue test and to give information...... if it is possible to increase the load in fatigue test to shorten test time. The tests were carried out as a part of a project financed by the Danish Energy Agency. During the fatigue tests the blades have beensurveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade...... material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges. This report presents the temperature duringtest, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause...

  5. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    Science.gov (United States)

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  6. Estimate of thermal fatigue lifetime for the INCONEL 625lCF plate while exposed to concentrated solar radiation

    Directory of Open Access Journals (Sweden)

    Rojas-Morín, A.

    2011-04-01

    Full Text Available A system for testing the thermal cycling of materials and components has been developed and installed at the DISTAL-I parabolic dish facility located at the Plataforma Solar de Almería (PSA in Spain. This system allows us to perform abrupt heating/cooling tests by exposing central solar receiver materials to concentrated solar radiation. These tests are performed to simulate both the normal and critical operational conditions of the central solar receiver. The thermal fatigue life for the INCONEL 625LCF® plate when subjected to concentrated solar radiation has been estimated with this system. We have also developed a numerical model that evaluates the thermal behavior of the plate material; additionally, the model yields the tensile-compressive stresses on the plate, which allow the estimation of the Stress-Life (S-N fatigue curves. These curves show that the lifetime of the plate is within the High Cycle Fatigue (HCF region at the operational temperatures of both 650 °C and 900 °C.

    En el concentrador solar de disco parabólico DISTAL-I, situado en la Plataforma Solar de Almería (PSA, en España, se ha instalado un sistema para pruebas de ciclado térmico de materiales. Este sistema permite realizar pruebas abruptas de calentamiento y enfriamiento, en materiales para receptores solares de torre central, al exponerlos a radiación solar concentrada. Estas pruebas se realizan para simular las condiciones de operación de un receptor solar, las condiciones críticas y las condiciones normales. Con este sistema se ha estimado el tiempo de vida bajo fatiga térmica, en una placa de INCONEL 626LCF®, cuando es sometida a radiación solar concentrada. Asimismo, hemos desarrollado un modelo numérico que evalúa el desarrollo térmico en el material de la placa: adicionalmente, el modelo obtiene los esfuerzos de tensión-compresión en la placa, los cuales permiten la estimaciónde las curvas de fatiga vidaesfuerzo (S-N. Estas curvas

  7. Thermal-structural Analysis and Fatigue Life Evaluation of a Parallel Slide Gate Valve in Accordance with ASME B and PVC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Han, Jeong Sam [Andong Nat’l Univ., Andong (Korea, Republic of); Jae Seung Choi [Key Valve Technologies Ltd., Siheung (Korea, Republic of)

    2017-02-15

    A parallel slide gate valve (PSGV) is located between the heat recovery steam generator (HRSG) and the steam turbine in a combined cycle power plant (CCPP). It is used to control the flow of steam and runs with repetitive operations such as startups, load changes, and shutdowns during its operation period. Therefore, it is necessary to evaluate the fatigue damage and the structural integrity under a large compressive thermal stress due to the temperature difference through the valve wall thickness during the startup operations. In this paper, the thermal-structural analysis and the fatigue life evaluation of a 16-inch PSGV, which is installed on the HP steam line, is performed according to the fatigue life assessment method described in the ASME B and PVC VIII-2; the method uses the equivalent stress from the elastic stress analysis.

  8. High cycle fatigue properties of inconel 690

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Byong Whi; Kim, In Sup; Park, Chi Yong

    1997-01-01

    Inconel 690 is presently used as sleeve material and a replacement alloy in degraded steam generators, as well as the material for new steam generators. But Inconel 690 has low thermal conductivity which are 3-8% less than that of Inconel 600 at operating temperature. For the same power output, conduction area must be increased. As a result, more fluid induced vibration can cause a fatigue damage of Inconel 690. High cycle fatigue ruptures occurred in the U-bend regions of North Anna Unit 1 and Mihama Unit 2 steam generators. At this study, the effect of temperature on fatigue crack growth rate in Inconel 690 steam generator tube was investigated at various temperature in air environment. With increasing temperature, fatigue crack growth rate increased and grain size effect decreased. Chromium carbides which have large size and semi-continuous distribution in the grain boundaries decreased fatigue crack growth rate

  9. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    Science.gov (United States)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  10. Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings

    International Nuclear Information System (INIS)

    Leterrier, Y.; Mottet, A.; Bouquet, N.; Gillieron, D.; Dumont, P.; Pinyol, A.; Lalande, L.; Waller, J.H.; Manson, J.-A.E.

    2010-01-01

    The interplay between residual stress state, cohesive and adhesive properties of coatings on substrates is reviewed in this article. Attention is paid to thin inorganic coatings on polymers, characterized by a very high hygro-thermo-mechanical contrast between the brittle and stiff coating and the compliant and soft substrate. An approach to determine the intrinsic, thermal and hygroscopic contributions to the coating residual stress is detailed. The critical strain for coating failure, coating toughness and coating/substrate interface shear strength are derived from the analysis of progressive coating cracking under strain. Electro-fragmentation and electro-fatigue tests in situ in a microscope are described. These methods enable reproducing the thermo-mechanical loads present during processing and service life, hence identifying and modeling the critical conditions for failure. Several case studies relevant to food and pharmaceutical packaging, flexible electronics and thin film photovoltaic devices are discussed to illustrate the benefits and limits of the present methods and models.

  11. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    International Nuclear Information System (INIS)

    Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas

    2017-01-01

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  12. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  13. THERMAL STRATIFICATION IN SOLAR DOMESTIC STORAGE TANKS CAUSED BY DRAW-OFFS

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Furbo, Simon

    2003-01-01

    As shown in many research studies in the past, the thermal stratification of the tank caused by draw-offs has a high impact on the performance of a Solar Domestic Hot Water (SDHW) system. Nevertheless, in most tank models for system simulations the influence of the draw-off pattern on the mixing...... with a component oriented simulation tool for solar thermal systems....

  14. Effect of alumina-silica-zirconia eutectic ceramic thermal barrier coating on the low cycle fatigue behaviour of cast polycrystalline nickel-based superalloy at 900 °C

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Čelko, L.; Chráska, Tomáš; Šulák, Ivo; Gejdoš, P.

    2017-01-01

    Roč. 318, MAY (2017), s. 374-381 ISSN 0257-8972. [RIPT - International Meeting on Thermal Spraying /7./. Limoges, 09.12.2015-12.12.2015] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Thermal barrier coating * Nickel-based superalloy * Plasma spraying * High temperature fatigue * Fatigue life * Cyclic stress-strain curve Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFP-V) OBOR OECD: Audio engineering, reliability analysis; Audio engineering, reliability analysis (UFM-A); Audio engineering, reliability analysis (UFP-V) Impact factor: 2.589, year: 2016

  15. Manual on the Fatigue of Structures. II. Causes and Prevention of Damage. 7. Mechanical Surface Damage,

    Science.gov (United States)

    1981-06-01

    AO-A103 «29 ADVISORY 6R0UP FOR AEROSPACE RESEARCH AND DEVELOPMENT—ETC F/O 20/11 MANUAL ON THE FATIfUE OF STRUCTURES. IX. CAUSES AND PREVENTION —ETC... stresses . In the case of 99.999% pure aluminium Vyas and Preece240 investigated the changes in the surface finish of the metal under the electron...during the erosion process. In the case of annealed nickel and of electrolytically polished test specimens cavitation- stressed in distilled water at 25°C

  16. Influence of overelastic loading on the stress intensity factor under thermal fatigue conditions

    International Nuclear Information System (INIS)

    Stamm, H.; Munz, D.

    1983-10-01

    Thermal shock loading often creates high thermal stresses which may exceed yield strength of the material in a surface layer. In this report the application of the linear elastic ΔK-concept in the case of cyclic thermal loading within the shakedown region is discussed. To this K-factors for an edge crack in a linear elastic - perfectly plastic plate are calculated using the weight function method and are compared with results obtained with the Finite Element Method. It is shown, that rearrangement stresses during plastic flow in the first cycle must be taken into account developing conservative approximation procedures. (orig.) [de

  17. IMPACT OF THERMAL FATIGUE ON YOUNG’S MODULUS OF EPOXY ADHESIVES

    Directory of Open Access Journals (Sweden)

    Mariusz Kłonica

    2015-11-01

    Full Text Available The following paper presents a comparative analysis of two epoxy-based adhesives: Hysol 9466 and Hysol 3421, prior to and after thermal shock testing. The tests focused on determining Young’s modulus. Epoxy-based materials are among the most widespread adhesive materials used as universal structural adhesives. The prepared epoxy samples (Hysol 9466 and Hysol 3421 were subjected to thermal shock cycling tests, according to a specified programme, in a thermal shock testing chamber, at a temperature range –40 °C to +60 °C and in the number of 200 cycles. Conclusions from the tests are presented at the final stage of the paper.

  18. Fatigue strain mapping via digital image correlation for Ni-based superalloys: The role of thermal activation on cube slip

    International Nuclear Information System (INIS)

    Mello, Alberto W.; Nicolas, Andrea; Sangid, Michael D.

    2017-01-01

    A deformation mechanism map for a Ni-based superalloy is presented during cyclic loading at low (300 °C), intermediate (550 °C), and high (700 °C) temperatures for low (0.7%) and high (1.0%) applied strain amplitudes. Strain mapping is performed via digital image correlation (DIC) during interrupted fatigue experiments at elevated temperatures at 1, 10, 100 and 1000 cycles, for each specified loading and temperature condition. The DIC measurements are performed in a scanning electron microscope, which allows high-resolution measurements of heterogeneous slip events and a vacuum environment to ensure stability of the speckle pattern for DIC at high temperatures. The cumulative fatigue experiments show that the slip bands are present in the first cycle and intensify with number of cycles; resulting in highly localized strain accumulation. The strain mapping results are combined with microstructure characterization via electron backscatter diffraction. The combination of crystal orientations and high-resolution strain measurements was used to determine the active slip planes. At low temperatures, slip bands follow the {111} octahedral planes. However, as temperature increases, both the {111} octahedral and {100} cubic slip planes accommodate strain. The activation of cubic slip via cross-slip within the ordered intermetallic γ’ phase has been well documented in Ni-based superalloys and is generally accepted as the mechanism responsible for the anomalous yield phenomenon. The results in this paper represent an important quantifiable study of cubic slip system activity at the mesoscale in polycrystalline γ-γ’ Ni-based superalloys, which is a key advancement to calibrate the thermal activation components of polycrystalline deformation models.

  19. Fatigue strain mapping via digital image correlation for Ni-based superalloys: The role of thermal activation on cube slip

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Alberto W.; Nicolas, Andrea; Sangid, Michael D., E-mail: msangid@purdue.edu

    2017-05-17

    A deformation mechanism map for a Ni-based superalloy is presented during cyclic loading at low (300 °C), intermediate (550 °C), and high (700 °C) temperatures for low (0.7%) and high (1.0%) applied strain amplitudes. Strain mapping is performed via digital image correlation (DIC) during interrupted fatigue experiments at elevated temperatures at 1, 10, 100 and 1000 cycles, for each specified loading and temperature condition. The DIC measurements are performed in a scanning electron microscope, which allows high-resolution measurements of heterogeneous slip events and a vacuum environment to ensure stability of the speckle pattern for DIC at high temperatures. The cumulative fatigue experiments show that the slip bands are present in the first cycle and intensify with number of cycles; resulting in highly localized strain accumulation. The strain mapping results are combined with microstructure characterization via electron backscatter diffraction. The combination of crystal orientations and high-resolution strain measurements was used to determine the active slip planes. At low temperatures, slip bands follow the {111} octahedral planes. However, as temperature increases, both the {111} octahedral and {100} cubic slip planes accommodate strain. The activation of cubic slip via cross-slip within the ordered intermetallic γ’ phase has been well documented in Ni-based superalloys and is generally accepted as the mechanism responsible for the anomalous yield phenomenon. The results in this paper represent an important quantifiable study of cubic slip system activity at the mesoscale in polycrystalline γ-γ’ Ni-based superalloys, which is a key advancement to calibrate the thermal activation components of polycrystalline deformation models.

  20. Main factors for fatigue failure probability of pipes subjected to fluid thermal fluctuation

    International Nuclear Information System (INIS)

    Machida, Hideo; Suzuki, Masaaki; Kasahara, Naoto

    2015-01-01

    It is very important to grasp failure probability and failure mode appropriately to carry out risk reduction measures of nuclear power plants. To clarify the important factors for failure probability and failure mode of pipes subjected to fluid thermal fluctuation, failure probability analyses were performed by changing the values of a stress range, stress ratio, stress components and threshold of stress intensity factor range. The important factors for the failure probability are range, stress ratio (mean stress condition) and threshold of stress intensity factor range. The important factor for the failure mode is a circumferential angle range of fluid thermal fluctuation. When a large fluid thermal fluctuation acts on the entire circumferential surface of the pipe, the probability of pipe breakage increases, calling for measures to prevent such a failure and reduce the risk to the plant. When the circumferential angle subjected to fluid thermal fluctuation is small, the failure mode of piping is leakage and the corrective maintenance might be applicable from the viewpoint of risk to the plant. (author)

  1. Cooling the APS storage ring radio-frequency accelerating cavities: Thermal/stress/fatigue analysis and cavity cooling configuration

    International Nuclear Information System (INIS)

    Primdahl, K.; Kustom, R.

    1995-01-01

    The 7-GeV Advanced Photon Source positron storage ring requires sixteen separate 352-MHz radio-frequency (rf) accelerating cavities. Cavities are installed as groups of four, in straight sections used elsewhere for insertion devices. They occupy the first such straight section after injection, along with the last three just before injection. Cooling is provided by a subsystem of the sitewide deionized water system. Pumping equipment is located in a building directly adjacent to the accelerator enclosure. A prototype cavity was fabricated and tested where cooling was via twelve 19-mm-diameter [3/4 in] brazed-on tubes in a series-parallel flow configuration. Unfortunately, the thermal contact to some tubes was poor due to inadequate braze filler. Here, heat transfer studies, including finite-element analysis and test results, of the Advanced Photon Source (APS) storage ring 352-MHz rf accelerating cavities are described. Stress and fatigue life of the copper are discussed. Configuration of water cooling is presented

  2. [Forensic medical characteristic of the thermal injury caused by inflammation of combustible fluids].

    Science.gov (United States)

    Khushkadamov, Z K; Iskhizova, L N; Gornostaev, D V

    2012-01-01

    The diagnostics of thermal injuries caused by inflammation of combustible fluids should be based on the comprehensive assessment of the results of examination of the scene of the accident, autopsy studies, forensic chemical expertise, and analysis of the circumstances of the case and/or medical documentation. Special attention should be given to the choice of adequate methods for taking samples to be used in forensic chemical studies. The assessment of thermal injuries caused by inflammation of combustible fluids must take into consideration the time and conditions under which they were inflicted (e.g. closed or open space, vertical or horizontal position, etc.).

  3. Strand Plasticity Governs Fatigue in Colloidal Gels

    Science.gov (United States)

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  4. High cycle thermal fatigue: benchmark at a Te junction piping system of the nuclear power plant Phenix; Fatigue a grand nombre de cycles: benchmark d'un te de tuyauterie de la centrale Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Gelineau, O.; Simoneau, J.P. [NOVATOME, a Div. of Framatome, 69 - Lyon (France); Roubin, P. [CEA Cadarache, DER, 13 - Saint-Paul-lez-Durance (France)

    2001-07-01

    This paper presents the studies of the benchmark concerning a high cycle thermal fatigue problem. This benchmark is based on an industrial case, a Te junction piping system of the french FBR Phenix. The main objectives were the comparison of the different methods used by the participants and the analysis of the damage evaluation methods capacity compared to the observed phenomena. This study took place in an international framework with the United Kingdom, Italy, Japan, Korea, Russia, India and France. (A.L.B.)

  5. Low-level activity of the trunk extensor muscles causes electromyographic manifestations of fatigue in absence of decreased oxygenation

    NARCIS (Netherlands)

    Dieën, J.H. van; Westebring van der; Putten, E.P.; Kingma, I.; Looze, M.P. de

    2009-01-01

    This study was designed to determine whether trunk extensor fatigue occurs during low-level activity and whether this is associated with a drop in muscle tissue oxygenation. Electromyography (EMG) feedback was used to impose constant activity in a part of the trunk extensor muscles. We hypothesized

  6. Thermal fatigue behavior of C/C composites modified by SiC-MoSi2-CrSi2 coating

    International Nuclear Information System (INIS)

    Chu Yanhui; Fu Qiangang; Li Hejun; Li Kezhi

    2011-01-01

    Highlights: → The low-density C/C composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation. → The thermal fatigue behavior of the modified C/C composites was studied after undergoing thermal cycling for 20 times under the different environments. → The decrease of the flexural strength of the modified C/C composites during thermal cycle in air was primarily attributed to the partial oxidation of the modified C/C samples. - Abstract: Carbon/carbon (C/C) composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation, and their thermal fatigue behavior under thermal cycling in Ar and air environments was investigated. The modified C/C composites were characterized by scanning electron microscopy and X-ray diffraction. Results of tests show that, after 20-time thermal cycles between 1773 K and room temperature in Ar environment, the flexural strength of modified C/C samples decreased lightly and the percentage of remaining strength was 94.92%. While, after thermal cycling between 1773 K and room temperature in air for 20 times, the weight loss of modified C/C samples was 5.1%, and the flexural strength of the modified C/C samples reduced obviously and the percentage of remaining strength was only 75.22%. The fracture mode of modified C/C samples changed from a brittle behavior to a pseudo-plastic one as the service environment transformed from Ar to air. The decrease of the flexural strength during thermal cycle in air was primarily attributed to the partial oxidation of modified C/C samples.

  7. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh.

    Science.gov (United States)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Premature thermal fatigue failure of aluminium injection dies with duplex surface treatment

    International Nuclear Information System (INIS)

    Corujeira Gallo, S.; Figueroa, Carlos A.; Baumvol, Israel J.R.

    2010-01-01

    Research highlights: → The premature failure of an aluminium injection die with a duplex surface treatment (plasma nitriding and physical vapor deposition coating) was investigated. → The origin of failure was attributed to the sulfur inclusions introduced into the surface of the tool by a sulfur-impregnated grinding stone used in the final polishing operation. → The low adhesion of the CrN coating on the sulfur inclusions led to the spalling of the coating, the exposure of the substrate material and the nucleation of cracks. → New evidence is presented on the influence of surface preparation and manufacturing processes on aluminium injection tool performance. - Abstract: The premature failure of an aluminium injection die with a duplex surface treatment (plasma nitriding and physical vapor deposition coating) was investigated, in an effort to identify the causes of such premature failure of the component. The manufacturing and the operating conditions were documented. Analytical tools were used, including scanning electron microscopy with energy dispersive X-ray capability, X-ray diffraction, and instrumented microhardness testing. Preliminary observations showed a microstructure of coarse tempered martensite, and a considerably rough surface with porosity and cracks. A detailed analysis of crack initiation sites identified sulfur inclusions in the subsurface, underneath the coating. A further revision of the processing conditions revealed that a sulfur-impregnated grinding stone had been used to polish the die. The chemical composition of such grinding stone matched that of the inclusions found in the subsurface of the failed component. Thus, searched causes of premature failure could be discussed on the lights of the present findings.

  9. A survey of fatigue monitoring in the nuclear power industry

    International Nuclear Information System (INIS)

    Ware, A.G.

    1991-01-01

    The original design of nuclear power plants addressed fatigue concerns by including calculations of projected fatigue usage for specific components; the calculations were based on estimates of the number and severity of expected transients over the 40-year design life of the plants. In some cases, the transients occurring in the plants are not as severe as was anticipated in the original design analyses, while in other cases events have occurred that were not anticipated in the design basis documents. Field failures caused by fatigue have identified some of those cases. In response, several organizations in the United States and overseas have developed fatigue monitoring programs to more accurately estimate the fatigue usage. One basic approach consists of reconstructing the fatigue usage to date based on the transients recorded in the operating history instead of those projected in the design documents. Another approach includes monitoring the plant instrumentation to determine actual values for parameters such as temperature and pressure and using the measured values in the fatigue usage calculations instead of the values projected in the design documents. The use of existing plant instrumentation to measure temperature, pressure, flow rate, etc., along with the incorporation of conservative assumptions, had generally proven adequate for estimating fatigue usage; however, in some cases additional instrumentation installed for local monitoring can provide a more accurate estimate, especially where thermal stratification is known to occur. Fatigue monitoring can aid in identifying fatigue concerns not anticipated in the original design and for reducing the excessive conservatism in some of the original design calculations so that the fatigue lives of these components can be justified as they age. Fatigue monitoring can also assist efforts to reduce ongoing fatigue usage through design modifications and operating procedure changes

  10. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh

    International Nuclear Information System (INIS)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Kraemer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. - Highlights: → Temperature exhibits a strong influence on mortality in Bangladesh. → Mortality increases at low and high end of the temperature range. → Temperature is increased in the urban area of Dhaka, particular during summer. → Urban areas are facing increased risk of heat-related mortality. → Urbanization and climate change are likely to increase heat-related mortality. - Mortality in Bangladesh is strongly affected by thermal atmospheric conditions with particularly urban areas facing excess mortality above a specific threshold temperature.

  11. Root cause analysis of SI line-seated thermal sleeve separation failures

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Hho Jung

    2004-01-01

    At conventional pressurized water reactors, a thermal sleeve (named simply 'sleeve' hereafter) is seated inside the nozzle part of each Safety Injection (SI) branch pipe to prevent and relieve potential excessive transient thermal stress in the nozzle wall when a cold water is injected during the safety injection mode Recently, mechanical failures that the sleeves are separated from the SI branch pipe and fall into the connected cold leg main pipe were occurred in sequence at Yonggwang units 5 and 6 and Ulchin unit 5. There were many activities and efforts to figure out the causes of those failures with experts' reasoning, but the proposed causes were derived from superficial views rather than physically concrete grounds or analysis results. The prerequisites to find out the root causes of failure mechanism will be to identify the flow situation in the pipe junction area connecting the cold leg with the SI pipe and to know the vibration characteristics of sleeves. This paper investigates the flow field in the pipe junction thru a numerical simulation and vibration characteristics of thermal sleeves thru a modal analysis, from which the root causes of sleeve separation mechanism are analyzed

  12. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    Science.gov (United States)

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  13. Fatigue-Arrestor Bolts

    Science.gov (United States)

    Onstott, Joseph W.; Gilster, Mark; Rodriguez, Sergio; Larson, John E.; Wickham, Mark D.; Schoonover, Kevin E.

    1995-01-01

    Bolts that arrest (or, more precisely, retard) onset of fatigue cracking caused by inelastic strains developed. Specifically developed to be installed in flange holes of unrestrained rocket engine nozzle. Fanges sometimes used to bolt nozzle to test stand; however, when rocket engine operated without this restraint, region around bolt holes experience severe inelastic strains causing fatigue cracking. Interference fits introduce compressive preloads that retard fatigue by reducing ranges of strains. Principle of these fatigue-arrestor bolts also applicable to holes in plates made of other materials and/or used for different purposes.

  14. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium from Corals.

    Directory of Open Access Journals (Sweden)

    Lisa Fujise

    Full Text Available The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium. Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae in aquaria under non-thermal stress (27°C and moderate thermal stress conditions (30°C, and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  15. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals.

    Science.gov (United States)

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  16. Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging

    Directory of Open Access Journals (Sweden)

    Joris de Hoog

    2018-03-01

    Full Text Available Fast charging is an exciting topic in the field of electric and hybrid electric vehicles (EVs/HEVs. In order to achieve faster charging times, fast-charging applications involve high-current profiles which can lead to high cell temperature increase, and in some cases thermal runaways. There has been some research on the impact caused by fast-charging profiles. This research is mostly focused on the electrical, thermal and aging aspects of the cell individually, but these factors are never treated together. In this paper, the thermal progression of the lithium-ion battery under specific fast-charging profiles is investigated and modeled. The cell is a Lithium Nickel Manganese Cobalt Oxide/graphite-based cell (NMC rated at 20 Ah, and thermal images during fast-charging have been taken at four degradation states: 100%, 90%, 85%, and 80% State-of-Health (SoH. A semi-empirical resistance aging model is developed using gathered data from extensive cycling and calendar aging tests, which is coupled to an electrothermal model. This novel combined model achieves good agreement with the measurements, with simulation results always within 2 °C of the measured values. This study presents a modeling methodology that is usable to predict the potential temperature distribution for lithium-ion batteries (LiBs during fast-charging profiles at different aging states, which would be of benefit for Battery Management Systems (BMS in future thermal strategies.

  17. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    International Nuclear Information System (INIS)

    Strizak, J.P.; Brinkman, C.R.; Booker, M.K.; Rittenhouse, P.L.

    1982-04-01

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 871 0 C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 538 0 C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 427 0 C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development

  18. Thermal Stratification in Small Solar Domestic Storage Tanks caused by Draw-offs

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Furbo, Simon

    2005-01-01

    As shown in many research studies in the past, the thermal stratification of the tank caused by draw-offs has a high impact on the performance of a Solar Domestic Hot Water (SDHW) system. Nevertheless, in most tank models for system simulations the influence of the draw-off pattern on the mixing...... behaviour is not taken into account sufficiently. Two typical Danish domestic water storage tanks, each with a volume of about 150 l, were investigated. In both tanks the inlet pipes are placed at the bottom and hot water is drawn from the upper part of tank. Above the inlet pipes, differently shaped plates...... are placed in order to reduce the mixing of the incoming cold water with the warmer storage water. To measure the thermal stratification thermocouples were placed in a vertical glass tube inside the tank. Measurements were carried out with different draw-off volumes, flow rates, and initial temperatures...

  19. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09)

    International Nuclear Information System (INIS)

    Maillot, V.

    2004-01-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, ΔT between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some morphological

  20. Comparative strength analysis and thermal fatigue testing of Be/CuCrZr and Be/GlidCop joints produced by fast brazing

    International Nuclear Information System (INIS)

    Gervash, A.; Mazul, I.; Yablokov, N.; Barabash, V.; Ganenko, A.

    2000-01-01

    Proposing beryllium as plasma facing armour this paper presents the recent results obtained in Russia in the frame of such activities. Last year testing of actively cooled mock-ups produced by fast brazing of Be onto Cu-alloy heat sink allows to consider mentioned Russian method as promising for both PH-copper like CuCrZr and DS-copper like GlidCop. Summarizing recent experimental results with their previous data authors attempt to comparatively investigate a behaviour of Be/CuCrZr and Be/GlidCop joints in ITER relevant conditions. Mechanical properties, brazing zone microstructure and thermal response were taken for comparison. The shear strength for both types of joints was found as 150-200 MPa and did not depend on testing temperature. The brazing zone morphology and microhardness are presented, the thermal fatigue behaviour of investigated joints is described. All main results as well as the nearest future plans are discussed. (orig.)

  1. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  2. Fatigue aging of adhesive bonds

    International Nuclear Information System (INIS)

    DeLollis, N.J.

    1979-01-01

    A year long study has been made of the effect of fatigue on the bond between two epoxy encapsulant formulations and a fused alumina disc. The variables studied included isothermal aging at temperatures up to and including the cure temperature and cyclic thermal aging from +74 to -54 0 C. The encapsulants were glass microballoon filled epoxies differing only in curing agents. One was cured with an aromatic amine eutectic (Shell Curing Agent Z). The other was cured with diethanolamine. The Z cured encapsulant bond failed completely at the bond interface with little or no aging; infrared evidence indicated a soluble interlayer as a possible cause of failure. The diethanolamine cured encapsulant survived a year of isothermal aging with little or no evidence of bond degradation. Cyclic thermal aging resulted in gradual bond failure with time. An extrapolation of the cyclic aging data indicates that the stresses induced by thermal cycling would result in complete bond failure in about 1200 days

  3. Experimental study on high cycle thermal fatigue in T-junction. Effect of local flow velocity on transfer of temperature fluctuation from fluid to structure

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Ono, Ayako; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A quantitative evaluation on high cycle thermal fatigue due to temperature fluctuation in fluid is of importance for structural integrity in the reactor. It is necessary for the quantitative evaluation to investigate occurrence and propagation processes of temperature fluctuation, e.g., decay of fluctuation intensity near structures and transfer of temperature fluctuation from fluid to structures. The JSME published a guideline for evaluation of high-cycle thermal fatigue of a pipe as the JSME guideline in 2003. This JSME standard covers T-pipe junction used in LWRs operated in Japan. In the guideline, the effective heat transfer coefficients were obtained from temperature fluctuations in fluid and structure in experiments. In the previous studies, the effective heat transfer coefficients were 2 - 10 times larger than the heat transfer coefficients under steady state conditions in a straight tube. In this study, a water experiment of T-junction was performed to evaluate the transfer characteristics of temperature fluctuation from fluid to structure. In the experiment, temperatures in fluid and structure were measured simultaneously at 20 positions to obtain spatial distributions of the effective heat transfer coefficient. In addition, temperatures in structure and local velocities in fluid were measured simultaneously to evaluate the correlation between the temperature and velocity under the non-stationary fields. The large heat transfer coefficients were registered at the region where the local velocity was high. Furthermore it was found that the heat transfer coefficients were correlated with the time-averaged turbulent heat flux near the pipe wall. (author)

  4. Detection of fatigue damage of high and medium pressure rotor by X-ray diffraction method. Survey and research of nondestructive examination of thermal power generation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tatsuo; Suesada, Yasuhiko; Nishioka, Noriaki; Goto, Toru; Ito, Hitomi; Kadoya, Yoshikuni

    1987-03-25

    In recent years, the existing thermal power generation facilities have been required to be operated in securing dependability from the standpoints of the operating conditions which have been getting severer and the demands to use them for longer periods, accordingly it is hoped to establish the diagnostic technology of aged deterioration by the non-destructive examination method for the facilities. In the beginning of 1959 the Kansai Electric Power Co. surveyed the current situation of this technology at various thermal power generation turbine facilities and discovered that concerning the diagnostic technology of aged deterioration by the non-destructive examination method, there remained many matters untouched in the basic research field. The company consequently started a survey and research jointly with Mitsubishi Heavy Industries in the first half of 1959. This report summarizes the research on the detection of aged deterioration due to thermal fatigue of Cr-Mo-V rotor material by the X-ray diffraction method which was conducted during the full fiscal year of 1984 and the first half of FY 1985 as a part of the above joint research. With respect to the conditions for the detection method of thermal fatigue damages of dummy grooves of the high and medium pressure rotor by the application of the X-ray diffraction method, it is preferred to measure a diffraction strength curve of the diffraction surface by using a Co tube as X-ray tube and it is also desirable to use a position sensitive proportional counter tube for X-ray detector. (5 figs, 6 refs)

  5. Prevalence, causes and consequences of compassion satisfaction and compassion fatigue in emergency care: a mixed-methods study of UK NHS Consultants.

    Science.gov (United States)

    Dasan, Sunil; Gohil, Poonam; Cornelius, Victoria; Taylor, Cath

    2015-08-01

    To estimate prevalence and explore potential causes and consequences of compassion satisfaction and compassion fatigue in UK emergency medicine consultants. A sequential mixed-methods design. Cross-sectional e-survey to all UK NHS emergency medicine consultants (n=1317) including Professional Quality of Life (ProQOL) (compassion satisfaction/fatigue), followed by interviews with consultants scoring above (n=6) and below (n=6) predefined ProQOL thresholds. 681 (52%) consultants responded. Most (98%) reported at least 'average' compassion satisfaction. Higher scores were associated with type of workplace (designated trauma centres faring better) and number of years worked as a consultant (gradually worsen over time, except 20 years onwards when it improves). Consultants with lower (worse) compassion satisfaction scores were more likely to report being irritable with patients or colleagues and reducing their standards of care (a third reported these behaviours at least monthly) and were more likely to intend to retire early (59% had such plans). Key features distinguishing 'satisfied' from 'fatigued' interviewed consultants included having strategies to deal with the high work intensities associated with their role and having positive views of the team within which they worked. The degree of variety in their roles and the ability to maintain empathy for their patients were also distinguishing features between these groups. Findings support an urgent review of workforce and resources in emergency medicine and suggest that a multifactorial approach to identification, prevention and treatment of occupational stress in the workforce is required that considers individual, job and organisational factors, particularly those that impact on perceived control and support at work. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. The elastic plastic behaviour of a 1/2% Cr Mo V steam turbine steel during high strain thermal fatigue

    International Nuclear Information System (INIS)

    Murphy, M.C.; Batte, A.D.; Stringer, M.B.

    1979-01-01

    High strain fatigue problem in steam turbine. Cyclic stress strain hysteresis loops and stress relaxation behaviour in 16 h dwell period tests. Variation of stress and strain during tests under nominally strain controlled conditions. Definition of test conditions and of criteria for crack initiation and failure. Comparison of reverse bend and push pull failure data. (orig.) 891 RW/orig. 892 RKD [de

  7. Rescue of glaucoma-causing mutant myocilin thermal stability by chemical chaperones

    Science.gov (United States)

    Burns, J. Nicole; Orwig, Susan D.; Harris, Julia L.; Watkins, J. Derrick; Vollrath, Douglas; Lieberman, Raquel L.

    2010-01-01

    Mutations in myocilin cause an inherited form of open angle glaucoma, a prevalent neurodegenerative disorder associated with increased intraocular pressure. Myocilin forms part of the trabecular meshwork extracellular matrix presumed to regulate intraocular pressure. Missense mutations, clustered in the olfactomedin (OLF) domain of myocilin, render the protein prone to aggregation in the endoplasmic reticulum of trabecular meshwork cells, causing cell dysfunction and death. Cellular studies have demonstrated temperature-sensitive secretion of myocilin mutants, but difficulties in expression and purification have precluded biophysical characterization of wild-type (wt) myocilin and disease-causing mutants in vitro. We have overcome these limitations by purifying wt and select glaucoma-causing mutant (D380A, I477N, I477S, K423E) forms of the OLF domain (228–504) fused to maltose binding protein (MBP) from E. coli. Monomeric fusion proteins can be isolated in solution. To determine the relative stability of wt and mutant OLF domains, we developed a fluorescence thermal stability assay without removal of MBP, and provide the first direct evidence that mutated OLF is folded but less thermally stable than wt. We tested the ability of seven chemical chaperones to stabilize mutant myocilin. Only sarcosine and trimethylamine N-oxide were capable of shifting the melting temperature of all mutants tested to near that of wt OLF. Our work lays the foundation for the identification of tailored small molecules capable of stabilizing mutant myocilin and promoting secretion to the extracellular matrix, to better control intraocular pressure and ultimately delay the onset of myocilin glaucoma. PMID:20334347

  8. Clinical neurophysiology of fatigue.

    Science.gov (United States)

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  9. Analysis of the consumption of useful life by thermal fatigue in the gas turbine nozzles during the operation at continuous load and transients; Analisis de consumo de vida por fatiga termica en las toberas de turbina de gas durante operacion con carga continua y transitorios

    Energy Technology Data Exchange (ETDEWEB)

    Perez Hernandez, Efrain Betuel

    2007-08-15

    The gas turbines operate at extremely high temperatures, with high thermal and mechanical stresses, causing that the life of the involved components diminishes. In the present thesis the temperature distribution on the nozzle obtained in other investigation as a result of heat transfer and fluid flow analysis applying CDF code Star-CD was used. Next, the program NISA was used to perform the analysis of thermal stresses by means of finite element method. Finally, the results of stress analysis were introduced to the program nCode to accomplish the nozzle remaining useful life assessment due to thermal fatigue in critical location on the nozzle by means of the CLF module (Critical Location Fatigue). The full methodology used to determine the nozzle operational conditions, load history, material properties and the fatigue model used to determine the number of cycles to failure of the nozzle during constant load and transients operation is presented. [Spanish] Las turbinas de gas operan a temperaturas extremadamente altas, a elevados esfuerzos termicos y mecanicos, ocasionando que la vida de los componentes involucrados se reduzca. En la presente tesis se presentan los resultados realizados por otras investigaciones de temperaturas obtenidas a partir de un analisis de transferencia de calor y flujo de fluidos de la tobera mediante el programa Star-CD basado en volumenes finitos. Posteriormente, se utilizo el programa NISA para realizar el analisis de esfuerzos mediante elementos finitos. Finalmente, se llevaron los resultados al programa nCode para realizar la estimacion de vida util por fatiga termica en un punto critico de la tobera mediante el modulo CLF (Critical Location Fatigue). Se muestra la metodologia empleada para determinar las condiciones de operacion, historial de carga, propiedades del material y el modelo de dano por fatiga para determinar el numero de ciclo para falla de la tobera durante operacion con carga continua y transitorios.

  10. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  11. Two-magnon bound state causes ultrafast thermally induced magnetisation switching

    Science.gov (United States)

    Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.

    2013-01-01

    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110

  12. Adrenal Fatigue

    Science.gov (United States)

    ... Search Featured Resource New Mobile App DOWNLOAD Adrenal Fatigue October 2017 Download PDFs English Editors Irina Bancos, MD Additional Resources Mayo Clinic What is adrenal fatigue? The term “adrenal fatigue” has been used to ...

  13. Fatigue of internal combustion engines

    Science.gov (United States)

    Dumanois, P

    1924-01-01

    The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.

  14. Comparison of theoretical estimates and experimental measurements of fatigue crack growth under severe thermal shock conditions (part one - experimental observations)

    International Nuclear Information System (INIS)

    Marsh, D.; Green, D.; Parker, R.

    1984-01-01

    This paper reports the results of an experiment in which a severe thermal cycle comprising of alternate upshocks and downshocks has been applied to an axisymmetric feature with an internal, partial penetration weld and crevice. The direction of cracking and crack growth rate were observed experimentally and detailed records made of the thermal cycle. A second part to the paper, reported separately, compares a linear elastic fracture mechanics assessment of the cracking to the experimental observations

  15. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use.

    Science.gov (United States)

    Chakka, N V Murali Krishna; Ratnakar, P; Das, Sanjib; Bagchi, Anandamy; Sudhir, Sudhir; Anumula, Lavanya

    2012-11-01

    Visual and microscopic evaluation of defects caused by torsional fatigue in hand and rotary nickel titanium (NiTi) instruments. Ninety-six NiTi greater taper instruments which were routinely used for root canal treatment only in anterior teeth were selected for the study. The files taken include ProTaper for hand use, ProTaper Rotary files and Endowave rotary files. After every use, the files were observed visually and microscopically (Stereomicroscope at 10×) to evaluate the defects caused by torsional fatigue. Scoring was given according to a new classification formulated which gives an indication of the severity of the defect or damage. Data was statistically analyzed using KruskallWallis and Mann-Whitney U test. Number of files showing defects were more under stereomicroscope than visual examination. But, the difference in the evaluation methods was not statistically significant. The different types of defects observed were bent instrument, straightening/stretching of twist contour and partial reverse twisting. Endowave files showed maximum number of defects followed by ProTaper for hand use and least in ProTaper Rotary. Visible defects due to torsional fatigue do occur in NiTi instruments after clinical use. Both visual and microscopic examinations were efficient in detecting defects caused due to torsional fatigue. This study emphasizes that all files should be observed for any visible defects before and after every instrumentation cycle to minimize the risk of instrument separation and failure of endodontic therapy.

  16. Chained computations using an unsteady 3D approach for the determination of thermal fatigue in a T-junction of a PWR nuclear plant

    International Nuclear Information System (INIS)

    Pasutto, Thomas; Peniguel, Christophe; Sakiz, Marc

    2006-01-01

    Thermal fatigue of the coolant circuits of PWR plants is a major issue for nuclear safety. The problem is especially accute in mixing zones, like T-junctions, where large differences in water temperature between the two inlets and high levels of turbulence can lead to large temperature fluctuations at the wall. Until recently, studies on the matter had been tackled at EDF using steady methods: the fluid flow was solved with a CFD code using an averaged turbulence model, which led to the knowledge of the mean temperature and temperature variance at each point of the wall. But, being based on averaged quantities, this method could not reproduce the unsteady and 3D effects of the problem, like phase lag in temperature oscillations between two points, which can generate important stresses. Benefiting from advances in computer power and turbulence modeling, a new methodology is now applied, that allows to take these effects into account. The CFD tool Code S aturne, developed at EDF, is used to solve the fluid flow using an unsteady L.E.S. approach. It is coupled with the thermal code Syrthes, which propagates the temperature fluctuations into the wall thickness. The instantaneous temperature field inside the wall can then be extracted and used for structure mechanics computations (mainly with EDF thermomechanics tool Code A ster). The purpose of this paper is to present the application of this methodology to the simulation of a straight T-junction mock-up, similar to the Residual Heat Remover (RHR) junction found in N4 type PWR nuclear plants, and designed to study thermal striping and cracks propagation. The results are generally in good agreement with the measurements; yet, in certain areas of the flow, progress is still needed in L.E.S. modelling and in the treatment of instantaneous heat transfer at the wall

  17. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  18. Parent material and weldments degradation on SASOL reduction reactors due to combined effect of thermal fatigue, vibration and hydrogen attack

    International Nuclear Information System (INIS)

    Borla, Jan Z.

    2002-01-01

    All six installed reduction reactors showed the same failure pattern, which can be attributed to inadequate original design, material degradation due to service conditions and improper maintenance activities. Service is typically low frequency fatigue load conditions with changes of pressure, temperature and batch load. All revealed defects severely affected the integrity of the pressure envelope and vessels were classified for major repair work with subsequent in situ monitoring program. The justification for such extensive and costly repair required a positive evaluation of the current condition of equipment. After complete study, a report was prepared which included the fitness for purpose evaluation, remaining life assessment and recommendation for future field inspections. All reactors were found to be suitable for repair. Within the scope of repair a number of critical elements were redesigned and replaced. The repair was successful and all reactors were put back into operation. Unique expertise was obtained regarding setting the parameters of dehydrogenation in reference to the heavy wall items. Taking replicas and surface sampling appeared to be very reliable and simple tools in monitoring the condition of pressure envelope. For the purpose of future inspection shutdowns specific inspection requirements were put in place to ensure continuous monitoring of the vessel integrity

  19. Thermal-hydraulic causes of increase of dynamic stresses and cracks in the covers of vessel reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.

    2006-01-01

    Paper presents data of measurements and of analysis of the WWER-1000 reactor NPP equipment process noises manifesting occurrence of the latent dynamic processes. The NPP is shown to have unused abilities to prolong the equipment service life and to reduce possibility of the equipment thermally and hydraulically caused unexpected malfunctions [ru

  20. Thermal-Fatigue Analysis of W-coated Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Kim, Suk Kwon; Park, Seong Dae; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, a new W/FMS joining methods, W coating with plasma torch, have been developed. The HHF test conditions are found by performing a thermal-hydraulic and thermo-mechanical analysis with the conventional codes such as ANSYSCFX and .mechanical especially for considering the two-phase condition in cooling tube.

  1. Androgen deficiency in male patients diagnosed with ANCA-associated vasculitis: a cause of fatigue and reduced health-related quality of life?

    OpenAIRE

    Tuin, Janneke; Sanders, Jan-Stephan F; Buhl, Birgit M; van Beek, André P; Stegeman, Coen A

    2013-01-01

    Introduction: Low testosterone levels in men are associated with fatigue, limited physical performance and reduced health-related quality of life (HRQOL); however, this relationship has never been assessed in patients with anti-neutrophil cytoplasmic antibodies (ANCA) -associated vasculitides (AAV). The aim of this study was to assess the prevalence of androgen deficiency and to investigate the role of testosterone in fatigue, limited physical condition and reduced HRQOL in men with AAV. Meth...

  2. Fatigue in soccer

    DEFF Research Database (Denmark)

    Mohr, Magni; Krustrup, Peter; Bangsbo, Jens

    2005-01-01

    This review describes when fatigue may develop during soccer games and the potential physiological mechanisms that cause fatigue in soccer. According to time?-?motion analyses and performance measures during match-play, fatigue or reduced performance seems to occur at three different stages......, acidity or the breakdown of creatine phosphate. Instead, it may be related to disturbances in muscle ion homeostasis and an impaired excitation of the sarcolemma. Soccer players' ability to perform maximally is inhibited in the initial phase of the second half, which may be due to lower muscle...... concentrations in a considerable number of individual muscle fibres. In a hot and humid environment, dehydration and a reduced cerebral function may also contribute to the deterioration in performance. In conclusion, fatigue or impaired performance in soccer occurs during various phases in a game, and different...

  3. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    Science.gov (United States)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  4. Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics.

    Science.gov (United States)

    Quan, Yi; Ren, Wei; Niu, Gang; Wang, Lingyan; Zhao, Jinyan; Zhang, Nan; Liu, Ming; Ye, Zuo-Guang; Liu, Liqiang; Karaki, Tomoaki

    2018-03-19

    Environment-friendly lead-free piezoelectric materials with high piezoelectric response and high stability in a wide temperature range are urgently needed for various applications. In this work, grain orientation-controlled (with a 90% ⟨001⟩ c -oriented texture) (K,Na)NbO 3 -based ceramics with a large piezoelectric response ( d 33 *) = 505 pm V -1 and a high Curie temperature ( T C ) of 247 °C have been developed. Such a high d 33 * value varies by less than 5% from 30 to 180 °C, showing a superior thermal stability. Furthermore, the high piezoelectricity exhibits an excellent fatigue resistance with the d 33 * value decreasing within only by 6% at a field of 20 kV cm -1 up to 10 7 cycles. These exceptional properties can be attributed to the vertical morphotropic phase boundary and the highly ⟨001⟩ c -oriented textured ceramic microstructure. These results open a pathway to promote lead-free piezoelectric ceramics as a viable alternative to lead-based piezoceramics for various practical applications, such as actuators, transducers, sensors, and acoustic devices, in a wide temperature range.

  5. Androgen deficiency in male patients diagnosed with ANCA-associated vasculitis: a cause of fatigue and reduced health-related quality of life?

    Science.gov (United States)

    Tuin, Janneke; Sanders, Jan-Stephan F; Buhl, Birgit M; van Beek, André P; Stegeman, Coen A

    2013-01-01

    Low testosterone levels in men are associated with fatigue, limited physical performance and reduced health-related quality of life (HRQOL); however, this relationship has never been assessed in patients with anti-neutrophil cytoplasmic antibodies (ANCA) -associated vasculitides (AAV). The aim of this study was to assess the prevalence of androgen deficiency and to investigate the role of testosterone in fatigue, limited physical condition and reduced HRQOL in men with AAV. Male patients with AAV in remission were included in this study. Fatigue and HRQOL were assessed by the multi-dimensional fatigue inventory (MFI)-20 and RAND-36 questionnaires. Seventy male patients with a mean age of 59 years (SD 12) were included. Scores of almost all subscales of both questionnaires were significantly worse in patients compared to controls. Mean total testosterone and free testosterone levels were 13.8 nmol/L (SD 5.6) and 256 pmol/L (SD 102), respectively. Androgen deficiency (defined according to Endocrine Society Clinical Practice Guidelines) was present in 47% of patients. Scores in the subscales of general health perception, physical functioning and reduced activity were significantly worse in patients with androgen deficiency compared to patients with normal androgen levels. Testosterone and age were predictors for the RAND-36 physical component summary in multiple linear regression analysis. Testosterone, age, vasculitis damage index (VDI) and C-reactive protein (CRP) were associated with the MFI-20 subscale of general fatigue. This study showed that androgen deficiency was present in a substantial number of patients with AAV. Testosterone was one of the predictors for physical functioning and fatigue. Testosterone may play a role in fatigue, reduced physical performance and HRQOL in male patients with AAV.

  6. Improved methods for testing bond and intrinsic strength and fatigue of thermally sprayed metallic and ceramic coatings

    International Nuclear Information System (INIS)

    Schweitzer, K.K.; Ziehl, M.H.; Schwaminger, C.

    1991-01-01

    Conventional bond strength tests for thermally sprayed coatings represent only a rough means of obtaining overall strength values, with no differentiation between adhesion at the interface and intrinsic coating properties. In order to obtain information about the influence of substrate surface preparation on the adhesion of a Tribaloy T700 coating, tensile bond strength and modified crack-opening displacement (COD) specimens were tested by deliberate crack initiation at the interface. Crack initiation was achieved by weakening of the interface at the outer diameter in the case of bond strength specimens or at the notch root in the case of COD specimens. This made it possible to look at the influence of surface roughness and grit contamination on the coating adhesion separately. Modified COD specimens with the notch in the centre of the coating were used to determine crack-opening energies and critical stress intensity factors of atmospheric plasma-sprayed NiAl and low pressure plasma-sprayed CoNiCrAlY bond coatings and a ZrO 2 7Y 2 O 3 thermal barrier coating (TBC). Additionally, bond strength specimens were stressed dynamically, and it could be demonstrated that Woehler (S/N) diagrams can be established for a metallic NiAl bond coating and even for a ceramic ZrO 2 7Y 2 O 3 TBC. (orig.)

  7. Yellowing and bleaching of grey hair caused by photo and thermal degradation.

    Science.gov (United States)

    Richena, M; Silveira, M; Rezende, C A; Joekes, I

    2014-09-05

    Yellowing is an undesirable phenomenon that is common in people with white and grey hair. Because white hair has no melanin, the pigment responsible for hair colour, the effects of photodegradation are more visible in this type of hair. The origin of yellowing and its relation to photodegradation processes are not properly established, and many questions remain open in this field. In this work, the photodegradation of grey hair was investigated as a function of the wavelength of incident radiation, and its ultrastructure was determined, always comparing the results obtained for the white and black fibres present in grey hair with the results of white wool. The results presented herein indicate that the photobehaviour of grey hair irradiated with a mercury lamp or with solar radiation is dependent on the wavelength range of the incident radiation and on the initial shade of yellow in the sample. Two types of grey hair were used: (1) blended grey hair (more yellow) and (2) grey hair from a single-donor (less yellow). After exposure to a full-spectrum mercury lamp for 200 h, the blended white hair turned less yellow (the yellow-blue difference, Db(*) becomes negative, Db(*)=-6), whereas the white hair from the single-donor turned slightly yellower (Db(*)=2). In contrast, VIS+IR irradiation resulted in bleaching in both types of hair, whereas a thermal treatment (at 81 °C) caused yellowing of both types of hair, resulting in a Db(*)=3 for blended white hair and Db(*)=9 for single-donor hair. The identity of the yellow chromophores was investigated by UV-Vis spectroscopy. The results obtained with this technique were contradictory, however, and it was not possible to obtain a simple correlation between the sample shade of yellow and the absorption spectra. In addition, the results are discussed in terms of the morphology differences between the pigmented and non-pigmented parts of grey hair, the yellowing and bleaching effects of grey hair, and the occurrence of dark

  8. Thermal-Fatigue Analysis of W-joined Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon; Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk National University, Chonbuk (Korea, Republic of)

    2015-10-15

    Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, W/FMS joining methods have been developed and a new Ti interlayer was applied differently from the previous work. In the present study, the W/FMS PFC development was introduced with the following procedure to apply to the PFCs for a fusion reactor: (1) Three W/FMS mockups were fabricated using the developed HIP followed by a post-HIP heat treatment (PHHT). (2) Because the High Heat Flux (HHF) test should be performed over the thermal lifetime of the mockup under the proper test conditions to confirm the joint's integrity, the test conditions were determined through a preliminary analysis. In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. From the analysis, the heating and the cooling conditions were determined for 0.5- and 1.0-MW/m{sup 2} heat fluxes, respectively. Elastic-plastic analysis is performed to determine the lifetime and finally, the 1.0 MW/m{sup 2} heat flux conditions are determined up to 4,306 cycles. The test will be done in the near future and the measured temperatures will be compared with the present simulation results.

  9. Fatigue after Stroke: The Patient's Perspective

    Directory of Open Access Journals (Sweden)

    Victoria Louise Barbour

    2012-01-01

    Full Text Available Background. Fatigue after stroke is common and distressing to patients. Aims. Our aims were to explore patients' perceptions of post-stroke fatigue, including the causes of fatigue and the factors that alleviate fatigue, in a mixed methods study. Results. We interviewed 15 patients who had had a stroke and were inpatients on stroke rehabilitation wards. A substantial proportion of patients reported that their fatigue started at the time of their stroke. Various different factors were reported to improve fatigue, including exercise, good sleep, rehabilitation and rest. Fatigue influences patients' sense of “control” after their stroke. Conclusion. Our results are consistent with the possibility that poststroke fatigue might be triggered by factors that occur at the time of the stroke (e.g., the stroke lesion itself, or admission to hospital and then exacerbated by poor sleep and boredom. These factors should be considered when developing complex interventions to improve post-stroke fatigue.

  10. Chronic fatigue syndrome: diagnosis and treatment | Revelas ...

    African Journals Online (AJOL)

    Chronic fatigue syndrome (CFS) refers to marked and prolonged fatigue, for which no indentifiable cause can be found. Despite the presence of extensive symptoms, diagnosis is made when there is profound fatigue, lasting for a duration of six months, or longer. CFS is frequently seen in association with psychiatric ...

  11. Trend analysis of troubles caused by thermal-hydraulic phenomena at nuclear power plants

    International Nuclear Information System (INIS)

    Komatsu, Teruo

    2010-01-01

    The Institute of Nuclear Safety System (INSS) is promoting researches to improve the safety and reliability of nuclear power plants. In the present study, our attention was focused on troubles attributed to thermal-hydraulic phenomena in particular, trend analysis were carried out to learn lessons from these troubles and to prevent their recurrence. Through our survey, we found the following two points. First, many thermal-hydraulics related troubles can be attributed to design faults, since we found some events in foreign countries took place after inadequate facility renovation. To ensure appropriate design verification, it is important to take account of state-of-the-art science and technology and at the same time to pay attention to the compatibility with the initial design concept. Second point, thermal-hydraulic related troubles are common and recurrent to nuclear power plants worldwide. Japanese utilities are planning to introduce some of overseas experiences to their plants, such as power uprate and renovations of aged facilities. It is important to learn lessons from experiences paying close attention continuously to overseas trouble events, including thermal-hydraulics related events, and to use them to improve safety and reliability of nuclear power plants. (author)

  12. Research on driver fatigue detection

    Science.gov (United States)

    Zhang, Ting; Chen, Zhong; Ouyang, Chao

    2018-03-01

    Driver fatigue is one of the main causes of frequent traffic accidents. In this case, driver fatigue detection system has very important significance in avoiding traffic accidents. This paper presents a real-time method based on fusion of multiple facial features, including eye closure, yawn and head movement. The eye state is classified as being open or closed by a linear SVM classifier trained using HOG features of the detected eye. The mouth state is determined according to the width-height ratio of the mouth. The head movement is detected by head pitch angle calculated by facial landmark. The driver's fatigue state can be reasoned by the model trained by above features. According to experimental results, drive fatigue detection obtains an excellent performance. It indicates that the developed method is valuable for the application of avoiding traffic accidents caused by driver's fatigue.

  13. Androgen deficiency in male patients diagnosed with ANCA-associated vasculitis : A cause of fatigue and reduced health-related quality of life?

    NARCIS (Netherlands)

    Tuin, Janneke; Sanders, Jan-Stephan F.; Buhl, Birgit M.; van Beek, Andre P.; Stegeman, Coen A.

    2013-01-01

    Introduction: Low testosterone levels in men are associated with fatigue, limited physical performance and reduced health-related quality of life (HRQOL); however, this relationship has never been assessed in patients with anti-neutrophil cytoplasmic antibodies (ANCA) -associated vasculitides (AAV).

  14. An Herbal Drug, Gongjin-dan, Ameliorates Acute Fatigue Caused by Short-Term Sleep-Deprivation: A Randomized, Double-Blinded, Placebo-Controlled, Crossover Clinical Trial.

    Science.gov (United States)

    Son, Mi Ju; Im, Hwi-Jin; Ku, Boncho; Lee, Jun-Hwan; Jung, So Young; Kim, Young-Eun; Lee, Sung Bae; Kim, Jun Young; Son, Chang-Gue

    2018-01-01

    Introduction: Gongjin-dan (GJD) is an herbal drug commonly used in Korea and China to combat fatigue, but there are only few clinical studies on its effectiveness and experimental studies on its mechanism of action, and no randomized controlled trial of GJD on the efficacy and mechanism of action has been reported. Here, we performed an exploratory study to evaluate both questions regarding GJD use in humans. Methods: A randomized, double-blinded, placebo-controlled, crossover clinical trial was conducted in the Republic of Korea. Healthy male participants were recruited and randomly allocated to groups receiving GJD-placebo or placebo-GJD in sequence. Fatigue was artificially induced by sleep deprivation for 2 nights. The primary outcome was a change in serum cortisol level; levels of biomarkers for stress hormones as well as oxidative stress and immunologic factors were also assessed, and questionnaires on fatigue and sleep quality were conducted. Results: Twelve and 11 participants were assigned to the GJD-placebo and placebo-GJD groups, respectively. Of all 23 participants, depending on crossover design, we analyzed a total of 20 participants for GJD, and 21 for placebo. An increase in serum cortisol appeared to be attenuated by GJD administration ( p = 0.25), but the effect was not statistically significant; a similar pattern was observed in salivary cortisol levels ( p = 0.14). Overall, GJD showed a tendency to reduce fatigue according to the Brief Fatigue Inventory (BFI, p = 0.07) and the Fatigue Severity Scale (FSS, p = 0.13) questionnaires. BFI and FSS scores in the first stage (before the crossover), however, were significantly improved (BFI, p = 0.02; FSS, p = 0.05) after GJD treatment (relative to placebo). GJD also seemed to improve sleep quality as assessed by the Leeds Sleep Evaluation Questionnaire ( p = 0.06), with a significant improvement specifically in the condition "Getting To Sleep" ( p = 0.02). Five participants experienced minor adverse

  15. An Herbal Drug, Gongjin-dan, Ameliorates Acute Fatigue Caused by Short-Term Sleep-Deprivation: A Randomized, Double-Blinded, Placebo-Controlled, Crossover Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mi Ju Son

    2018-05-01

    Full Text Available Introduction:Gongjin-dan (GJD is an herbal drug commonly used in Korea and China to combat fatigue, but there are only few clinical studies on its effectiveness and experimental studies on its mechanism of action, and no randomized controlled trial of GJD on the efficacy and mechanism of action has been reported. Here, we performed an exploratory study to evaluate both questions regarding GJD use in humans.Methods: A randomized, double-blinded, placebo-controlled, crossover clinical trial was conducted in the Republic of Korea. Healthy male participants were recruited and randomly allocated to groups receiving GJD-placebo or placebo-GJD in sequence. Fatigue was artificially induced by sleep deprivation for 2 nights. The primary outcome was a change in serum cortisol level; levels of biomarkers for stress hormones as well as oxidative stress and immunologic factors were also assessed, and questionnaires on fatigue and sleep quality were conducted.Results: Twelve and 11 participants were assigned to the GJD-placebo and placebo-GJD groups, respectively. Of all 23 participants, depending on crossover design, we analyzed a total of 20 participants for GJD, and 21 for placebo. An increase in serum cortisol appeared to be attenuated by GJD administration (p = 0.25, but the effect was not statistically significant; a similar pattern was observed in salivary cortisol levels (p = 0.14. Overall, GJD showed a tendency to reduce fatigue according to the Brief Fatigue Inventory (BFI, p = 0.07 and the Fatigue Severity Scale (FSS, p = 0.13 questionnaires. BFI and FSS scores in the first stage (before the crossover, however, were significantly improved (BFI, p = 0.02; FSS, p = 0.05 after GJD treatment (relative to placebo. GJD also seemed to improve sleep quality as assessed by the Leeds Sleep Evaluation Questionnaire (p = 0.06, with a significant improvement specifically in the condition “Getting To Sleep” (p = 0.02. Five participants experienced minor

  16. Thermal stress in UO2 during sintering as a possible cause of cracking

    International Nuclear Information System (INIS)

    Aragones, M.A.; Tobias, E.; Tulli, I.; Naquid, C.

    1980-01-01

    Thermal stresses arising during sintering of UO 2 pellets are evaluated numerically by the solution of coupled equations for heat transfer through the sample. Results are compared with those of a semiempirical approach reported in the literature. Better insight into the heat transfer process is obtained from the solution of the coupled equations rather than from the empirical approach. The two approaches give different results for the thermal stresses arising during sintering. The use of heating and cooling rates of approximately 0.5 0 Cs -1 is found to prevent the possibility of cracking in UO 2 pellets of radii varying from 0.6 cm to 1 cm during sintering in hydrogen or argon-hydrogen atmospheres. (author)

  17. Degradation of rocks, through cracking caused by differential thermal expansion, in relation to nuclear waste repositories

    International Nuclear Information System (INIS)

    McLaren, J.R.; Davidge, R.W.; Titchell, I.; Sincock, K.; Bromley, A.

    1982-01-01

    Heating to temperatures up to 500 0 C gives a reduction in Young's modulus and increases in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anistropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined. 6 figures, 2 tables

  18. 'Thermal ghosts': apparent decay of fixed surfaces caused by heat diffusion

    International Nuclear Information System (INIS)

    Livadiotis, George

    2007-01-01

    The behaviour concerning classical heat diffusion on fixed thermal surfaces, studied by observations, still holds surprises. As soon as convective and radiative processes are negligible within the medium, this is considered to be free from energy sources and sinks. Then, the heat diffusion equation is conveniently solved using standard Fourier methods. Some considerations about the contrast effect suggest that the surface boundary would rather be observed to follow specific area decay dynamics than remaining fixed and static. Here it is shown that the apparent boundary lies on a specific isothermal spatiotemporal curve, which depends on the observing device. This is characterized by a slight, though determinative, difference between its radiance and that of the ambient background. Thereafter, the heat diffusion yields apparent boundary shrinkage with the passing of time. This phenomenon is particularly notable for two reasons: its lifetime and final decay rate depend only on the medium thermal properties, while being independent of the apparent boundary spatiotemporal curve. Thus, the former provides a suitable method for measuring the medium thermal properties via the observational data. The latter strongly reveal a kind of universality of some characteristic properties of the phenomenon, common to all observers

  19. Areva fatigue concept. Fast fatigue evaluation, a new method for fatigue analysis

    International Nuclear Information System (INIS)

    Heinz, Benedikt; Bergholz, Steffen; Rudolph, Juergen

    2011-01-01

    Within the discussions on the long term operation (LTO) of nuclear power plants the ageing management is on the focus of that analysis. The knowledge of the operational thermal cyclic load data on components of the power plants and their evaluation in the fatigue analysis is a central concern. The changes in fatigue requirements (e.g. the consideration of environmentally assisted fatigue - EAF) recently discussed and LTO efforts are a strong motivation for the identification of margins in the existing fatigue analysis approaches. These margins should be considered within new approaches in order to obtain realistic (or more accurate) analysis results. Of course, these new analysis approaches have to be manageable and efficient. The Areva Fatigue Concept (AFC) offers the comprehensive conceptual basis for the consideration of fatigue on different levels and depths. The combination of data logging and automated fatigue evaluation are important modules of the AFC. Besides the established simplified stress based fatigue estimation Areva develops a further automated fatigue analysis method called Fast Fatigue Evaluation (FFE). This method comprises highly automated stress analyses at the fatigue relevant locations of the component. Hence, a component specific course of stress as a function of time is determined based on FAMOS or similar temperature measurement systems. The subsequent application of the rain flow cycle counting algorithm allows for the determination of the usage factor following the rules of the design code requirements. The new FFE approach constitutes a cycle counting method based on the real stresses in the component, and determined as result a rule-conformity cumulative usage factor. (orig.)

  20. Fatigue Fighters in Sjogren's Syndrome

    Science.gov (United States)

    ... your doctor to find a specific cause and treatment for your fatigue. The possibilities may include systemic inflammation, poor sleep, fibromyalgia, depression, hypothyroidism, muscle inflammation or side-effects of medications. Know ...

  1. Fatigue (PDQ)

    Science.gov (United States)

    ... Data Conducting Clinical Trials Statistical Tools and Data Terminology Resources NCI Data Catalog Cryo-EM NCI's Role ... Problems getting enough sleep. Being less active. Other medical conditions. Fatigue is common in people with advanced ...

  2. Fatigue cycles evaluation of 500 MWe PHWR coolant channel sealdisc

    International Nuclear Information System (INIS)

    Chawla, D.S.; Vaze, K.K.; Kushwaha, H.S.; Gupta, K.S.; Bhambra, H.S.

    1998-07-01

    At each end of coolant channel there is one sealing plug assembly. The sealdisc is a part of sealing plug assembly. The sealdisc is used to avoid leakage of heavy water. The importance of sealdisc can be understood by the fact that there are 784 sealdiscs in one 500 MWe PHWR unit. During the life time of reactor the sealdisc will be subjected to cyclic loads due to reactor startup, shutdown, power setback and also due to refuelling operations. Excessive reversal of stresses may lead to fatigue failure. The sealdisc failure may cause loss of coolant accidents. Since sealdisc is safety class 1 component, it has to be qualified according to ASME Section III Division 1 NB. For cyclic loads, the fatigue analysis is essential to assess the allowable number of cycles and also to check the total usage factor due to different cyclic loads. To evaluate the allowable fatigue cycles, the analysis is carried out using finite element method. The present report deals with the fatigue cycles evaluation of 500 MWe PHWR sealdisc. The finite element model having eight noded axisymmetric elements is used for the analysis. The various loads considered in the analysis are mechanical loads arising due to refuelling operations and number of temperature-pressure transients. During refuelling, the sealdisc is removed and reinstalled back by use of fuelling machine ram which applies load at centre as well as at rocker point of sealdisc. The stress analysis is carried out for each stage of loading during refuelling and fatigue cycles are evaluated. For temperature transient, decoupled thermal analysis is carried out. At various instants of time, the stresses are computed using temperatures calculated in thermal analysis. The pressure variation is also considered along with temperature variation. The fatigue cycles are evaluated for each transient using maximum alternating stress intensities. The usage factors are calculated for various temperature/pressure transients and refuelling loads

  3. The nature of self-regulatory fatigue and “ego depletion”: Lessons from physical fatigue

    Science.gov (United States)

    Evans, Daniel R.; Boggero, Ian A.; Segerstrom, Suzanne C.

    2016-01-01

    Self-regulation requires overriding a dominant response, and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. PMID:26228914

  4. The Nature of Self-Regulatory Fatigue and "Ego Depletion": Lessons From Physical Fatigue.

    Science.gov (United States)

    Evans, Daniel R; Boggero, Ian A; Segerstrom, Suzanne C

    2015-07-30

    Self-regulation requires overriding a dominant response and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose, or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. © 2015 by the Society for Personality and Social Psychology, Inc.

  5. Recurrent nocturnal hypoglycaemia as a cause of morning fatigue in treated Addison's disease--favourable response to dietary management: a case report.

    Science.gov (United States)

    Petersen, Kristina S; Rushworth, R Louise; Clifton, Peter M; Torpy, David J

    2015-10-24

    Addison's disease, or primary adrenal insufficiency, is often associated with reduced well-being and fatigue despite use of currently recommended adrenal hormone replacement. Hypoglycaemia is a known manifestation of glucocorticoid deficiency, but is generally considered rare in adults and not relevant to troubling ongoing symptoms in patients with Addison's disease. A 43 year old woman with a three year history of Addison's disease complained of severe morning fatigue and headaches, despite standard glucocorticoid replacement therapy in the form of thrice daily hydrocortisone and mineralocorticoid replacement with fludrocortisone. Alternative glucocorticoid replacement regimens and the addition of dehydroepiandrosterone replacement therapy had no effect. Nocturnal hypoglycaemia was suspected and a 4-day continuous glucose monitor system (CGMS) revealed hypoglycaemia (interstitial glucose < 2.2 mmol/L) between 0200-0400 h on 3 of 4 days. The patient was counselled to take an evening snack designed to ensure slow absorption of ingested carbohydrates. Nocturnal hypoglycaemia was then absent on follow up CGMS assessment. The patient noted a marked symptomatic improvement in morning symptoms, but with persistent fatigue during the day. Currently, the best strategy for control of non-specific symptoms in treated Addison's disease is unknown, but it may be that investigation for hypoglycaemia and treatment, where necessary, could assist some sufferers to achieve improved wellbeing. A systematic study of this phenomenon in Addison's disease is required.

  6. Roughness Effects on Fretting Fatigue

    Science.gov (United States)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  7. Identification of a thermal stable allergen in yam (Dioscorea opposita) to cause anaphylaxis.

    Science.gov (United States)

    Xu, Ying-Yang; Yin, Jia

    2018-01-01

    Yam ( Dioscorea opposita ) is commonly consumed in East Asia, but allergic reaction to this plant food is rare. To date, there is no report of anaphylactic reaction after ingestion of cooked yam. We described 3 cases with anaphylaxis after eating boiled yam and 1 present with oral allergy syndrome as well. Basophil activation test in patients showed positive reactivity to boiled yam extract. In immunoblotting, a 30-kDa protein was recognized by all patients' sera and a 17-kDa band was detected by 1 patient. N-terminal amino acid revealed the 30-kDa IgE reacted band was DB3S, dioscorin in Dioscorea tuber. It promoted us that DB3S was a thermal stable oral allergen to trigger anaphylactic reaction and oral allergy syndrome in cooked yam ( D. opposita ) allergy. Patients with this plant food allergy should avoid both raw and well-cooked yam.

  8. Human survival in volcanic eruptions: Thermal injuries in pyroclastic surges, their causes, prognosis and emergency management.

    Science.gov (United States)

    Baxter, Peter J; Jenkins, Susanna; Seswandhana, Rosadi; Komorowski, Jean-Christophe; Dunn, Ken; Purser, David; Voight, Barry; Shelley, Ian

    2017-08-01

    This study of burns patients from two eruptions of Merapi volcano, Java, in 1994 and 2010, is the first detailed analysis to be reported of thermal injuries in a large series of hospitalised victims of pyroclastic surges, one of the most devastating phenomena in explosive eruptions. Emergency planners in volcanic crises in populated areas have to integrate the health sector into disaster management and be aware of the nature of the surge impacts and the types of burns victims to be expected in a worst scenario, potentially in numbers and in severity that would overwhelm normal treatment facilities. In our series, 106 patients from the two eruptions were treated in the same major hospital in Yogyakarta and a third of these survived. Seventy-eight per cent were admitted with over 40% TBSA (total body surface area) burns and around 80% of patients were suspected of having at least some degree of inhalation injury as well. Thirty five patients suffered over 80% TBSA burns and only one of these survived. Crucially, 45% of patients were in the 40-79% TBSA range, with most suspected of suffering from inhalation injury, for whom survival was most dependent on the hospital treatment they received. After reviewing the evidence from recent major eruptions and outlining the thermal hazards of surges, we relate the type and severity of the injuries of these patients to the temperatures and dynamics of the pyroclastic surges, as derived from the environmental impacts and associated eruption processes evaluated in our field surveys and interviews conducted by our multi-disciplinary team. Effective warnings, adequate evacuation measures, and political will are all essential in volcanic crises in populated areas to prevent future catastrophes on this scale. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  9. Stress-based fatigue assessment of major component in NPP using modified Green's function approach

    International Nuclear Information System (INIS)

    Ko, Han Ok; Jhung, Myung Jo; Choi, Jae Boong

    2013-01-01

    In this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using a neural network (NN) and weight factor. To verify the modified GFA, thermal stresses by the proposed method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed to show applicability of them. In this paper, the modified GFA considering temperature-dependent material properties is proposed by using NN and weight factor. To verify the proposed method, thermal stresses by the modified Green's function are compared with those by FEM and the results between two methods show a good agreement. Finally, it is anticipated that more precise fatigue evaluation is performed by using the proposed method. Recently, 434 nuclear reactors are being operated in the world. Among them, about 40% reactors are being operated beyond their design life or will be approaching their life. During the long term operation, various degradation mechanisms are occurred. Fatigue damage caused by alternating operational stresses in terms of temperature or pressure change is the one of important damage mechanisms in the nuclear power plants (NPPs). Although components important to safety were designed to withstand the fatigue damage, cumulative usage factor (CUF) at some locations can exceed the design limit beyond the design life. So, it is necessary to monitor the fatigue damage of major components during the long term operation. Researches on fatigue monitoring system (FMS) have been widely performed. In USA, the FatiguePro was developed by EPRI and was applied to the CE, WEC, B and W and GE type reactors. In Korea, the Kori unit 1 which started commercial operation in 1978 is being operated beyond its design life. At the stage of the license renewal, various plans for degradation mechanisms were established and reviewed. And, in case of fatigue damage, to monitor the fatigue damage of major components

  10. Changes in flavonoid content of grapefruit juice caused by thermal treatment and storage

    OpenAIRE

    Igual Ramo, Marta; García Martínez, Eva María; Camacho Vidal, Mª Mar; Martínez Navarrete, Nuria

    2011-01-01

    The effect of conventional and microwave pasteurization on the main flavonoids present in grapefruit juice and their stability throughout 2 months of refrigerated and frozen storage was evaluated. Individual flavonoids were analyzed by HPLC. The results showed that naringin, narirutin, quercetin and naringenin were the most abundant flavonoids in grapefruit juice. In general, although every pasteurization treatment caused a significant reduction in the content of all the studied flavonoids, t...

  11. PGE2 suppresses intestinal T cell function in thermal injury: a cause of enhanced bacterial translocation.

    Science.gov (United States)

    Choudhry, M A; Fazal, N; Namak, S Y; Haque, F; Ravindranath, T; Sayeed, M M

    2001-09-01

    Increased gut bacterial translocation in burn and trauma patients has been demonstrated in a number of previous studies, however, the mechanism for such an increased gut bacterial translocation in injured patients remains poorly understood. Utilizing a rat model of burn injury, in the present study we examined the role of intestinal immune defense by analyzing the T cell functions. We investigated if intestinal T cells dysfunction contributes to bacterial translocation after burn injury. Also our study determined if burn-mediated alterations in intestinal T cell functions are related to enhanced release of PGE2. Finally, we examined whether or not burn-related alterations in intestinal T cell function are due to inappropriate activation of signaling molecule P59fyn, which is required for T cell activation and proliferation. The results presented here showed an increase in gut bacterial accumulation in mesenteric lymph nodes after thermal injury. This was accompanied by a decrease in the intestinal T cell proliferative responses. Furthermore, the treatments of burn-injured animals with PGE2 synthesis blocker (indomethacin or NS398) prevented both the decrease in intestinal T cell proliferation and enhanced bacterial translocation. Finally, our data suggested that the inhibition of intestinal T cell proliferation could result via PGE2-mediated down-regulation of the T cell activation-signaling molecule P59fyn. These findings support a role of T cell-mediated immune defense against bacterial translocation in burn injury.

  12. High-tension electrical-arc-induced thermal burns caused by railway overhead cables.

    Science.gov (United States)

    Koller, J

    1991-10-01

    Eleven patients with high-tension electrical-arc-induced thermal burns due to railway overhead cables were treated at the Bratislava Burn Department during a relatively short period of 18 months. All the injuries occurred by the same mechanism, that is persons climbing on top of railway carriages and approaching the 25,000 V a.c. overhead cables. All the burns were the result of an electrical arc passing externally to the body, with subsequent ignition of the victim's clothes. The cutaneous burns, ranging from 24 to 79 per cent of the BSA, were mostly deep partial to full skin thickness injuries. One patient died on day 5 postburn, the other survived. In spite of high-tension aetiology, no true electrical injuries appear to have occurred and no amputations were necessary. The pathophysiology and possible preventive measures are discussed. It must be stressed that arcing can be induced by an earthed object approaching, but not touching, a cable carrying a high voltage.

  13. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    Science.gov (United States)

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.

  14. Hormone levels in radiotherapy treatment related fatigue

    International Nuclear Information System (INIS)

    Biswal, B.M.; Mallik, G.S.

    2003-01-01

    Radiotherapy is known to cause debilitating treatment related fatigue. Fatigue in general is a conglomeration of psychological, physical, hematological and unknown factors influencing the internal milieu of the cancer patient. Radiotherapy can add stress at the cellular and somatic level to aggravate further fatigue in cancer patients undergoing radiotherapy. Stress related hormones might be mediating in the development of fatigue. This is an ongoing prospective study to evaluate if the hormonal profile related to stress is influenced by radiotherapy treatment related fatigue. The study was conducted from September 2002 onwards in the division of Radiotherapy and Oncology of our Medical School. Previously untreated patients with histopathology proof of malignancy requiring external beam radiotherapy were considered for this study. Selection criteria were applied to exclude other causes of fatigue. Initial fatigue score was obtained using Pipers Fatigue Score questionnaire containing 23 questions, subsequently final fatigue score was obtained at the end of radiotherapy. Blood samples were obtained to estimate the levels of ACTH, TSH, HGH, and cortisol on the final assessment. The hormone levels were compared with resultant post radiotherapy fatigue score. At the time of reporting 50 patients were evaluable for the study. The total significant fatigue score was observed among 12 (24%) patients. The individual debilitating fatigue score were behavioral severity 14 (28%), affective meaning 14(28%), Sensory 13 (26%) and cognitive mood 10 (20%) respectively. From the analysis of hormonal profile, growth hormone level > 1 ng/mL and TSH <0.03 appears to be associated with high fatigue score (though statistically not significant); whereas there was no correlation with ACTH and serum cortisol level. In our prospective study severe radiotherapy treatment related fatigue was found among our patient population. Low levels of TSH and high levels of GH appear to be associated

  15. Fatigue in cancer: A review of literature

    Directory of Open Access Journals (Sweden)

    Vijayakumar Narayanan

    2009-01-01

    Full Text Available Fatigue is a common symptom of advanced cancer limiting one′s activity and affecting the quality of life. It is a multidimensional symptom complex with subjective and objective components. Hence, its definition and assessment seems arbitrary, incomplete, and elusive. Components of fatigue often merge with other ′disease states′ as anemia, depression and so on, compounding difficulty to assess it separately. Fatigue has a high prevalence rate, and lasts longer in chronic diseases like cancer. Its association with treatment modalities like chemotherapy, radiotherapy alongside the primary disease process makes it seemingly ubiquitous in many cases. Systemic manifestation of cancer causes excess demand on body resources on cell repair, uncontrolled growth with metabolite accumulation causing fatigue. Co-morbid conditions of organic and psychological nature causes fatigue. There are many assessment tools for fatigue with different uses and objectives, simple and reproducible tools like Brief Fatigue Inventory, Edmonton Symptom assessment scale seem feasible in everyday practice. Management of fatigue is not straightforward and rewarding. Although treatment of cause appears to be an attractive option, it is not possible in all cases. Therapeutic agents targeting cytokine load is in early stages of study and available results are not favorable. Specific measures aimed at pain relief, prevention/treatment of sepsis, management of depression, avoidance of drugs causing fatigue, restoring the metabolic profile are important. Methyl phenidate, megestrol, and modafinil are some drugs with promising effect to treat fatigue, though confirmatory studies are yet to be established. Non-pharmacological methods are also helpful. Forewarning patients on upcoming fatigue, active regular exercise, and stress management are some of them. Fatigue being a multidimensional entity, single mode of therapy is insufficient. Combined modality tailored to individual

  16. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography

    OpenAIRE

    Ishii, Akira; Tanaka, Masaaki; Iwamae, Masayoshi; Kim, Chongsoo; Yamano, Emi; Watanabe, Yasuyoshi

    2013-01-01

    Background It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Methods Ten and 9 healthy volunteers particip...

  17. Thermal neutrons could be a cause of biological extinctions 65 Myr ago

    International Nuclear Information System (INIS)

    Yayanos, A.A.

    1983-01-01

    Tabulations of the number of genera present before and after the Cretaceous-Tertiary extinctions have revealed certain patterns. Marine organisms were much more susceptible to extinction than were freshwater or terrestrial organisms. Benthic marine organisms were affected as much as those organisms that swam or floated. However, some marine genera were unaffected whilst some terrestrial ones were severely affected. Organisms making calcium-containing skeletons were the most sensitive. Among the hypotheses proposed for the extinctions is that they were caused by ionizing radiations. The hypothesis proposed here is that the pattern of extinction in the fossil record emerged as a consequence of neutron activation of certain elements in organisms and in their environment. (author)

  18. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09); Amorcage et propagation de reseaux de fissures de fatigue thermique dans un acier inoxydable austenitique de type X2 CrNi18-09 (AISI 304 L)

    Energy Technology Data Exchange (ETDEWEB)

    Maillot, V

    2004-07-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, {delta}T between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some

  19. Application of Moessbauer spectroscopy in studies of thermal fatigue of ceramic materials. Part of a coordinated programme on development of methods for the application of Moessbauer spectroscopy in mineralogy, soil sciences and ceramics

    International Nuclear Information System (INIS)

    Gangas, A.H.

    1980-10-01

    Moessbauer measurements have been carried out on powder samples of pseudobrookite (Fe 2 TiO 5 ) which is known to exhibit extensive microcracking due to its highly anisotropic thermal expansion. The samples were subjected to temperature cycling treatment either at high (30 to 450 C) or low (-130 to 120 C) temperature range. It was observed that the crystal lattice vibrations are changing in response to the thermal fatigue treatment applied. Measurements of isomer shift and Moessbauer spectral areas allows to determine the characteristic Debye temperature which depends on the type of temperature treatment used, the findings are in qualitative agreement with the existence of a critical grain size for the microcracking of Fe 2 TiO 5 as found in elastic modules and flexural strength measurements

  20. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Kim, S.W.; Tanigawa, H.; Hirose, T.; Kohyama, A.

    2007-01-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  1. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyoto Univ., Graduate School of Energy Science (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  2. The application of RBI-concept to ultrasonic measurement of fatigue cracks

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Saerkiniemi, P.; Kauppinen, P. [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    In many power plants there are problem areas, which are not included in the official inspection programs. Flaws can be induced during service due to the service conditions in components and welded joints. These can lead to failures, which cause unforeseen shutdowns during operation and unscheduled repairs have to be earned out. The basic idea of Risk Based Inspection (RBI) methodology is to include this kind of objects in the inspection program. In this presentation two possible objects for RBI are described - thermal fatigue cracking in process piping and fatigue cracking in spinning fly wheel. (orig.) 4 refs.

  3. The application of RBI-concept to ultrasonic measurement of fatigue cracks

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J; Saerkiniemi, P; Kauppinen, P [VTT Manufacturing Technology, Espoo (Finland)

    1999-12-31

    In many power plants there are problem areas, which are not included in the official inspection programs. Flaws can be induced during service due to the service conditions in components and welded joints. These can lead to failures, which cause unforeseen shutdowns during operation and unscheduled repairs have to be earned out. The basic idea of Risk Based Inspection (RBI) methodology is to include this kind of objects in the inspection program. In this presentation two possible objects for RBI are described - thermal fatigue cracking in process piping and fatigue cracking in spinning fly wheel. (orig.) 4 refs.

  4. Reduction in emittance of thermal radiator coatings caused by the accumulation of a Martian dust simulant

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, D. Keith; Witte, Larry C.; Hinke, Jaime [Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4006 (United States); Hurlbert, Kathryn [NASA, Johnson Space Center (United States)

    2006-12-15

    Measurements were made of the effective emittance of three types of radiator coatings as a Martian dust simulant was added to the radiator surfaces. The apparatus consisted of multiple radiator coupons on which Carbondale Red Clay dust was deposited. The coupon design employed guard heating to achieve the accuracy required for acceptable emittance calculations. The apparatus was contained in a vacuum chamber that featured a liquid-nitrogen cooled shroud that simulated the Martian sky temperature. Three high-emittance radiator coatings were tested: two while silicate paints, Z-93P and NS-43G, and a silver Teflon film. Radiator temperatures ranged from 250 to 350K with sky temperatures from 185 to 248K. As dust was added to the radiator surfaces, the effective emittance of all three coatings decreased from initial values near 0.9 to a value near 0.4. A low-emittance control surface, polished aluminum, demonstrated a rise in effective emittance for thin dust layers, and then a decline as the dust layer thickened. This behavior is attributed to the conductive resistance caused by the dust layer. (author)

  5. Noncontact fatigue crack evaluation using thermoelastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Min; An, Yun Kyu; Sohn, Hoon [KAIST, Daejeon (Korea, Republic of)

    2012-12-15

    This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

  6. Experimental verification of different parameters influencing the fatigue S/N-curve

    International Nuclear Information System (INIS)

    Roos, E.; Maile, K.; Herter, K.-H.; Schuler, X.

    2005-01-01

    For the construction, design and operation of nuclear components the appropriate technical codes and standards provide detailed stress analysis procedures, material data and a design philosophy which guarantees a reliable behavior throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various (specified or measured) loading histories which are of mechanical and/or thermal origin and the geometric complexities of the components. In order to fully understand the background of the fatigue analysis included in the codes and standards as well as of the fatigue design curves used as a limiting criteria (to determine the fatigue life usage factor), it is important to understand the history, background as well as the methodologies which are important for the design engineers to get reliable results. The design rules according to the technical codes and standards provide for explicit consideration of cyclic operation, using design fatigue curves of allowable alternating loads (allowable stress or strain amplitudes) vs. number of loading cycles (S/N-curves), specific rules for assessing the cumulative fatigue damage (cumulative fatigue life usage factor) caused by different specified or monitored load cycles. The influence of different factors like welds, environment, surface finish, temperature, mean stress and size must be taken into consideration. In the paper parameters influencing the S/N-curves used within a fatigue analysis, like different type of material, the surface finish, the temperature, the difference between unwelded and welded areas, the strain rate as well as the influences of notches are verified on the basis of experimental results obtained by specimens testing in the LCF regime for high strain amplitudes. Thus safety margins relevant for the assessment of fatigue life depending on the different influencing parameters are

  7. Surface-finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component

  8. Development of a thermal fatigue test method for thermal barrier coatings by laser excitation using a laser thermal shock facility; Entwicklung eines Pruefverfahrens zur laserinduzierten thermischen Ermuedung thermischer Schutzschichten mittels einer Laser-Thermoschockpruefeinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Nies, Daniel

    2012-07-13

    The finite nature of fossil fuel supply and the growing environmental awareness become increasingly stronger motivations for the development of efficient gas turbines and jet engines for power generation or as engines for land-, sea- and water-based vehicles. One concept developed for this purpose are thermal barrier coatings, where the thermal load of components is reduced by applying a ceramic coating onto the components. In this work the possibility to use a laser thermal shock facility for thermo-cyclic testing of thermal barrier coatings is examined. A focused laser beam is used for heating the sample and a homogeneous temperature distribution on the sample surface is achieved by the used trajectory and radial adjusted laser power. The required improvements of the existing testing facility are explained, including the development of a new sample holder and of the testing and evaluation routines for the experiments. For the assessment of the initiation and evolution of damages, acoustic emission and thermographic methods are used. The possibilities and limits of these methods are assessed during the experiments. The work also includes an extensive temperature dependent characterisation of the ceramic material used for the thermal barrier coating. In this part, the measurement of the Young's modulus by a dynamic method is to be highlighted, as this is a rarely used technique. The characterisations show the expected values, except for a lower porosity as expected by the manufacturer and no significant phase changes during isothermal heat treatments. To reach sample surface temperatures above 1000 C, it is necessary to increase the absorption by an additional coating of magnetite. The temperature distribution on the surface is measured by an infrared camera, which is calibrated for this purpose. With the incorporated active air cooling of the sample backside, the temperature gradient can be controlled, but still leaves room for improvements. Already without

  9. An overview of fatigue

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    Four topics are briefly discussed in this paper: fatigue crack initiation and growth in a nickel-base superalloy single crystal, the environment effect on near-threshold fatigue crack growth behaviour, the role of crack closure in load-interaction effects in fatigue crack growth, and the nature of creep-fatigue interactions, if any, during fatigue crack growth. (Author)

  10. Analysis of the main causes of failures in the Atucha I PWR moderator circuit branch piping

    International Nuclear Information System (INIS)

    Porto, J.; Sarmiento, G.S.

    1983-01-01

    From 1977 to 1979 four through cracks were detected in the auxiliary connection of the moderator piping with the coolant circuit in the PWR Atucha I Nuclear Plant. The failures were observed to occur systematically in the same place of the pipe, where mechanical stresses were detected experimentally and thermal stresses were calculated based on temperature values measured on the pipe. The temperature field in steady state conditions as well as during thermal shocks was modelled by finite element codes, and the corresponding thermal stresses were than numerically calculated. Considering those thermal and mechanical solicitations, a crack propagation analysis based on the elastoplastic fracture mechanics and the finite element method is now being developed. Among other causes such as fatigue corrosion and vibrations, the results of the analysis show that the most preponderant factors determining the cracking are mechanical stress, thermal stress and thermal fatigue

  11. A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause?

    Science.gov (United States)

    Morris, Gerwyn; Berk, Michael; Puri, Basant K

    2018-04-01

    There is copious evidence of abnormalities in resting-state functional network connectivity states, grey and white matter pathology and impaired cerebral perfusion in patients afforded a diagnosis of multiple sclerosis, major depression or chronic fatigue syndrome (CFS) (myalgic encephalomyelitis). Systemic inflammation may well be a major element explaining such findings. Inter-patient and inter-illness variations in neuroimaging findings may arise at least in part from regional genetic, epigenetic and environmental variations in the functions of microglia and astrocytes. Regional differences in neuronal resistance to oxidative and inflammatory insults and in the performance of antioxidant defences in the central nervous system may also play a role. Importantly, replicated experimental findings suggest that the use of high-resolution SPECT imaging may have the capacity to differentiate patients afforded a diagnosis of CFS from those with a diagnosis of depression. Further research involving this form of neuroimaging appears warranted in an attempt to overcome the problem of aetiologically heterogeneous cohorts which probably explain conflicting findings produced by investigative teams active in this field. However, the ionising radiation and relative lack of sensitivity involved probably preclude its use as a routine diagnostic tool.

  12. Fatigue and radiotherapy. A literature review

    International Nuclear Information System (INIS)

    Dilhuydy, J.M.; Ouhtatou, F.; Laporte, C.; Nguyen, T.V.F.; Vendrely, V.; Dilhuydy, J.M.; Dilhuydy, M.S.

    2001-01-01

    Fatigue is a common complaint for the cancer patient during and after radiotherapy, according to the published studies. Fatigue is a subjective symptom mostly underestimated by oncologists and other care givers. Etiology is complex, poorly understood in spite of obvious causes like insomnia, nausea, pain, depression, psychological distress, anemia, hypothyroidism, menopause disturbances, treatment adverse effects. Fatigue presents multi-factorial and multidimensional aspects. To evaluate it, many tools can be used as single-item, unidimensional and multidimensional instruments. Practically, the open discussion with the patient throughout radiotherapy is essential to define it. Taking charge fatigue requires its acknowledgement by radiotherapist, treatment of associated symptoms with a multidisciplinary approach. (authors)

  13. Thermal inertia and radiating average Temperature. A brief analysis of some causes of discomfort; Inercia Termica y Temperatura media radiante. Un breve analisis de algunas causas de disconfort

    Energy Technology Data Exchange (ETDEWEB)

    Arroba, M.

    2008-07-01

    Radiant average temperature in walls is as important as dry air temperature to achieve thermal comfort of users of a local. An excessive discrepancy between these levels, or an asymmetric distribution of the surface temperature of fences, may cause localized thermal discomfort, an effect impossible to compensate by rising dry air temperature. Thermal inertia and its concentration must be properly studied in order to handle this parameters, inside or outside the building, on both sides of the cladding or none depending on the weather, the bio climatic strategies used, heating and air conditioning systems and planned use of the building. (Author)

  14. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  15. Chronic Fatigue Syndrome: How Vulnerable Are Athletes?

    Science.gov (United States)

    Eichner, Edward R.

    1989-01-01

    Discusses chronic fatigue syndrome as it affects elite athletes, noting that overtraining may mimic it. In some cases, athletes who have it perform exceedingly well in the face of debilitating fatigue. Among athletes and nonathletes, the cause and the mind-body connection are areas of controversy and research. (Author/SM)

  16. Importance of fatiguing, overtraining and chronic fatigue in athletes

    Directory of Open Access Journals (Sweden)

    Adam Piesik

    2017-09-01

    Full Text Available Each training that requires achieving a higher heart rate limit and/or increased concentration in time may cause fatigue, considered to be a natural defence mechanism of a body. In the case of excessive fatigue and insufficient time designated for rest and regeneration, an overtraining syndrome (OTS may develop. The main symptom of overtraining is increased fatigue that fails to become reversed in normal conditions of regeneration. Although authors are familiar with the overtraining syndrome and associated symptoms, as of today no diagnostic tool has been developed that may form a basis for a final diagnosis, and the diagnosis itself is frequently based on a subjective assessment of the athlete. Possible causes of the band overtraining syndrome are disorders of sodium, inflammatory processes resulting from physical activity and / or disorders of the autonomic nervous system.

  17. Research progress of exercise-induced fatigue

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2016-12-01

    Full Text Available Exercise-induced fatigue is a comprehensive response to a variety of physiological and biochemical changes in the body, and can affect people's quality of life to different extents. If no timely recovery after occurrence of fatigue, accumulated gradually, it can lead to "burnout", a "overtraining syndrome", "chronic fatigue syndrome", etc., which will cause endocrine disturbance, immune suppression, even physical illness. Exercise-induced fatigue becomes an important factor endangering human health. In recent years, many experts and scholars at home and abroad are committed to the research of exercise-induced fatigue, and have put forward a variety of hypothesis to explain the cause of exercise-induced fatigue. They expect to find out the methods for preventing and eliminating exercise-induced fatigue. This article discusses mainly the pathogenesis, model building, elimination/ relief, etc. of exercise-induced fatigue to point out the research achievements of exercise-induced fatigue and its existing problems. DOI: 10.11855/j.issn.0577-7402.2016.11.14

  18. Measurement of fatigue in industries.

    Science.gov (United States)

    Saito, K

    1999-04-01

    Fatigue of workers is a complex phenomenon resulting from various factors in technically innovated modern industries, and it appears as a feeling of exhaustion, lowering of physiological functions, breakdown of autonomic nervous balance, and decrease in work efficiency. On the other hand industrial fatigue is caused by excessive workload, remarkable alteration in working posture and diurnal and nocturnal rhythms in daily life. Working modes in modern industries have changed from work with the whole body into that with the hands, arms, legs and/or eyes which are parts of the body, and from physical work to mental work. Visual display terminal (VDT) work is one of the most characteristic jobs in the various kinds of workplaces. A large number of fatigue tests have already been adopted, but it is still hard to draw a generalized conclusion as to the method of selecting the most appropriate test battery for a given work load. As apparatus for fatigue measurement of VDT work we have developed VRT (Visual Reaction Test) and the Portable Fatigue Meter. Furthermore, we have presented immune parameters of peripheral blood and splenic T cells for physical fatigue.

  19. Experimental and numerical studies of various thermal sleeves subjected to severe cyclic thermal shocks

    International Nuclear Information System (INIS)

    Masson, J.C.; Moinereau, D.

    1990-01-01

    During the first operating years of nuclear power plants of different countries, damage was encountered on thermal sleeves used as nozzle protection. Following this discovery studies were initiated to determine the causes and to find solutions. At first a problem of vibration was found and easily solved by reducing gaps and reinforcing the welding of the sleeves. But preliminary tests with cyclic thermal shocks showed a risk of fatigue crack initiation and propagation both in the sleeve fixation and in the nozzle. Therefore a large research and development program was led principally by EDF laboratories of Les Renardieres, to demonstrate the absence of nocivity of thermal shocks during the plants life time [fr

  20. Interconnect fatigue design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  1. Is there a cognitive signature for MS-related fatigue?

    NARCIS (Netherlands)

    Hanken, K.; Eling, P.A.T.M.; Hildebrandt, H.

    2015-01-01

    The compensatory approach of fatigue argues that it is a state caused by task load. The neuropsychiatric approach argues that fatigue is a trait (like depression), unrelated to environmental challenges. We propose that fatigue is an internal state that can be measured behaviorally only by applying

  2. Cancer Fatigue: Why It Occurs and How to Cope

    Science.gov (United States)

    Cancer fatigue: Why it occurs and how to cope The exact causes of cancer fatigue and how best to treat it aren't ... clear. Find out what doctors know about cancer fatigue and what you can do about it. By ...

  3. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.

    Science.gov (United States)

    Marañón-Jiménez, S; Van den Bulcke, J; Piayda, A; Van Acker, J; Cuntz, M; Rebmann, C; Steppe, K

    2018-02-01

    Insertion of thermal dissipation (TD) sap flow sensors in living tree stems causes damage of the wood tissue, as is the case with other invasive methods. The subsequent wound formation is one of the main causes of underestimation of tree water-use measured by TD sensors. However, the specific alterations in wood anatomy in response to inserted sensors have not yet been characterized, and the linked dysfunctions in xylem conductance and sensor accuracy are still unknown. In this study, we investigate the anatomical mechanisms prompting sap flow underestimation and the dynamic process of wound formation. Successive sets of TD sensors were installed in the early, mid and end stage of the growing season in diffuse- and ring-porous trees, Fagus sylvatica (Linnaeus) and Quercus petraea ((Mattuschka) Lieblein), respectively. The trees were cut in autumn and additional sensors were installed in the cut stem segments as controls without wound formation. The wounded area and volume surrounding each sensor was then visually determined by X-ray computed microtomography (X-ray microCT). This technique allowed the characterization of vessel anatomical transformations such as tyloses formation, their spatial distribution and quantification of reduction in conductive area. MicroCT scans showed considerable formation of tyloses that reduced the conductive area of vessels surrounding the inserted TD probes, thus causing an underestimation in sap flux density (SFD) in both beech and oak. Discolored wood tissue was ellipsoidal, larger in the radial plane, more extensive in beech than in oak, and also for sensors installed for longer times. However, the severity of anatomical transformations did not always follow this pattern. Increased wound size with time, for example, did not result in larger SFD underestimation. This information helps us to better understand the mechanisms involved in wound effects with TD sensors and allows the provision of practical recommendations to reduce

  4. Spring-like motion caused large anisotropic thermal expansion in nonporous M(eim)2 (M = Zn, Cd).

    Science.gov (United States)

    Liu, Zhanning; Liu, Chenxi; Li, Qiang; Chen, Jun; Xing, Xianran

    2017-09-20

    Two nonporous coordination polymers were found to possess large anisotropic thermal expansion, which was derived from the flexible structures. A "spring-like" thermal motion was proposed to illustrate the mechanism. Compound Cd(eim) 2 (eim = 2-ethylimidazole) possesses large linear and reversible thermal expansion properties and the emission intensity shows a linear decrease with temperature, making it a candidate for thermo-responsive materials.

  5. Construction Worker Fatigue Prediction Model Based on System Dynamic

    OpenAIRE

    Wahyu Adi Tri Joko; Ayu Ratnawinanda Lila

    2017-01-01

    Construction accident can be caused by internal and external factors such as worker fatigue and unsafe project environment. Tight schedule of construction project forcing construction worker to work overtime in long period. This situation leads to worker fatigue. This paper proposes a model to predict construction worker fatigue based on system dynamic (SD). System dynamic is used to represent correlation among internal and external factors and to simulate level of worker fatigue. To validate...

  6. Population based study of fatigue and psychological distress.

    OpenAIRE

    Pawlikowska, T.; Chalder, T.; Hirsch, S. R.; Wallace, P.; Wright, D. J.; Wessely, S. C.

    1994-01-01

    OBJECTIVES--To determine the prevalence of fatigue in the general population and the factors associated with fatigue. DESIGN--Postal survey. SETTING--Six general practices in southern England. SUBJECTS--31,651 men and women aged 18-45 years registered with the practices. MAIN OUTCOME MEASURES--Responses to the 12 item general health questionnaire and a fatigue questionnaire which included self reported measures of duration, severity, and causes of fatigue. RESULTS--15,283 valid questionnaires...

  7. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    Science.gov (United States)

    Ali, Mohammed Ali Nasser

    transient thermal stresses superimposed on cyclic mechanical loading results in hollow cylinder under thermal shock in heating case and down shock cooling case. The combination of stress and strain intensity factor theoretical calculations with the experimental output recorded data shows a similar behaviour with increasing temperature, and there is a fair correlation between the profiles at the beginning and then divergence with increasing the crack length. The transient influence of high temperature in case two, giving a very high thermal shock stress as a heating or cooling effects, shifting up the combined stress, when applied a cyclic mechanical load in fraction of seconds, and the reputations of these shocks, causing a fast failure under high thermal shock stress superimposed with mechanical loading.Finally, the numerical modelling analyses three cases studied were solved due to the types of loading and types of specimen geometry by using finite element models constructed through the ANSYS Workbench version 13.0. The first case is a low cyclic fatigue case for a solid cylinder specimen simulated by applying a cyclic mechanical loading. The second is an isothermal fatigue case for solid cylinder specimen simulated by supplying different constant temperatures on the outer surface with cyclic mechanical loading, where the two cases are similar to the experimental tests and the third case, is a thermo-mechanical fatigue for a hollow cylinder model by simulating a thermal up-shock generated due to transient heating on the outer surface of the model or down shock cooling on the inner surface with the cyclic mechanical loading. The results show a good agreement with the experimental data in terms of alternative stress and life in the first case. In case two results show the strain intensity factor is increases with increasing temperature similar to the theoretical solution due to the influence of the modulus of elasticity and the difference in life estimation with the

  8. Application of a unified fatigue modelling to some thermomechanical fatigue problems

    International Nuclear Information System (INIS)

    Dang, K. van; Maitournam, H.; Moumni, Z.

    2005-01-01

    Fatigue under thermomechanical loadings is an important topic for nuclear industries. For instance, thermal fatigue cracking is observed in the mixing zones of the nuclear reactor. Classical computations using existing methods based on strain amplitude or fracture mechanics are not sufficiently predictive. In this paper an alternative approach is proposed based on a multiscale modelling thanks to shakedown hypothesis. Examples of predictive results are presented. Finally an application to the RHR problem is discussed. Main ideas of the fatigue modelling: Following an idea of Professor D. Drucker who wrote in 1963 'when applied to the microstructure there is a hope that the concept of endurance limit and shakedown are related, and that fatigue failure can be related to energy dissipated in idealized material when shakedown does not occur.' we have developed a theory of fatigue based on this concept which is different from classical fatigue approaches. Many predictive applications have been already done particularly for the automotive industry. Fatigue resistance of structures undergoing thermomechanical loadings in the high cycle regime as well as in the low cycle regime are calculated using this modelling. However, this fatigue theory is until now rarely used in nuclear engineering. After recalling the main points of the theory, we shall present some relevant applications which were done in different industrial sectors. We shall apply this modelling to the prediction of thermal cracking observed in the mixing zones of RHR. (authors)

  9. Fatigue evaluation in reactor vessel components

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Miranda, Carlos A. de J.

    1994-01-01

    This paper presents a sequence of increasing complexity forms of evaluating fatigue damage of nuclear pressure vessel components caused by cycling loadings. Examples are included in order to illustrate such procedures. (author)

  10. Automatic fatigue monitoring based on real loads. Live demonstration

    International Nuclear Information System (INIS)

    Bergholz, Steffen; Rudolph, Juergen; Bruckmueller, Florian; Heinz, Benedikt; Jouan, Benoit

    2012-01-01

    The fatigue assessment of power plant components based on local fatigue monitoring approaches is an essential part of the integrity concept and modern lifetime management. An integral approach like the AREVA Fatigue Concept (AFC) basically consists of two essential modules: realistic determination of occurring operational thermal loads by means of a high end fatigue monitoring system and related highly qualified fatigue assessment methods and tools. The fatigue monitoring system delivers continuously realistic load data at the fatigue relevant locations. Consequently, realistic operational load sequences are available as input data for all ensuing fatigue analyses. This way, realistic load data are available and qualified fatigue usage factors can be determined. The mode of operation of the fatigue monitoring system will be explained in the framework of a live demonstration by means of the FAMOSi (i = integrated) demonstration wall. The workflow starts with the continuous online measurement of outer wall temperatures transients on a pipe. Visualization is implemented within the FAMOSi viewer software. In a second step, inner wall temperatures are directly calculated. In a third step, the resulting linearly elastic stress history will be calculated as the basis for subsequent code conforming fatigue assessment. Subsequently, the related advanced fatigue assessment methods of the three staged AFC-approach are addressed.

  11. CFD modeling of thermal mixing in a T-junction geometry using LES model

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Hueseyin, E-mail: huseyinayhan@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey); Soekmen, Cemal Niyazi, E-mail: cemalniyazi.sokmen@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer CFD simulations of temperature and velocity fluctuations for thermal mixing cases in T-junction are performed. Black-Right-Pointing-Pointer It is found that the frequency range of 2-5 Hz contains most of the energy; therefore, may cause thermal fatigue. Black-Right-Pointing-Pointer This study shows that RANS based calculations fail to predict a realistic mixing between the fluids. Black-Right-Pointing-Pointer LES model can predict instantaneous turbulence behavior. - Abstract: Turbulent mixing of fluids at different temperatures can lead to temperature fluctuations at the pipe material. These fluctuations, or thermal striping, inducing cyclical thermal stresses and resulting thermal fatigue, may cause unexpected failure of pipe material. Therefore, an accurate characterization of temperature fluctuations is important in order to estimate the lifetime of pipe material. Thermal fatigue of the coolant circuits of nuclear power plants is one of the major issues in nuclear safety. To investigate thermal fatigue damage, the OECD/NEA has recently organized a blind benchmark study including some of results of present work for prediction of temperature and velocity fluctuations performing a thermal mixing experiment in a T-junction. This paper aims to estimate the frequency of velocity and temperature fluctuations in the mixing region using Computational Fluid Dynamics (CFD). Reynolds Averaged Navier-Stokes and Large Eddy Simulation (LES) models were used to simulate turbulence. CFD results were compared with the available experimental results. Predicted LES results, even in coarse mesh, were found to be in well-agreement with the experimental results in terms of amplitude and frequency of temperature and velocity fluctuations. Analysis of the temperature fluctuations and the power spectrum densities (PSD) at the locations having the strongest temperature fluctuations in the tee junction shows that the frequency range of 2-5 Hz

  12. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    International Nuclear Information System (INIS)

    Clark, E.A.

    1992-01-01

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns

  13. Thermomechanical fatigue of Sn-37 wt.% Pb model solder joints

    International Nuclear Information System (INIS)

    Liu, X.W.; Plumbridge, W.J.

    2003-01-01

    The fatigue of Sn-37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain-stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 deg. C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu 6 Sn 5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling

  14. Estimation of consumption of the useful life in the nozzles of a gas turbine by the phenomenon of thermal fatigue; Estimacion de consumo de vida util en las toberas de una turbina de gas por el fenomeno de fatiga termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez Hernandez, Efrain [Centro Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico); Mazur C, Zdzislaw; Garcia Illescas, R. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    The estimation of the useful life in the hot components of the gas turbines such as nozzles and blades is important since they undergo critical temperature changes which produce thermo-mechanical fatigue during the starts, stops and load changes for estimation of the useful life in the nozzles of a gas turbine made of a cobalt base alloy FSX-414 on which cracks have been developed during the operation. The visual inspection and metallography of the nozzle revealed many cracks by thermo-mechanical fatigue in the blade surface besides the deterioration of the alloy. In the grain boundaries it was also found a continuous carbide film and also increment of the fraction of carbides within grains. This dense and continuous carbide network reduces the ductility and increases the fragility, along with the reduction of impact energy (Charpy), facilitates the initiation and crack propagation. The initiation and crack propagation in the alloy were due to a mechanism of thermal fatigue and termofluency that was facilitated by fragility of the material due to the deterioration previously mentioned and at significant levels of thermo-mechanical efforts. In the present article the results of thermal stress analysis from the results of temperature obtained of previous studies of an analysis of heat transference and flow of fluids by means of the Star-CD program based on finite volume. It is presented the used methodology and the stress distribution, which were used for the fatigue analysis for the estimation of the useful life. For that purpose a model of finite elements in program NISA, as well as the program of fatigue analysis nCode was used. For the counting of the cycle the method of Rainflow was used and the models of life by fatigue of Manson-Coffin, Basquin, Morrow and Smih-Watson-Topper were compared. The variation of the mechanical properties with the temperature of the super alloy used in those hot components showed its great influence in the results of the fatigue

  15. Fatigue and radiotherapy. A literature review; Fatigue et radiotherapie. Revue de la litterature

    Energy Technology Data Exchange (ETDEWEB)

    Dilhuydy, J.M.; Ouhtatou, F.; Laporte, C.; Nguyen, T.V.F.; Vendrely, V. [Institut Bergonie Centre Regional de Lutte Contre le Cancer, 33 - Bordeaux (France); Dilhuydy, J.M. [Federation Nationale des Centres de Lutte Contre le Cancer, FNCLCC, Groupe Rehabilitation, 75 - Paris (France); Dilhuydy, M.S. [Hopital Saint-Andre, Service de Medecine Interne, 33 - Bordeaux (France)

    2001-11-01

    Fatigue is a common complaint for the cancer patient during and after radiotherapy, according to the published studies. Fatigue is a subjective symptom mostly underestimated by oncologists and other care givers. Etiology is complex, poorly understood in spite of obvious causes like insomnia, nausea, pain, depression, psychological distress, anemia, hypothyroidism, menopause disturbances, treatment adverse effects. Fatigue presents multi-factorial and multidimensional aspects. To evaluate it, many tools can be used as single-item, unidimensional and multidimensional instruments. Practically, the open discussion with the patient throughout radiotherapy is essential to define it. Taking charge fatigue requires its acknowledgement by radiotherapist, treatment of associated symptoms with a multidisciplinary approach. (authors)

  16. Thermal stratification in the pressurizer

    International Nuclear Information System (INIS)

    Baik, S.J.; Lee, K.W.; Ro, T.S.

    2001-01-01

    The thermal stratification in the pressurizer due to the insurge from the hot leg to the pressurizer has been studied. The insurge flow of the cold water into the pressurizer takes place during the heatup/cooldown and the normal or abnormal transients during power operation. The pressurizer vessel can undergo significant thermal fatigue usage caused by insurges and outsurges. Two-dimensional axisymmetric transient analysis for the thermal stratification in the pressurizer is performed using the computational fluid dynamics code, FLUENT, to get the velocity and temperature distribution. Parametric study has been carried out to investigate the effect of the inlet velocity and the temperature difference between the hot leg and the pressurizer on the thermal stratification. The results show that the insurge flow of cold water into the pressurizer does not mix well with hot water, and the cold water remains only in the lower portion of the pressurizer, which leads to the thermal stratification in the pressurizer. The thermal load on the pressurizer due to the thermal stratification or the cyclic thermal transient should be examined with respect to the mechanical integrity and this study can serve the design data for the stress analysis. (authors)

  17. [Therapy of fatigue in multiple sclerosis : A treatment algorithm].

    Science.gov (United States)

    Veauthier, C; Paul, F

    2016-12-01

    Fatigue is one of the most frequent symptoms of multiple sclerosis (MS) and one of the main reasons for underemployment and early retirement. The mechanisms of MS-related fatigue are unknown but comorbid disorders play a major role. Anemia, diabetes, side effects of medication and depression should be ruled out. Moreover, excessive daytime sleepiness (EDS) should be differentiated from fatigue. No approved medicinal therapy of MS fatigue is currently available. Presentation of current treatment strategies with a particular focus on secondary fatigue due to sleep disorders. A review of the literature was carried out. All MS patients suffering from fatigue should be questioned with respect to EDS and if necessary sleep medical investigations should be carried out; however, pure fatigue without accompanying EDS can also be caused by a sleep disorder. Medications, particularly freely available antihistamines, can also increase fatigue. Furthermore, anemia, iron deficits, diabetes and hypothyroidism should be excluded. Self-assessment questionnaires show an overlap between depression and fatigue. Several studies have shown that cognitive behavioral therapy and various psychotherapeutic measures, such as vertigo training, progressive exercise training and individualized physiotherapy as well as fatigue management interventions can lead to a significant improvement of MS-related fatigue. There is currently no medication which is suitable for treatment of fatigue, with the exception of fampridine for the treatment of motor functions and motor fatigue.

  18. The Effects of Hot Bending on the Low Cycle Fatigue Behaviors of 347 SS in PWR Primary Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-Sub; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Fatigue damage could be significant for some locations, especially the welds and bends where stress concentration is typically high. As a possible solution, a large radius hot-bending method has been suggested to eliminate some weld joints and all tight bends. However, for the hot-bending process which involves a high temperature thermal cycle, there is a concern about changes in mechanical properties including low cycle fatigue behaviors. In APR1400, Type 347 SS have been used as surge line pipes. Therefore, to verify the applicability of hot-bending on 347 SS surge line pipes, an environmental fatigue test program was initiated. In this paper, the preliminary results of the on-going test program are introduced. Also, the low cycle fatigue behaviors of 347 SS are compared with those of other grade of stainless steels. The effects of hot bending on the low cycle fatigue behavior of 347 SS were quantitatively evaluated. The fatigue life was compared with the estimated values per NUREG 6909 rev. 1. There are no distinct differences between NUREG 6909 and LCF tests. According to fractography and cross section analysis in progress, basically, the reduction of LCF life of 347 SS in PWR water was caused by operation of HIC mechanism. The cyclic stress responses shows that there is no secondary hardening in 330 .deg.C air and PWR water.

  19. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  20. A Preliminary Review of Fatigue Among Rail Staff

    Directory of Open Access Journals (Sweden)

    Jialin Fan

    2018-05-01

    Full Text Available Background: Fatigue is a severe problem in the rail industry, which may jeopardize train crew's health and safety. Nonetheless, a preliminary review of all empirical evidence for train crew fatigue is still lacking. The aim of the present paper is, therefore, to provide a preliminary description of occupational fatigue in the rail industry. This paper reviews the literature with the research question examining the risk factors associated with train crew fatigue, covering both papers published in refereed journals and reports from trade organizations and regulators. It assesses the progress of research on railway fatigue, including research on the main risk factors for railway fatigue, the association between fatigue and railway incidents, and how to better manage fatigue in the railway industry.Methods: Systematic searches were performed in both science and industry databases. The searches considered studies published before August 2017. The main exclusion criterion was fatigue not being directly measured through subjective or objective methods.Results: A total of 31 studies were included in the main review. The causes of fatigue included long working hours, heavy workload, early morning or night shifts, and insufficient sleep. Poor working environment, particular job roles, and individual differences also contributed to fatigue.Conclusion: Fatigue in the rail industry includes most of the features of occupational fatigue, and it is also subject to industry-specific factors. The effect of fatigue on well-being and the fatigued population in the railway industry are still not clear. Future studies can consider associations between occupational risk factors and perceived fatigue by examining the prevalence of fatigue and identifying the potential risk factors in staff within the railway industry.

  1. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap

    Science.gov (United States)

    Guo, San-Dong; Liu, Bang-Gui

    2018-03-01

    Topological semimetals may have potential applications such as in topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. According to the calculated bulk modulus, shear modulus and C 44, TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 W~m-1~K^{-1} along the a axis and 1080.40 W~m-1~K^{-1} along the c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than other topological semimetals, such as TaAs, MoP and ZrTe, which is due to the very longer phonon lifetimes for TaN than other topological semimetals. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibit the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonons with mean free paths larger than 20 (80) μm along the c direction at 300 K have little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation, and motivates further experimental works to study lattice thermal conductivity of TaN.

  2. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.

    Science.gov (United States)

    Guo, San-Dong; Liu, Bang-Gui

    2018-03-14

    Topological semimetals may have potential applications such as in topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. According to the calculated bulk modulus, shear modulus and C 44 , TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 [Formula: see text] along the a axis and 1080.40 [Formula: see text] along the c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than other topological semimetals, such as TaAs, MoP and ZrTe, which is due to the very longer phonon lifetimes for TaN than other topological semimetals. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibit the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonons with mean free paths larger than 20 (80) [Formula: see text] along the c direction at 300 K have little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation, and motivates further experimental works to study lattice thermal conductivity of TaN.

  3. Environmental fatigue in aluminum-lithium alloys

    Science.gov (United States)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  4. A Review on Fatigue Driving Detection

    Directory of Open Access Journals (Sweden)

    Shi Sheng-Yang

    2017-01-01

    Full Text Available The socialization of automobile development has brought great convenience to people’s travel. However, the rapid increase in the number of vehicles has also caused a series of problems. The increase in traffic accidents has brought great social casualties and economic losses. Fatigue driving, which is an important factor in the traffic accident, has aroused people’s attention. This paper reviews all kinds of fatigue driving detection methods at present; compares various fatigue driving detection methods in terms of accuracy, real-time and cost; analyses the advantages and disadvantages of various methods; introduces the application of fatigue detection system in automobile; summarizes the current deficiencies and future development trends in the field of fatigue driving detection. The future research of this field will be more to the data fusion, computer vision and deep learning.

  5. RMS fatigue curves for random vibrations

    International Nuclear Information System (INIS)

    Brenneman, B.; Talley, J.G.

    1984-01-01

    Fatigue usage factors for deterministic or constant amplitude vibration stresses may be calculated with well known procedures and fatigue curves given in the ASME Boiler and Pressure Vessel Code. However, some phenomena produce nondeterministic cyclic stresses which can only be described and analyzed with statistical concepts and methods. Such stresses may be caused by turbulent fluid flow over a structure. Previous methods for solving this statistical fatigue problem are often difficult to use and may yield inaccurate results. Two such methods examined herein are Crandall's method and the ''3sigma'' method. The objective of this paper is to provide a method for creating ''RMS fatigue curves'' which accurately incorporate the requisite statistical information. These curves are given and may be used by analysts with the same ease and in the same manner as the ASME fatigue curves

  6. Creep-fatigue crack initiation assessment on thick circumferentially notched 316L tubes under cyclic thermal shocks and uniform tension with the σd approach

    International Nuclear Information System (INIS)

    Michel, B.; Poette, C.

    1997-01-01

    For crack initiation assessment under creep fatigue loading, in high temperature Fast Reactor's components, specific approaches based on fracture mechanics analysis had to be developed. In the present paper the crack initiation assessment method proposed in the A16 document is presented. The so called ''σ d method'' is also validated on experimental results for tubular specimens with internal axisymmetric surface cracks. Experimental data are extracted from the TERFIS program carried out on a sodium test device at the CEA Cadarache. Metallurgical examinations on TERFIS specimens confirm that the initiation assessment of the ''σ d '' approach is conservative even for a different geometry than the CT specimen on which the method was set up. However, the conservatism is reduced when the creep residual stress field is relaxed during the hold time. An investigation concerning this last point is needed in order to know if relaxing the stress, when using a lower bound of the mechanical properties, always keeps a safety margin. (author). 14 refs, 10 figs, 4 tabs

  7. Evaluating cyclic fatigue of sealants during outdoor testing

    Science.gov (United States)

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2009-01-01

    A computer-controlled test apparatus (CCTA) and other instrumentation for subjecting sealant specimens to cyclic fatigue during outdoor exposure was developed. The CCTA enables us to use weather-induced conditions to cyclic fatigue specimens and to conduct controlled tests in-situ during the outdoor exposure. Thermally induced dimensional changes of an aluminum bar...

  8. FAMOSi: AREVA's new fatigue monitoring system

    International Nuclear Information System (INIS)

    Abib, E.; Heinz, B.

    2015-01-01

    With its local instrumentation, the Fatigue Monitoring System integrated (FAMOSi) is able to detect real thermal loadings like thermal stratification at the primary and secondary piping system. These thermal loadings are the basis for a reliable stress and fatigue evaluation and an essential part for plant lifetime extension programs. FAMOSi uses a fatigue estimation method for an on-line overview about the fatigue status of the plant's components. Detailed fatigue calculations under consideration of environmental assisted fatigue effects were done with the off-line part of the system. This contributes to optimize the operating modes or, to detect malfunctions of components like leaking valves. FAMOSi is used in several power plants in Europe and across the world to reach a better knowledge of plant behavior during start-up, shut-down, spray events or steam generator charging. In some lifetime extension programs, the exchange of heavy components could be avoided due to realistic stress and fatigue calculation based on real thermal loadings. Fatigue monitoring with FAMOSi contributes to cost savings, introduces condition based maintenance and provides a solid basis for life time extension. (authors)

  9. Fatigue life of the plasma-facing components in PULSAR

    International Nuclear Information System (INIS)

    Crowell, J.A.; Blanchard, J.P.

    1994-01-01

    The PULSAR project is a multi-institutional effort to determine the advantages that can be gained by building a tokamak without current drive. This machine would reduce the capital and operating costs of the machine by avoiding the need for complex current drive hardware but it must compensate for this with an energy storage scheme and with increased structural requirements due to cyclic fatigue. This paper presents the results of the fatigue analysis for the plasma-facing components of PULSAR. The structural analysis is carried out using two-dimensional finite element models and a variety of boundary conditions to account for the third dimension. In some cases the temperature distribution is modified to simulate behaviors which cannot normally be modeled with two-dimensional finite element models. PULSAR features two major engineering designs: a liquid metal-cooled vanadium design and a helium-cooled SiC/SiC design. Results are given for each. It is shown that the superior thermal and strength properties of the vanadium alloy simplify the component design process significantly. The SiC composite properties cause significantly more difficulty for the designer and, in particular, no credible design is found for a divertor fabricated solely from the SiC composite. This conclusion is based on current data for the thermophysical properties and fatigue strength of SiC fiber composites, so developments in these areas could allow the fabrication of a SiC/SiC divertor for a pulsed tokamak

  10. Fatigue with HIV/AIDS

    Science.gov (United States)

    ... 21, 2014 Select a Language: Fact Sheet 551 Fatigue WHAT IS FATIGUE? IS FATIGUE IMPORTANT? HOW DO ... It can be physical or psychological. With physical fatigue , your muscles cannot do things as easily as ...

  11. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    Science.gov (United States)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  12. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  13. Work fatigue in urban bus drivers

    Directory of Open Access Journals (Sweden)

    Teresa Makowiec-Dąbrowska

    2015-10-01

    Full Text Available Background: Bus drivers are a special group of professional drivers who are at a very high risk of fatigue. The aim of the study was to examine whether the driver’s subjective assessment of fatigue allows for the determination of its level and identification of its causes. Material and Methods: The study group comprised 45 randomly selected bus drivers (mean age – 43.7±7.9 years, period of employment as drivers – 14.7±8.6 years. Examinations were performed in all subjects four times – before and after work on the “easy” route (outside the city center, small traffic intensity and before and after work on the “difficult” route (city center, heavy traffic. The fatigue test questionnaire, based on the list of symptoms of fatigue prepared by the Japan Research Committee of Fatigue, was used in the study. Results: The rating of fatigue after the work was significantly higher than that before the work. The profile of fatigue after work was not influenced by the type of route, but the assessment of most symptoms of fatigue reached a higher level after the “difficult” routes and the differences were statistically significant for 7 symptoms. Only the ratings of leg fatigue, feeling of heaviness, and the necessity to squint eyes and gaze with effort reached the higher levels after driving the “easy” routes. It has been found that the level of fatigue was significantly correlated with the job characteristics (driving time, the length of the route, number of stops, etc. and with the abundance of food ingested and type of beverage (coffee vs. others drunk prior to driving. Conclusions: The questionnaire used in our study to assess the subjective feeling of fatigue has proved to be a sensitive and useful tool for indicating the level and causes of fatigue. The relationship between the symptoms of fatigue and the characteristics of job and lifestyle shows that actions must be taken by both the employers and employees to prevent fatigue

  14. Improved ultrasonic detection of fatigue cracks in Ti-6A1-4V by thermo-optical modulation

    International Nuclear Information System (INIS)

    Yan Zhongyu; Nagy, Peter B.

    2000-01-01

    Pulsed infrared laser irradiation was used to positively identify small fatigue cracks on the surface of fatigue damaged Ti-6Al-4V specimens. The resulting transient thermoelastic deformation perceptibly changes the opening of partially closed surface cracks without affecting other scatterers, such as surface grooves, corrosion pits, coarse grains, etc., that might hide the fatigue crack from ultrasonic detection. We found that this method, which was previously shown to be very effective in 2024 aluminum alloy, must be modified in order to successfully adapt it to Ti-6Al-4V titanium alloy, where significant thermo-optical modulation was found even from straight corners or open notches. This spurious modulation is caused by direct thermal modulation of the sound velocity in the intact material rather than thermal stresses via crack closure. Different methods have been developed to distinguished direct thermal modulation from crack-closure modulation due to thermoelastic stresses. It was found that the modified thermo-optical modulation method can increase the detectability of hidden fatigue cracks in Ti-6Al-4V specimens by approximately one order of magnitude. - This effort was sponsored by the Defense Advanced Research Projects Agency (DARPA) Multidisciplinary University Research Initiative (MURI), under Air Force Office of Scientific Research grant number F49620-96-1-0442

  15. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  16. Keep fatigue usage low for LTO. Benefits of load monitoring and related fatigue evaluations for long term operation

    International Nuclear Information System (INIS)

    Rothenhoefer, H.; Koenig, G.

    2012-01-01

    Design fatigue calculations normally cover a service life of 40 years. Based on design transients with a specified number of cycles the evaluations have to prove that the fatigue usage after 40 years will stay below 1. In 40+ years of operation real loads can differ much from design loads so that premature ageing can occur. For long term operation, monitoring of real loads and detailed fatigue analysis for selected locations can be used to optimize operational modes in order to reduce the loads causing fatigue. As a result fatigue usage can be kept below 1 even for 60+ years. (author)

  17. Working gas temperature and pressure changes for microscale thermal creep-driven flow caused by discontinuous wall temperatures

    International Nuclear Information System (INIS)

    Han, Yen-Lin

    2010-01-01

    Microscale temperature gradient-driven (thermal creep/transpiration) gas flows have attracted significant interest during the past decade. For free molecular and transitional conditions, applying temperature gradients to a flow channel's walls induces the thermal creep effect. This results in a working gas flowing through the channel from cold to hot, which is generally accompanied by a rising pressure from cold to hot in the channel. Working gas temperature and pressure distributions can vary significantly, depending on a flow channel's configuration and wall temperature distribution. Understanding working gas temperature excursions, both increases and decreases, is essential to ensure the effective use of thermal creep flows in microscale applications. In this study, the characterizations of working gas temperature variations, due to both temperature discontinuities and more gradual changes, on a variety of flow channel walls, were systematically investigated using the direct simulation Monte Carlo (DSMC) method. A micro/meso-scale pump, the Knudsen compressor, was chosen to illustrate the importance of controlling working gas temperature in thermal creep-driven flows. Gas pressure and temperature variations, through several Knudsen compressor stage configurations, were studied to determine the most advantageous flow phenomena for the efficient operation of Knudsen compressors.

  18. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    Science.gov (United States)

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (pelectrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  19. Determinants of seafarers’ fatigue

    DEFF Research Database (Denmark)

    Bøggild Dohrmann, Solveig; Leppin, Anja

    2017-01-01

    in the review. The main reason for exclusion was fatigue not being the outcome variable. Results: Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on–6-h off watch...

  20. Can Rotational Atherectomy Cause Thermal Tissue Damage? A Study of the Potential Heating and Thermal Tissue Effects of a Rotational Atherectomy Device

    International Nuclear Information System (INIS)

    Gehani, Abdurrazzak A.; Rees, Michael R.

    1998-01-01

    Purpose: Thermal tissue damage (TTD) is customarily associated with some lasers. The thermal potential of rotational atherectomy (RA) devices is unknown. We investigated the temperature profile and potential TTD as well as the value of fluid flushing of an RA device. Methods: We used a high-resolution infrared imaging system that can detect changes as small as 0.1 deg. C to measure the temperature changes at the tip of a fast RA device with and without fluid flushing. To assess TTD, segments of porcine aorta were subjected to the rotating tip under controlled conditions, stained by a special histochemical stain (picrisirius red) and examined under normal and polarized light microscopy. Results: There was significant heating of the rotating cam. The mean 'peak' temperature rise was 52.8 ± 16.9 deg. C. This was related to rotational speed; thus the 'peak' temperature rise was 88.3 ± 12.6 deg. C at 80,000 rpm and 17.3 ± 3.8 deg. C at 20,000 rpm (p < 0.001, t-test). Fluid flushing at 18 ml/min reduced, but did not abolish, heating of the device (11.8 ± 2.9 deg. C). A crater was observed in all segments exposed to the rotating tip. The following features were most notable: (i) A zone of 'thermal' tissue damage extended radially from the crater reaching adventitia in some sections, especially at high speeds. This zone showed markedly reduced or absent birefringence. (ii) Fluid flushing of the catheter reduced the above changes but increased the incidence and extent of dissections in the media, especially when combined with high atherectomy speeds. (iii) These changes were observed in five of six specimens exposed to RA without flushing, but in only one of six with flushing (p < 0.05). (iv) None of the above changes was seen in control segments. Conclusion: RA is capable of generating significant heat and potential TTD. Fluid flushing reduced heating and TTD. These findings warrant further studies in vivo, and may influence the design of atherectomy devices

  1. Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina).

    Science.gov (United States)

    Narayan, Edward J; Hero, Jean-Marc

    2014-04-01

    Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day-day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35°C for 30min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings

  2. Cyclic Fatigue Durability of Uncoated and EBC Coated 3D SiC/SiC Composites Under Thermal Gradient Conditions at 2700F in Air

    Science.gov (United States)

    Smith, Craig; Harder, Bryan; Zhu, Dongming; Bhatt, Ramakrishna; Kalluri, Sreeramesh

    2017-01-01

    Ceramic matrix composites (CMCs) such as SiCSiC are currently being designed and implemented in high temperature sections of aerospace turbine engines. Such components will be subject to through-thickness thermal gradients, which may affect the durability. In this study, SiCSiC CMCs with a hybrid chemical vapor infiltrated (CVI) and polymer infiltration and pyrolysis (PIP) matrix were loaded in tension while one surface was heated with a laser and the opposite surface was cooled. The samples were each coated with an environmental barrier coating (EBC), which was produced by electron beam physical deposition (EBPVD). Results for CMCs tested with and without the EBC be discussed.

  3. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    Science.gov (United States)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  4. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M H; Umar, S; Nauman, S

    2014-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  5. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  6. Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-05-01

    Full Text Available Reliable and safe operation of a coal-fired power plant is strongly linked to freshwater resources, and environmental problems related to water sources and wastewater discharge are challenges for power station operation. In this study, an evaluation on the basis of a wastewater thermal pollution vector is reported for the environmental impact of residual water generated and discharged in the Jiu River during the operation of thermoelectric units of the Rovinari, Turceni and Craiova coal-fired power plants in Romania. Wastewater thermal pollutant vector Plane Projection is applied for assessing the water temperature evolution in the water flow lane created downstream of each power plant wastewater outlet channel. Simulation on the basis of an Electricity of France model, and testing validation of the results for thermoelectric units of 330 MW of these power plants are presented.

  7. Fatigue diminishes motoneuronal excitability during cycling exercise.

    Science.gov (United States)

    Weavil, Joshua C; Sidhu, Simranjit K; Mangum, Tyler S; Richardson, Russell S; Amann, Markus

    2016-10-01

    Exercise-induced fatigue influences the excitability of the motor pathway during single-joint isometric contractions. This study sought to investigate the influence of fatigue on corticospinal excitability during cycling exercise. Eight men performed fatiguing constant-load (80% W peak ; 241 ± 13 W) cycling to exhaustion during which the percent increase in quadriceps electromyography (ΔEMG; vastus lateralis and rectus femoris) was quantified. During a separate trial, subjects performed two brief (∼45 s) nonfatiguing cycling bouts (244 ± 15 and 331 ± 23W) individually chosen to match the ΔEMG across bouts to that observed during fatiguing cycling. Corticospinal excitability during exercise was quantified by transcranial magnetic, electric transmastoid, and femoral nerve stimulation to elicit motor-evoked potentials (MEP), cervicomedullary evoked potentials (CMEP), and M waves in the quadriceps. Peripheral and central fatigue were expressed as pre- to postexercise reductions in quadriceps twitch force (ΔQ tw ) and voluntary quadriceps activation (ΔVA). Whereas nonfatiguing cycling caused no measureable fatigue, fatiguing cycling resulted in significant peripheral (ΔQ tw : 42 ± 6%) and central (ΔVA: 4 ± 1%) fatigue. During nonfatiguing cycling, the area of MEPs and CMEPs, normalized to M waves, similarly increased in the quadriceps (∼40%; P fatiguing cycling. As a consequence, the ratio of MEP to CMEP was unchanged during both trials (P > 0.5). Therefore, although increases in muscle activation promote corticospinal excitability via motoneuronal facilitation during nonfatiguing cycling, this effect is abolished during fatigue. We conclude that the unaltered excitability of the corticospinal pathway from start of intense cycling exercise to exhaustion is, in part, determined by inhibitory influences on spinal motoneurons obscuring the facilitating effects of muscle activation.

  8. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  9. Material fatigue in high pressure piping

    Energy Technology Data Exchange (ETDEWEB)

    Brunne, W.C. [Pro Novum, Research and Technological Services, Ltd, Katowice, (Poland)

    1998-12-31

    The present paper describes a type of damage to four-way cross pieces on live steam and reheated steam pipelines. The results of metallographic examination and strength tests are presented. The occurring mechanisms of material degradation, i.e. low-cycle fatigue and hydrogen corrosion are discussed. The both mechanisms result in the corrosion fatigue of the material causing the failure of cross pieces. A new design of cross piece was proposed. (orig.) 5 refs.

  10. A procedure to generate input data of cyclic softening and hardening for FEM analysis from constant strain amplitude fatigue tests in LCF regime

    International Nuclear Information System (INIS)

    Sarajaervi, U.; Cronvall, O.

    2007-03-01

    Fatigue is produced by cyclic application of stresses by mechanical or thermal loading. The metal subjected to fluctuating stress will fail at stresses much lower than those required to cause fracture in a single application of load. The key parameters are the range of stress variation and the number of its occurrences. Low-cycle fatigue, usually induced by mechanical and thermal loads, is distinguished from high-cycle fatigue, mainly associated with vibration or high number of small thermal fluctuations. Numerical models describing fatigue behaviour of austenitic stainless piping steels under cyclic loading and their applicability for modelling of low-cycle-fatigue are discussed in this report. In order to describe the cyclic behaviour of the material for analysis with finite element method (FEM) based analysis code ABAQUS, the test data, i.e. stress-strain curves, have to be processed. A code to process the data all through the test duration was developed within this study. A description of this code is given also in this report. Input data for ABAQUS was obtained to describe both kinematic and isotropic hardening properties. Further, by combining the result data for various strain amplitudes a mathematic expression was be created which allows defining a parameter surface for cyclic (i.e. isotropic) hardening. Input data for any strain amplitude within the range of minimum and maximum strain amplitudes of the test data can be assessed with the help of the developed 3D stress-strain surface presentation. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  11. A procedure to generate input data of cyclic softening and hardening for FEM analysis from constant strain amplitude fatigue tests in LCF regime

    Energy Technology Data Exchange (ETDEWEB)

    Sarajaervi, U.; Cronvall, O. [VTT (Finland)

    2007-03-15

    Fatigue is produced by cyclic application of stresses by mechanical or thermal loading. The metal subjected to fluctuating stress will fail at stresses much lower than those required to cause fracture in a single application of load. The key parameters are the range of stress variation and the number of its occurrences. Low-cycle fatigue, usually induced by mechanical and thermal loads, is distinguished from high-cycle fatigue, mainly associated with vibration or high number of small thermal fluctuations. Numerical models describing fatigue behaviour of austenitic stainless piping steels under cyclic loading and their applicability for modelling of low-cycle-fatigue are discussed in this report. In order to describe the cyclic behaviour of the material for analysis with finite element method (FEM) based analysis code ABAQUS, the test data, i.e. stress-strain curves, have to be processed. A code to process the data all through the test duration was developed within this study. A description of this code is given also in this report. Input data for ABAQUS was obtained to describe both kinematic and isotropic hardening properties. Further, by combining the result data for various strain amplitudes a mathematic expression was be created which allows defining a parameter surface for cyclic (i.e. isotropic) hardening. Input data for any strain amplitude within the range of minimum and maximum strain amplitudes of the test data can be assessed with the help of the developed 3D stress-strain surface presentation. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  12. Application of fatigue monitoring system in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Piao Lei

    2014-01-01

    Fatigue failure is one form of equipment failure of nuclear power plant, influencing equipment lifetime and lifetime extension. Fatigue monitoring system can track real thermal transient at fatigue sensitive components, establish a basis for fatigue analyses based on realistic operating loads, identify unexpected operational transients, optimize the plant behavior by improved operating modes, provide supporting data for lifetime management, enhance security of plant and reduce economical loss. Fatigue monitoring system has been applied in many plants and is required to be applied in Generation-III nuclear power plant. It is necessary to develop the fatigue monitoring system with independent intellectual property rights and improve the competitiveness of domestic Generation-III nuclear power technology. (author)

  13. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  14. Construction Worker Fatigue Prediction Model Based on System Dynamic

    Directory of Open Access Journals (Sweden)

    Wahyu Adi Tri Joko

    2017-01-01

    Full Text Available Construction accident can be caused by internal and external factors such as worker fatigue and unsafe project environment. Tight schedule of construction project forcing construction worker to work overtime in long period. This situation leads to worker fatigue. This paper proposes a model to predict construction worker fatigue based on system dynamic (SD. System dynamic is used to represent correlation among internal and external factors and to simulate level of worker fatigue. To validate the model, 93 construction workers whom worked in a high rise building construction projects, were used as case study. The result shows that excessive workload, working elevation and age, are the main factors lead to construction worker fatigue. Simulation result also shows that these factors can increase worker fatigue level to 21.2% times compared to normal condition. Beside predicting worker fatigue level this model can also be used as early warning system to prevent construction worker accident

  15. Tired, weak, or in need of rest: fatigue among general practice attenders.

    Science.gov (United States)

    David, A; Pelosi, A; McDonald, E; Stephens, D; Ledger, D; Rathbone, R; Mann, A

    1990-11-24

    To determine the prevalence and associations of symptoms of fatigue. Questionnaire survey. London general practice. 611 General practice attenders. Scores on a fatigue questionnaire and reasons given for fatigue. 10.2% Of men (17/167) and 10.6% of women (47/444) had substantial fatigue for one month or more. Age, occupation, and marital status exerted minor effects. Subjects attributed fatigue equally to physical and non-physical causes. Physical ill health, including viral infection, was associated with more severe fatigue. Women rather than men blamed family responsibilities for their fatigue. The profile of persistent fatigue did not differ from that of short duration. Only one person met criteria for the chronic fatigue syndrome. Fatigue is a common complaint among general practice attenders and can be severe. Patients may attribute this to physical, psychological, and social stress.

  16. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  17. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyeong; Myung, NohJun; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2016-12-15

    In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

  18. Cancer-related fatigue: Mechanisms, risk factors, and treatments

    Science.gov (United States)

    Bower, Julienne E.

    2015-01-01

    Fatigue is one of the most common and distressing side effects of cancer and its treatment, and may persist for years after treatment completion in otherwise healthy survivors. Cancer-related fatigue causes disruption in all aspects of quality of life and may be a risk factor for reduced survival. The prevalence and course of fatigue in cancer patients has been well characterized, and there is growing understanding of underlying biological mechanisms. Inflammation has emerged as a key biological pathway for cancer-related fatigue, with studies documenting links between markers of inflammation and fatigue before, during, and particularly after treatment. There is considerable variability in the experience of cancer-related fatigue that is not explained by disease- or treatment-related characteristics, suggesting that host factors may play an important role in the development and persistence of this symptom. Indeed, longitudinal studies have begun to identify genetic, biological, psychosocial, and behavioral risk factors for cancer-related fatigue. Given the multi-factorial nature of cancer-related fatigue, a variety of intervention approaches have been examined in randomized controlled trials, including physical activity, psychosocial, mind-body, and pharmacological treatments. Although there is currently no gold standard for treating fatigue, several of these approaches have shown beneficial effects and can be recommended to patients. This report provides a state of the science review of mechanisms, risk factors, and interventions for cancer-related fatigue, with a focus on recent longitudinal studies and randomized trials that have targeted fatigued patients. PMID:25113839

  19. Special problems: LBB, thermal effects

    International Nuclear Information System (INIS)

    Lin Chiwen

    2001-01-01

    This section presents the discussion of special problems in the reactor coolant system design, including LBB and thermal effects. First, the categories of fracture mechanics technology applicable to LBB is discussed. Two categories of fracture mechanics, namely: linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM) are discussed specifically. Next, basic concepts of LEFM are discussed. This will be followed by a discussion of EPFM, with more specific discussion of the methodology currently acceptable to NRC, with the emphasis on the J-integral approach. This is followed by a discussion of the NRC position and recommendations and basic requirements laid out by NRC. A specific example of LBB application to WPWR piping is used to identify the key steps to be followed, in order to satisfy the recommendations and requirements of NRC. An application of LBB to the WPWR reactor coolant loop piping is provided as further illustration of the methodology. This section focuses on the thermal effects which have not been addressed earlier, and the thermal effects which have caused particular concerns on potential reactor degradations, such as pressurized thermal shocks. The organization of this section is divided into the following subsections: linear-elastic fracture mechanics (LEFM); elastic-plastic fracture mechanics (EPFM); J concepts; NRC recommendations and requirements on the application of LBB; two specific applications of LBB to WPWR piping; PWR internals degradation; thermal fatigue considerations; a case study of pressurized thermal shock

  20. Fatigue check of nuclear safety class 1 reactor coolant pipe

    International Nuclear Information System (INIS)

    Wang Qing; Fang Yonggang; Chu Qibao; Xu Yu; Li Hailong

    2015-01-01

    Fatigue and thermal ratcheting analyses of nuclear safety Class 1 reactor coolant pipe in a nuclear power plant were independently carried out in this paper. The software used for calculation is ROCOCO, which is based on RCC-M code. The difference of nuclear safety Class 1 pipe fatigue evaluation between RCC-M code and ASME code was compared. The main aspects of comparison include the calculation scoping of fatigue design, the calculation method of primary plus secondary stress intensity, the elastic-plastic correction coefficient calculation, and the dynamic load combination method etc. By correcting inconsistent algorithm of ASME code within ROCOCO, the fatigue usage factor and thermal ratcheting design margin of 65 mm and 55 mm wall thickness of the pipe were obtained. The results show that the minimum wall thickness of the pipe must exceed 55 mm and the design value of the thermal ratcheting of 55 mm wall thickness reaches 95% of the allowable value. (authors)

  1. Chronic fatigue syndrome: aetiology, diagnosis and treatment

    Science.gov (United States)

    Avellaneda Fernández, Alfredo; Pérez Martín, Álvaro; Izquierdo Martínez, Maravillas; Arruti Bustillo, Mar; Barbado Hernández, Francisco Javier; de la Cruz Labrado, Javier; Díaz-Delgado Peñas, Rafael; Gutiérrez Rivas, Eduardo; Palacín Delgado, Cecilia; Rivera Redondo, Javier; Ramón Giménez, José Ramón

    2009-01-01

    Chronic fatigue syndrome is characterised by intense fatigue, with duration of over six months and associated to other related symptoms. The latter include asthenia and easily induced tiredness that is not recovered after a night's sleep. The fatigue becomes so severe that it forces a 50% reduction in daily activities. Given its unknown aetiology, different hypotheses have been considered to explain the origin of the condition (from immunological disorders to the presence of post-traumatic oxidative stress), although there are no conclusive diagnostic tests. Diagnosis is established through the exclusion of other diseases causing fatigue. This syndrome is rare in childhood and adolescence, although the fatigue symptom per se is quite common in paediatric patients. Currently, no curative treatment exists for patients with chronic fatigue syndrome. The therapeutic approach to this syndrome requires a combination of different therapeutic modalities. The specific characteristics of the symptomatology of patients with chronic fatigue require a rapid adaptation of the educational, healthcare and social systems to prevent the problems derived from current systems. Such patients require multidisciplinary management due to the multiple and different issues affecting them. This document was realized by one of the Interdisciplinary Work Groups from the Institute for Rare Diseases, and its aim is to point out the main social and care needs for people affected with Chronic Fatigue Syndrome. For this, it includes not only the view of representatives for different scientific societies, but also the patient associations view, because they know the true history of their social and sanitary needs. In an interdisciplinary approach, this work also reviews the principal scientific, medical, socio-sanitary and psychological aspects of Chronic Fatigue Syndrome. PMID:19857242

  2. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  3. Domain switching of fatigued ferroelectric thin films

    Science.gov (United States)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-05-01

    We investigate the domain wall speed of a ferroelectric PbZr0.48Ti0.52O3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  4. Domain switching of fatigued ferroelectric thin films

    International Nuclear Information System (INIS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-01-01

    We investigate the domain wall speed of a ferroelectric PbZr 0.48 Ti 0.52 O 3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue

  5. A study on the stress history condensation method for a fatigue monitoring system

    International Nuclear Information System (INIS)

    Ko, Hanok; Jhung, Myungjo; Lee, Kihyoung

    2014-01-01

    Fatigue damage is the one of important aging mechanisms. Time-varying thermal, pressure and mechanical loads produce perturbations of stress cycles primarily at the surface of a component. Stress cycles of sufficient magnitude cause fatigue damage, which can ultimately lead to cracking of the component. According to NUREG-1801, fatigue monitoring systems identify acceptable aging management programs, including programs for fatigue and cyclic operation. In a monitoring system, the rainflow counting method is mainly used as the stress cycle counting method. Before determining the stress cycles using rainflow counting method, stress extremum (or peak/valley) must be identified. Because real stress history contains large numbers of very small cycles, which may be a result of digitization noise, these cycles will slow down the analysis and distort the scaling of graphical displays. As a result, it is found that stress cycles smaller than a threshold value are discarded by using the proposed method. In this paper, an engineering methodology which extracts extremum from the real-time transient data, so-called SEE, has been developed. The proposed method is very simple and so fast because it only uses the difference between the input value and local peak/valley. The stress cycles counted by two methods are compared with those counted by only rainflow counting method and it is found that stress cycles smaller than a threshold value were eliminated

  6. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    National Research Council Canada - National Science Library

    Harrison, Richard; Chaiken, Scott; Harville, Donald; Fischer, Joseph; Fisher, Dion; Whitmore, Jeff

    2008-01-01

    The present study was designed to target two specific areas regarding fatigue. The primary purpose was to begin investigations into possible genetic markers linked to fatigue resistance and fatigue susceptibility...

  7. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    alloys (2). [--I Fig. 6. Fatigue fracture in Nitrile- butadien rubber ( NBR ). Fig. 7. The characteristic features of fatigue fracture in press moulded...in plastics and even in rubber . It follows therefore, that fatigue fractures must also occur in the mineral layers of our earth or in the rock on...effective until the weakest point yields and forms a crack. To get a feeling for this process, you can imagine that the stressed article is made of rubber

  8. Fatigue 󈨛. Volume 2,

    Science.gov (United States)

    1987-06-01

    ROLAND STICKLER Absolute Fatigue Thresholds in Metallic 801 Materials - J.A. LEWIS Thermometrical Investigations on the Near 809 Threshold Fatigue...impurities reported by Semi- Alloys Inc. totaled less than 0.1%. Specimens were cast in a flat open aluminum mold. Each specimen was 6 mm thick and 12...and 2024-T351 Aluminum Alloy", in "Fatigue Crack Growth Threshold Concepts", D.L. Davidson, S. Suresh, editors, TMS-AIME. 1984, pp. 63-82. (2) Bailon

  9. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)

  10. IAEA specialists' meeting on Environmental factors causing cracks and degradation in primary system components: conclusions and recommendations

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.

    1981-01-01

    The phenomenon of intergranular stress corrosion cracking in BWR stainless steel piping joints is well understood, and does not present a safety hazard as leak before break can be shown. It is recommended that work should proceed to reduce the probability of stress corrosion cracking by changing the BWR environment by hydrogen feedwater additions to remove oxygen. The cause of LWR pipe cracking is understood to be thermal fatigue caused by thermal stratifications at low flow rates during operation (PWR) and thermal mixing in piping tees (PWR). Recommendations include, research on corrosion fatigue crack propagation, evaluation of compressive stress state, design changes, and additional development of NDT methods for detection and sizing of cracks. Conclusions drawn steam generator tube degradation suggest that this is a potentially large problem. Recommendation include the use of stress corrosion resistant materials, oxygen reduction through use of deaeration feed banks, and inclusion in future design of inspection access to evaluate conditions of steam generators. (author)

  11. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    Science.gov (United States)

    Clow, Gary D.

    2015-01-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be ‘corrected’ for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid–liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal

  12. Using endogenous saccades to characterize fatigue in multiple sclerosis.

    Science.gov (United States)

    Ferreira, Marisa; Pereira, Paulo A; Parreira, Marta; Sousa, Inês; Figueiredo, José; Cerqueira, João J; Macedo, Antonio F

    2017-05-01

    Multiple Sclerosis (MS) is likely to cause dysfunction of neural circuits between brain regions increasing brain working load or a subjective overestimation of such working load leading to fatigue symptoms. The aim of this study was to investigate if saccades can reveal the effect of fatigue in patients with MS. Patients diagnosed with MS (EDSSendogenous generated saccade paradigm (valid and invalid trials). The fatigue severity scale (FSS) was used to assess the severity of fatigue. FSS scores were used to define two subgroups, the MS fatigue group (score above normal range) and the MS non-fatigue. Differences between groups were tested using linear mixed models. Thirty-one MS patients and equal number of controls participated in this study. FSS scores were above the normal range in 11 patients. Differences in saccade latency were found according to group (p<0.001) and trial validity (p=0.023). Differences were 16.9ms, between MS fatigue and MS non-fatigue, 15.5ms between MS fatigue and control. The mean difference between valid and invalid trials was 7.5ms. Differences in saccade peak velocity were found according to group (p<0.001), the difference between MS fatigue and control was 22.3°/s and between MS fatigue and non-fatigue was 12.3°/s. Group was a statistically significant predictor for amplitude (p<0.001). FSS scores were correlated with peak velocity (p=0.028) and amplitude (p=0.019). Consistent with the initial hypothesis, our study revealed altered saccade latency, peak velocity and amplitude in patients with fatigue symptoms. Eye movement testing can complement the standard inventories when investigating fatigue because they do not share similar limitations. Our findings contribute to the understanding of functional changes induced by MS and might be useful for clinical trials and treatment decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    life experiments for the same purpose. The methodology is basedon modern probabilistic concepts amd classical decision theory. The special case where the fatigue life experiments are given in terms of SN curves is considered in Particular. The proposed techniques are illustrated by an example.......This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue...

  14. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  15. Fatigue analysis of HANARO primary cooling system piping

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    A main form of piping failure which occurring leak before break (LBB) is fatigue failure. The fatigue analysis of HANARO primary cooling system (PCS) piping was performed. The PCS piping had been designed in accordance with ASME Class 3 for service conditions. However fatigue analysis is not required in Class 3. In this study the quantitative fatigue analysis was carried out according to ASME Class 1. The highest stress points which have the largest possibility of ASME class 1. The highest stress points which have the largest possibility of the fatigue were determined from the piping stress analysis for each subsection piping. The fatigue analysis was performed for 3 highest stress points, i.e., branch connection, anchor point and butt welding joint. After calculating the peak stress intensity range the fatigue usage factors were evaluated considering operating cycles and S-N curve. The cumulative usage factors for 3 highest stress points were much less than 1. The results show that the possibility of fatigue failure for PCS piping subjected to thermal expansion and seismic loads is very small. The structural integrity of the HANARO PCS piping for fatigue failure was proved to apply the LBB. (author). 11 tabs., 6 figs

  16. Dextromethorphan attenuated the higher vulnerability to inflammatory thermal hyperalgesia caused by prenatal morphine exposure in rat offspring

    Directory of Open Access Journals (Sweden)

    Chen Chien-Fang

    2011-08-01

    Full Text Available Abstract Background Co-administration of dextromethorphan (DM with morphine during pregnancy and throughout lactation has been found to reduce morphine physical dependence and tolerance in rat offspring. No evidence was presented, however, for the effect of DM co-administered with morphine during pregnancy on inflammatory hyperalgesia in morphine-exposed offspring. Therefore, we attempt to investigate the possible effect of prenatal morphine exposure on the vulnerability to hyperalgesia and the possible therapeutic effect of DM in the present study. Methods Fifty μl of carrageenan (20 mg/ml was injected subcutaneously into the plantar surface of the right hind paw in p18 rats to induce hyperalgesia. Mean paw withdrawal latency was measured in the plantar test to index the severity of hyperalgesia. Using Western blotting and RT-PCR, the quantitative analyses of NMDA receptor NR1 and NR2B subunits were performed in spinal cords from different groups of animals. Results In the carrageenan-induced hyperalgesia model, rat offspring passively exposed to morphine developed a severe hyperalgesia on postnatal day 18 (p18, which also had a more rapid time course than those in the controls. Co-administration of DM with morphine in the dams prevented this adverse effect of morphine in the offspring rats. Western blot and RT-PCR analysis showed that the levels of protein and mRNA of NMDA receptor NR1 and NR2B subunits were significantly higher in the lumbar spinal cords of rats (p14 exposed to prenatal morphine; the co-administration of DM could reverse the effect of morphine on NR1 and attenuate the effect on NR2B. Conclusions Thus, DM may have a great potential in the prevention of higher vulnerability to inflammatory thermal hyperalgesia in the offspring of morphine-addicted mothers.

  17. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  18. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    International Nuclear Information System (INIS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Zhang, Weihong; Van Herpen, Alain

    2016-01-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well. (paper)

  19. Survey of evaluation methods for thermal striping in FBR structures

    International Nuclear Information System (INIS)

    Miura, Naoki; Nitta, Akito; Take, Kohji

    1988-01-01

    In the upper core structures or the sodium mixing tee of Fast Breeder Reactors, sodium mixing streams which are at different temperatures produce rapid temperature fluctuations, namely 'thermal striping', upon component surfaces, and it is apprehended that the high-cycle thermal fatigue causes the crack initiation and propagation. The thermal striping is one of the factors which is considered in FBR component design, however, the standard evaluation method has not built up yet because of the intricacy of that mechanism, the difficulty of an actual proof, the lack of data, and so on. In this report, it is intended to survey of the datails and the present situation of the evaluation method of crack initiation and propagation due to thermal striping, and study the appropriate method which will be made use of the rationalization of design. So it is ascertained that the method which use a quantitative prediction of crack propagation is optimum to evaluate the thermal striping phenomenon. (author)

  20. Probabilistic Fatigue Model for Reinforced Concrete Onshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Reinforced Concrete Slab Foundation (RCSF) is the most common onshore wind turbine foundation type installed by the wind industry around the world. Fatigue cracks in a RCSF are an important issue to be considered by the designers. Causes and consequences of the cracks due to fatigue damage in RCSFs...... are discussed in this paper. A probabilistic fatigue model for a RCSF is established which makes a rational treatment of the uncertainties involved in the complex interaction between fatigue cyclic loads and reinforced concrete. Design and limit state equations are established considering concrete shear...

  1. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    Science.gov (United States)

    Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália

    2017-09-01

    This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  2. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    Directory of Open Access Journals (Sweden)

    Bilčík Juraj

    2017-09-01

    Full Text Available This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  3. Depression, Fatigue, and Pre-Sleep Arousal: A Mediation Model

    Science.gov (United States)

    Karlson, Cynthia W.; Stevens, Natalie R.; Olson, Christy A.; Hamilton, Nancy A.

    2010-01-01

    Fatigue is a common and debilitating symptom of clinical depression; however, the causes are not well understood. The present study was designed to test the hypotheses that subjective sleep, objective sleep, and arousal in the pre-sleep state would mediate the relationship between depression status and fatigue. Sleep, pre-sleep arousal, and…

  4. Optimal Inspection Planning for Fatigue Damage of Offshore Structures

    DEFF Research Database (Denmark)

    Madsen, H.O.; Sørensen, John Dalsgaard; Olesen, R.

    1990-01-01

    A formulation of optimal design, inspection and maintenance against damage caused by fatigue crack growth is formulated. A stochastic model for fatigue crack growth based on linear elastic fracture mechanics Is applied. Failure is defined by crack growth beyond a critical crack size. The failure ...

  5. Fatigue Evaluation Algorithms: Review

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Brøndsted, Povl

    series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor...

  6. Clinical neurophysiology of fatigue.

    NARCIS (Netherlands)

    Zwarts, M.J.; Bleijenberg, G.; Engelen, B.G.M. van

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic

  7. Simplified elastoplastic methods of analysing fatigue in notches

    International Nuclear Information System (INIS)

    Autrusson, B.

    1993-01-01

    The aim of this study is to show the state of the art concerning methods of mechanical analysis available in the literature for evaluating notch root elastoplastic strain. The components of fast breeder reactors are subjected to numerous thermal transients, which can cause fatigue failure. To prevent this from happening, it is necessary to know the local strain range and to use it to estimate the number of cycles to crack initiation. Practical methods have been developed for the calculation of the local strain range, and have led to the drafting of design rules. Direct methods of determining the local strain range of the 'inelastic analysis' type have also been described. In conclusion a series of recommendations is made on the applicability and the conservatism of these methods

  8. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete.

    Science.gov (United States)

    Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan

    2017-07-15

    The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation

  9. Corrosion fatigue of steels

    International Nuclear Information System (INIS)

    Spaehn, H.; Wagner, G.H.

    1976-01-01

    Corrosion fatigue phenomena can be classified into two main groups according to the electrochemical state of the metal surface in the presence of electrolytes: the active and the passive state with an important sub-group of corrosion fatigue in the unstable passive state. The allowable stress for structures exposed to the conjoint action of corrosion and fatigue is influenced by many factors: kind of media, number of cycles, frequency, mean stress, size, notches, loading mode, alloy composition and mechanical strength. A critical literature review shows contradictory results if a classification by the electrochemical surface state is not applied. Case histories and counter measures illustrate the practical importance of corrosion fatigue in many branches of industry as well as the urgent need for a better knowledge about the mutual influence of the phenomena to get rules by which the engineer can appraise the risk of corrosion fatigue. (orig.) [de

  10. Examining fatigue in COPD

    DEFF Research Database (Denmark)

    Al-Shair, Khaled; Muellerova, Hana; Yorke, Janelle

    2012-01-01

    ABSTRACT: INTRODUCTION: Fatigue is a disruptive symptom that inhibits normal functional performance of COPD patients in daily activities. The availability of a short, simple, reliable and valid scale would improve assessment of the characteristics and influence of fatigue in COPD. METHODS......: At baseline, 2107 COPD patients from the ECLIPSE cohort completed the Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F) scale. We used well-structured classic method, the principal components analysis (PCA) and Rasch analysis for structurally examining the 13-item FACIT-F. RESULTS: Four items...... were less able to capture fatigue characteristics in COPD and were deleted. PCA was applied to the remaining 9 items of the modified FACIT-F and resulted in three interpretable dimensions: i) general (5 items); ii) functional ability (2 items); and iii) psychosocial fatigue (2 items). The modified...

  11. On-line fatigue monitoring system for reactor pressure vessel

    International Nuclear Information System (INIS)

    Tokunaga, K.; Sakai, A.; Aoki, T.; Ranganath, S.; Stevens, G.L.

    1994-01-01

    A workstation-based, on-line fatigue monitoring system for tracking fatigue usage applied to an operating boiling water reactor (BWR), Tsuruga Unit-1, is described. The system uses the influence function approach and determines component stresses using temperature, pressure, and flow rate data that are made available via signal taps from previously existing plant sensors. Using plant unique influence functions developed specifically for the feedwater nozzle location, the system calculates stresses as a function of time and computed fatigue usage. The analysis method used to compute fatigue usage complies with MITI Code Notification No.501. Fatigue usage results for an entire fuel cycle are presented and compared to assumed design basis events to confirm that actual plant thermal duty is significantly less severe than originally estimated in the design basis stress report. As a result, the system provides the technical basis to more accurately evaluate actual reactor conditions as well as the justification for plant life extension. (author)

  12. Root cause analysis of SG tube leakage at Fessenheim unit 2 in 2008

    International Nuclear Information System (INIS)

    Berger, J.; Deotto, G.; Mathon, C.; Madurel, A.; Pitner, P.; Gay, N.; Guivarch, M.

    2015-01-01

    In February 2008, a primary-to-secondary leak caused an unscheduled shutdown at Fessenheim Unit 2 NPP. A circumferential crack was observed just above the top support plate of Row 12 Column 62 U-bend tube on Steam Generator (SG) number 3, which has been attributed to high cycle fatigue. This tube was pulled out in 2011, just before the SG replacement at the third decenal outage, in order to perform exhaustive metallurgical investigations. The destructive examinations revealed that the circumferential crack (70 degrees of extension) was due to high cycle fatigue, with several external initiation areas associated with the presence of small piles of Intergranular Attack (IGA) (600 MA tube) and with very low stress intensity factors ΔK (close to the non-propagating threshold region). This paper complements the metallurgical investigations by carrying out numerical analyses (thermal-hydraulic computation, fluid-elastic instability evaluation, tube vibratory response analysis and fatigue evaluation). The first objective of the study is to attempt to clarify the effect of IGA and the role of several competing factors that could be involved in the tube vibration induced fatigue failure. From these results, a root cause analysis of the R12C62 tube fatigue failure is then provided. It appears that a combination of various factors led to the failure of the tube

  13. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography.

    Science.gov (United States)

    Ishii, Akira; Tanaka, Masaaki; Iwamae, Masayoshi; Kim, Chongsoo; Yamano, Emi; Watanabe, Yasuyoshi

    2013-06-13

    It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Ten and 9 healthy volunteers participated in a conditioning and a control experiment, respectively. In the conditioning experiment, we used metronome sounds as conditioned stimuli and two-back task trials as unconditioned stimuli to cause fatigue sensation. Participants underwent MEG measurement while listening to the metronome sounds for 6 min. Thereafter, fatigue-inducing mental task trials (two-back task trials), which are demanding working-memory task trials, were performed for 60 min; metronome sounds were started 30 min after the start of the task trials (conditioning session). The next day, neural activities while listening to the metronome for 6 min were measured. Levels of fatigue sensation were also assessed using a visual analogue scale. In the control experiment, participants listened to the metronome on the first and second days, but they did not perform conditioning session. MEG was not recorded in the control experiment. The level of fatigue sensation caused by listening to the metronome on the second day was significantly higher relative to that on the first day only when participants performed the conditioning session on the first day. Equivalent current dipoles (ECDs) in the insular cortex, with mean latencies of approximately 190 ms, were observed in six of eight participants after the conditioning session, although ECDs were not identified in any participant before the conditioning session. We demonstrated that the metronome sounds can cause mental fatigue sensation as a result of repeated pairings of the sounds

  14. Fatigue Management in Spaceflight Operations

    Science.gov (United States)

    Whitmire, Alexandra

    2011-01-01

    Sleep loss and fatigue remain an issue for crewmembers working on the International Space Station, and the ground crews who support them. Schedule shifts on the ISS are required for conducting mission operations. These shifts lead to tasks being performed during the biological night, and sleep scheduled during the biological day, for flight crews and the ground teams who support them. Other stressors have been recognized as hindering sleep in space; these include workload, thinking about upcoming tasks, environmental factors, and inadequate day/night cues. It is unknown if and how other factors such as microgravity, carbon dioxide levels, or increased radiation, may also play a part. Efforts are underway to standardize and provide care for crewmembers, ground controllers and other support personnel. Through collaborations between research and operations, evidenced-based clinical practice guidelines are being developed to equip flight surgeons with the tools and processes needed for treating circadian desynchrony (and subsequent sleep loss) caused by jet lag and shift work. The proper implementation of countermeasures such as schedules, lighting protocols, and cognitive behavioral education can hasten phase shifting, enhance sleep and optimize performance. This panel will focus on Fatigue Management in Spaceflight Operations. Speakers will present on research-based recommendations and technologies aimed at mitigating sleep loss, circadian desynchronization and fatigue on-orbit. Gaps in current mitigations and future recommendations will also be discussed.

  15. Development of a screening procedure for vibrational fatigue in small bore piping

    International Nuclear Information System (INIS)

    Smith, J.K.; Riccardella, P.C.; Gosselin, S.R.

    1995-01-01

    Approximately 80% of the documented fatigue failures in nuclear power plants are caused by high cycle vibrational fatigue. These failures typically occur in socket welded pipe fittings in small bore piping (2 in. nominal diameter and smaller). These failures have been unexpected, and have caused costly, unscheduled outages in some cases. In order to reduce the number of vibrational fatigue failures in operating nuclear power plants, a vibrational fatigue screening procedure has been developed under Electric Power Research Institute (EPRI) sponsorship. The purpose of this paper is to describe this procedure, and to discuss topics related to vibrational fatigue failures. These topics include sources of vibration in nuclear power plants, the effect of socket welds on vibrational fatigue failures, vibrational fatigue screening criteria for small bore piping systems, and good design practices for reducing the number of vibrational fatigue failures in small bore piping

  16. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  17. The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Akira Ishii

    Full Text Available There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present study, we investigated the neural activity caused by re-experiencing the fatigue sensation that had been experienced during a fatigue-inducing session. Thirteen healthy volunteers participated in fatigue and non-fatigue experiments in a crossover fashion. In the fatigue experiment, they performed a 2-back test session for 40 min to induce fatigue sensation, a rest session for 15 min to recover from fatigue, and a magnetoencephalography (MEG session in which they were asked to re-experience the state of their body with fatigue that they had experienced in the 2-back test session. In the non-fatigue experiment, the participants performed a free session for 15 min, a rest session for 15 min, and an MEG session in which they were asked to re-experience the state of their body without fatigue that they had experienced in the free session. Spatial filtering analyses of oscillatory brain activity showed that the delta band power in the left Brodmann's area (BA 39, alpha band power in the right pulvinar nucleus and the left BA 40, and beta band power in the left BA 40 were lower when they re-experienced the fatigue sensation than when they re-experienced the fatigue-free sensation, indicating that these brain regions are related to re-experiencing the fatigue sensation. Our findings may help clarify the neural mechanisms underlying fatigue sensation.

  18. The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study.

    Science.gov (United States)

    Ishii, Akira; Karasuyama, Takuma; Kikuchi, Taiki; Tanaka, Masaaki; Yamano, Emi; Watanabe, Yasuyoshi

    2015-01-01

    There have been several studies which have tried to clarify the neural mechanisms of fatigue sensation; however fatigue sensation has multiple aspects. We hypothesized that past experience related to fatigue sensation is an important factor which contributes to future formation of fatigue sensation through the transfer to memories that are located within specific brain structures. Therefore, we aimed to investigate the neural mechanisms of fatigue sensation related to memory. In the present study, we investigated the neural activity caused by re-experiencing the fatigue sensation that had been experienced during a fatigue-inducing session. Thirteen healthy volunteers participated in fatigue and non-fatigue experiments in a crossover fashion. In the fatigue experiment, they performed a 2-back test session for 40 min to induce fatigue sensation, a rest session for 15 min to recover from fatigue, and a magnetoencephalography (MEG) session in which they were asked to re-experience the state of their body with fatigue that they had experienced in the 2-back test session. In the non-fatigue experiment, the participants performed a free session for 15 min, a rest session for 15 min, and an MEG session in which they were asked to re-experience the state of their body without fatigue that they had experienced in the free session. Spatial filtering analyses of oscillatory brain activity showed that the delta band power in the left Brodmann's area (BA) 39, alpha band power in the right pulvinar nucleus and the left BA 40, and beta band power in the left BA 40 were lower when they re-experienced the fatigue sensation than when they re-experienced the fatigue-free sensation, indicating that these brain regions are related to re-experiencing the fatigue sensation. Our findings may help clarify the neural mechanisms underlying fatigue sensation.

  19. Characteristics of solder joints under fatigue loads using piezomechanical actuation

    Science.gov (United States)

    Shim, Dong-Jin; Spearing, S. Mark

    2003-07-01

    Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.

  20. Fatigue damage in coarse-grained lean duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar; Hereñú, S.; Marinelli, M.C.; Alvarez-Armas, I.

    2016-04-06

    The present investigation is focused on assessing the effect of a thermal treatment for grain coarsening on the low cycle fatigue damage evolution in two types of Lean Duplex Stainless Steels (LDSSs). The dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Additionally, a detailed analysis of short crack initiated and grown during low cycle fatigue (LCF) is performed by means of optical and scanning electron (SEM) microscopy in combination with automated electron back-scattered diffraction (EBSD) technique. Though in both coarse-grained LDSSs the short cracks nucleate in the ferrite phase, in each steels its origin is different. The embrittlement caused by the Cr{sub 2}N precipitation and the plastic activity sustained by each phase can explain this difference. The propagation behavior of the short cracks present two alternative growing mechanisms: the crack grows along a favorable slip plane with high Schmid Factor (SF) or the crack alternates between two slip systems. In both cases, the crack follows the path with the smallest tilt angle (β) at a grain boundary.

  1. A study on the estimation method of internal stresses caused by the difference of thermal expansion coefficients between concrete and reinforcement at elevated temperatures

    International Nuclear Information System (INIS)

    Kanazu, Tsutomu

    1998-01-01

    When a reinforced concrete member is exposed to high temperature conditions over 100degC, tensile strain occurs in the concrete and compressive strain occurs in reinforcements due to a difference of thermal expansion coefficients between concrete and reinforcement. Its mechanism is the same as that of restrained stress caused by drying shrinkage of concrete; tensile stress occurs in the concrete because drying shrinkage strain is restrained by reinforcements, but there is a different point that the phenomenon at a high temperature condition includes the change of mechanical properties of concrete and reinforcement. In the study, the phenomenon is measured in the experiments and is clarified quantitatively. Moreover, the estimation method, which is derived from expanding the equation of average strain of reinforcement in the CEB Design Manual, is suggested and is verified by the comparison with the experimental results. (author)

  2. Fatigue monitoring desktop guide

    International Nuclear Information System (INIS)

    Woods, K.; Thomas, K.

    2012-01-01

    The development of a program for managing material aging (MMG) in the nuclear industry requires a new and different perspective. The classical method for MMG is cycle counting, which has been shown to have limited success. The classical method has been successful in satisfying the ductile condition per the America Society of Mechanical Engineers' (ASME) design criteria. However, the defined material failure mechanism has transformed from through-wall cracking and leakage (ASME) to crack initiation (NUREG-6909). This transformation is based on current industry experience with material degradation early in plant life and can be attributed to fabrication issues and environment concerns where cycle counting has been unsuccessful. This new perspective provides a different approach to cycle counting that incorporates all of the information about the material conditions. This approach goes beyond the consideration of a static analysis and includes a dynamic assessment of component health, which is required for operating plants. This health definition should consider fabrication, inspections, transient conditions and industry operating experience. In addition, this collection of information can be transparent to a broader audience that may not have a full understanding of the system design or the potential causes of early material degradation. This paper will present the key points that are needed for a successful fatigue monitoring desktop guide. (authors)

  3. Fatigue monitoring desktop guide

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K. [InnoTech Engineering Solutions, LLC (United States); Thomas, K. [Nebraska Public Power District (United States)

    2012-07-01

    The development of a program for managing material aging (MMG) in the nuclear industry requires a new and different perspective. The classical method for MMG is cycle counting, which has been shown to have limited success. The classical method has been successful in satisfying the ductile condition per the America Society of Mechanical Engineers' (ASME) design criteria. However, the defined material failure mechanism has transformed from through-wall cracking and leakage (ASME) to crack initiation (NUREG-6909). This transformation is based on current industry experience with material degradation early in plant life and can be attributed to fabrication issues and environment concerns where cycle counting has been unsuccessful. This new perspective provides a different approach to cycle counting that incorporates all of the information about the material conditions. This approach goes beyond th