WorldWideScience

Sample records for thermal explosions postroenie

  1. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  2. Thermal explosion models

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin [Malaya Univ., Kuala Lumpur (Malaysia)

    1984-12-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon.

  3. Thermal explosion models

    International Nuclear Information System (INIS)

    Tso Chin Ping

    1984-01-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon. (author)

  4. Burn propagation in a PBX 9501 thermal explosion

    International Nuclear Information System (INIS)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-01-01

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning

  5. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    International Nuclear Information System (INIS)

    Hsu, P C; Hust, G; Zhang, M X; Lorenz, T K; Reynolds, J G; Fried, L; Springer, H K; Maienschein, J L

    2014-01-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  6. Toward Improved Fidelity of Thermal Explosion Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L; Becker, R; Howard, W M; Wemhoff, A

    2009-07-17

    We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosive like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The second area was the improvement of the HMX reaction network, which included the inclusion of a reactive phase change model base on work by Henson et.al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

  7. Forensic analysis methodology for thermal and chemical characterization of homemade explosives

    International Nuclear Information System (INIS)

    Nazarian, Ashot; Presser, Cary

    2014-01-01

    Highlights: • Identification of homemade explosives (HME) is critical for determining the origin of explosive precursor materials. • A novel laser-heating technique was used to obtain the thermal/chemical signatures of HME precursor materials. • Liquid-fuel saturation of the pores of a solid porous oxidizer affected the total specific heat release. • Material thermal signatures were dependent on sample mass and heating rate. • This laser-heating technique can be a useful diagnostic tool for characterizing the thermochemical behavior of HMEs. - Abstract: Forensic identification of homemade explosives is critical for determining the origin of the explosive materials and precursors, and formulation procedures. Normally, the forensic examination of the pre- and post-blast physical evidence lacks specificity for homemade-explosive identification. The focus of this investigation was to use a novel measurement technique, referred to as the laser-driven thermal reactor, to obtain the thermal/chemical signatures of homemade-explosive precursor materials. Specifically, nitromethane and ammonium nitrate were studied under a variety of operating conditions and protocols. Results indicated that liquid-fuel saturation of the internal pores of a solid particle oxidizer appear to be a limiting parameter for the total specific heat release during exothermic processes. Results also indicated that the thermal signatures of these materials are dependent on sample mass and heating rate, for which this dependency may not be detectable by other commercially available thermal analysis techniques. This study has demonstrated that the laser-driven thermal reactor can be a useful diagnostic tool for characterizing the thermal and chemical behavior of trace amounts of homemade-explosive materials

  8. Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model

    Directory of Open Access Journals (Sweden)

    Ophir Navea

    2011-06-01

    Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.

  9. Application of heat-balance integral method to conjugate thermal explosion

    Directory of Open Access Journals (Sweden)

    Novozhilov Vasily

    2009-01-01

    Full Text Available Conjugate thermal explosion is an extension of the classical theory, proposed and studied recently by the author. The paper reports application of heat-balance integral method for developing phase portraits for systems undergoing conjugate thermal explosion. The heat-balance integral method is used as an averaging method reducing partical differential equation problem to the set of first-order ordinary differential equations. The latter reduced problem allows natural interpretation in appropriately chosen phase space. It is shown that, with the help of heat-balance integral technique, conjugate thermal explosion problem can be described with a good accuracy by the set of non-linear first-order differential equations involving complex error function. Phase trajectories are presented for typical regimes emerging in conjugate thermal explosion. Use of heat-balance integral as a spatial averaging method allows efficient description of system evolution to be developed.

  10. Experimental-theoretical investigation of the thermal explosion

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    It is suggested that thermal explosions are caused by the latent heat of fusion liberated when the heat transfer at the surface of the molten metal mass is sufficiently intensive to subcool the metal below the solidification point. From a couple of experiments performed by the authors on different metals brought into contact in the molten state with cold water as well as from experiments of the same kind in other laboratories it can be concluded that thermal explosions appear only under special, precisely determined conditions. The experimental techniques applied in this work comprise measurement of the temperature history during the thermal interaction of the hot and the cold liquid and simultaneously observe and record the phenomena by fast photography

  11. Standoff laser-induced thermal emission of explosives

    Science.gov (United States)

    Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Figueroa-Navedo, Amanda; Hernandez-Rivera, Samuel P.

    2013-05-01

    A laser mediated methodology for remote thermal excitation of analytes followed by standoff IR detection is proposed. The goal of this study was to determine the feasibility of using laser induced thermal emission (LITE) from vibrationally excited explosives residues deposited on surfaces to detect explosives remotely. Telescope based FT-IR spectral measurements were carried out to examine substrates containing trace amounts of threat compounds used in explosive devices. The highly energetic materials (HEM) used were PETN, TATP, RDX, TNT, DNT and ammonium nitrate with concentrations from 5 to 200 μg/cm2. Target substrates of various thicknesses were remotely heated using a high power CO2 laser, and their mid-infrared (MIR) thermally stimulated emission spectra were recorded. The telescope was configured from reflective optical elements in order to minimize emission losses in the MIR frequencies and to provide optimum overall performance. Spectral replicas were acquired at a distance of 4 m with an FT-IR interferometer at 4 cm- 1 resolution and 10 scans. Laser power was varied from 4-36 W at radiation exposure times of 10, 20, 30 and 60 s. CO2 laser powers were adjusted to improve the detection and identification of the HEM samples. The advantages of increasing the thermal emission were easily observed in the results. Signal intensities were proportional to the thickness of the coated surface (a function of the surface concentration), as well as the laser power and laser exposure time. For samples of RDX and PETN, varying the power and time of induction of the laser, the calculated low limit of detections were 2 and 1 μg/cm2, respectively.

  12. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs)

    International Nuclear Information System (INIS)

    Yan, Qi-Long; Zeman, Svatopluk; Elbeih, Ahmed

    2012-01-01

    Highlights: ► We summarize currently used insensitive polymer based explosives and their ingredients. ► We examine the calculation methods that are suitable for kinetic evaluation of polymer based explosives. ► The calculation method for thermal stability parameters of polymer based explosives are summarized, which mainly include shelf life, explosion delay, critical temperature, thermostability threshold, 500 day cookoff temperature and approximate time to explosion. ► The polymer bases could greatly affect the thermal properties of PBXs, including their thermal stability, kinetic parameters and thermodynamic properties. ► PBXs, containing some innovative energetic fillers such as CL-20, NTO, Fox-12 and BCHMX, are only at design stage, which need more research work in the future. - Abstract: In this paper, several fundamental investigations published over the past decades with regard to the thermal analysis of polymer-based explosives (PBXs) have been briefly reviewed. A number of explosive fillers and polymer bases that were used as their main ingredients of PBXs are summarized herein. In addition, the calculation methods for their decomposition kinetics and thermal stability parameters are also introduced in detail. It was concluded that only PBXs based on HMX, RDX and TATB have been widely investigated, and that some other PBXs containing innovative fillers, such as CL-20, TNAZ, NTO and BCHMX are at the design stage. The isoconversional methods and model fitting procedures are usually used to analyze the discrete thermolysis processes of PBXs. In addition, their thermal stability parameters such as shelf life, explosion delay, critical temperature, thermostability threshold, 500-day cookoff temperature and approximate time to explosion could be calculated easily from the kinetic data.

  13. ONE-DIMENSIONAL TIME TO EXPLOSION (THERMAL SENSITIVITY) TESTS ON PETN, PBX-9407, LX-10, AND LX-17

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Strout, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ellsworth, Fred Ellsworth [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to thermal explosion, threshold thermal explosion temperature, and determine the kinetic parameters of thermal decomposition of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the results of our recent ODTX experiments on PETN powder, PBX-9407 pressed part, LX-10 pressed part, LX-17 pressed part and compares the test data that were obtained decades ago with the older version of ODTX system. Test results show the thermal sensitivity of various materials tested in the following order: PETN> PBX-9407 > LX-10 > LX-17.

  14. Sub-sonic thermal explosions investigated by radiography

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory; Asay, Blaine W [Los Alamos National Laboratory

    2010-01-01

    This paper reviews the past 5 years of experiments utilizing radiographic techniques to study defiagration in thermal explosions in HMX based formulations. Details of triggering and timing synchronization are given. Radiographic images collected using both protons and x-rays are presented. Comparisons of experiments with varying size, case confinement, binder, and synchronization are presented. Techniques for quantifying the data in the images are presented and a mechanism for post-ignition burn propagation in a thermal explosion is discussed. From these experiments, we have observed a mechanism for sub-sonic defiagration with both gas phase convective and solid phase conductive burning. The convective front velocity is directly measured from the radiographic images and consumes only a small fraction of the HE. It lights the HE as it passes beginning the slower solid state conductive burn process. This mechanism is used to create a model to simulate the radiographic results and a comparison will be shown.

  15. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    Science.gov (United States)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Modeling solid thermal explosion containment on reactor HNIW and HMX

    International Nuclear Information System (INIS)

    Lin, Chun-Ping; Chang, Chang-Ping; Chou, Yu-Chuan; Chu, Yung-Chuan; Shu, Chi-Min

    2010-01-01

    2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (HNIW), also known as CL-20 and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are highly energetic materials which have been popular in national defense industries for years. This study established the models of thermal decomposition and thermal explosion hazard for HNIW and HMX. Differential scanning calorimetry (DSC) data were used for parameters determination of the thermokinetic models, and then these models were employed for simulation of thermal explosion in a 437 L barrel reactor and a 24 kg cubic box package. Experimental results indicating the best storage conditions to avoid any violent runaway reaction of HNIW and HMX were also discovered. This study also developed an efficient procedure regarding creation of thermokinetics and assessment of thermal hazards of HNIW and HMX that could be applied to ensure safe storage conditions.

  17. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    International Nuclear Information System (INIS)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-01-01

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS_2(s) + 91NH_4NO_3(s) → 52NO(g) + 26SO_2(g) + 6Fe_2O_3(s) + 78NH_3(g) + 26N_2O(g) + 2FeSO_4(s) + 65H_2O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO_2, NH_3, SO_2 and N_2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  18. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhi-Xiang; Wang, Qian [School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Fu, Xiao-Qi, E-mail: xzx19820708@163.com [School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 (China)

    2015-12-30

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS{sub 2}(s) + 91NH{sub 4}NO{sub 3}(s) → 52NO(g) + 26SO{sub 2}(g) + 6Fe{sub 2}O{sub 3}(s) + 78NH{sub 3}(g) + 26N{sub 2}O(g) + 2FeSO{sub 4}(s) + 65H{sub 2}O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO{sub 2}, NH{sub 3}, SO{sub 2} and N{sub 2}O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  19. Thermal decomposition and reaction of confined explosives

    International Nuclear Information System (INIS)

    Catalano, E.; McGuire, R.; Lee, E.; Wrenn, E.; Ornellas, D.; Walton, J.

    1976-01-01

    Some new experiments designed to accurately determine the time interval required to produce a reactive event in confined explosives subjected to temperatures which will cause decomposition are described. Geometry and boundary conditions were both well defined so that these experiments on the rapid thermal decomposition of HE are amenable to predictive modelling. Experiments have been carried out on TNT, TATB and on two plastic-bonded HMX-based high explosives, LX-04 and LX-10. When the results of these experiments are plotted as the logarithm of the time to explosion versus 1/T K (Arrhenius plot), the curves produced are remarkably linear. This is in contradiction to the results obtained by an iterative solution of the Laplace equation for a system with a first order rate heat source. Such calculations produce plots which display considerable curvature. The experiments have also shown that the time to explosion is strongly influenced by the void volume in the containment vessel. Results of the experiments with calculations based on the heat flow equations coupled with first-order models of chemical decomposition are compared. The comparisons demonstrate the need for a more realistic reaction model

  20. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    International Nuclear Information System (INIS)

    Garcia, F.; Forbes, J.W.; Tarver, C.M.; Urtiew, P.A.; Greenwood, D.W.; Vandersall, K.S.

    2001-01-01

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios

  1. First vapor explosion calculations performed with MC3D thermal-hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Berthoud, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Reacteurs Nucleaires

    1998-01-01

    This paper presents the first calculations performed with the `explosion` module of the multiphase computer code MC3D, which is devoted to the fine fragmentation and explosion phase of a fuel coolant interaction. A complete description of the physical laws included in this module is given. The fragmentation models, taking into account two fragmentation mechanisms, a thermal one and an hydrodynamic one, are also developed here. Results to some calculations to test the numerical behavior of MC3D and to test the explosion models in 1D or 2D are also presented. (author)

  2. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  3. mathematical model of thermal explosion, the dual variational formulation of nonlinear problem, alternative functional

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available A temperature state of the solid body may depend both on the conditions of heat exchange with external environment surrounding its surface and on the energy release within the body volume, caused, for example, by the processes in nuclear reactor elements or exothermic chemical reactions, absorption of penetrating radiation energy or transformation of a part of the electrical power into heat with flowing electric current (so-called Joule heat.If with growing temperature the intensity of bulk power density increases, a limited steady temperature state can emerge at which heat extracted to the body surface and released within its volume reaches maximum. Thus, small increments of temperature lead to an increase of heat release, which can not be extracted to the body surface by conduction without further temperature increase. As a result, the steady temperature distribution in the body becomes impossible that determines the state of the thermal explosion, so named due to the fact that in this case the appropriate mathematical model predicts an unlimited temperature increase.A lot of published papers and monographs concerning the study of the combustion and explosion processes in a stationary medium analyse the thermal explosion state. The most famous papers consider a mathematical model to describe a temperature distribution in the case when heat release is because of exothermic chemical reactions the rate of which increases with temperature growth. The dependence of the chemical reaction rate on temperature is usually described by the exponential Arrhenius law, which makes it necessary to consider an essentially nonlinear mathematical model containing differential equation, which includes the term, nonlinearly rising with increasing temperature. Even with simplifying assumptions, this model allows an exact closed form solution only in the case of one-dimensional temperature distributions in the two areas of the canonical form: in the plate, infinite

  4. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  5. Thermal hazard assessment of AN and AN-based explosives.

    Science.gov (United States)

    Turcotte, R; Lightfoot, P D; Fouchard, R; Jones, D E G

    2003-07-04

    Ammonium nitrate (AN) is an essential ingredient in most fertilizers. It is also widely used in the commercial explosives industry. In this latter application, it is mostly mixed with fuel oil to form the most popular commercial explosive: ANFO. In both the fertilizer and the explosive industry, aqueous AN solutions (ANS) of various concentrations are processed. These solutions also form the basis of ammonium nitrate emulsion explosives (also called ammonium nitrate emulsions or ANE), which are produced either in bulk or in packaged form. For all these AN-based products, quantities of the order of 20,000kg are being manufactured, transported, stored, and processed at elevated temperatures and/or elevated pressures. Correspondingly, major accidents involving overheating of large quantities of these products have happened in several of these operations. In comparison, convenient laboratory quantities to investigate thermal decomposition properties are generally less than 1kg. As a result, in order to provide information applicable to real-life situations, any laboratory study must use techniques that minimize heat losses from the samples to their environment. In the present study, two laboratory-scale calorimeters providing an adiabatic environment were used: an accelerating rate calorimeter (ARC) and an adiabatic Dewar calorimeter (ADC). Experiments were performed on pure AN, ANFO, various ANS systems, and typical bulk and packaged ANE systems. The effects of sample mass, atmosphere, and formulation on the resulting onset temperatures were studied. A comparison of the results from the two techniques is provided and a proposed method to extrapolate these results to large-scale inventories is examined.

  6. DETERMINING OF THERMAL STABILITY OF EXPLOSIVES FOR CIVIL USES MODERN EQUIPMENT EQUIPPED WITH AUTOMATIC TEMPERATURE AND PRESSURE

    Directory of Open Access Journals (Sweden)

    Gabriel VASILESCU

    2015-07-01

    Full Text Available Thermal stability of explosives for civil use is a key security parameter. When the explosive is exposed to high tempera-tures in a given period of time can lead to undesirable phenomena such as decomposing or even very dangerous as un-controlled detonation.

  7. Trace level detection of explosives in solution using leidenfrost phenomenon assisted thermal desorption ambient mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20 μL (absolute sample amount 90-630 fmol). As LTP ionization method was applied and ion-molecule reactions took place in ambient atmosphere, various ion-molecule adduct species like [M+NO2](-), [M+NO3](-), [M+HCO3](-), [M+HCO4](-) were generated together with [M-H](-) peak. Each peak was unambiguously identified using 'Exactive Orbitrap' mass spectrometer in negative ionization mode within 3 ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions.

  8. Reliability analysis for thermal cutting method based non-explosive separation device

    International Nuclear Information System (INIS)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu

    2016-01-01

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils

  9. Reliability analysis for thermal cutting method based non-explosive separation device

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu [Korea Aerospace University, Goyang (Korea, Republic of)

    2016-12-15

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils.

  10. Modeling of thermal explosion under pressure in metal ceramic systems

    International Nuclear Information System (INIS)

    Shapiro, M.; Dudko, V.; Skachek, B.; Matvienko, A.; Gotman, I.; Gutmanas, E.Y.

    1998-01-01

    The process of reactive in situ synthesis of dense ceramic matrix composites in Ti-B-C, Ti-B-N, Ti-Si-N systems is modeled. These ceramics are fabricated on the basis of compacted blends of ceramic powders, namely Ti-B 4 C and/or Ti-BN. The objectives of the project are to identify and investigate the optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends are investigated during monotonous heating at a constant rate. This process is modeled using a heat transfer-combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed are further used to describe the thermal explosion synthesis in a restrained die under pressure. It is shown that heat removal from the reaction zone affects the combustion process and the final phase composition

  11. Disappearance of criticality in branched-chain thermal explosion with heat loss

    International Nuclear Information System (INIS)

    Okoya, Samuel S.

    2003-09-01

    In the framework of the currently developed branched-chain thermal explosion theory, the equation governing leakage through a hole of a reaction vessel is given. The critical ignition, extinction and transition temperature excess, activation energy parameter and modified Semenov's number are estimated employing this equation. We calculated numerically and obtained analytically these non-dimensional parameters with and without initiation respectively. The similar solution for Semenov model appear as a limiting case of our solution. We also obtained the ignition times. (author)

  12. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications

    International Nuclear Information System (INIS)

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2009-01-01

    In the past, process incidents attributed to organic peroxides (OPs) that involved near misses, over-pressures, runaway reactions, and thermal explosions occurred because of poor training, human error, incorrect kinetic assumptions, insufficient change management, and inadequate chemical knowledge in the manufacturing process. Calorimetric applications were employed broadly to test organic peroxides on a small-scale because of their thermal hazards, such as exothermic behavior and self-accelerating decomposition in the laboratory. In essence, methyl ethyl ketone peroxide (MEKPO) is highly reactive and exothermically unstable. In recent years, it has undergone many thermal explosions and runaway reaction incidents in the manufacturing process. Differential scanning calorimetry (DSC), vent sizing package 2 (VSP2), and thermal activity monitor (TAM) were employed to analyze thermokinetic parameters and safety index. The intent of the analyses was to facilitate the use of various auto-alarm equipments to detect over-pressure, over-temperature, and hazardous materials leaks for a wide spectrum of operations. Results indicated that MEKPO decomposition is detected at low temperatures (30-40 deg. C), and the rate of decomposition was shown to exponentially increase with temperature and pressure. Determining time to maximum rate (TMR), self-accelerating decomposition temperature (SADT), maximum temperature (T max ), exothermic onset temperature (T 0 ), and heat of decomposition (ΔH d ) was essential for identifying early-stage runaway reactions effectively for industries.

  13. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  14. Investigation of coal dust explosion hazard at the Nikola Tesla-A thermal power station

    Energy Technology Data Exchange (ETDEWEB)

    Golubovic, D

    1987-10-01

    Reports on investigations into coal dust explosion hazards in working places with high coal dust exposure, done in the Tesla-A thermal power station by Mining Institute of Belgrade specialists. Settled and floating coal dust concentrations were monitored for six months and samples analyzed for explosibility under lab conditions. Samples from transport and preparation facilities and the power station boiler house were taken. The entire plant was divided into 4 zones, depending on intensity of dust settlement and ventilation system. Coal dust generation varied from 0.3-65 g/min. Daily dust settlement ranged between 40 and 300 g/m/sup 2/. Total quantity of accumulated coal dust in the power plant ranged from 0.8-650 kg/day; 250 g/m/sup 3/ of coal dust may cause an explosion. Thus, a dangerous amount of coal dust, depending on work-site, will settle in 3.3.-21.8 days. Disturbance of settled dust may create explodable clouds. Details of measurements taken and data evaluation are included. 4 refs.

  15. DHS small-scale safety and thermal testing of improvised explosives-comparison of testing performance

    International Nuclear Information System (INIS)

    Reynolds, J G; Hsu, P C; Sandstrom, M M; Brown, G W; Warner, K F; Phillips, J J; Shelley, T J; Reyes, J A

    2014-01-01

    One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.

  16. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Andras Dallos

    2016-06-01

    Full Text Available The energy demand of the corn-based bioethanol production could be reduced using the agricultural byproducts as bioenergy feedstock for biogas digesters. The release of lignocellulosic material and therefore the acceleration of degradation processes can be achieved using thermal and mechanical pretreatments, which assist to hydrolyze the cell walls and speed the solubilization of biopolymers in biogas feedstock. This study is focused on liquid hot water, steam explosion and ultrasonic pretreatments of corn stover. The scientific contribution of this paper is a comprehensive comparison of the performance of the pretreatments by fast analytical, biochemical, anaerobic digestibility and biomethane potential tests, extended by energy consumptions and energy balance calculations.The effectiveness of pretreatments was evaluated by means of soluble chemical oxygen demand, biochemical oxygen demand and by the biogas and methane productivities. The results have shown that the thermal pretreatment, steam explosion and ultrasonic irradiation of biogas feedstock disintegrated the lignocellulosic structure, increased and accelerated the methane production and increased the cumulative biogas and methane productivity of corn stover in reference to the control during mesophilic anaerobic digestion.The energy balance demonstrated that there is an economical basis of the application of the liquid hot-compressed water pretreatments in a biogas plant. However, the steam explosion and ultrasonication are energetically not profitable for corn stover pretreatment.

  17. A Novel Design of Rescue Capsule considering the Pressure Characteristics and Thermal Dynamic Response with Thermomechanical Coupling Action Subjected to Gas Explosion Load

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhai

    2017-01-01

    Full Text Available To ensure the structural safety and reliability of coal mine rescue capsule in disastrous surroundings after gas explosion, in this paper, the thermomechanical coupling effect on a certain structure subjected to gas explosion was analyzed, and then a novel rescue capsule with a combination of radius and square features was designed according to the underground surroundings and relevant regulations on mine rescue devices. Foremost, the coupling mechanism of thermal-fluid-solid interaction between gas explosion shock wave and rescue capsule and the thermal dynamic response of the capsule subjected to explosion load of gas/air mixture was investigated and revealed by employing LS-DYNA. The variation laws and characteristics of stress field, displacement field, and temperature field of the capsule were analyzed based on the simulation results. Results show that the structural safety, tightness, and reliability of the capsule meet the requirements of the national safety regulations. The design method presented in this work provides a new thought for design of coal mine rescue capsule.

  18. The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning

    International Nuclear Information System (INIS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P.

    2012-01-01

    We report proton transmission images obtained subsequent to the laser assisted thermal ignition of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)). We describe the laser assisted thermal ignition technique as a means to synchronize a non-linear thermal ignition event while preserving the subsequent post-ignition behavior. We have obtained dynamic proton transmission images at two spatial magnifications and viewed both the radial and transverse axis of a solid cylindrical sample encased in aluminum. Images have been obtained with 3 to 15 μs temporal resolution and approximately 100 μm spatial resolution at the higher magnification. We observe case expansion from very early in the experiment, until case fragmentation. We observe spatially anisotropic features in the transmission which we attribute to cracking in the solid explosive, in agreement with previous measurements conducted on two dimensional samples with optical viewing. Digital analysis of the images also reveals spatially isotropic features which we attribute to the evolution of the loss of density by burning subsequent to thermal ignition.

  19. The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2012-05-15

    We report proton transmission images obtained subsequent to the laser assisted thermal ignition of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)). We describe the laser assisted thermal ignition technique as a means to synchronize a non-linear thermal ignition event while preserving the subsequent post-ignition behavior. We have obtained dynamic proton transmission images at two spatial magnifications and viewed both the radial and transverse axis of a solid cylindrical sample encased in aluminum. Images have been obtained with 3 to 15 {mu}s temporal resolution and approximately 100 {mu}m spatial resolution at the higher magnification. We observe case expansion from very early in the experiment, until case fragmentation. We observe spatially anisotropic features in the transmission which we attribute to cracking in the solid explosive, in agreement with previous measurements conducted on two dimensional samples with optical viewing. Digital analysis of the images also reveals spatially isotropic features which we attribute to the evolution of the loss of density by burning subsequent to thermal ignition.

  20. Thermal-hydraulics of wave propagation and pressure distribution under hypothetical steam explosion conditions in the ANS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.; Georgevich, V.; N-Valenit, S.; Kim, S.H. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper describes salient aspects of the modeling and analysis framework for evaluation of dynamic loads, wave propagation, and pressure distributions (under hypothetical steam explosion conditions) around key structural boundaries of the Advanced Neutron Source (ANS) reactor core region. A staged approach was followed, using simple thermodynamic models for bounding loads and the CTH code for evaluating realistic estimates in a staged multidimensional framework. Effects of nodalization, melt dispersal into coolant during explosion, single versus multidirectional dissipation, energy level of melt, and rate of energy deposition into coolant were studied. The importance of capturing multidimensional effects that simultaneously account for fluid-structural interactions was demonstrated. As opposed to using bounding loads from thermodynamic evaluations, it was revealed that the ANS reactor system will not be vulnerable to vertically generated missiles that threaten containment if realistic estimates of energetics are used (from CTH calculations for thermally generated steam explosions without significant aluminum ignition).

  1. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Hanan Siddhu

    2016-01-01

    Full Text Available Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS for methane production. In this context, steam explosion (SE and thermal potassium hydroxide (KOH-60°C treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs, respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM, Fourier transform infrared (FTIR, and X-ray diffraction (XRD analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD.

  2. ECO steam explosion experiments on the conversion of thermal into mechanical energy

    International Nuclear Information System (INIS)

    Cherdron, W.; Kaiser, A.; Schuetz, W.; Will, H.

    2001-01-01

    In case of a steam explosion, e.g. as a consequence of a severe reactor accident, part of the thermal energy of the melt is transferred into mechanical energy. At Forschungszentrum Karlsruhe, so-called ECO experiments, are being directed to measure the conversion factor under well-defined conditions. In ECO, alumina from a thermite reaction is used as a simulating material instead of corium. Dimensions of the test facility as well as major test conditions, e.g. temperature and release mode of the melt, water inventory and test procedure, are based on the former PREMIX experimental series. In the paper, results of the first test, ECO 01, are given. (orig.)

  3. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  4. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  5. An Analysis of the Initiation Process of Electro-Explosive Devices

    Directory of Open Access Journals (Sweden)

    Paulo Cesar de Carvalho Faria

    2012-03-01

    Full Text Available Electro-explosive devices (an electric resistance encapsulated by a primary explosive fundamentally convert electrical energy into thermal energy, to start off an explosive chemical reaction. Obviously, the activation of those devices shall not happen by accident or, even worse, by intentional exogenous influence. From an ordinary differential equation, which describes the electro-explosive thermal behavior, a remarkable, but certainly not intuitive, dependence of the temperature response on the time constant of the heat transfer process is verified: the temperature profile dramatically changes as the time constant spans a wide range of values, from much lesser than the pulse width to much greater than the pulse period. Based on this dependence, important recommendations, concerning the efficient and safety operation of electro-explosive devices, are proposed.

  6. Study on Thermal Decomposition Characteristics of Ammonium Nitrate Emulsion Explosive in Different Scales

    Science.gov (United States)

    Wu, Qiujie; Tan, Liu; Xu, Sen; Liu, Dabin; Min, Li

    2018-04-01

    Numerous accidents of emulsion explosive (EE) are attributed to uncontrolled thermal decomposition of ammonium nitrate emulsion (ANE, the intermediate of EE) and EE in large scale. In order to study the thermal decomposition characteristics of ANE and EE in different scales, a large-scale test of modified vented pipe test (MVPT), and two laboratory-scale tests of differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC) were applied in the present study. The scale effect and water effect both play an important role in the thermal stability of ANE and EE. The measured decomposition temperatures of ANE and EE in MVPT are 146°C and 144°C, respectively, much lower than those in DSC and ARC. As the size of the same sample in DSC, ARC, and MVPT successively increases, the onset temperatures decrease. In the same test, the measured onset temperature value of ANE is higher than that of EE. The water composition of the sample stabilizes the sample. The large-scale test of MVPT can provide information for the real-life operations. The large-scale operations have more risks, and continuous overheating should be avoided.

  7. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    Juhl, N.H.; Marwick, E.F.

    1983-01-01

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  8. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    Science.gov (United States)

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2018-01-15

    MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  9. Steam explosions in sodium cooled breeder reactors

    International Nuclear Information System (INIS)

    Lundell, B.

    1982-01-01

    Steam explosion is considered a physical process which transport heat from molten fuel to liquid coolant so fast that the coolant starts boiling in an explosion-like manner. The arising pressure waves transform part of the thermal energy to mechanical energy. This can stress the reactor tank and threaten its hightness. The course of the explosion has not been theoretical explained. Experimental results indicate that the probability of steam explosions in a breeder reactor is small. The efficiency of the transformation of the heat of fusion into mechanical energy in substantially lower than the theoretical maximum value. The mechanical stress from the steam explosion on the reactor tank does not seem to jeopardize its tightness. (G.B.)

  10. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover

    OpenAIRE

    Andras Dallos; Gyula Dörgő; Dániel Capári

    2016-01-01

    The energy demand of the corn-based bioethanol production could be reduced using the agricultural byproducts as bioenergy feedstock for biogas digesters. The release of lignocellulosic material and therefore the acceleration of degradation processes can be achieved using thermal and mechanical pretreatments, which assist to hydrolyze the cell walls and speed the solubilization of biopolymers in biogas feedstock. This study is focused on liquid hot water, steam explosion and ultrasonic pretrea...

  11. Nuclear explosions and their effects

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-01

    A brief historical background is given of the development of the atomic bomb. Also included is an account of the Hiroshima-Nagasaki bombing, plus some information on the testing and production of nuclear weapons by the United States, United Kingdom, and Russia. More detailed consideration is given to the following: the scientific principles of fission and fusion explosions; the energy released in fission and the radioactivity of fission products; blast, thermal, and radiologicalal effects of nuclear explosions; long-term radiological hazards from fall-out; and genetic effects of nuclear explosions. A brief account is given of the fission chain process, the concept of critical size, and the principles of implosion as applied to nuclear explosions. Limited information is presented on the controlled release of thermonuclear energy and catalyzed fusion reaction. Discussions are included on dose rates from radiation sources inside and outside the body, the effect of nuclear explosions on the weather, and the contamination of fish and marine organisms.

  12. Steam explosion - physical foundations and relation to nuclear reactor safety

    International Nuclear Information System (INIS)

    Schumann, U.

    1982-08-01

    'Steam explosion' means the sudden evaporation of a fluid by heat exchange with a hotter material. Other terms are 'vapour explosion', 'thermal explosion', and 'energetic fuel-coolant interaction (FCI)'. In such an event a large fraction of the thermal energy initially stored in the hot material may possibly be converted into mechanical work. For pressurized water reactors one discusses (e.g. in risk analysis studies) a core melt-down accident during which molten fuel comes into contact with water. In the analysis of the consequences one has to investigate steam explosions. In this report an overview over the state of the knowledge is given. The overview is based on an extensive literature review. The objective of the report is to provide the basic knowledge which is required for understanding of the most important theories on the process of steam explosions. Following topics are treated: overview on steam explosion incidents, work potential, spontaneous nucleation, concept of detonation, results of some typical experiments, hydrodynamic fragmentation of drops, bubbles and jets, coarse mixtures, film-boiling, scenario of a core melt-down accident with possible steam-explosion in a pressurized water reactor. (orig.) [de

  13. Investigation of the shallow depth explosions

    International Nuclear Information System (INIS)

    Kamegai, M.

    1976-01-01

    An investigation of the nuclear explosions at shallow depth is made. A combination of an explosion code and an effects code proves to be an excellent tool for this study. A numerical simulation of ''Johnie Boy'' shows that the energy coupling to the air takes place in two stages; first by a rising mound, and then by a vented source. The thermal effects are examined for a 1 kt source at three depths of burial. The ''mushroom effect'' leaves a hot radiative plasma in the upper level and cold materials in the lower region of the debris. The temperature and the energy density of the debris can give an upper limit on the thermal output

  14. Risk of fire and dust explosions analysis in thermal Power station of ''As Pontes''; Analisis del Riesgo de fuego y Explosion en la Central Termica As Pontes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Among the numerous difficulties come up in the industrial processes that operate with coal, the handling of combustible solids constitutes a priority objective because of the potential risk of fire and dust explosions that implies. The aim of this project was to determine the coal usage conditions that assure total safety in its manipulation avoiding every risks at the Thermal Power Station. Several variables had to be considered starting with the basis concept of coal, which ranges very different types, compositions and origins and studying the coal handling and operation condition on different areas in the Thermal Power Station. (Author)

  15. High-throughput trace analysis of explosives in water by laser diode thermal desorption/atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Badjagbo, Koffi; Sauvé, Sébastien

    2012-07-03

    Harmful explosives can accumulate in natural waters in the long term during their testing, usage, storage, and dumping and can pose a health risk to humans and the environment. For the first time, attachment of small anions to neutral molecules in laser diode thermal desorption/atmospheric pressure chemical ionization was systematically investigated for the direct determination of trace nitroaromatics, nitrate esters, and nitramine explosives in water. Using ammonium chloride as an additive improved the instrument response for all the explosives tested and promoted the formation of several characteristic adduct ions. The method performs well achieving good linearity over at least 2 orders of magnitude, with coefficients of determination greater than 0.995. The resulting limits of detection are in the range of 0.009-0.092 μg/L. River water samples were successfully analyzed by the proposed method with accuracy in the range of 96-98% and a response time of 15 s, without any further pretreatment or chromatographic separation.

  16. Differential thermal analysis microsystem for explosive detection

    DEFF Research Database (Denmark)

    Olsen, Jesper Kenneth; Greve, Anders; Senesac, L.

    2011-01-01

    as a small silicon nitride membrane incorporating heater elements and a temperature measurement resistor. In this manuscript the DTA system is described and tested by measuring calorimetric response of 3 different kinds of explosives (TNT, RDX and PETN). This project is carried out under the framework...

  17. Thermal hazard assessment of AN and AN-based explosives

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, T.; Lightfoot, P. D.; Fouchard, R.; Jones, D. E. G. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2002-12-01

    Ammonium-based aqeous solutions of various concentrations are processed in both the fertilizer and explosives industry, and ammonium nitrate emulsions form the basis of bulk ammonium nitrate emulsion explosives. Major accidents involving overheating of large quantities of these products are not uncommon. To provide guidance to handling large bulk quantities of these materials laboratory experiments must be carried out in such a way as to minimize heat losses from the samples. In this study experiments were performed on pure ammonium, the popular commercial explosive ANFO, various aqueous ammonium solutions and typical bulk and packaged ammonium nitrate emulsions, using two laboratory-scale calorimeters (accelerating rate calorimeter and adiabatic Dewar calorimeter). The objective of the experiments was to study the effects of sample mass, atmosphere, and formulation on the resulting onset temperatures. Result from the two techniques were compared and a method for extrapolating these results to large-scale inventories was proposed. 22 refs., 4 tabs., 14 figs.

  18. Rapid thermal process by RF heating of nano-graphene layer/silicon substrate structure: Heat explosion theory approach

    Science.gov (United States)

    Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.

    2018-03-01

    RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.

  19. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jhu, Can-Yong [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Wang, Yih-Wen, E-mail: g9410825@yuntech.edu.tw [Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9, Sha-Luen-Hu, Xi-Zhou-Li, Houlong, Miaoli 35664, Taiwan, ROC (China); Shu, Chi-Min [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Chang, Jian-Chuang; Wu, Hung-Chun [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Rm. 222, Bldg. 77, 2F, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC (China)

    2011-08-15

    Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO{sub 2}) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO{sub 2} cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T{sub 0}), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T{sub max}) and pressure (P{sub max}). The T{sub max} and P{sub max} of the charged Li-ion battery during the runaway reaction reach 903.0 {sup o}C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO{sub 2} batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.

  20. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter

    International Nuclear Information System (INIS)

    Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun

    2011-01-01

    Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO 2 ) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO 2 cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T 0 ), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T max ) and pressure (P max ). The T max and P max of the charged Li-ion battery during the runaway reaction reach 903.0 o C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO 2 batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.

  1. Steam explosions in light water reactors

    International Nuclear Information System (INIS)

    1981-01-01

    The report deals with a postulated accident caused by molten fuel falling into the lower plenum of the containment of a reactor. The analysis which is presented in the report shows that the thermal energy released in the resulting steam explosion is not enough to destroy the pressure vessel or the containment. The report was prepared for the Swedish Governmental Committee on steam explosion in light water reactors. It includes statements issued by internationally well-known specialists. (G.B.)

  2. Green primary explosives: 5-nitrotetrazolato-N2-ferrate hierarchies.

    Science.gov (United States)

    Huynh, My Hang V; Coburn, Michael D; Meyer, Thomas J; Wetzler, Modi

    2006-07-05

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for military and civilian purposes continues to expand owing to variations in initiating method, chemical composition, quantity, sensitivity, explosive performance, and other necessary built-in mechanisms. Although the most widely used primaries contain toxic lead azide and lead styphnate, mixtures of thermally unstable primaries, like diazodinitrophenol and tetracene, or poisonous agents, like antimony sulfide and barium nitrate, are also used. Novel environmentally friendly primary explosives are expanded here to include cat[Fe(II)(NT)(3)(H(2)O)(3)], cat(2)[Fe(II)(NT)(4)(H(2)O)(2)], cat(3)[Fe(II)(NT)(5)(H(2)O)], and cat(4)[Fe(II)(NT)(6)] with cat = cation and NT(-) = 5-nitrotetrazolato-N(2). With available alkaline, alkaline earth, and organic cations as partners, four series of 5-nitrotetrazolato-N(2)-ferrate hierarchies have been prepared that provide a plethora of green primaries with diverse initiating sensitivity and explosive performance. They hold great promise for replacing not only toxic lead primaries but also thermally unstable primaries and poisonous agents. Strategies are also described for the systematic preparation of coordination complex green primaries based on appropriate selection of ligands, metals, and synthetic procedures. These strategies allow for maximum versatility in initiating sensitivity and explosive performance while retaining properties required for green primaries.

  3. Differences in coupling between chemical and nuclear explosions

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1992-01-01

    The teleseismic amplitude resulting from an underground explosion is proportional to the asymptotic value of the reduced displacement potential (φ∞) or, in physical terms, to the permanent change in volume measured anywhere beyond the range at which the outgoing wave has become elastic. φ∞ decreases with increasing initial cavity size (r o ) until the cavity is large enough to preclude inelastic behavior in the surrounding rock, at which point no further decrease occurs. With nuclear explosions, φ∞ can also be reduced by decreasing the initial cavity size over a certain range. This occurs because, in this range of r 0 W -1/3 (where W is the yield) the thermal pressure in the surrounding medium increases much more slowly than does the thermal energy. With chemical explosions, by contrast, r 0 W -1/3 cannot be decreased below the fully tamped limit because the energy density is bounded above. Moreover, for the most of the cavity expansion period the ratio of specific heats of the chemical explosion products is substantially higher than the equivalent ratio in a nuclear explosion, so that the cavity pressure in the former case is higher as well and this further amplifies the differences between the two. Calculations show that the teleseismic amplitude could be as much as 50% higher for an equivalent tamped chemical explosion in salt than was observed in the SALMON nuclear event

  4. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography

    Science.gov (United States)

    Smilowitz, L.; Henson, B. F.; Oschwald, D.; Suvorova, N.; Remelius, D.

    2017-10-01

    We observe internal convective and conductive burn front propagation and solid consumption subsequent to thermal ignition for plastic bonded formulations of the solid organic secondary explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene. This work describes x-ray radiographic diagnostics enabling the study of solid density in a fully encased explosive during internal burning subsequent to ignition. The result of this study is the ability to directly observe and measure rates of energy release during a thermal explosion.

  5. Modeling the thermal deformation of TATB-based explosives. Part 1: Thermal expansion of “neat-pressed” polycrystalline TATB

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-08

    We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructural characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of

  6. Mechanical efficiency of the energy release during a steam explosion

    International Nuclear Information System (INIS)

    Krieg, R.

    1997-01-01

    The mechanical processes during the expansion phase of a steam explosion with intimately fragmented liquid particles is investigated based on elementary principles and analytical solutions. During a short load pulse, the different densities of the water and the melted particles lead to different velocities. After the load pulse, viscosity effects lead to a slow down of the higher velocities and to a corresponding reconversion of the kinetic energy of the mixture into thermal energy. It is shown that both effects are proportional to each other. The ratio between the residual and the applied mechanical energy is defined as the mechanical efficiency of the steam explosion. Using data typical for a steam explosion in a pressurized water reactor, mechanical efficiencies of <50% are estimated. Considering that the thermodynamic efficiencies are quite limited, the very low conversion rates from thermal energy into mechanical energy observed during steam explosion experiments can be more easily understood

  7. Thermochemistry of mixed explosives

    International Nuclear Information System (INIS)

    Janney, J.L.; Rogers, R.N.

    1982-01-01

    In order to predict thermal hazards of high-energy materials, accurate kinetics constants must be determined. Predictions of thermal hazards for mixtures of high-energy materials require measurements on the mixtures, because interactions among components are common. A differential-scanning calorimeter (DSC) can be used to observe rate processes directly, and isothermal methods enable detection of mechanism changes. Rate-controlling processes will change as components of a mixture are depleted, and the correct depletion function must be identified for each specific stage of a complex process. A method for kinetics measurements on mixed explosives can be demonstrated with Composition B is an approximately 60/40 mixture of RDX and TNT, and is an important military explosive. Kinetics results indicate that the mator process is the decomposition of RDX in solution in TNT with a perturbation caused by interaction between the two components. It is concluded that a combination of chemical kinetics and experimental self-heating procedures provides a good approach to the production of predictive models for thermal hazards of high-energy materials. Systems involving more than one energy-contributing component can be studied. Invalid and dangerous predictive models can be detected by a failure of agreement between prediction and experiment at a specific size, shape, and density. Rates of thermal decomposition for Composition B appear to be modeled adequately for critical-temperature predictions with the following kinetics constants: E = 180.2 kJ mole -1 and Z = 4.62 X 10 16 s -1

  8. Steam explosion triggering and efficiency studies

    International Nuclear Information System (INIS)

    Buxton, L.D.; Nelson, L.S.; Benedick, W.B.

    1979-01-01

    A program at Sandia Laboratories to provide relevant data on the interaction of molten LWR core materials with water is described. Two different subtasks were established. The first was the performance of laboratory-scale experiments to investigate the ability to trigger steam explosions for realistic LWR core melt simulants under a wide range of initial conditions. The second was the performance of field-scale experiments to investigate the efficiency of converting the thermal energy of the melt into mechanical work in much larger steam explosions

  9. Application of factor analysis to the explosive detection

    International Nuclear Information System (INIS)

    Park, Yong Joon; Song, Byung Chul; Im, Hee Jung; Kim, Won Ho; Cho, Jung Hwan

    2005-01-01

    The detection of explosive devices hidden in airline baggage is significant problem, particularly in view of the development of modern plastic explosives which can formed into various innocent-appearing shapes and which are sufficiently powerful that small quantities can destroy an aircraft in flight. Besides, the biggest difficulty occurs from long detection time required for the explosive detection system based on thermal neutron interrogation, which involves exposing baggage to slow neutrons having energy in the order of 0.025 eV. The elemental compositions of explosives can be determined by the Neutron Induced Prompt gamma Spectroscopy (NIPS) which has been installed in Korea Atomic Energy Research Institute as a tool for the detection of explosives in passenger baggage. In this work, the factor analysis has been applied to the NIPS system to increase the signal-to-noise ratio of the prompt gamma spectrum for the detection of explosive hidden in a passenger's baggage, especially for the noisy prompt gamma spectrum obtained with short measurement time

  10. The role of fragmentation mechanism in large-scale vapor explosions

    International Nuclear Information System (INIS)

    Liu, Jie

    2003-01-01

    A non-equilibrium, multi-phase, multi-component code PROVER-I is developed for propagation phase of vapor explosion. Two fragmentation models are used. The hydrodynamic fragmentation model is the same as Fletcher's one. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The role of fragmentation mechanisms is investigated by the simulations of the pressure wave propagation and energy conversion ratio of ex-vessel vapor explosion. The spontaneous nucleation fragmentation results in a much higher pressure peak and a larger energy conversion ratio than hydrodynamic fragmentation. The instant fragmentation gives a slightly larger energy conversion ratio than spontaneous nucleation fragmentation, and the normal boiling fragmentation results in a smaller energy conversion ratio. The detailed analysis of the structure of pressure wave makes it clear that thermal detonation exists only under the thermal fragmentation circumstance. The high energy conversion ratio is obtained in a small vapor volume fraction. However, in larger vapor volume fraction conditions, the vapor explosion is weak. In a large-scale vapor explosion, the hydrodynamic fragmentation is essential when the pressure wave becomes strong, so a small energy conversion ratio is expected. (author)

  11. Explosion of a road tanker containing liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Planas-Cuchi, E.; Casal, J. [Universitat Politecnica de Catalunya, Catalonia (Spain). CERTEC; Gasulla, N.; Ventosa, A. [Autonomous Government of Catalonia (Spain). General Directorate for Emergencies and Civl Security

    2004-07-01

    The explosion of a road tanker transporting LNG (one person killed, two injured) is studied. The analysis shows that the explosion, which followed a two-step mode as for the failure of the vessel, could have been a boiling liquid expanding vapor explosion (BLEVE). The overpressure and thermal radiation have been estimated and related to the effects observed. Only a relatively small part of the energy released in the explosion was manifested in the pressure wave. The large fragments (the three pieces into which the tank was broken) and the truck motor were ejected at various distances along the tank's main axis. (author)

  12. A review of conventional explosives detection using active neutron interrogation

    International Nuclear Information System (INIS)

    Whetstone, Z.D.; Kearfott, K.J.

    2014-01-01

    Conventional explosives are relatively easy to obtain and may cause massive harm to people and property. There are several tools employed by law enforcement to detect explosives, but these can be subverted. Active neutron interrogation is a viable alternative to those techniques, and includes: fast neutron analysis, thermal neutron analysis, pulsed fast/thermal neutron analysis, neutron elastic scatter, and fast neutron radiography. These methods vary based on neutron energy and radiation detected. A thorough review of the principles behind, advantages, and disadvantages of the different types of active neutron interrogation is presented. (author)

  13. Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography

    International Nuclear Information System (INIS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2008-01-01

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 μs. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning

  14. Thermal interaction of molten copper with water

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    1975-01-01

    Experimental work was performed to study the thermal interaction between molten copper particles (in the range of temperature from the copper melting point to about 1800 0 C) and water from about 15-80 0 C. The transient temperatures of the copper particles and water before and during their thermal interaction were measured. The history of the phenomena was filmed by means of a high speed FASTAX camera (to 8000 f/s). Classification of the observed phenomena and description of the heat-transfer modes were derived. One among the phenomena was the thermal explosion. The necessary conditions for the thermal explosion are discussed and their physical interpretation is given. According to the hypothesis proposed, the thermal explosion occurs when the molten metal has the temperature of its solidification and the heat transfer on its surface is sufficiently intensive. The 'sharp-change' of the crystalline structure during the solidification of the molten metal is the cause of the explosion fragmentation. (author)

  15. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2010-01-01

    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  16. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  17. Observations of Tin/Water Thermal Explosions in a Long-Tube Geometry. Their Interpretation and Consequences for the Detonation Model

    International Nuclear Information System (INIS)

    Hall, R.W.; Board, S.J.; Baines, M.

    1979-01-01

    This paper presents details of experiments designed to test the detonation model of thermal explosions (Board et al, 1975); on this theory large-scale explosions should propagate steadily at supersonic velocities through a fuel coolant mixture, giving a yield which has been shown to depend on details of the fragmentation and heat transfer behind the shock front. Observations of propagating explosions have been reported previously. In the present work, a long-tube geometry is used since in 1D, propagation measurements are particularly easy to interpret. Also, in 2D and 3D geometries radial flow can tend to extinguish shock waves and if a single-phase region of coolant is present, pressure pulses can propagate ahead of the two-phase shock in the intermixed region. This paper describes the six experiments that all use molten tin and water mixtures. In the first four, detailed pressure measurement was the main objective; the last two are attempts at flow visualization to aid the interpretation of these. The results obtained and the implications for the detonation model are discussed. A detailed interpretation in terms of fragmentation and heat transfer processes behind the shock is attempted. The implications of the work for reactor materials are then briefly outlined

  18. Biological consequences of atomic explosions

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1984-01-01

    After an introductory chapter of the development and properties of nuclear weapons and the events of Hiroshima and Nagasaki, this books shows the effects of atomic explosions for man: effects of the pressure wave, thermal radiation, initial nuclear radiation alone or in conjunction and possible medical help. In addition the less massive damage caused by induced radioactivity and fallout, their prevention resp. treatment and the malignant/nonmalignant late effects are discussed. A further chapter deals with the psychological and epidemiological effects of atomic explosions, the consequences for food and water supply, and the construction of shetters. The last chapter is concerned with the problem of organising medical help. (MG) [de

  19. A DSC analysis of inverse salt-pair explosive composition

    Energy Technology Data Exchange (ETDEWEB)

    Babu, E. Suresh; Kaur, Sukhminder [Central Forensic Science Laboratory, Explosives Division, Ramanthapur, Hyderabad 500013 (India)

    2004-02-01

    Alkali nitrates are used as an ingredient in low explosive compositions and pyrotechnics. It has been suggested that alkali nitrates can form inverse salt-pair explosives with the addition of ammonium chloride. Therefore, the thermal behavior of low explosive compositions containing potassium nitrate mixed with ammonium chloride has been studied using Differential Scanning Calorimetry (DSC). Results provide information about the ion exchange reaction between these two chemical substances and the temperature region at which the formation of a cloud of salt particles of potassium chloride takes place. Furthermore, the addition of ammonium chloride quenches the flame of deflagrating compositions and causes the mixture to undergo explosive decomposition at relatively low temperatures. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  20. Fire suppression as a thermal implosion

    Science.gov (United States)

    Novozhilov, Vasily

    2017-01-01

    The present paper discusses the possibility of the thermal implosion scenario. This process would be a reverse of the well known thermal explosion (autoignition) phenomenon. The mechanism for thermal implosion scenario is proposed which involves quick suppression of the turbulent diffusion flame. Classical concept of the thermal explosion is discussed first. Then a possible scenario for the reverse process (thermal implosion) is discussed and illustrated by a relevant mathematical model. Based on the arguments presented in the paper, thermal implosion may be observed as an unstable equilibrium point on the generalized Semenov diagram for turbulent flame, however this hypothesis requires ultimate experimental confirmation.

  1. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  2. Progress in the development of explosives materials detectors

    International Nuclear Information System (INIS)

    Williams, W.D.; Conrad, F.J.; Sandlin, L.L.; Burrows, T.A.

    1978-01-01

    Five hand-held explosives vapor detectors (Elscint Model EXD-2, ITI Model 70, Leigh-Marsland Model S-201, Pye Dynamics Model PD.2.A, and Xonics Model GC-710) were evaluated for sensitivity to a variety of explosives, identification of false alarm agents, and general performance and maintenance characteristics. The results of this evaluation, as presented, indicate that there is no single explosives detector which is best-suited for use at all nuclear facilities. Rather, there are several site-specific elements which must be considered when choosing an explosives detector. There are several new explosives detector technologies being developed which will out-perform existing commercial equipment. Some of these new detectors may be commercially available by the end of fiscal year 1980 and will be cost-effective to purchase and operate. The following areas of explosives detection research are discussed: nitrogen-phosphorous detectors, plasma chromatography, mass spectroscopy, small animal olfactory, vapor preconcentration, nuclear quadrupole resonance, far infrared radiation imaging, nuclear magnetic resonance, thermal neutron activation, and computerized tomography

  3. MEMS-based Porous Silicon Preconcentrators Filled with Carbopack-B for Explosives Detection

    OpenAIRE

    Camara , El Hadji Malik; James , Franck; Breuil , Philippe; Pijolat , Christophe; Briand , Danick; De Rooij , Nicolaas F

    2014-01-01

    International audience; In this paper we report the detection of explosive compounds using a miniaturized gas preconcentrator (μGP) made of porous silicon (PS) filled in with Carbopack B as an adsorbent material. The μGP includes also a platinum heater patterned at the backside and fluidic connectors sealed on the glass cover. Our μGP is designed and optimized through fluidic and thermal simulations for meeting the requirements of trace explosives detection. The thermal mass of the device was...

  4. Results of measurements of thermal interaction between molten metal and water

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    1975-10-01

    The report describes results of an experimental investigation into thermal interaction of molten metals with water. The experiments were performed in two stages: the aim of the first stage was to study the general character of thermal interaction between molten metal and water and to measure the Leidenfrost temperature of the inverse Leidenfrost phenomenon. The second stage was directed to the experimental study of the triggering mechanism of thermal explosion. The experimental material gathered in this study includes: 1) transient temperature measurements in the hot material and in water, 2) measurements of pressure and reactive force combined with thermal explosion, 3) high-speed films of thermal interaction, 4) investigation results of thermal explosion debris (microscopic, mechanical, metallographical and chemical). The most significant observation is, that small jets from the main particle mass occuring 1 to 10 msec before, precede thermal explosion. (orig.) [de

  5. High-nitrogen explosives

    Energy Technology Data Exchange (ETDEWEB)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz

  6. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  7. Detection of plastic explosives using thermal neutron radiography

    International Nuclear Information System (INIS)

    Hacidume, Leo Ryoske

    1999-12-01

    The work aims to demonstrate the potentiality of the neutron radiography technique, allied to the computerized tomography by transmission, to both detect and visualize plastic explosive samples in several hidden conditions, using a simple scanner as a digitalisation instrument. Each tomographic essay was obtained in the J-9 channel of the Argonauta Research Reactor of IEN/CNEN, in groups of six neutron radiographic projections, performed with an angular increment of 30 deg C, in a period of time of 30 minutes for each projection. Two groups of tomographic reconstructions were generated, distinguished by the digitalisation process of the interested lines in the reconstruction plane coming from the projection groups, utilization a scanner and a microdensitometer, respectively. The reconstruction of the bi-dimensional image of the transverse section, in relation to this plane, was processed making use of the Image Reconstruction Algorithmic of an Image based on the Maximum Entropy principle (ARIEM). From the qualitative analysis of the images, we conclude that the neutron radiographic system was able to detect the explosive sample in a satisfactory way while the quantitative analysis confirmed the application effectiveness of a scanner to acquire the projection dates whose objective is only a reconnaissance. (author)

  8. Explosive bonding and its application in the Advanced Photon Source front-end and beamline components design

    International Nuclear Information System (INIS)

    Shu, D.; Li, Y.; Ryding, D.; Kuzay, T.M.

    1994-01-01

    Explosive bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bonding between two or more similar or dissimilar materials. Since 1991, a number of explosive-bonding joints have been designed for high-thermal-load ultrahigh-vacuum (UHV) compatible components in the Advanced Photon Source. A series of standardized explosive bonded joint units has also been designed and tested, such as: oxygen-free copper (OFHC) to stainless-steel vacuum joints for slits and shutters, GlidCop to stainless-steel vacuum joints for fixed masks, and GlidCop to OFHC thermal and mechanical joints for shutter face-plates, etc. The design and test results for the explosive bonding units to be used in the Advanced Photon Source front ends and beamlines will be discussed in this paper

  9. Steam explosion triggering and efficiency studies

    International Nuclear Information System (INIS)

    Buxton, L.D.; Nelson, L.S.; Benedick, W.B.

    1979-01-01

    Laboratory experiments on the thermal interaction of simulated light water reactor (LWR) fuel melts and water are summarized. Their purpose was to investigate the possibility of steam explosions occurring for a range of hypothetical accident conditions. Pressure, temperature, hot liquid motion and cold liquid motion were monitored during the experiments

  10. Explosive simulants for testing explosive detection systems

    Science.gov (United States)

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  11. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  12. A model of vulcanian explosions

    International Nuclear Information System (INIS)

    Woods, A.W.

    1995-01-01

    We present a model of the initial stages of the explosive eruption of magma from a volcanic conduit as occurs in Vulcanian style eruptions. We assume there is a volatile rich (1-10 wt%) mixture of magma, vaporised groundwater and exsolved volatiles, trapped at high pressure (1-100 atm) just below a plug in a volcanic conduit. If the plug disrupts, there is an explosive eruption in which a rarefaction wave propagates into the conduit allowing the volatile rich mixture to expand and discharge into the atmosphere ahead of the vent. Typically, the explosions are so rapid that coarse grained ejecta (>0.5 mm) do not remain in thermal equilibrium with the gas, and this leads to significantly lower velocities and temperatures than predicted by an equilibrium model. Material may erupt from the vent at speeds of 100-400 m s -1 with an initial mass flux of order 10 7 -10 9 kg s -1 , consistent with video observations of eruptions and measurements of the ballistic dispersal of large clasts. (orig.)

  13. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  15. Research topics in explosives - a look at explosives behaviors

    International Nuclear Information System (INIS)

    Maienschein, J L

    2014-01-01

    The behaviors of explosives under many conditions - e.g., sensitivity to inadvertent reactions, explosion, detonation - are controlled by the chemical and physical properties of the explosive materials. Several properties are considered for a range of improvised and conventional explosives. Here I compare these properties across a wide range of explosives to develop an understanding of explosive behaviors. For improvised explosives, which are generally heterogeneous mixtures of ingredients, a range of studies is identified as needed to more fully understand their behavior and properties. For conventional explosives, which are generally comprised of crystalline explosive molecules held together with a binder, I identify key material properties that determine overall sensitivity, including the extremely safe behavior of Insensitive High Explosives, and discuss an approach to predicting the sensitivity or insensitivity of an explosive.

  16. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  17. Thermal interaction for molten tin dropped into water

    Energy Technology Data Exchange (ETDEWEB)

    Arakeri, V.H.; Catton, I.; Kastenberg, W.E.; Plesset, M.S.

    1978-03-01

    Multiflash photography with extremely short duration exposure times per flash was used to observe the interaction of molten tin dropped into a water bath. Detailed photographic evidence is presented which demonstrates that transition, or nucleate boiling, is a possible triggering mechanism for vapor explosions. It was also found that the thermal constraints required to produce vapor explosions could be relaxed by introducing a stable thermal stratification within the coolant. In the present work, the threshold value of the initial tin temperature required for vapor explosion was reduced from about 500 to 343/sup 0/C.

  18. Features of the incorporation of single and double based powders within emulsion explosives

    Science.gov (United States)

    Ribeiro, J. B.; Mendes, R.; Tavares, B.; Louro, C.

    2014-05-01

    In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the "gap-test". DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.

  19. Features of the incorporation of single and double based powders within emulsion explosives

    International Nuclear Information System (INIS)

    Ribeiro, J B; Mendes, R; Tavares, B; Louro, C

    2014-01-01

    In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the g ap-test . DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.

  20. Modelling of vapour explosion in stratified geometrie

    International Nuclear Information System (INIS)

    Picchi, St.

    1999-01-01

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  1. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  2. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Directory of Open Access Journals (Sweden)

    Qingjie Jiao

    2018-03-01

    Full Text Available To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20 based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm grows gradually; shock wave energy (Es continues increasing, bubble energy (Eb increases then decreases peaking at 15% for both formulas, and the total energy (E and energy release rate (η peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  3. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Science.gov (United States)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  4. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. [[Page 64247

  5. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    OpenAIRE

    Qingjie Jiao; Qiushi Wang; Jianxin Nie; Xueyong Guo; Wei Zhang; Wenqi Fan

    2018-01-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-...

  6. Modelling of vapour explosion in a stratified geometry

    International Nuclear Information System (INIS)

    Brayer, Claude

    1994-01-01

    A vapour explosion is the explosive vaporisation of a volatile liquid in contact with another hotter liquid. Such a violent vaporisation requires an intimate mixing and a fine fragmentation of both liquids. Based on a synthesis of published experimental results, the author of this research thesis reports the development of a new physical model which describes the explosion. In this model, the explosion propagation is due to the propagation of the pressure wave associated with this this explosion, all along the vapour film which initially separates both liquids. The author takes the presence of water in the liquid initially located over the film into account. This presence of vapour explains experimental propagation rates. Another consequence, when the pressure wave passes, is an acceleration of liquids at different rates below and above the film. The author considers that a mixture layer then forms from the point of disappearance of the film, between both liquids, and that fragmentation is due to the turbulence in this mixture layer. This fragmentation model is then introduced into an Euler thermodynamic, three-dimensional and multi-constituents code of calculation, MC3D, to study the influence of fragmentation on thermal exchanges between the various constituents on the volatile liquid vaporisation [fr

  7. Thermal interaction for molten tin dropped into water

    International Nuclear Information System (INIS)

    Arakeri, V.H.; Catton, I.; Kastenberg, W.E.; Plesset, M.S.

    1978-01-01

    Multiflash photography with extremely short duration exposure times per flash has been used to observe the interaction of molten tin dropped into a water bath. Detailed photographic evidence is presented which demonstrates that transition, or nucleate boiling, is a possible triggering mechanism for vapour explosions. It was also found that the thermal constraints required to produce vapour explosions could be relaxed by introducing a stable thermal stratification within the coolant. In the present work, the threshold value of the initial tin temperature required for vapour explosion was reduced from about 500 to 343 0 C. (author)

  8. Detonation and fragmentation modeling for the description of large scale vapor explosions

    International Nuclear Information System (INIS)

    Buerger, M.; Carachalios, C.; Unger, H.

    1985-01-01

    The thermal detonation modeling of large-scale vapor explosions is shown to be indispensable for realistic safety evaluations. A steady-state as well as transient detonation model have been developed including detailed descriptions of the dynamics as well as the fragmentation processes inside a detonation wave. Strong restrictions for large-scale vapor explosions are obtained from this modeling and they indicate that the reactor pressure vessel would even withstand explosions with unrealistically high masses of corium involved. The modeling is supported by comparisons with a detonation experiment and - concerning its key part - hydronamic fragmentation experiments. (orig.) [de

  9. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  10. Structures to Resist the Effects of Accidental Explosions. Volume 6. Special Considerations in Explosive Facility Design

    Science.gov (United States)

    1985-04-01

    addition to their Inherent advantages with respect to fire protection, acoustical and thermal insulation, structural mass and resistance to flying...suspended from a monorail system. The panel is inside the shield and is not rigidly attached to the column members. Special consideration was given to...characteristic pulse emitted by an explosion to prevent actuation by other sources such as lightning, fires , etc., **ich cay occur with flash sensors. ■112

  11. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion

  12. Proceedings of the fourteenth annual symposium on explosives and blasting research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Subjects covered include: ground vibration effects on structures; open-pit blast vibration prediction; effects of velocity of detonation and gas pressurization on fragmentation in layered rock; thermal ignition for emulsion powder explosives and emulsion matrix; effect of cut-off pressure on energy partition and blast design; new burden and spacing formulae for optimum blasting; calculated risk of experiencing lightning caused unplanned detonation; predicting explosive toxic fumes; and stemming techniques for loading angled holes charged with Anfo.

  13. Contained fissionly vaporized imploded fission explosive breeder reactor

    International Nuclear Information System (INIS)

    Marwick, E.F.

    1978-01-01

    Disclosed is a nuclear reactor system which produces useful thermal power and breeds fissile isotopes wherein large spherical complex slugs containing fissile and fertile isotopes as well as vaporizing and tamping materials are exploded seriatim in a large containing chamber having walls protected from the effects of the explosion by about two thousand tons of slurry of fissile and fertile isotopes in molten alkali metal. The slug which is slightly sub-critical prior to its entry into the centroid portion of the chamber, then becomes slightly more than prompt-critical because of the near proximity of neutron-reflecting atoms and of fissioning atoms within the slurry. The slurry is heated by explosion of the slugs and serves as a working fluid for extraction of heat energy from the reactor. Explosive debris is precipitated from the slurry and used for the fabrication of new slugs

  14. High-temperature explosive development for geothermal well stimulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

  15. Detection of explosives and illicit drugs using neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, B. E-mail: kiralyb@tigris.klte.hu; Sanami, T.; Doczi, R.; Csikai, J

    2004-01-01

    A procedure developed for the determination of the flux perturbation factor required for the thermal neutron activation analysis of bulky samples of unknown composition has been extended for epithermal neutrons using hydrogenous and graphite moderators. Measurements on the diffusion and backscattering of thermal neutrons in soil components were carried out for the development of novel nuclear methods in order to speed up the humanitarian demining process. Results obtained for the diffusion length were checked by MCNP-4C calculations. In addition, the effect of the weight and density of the explosives on the observation of the anomaly in the reflected thermal neutrons was examined by using different dummy landmines.

  16. Design and construction of an explosive detection system by Tna methods, using 252Cf radioisotope source

    International Nuclear Information System (INIS)

    Tavakkoli Farsouli, A.

    1999-01-01

    Bombs concealed in luggage have threatened human life and property throughout the world's traffic. The plastic explosives could not checked by the X-ray detecting device. Thermal Neutron Activation method has been tested in the present work for non-destructive detection of explosives. A radioisotope neutron source 252 Cf and two gamma spectroscopy systems have been used as a tool to find explosives, regardless of the bomb's shape and the packing materials. The MCNP code has been used to design the neutronic section of the system. The measured thermal neutron fluxes by the gold foils in some location of the system were in good agreement with those data obtained by the MCNP code. Also, detection limits for nitrogen in various counting times were measured. The measurements show that the system is capable to detect 417 gr of HMX explosive material (158 gr nitrogen) by 10 minutes of counting time. To modify the system and to decrease the detection limits some opinions are given

  17. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  18. A thermodynamically based definition of fast verses slow heating in secondary explosives

    Science.gov (United States)

    Henson, Bryan; Smilowitz, Laura

    2013-06-01

    The thermal response of energetic materials is often categorized according to the rate of heating as either fast or slow, e.g. slow cook-off. Such categorizations have most often followed some operational rationale, without a material based definition. We have spent several years demonstrating that for the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) a single mechanism of thermal response reproduces times to ignition independent of rate or means of heating over the entire range of thermal response. HMX is unique in that bulk melting is rarely observed in either thermal ignition or combustion. We have recently discovered a means of expressing this mechanism for HMX in a reduced form applicable to many secondary explosives. We will show that with this mechanism a natural definition of fast versus slow rates of heating emerges, related to the rate of melting, and we use this to illustrate why HMX does not exhibit melting, and why a number of other secondary explosives do, and require the two separate categories.

  19. Steam explosions of single drops of pure and alloyed molten aluminum

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1995-01-01

    Studies of steam explosion phenomena have been performed related to the hypothetical meltdown of the core and other components of aluminum alloy-fueled production reactors. Our objectives were to characterise the triggers, if any, required to initiate these explosions and to determine the energetics and chemical processes associated with these events. Three basic studies have been carried out with 1-10 g single drops of molten aluminum or aluminum-based alloys: untriggered experiments in which drops of melt were released into water; triggered experiments in which thermal-type steam explosions occurred; and one triggered experiment in which an ignition-type steam explosion occurred. In untriggered experiments, spontaneous steam explosions never occurred during the free fall through water of single drops of pure Al or of the alloys studied here. Moreover, spontaneous explosions never occurred upon or during contact of the globules with several underwater surfaces. When Li was present in the alloy, H 2 was generated as a stream of bubbles as the globules fell through the water, and also as they froze on the bottom surface of the chamber. The triggered experiments were performed with pure Al and the 6061 alloy. Bare bridgewire discharges and those focused with cylindrical reflectors produced a small first bubble that collapsed and was followed by a larger second bubble. When the bridgewire was discharged at one focus of an ellipsoidal reflector, a melt drop at the other focus triggered only very mildly in spite of a 30-fold increase in peak pressure above that of the bridgewire discharge without the reflector. Experiments were also performed with globules of high purity Al in which the melt release temperature was progressively increased. Moderate thermal-type explosions were produced over the temperature range 1273-1673 K. At about 1773 K, however, one experiment produced a brilliant flash of light and bubble growth about an order of magnitude faster than normal; it

  20. Radioactive and Other Effects of Nuclear Explosion

    International Nuclear Information System (INIS)

    Ilijas, B.; Cizmek, A.; Prah, M.; Medakovic, S.

    2008-01-01

    As a result of long lasting efforts of international community to definitely ban all test nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was opened for signature in New York on 24 September 1996, when it was signed by 71 states, including Croatia. The State Office for Nuclear Safety (SONS) which, as an independent state regulatory authority has a responsibility for activities relating to nuclear safety, including the national authority over this Treaty, is actively engaged in CTBTO activities. The nuclear explosion causes a lot of effects (blast, thermal, radioactive, electromagnetic) which differs a lot in its nature, reach, lasting and other. The longest lasting aftermath is from the radioactive effects that cause a radioactive fallout and a lot of radioactive elements in the environment, created by the influence of a primary beam of radiation. Fission and fusion are the main source of radionuclide created by the nuclear explosion, and the longest lasting aftermaths are by the fission products, namely their offspring in natural disintegration chains. This can make contaminated areas inappropriate for life for very long periods. Even in the case of underground nuclear explosion (when underground cavity is formed with no effects on the surface), a leakage of radioactive gases through cracks is possible. A number of radionuclide is created by the neutron activation of elements naturally present in an environment, because a very strong neutron radiation appears in the moment of nuclear explosion. The abundance of particular radionuclide is a very much dependent of a place of performing nuclear explosion and a composition of soil or water in the vicinity.(author)

  1. Lower head integrity under steam explosion loads

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Freeman, K.; Chen, X.; Salmassi, T. [Center for Risk Studies and Safety, Univ. of California, Santa Barbara, CA (United States); Sienicki, J.J.

    1998-01-01

    Lower head integrity under steam explosion loads in an AP600-like reactor design is considered. The assessment is the second part of an evaluation of the in-vessel retention idea as a severe accident management concept, the first part (DOE/ID-10460) dealing with thermal loads. The assessment is conducted in terms of the Risk Oriented Accident Analysis Methodology (ROAAM), and includes the comprehensive evaluation of all relevant severe accident scenarios, melt conditions and timing of release from the core region, fully 3D mixing and explosion wave dynamics, and lower head fragility under local, dynamic loading. All of these factors and brought together in a ROAAM Probabilistic Framework to evaluate failure likelihood. The conclusion is that failure is `physically unreasonable`. (author)

  2. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  3. Development of steam explosion simulation code JASMINE

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nagano, Katsuhiro; Araki, Kazuhiro

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author).

  4. Development of steam explosion simulation code JASMINE

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun; Nagano, Katsuhiro; Araki, Kazuhiro.

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author)

  5. Predicting Large-scale Effects During Cookoff of Plastic-Bonded Explosives (PBX 9501 PBX 9502 and LX-14)

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kaneshige, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    In this study, we have made reasonable cookoff predictions of large-scale explosive systems by using pressure-dependent kinetics determined from small-scale experiments. Scale-up is determined by properly accounting for pressure generated from gaseous decomposition products and the volume that these reactive gases occupy, e.g. trapped within the explosive, the system, or vented. The pressure effect on the decomposition rates has been determined for different explosives by using both vented and sealed experiments at low densities. Low-density explosives are usually permeable to decomposition gases and can be used in both vented and sealed configurations to determine pressure-dependent reaction rates. In contrast, explosives that are near the theoretical maximum density (TMD) are not as permeable to decomposition gases, and pressure-dependent kinetics are difficult to determine. Ignition in explosives at high densities can be predicted by using pressure-dependent rates determined from the low-density experiments as long as gas volume changes associated with bulk thermal expansion are also considered. In the current work, cookoff of the plastic-bonded explosives PBX 9501 and PBX 9502 is reviewed and new experimental work on LX-14 is presented. Reactive gases are formed inside these heated explosives causing large internal pressures. The pressure is released differently for each of these explosives. For PBX 9501, permeability is increased and internal pressure is relieved as the nitroplasticizer melts and decomposes. Internal pressure in PBX 9502 is relieved as the material is damaged by cracks and spalling. For LX-14, internal pressure is not relieved until the explosive thermally ignites. The current paper is an extension of work presented at the 26th ICDERS symposium [1].

  6. Thermal safety characterization on PETN, PBX-9407, LX-10-2, LX-17-1 and detonator in the LLNL's P-ODTX system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Strout, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kahl, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ellsworth, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Healy, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-21

    Incidents caused by fire and other thermal events can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Thus, it is important to understand the response of energetic materials to thermal insults. The One-Dimensional-Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) has been used for decades to characterize thermal safety of energetic materials. In this study, an integration of a pressure monitoring element has been added into the ODTX system (P-ODTX) to perform thermal explosion (cook-off) experiments (thermal runaway) on PETN powder, PBX-9407, LX-10-2, LX-17-1, and detonator samples (cup tests). The P-ODTX testing generates useful data (thermal explosion temperature, thermal explosion time, and gas pressures) to assist with the thermal safety assessment of relevant energetic materials and components. This report summarizes the results of P-ODTX experiments that were performed from May 2015 to July 2017. Recent upgrades to the data acquisition system allows for rapid pressure monitoring in microsecond intervals during thermal explosion. These pressure data are also included in the report.

  7. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing

    Science.gov (United States)

    Larsson, Fredrik; Bertilsson, Simon; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2018-01-01

    Commercial 6.8 Ah lithium-ion cells with different ageing/status have been abused by external heating in an oven. Prior to the abuse test, selected cells were aged either by C/2 cycling up to 300 cycles or stored at 60 °C. Gas emissions were measured by FTIR and three separate vents were identified, two well before the thermal runaway while the third occurred simultaneously with the thermal runaway releasing heavy smoke and gas. Emissions of toxic carbon monoxide (CO), hydrogen fluoride (HF) and phosphorous oxyfluoride (POF3) were detected in the third vent, regardless if there was a fire or not. All abused cells went into thermal runaway and emitted smoke and gas, the working cells also released flames as well as sparks. The dead cells were however less reactive but still underwent thermal runaway. For about half of the working cells, for all levels of cycle ageing, ignition of the accumulated battery released gases occurred about 15 s after the thermal runaway resulting in a gas explosion. The thermal runaway temperature, about 190 °C, varied somewhat for the different cell ageing/status where a weak local minimum was found for cells cycled between 100 and 200 times.

  8. Chemical and physical modification of hemp fibres by steam explosion technology

    International Nuclear Information System (INIS)

    Sutka, Anna; Kukle, Silvija; Gravitis, Janis; Berzins, Agris

    2013-01-01

    In current research attempt has been made to analyse hemp fibres treated with steam explosion (SE) technology. Disintegration of hemp fibres separated from non-retted, dew-retted and dried stems of hemp ('Purini')[1] by alkali treatment and steam explosion (SE) were investigated. An average intensive SE in combination with the hydro-thermal and alkali after-treatment allows decreasing the diameter of hemp fibres and reduce the concentration of non-celluloses components, among them hemicelluloses, lignin, pectin, waxes and water [1;2

  9. The Air Blast Wave from a Nuclear Explosion

    Science.gov (United States)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of

  10. Investigation on energetics of ex-vessel vapor explosion based on spontaneous nucleation fragmentation

    International Nuclear Information System (INIS)

    Liu, Jie; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A computer code PROVER-I is developed for propagation phase of vapor explosion. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The energetics of ex-vessel vapor explosion is investigated based on different fragmentation models. A higher pressure peak and a larger mechanical energy conversion ratio are obtained by spontaneous nucleation fragmentation. A smaller energy conversion ratio results from normal boiling fragmentation. When the delay time in thermal fragmentation model is near 0.0 ms, the pressure propagation behavior tends to be analogous with that in hydrodynamic fragmentation. If the delay time is longer, pressure attenuation occurs at the shock front. The high energy conversion ratio (>4%) is obtained in a small vapor volume fraction together with spontaneous nucleation fragmentation. These results are consistent with fuel-coolant interaction experiments with alumina melt. However, in larger vapor volume fraction conditions (α υ >0.3), the vapor explosion is weak. For corium melt, a coarse mixture with void fraction of more than 30% can be generated in the pre-mixing process because of its physical properties. In the mixture with such a high void fraction the energetic vapor explosion hardly takes place. (author)

  11. Verification of fire and explosion accident analysis codes (facility design and preliminary results)

    International Nuclear Information System (INIS)

    Gregory, W.S.; Nichols, B.D.; Talbott, D.V.; Smith, P.R.; Fenton, D.L.

    1985-01-01

    For several years, the US Nuclear Regulatory Commission has sponsored the development of methods for improving capabilities to analyze the effects of postulated accidents in nuclear facilities; the accidents of interest are those that could occur during nuclear materials handling. At the Los Alamos National Laboratory, this program has resulted in three computer codes: FIRAC, EXPAC, and TORAC. These codes are designed to predict the effects of fires, explosions, and tornadoes in nuclear facilities. Particular emphasis is placed on the movement of airborne radioactive material through the gaseous effluent treatment system of a nuclear installation. The design, construction, and calibration of an experimental ventilation system to verify the fire and explosion accident analysis codes are described. The facility features a large industrial heater and several aerosol smoke generators that are used to simulate fires. Both injected thermal energy and aerosol mass can be controlled using this equipment. Explosions are simulated with H 2 /O 2 balloons and small explosive charges. Experimental measurements of temperature, energy, aerosol release rates, smoke concentration, and mass accumulation on HEPA filters can be made. Volumetric flow rate and differential pressures also are monitored. The initial experiments involve varying parameters such as thermal and aerosol rate and ventilation flow rate. FIRAC prediction results are presented. 10 figs

  12. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Estimation of trigger condition for vapor explosion. JAERI's nuclear research promotion program, H10-027-1. Contract research

    International Nuclear Information System (INIS)

    Nariai, Hideki

    2002-03-01

    The experimental and analytical researches were conducted to study melted core material and coolant interaction including solidification and vapor explosion which is one of the most unidentified thermal hydraulic phenomena during sever accident of nuclear reactor. At first, the effect of the material properties on vapor explosion and solidification was examined to clarify the dominant factors for the spontaneous vapor explosion. Next, the interfacial phenomena of the high temperature melt material and violent boiling behavior of water at the interface was visually observed in the experiment. The interfacial phenomena were physically modeled. Finally, trigger phenomena from liquid-liquid contact to atomization were clarified through the forced collapse experiment of vapor film around a molten droplet by using pressure wave generation device. It is indicated by applying the results obtained in the present study to the actual reactor conditions that the possibility of the vapor explosion is extremely unlikely in the actual reactor accident sequence, since the surface of the molten uranium oxide is solidified in the water and the liquid-liquid contact can not be achieved. It should be noted that the decrease of the solidified temperature by metal compounds and the increase of the molten core temperature. (author)

  13. New ANFO explosives made of ammonium nitrate of increased porosity and naphtha

    Energy Technology Data Exchange (ETDEWEB)

    Kutsarov, B.; Mavrodieva, R.; Ivanov, I.; Stoyanov, V.; Georgiev, N.; Krumov, I.; Katsarski, I.; Vakliev, I.

    1990-01-01

    Discusses results achieved by the KNIIPPI Niproruda Research Institute and the Osogovo enterprise in improving the quality of ANFO explosives. Ammonium nitrate with increased porosity was treated by water steam and wetting agents and then thermally treated. Naphtha in a quantity of up to 8% was then added to the ammonium nitrate to produce a powerful and stable explosive. The quality of explosive cartridges was tested first in the laboratory using the Schaffler apparatus. Test results were very satisfactory (better porosity, higher detonation velocity (2200-3600 m/s), better stability). Industrial experiments carried out in several underground mines also produced satisfactory results (better output in roadway drivage at lower operating cost and better safety). 8 refs.

  14. Vapor explosion studies for nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P. [Arden L. Bement, Jr. Professor Nuclear Engineering, School of Nuclear Engineering, 1290 Nuclear Engineering Building, Room 108C, Purdue University, West Lafayette, IN 47905 (United States)]. E-mail: rusi@purdue.edu

    2005-05-01

    Energetic melt-water explosions are a well-established contributor to risk for nuclear reactors, and even more so for the metal casting industry. In-depth studies were undertaken in an industry-national laboratory collaborative effort to understand the root causes of explosion triggering and to evaluate methods for prevention. The steam explosion triggering studies (SETS) facility was devised and implemented for deriving key insights into explosion prevention. Data obtained indicated that onset of base surface-entrapment induced explosive boiling-caused trigger shocks is a result of complex combination of surface wettability, type of coating (organic versus inorganic), degree of coating wearoff, existence of bypass pathways for pressure relief, charring and non-condensable gas (NCG) release potential. Of these parameters NCGs were found to play a preeminent role on explosion prevention by stabilizing the melt-water steam interface and acting as a shock absorber. The role of NCGs was experimentally confirmed using SETS for their effect on stable film boiling using a downward facing heated body through which gases were injected. The presence of NCGs in the steam film layer caused a significant delay in the transitioning of film-to-nucleate boiling. The role of NCGs on explosion prevention was thereafter demonstrated more directly by introducing molten metal drops into water pools with and without NCG bubbling. Whereas spontaneous and energetic explosions took place without NCG injection, only benign quenching occurred in the presence of NCGs. Gravimetric analyses of organic coatings which are known to prevent explosion onset were also found to release significant NCGs during thermal attack by melt in the presence of water. These findings offer a novel, simple, cost-effective technique for deriving fundamental insights into melt-water explosions as well as for explosion prevention under most conditions of interest to metal casting, and possibly for nuclear reactor

  15. Self-ignition of explosive substance. Comparison between analytical and numerical calculations in order to optimize safety in a pyrotechnic context; Auto-inflammation de substances explosives. Comparaison entre calcul analytique et numerique en vue d`une optimisation dans le domaine de la pyrotechnie

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, Ph. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1998-04-01

    Self-ignition of energetic material was investigated in order to optimize safety in the field of pyrotechnic applications. Two approaches were used; the first one is relative to Frank-Kamenetskii stationary thermal explosion theory. The second approach consists of a choice of some numerical solutions of heat conduction equations in a non-stationary state. Comparison between these results was carried out in order to find the numerical scheme which is the most compatible with Frank-Kamenetskii stationary thermal explosion theory. Numerical data were used for three explosive substances. One of them was studied by the author. In all cases, the numerical stationary state is in agreement with the Frank-Kamenetskii stationary thermal explosion theory, more or less accurately. From this comparison, it may be concluded that it is preferable, for this kind of problem, to use an implicit scheme with linearization of the heat source term. Explicit numerical methods, with or without the addition of the heat term with the Zinn and Mader scheme are revealed to be less accurate and to need a greater optimization of spatial and temporal meshing. (author) 7 refs.

  16. Gas explosion in domestic buildings. The vented gas explosion[sub][/sub

    Directory of Open Access Journals (Sweden)

    Tadeusz Chyży

    2014-08-01

    Full Text Available In this paper, the basic information, related to the so-called vented gas explosion, has been presented. The vented explosion it is an explosion, during which the destruction of the weakest elements of the structure occurs. Through the resulting holes (decompressing surfaces can flow both combustion products and non-burned gas mixture. In consequence, reduction of the maximum explosion pressure[i] P[sub]red [/sub][/i] may be significant. Often, a gas explosion occurs inside residential buildings. In this case, natural vents are window and door openings.[b]Keywords[/b]: gas, explosion, combustion, explosion vents

  17. A TNA explosives-detection system in airline baggage

    Energy Technology Data Exchange (ETDEWEB)

    Shea, P.; Gozani, T. (Science Applications International Corp., Santa Clara, CA (USA)); Bozorgmanesh, H. (Science Applications International Corp., San Diego, CA (USA))

    1990-12-20

    Existing technologies that are applied to explosives-detection in passenger baggage are briefly discussed. A system based on thermal-neutron analysis (TNA) is described. The actual performance of the system in the field on passenger bags is given. The application of the TNA in an integrated airport security system is discussed in view of the intense public debate on this issue. (orig.).

  18. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  19. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  20. Use of artificial neural networks in drug and explosive detection through tomographic images with thermal neutrons

    International Nuclear Information System (INIS)

    Ferreira, Francisco J.O.; Crispim, Verginia R.; Silva, Ademir X.

    2009-01-01

    The artificial neural network technique was used to identify drugs and plastic explosives, from a tomography composed by a set of six neutrongraphic projections obtained in real time. Bidimensional tomographic images of samples of drugs, explosives and other materials, when digitally processed, yield the characteristic spectra of each type of material. The information contained in those spectra was then used for ANN training, the best images being obtained when the multilayer perceptron model, the back-propagation training algorithm and the Cross-validation interruption criterion were used. ANN showed to be useful in forecasting presence of drugs and explosives hitting a rate of success above 97 %. (author)

  1. General phenomenology of underground nuclear explosions; Phenomenologie generale des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S; Supiot, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [French] On donne une description essentiellement qualitative des phenomenes lies aux explosions nucleaires souterraines (explosion d'un seul engin, d'engins en ligne et explosions simultanees). Dans un premier chapitre sont decrits les phenomenes communs aux explosions contenues et aux explosions formant un cratere (formation et propagation d'une onde de choc provoquant la vaporisation, la fusion et la fracturation du milieu). Le deuxieme chapitre decrit les phenomenes lies aux tirs contenus (formation d'une cavite et d'une cheminee). Le troisieme chapitre est consacre a la phenomenologie des tirs formant un cratere et decrit notamment le mecanisme de formation et les differents types de crateres en fonction de la profondeur d'explosion et de la nature du terrain. Les phenomenes aeriens lies aux explosions formant un cratere: onde de pression aerienne et focalisation a grande distance, nuages de poussieres, sont egalement abordes. (auteurs)

  2. Computer simulation of explosion crater in dams with different buried depths of explosive

    Science.gov (United States)

    Zhang, Zhichao; Ye, Longzhen

    2018-04-01

    Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.

  3. Study of the reactivity of an aggregative explosive sensitized by dynamical damage; Etude de la reactivite d`un explosif agregataire sensibilise par endommagement dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Pertuis, Ch

    1997-11-13

    The thermal decomposition of a TATB-based explosive that have been exposed to a projectile impact, is studied in order to determine its sensitivity based on the morphological state of the damaged material. Two self-maintained thermal decomposition modes have been identified, one is a slow mode, the other is a rapid mode; four media have been differentiated in the damaged explosive: sound, porous, micro-cracked and fractured media, and thermal decomposition is studied for each media, using two experimental techniques, manometric bomb and a specifically designed strand burner. Laws giving the regression speed of each media has been established considering confinement pressure and initial temperature of the explosive. Analytical calculations yield the regression speed evolution as a function of certain parameters

  4. Effect of Ti and C particle sizes on reaction behavior of thermal explosion reaction of Cu−Ti−C system under Ar and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yunhong; Zhao, Qian; Li, Xiujuan; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan

    2016-09-15

    The thermal explosion (TE) reaction behavior of Cu−Ti−C systems with different Ti and C particle sizes was investigated under air and Ar atmospheres. It was found that increasing the Ti and C particle sizes leads to higher ignition temperatures under both atmospheres and that the maximum combustion temperature decreases with increasing C particle size. The TE reaction is much easier to activate (i.e., it has a lower ignition temperature) in air because of the heat released from Ti oxidation and nitridation and Cu oxidation reactions on the Cu−Ti−C compact surface. TiC ceramic particles are successfully prepared in the bulk Cu−Ti−C compacts under both air and Ar atmospheres through a dissolution-diffusion-precipitation mechanism. Differential thermal and thermodynamic analyses show that the TE reaction ignition process in air is mainly controlled by the Ti particle size. - Highlights: • Variation of Ti and C particle sizes affects thermal reaction (TE) behaviors. • Ignition temperature under air is much lower than that under Ar atmosphere. • Heat of oxidation and nitridation reactions reduces ignition temperature under air.

  5. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Estimation of trigger condition for vapor explosion. JAERI's nuclear research promotion program, H10-027-1. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Hideki [Tsukuba Univ., Institute of Engineering Mechanics and Systems, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The experimental and analytical researches were conducted to study melted core material and coolant interaction including solidification and vapor explosion which is one of the most unidentified thermal hydraulic phenomena during sever accident of nuclear reactor. At first, the effect of the material properties on vapor explosion and solidification was examined to clarify the dominant factors for the spontaneous vapor explosion. Next, the interfacial phenomena of the high temperature melt material and violent boiling behavior of water at the interface was visually observed in the experiment. The interfacial phenomena were physically modeled. Finally, trigger phenomena from liquid-liquid contact to atomization were clarified through the forced collapse experiment of vapor film around a molten droplet by using pressure wave generation device. It is indicated by applying the results obtained in the present study to the actual reactor conditions that the possibility of the vapor explosion is extremely unlikely in the actual reactor accident sequence, since the surface of the molten uranium oxide is solidified in the water and the liquid-liquid contact can not be achieved. It should be noted that the decrease of the solidified temperature by metal compounds and the increase of the molten core temperature. (author)

  6. Features of the Valorization of Single and Double Based Powders for Codetonation in Emulsion Explosives

    Science.gov (United States)

    Ribeiro, Jose; Mendes, Ricardo; Tavares, Bruno; Louro, Cristina

    2013-06-01

    In this work, features of the thermal and detonation behavior of compositions resulting from the mixture of single and double based gun powder within ammonium nitrate (AN) based emulsion explosives are shown. That includes results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential scanning calorimetry [DSC] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the ``gap-test''. DSC/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical specimens and so of the capability of the composition components. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with gun powder than for the sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have shown to be higher for the powdered compositions than for the pure emulsion explosive. Shock sensitivity assessment have ended-up with a slightly bigger sensitivity for the compositions with double based gun powder when compared to the single based compositions or to the pure emulsion.

  7. Preliminary analysis of K-DEMO thermal hydraulic system using MELCOR; Parametric study of hydrogen explosion

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Lim, Soo Min; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    K-DEMO (Korean fusion demonstration reactor) is future reactor for the commercializing the fusion power generation. The Design of K-DEMO is similar to that of ITER but the fusion energy generation is much bigger because ITER is experimental reactor. For this reason, K-DEMO uses more fusion reaction with bigger amount of tritium. Higher fusion power means more neutron generation that can irradiate the structure around fusion plasma. Fusion reactor can produce many kinds of radioactive material in the accident. Because of this hazard, preliminary safety analysis is mandatory before its construction. Concern for safety problem of accident of fusion/fission reactor has been growing after Fukushima accident which is severe accident from unexpected disaster. To model the primary heat transfer system, in this study, MARS-KS thermal hydraulic analysis is referred. Lee et al. and Kim et al. conducted thermal hydraulic analysis using MARS-KS and multiple module simulation to deal with the phenomena of first wall corrosion for each plasma pulse. This study shows the relationship between vacuum vessel rupture area and source term leakage after hydrogen explosion. For the conservative study, first wall heating is not terminated because the heating inside the vacuum vessel increase the pressure inside VV. Pressurizer, steam generator and turbine is not damaged. 6.69 kg of tritiated water (HTO) and 1 ton of dust is modeled which is ITER guideline. The entire system of K-DEMO is smaller than that of ITER. For this reason, lots of aerosol is release into environment although the safety system like DS is maintained. This result shows that the safety system of K-DEMO should use much more safety system.

  8. Explosion bonding of dissimilar materials for fabricating APS front end components: Analysis of metallurgical and mechanical properties and UHV applications

    International Nuclear Information System (INIS)

    Li, Yuheng; Shu, Deming; Kuzay, T.M.

    1994-01-01

    The front end beamline section contains photon shutters and fixed masks. These components are made of OFHC copper and GlidCOP AL-15. Stainless steels (304 or 316) are also used for connecting photon shutters and fixed masks to other components that operate in the ultrahigh vacuum system. All these dissimilar materials need to be joined together. However, bonding these dissimilar materials is very difficult because of their different mechanical and thermal properties and incompatible metallurgical properties. Explosion bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bond between two or more similar or dissimilar materials. No intermediate filler metal, for example, a brazing compound or soldering alloy, is needed to promote bonding, and no external heat need be applied. A study of the metallurgical and mechanical properties and YGV applications of GlidCop AL-15, OFHC copper, and 304 stainless steel explosion-bonded joints has been done. This report contains five parts: an ultrasonic examination of explosion-bonded joints and a standard setup; mechanical-property and thermal-cycle tests of GlidCop AL-15/304 stainless steel explosion-bonded joints; leak tests of a GlidCop AL-15/304 stainless steel explosion-bonded interfaces for UHV application; metallurgical examination of explosion-bonded interfaces and failure analysis, and discussion and conclusion

  9. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  10. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  11. Explosive material treatment in particular the explosive compaction of powders

    International Nuclear Information System (INIS)

    Pruemmer, R.

    1985-01-01

    The constructive use of explosives in the last decades has led to new procedures in manufacturing techniques. The most important of these are explosive forming and cladding, the latter especially for the production of compound materials. The method of explosive compaction has the highest potential for further innovation. Almost theoretical densities are achievable in the green compacts as the pressure released by detonating explosives are very high. Also, the production of new conditions of materials (metastable high pressure phases) is possible. (orig.) [de

  12. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    Science.gov (United States)

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  13. Investigation of the decomposition reaction and dust explosion characteristics of crystalline benzoyl peroxides

    International Nuclear Information System (INIS)

    Lu, K.-T.; Chen, T.-C.; Hu, K.-H.

    2009-01-01

    The benzoyl peroxide (BPO) is widely used in the chemical industry. Many catastrophes have been caused by its thermal instability or reactive incompatibility in storage or thermal decomposition reaction. Thus, its hazard characteristics have to be clearly identified. First of all, the differential scanning calorimeter (DSC) is used to measure the heat of decomposition reaction, which can contribute to understanding the reaction characteristics of benzoyl peroxide. The accelerating rate calorimeter (ARC) is used to measure the rates of temperature and pressure rises of decomposition reaction, and then the kinetics parameters are estimated. Furthermore, the MIKE 3 apparatus and the 20-l-Apparatus are used to measure and analyze the dust explosion characteristics of benzoyl peroxide under room temperature and atmospheric pressure. Finally, Semenov's thermal explosion theory is applied to investigate the critical runaway condition and the stability criterion of decomposition reaction, and to build the relationship of critical temperature, convective heat transfer coefficient, heat transfer surface area and ambient temperature. These results contribute to improving the safety in the reaction, transportation and storage processes of benzoyl peroxide

  14. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  15. Apparatus and method for detecting explosives

    International Nuclear Information System (INIS)

    Griffith, B.

    1976-01-01

    An apparatus is described for use in situations such as airports to detect explosives hidden in containers (for eg. suitcases). The method involves the evaluation of the quantities of oxygen and nitrogen within the container by neutron activation analysis and the determination of whether these quantities exceed predetermined limits. The equipment includes a small sub-critical lower powered reactor for thermal (0.01 to 0.10 eV) neutron production, a radium beryllium primary source, a deuterium-tritium reactor as a high energy (> 1.06 MeV) neutron source and Geiger counter detector arrays. (UK)

  16. Explosive coalescence of magnetic islands and explosive particle acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-07-01

    An explosive reconnection process associated with the nonlinear evolution of the coalescence instability is found through studies of the electromagnetic particle simulation and the magnetohydrodynamic particle simulation. The explosive coalescence is a process of magnetic collapse, in which we find the magnetic and electrostatic field energies and temperatures (ion temperature in the coalescing direction, in particular) explode toward the explosion time t 0 as (t 0 - t)/sup -8/3/, (t 0 - t) -4 , and (t 0 - t)/sup -8/3/, respectively for a canonical case. Single-peak, double-peak, and triple-peak structures of magnetic energy, temperature, and electrostatic energy, respectively, are observed on the simulation as overshoot amplitude oscillations and are theoretically explained. The heuristic model of Brunel and Tajima is extended to this explosive coalescence in order to extract the basic process. Since the explosive coalescence exhibits self-similarity, a temporal universality, we theoretically search for a self-similar solution to the two-fluid plasma equations

  17. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Science.gov (United States)

    2010-01-08

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  18. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  19. Experimental study of the thermal interaction for molten tin dropped into water

    International Nuclear Information System (INIS)

    Arakeri, V.H.; Catton, I.; Kastenberg, W.E.; Plesset, M.S.

    1975-12-01

    Multiflash photography with extremely short exposure duration times has been used to observe the interaction of molten tin dropped into a water bath. Detailed photographic evidence is presented which demonstrates that transition, or nucleate boiling, is a possible triggering mechanism for vapor explosions and fragmentation. It was also found that the thermal constraints required to produce vapor explosions could be relaxed by introducing a stable thermal stratification within the coolant. It is shown that the constraints can be relaxed sufficiently to cause vapor explosions for test conditions for which the calculated interface contact temperatures are lower than the homogeneous nucleation temperature of water. This latter finding shows that achievement of limiting coolant superheats associated with spontaneous nucleation is not the only mechanism by which vapor explosions in liquid-liquid systems are possible

  20. Properties and Behavior of Geopolymer Concrete Subjected to Explosive Air Blast Loading: A Review

    Directory of Open Access Journals (Sweden)

    Mohd Mortar Nurul Aida

    2017-01-01

    Full Text Available The severe damage to civilian buildings, public area, jet aircraft impact and defense target under explosive blast loading can cause a huge property loss. Most of researcher discusses the topics on design the concrete material model to sustain againts the explosive detonation. The implementation of modern reinforcement steels and fibres in ordinary Portland cement (OPC concrete matrix can reduce the extreme loading effects. However, most researchers have proved that geopolymer concrete (GPC has better mechanical properties towards high performance concrete, compared to OPC. GPC has the high early compressive strength and high ability to resist the thermal energy from explosive detonation. In addition, OPC production is less environmental friendly than geopolymer cement. Geopolymer used can lead to environmental protection besides being improved in mechanical properties. Thus, this paper highlighted on an experimental, numerical and the analytical studies cause of the explosive detonation impact to concrete structures.

  1. A Literature Review of Shock Sensitivity Changes of TATB Due to Thermal Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Boyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Mechanical Engineering

    2016-07-15

    Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced with respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.

  2. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  3. RX-08-HD, a low-viscosity, injection-moldable explosive for filling tortuous paths

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M.; Jessop, E.S.; Swansiger, R.W.

    1997-10-01

    Cast cure, extrusion cast, and paste extrudable explosives have not been designed for transferring through long tortuous paths or into fine three dimensional shapes. To allow the crystalline explosive to flow a lubricating fluid is required. The energetic liquid ethane trinitrate (TMETN) was used as the lubricant to maximize the explosive energy. TMETN is a liquid nitrate ester which requires stabilization with conventional free radical stabilizers such as 2- nitrodiphenylamine, methyl-nitroanaline, or ethyl centrylite. Since these injection moldable explosives are expected to cure in place, a polyesterurethane binder based on polymeric isocyanate of hexamethylene diisocyanate and polycaprolactone polyols is dissolved in TMETN. The solubility of the polymer precursors in TMETN also reduces the energetic liquids sensitivity. The latent cure catalyst Dabco T-131 was used to minimize shrinkage associated with thermal expansion, reduce cost associated with oven cures, to give 4-6 hour potlife and overnight cure to handling strength. The product RX-08-HD is a new, low-viscosity, injection moldable explosive that can be extruded into complex, void-free shapes. Combined with appropriate design and other aspects of weaponization, RX-08-HD has produced outstanding results.

  4. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility.

    Science.gov (United States)

    Pielhop, Thomas; Amgarten, Janick; von Rohr, Philipp Rudolf; Studer, Michael H

    2016-01-01

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the explosive decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the explosive decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the-typically very recalcitrant-softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the

  5. Thermal stability of detonation-produced micro and nanodiamonds

    Science.gov (United States)

    Efremov, V. P.; Zakatilova, E. I.; Maklashova, I. V.; Shevchenko, N. V.

    2018-01-01

    Detonation nanodiamonds are produced at utilization of high explosives. When an explosive blasts in a water environment, the detonation products contain microdiamonds, and in a gaseous medium, nanodiamonds. It is known that with decreasing size the influence of the surface energy of particles on their properties increases. Thus, it is interesting to compare the properties of detonation nano and microdiamonds. In this study, we have examined the thermal stability of diamond materials by synchronous thermal analysis. The experiments were performed at atmospheric pressure in argon flow for different heating rates in a range from room temperature to 1500 °C. Samples of initial and annealed micro and nanomaterials were studied using electron microscopy, x-ray and x-ray-fluorescence analysis. It was established that thermal and structural properties of micro and nanodiamonds differ substantially.

  6. Improved explosive collection and detection with rationally assembled surface sampling materials

    Energy Technology Data Exchange (ETDEWEB)

    Chouyyok, Wilaiwan; Bays, J. Timothy; Gerasimenko, Aleksandr A.; Cinson, Anthony D.; Ewing, Robert G.; Atkinson, David A.; Addleman, R. Shane

    2016-01-01

    Sampling and detection of trace explosives is a key analytical process in modern transportation safety. In this work we have explored some of the fundamental analytical processes for collection and detection of trace level explosive on surfaces with the most widely utilized system, thermal desorption IMS. The performance of the standard muslin swipe material was compared with chemically modified fiberglass cloth. The fiberglass surface was modified to include phenyl functional groups. When compared to standard muslin, the phenyl functionalized fiberglass sampling material showed better analyte release from the sampling material as well as improved response and repeatability from multiple uses of the same swipe. The improved sample release of the functionalized fiberglass swipes resulted in a significant increase in sensitivity. Various physical and chemical properties were systematically explored to determine optimal performance. The results herein have relevance to improving the detection of other explosive compounds and potentially to a wide range of other chemical sampling and field detection challenges.

  7. A comparative study on two explosive acetone peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Egorshev, V. Yu.; Sinditskii, V.P., E-mail: vps@rctu.ru; Smirnov, S.P.

    2013-12-20

    Highlights: • The most accurate heats of DADP and TATP sublimation were evaluated from experimental vapor pressures in a widened temperature range. • DADP is more volatile while more thermally stable peroxide than TATP. • DADP reveals lesser sensitivity to drop-weight impact, flame temperature, burning rate, and initiating efficiency as compared with TATP. - Abstract: Two explosive cyclic acetone peroxides, diacetone diperoxide (DADP) and triacetone triperoxide (TATP) have been studied in respect of thermal decomposition, burning behavior, impact sensitivity, and initiating efficiency. Using the glass Bourdon gauge technique, the vapor pressures of TATP and DADP were determined over the temperature range 75–144 °C and 67–120 °C, respectively. The kinetic parameters of decomposition of the peroxides in the gas phase have been obtained in the temperature interval of 140–200 °C. The decomposition of both DADP and TATP followed the first-order reaction to high degrees of decay with close activation energies of 159.2 kJ/mol (38.0 kcal/mol) and 165.8 kJ/mol (39.6 kcal/mol), respectively. The decomposition rate constants of DADP were found to be approximately 2 times less than those of TATP. The linear burning rate of DADP measured in a constant-pressure window bomb appeared to be approximately 5 times less than that of TATP. Temperature profiles in the combustion wave were measured at subatmospheric pressures with the help of thin tungsten-rhenium thermocouples. The leading reaction on combustion of both volatile peroxides was assumed to occur in the gas phase. Kinetic parameters of the leading reaction derived from the combustion data showed a good agreement with kinetic parameters of low-temperature thermal decomposition extrapolated to the high-temperature flame zone. In the drop-weight impact test, DADP appeared to be notably less sensitive peroxide than TATP. No deflagration-to-detonation transition was observed when RDX was attempted to explode by

  8. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Philip Joseph, Jr. (,; .); Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  9. Experimental simulation of microinteractions in large scale explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Luo, R.; Yuen, W.W.; Theofanous, T.G. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    This paper presents data and analysis of recent experiments conducted in the SIGMA-2000 facility to simulate microinteractions in large scale explosions. Specifically, the fragmentation behavior of a high temperature molten steel drop under high pressure (beyond critical) conditions are investigated. The current data demonstrate, for the first time, the effect of high pressure in suppressing the thermal effect of fragmentation under supercritical conditions. The results support the microinteractions idea, and the ESPROSE.m prediction of fragmentation rate. (author)

  10. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Science.gov (United States)

    2011-10-19

    ... slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive... silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G Gelatinized...

  11. The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502

    Science.gov (United States)

    Aslam, Tariq D.

    2017-07-01

    The response of high explosives (HEs), due to mechanical and/or thermal insults, is of great importance for both safety and performance. A major component of how an HE responds to these stimuli stems from its reactant equation of state (EOS). Here, the tri-amino-tri-nitro-benzene based explosive PBX 9502 is investigated by examining recent experiments. Furthermore, a complete thermal EOS is calibrated based on the functional form devised by Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. It is found, by comparing to earlier calibrations, that a variety of thermodynamic data are needed to sufficiently constrain the EOS response over a wide range of thermodynamic state space. Included in the calibration presented here is the specific heat as a function of temperature, isobaric thermal expansion, and shock Hugoniot response. As validation of the resulting model, isothermal compression and isentropic compression are compared with recent experiments.

  12. A single sphere film boiling model for trigger ability and explosion potential

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Kim, Jong Hwan; Hong, Seong Ho; Hong, Seong Wan

    2012-01-01

    The main causes for the controversy about the corium explosiveness are the hydrogen effect, large voided mixture, material property, poor triggering event (wrong position, weak triggering, wrong time), and low superheat due to a high melting temperature. It has been suggested that a steam explosion of the corium/water system must be suppressed due to the physical properties of corium such as high temperature, high density, multicomponent oxide melt, and low thermal conductivity. It was also claimed that the magnitude of the effect on the FCI results of corium/water systems is on the order of higher density, higher temperature, and non eutectic composition. This concept of a material effect is supported to some degree by parametric experimental results. However, the parametric results between the steam explosion pressure and the material compositions do not directly provide an understanding of the mechanism for the material difference affecting a steam explosion process, even though the sensitivity results can reveal the trends of some parameters affecting the FCI results. This concept of a material effect is supported to some degree by parametric experimental results. The parametric tests themselves also provide us with information on the effect of each initial parameter on a steam explosion. However, sensitivity studies between the steam explosion pressure and the initial value of a parameter do not directly provide an understanding of the steam explosion process. Handling the explosion res sure and initial condition without a mixing could not contribute to a code development process. We need a certain parameter for representing mixing, but we cannot measure it during the FCI tests. The particle size distribution collected after the FCI tests can be a good indicator for explaining a mixing process. In this paper, TROI tests were analyzed in view of a particle size response for various types of fuel coolant explosions. The heat losses and remnants were calculated

  13. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Science.gov (United States)

    2012-09-20

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive.... Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G...

  14. Influence of the magnetic field in the time evolution of the solar explosion radiation in X-ray and microwaves

    International Nuclear Information System (INIS)

    Costa, J.E.R.

    1983-01-01

    It has been made a theoretical development, sel-consistent with recent models for the explosive source, applied to time delays of peak emission at different microwave frequencies, and between microwaves and hard X-ray emission. A working hipothesis has been assumed with the adoption of a growing magnetic field during the solar flare explosion, and therefore contributing to a growth in microwave emission, differential in frequency, producing delays of maximum emission towards lower microwave frequencies, and delays of microwave maximum emission with respect to hard X-rays. It has been found that these delays are consistent with a growth in the magnetic field of about 14% by assuming both thermal and non-thermal models. This variation in magnetic field has been associated to movements of thermal sources downwards in the solar atmosphere, and it has been found that the estimated velocities of displacement were consistent compared to characteristic velocities of anomalous conduction fronts of thermal models. (Author) [pt

  15. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  16. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  17. Theoretical investigations on the fragmentation of drops of melt with respect to the description of thermal detonations (vapor explosions) and their application in the code Frademo

    International Nuclear Information System (INIS)

    Burger, M.; Carachalios, C.; Kim, D.S.; Unger, H.

    1986-01-01

    Vapor explosions caused by the contact of molten core material with coolant are an important issue within reactor safety analysis, because they could produce an early threat to the containment during a core melt accident. The case of steady-state propagation of a detonation wave through a coarse premixture of melt and coolant represents the most severe case of a large scale vapor explosion under reactor conditions with the highest rate and largest heat release and therefore also the highest yield of mechanical energy. The present contribution starts with the description of the integral model of the detonation wave. The fragmentation processes, which are decisive for these exchange terms and the detonation process as a whole, are dealt with also. Hydrodynamic fragmentation processes as well as a thermally induced one are considered. The processes which take place inside a detonation wave, especially the fragmentation of the drops of melt and the velocity equilibration between the melt and the coolant, determine the behavior of the wave. In the present model these processes are described within a three-phase approach, considering the drops of melt, the fragments and the coolant as separate flow phases. In the frame of this work, the computer code FRADEMO has been developed. It consists of an overall description of the processes inside a steady-state detonation wave in combination with a full description of the detailed models on hydrodynamic and thermal fragmentation presented in this report. Some useful information for the potential code user is given in the appendix of the detailed report also

  18. Stellar explosion

    International Nuclear Information System (INIS)

    Suraud, E.

    1987-01-01

    What is the energy source and which physical processes are powerful enough to generate this explosion which scatters the star. The knowledge progress of very dense matter allows the scenario reconstitution. An instability in the star core which is developing during milliseconds is the cause of this explosion [fr

  19. Steam explosion studies review

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  20. Atmospheric emission of NOx from mining explosives: A critical review

    Science.gov (United States)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems

  1. Coating and Characterization of Mock and Explosive Materials

    Directory of Open Access Journals (Sweden)

    Emily M. Hunt

    2012-01-01

    Full Text Available This project develops a method of manufacturing plastic-bonded explosives by using use precision control of agglomeration and coating of energetic powders. The energetic material coating process entails suspending either wet or dry energetic powders in a stream of inert gas and contacting the energetic powder with atomized droplets of a lacquer composed of binder and organic solvent. By using a high-velocity air stream to pneumatically convey the energetic powders and droplets of lacquer, the energetic powders are efficiently wetted while agglomerate drying begins almost immediately. The result is an energetic powder uniformly coated with binder, that is, a PBX, with a high bulk density suitable for pressing. Experiments have been conducted using mock explosive materials to examine coating effectiveness and density. Energetic materials are now being coated and will be tested both mechanically and thermally. This allows for a comprehensive comparison of the morphology and reactivity of the newly coated materials to previously manufactured materials.

  2. Fire and explosion hazards to flora and fauna from explosives.

    Science.gov (United States)

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  3. Explosion of a low mass neutron star

    International Nuclear Information System (INIS)

    Blinnikov, S.I.; Imshennik, V.S.; Nadyozhin, D.K.; Novikov, I.D.; Polnarev, A.G.; AN SSSR, Moscow. Fizicheskij Inst.); Perevodchikova, T.V.

    1990-01-01

    The hydrodynamical disruption of a low mass neutron star is investigated for the case when the stellar mass becomes smaller than the minimum value, M min ≅0.1 M sun . The final phase of the process is shown to proceed explosively, leading to an expansion of all the star, with a kinetic energy of 4.8 MeV per nucleon. The results of calculations are virtually independent of the way in which the neutron star mass goes down below M min (mass exchange in a close binary stellar system, nucleon decay, or some effective mass loss due to a hypothetical decrease of the gravitational constant). The neutron star disruption is followed by a short (0.01-0.1 s) burst of thermal hard X-rays and soft gamma-rays (kT=10-100 keV) with a subsequent much more prolonged tail of radiation induced by decays of long-lived radioactive nuclides. Some fraction of the explosion energy may be emitted in the form of neutrinos. (orig.)

  4. Similarities and differences in vapor explosion criteria

    International Nuclear Information System (INIS)

    Cronenberg, A.W.

    1978-01-01

    An overview of recent ideas pertaining to vapor explosion criteria indicates that in general sense, a consensus of opinion is emerging on the conditions applicable to explosive vaporization. Experimental and theoretical work has lead a number of investigators to the formulation of such conditions which are quite similar in many respects, although the quantitative details of the model formulation of such conditions are somewhat different. All model concepts are consistent in that an initial period of stable film boiling, separating molten fuel from coolant, is considered necessary (at least for large-scale interactions and efficient intermixing), with subsequent breakdown of film boiling due to pressure and/or thermal effects, followed by intimate fuel-coolant contact and a rapid vaporization process which is sufficient to cause shock pressurization. Although differences arise as to the conditions for and the energetics associated with film boiling destabilization and the mode and energetics of fragmentation and intermixing. However, the principal area of difference seems to be the question of what constitutes the requisite condition(s) for rapid vapor production to cause shock pressurization

  5. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  6. Thermal decomposition of organic solvent with nitric acid in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Tadao; Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Miyata, Sadaichirou

    1995-02-01

    Since a thermal decomposition of organic solvent containing TBP (tributyl phosphate) with nitric acid and heavy metal nitrates is an exothermic reaction, it is possible to cause an explosive decomposition of TBP-complex materials formed by a nitration between the solvent and nitric acid, if the solvent involving TBP-complex is heated upto a thermal limit in an evaporator to concentrate a fuel liquid solution from the extraction process in the reprocessing plant. In JAERI, the demonstration test for explosive decomposition of TBP-complex by the nitration was performed to elucidate the safety margin of the evaporator in the event of hypothetical explosion under auspices of the Science and Technology Agency. The demonstration test was carried out by heating TBP/n-dodecane solvent mixed with nitric acid and uranium nitrate. In the test, the thermal decomposition behavior of the solvent was examined, and also a kinematic reaction constant and a heat formation of the TBP-complex decomposition were measured by the test. In the paper, a safety analysis of a model evaporator was conducted during accidental conditions under the explosive decomposition of the solvent. (author).

  7. The control and prevention of dust explosions

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Papers presented discussed: explosion characteristics and hybrid mixtures explosion characteristics and influencing factors, propagation of dust explosions in ducts, prevention of dust explosions, desensitization, explosion-proof type of construction, explosion pressure relief, optical flame barriers, slide-valves for explosion protection, Ventex explosion barrier valves, grinding and mixing plants, spray driers, dust explosions in silos, and explosion-proof bucket elevators. One paper has been abstracted separately.

  8. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    Science.gov (United States)

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Chernobyl explosion bombshell

    International Nuclear Information System (INIS)

    Martin, S.; Arnott, D.

    1988-01-01

    It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)

  10. Simulation of thermal phenomena expected in fuel coolant interactions in LMFBRs

    International Nuclear Information System (INIS)

    Yasin, J.

    1976-12-01

    High pressures and mechanical work may result when thermal energy is transferred from molten fuel to the coolant in a Liquid Metal Fast Breeder Reactor core meltdown accident. Two aspects of the interaction are examined in the thesis. First, the formation of high pressure pulses termed ''Vapor Explosions,'' and second, the distribution of the molten material into smaller particles, termed ''Fragmentation'', are studied. To understand the nature of the interaction simulant materials were used. Molten bismuth, molten tin and molten glass were dropped into water under various conditions. The interactions were recorded using multiflash and high speed photographing techniques. The pressure pulses were measured using transducers and the debris was examined by photographing them with an electron microscope. It was observed that vapor explosions have thresholds which depend on the material being dropped, its temperature and the bath conditions. The vapor explosions were enhanced by stratifying the bath. It was also noticed that the intensity of the vapor explosion depends on the way the molten drop fragmented in the initial stages of the interaction. The experiments with glass showed that the mode of fragmentation is important in determining when and if a vapor explosion is to be expected. The glass fragmented extensively but without any accompanying vapor explosion. The electron microscope photographs of the glass debris showed that thermal stress and surface tension phenomenon are apparently the cause of the fragmentation

  11. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  12. Development of a Risk-Based Decision-Support-Model for Protecting an Urban Medical Center from a Nuclear Explosion

    International Nuclear Information System (INIS)

    Ben-Dor, G.; Shohet, I.M.; Ornai, D.; Brosh, B.

    2014-01-01

    Nuclear explosion is the worst man-made physical threat on the human society. The nuclear explosion includes several consequences, some of them are immediate and others are long term. The major influences are: long duration blast, extreme thermal release, nuclear radiations, and electro-magnetic pulse (EMP). Their damage range is very wide. When nuclear explosion occurs above or in an urban area it is possible that one or more medical centers will be affected. Medical centers include several layers of structures defined by their resistance capacity to the nuclear explosion influences, beginning with the structure's frame and ending with different systems and with vulnerable medical critical infrastructures such as communications, medical gas supply, etc. A comprehensive literature survey revealed that in spite of the necessity and the importance of medical centers in the daily life and especially in emergency and post nuclear explosion, there is a lack of research on this topic

  13. Advances in neutron based bulk explosive detection

    Science.gov (United States)

    Gozani, Tsahi; Strellis, Dan

    2007-08-01

    Neutron based explosive inspection systems can detect a wide variety of national security threats. The inspection is founded on the detection of characteristic gamma rays emitted as the result of neutron interactions with materials. Generally these are gamma rays resulting from thermal neutron capture and inelastic scattering reactions in most materials and fast and thermal neutron fission in fissile (e.g.235U and 239Pu) and fertile (e.g.238U) materials. Cars or trucks laden with explosives, drugs, chemical agents and hazardous materials can be detected. Cargo material classification via its main elements and nuclear materials detection can also be accomplished with such neutron based platforms, when appropriate neutron sources, gamma ray spectroscopy, neutron detectors and suitable decision algorithms are employed. Neutron based techniques can be used in a variety of scenarios and operational modes. They can be used as stand alones for complete scan of objects such as vehicles, or for spot-checks to clear (or validate) alarms indicated by another inspection system such as X-ray radiography. The technologies developed over the last two decades are now being implemented with good results. Further advances have been made over the last few years that increase the sensitivity, applicability and robustness of these systems. The advances range from the synchronous inspection of two sides of vehicles, increasing throughput and sensitivity and reducing imparted dose to the inspected object and its occupants (if any), to taking advantage of the neutron kinetic behavior of cargo to remove systematic errors, reducing background effects and improving fast neutron signals.

  14. Aspects regarding explosion risk assessment

    Directory of Open Access Journals (Sweden)

    Părăian Mihaela

    2017-01-01

    Full Text Available Explosive risk occurs in all activities involving flammable substances in the form of gases, vapors, mists or dusts which, in mixture with air, can generate an explosive atmosphere. As explosions can cause human losses and huge material damage, the assessment of the explosion risk and the establishment of appropriate measures to reduce it to acceptable levels according to the standards and standards in force is of particular importance for the safety and health of people and goods.There is no yet a recognized method of assessing the explosion risk, but regardless of the applied method, the likelihood of an explosive atmosphere occurrence has to be determined, together with the occurrence of an efficient ignition source and the magnitude of foreseeable consequences. In assessment processes, consequences analysis has a secondary importance since it’s likely that explosions would always involve considerable damage, starting from important material damages and up to human damages that could lead to death.The purpose of the work is to highlight the important principles and elements to be taken into account for a specific risk assessment. An essential element in assessing the risk of explosion in workplaces where explosive atmospheres may occur is technical installations and personal protective equipment (PPE that must be designed, manufactured, installed and maintained so that they cannot generate a source of ignition. Explosion prevention and protection requirements are governed by specific norms and standards, and a main part of the explosion risk assessment is related to the assessment of the compliance of the equipment / installation with these requirements.

  15. Thermal properties of andesite from Popocatepetl and Volcán de Colima, México.

    Science.gov (United States)

    Cardenas-Sanchez, Enrique; De la Cruz-Reina, Servando; Varley, Nick

    2015-04-01

    The thermal conductivity (K), specific heat (Cp) and the coefficient of heat transfer surface (H) are the basic parameters to describe the process of cooling a volcanic rock fragment released in an explosive event. The analysis of the cooling process by conduction, convection and radiation of heat in volcanic rock fragments, has been limited to basalts, and various minerals such as olivine, pyroxene, quartz, etc. (Miao & Chen, 2014; Branlund & Hofmeister, 2012; Romine et al, 2012;. Schön, 2011; Stroberg et al, 2010;. Schatz & Simmons, 1972). There are no detailed studies on the thermal properties of the andesites, abundant in continental stratovolcanoes, and particularly susceptible from lava domes with frequent destruction processes, such as Popocatepetl and Volcan de Colima. Previously, we developed an algorithm for calculation of the grain-size distribution, degree of fragmentation, the thermal energy released and its possible correlation with Volcanic Explosive Index (VEI) from the cooling curves of fragments from vulcanian and strombolian explosions. These curves were obtained from sequences of time over incandescent deposits recorded at selected pixel thermal images of vulcanian activity in the Popocatepetl and Volcan de Colima, Mexico. However, the model was limited by the lack of thermal parameters of the andesites, forcing a first approximation using basalts data. We present a simple model for the cooling process using andesites samples from Popocatépetl and Volcan de Colima. First, the samples were subjected to a rounding process to minimize surface effects. Then, heated to 800 ° C were extracted from the muffle and cooling rate is measured. The thermal conductivity and coefficient of surface heat are determined using a thermal camera and three thermocouples embedded at various depths within the sample. An inversion method was implemented to determine the thermal properties parameters , by comparing the observed data regarding cooling model for a solid

  16. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones

    OpenAIRE

    De Vuyst, T; Kong, K; Djordjevic, N; Vignjevic, R; Campbell, JC; Hughes, K

    2016-01-01

    Modelling and analysis of underwater explosive forming process by using FEM and SPH formulation is presented in this work. The explosive forming of a steel cone is studied. The model setup includes a low carbon steel plate, plate holder, forming die as well as water and C4 explosive. The effect of multiple explosives on rate of targets deformation has been studied. Four different multi-explosives models have been developed and compared to the single explosive model. The formability of the ste...

  17. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    International Nuclear Information System (INIS)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-01-01

    Highlights: ► We analyzed fire and explosion incidents in a plant producing CHP and DCPO. ► Data from calorimeters reveal causes and phenomena associated with the incidents. ► The credible worst scenario was thermal explosion. ► Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile–butadiene–styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  18. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  19. SUPERFUND TREATABILITY CLEARINGHOUSE: INCINERATION TEST OF EXPLOSIVES CONTAMINATED SOILS AT SAVANNA ARMY DEPOT ACTIVITY, SAVANNA, ILLINOIS

    Science.gov (United States)

    The primary objective of these tests was to demonstrate the effectiveness of incineration as a decontamination method for explosives contaminated sails. A pilot-scale rotary kiln incinerator, manufactured by ThermAll, Inc., was used to treat both sandy and clayey...

  20. Simulation of TROI steam explosion behaviour using the COMETA code

    International Nuclear Information System (INIS)

    Arun Kumar Nayak; Hyun Sun Park; Bal Raj Sehgal; Alessandro Annunziato

    2005-01-01

    Full text of publication follows: During a severe accident in a nuclear reactor, the core can melt and the molten corium while interacting with water may cause an energetic fuel coolant interaction which is known as steam explosion. Such phenomena can occur inside the reactor vessel during flooding of a degraded core or when molten corium falls into the lower head filled with water. Similar phenomena may occur outside the reactor vessel when molten corium is ejected into a flooded reactor cavity or into the flooded containment after the vessel failure. The interaction of molten corium with water is one of the most complex thermal hydraulic and chemical phenomena. Recently in the TROI test series carried out at KAERI (Korean Atomic Energy Research Institute) in Korea, steam explosions were observed. In those tests, the UO 2 /ZrO 2 compositions were close to that of prototypic case. In this paper, we have numerically simulated the melt coolant interaction of TROI tests using the computer code, COMETA (Core MElt Thermalhydraulic Analysis) developed by JRC (Joint Research Center), at Ispra in Italy. The COMETA code was primarily developed to analyse, with sufficient detail, both the thermal-hydraulics and the fuel fragmentation phenomena during the melt quenching tests as conducted in the FARO facility. The code solves the conservation equations of mass, momentum and energy for the fluid using a conventional two-fluid model. Fuel fragmentation model considers the molten jet, its break up in drops and accumulation as fused-debris on the bottom. An explicit coupling between the thermal hydraulics and fuel fragmentation for the energy transfer is considered. The code has been extensively validated in the past for melt quenching in a series of experiments in the FARO facility. In this work, we first simulated the pre-mix and triggering phases of the TROI-13 tests for which the test data were available. The melt jet trajectory, void fraction and pressure profile were

  1. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  2. General phenomenology of underground nuclear explosions

    International Nuclear Information System (INIS)

    Derlich, S.; Supiot, F.

    1969-01-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr

  3. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite

    International Nuclear Information System (INIS)

    Gunawan, Richard; Zhang Dongke

    2009-01-01

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol -1 and 4.55 x 10 7 s -1 without the presence of pyrite and 101.8 kJ mol -1 and 2.57 x 10 9 s -1 with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  4. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.

    Science.gov (United States)

    Gunawan, Richard; Zhang, Dongke

    2009-06-15

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol(-1) and 4.55 x 10(7)s(-1) without the presence of pyrite and 101.8 kJ mol(-1) and 2.57 x 10(9)s(-1) with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  5. 30 CFR 77.307 - Thermal dryers; location and installation; general.

    Science.gov (United States)

    2010-07-01

    ... where the heat, sparks, flames, or coal dust from the system might cause a fire or explosion. (b... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Thermal Dryers § 77.307 Thermal dryers; location and installation; general...

  6. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  7. Nano-powder production by electrical explosion of wires

    International Nuclear Information System (INIS)

    Mao Zhiguo; Zou Xiaobing; Wang Xinxin; Jiang Weihua

    2010-01-01

    A device for nano-powder production by electrical explosion of wires was designed and built. Eight wires housed in the discharge chamber are exploded one by one before opening the chamber for the collection of the produced nano-powder. To increase the rate of energy deposition into a wire, the electrical behavior of the discharge circuit including the exploding wire was simulated. The results showed that both reducing the circuit inductance and reducing the capacitance of the energy-storage capacitor (keeping the storage energy constant) can increase the energy deposition rate. To better understand the physical processes of the nano-powder formation by the wire vapor, a Mach-Zehnder interferometer was used to record the time evolution of the wire vapor as well as the plasma. A thermal expansion lag of the dense vapor core as well as more than one times of the vapor burst was observed for the first time. Finally, nano-powders of titanium nitride, titanium dioxide, copper oxides and zinc oxide were produced by electrical explosion of wires. (authors)

  8. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  9. A structured approach to forensic study of explosions: The TNO Inverse Explosion Analysis tool

    NARCIS (Netherlands)

    Voort, M.M. van der; Wees, R.M.M. van; Brouwer, S.D.; Jagt-Deutekom, M.J. van der; Verreault, J.

    2015-01-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage

  10. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying [Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC (China); Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, Taiwan, ROC (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We analyzed fire and explosion incidents in a plant producing CHP and DCPO. Black-Right-Pointing-Pointer Data from calorimeters reveal causes and phenomena associated with the incidents. Black-Right-Pointing-Pointer The credible worst scenario was thermal explosion. Black-Right-Pointing-Pointer Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  11. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  12. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  13. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  14. Effects of neutrino trapping on supernova explosions

    International Nuclear Information System (INIS)

    Takahara, Mariko; Sato, Katsuhiko

    1982-01-01

    Effects of neutrino trapping on the mass ejection from the stellar cores are investigated with the aid of a simplified equation of state under the assumption of adiabatic collapse. It is found that mass ejection becomes violent only if the ratio of the trapped leptons to baryons, Y sub(L), lies in an appropriate range. If the value of Y sub(L) lies out of this range, mass ejection is difficult. It is also shown that as the thermal stiffness of the shocked matter increases, the range necessary for the violent mass ejection becomes wider. Possibilities of supernova explosion are discussed on the basis of these results. (author)

  15. Spot test kit for explosives detection

    Science.gov (United States)

    Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L

    2014-03-11

    An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.

  16. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  17. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  18. Physicochemical analysis of explosions due to impact in mixed paste propellants

    Energy Technology Data Exchange (ETDEWEB)

    Dubovik, Aleksandr V. [Institute of Chemical Physics, Russian Academy of Science, 117977, Kosygin Street 4, Moscow (Russian Federation)

    2005-09-01

    An analysis has been performed on the impact sensitivity of paste explosive materials (PEM) with continuous physical structure containing air cavities of various sizes. It is shown that the sensitivities of PEMs based on ammonium perchlorate are strongly influenced by the extent of oxidizer decomposition during the low-temperature stages of thermal decomposition. Mechanically non-uniform PEMs are well sensitized by air bubbles of an optimum size. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  19. Review of possible peaceful applications of nuclear explosions in the national economy of the Soviet Union

    International Nuclear Information System (INIS)

    Witherspoon, Paul A.

    1970-01-01

    The following review will give some of the current thinking of Soviet scientists and engineers on the possibilities of using nuclear explosions for peaceful purposes in the Soviet Union. This review is taken from a more detailed report that was presented under the same title by Soviet participants at an information-exchange meeting that was held in Vienna between the Soviet Union and the United States in April, 1969. Aside from a very brief review of one explosion in salt, the report does not give details on nuclear explosion effects (mechanical, seismic, radiation, or thermal). Rather, the report summarizes the results of design calculations and indicates the direction of Soviet planning for a variety of industrial applications. A complete translation of this report will be published by the Division of Technical Information and Education of AEC at Oakridge. (author)

  20. Review of possible peaceful applications of nuclear explosions in the national economy of the Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, Paul A [University of California, Berkeley (United States)

    1970-05-15

    The following review will give some of the current thinking of Soviet scientists and engineers on the possibilities of using nuclear explosions for peaceful purposes in the Soviet Union. This review is taken from a more detailed report that was presented under the same title by Soviet participants at an information-exchange meeting that was held in Vienna between the Soviet Union and the United States in April, 1969. Aside from a very brief review of one explosion in salt, the report does not give details on nuclear explosion effects (mechanical, seismic, radiation, or thermal). Rather, the report summarizes the results of design calculations and indicates the direction of Soviet planning for a variety of industrial applications. A complete translation of this report will be published by the Division of Technical Information and Education of AEC at Oakridge. (author)

  1. 30 CFR 77.1301 - Explosives; magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives; magazines. 77.1301 Section 77.1301... and Blasting § 77.1301 Explosives; magazines. (a) Detonators and explosives other than blasting agents shall be stored in magazines. (b) Detonators shall not be stored in the same magazine with explosives...

  2. CFD SIMULATION FOR DEMILITARIZATION OF RDX IN A ROTARY KILN BY THERMAL DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    SI H. LEE

    2017-06-01

    Full Text Available Demilitarization requires the recovery and disposal of obsolete ammunition and explosives. Since open burning/detonation of hazardous waste has caused serious environmental and safety problems, thermal decomposition has emerged as one of the most feasible methods. RDX is widely used as a military explosive due to its high melting temperature and detonation power. In this work, the feasible conditions under which explosives can be safely incinerated have been investigated via a rotary kiln simulation. To solve this problem, phase change along with the reactions of RDX has been incisively analyzed. A global reaction mechanism consisting of condensed phase and gas phase reactions are used in Computational Fluid Dynamics simulation. User Defined Functions in FLUENT is utilized in this study to inculcate the reactions and phase change into the simulation. The results divulge the effect of temperature and the varying amounts of gas produced in the rotary kiln during the thermal decomposition of RDX. The result leads to the prospect of demilitarizing waste explosives to avoid the possibility of detonation.

  3. Study of the initiation and the escalade phases of a vapour explosion; Etude de la phase d'initiation et d'escalade d'une explosion de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Lamome, J

    2007-09-15

    The steam explosion triggering issue is discussed here by studying at the thermal fragmentation (small pressure perturbation) of a hot water droplet surrounded by a stable steam film. Fragmentation seems to be the consequence of local contacts between the droplet and the coolant. However, the exact mechanism altering the droplet following the above mentioned contacts is uncertain. After a study of the proportions in place, we realized a contact can fragment the droplet in a very short period of time. Therefore, we adopted an approach considering the contact as the explosion criteria. In order to validate this approach, we researched the explosion levels of the experimental variations based on the surrounding pressure and on the coolant's temperature. The model found again the experimental variations, the levels were found again with some uncertainty. The contact is obtained by 2 mechanisms inducing liquid's proximity: a steam film global compression due to the disturbance and the amplification of the interface defaults between the coolant and the steam. It appears it is the mechanism of global compression that explains mostly the experimental variations. Following these results, we conducted model's extrapolations in order to come as close as possible of the conditions in which steam explosion can occur on an industrial scale (i.e. in the water pressured nuclear reactors). (author)

  4. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  5. Sensitivity to friction for primary explosives.

    Science.gov (United States)

    Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš

    2012-04-30

    The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Ag-ZnO nanostructure for ANTA explosive molecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Ummar Pasha [Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad 500046 (India); Sangani, L. D. Varma [Centre for Advanced Studies in Electronics Science and Technology, School of Physics, University of Hyderabad (India); Gaur, Anshu [Department of Industrial Engineering, University of Trento, Via Sommarive9, Trento (Italy); Mohiddon, Md. Ahamad, E-mail: ahamed.vza@gmail.com [National Institute of Technology Andhra Pradesh, Tadepalliguem 534101, AP, India Phone : (+) 91-40-23134382, FAX: (+) 91-40-23010227 (India); Krishna, M. Ghanashyam [Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad 500046 (India); Centre for Advanced Studies in Electronics Science and Technology, School of Physics, University of Hyderabad (India); National Institute of Technology Andhra Pradesh, Tadepalliguem 534101, AP, India Phone : (+) 91-40-23134382, FAX: (+) 91-40-23010227 (India)

    2016-05-23

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  7. Zirconium hydride containing explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  8. Close-in airblast from underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Vortman, L J [Sandia Laboratories, Albuquerque, NM (United States)

    1970-05-15

    Air overpressures as a function of time have been measured from surface zero to about 170 ft/lb{sup 1/3} along the ground from nuclear and chemical explosions. Charge depths varied from the surface to depths below which explosion gases are contained. A ground-shock-induced air pressure pulse is clearly distinguishable from the pulse caused by venting gases. Measured peak overpressures show reasonable agreement with the theoretical treatment by Monta. In a given medium the suppression of blast with explosion burial depth is a function of the relative distance at which the blast is observed. Rates of suppression of peak overpressure with charge burial are different for the two pulses. Rates are determined for each pulse over the range of distances at which measurements have been made of air overpressure from chemical explosions in several media. Nuclear data are available from too few shots for similar dependence on burial depth and distance to be developed, but it is clear that the gas venting peak overpressure from nuclear explosions is much more dependent on medium than that from chemical explosions. For above-ground explosions, experiment has shown that airblast from a I-kiloton nuclear explosion is equal to that from a 0.5-kiloton TNT explosion. Data on ground-shock-induced airblast is now sufficient to show that a similar relationship may exist for buried explosions. Because of medium dependence of the gas venting pulse from nuclear explosions, data from additional nuclear events will be required before a chemical/nuclear airblast equivalence can be determined for the gas-venting pulse. (author)

  9. Structural Changes of Lignin from Wheat Straw by Steam Explosion and Ethanol Pretreatments

    Directory of Open Access Journals (Sweden)

    Cheng Pan

    2016-06-01

    Full Text Available Effects of the pretreatment of wheat straw by steam explosion and ethanol were evaluated relative to the structural changes of lignin from the pretreated pulp. The lignin from steam explosion pulp (LS, lignin from steam blasting residual liquid (LL, lignin from ethanol pretreatment pulp (LE, lignin from black liquor (LB, and lignin from wheat straw (LW were separated, and the structural characteristics of the lignin fractions were compared based on analyses of Fourier transform-infrared, ultraviolet, thermogravimetric, and 1H and 13C nuclear magnetic resonance spectra. The proportions of the three structural units in all lignin fractions clearly changed during the pretreatment process because of inter-conversion reactions. The conjugated structure of lignin was destroyed in the pretreatment process and was also affected by the alkali extraction process. The alcoholic hydroxyl links on the aliphatic side chain were partly transformed into carbonyl groups during ethanol pretreatment. Demethoxylation occurred in all lignin fractions during the ethanol pretreatment and steam explosion process. The thermal stability of the LB fraction was relatively high because of the condensation reaction.

  10. 8. Peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Musilek, L.

    1992-01-01

    The chapter deals with peaceful uses of nuclear explosions. Described are the development of the underground nuclear explosion, properties of radionuclides formed during the explosion, their distribution, the release of radioactive products of underground nuclear explosions into the air, their propagation in the atmosphere, and fallout in the landscape. (Z.S.). 1 tab., 8 figs., 19 refs

  11. 27 CFR 70.445 - Commerce in explosives.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Commerce in explosives. 70... Cartridges, and Explosives § 70.445 Commerce in explosives. Part 55 of title 27 CFR contains the regulations..., explosives, (b) Permits for users who buy or transport explosives in interstate or foreign commerce, (c...

  12. Simulation of the chemical environment of a nuclear explosion with exploding wires

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Walter; Block, Oliver U.J. [Nuclear Engineering, Kansas State University, Manhattan, KS (United States)

    1970-05-15

    The chemical processes in an expanding underground cavity resulting from a nuclear explosion cannot be predicted or controlled as well as such physical characteristics as crater size, magnitude of the outgoing shock wave, or the extent of rock fracturing. However in most underground nuclear explosions it would be desirable to control the chemical and/or physical form and amount of radioactive fallout venting from the explosion. The high temperatures and corresponding high energy densities produced by exploding wires are sufficient to produce in the wire and material immediately surrounding it the temperature (a few thousand degrees) required to simulate the chemical environment of a nuclear explosion in the time interval just preceding the venting of the cavity. The economics and the size of exploding wire apparatus make this type of experiment readily applicable to laboratory study. Design of exploding wire circuits to obtain particular temperatures or energy densities can be completed using several different combinations of circuit and wire conditions. Since the circuit parameters, including charging voltage, capacitor bank capacitance and circuit inductance primarily determine the cost of the necessary laboratory equipment, these parameters should be selected by theoretical expressions while also considering economic factors. Wire parameters are then experimentally determined to produce the most energetic explosions with the selected circuit parameters. A theoretical method applicable to designing exploding wire circuits to produce the desired high temperatures and energy densities in the wire and surrounding sample material has been obtained. The method assumes that a thermal spike of energy is deposited in a low conductivity material (typical of the earth's crust) surrounding the wire. From the assumed temperature distribution in the surrounding sample material the energy which must be deposited in the thermal spike to produce the desired temperature and

  13. Idaho Explosives Detection System

    International Nuclear Information System (INIS)

    Reber, Edward L.; Blackwood, Larry G.; Edwards, Andrew J.; Jewell, J. Keith; Rohde, Kenneth W.; Seabury, Edward H.; Klinger, Jeffery B.

    2005-01-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004

  14. Idaho Explosives Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward L. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)]. E-mail: reber@inel.gov; Blackwood, Larry G. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Edwards, Andrew J. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Jewell, J. Keith [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Rohde, Kenneth W. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Seabury, Edward H. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Klinger, Jeffery B. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)

    2005-12-15

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  15. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  16. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    International Nuclear Information System (INIS)

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia's radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia's Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels

  17. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  18. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L. [Sehgal Konsult, Stockholm (Sweden)

    2002-04-01

    The objective of the present study is to perform a critical review of ex-vessel steam explosion in Swedish and Finnish reactor containments in a hypothetical severe accident. The review performed is related to a broader program funded by APRI whose focus is related to severe accidents. A critical review of the current knowledge base on the subject is performed, including those results obtained from other studies and assessments conducted earlier under auspice of APRI. Several limiting mechanisms which may significantly impact the assessment of steam explosion loads are identified, taking into account specific reactor-design features and accident progression scenarios. In addition, generic discussion is provided on the effect of melt physical properties on the steam explosion energetics. Thermal hydraulic conditions of pre-mixture and its explosivity are evaluated using models and methods developed by the researchers at Royal Institute of Technology (RIT). The report includes a wealth of information on details with respect to quantification of vessel melt sources for ex-vessel FCIs; and with respect to the models of steam explosion premixing, triggerability and explosivity employed in the present assessment. These and other models e.g. on vessel failure, melt jet fragmentation etc. are products of the continuing research conducted at the Division of Nuclear Power Safety at RIT. The general conclusion of the present study can be summarized as: Though substantial progress have been made in premixing research verifying the mixing limit concept, there is still a need to improve jet breakup models and validate the existing models against melt jet experiments. The understanding of the triggering mechanisms is still very pool. Though various analytical models have been developed based on the thermal detonation concepts, the need still exists in both experimental and analytical research to understand better the droplet fragmentation during the explosion or propagation phase

  19. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L.

    2002-04-01

    The objective of the present study is to perform a critical review of ex-vessel steam explosion in Swedish and Finnish reactor containments in a hypothetical severe accident. The review performed is related to a broader program funded by APRI whose focus is related to severe accidents. A critical review of the current knowledge base on the subject is performed, including those results obtained from other studies and assessments conducted earlier under auspice of APRI. Several limiting mechanisms which may significantly impact the assessment of steam explosion loads are identified, taking into account specific reactor-design features and accident progression scenarios. In addition, generic discussion is provided on the effect of melt physical properties on the steam explosion energetics. Thermal hydraulic conditions of pre-mixture and its explosivity are evaluated using models and methods developed by the researchers at Royal Institute of Technology (RIT). The report includes a wealth of information on details with respect to quantification of vessel melt sources for ex-vessel FCIs; and with respect to the models of steam explosion premixing, triggerability and explosivity employed in the present assessment. These and other models e.g. on vessel failure, melt jet fragmentation etc. are products of the continuing research conducted at the Division of Nuclear Power Safety at RIT. The general conclusion of the present study can be summarized as: Though substantial progress have been made in premixing research verifying the mixing limit concept, there is still a need to improve jet breakup models and validate the existing models against melt jet experiments. The understanding of the triggering mechanisms is still very pool. Though various analytical models have been developed based on the thermal detonation concepts, the need still exists in both experimental and analytical research to understand better the droplet fragmentation during the explosion or propagation phase

  20. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  1. Expediency of application of explosion-relief constructions to ensure explosion resistance of production buildings

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2016-01-01

    Full Text Available The article presents a model of economic evaluation and selection of explosion-relief constructions (ERC, as well as determination of explosion protection efficiency of buildings and structures provided on a stage of construction. It has been shown that definition of economic efficiency of ERС is the evaluation of its application for buildings with remote or automatically controlled production. It has been determined that an important role in design of explosive industrial facilities is played by selection of the economically feasible and effective materials for ERC. When selecting materials it is necessary to consider probability and yield of explosions. Necessity to create the methods allow considering such probability has been revealed.

  2. Explosives 92. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Farnfield, R.A. (ed.)

    1992-01-01

    17 papers are presented. Topics covered include: the POG system - a new concept in the use of ANFO; demolition of a motorway bridge; presplit and smooth blasting; VIBReX - a predictive code for assessing the effect of blast design on ground vibration; ground vibrations from blasting; digital seismographs; human response to blasting and the effects on planning conditions; landform construction by restoration blasting; use of small diameter explosives; efficient priming; safety management in the explosives industry; and the law on packaging of explosives. Two papers have been abstracted separately.

  3. Research of thermal stability of ion exchangers

    International Nuclear Information System (INIS)

    Stuchlik, S.; Srnkova, J.

    1983-01-01

    Prior to the fixation of radioactive ion exchangers into bitumen these exchangers have to be dried. The resulting gaseous products may generate explosive mixtures. An analysis was made of the thermal stability of two types of ion exchangers, the cation exchanger KU-2-8 cS and the anion exchanger AV-17-8 cS which are used in the V-1 nuclear power plant at Jaslovske Bohunice. The thermal stability of the anion exchangers was monitored using gas chromatography at temperatures of 100, 120, 140, 160 and 180 degC and by measuring weight loss by kiln-drying at temperatures of 120, 140, 160 and 180 degC. The ion exchanger was heated for 6 hours and samples were taken continuously at one hour intervals. The thermal stability of the cation exchanger was monitored by measuring the weight loss. Gas chromatography showed the release of trimethylamine from the anion exchanger in direct dependence on temperature. The measurement of weight losses, however, only showed higher losses of released products which are explained by the release of other thermally unstable products. The analysis of the thermal stability of the cation exchanger showed the release of SO 2 and the weight loss (following correction for water content) was found only after the fourth hour of decomposition. The experiment showed that the drying of anion exchanger AV-17-8 cS may cause the formation of explosive mixtures. (J.P.)

  4. Problems in the theory of point explosions

    Science.gov (United States)

    Korobeinikov, V. P.

    The book is concerned with the development of the theory of point explosions, which is relevant to the study of such phenomena as the initiation of detonation, high-power explosions, electric discharges, cosmic explosions, laser blasts, and hypersonic aerodynamics. The discussion covers the principal equations and the statement of problems; linearized non-self-similar one-dimensional problems; spherical, cylindrical, and plane explosions with allowance for counterpressure under conditions of constant initial density; explosions in a combustible mixture of gases; and point explosions in inhomogeneous media with nonsymmetric energy release. Attention is also given to point explosions in an electrically conducting gas with allowance for the effect of the magnetic field and to the propagation of perturbations from solar flares.

  5. Effectiveness of laser sources for contactless sampling of explosives

    Science.gov (United States)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.

    2016-05-01

    A mass-spectrometric study of photo processes initiated by ultraviolet (UV) laser radiation in explosives adsorbed on metal and dielectric substrates has been performed. A calibrated quadrupole mass spectrometer was used to determine a value of activation energy of desorption and a quantity of explosives desorbed by laser radiation. A special vacuumoptical module was elaborated and integrated into a vacuum mass-spectrometric system to focus the laser beam on a sample. It has been shown that the action of nanosecond laser radiation set at q= 107 - 108 W/cm2, λ=266 nm on adsorbed layers of molecules of trinitrotoluene (TNT ) and pentaerytritoltetranitrate (PETN) leads not only to an effective desorption, but also to the non-equilibrium dissociation of molecules with the formation of nitrogen oxide NO. The cyclotrimethylenetrinitramine (RDX) dissociation products are observed only at high laser intensities (q> 109 W/cm2) thus indicating the thermal nature of dissociation, whereas desorption of RDX is observed even at q> 107 W/cm2 from all substrates. Desorption is not observed for cyclotetramethylenetetranitramine (HMX) under single pulse action: the dissociation products NO and NO2 are registered only, whereas irradiation at 10Hz is quite effective for HMX desorption. The results clearly demonstrate a high efficiency of nanosecond laser radiation with λ = 266 nm, q ~ 107 - 108 W/cm2, Epulse= 1mJ for desorption of molecules of explosives from various surfaces.

  6. Search for evidence of nuclear involvement in the fatal explosion of a 'cold fusion' experiment

    International Nuclear Information System (INIS)

    Grant, P.M.; Whipple, R.E.; Andresen, B.D.; Russo, R.E.; Bazan, F.; Brunk, J.L.; Wong, K.M.

    1995-01-01

    Forensic analyses of debris from the fatal explosion of an electrochemical 'cold fusion' cell at SRI International were conducted at LLNL at the request of Cal-OSHA. One investigation focused on the possibility of conventional nuclear reaction mechanisms contributing to the total energy inventory of the incident. Selected metal components of the electrolysis apparatus were subjected to nondestructive γ-ray spectrometry with high-sensitivity, low-background Ge detector systems. The anticipated analytes in these studies were radioactivation products potentially induced in the explosion residue by either fast or thermal neutrons. The results of this investigation were negative within the temporal constraints of the incident and the analytical sensitivities of the instrumentation. (author) 5 refs.; 1 fig.; 2 tabs

  7. Detection of trace explosives on relevant substrates using a mobile platform for photothermal infrared imaging spectroscopy (PT-IRIS)

    Science.gov (United States)

    Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; Byers, Jeff; McGill, R. Andrew

    2015-05-01

    This manuscript describes the results of recent tests regarding standoff detection of trace explosives on relevant substrates using a mobile platform. We are developing a technology for detection based on photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). This approach leverages one or more microfabricated IR quantum cascade lasers, tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. Increased sensitivity to explosives and selectivity between different analyte types is achieved by narrow bandpass IR filters in the collection path. We have previously demonstrated the technique at several meters of stand-off distance indoors and in field tests, while operating the lasers below the infrared eye-safe intensity limit (100 mW/cm2). Sensitivity to explosive traces as small as a single 10 μm diameter particle (~1 ng) has been demonstrated. Analytes tested here include RDX, TNT, ammonium nitrate and sucrose. The substrates tested in this current work include metal, plastics, glass and painted car panels.

  8. Safety engineering experiments of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Noboru

    1987-07-24

    The outline of large scale experiments carried out every year since 1969 to obtain fundamental data and then establish the safety engineering standards concerning the manufacturing, storage and transportation, etc. of all explosives was described. Because it becomes recently difficult to ensure the safety distance in powder magazines and powder plants, the sandwich structure with sand is thought to be suitable as the neighboring barrier walls. The special vertical structure for embankments to provide against a emergency explosion is effective to absorb the blast. Explosion behaviors such as initiating sensitivity, detonation, sympathetic detonation, and shock occurence of the ANFO explosives in place of dynamite and the slurry explosives were studied. The safety engineering standards for the manufacturing and application of explosives were studied to establish because accidents by tabacco fire are not still distinguished. Much data concerning early stage fire fighting, a large quantity of flooding and shock occurence from a assumption of ignition during machining in the propellants manufacturing plant, could be obtained. Basic studies were made to prevent pollution in blasting sites. Collected data are utilized for the safety administration after sufficient discussion. (4 figs, 2 tabs, 3 photos, 17 refs)

  9. Sensitivity to friction for primary explosives

    International Nuclear Information System (INIS)

    Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš

    2012-01-01

    Highlights: ► The friction sensitivity of 14 samples of primary explosives was determined. ► The same apparatus (small scale BAM) and the same method (probit analysis) was used. ► The crystal shapes and sizes were documented with microscopy. ► Almost all samples are less sensitive than lead azide, which is commercially used. ► The organic peroxides (TATP, DADP, HMTD) are not as sensitive as often reported. - Abstract: The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature.

  10. Sensitivity to friction for primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert, E-mail: robert.matyas@upce.cz [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10 (Czech Republic); Selesovsky, Jakub; Musil, Tomas [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10 (Czech Republic)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer The friction sensitivity of 14 samples of primary explosives was determined. Black-Right-Pointing-Pointer The same apparatus (small scale BAM) and the same method (probit analysis) was used. Black-Right-Pointing-Pointer The crystal shapes and sizes were documented with microscopy. Black-Right-Pointing-Pointer Almost all samples are less sensitive than lead azide, which is commercially used. Black-Right-Pointing-Pointer The organic peroxides (TATP, DADP, HMTD) are not as sensitive as often reported. - Abstract: The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature.

  11. Propagation of Reactions in Thermally-damaged PBX-9501

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Glascoe, E A; Kercher, J R; Willey, T M; Springer, H K; Greenwood, D W; Molitoris, J D; Smilowitz, L; Henson, B F; Maienschein, J L

    2010-03-05

    A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosive and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.

  12. Explosive performance on the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKown, T.O. [Los Alamos National Lab., NM (United States)

    1994-12-31

    The Explosive Effects Physics Project at the Los Alamos National Laboratory planned and conducted experiments on the Non-Proliferation Experiment (NPE) as part of its effort to define source functions for seismic waves. Since all investigations were contingent on the performance of the emplaced chemical explosive, an array of diagnostic measurements was fielded in the emplaced explosive. The CORRTEX (COntinuous Reflectometry for Radius vs Time EXperiment) system was used to investigate the explosive initiation and to determine the detonation velocities on three levels and in a number of radial directions. The CORRTEX experiments fielded in the explosive chamber will be described, including a description of the explosive emplacement from the perspective of its impact on the CORRTEX results. The data obtained are reviewed and the resulting detonation velocities are reported. A variation of detonation velocity with depth in the explosive and the apparent underdetonation and overdetonation of the explosive in different radial directions is reported.

  13. The behavior limestone under explosive load

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  14. Phenomenological modelling of steam explosions

    International Nuclear Information System (INIS)

    Corradini, M.L.; Drumheller, D.S.

    1980-01-01

    During a hypothetical core meltdown accident, an important safety issue to be addressed is the potential for steam explosions. This paper presents analysis and modelling of experimental results. There are four observations that can be drawn from the analysis: (1) vapor explosions are suppressed by noncondensible gases generated by fuel oxidation, by high ambient pressure, and by high water temperatures; (2) these effects appear to be trigger-related in that an explosion can again be induced in some cases by increasing the trigger magnitude; (3) direct fuel liquid-coolant liquid contact can explain small scale fuel fragmentation; (4) heat transfer during the expansion phase of the explosion can reduce the work potential

  15. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  16. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  17. Explosive Characteristics of Carbonaceous Nanoparticles

    Science.gov (United States)

    Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok

    2013-03-01

    Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)

  18. Surface energy of explosive nanoparticles

    Science.gov (United States)

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  19. 27 CFR 555.181 - Reporting of plastic explosives.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Reporting of plastic..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.181 Reporting of plastic explosives. All persons, other than an agency of the United States...

  20. Insights into explosion dynamics at Stromboli in 2009 from ash samples collected in real-time

    Science.gov (United States)

    Taddeucci, J.; Lautze, N.; Andronico, D.; D'Auria, L.; Niemeijer, A.; Houghton, B.; Scarlato, P.

    2012-04-01

    Rapid characterization of tephra during explosive eruptions can provide valuable insights into eruptive mechanisms, also integrating other monitoring systems. Here we reveal a perspective on Stromboli's conduit processes by linking ash textures to geophysical estimates of eruption parameters of observed explosions. A three day campaign at Stromboli was undertaken by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) in October 2009. At this time activity was moderately intense, with an average 4 to 5, both ash-rich and ash-poor, explosions per hour at each the SW and NE vents. A total of fifteen ash samples were collected in real time. We used binocular and scanning electron microscopes to analyze the components, grain size and morphology distributions, and surface chemistry of ash particles within eight selected samples. In addition, the INGV monitoring network provided visual, thermal, and seismic information on the explosions that generated the sampled ash. In each sample, the proportion of fluidal, glassy sideromelane (as opposed to blocky, microcrystalline tachylite plus lithics), the degree of "chemical freshness" (as opposed to chemical alteration), and the average size of particles appear to correlate directly with the maximum height and the seismic amplitude of the corresponding explosion, and inversely correlate with the amount of ash erupted, as estimated by monitoring videos. These observations suggest that more violent explosions (i.e., those driven by the release of larger and more pressurized gas volumes) produce ash via the fragmentation of hotter, more fluid magma, while weaker ones mostly erupt ash-sized particles derived by the fragmentation of colder magma and incorporation of conduit wall debris. The formation of fluidal ash particles (up to Pele's hairs) requires aerodynamic deformation of a relatively low-viscosity magma, in agreement with the strong acceleration imposed upon fragmented magma clots by the rapid expansion of

  1. Failure at Zainsk thermal power station: lesson for thermal and nuclear power stations

    International Nuclear Information System (INIS)

    Derkach, A.L.; Klyuchnikov, A.A.; Fedorenko, G.M.; Kuz'min, V.V.

    2007-01-01

    An account of system failure at Zainsk Thermal PS on January 1-st, 1979 is given. The cause of failure - sudden unauthorized energizing of block transformer which led to a direct asynchronous start of 200 MW turbine generator from grid. The failure resulted in the explosion and fire in generator, shaft destruction, and the damage of the machine hall's roof. The core roots of the failure have been scrutinised

  2. EVENT, Explosive Transients in Flow Networks

    International Nuclear Information System (INIS)

    Andrae, R.W.; Tang, P.K.; Bolstad, J.W.; Gregory, W.S.

    1985-01-01

    1 - Description of problem or function: A major concern of the chemical, nuclear, and mining industries is the occurrence of an explosion in one part of a facility and subsequent transmission of explosive effects through the ventilation system. An explosive event can cause performance degradation of the ventilation system or even structural failures. A more serious consequence is the release of hazardous materials to the environment if vital protective devices such as air filters, are damaged. EVENT was developed to investigate the effects of explosive transients through fluid-flow networks. Using the principles of fluid mechanics and thermodynamics, governing equations for the conservation of mass, energy, and momentum are formulated. These equations are applied to the complete network subdivided into two general components: nodes and branches. The nodes represent boundaries and internal junctions where the conservation of mass and energy applies. The branches can be ducts, valves, blowers, or filters. Since in EVENT the effect of the explosion, not the characteristics of the explosion itself, is of interest, the transient is simulated in the simplest possible way. A rapid addition of mass and energy to the system at certain locations is used. This representation is adequate for all of the network except the region where the explosion actually occurs. EVENT84 is a modification of EVENT which includes a new explosion chamber model subroutine based on the NOL BLAST program developed at the Naval Ordnance Laboratory, Silver Spring, Maryland. This subroutine calculates the confined explosion near-field parameters and supplies the time functions of energy and mass injection. Solid-phase or TNT-equivalent explosions (which simulate 'point source' explosions in nuclear facilities) as well as explosions in gas-air mixtures can be simulated. The four types of explosions EVENT84 simulates are TNT, hydrogen in air, acetylene in air, and tributyl phosphate (TBP or 'red oil

  3. Reduction of radioactivity produced by nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lessler, Richard M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Four main sources contribute to the radioactivity produced by a nuclear explosive: 1. Fission products from the nuclear explosive, 2. Fusion products from the nuclear explosive, 3. Induced radioactivity in the nuclear explosive, 4. Induced radioactivity in the environment. This paper will summarize some of the work done at the Lawrence Radiation Laboratory at Livermore to reduce the radioactivity from these sources to levels acceptable for peaceful applications. Although it is theoretically possible to have no radioactivity produced by nuclear explosives, this goal has not been achieved.

  4. Characteristics of a plasma flow field produced by a metal array bridge foil explosion

    Science.gov (United States)

    Junying, WU; Long, WANG; Yase, LI; Lijun, YANG; Manzoor, SULTAN; Lang, CHEN

    2018-07-01

    To improve the energy utilization efficiency of metal bridge foil explosion, and increase the function range of plasmas, array bridge foil explosion experiments with different structures were performed. A Schlieren photographic measurement system with a double-pulse laser source was used to observe the flow field of a bridge foil explosion. The evolution laws of plasmas and shock waves generated by array bridge foil explosions of different structures were analyzed and compared. A multi-phase flow calculation model was established to simulate the electrical exploding process of a metal bridge foil. The plasma equation of state was determined by considering the effect of the changing number of particles and Coulomb interaction on the pressure and internal energy. The ionization degree of the plasma was calculated via the Saha–Eggert equation assuming conditions of local thermal equilibrium. The exploding process of array bridge foils was simulated, and the superposition processes of plasma beams were analyzed. The variation and distribution laws of the density, temperature, pressure, and other important parameters were obtained. The results show that the array bridge foil has a larger plasma jet diameter than the single bridge foil for an equal total area of the bridge foil. We also found that the temperature, pressure, and density of the plasma jet’s center region sharply increase because of the superposition of plasma beams.

  5. Explosions of Thorne-Żytkow objects

    Science.gov (United States)

    Moriya, Takashi J.

    2018-03-01

    We propose that massive Thorne-Żytkow objects can explode. A Thorne-Żytkow object is a theoretically predicted star that has a neutron core. When nuclear reactions supporting a massive Thorne-Żytkow object terminate, a strong accretion occurs towards the central neutron core. The accretion rate is large enough to sustain a super-Eddington accretion towards the neutron core. The neutron core may collapse to a black hole after a while. A strong large-scale outflow or a jet can be launched from the super-Eddington accretion disc and the collapsing Thorne-Żytkow object can be turned into an explosion. The ejecta have about 10 M⊙ but the explosion energy depends on when the accretion is suppressed. We presume that the explosion energy could be as low as ˜1047 erg and such a low-energy explosion could be observed like a failed supernova. The maximum possible explosion energy is ˜1052 erg and such a high-energy explosion could be observed as an energetic Type II supernova or a superluminous supernova. Explosions of Thorne-Żytkow objects may provide a new path to spread lithium and other heavy elements produced through the irp process such as molybdenum in the Universe.

  6. Infrared photothermal imaging of trace explosives on relevant substrates

    Science.gov (United States)

    Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; Borchert, James; Byers, Jeff; McGill, R. Andrew

    2013-06-01

    We are developing a technique for the stand-off detection of trace explosives on relevant substrate surfaces using photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). This approach leverages one or more compact IR quantum cascade lasers, tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface and detect small increases in thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. The ability to detect trace analytes on relevant substrates is critical for stand-off applications, but is complicated by the optical and thermal analyte/substrate interactions. This manuscript describes recent PT-IRIS experimental results and analysis for traces of RDX, TNT, ammonium nitrate (AN) and sucrose on relevant substrates (steel, polyethylene, glass and painted steel panels). We demonstrate that these analytes can be detected on these substrates at relevant surface mass loadings (10 μg/cm2 to 100 μg/cm2) even at the single pixel level.

  7. Explosives mimic for testing, training, and monitoring

    Science.gov (United States)

    Reynolds, John G.; Durban, Matthew M.; Gash, Alexander E.; Grapes, Michael D.; Kelley, Ryan S.; Sullivan, Kyle T.

    2018-02-13

    Additive Manufacturing (AM) is used to make mimics for explosives. The process uses mixtures of explosives and matrices commonly used in AM. The explosives are formulated into a mixture with the matrix and printed using AM techniques and equipment. The explosive concentrations are kept less than 10% by wt. of the mixture to conform to requirements of shipping and handling.

  8. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. III. Kraton block copolymer binder and plasticizers

    International Nuclear Information System (INIS)

    Caley, L.E.; Hoffman, D.M.

    1981-01-01

    The dynamic mechanical properties and molecular weight distribution of two experimental polymer bonded explosives, X-0287 and X-0298, maintained at 23, 60, and 74 0 C for 3 years were examined. X-0287 is 97% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane explosive, 1.8% Kraton G-1650, and 1.2% B 2 was 170. X-0298 is 97.4% explosive, 1.4% Kraton G-1650, and 1.2% Cenco Hi-vac oil. The relaxation associated with the Kraton rubber block glass transition is observed in both X-0287 and X-0298. In the unaged X-0298 it occurs at -59 0 C and in the aged explosive at 50 0 C. This is caused by migration of the oil plasticizer out of the explosive. In X-0287 the Kraton rubber block T/sub g/ is weak and broad due to the presence of the wax plasticizer. X-0287 has a second broad relaxation associated with the melting of the wax from 10 to 65 0 C. The molecular weight of the Kraton binder decreased with increasing accelerated aging temperature. The oil plasticizer had no stabilizing effect, but below its melting point the wax reduced Kraton chain scission considerably. The simple random chain scission model predicted a 20.5 year use-life for X-0298, but X-0287 was stabilized against degradation below the wax melting point

  9. Effect of type of explosives and physical-mechanical properties of explosive rock on formation of toxic gases in atmosphere of shafts

    Science.gov (United States)

    Mindeli, E. O.; Khudyakov, M. Y.

    1981-01-01

    The quality of toxic gases formed during explosive work in underground shafts depends upon the type of explosives and the conditions of explosion. Several types of explosives and rocks were examined. All remaining conditions were maintained the same (sandy-argillaceous stemming, electrical method of explosions, diameter of blast holes, and the direct triggering of charges).

  10. The sensitivity studies of a landmine explosive detection system based on neutron backscattering using Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Khan Hamda

    2017-01-01

    Full Text Available This paper carries out a Monte Carlo simulation of a landmine detection system, using the MCNP5 code, for the detection of concealed explosives such as trinitrotoluene and cyclonite. In portable field detectors, the signal strength of backscattered neutrons and gamma rays from thermal neutron activation is sensitive to a number of parameters such as the mass of explosive, depth of concealment, neutron moderation, background soil composition, soil porosity, soil moisture, multiple scattering in the background material, and configuration of the detection system. In this work, a detection system, with BF3 detectors for neutrons and sodium iodide scintillator for g-rays, is modeled to investigate the neutron signal-to-noise ratio and to obtain an empirical formula for the photon production rate Ri(n,γ= SfGfMf(d,m from radiative capture reactions in constituent nuclides of trinitrotoluene. This formula can be used for the efficient landmine detection of explosives in quantities as small as ~200 g of trinitrotoluene concealed at depths down to about 15 cm. The empirical formula can be embedded in a field programmable gate array on a field-portable explosives' sensor for efficient online detection.

  11. Molecular Outflows: Explosive versus Protostellar

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  12. A COMPARISON OF THERMAL EXPLOSIONS IN PBX 9501 AND PBXN-9

    International Nuclear Information System (INIS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.

    2009-01-01

    We have used a variety of observables to study the response of HMX based energetic materials formulations to thermal stimuli. In this paper, we compare the response of PBX 9501 and PBXN-9 to a temperature of 205 deg. C. Both undergo thermal runaway at this boundary condition with similar preignition behavior. However, the post-ignition burn propagations of the two formulations are very different with the final reaction violence significantly lower for PBXN-9 than for PBX 9501.

  13. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  14. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10 12 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  15. Steam explosion triggering phenomena: stainless steel and corium-E simulants studied with a floodable arc melting apparatus

    International Nuclear Information System (INIS)

    Nelson, L.S.; Buxton, L.D.

    1978-05-01

    Laboratory-scale experiments on the thermal interaction of light water reactor core materials with water have been performed. Samples (10--35 g) of Type 304 stainless steel and Corium-E simulants were each flooded with approximately 1.5 litres of water to determine whether steam explosions would occur naturally. Many of the experiments also employed artificially induced pressure transients in an attempt to initiate steam explosions. Vigorous interactions were not observed when the triggering pulse was not applied, and for stainless steel the triggering pulse initiated only coarse fragmentation. Two-stage, pressure-producing interactions were triggered for an ''oxidic'' Corium-E simulant. An impulse-initiated gas release theory has been simulated to explain the initial sample fragmentation. Although the delayed second stage of the event is not fully understood, it does not appear to be readily explained with classical vapor explosion theory. Rather, some form of metastability of the melt seems to be involved

  16. Reactive thermal waves in energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Larry G [Los Alamos National Laboratory

    2009-01-01

    Reactive thermal waves (RTWs) arise in several energetic material applications, including self-propagating high-temperature synthesis (SHS), high explosive cookoff, and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, by which I mean that (1) material motion is neglected, (2) the state dependence of reaction is Arrhenius in the temperature, and (3) the reaction rate is modulated by an arbitrary mass-fraction-based reaction progress function. Numerical simulations demonstrate that one's natural intuition, which is based mainly upon experience with inert materials and which leads one to expect diffusion processes to become relatively slow after a short time period, is invalid for high energy, state-sensitive reactive systems. Instead, theory predicts that RTWs can propagate at very high speeds. This result agrees with estimates for detonating heterogeneous explosives, which indicate that RTWs must spread from hot-spot nucleation sites at rates comparable to the detonation speed in order to produce experimentally-observed reaction zone thicknesses. Using dimensionless scaling and further invoking the high activation energy approximation, I obtain an analytic formula for the steady plane RTW speed from numerical calculations. I then compute the RTW speed for real explosives, and discuss aspects of their behavior.

  17. Study on explosives and their quality performance

    Energy Technology Data Exchange (ETDEWEB)

    Nabiullah, M.; Pingua, B.M.P.; Jagdish Khan, M.; Emranuzzaman [Central Mining Research Institute, Dhanbad (India)

    2005-07-01

    There are about forty suppliers of explosive and blasting accessories in India manufacturing site mixed emulsion, site mixed slurry, ANFO, HANFO, packed products, and blasting accessories of use in surface and underground mines. A field laboratory was set up to measure explosive properties of explosive samples, cast booster, detonating fuse, detonators, cord relay, MS connector, and shock tubes. Density, velocity of detonation, water percentage, water resistance, and energy output were considered as the important properties of explosives. A rating system was designed for selection of good explosive products. The delay interval and delay scattering in cord relay and shock tube was studied to improve blast performance. This paper describes in detail the method of measurement and vender rating system for explosive products as per marking system accepted by Coal India. 12 refs., 4 figs., 22 tabs.

  18. Explosive coalescence of Magnetic Islands

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-04-01

    An explosive reconnection process associated with nonlinear evolution of the coalescence instability is found through studies of particle and magnetohydrodynamic simulations. The explosive coalescence is a self-similar process of magnetic collapse, in which the magnetic and electrostatic energies and temperatures explode toward the explosion time t 0 as (t 0 -t)/sup 8/3/,(t 0 -t) -4 , and (t 0 -t)/sup -8/3/, respectively. Ensuing amplitude oscillations in these quantities are identified by deriving an equation of motion for the scale factor in the Sagdeev potential

  19. Screening sealed bottles for liquid explosives

    Science.gov (United States)

    Kumar, Sankaran; McMichael, W. Casey; Kim, Y.-W.; Sheldon, Alan G.; Magnuson, Erik E.; Ficke, L.; Chhoa, T. K.; Moeller, C. R.; Barrall, Geoffrey A.; Burnett, Lowell J.; Czipott, Peter V.; Pence, J. S.; Skvoretz, David C.

    1997-01-01

    A particularly disturbing development affecting transportation safety and security is the increasing use of terrorist devices which avoid detection by conventional means through the use of liquid explosives and flammables. The hazardous materials are generally hidden in wine or liquor bottles that cannot be opened routinely for inspection. This problem was highlighted by the liquid explosives threat which disrupted air traffic between the US an the Far East for an extended period in 1995. Quantum Magnetics has developed a Liquid Explosives Screening systems capable of scanning unopened bottles for liquid explosives. The system can be operated to detect specific explosives directly or to verify the labeled or bar-coded contents of the container. In this system, magnetic resonance (MR) is used to interrogate the liquid. MR produces an extremely rich data set and many characteristics of the MR response can be determined simultaneously. As a result, multiple MR signatures can be defined for any given set of liquids, and the signature complexity then selected according to the level of threat. The Quantum Magnetics Liquid Explosives Screening System is currently operational. Following extensive laboratory testing, a field trial of the system was carried out at the Los Angeles International Airport.

  20. Hydrodynamics of Explosion Experiments and Models

    CERN Document Server

    Kedrinskii, Valery K

    2005-01-01

    Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur unde...

  1. Gas induced fire and explosion frequencies

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1997-01-01

    The use and handling of flammable gases poses a fire and explosion hazard to many DOE nuclear facilities. This hazard is not unique to DOE facilities. Each year over 2,900 non-residential structural fires occur in the U.S. where a gas is the first item ignited. Details from these events are collected by the National Fire Incident Reporting System (NFIRS) through an extensive reporting network. This extensive data set (800,000 fires in non-residential structures over a 5-year period) is an underutilized resource within the DOE community. Explosions in nuclear facilities can have very severe consequences. The explosion can both damage the facility containment and provide a mechanism for significant radiological dispersion. In addition, an explosion can have significant worker safety implications. Because of this a quantitative frequency estimate for explosions in an SRS laboratory facility has been prepared using the NFIRS data. 6 refs., 1 tab

  2. Safety problems with abandoned explosive facilities

    International Nuclear Information System (INIS)

    Courtright, W.C.

    1969-01-01

    Procedures were developed for the safe removal of explosive and radioactive contaminated materials structures and drains from abandoned sites, including explosives processing and service buildings with a goal to return the entire area to its natural state and to permit public access. The safety problems encountered in the cleanup and their solutions are applicable to modification and maintenance work in operating explosive facilities. (U.S.)

  3. Thermal Response Analyses of Spherical LPG Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsijen.; Lin, Mannhsing.; Chao, Fuyuan

    1999-02-01

    Liquefied petroleum gas (LPG) is a very important fuel and chemical feed stock as well; however, the hydrocarbon has been involved in many major fires and explosions. One of these accidents is boiling-liquid, expanding-vapor explosion (BLEVE). It is a phenomenon that results from the sudden release form confinement of a liquid at a temperature above its atmospheric-pressure boiling point. The sudden decrease in pressure results in the explosive vaporization of a fraction of the liquid and a cloud of vapor and mist with the accompanying blast effects. Most BLEVEs involve flammable liquids, and most BELEVE releases are ignited by a surrounding fire and result in a fireball. The primary objective of this paper is to develop a computer model in order to determine the thermal response of a spherical LPG tank involved in fire engulfment accidents. The assessment of the safety spacing between tanks was also discussed. (author)

  4. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  5. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  6. The Study on the Quantitative Analysis in LPG Tank's Fire and Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Bae, S.J.; Kim, B.J. [Department of chemical Engineering, Soongsil University, Seoul (Korea)

    1999-04-01

    Chemical plant's fire and explosion does not only damage to the chemical plants themselves but also damage to people in or near of the accident spot and the neighborhood of chemical plant. For that reason, Chemical process safety management has become important. One of safety management methods is called 'the quantitative analysis', which is used to reduce and prevent the accident. The results of the quantitative analysis could be used to arrange the equipments, evaluate the minimum safety distance, prepare the safety equipments. In this study we make the computer program to make easy to do quantitative analysis of the accident. The output of the computer program is the magnitude of fire(pool fire and fireball) and explosion (UVCE and BLEVE) effects. We used the thermal radiation as a measure of fire magnitude and used the overpressure as a measure of explosion magnitude. In case of BLEVE, the fly distance of fragment can be evaluated. Also probit analysis was done in every case. As the case study, Buchun LPG explosion accident in Korea was analysed by the program developed. The simulation results showed that the permissible distance was 800m and probit analysis showed that 1st degree burn, 2nd degree burn, and death distances are 450, 280, 260m, respectively. the simulation results showed the good agreement with the result from SAFER PROGRAM made by DuPont. 13 refs., 4 figs., 2 tabs.

  7. Non-isothermal decomposition kinetics, heat capacity and thermal safety of 37.2/44/16/2.2/0.2/0.4-GAP/CL-20/Al/N-100/PCA/auxiliaries mixture

    International Nuclear Information System (INIS)

    Zhang, Jiao-Qiang; Gao, Hong-Xu; Ji, Tie-Zheng; Xu, Kang-Zhen; Hu, Rong-Zu

    2011-01-01

    Highlights: → Non-isothermal decomposition kinetics, heat capacity and thermal safety on 37.2/44/16/2.2/0.2/0.4-GAP/CL-20/Al/N-100/PCA/auxiliaries mixture. → Apparent activation energy and pre-exponential constant obtained. → Thermal explosion temperature, adiabatic time-to-explosion, 50% drop height of impact sensitivity, and critical temperature of hot-spot initiation calculated. - Abstract: The specific heat capacity (C p ) of 37.2/44/16/2.2/0.2/0.4-GAP/CL-20/Al/N-100/PCA/auxiliaries mixture was determined with the continuous C p mode of microcalorimeter. The equation of C p with temperature was obtained. The standard molar heat capacity of GAP/CL-20/Al/N-100/PCA/auxiliaries mixture was 1.225 J mol -1 K -1 at 298.15 K. With the help of the peak temperature (T p ) from the non-isothermal DTG curves of the mixture at different heating rates (β), the apparent activation energy (E k and E o ) and pre-exponential constant (A K ) of thermal decomposition reaction obtained by Kissinger's method and Ozawa's method. Using density (ρ) and thermal conductivity (λ), the decomposition heat (Q d , taking half-explosion heat), Zhang-Hu-Xie-Li's formula, the values (T e0 and T p0 ) of T e and T p corresponding to β → 0, thermal explosion temperature (T be and T bp ), adiabatic time-to-explosion (t TIad ), 50% drop height (H 50 ) of impact sensitivity, and critical temperature of hot-spot initiation (T cr,hotspot ) of thermal explosion of the mixture were calculated. The following results of evaluating the thermal safety of the mixture were obtained: T be = 441.64 K, T bp = 461.66 K, t Tlad = 78.0 s (n = 2), t Tlad = 74.87s (n = 1), t Tlad = 71.85 s (n = 0), H 50 = 21.33 cm.

  8. Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, José; White, Randall; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-09-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013-2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014. These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  9. High-explosive driven crowbar switch

    International Nuclear Information System (INIS)

    Dike, R.S.; Kewish, R.W. Jr.

    1976-01-01

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor

  10. Introduction to High Explosives Science

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.

  11. A test of the comet hypothesis of the Tunguska Meteor Fall - Nature of the meteor 'thermal' explosion paradox

    Science.gov (United States)

    Liu, V. C.

    1978-01-01

    The hypothesis that a comet was responsible for the Tunguska Meteor Fall is rejected because the hypothesis does not seem to account for the intense terminal spherical shock. A porous meteoroid model is proposed, and an analysis indicates that an entity of this type might produce an aerodynamic heat flux large enough to account for the terminal meteor explosion. It is suggested that the presence of olivine and of highly irregular macrostructure in meteors might indicate the presence of some porosity. For a highly porous meteoroid, it is postulated that during entry into the atmosphere the aerodynamic heat transfer at its external or pore walls would become so intensified as to cause either complete ablation with popping or a solid-liquid-vapor phase transition accompanied by an explosion.

  12. Donor free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  13. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  14. Novel high explosive compositions

    Science.gov (United States)

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  15. Explosion approach for external safety assessment: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D. Michael; Halford, Ann [Germanischer Lloyd, Loughborough (United Kingdom); Mendes, Renato F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Several questions related to the potential for explosions are explored as this became an important subject during an enterprise risk analysis. The understanding of explosions underwent a substantial evolution in the final 20 years of the 20{sup th} century following international research projects in Europe involving several research institutes, as well gas and oil companies. This led to the development of techniques that could be used to assess the potential consequences of explosions on oil, gas and petrochemical facilities. This paper presents an overview of the potential for explosions in communities close to industrial sites or pipelines right of way (RoW), where the standard explosion assessment methods cannot be applied. With reference to experimental studies, the potential for confined explosions in buildings and Vapor Cloud Explosions is explored. Vapor Cloud Explosion incidents in rural or urban areas are also discussed. The method used for incorporating possible explosion and fire events in risk studies is also described using a case study. Standard explosion assessment methodologies and a revised approach are compared as part of an on going evaluation of risk (author)

  16. Risk Quantitative Determination of Fire and Explosion in a Process Unit By Dow’s Fire and Explosion Index

    Directory of Open Access Journals (Sweden)

    S. Varmazyar

    2008-04-01

    Full Text Available Background and aims   Fire and explosion hazards are the first and second of major hazards in process industries, respectively. This study has been done to determine fire and explosion risk severity,radius of exposure and estimating of most probable loss.   Methods   In this quantitative study process unit has been selected with affecting parameters on  fire and explosion risk. Then, it was analyzed by DOW's fire and explosion index (F&EI. Technical data were obtained from process documents and reports, fire and explosion guideline.After calculating of DOW's index, radius of exposure determined and finally most  probable loss was estimated.   Results   The results showed an F&EI value of 226 for this process unit.The F&EI was extremely  high and unacceptable.Risk severity was categorized in sever class.Radius of exposure and damage factor were calculated 57 meters and 83%,respectively. As well as most probable loss was  estimated about 6.7 million dollars.   Conclusion   F&EI is a proper technique for risk assessment and loss estimation of fire and  explosion in process industries.Also,It is an important index for detecting high risk and low risk   areas in an industry. At this technique, all of factors affecting on fire and explosion risk was  showed as index that is a base for judgement risk class. Finally, estimated losses could be used as  a base of fire and explosion insurance.

  17. 27 CFR 555.63 - Explosives magazine changes.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Explosives magazine... § 555.63 Explosives magazine changes. (a) General. (1) The requirements of this section are applicable to magazines used for other than temporary (under 24 hours) storage of explosives. (2) A magazine is...

  18. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  19. Risk of dust explosions of combustible nanomaterials

    International Nuclear Information System (INIS)

    Dobashi, Ritsu

    2009-01-01

    Nanomaterials have several valuable properties and are widely used for various practical applications. However, safety matters are suspected such as the influence on health and environment, and fire and explosion hazards. To minimize the risk of nanomaterials, appropriate understanding of these hazards is indispensable. Nanoparticles of combustible materials have potential hazard of dust explosion accidents. However, the explosion risk of nanomaterials has not yet been understood adequately because of the lack of data for nanomaterials. In this presentation, the risk of dust explosions of nanomaterials is discussed.

  20. Thermal treatment for TRU waste sorting

    International Nuclear Information System (INIS)

    Sasaki, Toshiki; Aoyama, Yoshio; Yamashita, Toshiyuki

    2009-03-01

    A thermal treatment that can automatically unpack TRU waste and remove hazardous materials has been developed to reduce the risk of radiation exposure and save operation cost. The thermal treatment is a process of removing plastic wrapping and hazardous material from TRU waste by heating waste at 500 to 700degC. Plastic wrappings of simulated wastes were removed using a laboratory scale thermal treatment system. Celluloses and isoprene rubbers that must be removed from waste for disposal were pyrolyzed by the treatment. Although the thermal treatment can separate lead and aluminum from the waste, a further technical development is needed to separate lead and aluminum. A demonstration scale thermal treatment system that comprises a rotary kiln with a jacket water cooler and a rotating inner cage for lead and aluminum separation is discussed. A clogging prevention system against zinc chloride, a lead and aluminum accumulation system, and a detection system for spray cans that possibly cause explosion and fire are also discussed. Future technology development subjects for the TRU waste thermal treatment system are summarized. (author)

  1. Kaliski's explosive driven fusion experiments

    International Nuclear Information System (INIS)

    Marshall, J.

    1979-01-01

    An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed

  2. The experimental investigation of explosive opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Jiande, Zhang; Huihuang, Zhong; Chuanlu, Li; Yonggui, Liu; Dongqun, Cheng; Xianyang, Peng [National Univ. of Defense Technology, Changsha (China). Dept. of Applied Physics

    1997-12-31

    The explosive opening switch (EOS) used in explosive-driven magnetic-flux compression generator (EMCG) circuits was investigated. It is shown that (1) under certain conditions, the EOS voltage is hardly dependent on the size of the explosive and aluminium foil used in EOS; (2) with the explosive coated by an insulator pipe, the opening effect of EOS is better; (3) by use of EOS, a pulse with 5 kA current, 100 kV voltage and 250 ns risetime has been transferred into a resistance load. (author). 12 figs., 5 refs.

  3. The experimental investigation of explosive opening switch

    International Nuclear Information System (INIS)

    Zhang Jiande; Zhong Huihuang; Li Chuanlu; Liu Yonggui; Cheng Dongqun; Peng Xianyang

    1996-01-01

    The explosive opening switch (EOS) used in explosive-driven magnetic-flux compression generator (EMCG) circuits was investigated. It is shown that (1) under certain conditions, the EOS voltage is hardly dependent on the size of the explosive and aluminium foil used in EOS; (2) with the explosive coated by an insulator pipe, the opening effect of EOS is better; (3) by use of EOS, a pulse with 5 kA current, 100 kV voltage and 250 ns risetime has been transferred into a resistance load. (author). 12 figs., 5 refs

  4. Apparatus for forming an explosively expanded tube-tube sheet joint

    International Nuclear Information System (INIS)

    Schroeder, J.W.

    1984-01-01

    The invention relates to apparatus for expanding a tube into a bore formed in a tube sheet. According to the invention, a primary explosive containing a relatively high number of grains of explosive per unit length extends within the tube coextensive with that portion of the tube to be expanded. An energy transfer cord extends between a detonator and the primary explosive and includes a relatively low number of grains of explosive per unit length which are insufficient to detonate the primary explosive. The transfer cord is covered by a sheath to contain the debris and gases associated with the explosion of the explosive therein. A booster extends between the energy transfer cord and the primary explosive and contains an explosive which can be detonated by the explosive in the energy transfer cord and can, upon exploding, in turn detonate the primary explosive. (author)

  5. Wireless sensor for detecting explosive material

    Science.gov (United States)

    Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K; Sepaniak, Michael J

    2014-10-28

    Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  6. Explosions on a gas-vacuum interface

    International Nuclear Information System (INIS)

    Nutt, G.; Klein, L.; Ratcliffe, A.E.

    1981-01-01

    A finite-difference computer code is used to calculate the time development of an explosion on a gas-vacuum interface. An analytic theory of the shape of the shock wave produced in the explosion is compared with the results of the computer simulation. The assumptions used in obtaining this analytic solution are verified, and the degree to which the variables describing the explosion are self-similar is examined. Finally, certain consistency relations among the similarity exponents are tested

  7. Environmental control for nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, A W; Wells, W H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    requirements are not settled by compromise between competing elements of the design. There is a more basic question: Can adequate cooling be provided at reasonable cost? Some insulation is required, and some means of controlling thermal gradients in the assembly must be included. Even if these can be provided at small cost in diameter, how is the temperature difference between the world and the explosive to be maintained?.

  8. Electromagnetic field effects in explosives

    Science.gov (United States)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  9. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    Directory of Open Access Journals (Sweden)

    N Matsuo

    2016-09-01

    Full Text Available Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metal foil explosion. Secondly, in high energy explosive processing, there are several applications, such as shock compaction, explosive welding, food processing and explosive forming. In these explosive applications, a high sensitive explosive has been mainly used. The high sensitive explosive is so dangerous, since it can lead to explosion suddenly. So, for developing explosives, the safety is the most important thing as well as low manufacturing cost and explosive characteristics. In this work, we have focused on the initiation sensitivity of a solid explosive and performed numerical analysis of sympathetic detonation. The numerical analysis is calculated by LS-DYNA 3D (commercial code. To understand the initiation reaction of an explosive, Lee-Tarver equation was used and impact detonation process was analyzed by ALE code. Configuration of simulation model is a quarter of circular cylinder. The donor type of explosive (SEP was used as initiation explosive. When the donor explosive is exploded, a shock wave is generated and it propagates into PMMA, air and metallic layers in order. During passing through the layers, the shock wave is attenuated and finally, it has influence on the acceptor explosive, Comp. B. Here, we evaluate the initiation of acceptor explosive and discuss about detonation pressure, reactive rate of acceptor explosive and attenuation of impact pressure.

  10. Blast overpressure after tire explosion: a fatal case.

    Science.gov (United States)

    Pomara, Cristoforo; D'Errico, Stefano; Riezzo, Irene; Perilli, Gabriela; Volpe, Umberto; Fineschi, Vittorio

    2013-12-01

    Fatal blast injuries are generally reported in literature as a consequence of the detonation of explosives in war settings. The pattern of lesion depends on the position of the victim in relation to the explosion, on whether the blast tracks through air or water, and whether it happens in the open air or within an enclosed space and the distance from the explosion. Tire explosion-related injuries are rarely reported in literature. This study presents a fatal case of blast overpressure due to the accidental explosion of a truck tire occurring in a tire repair shop. A multidisciplinary approach to the fatality involving forensic pathologists and engineers revealed that the accidental explosion, which caused a series of primary and tertiary blast wave injuries, was due to tire deterioration.

  11. Study by Monte Carlo methods of an explosive detection system using a D-D generator and Nal (Tl) detectors

    International Nuclear Information System (INIS)

    Cevallos R, L. E.; Guzman G, K. A.; Gallego, E.; Garcia F, G.; Vega C, H. R.

    2017-10-01

    The detection of hidden explosive material is very important for national security. Using Monte Carlo methods, with the code MCNP6, several proposed configurations of a detection system with a Deuterium-Deuterium (D-D) generator, in conjunction with NaI (Tl) scintillation detectors, have been evaluated to intercept hidden explosives. The response of the system to various explosive samples such as Rdx and ammonium nitrate are analyzed as the main components of home-military explosives. The D-D generator produces fast neutrons of 2.5 MeV in a maximum field of 10 10 n/s (Dd-110) which is surrounded with high density polyethylene in order to thermalized the fast neutrons making them interact with the sample inspected, giving rise to the emission of gamma rays that generates a characteristic spectrum of the elements that constitute it, being able in this way to determine its chemical composition and identify the type of substance. The necessary shielding is evaluated to estimate the admissible operation dose, with thicknesses of lead and borated polyethylene, in order to place it at some point of the Laboratory of Neutron Measurements of the Polytechnic University of Madrid where the shielding is optimal. The results show that its functionality is promising in the field of national security for the explosives inspection. (Author)

  12. Engineering effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Boardman, Charles R.

    1970-01-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  13. Engineering effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Charles R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  14. Green primary explosives: 5-Nitrotetrazolato-N2-ferrate hierarchies

    OpenAIRE

    Huynh, My Hang V.; Coburn, Michael D.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for mi...

  15. Laser-based optical detection of explosives

    CERN Document Server

    Pellegrino, Paul M; Farrell, Mikella E

    2015-01-01

    Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understa...

  16. Review of Soviet studies related to peaceful underground nuclear explosions

    International Nuclear Information System (INIS)

    Lin, W.

    1978-01-01

    Theoretical and empirical studies of contained and crater-forming underground nuclear explosions by USSR investigators are reviewed and summarized. Published data on U.S., USSR, and French cavity-forming nuclear explosions are compared with those predicted by the formula. Empirical studies on U.S. and USSR cratering explosions, both high explosions, both high explosive and nuclear are summarized. The parameters governing an excavation explosion are reviewed

  17. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  18. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  19. Ideas for peaceful nuclear explosions in USSR

    International Nuclear Information System (INIS)

    1970-01-01

    Three papers prepared in USSR have been made available to the Agency for circulation among Member States. One examines radioactive contamination and methods for predicting it, of natural environments during underground explosions. Another deals with the mechanical effect of underground explosions. The third, which forms the basis of this article, reviews possible applications of peaceful nuclear explosions in the Soviet economy. (author)

  20. Inelastic processes in seismic wave generation by underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Rodean, H.C.

    1980-08-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations.

  1. Inelastic processes in seismic wave generation by underground explosions

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1980-01-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations

  2. The fracture of concrete under explosive shock loading

    International Nuclear Information System (INIS)

    Watson, A.J.; Sanderson, A.J.

    1982-01-01

    Concrete fracture close to the point of application of high explosive shock pressures has been studied experimentally by placing an explosive charge on the edge of a concrete slab. The extent of the crushing and cracking produced by a semi cylindrical diverging plane compressive stress pulse has been measured and complementary experiments gave the pressure transmitted at an explosive to concrete interface and the stress-strain relation for concrete at explosive strain rates. (orig.) [de

  3. The Isolation of Nanofibre Cellulose from Oil Palm Empty Fruit Bunch Via Steam Explosion and Hydrolysis with HCl 10%

    Science.gov (United States)

    Gea, S.; Zulfahmi, Z.; Yunus, D.; Andriayani, A.; Hutapea, Y. A.

    2018-03-01

    Cellulose nanofibrils were obtained from oil palm empty fruit bunch using steam explosion and hydrolized with 10% solution of HCl. Steam explosion coupled with acid hydrolysis pretreatment on the oil palm empty fruit bunch was very effective in the depolymerization and defibrillation process of the fibre to produce fibers in nanodimension. Structural analysis of steam exploded fibers was determined by Fourier Transform Infrared (FT-IR) spectroscopy. Thermal stability of cellulose measured using image analysis software image J. Characterization of the fibers by TEM and SEM displayed that fiber diameter decreases with mechanical-chemical treatment and final nanofibril size was 20-30 nm. FT-IR and TGA data confirmed the removal of hemicellulose and lignin during the chemical treatment process.

  4. Insensitive detonator apparatus for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  5. Explosive Evaporating Phenomena of Cryogenic Fluids by Direct Contacting Normal Temperature Fluids

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available Cryogenic fluids have characteristics such as thermal stratification and flashing by pressure release in storage vessel. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. These fuel liquids are cryogenic fluids. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. And, the need of the ice is high, as before, for keeping freshness of marine products in fisheries. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids and generation of ice, in the contact directly of the water and liquid nitrogen. From the results of visualization, phenomena of explosive evaporating and ice forming were observed by using video camera.

  6. Heavy-duty explosively operated pulsed opening and closing switches

    International Nuclear Information System (INIS)

    Peterson, D.R.; Price, J.H.; Upshaw, J.L.; Weldon, W.F.; Zowarka, R.C.; Gully, J.H.; Spann, M.L.

    1991-01-01

    This paper discusses improvements to heavy duty, explosively operated, opening and closing switches to reduce component cost, installation cost, and turnaround time without sacrificing reliability. Heavy duty opening and closing switches operated by small explosive charges (50 g or less) are essential to operation of the 60 MJ Balcones power supply. The six independent modules - a 10 MJ homopolar generator (HPG) and a 6 μH storage inductor - can be discharged sequentially, a valuable feature for shaping the current pulse delivered to loads such as high-energy railguns. Each delayed inductor must be isolated from the railgun circuit with a heavy duty closing switch capable of carrying megampere currents to millisecond duration. Similar closing switches are used to crowbar the railgun as the projectile approaches the muzzle: noise reduction, reduction of muzzle arc damage, and reduction of post-launch perturbation of projectile flight. The switches - both opening and closing - are characterized by microhm resistance in the closed state. Current is carried in metallic conductors. Metal-to-metal seams which carry current are maintained in uniform high pressure contact. Efficient switching is crucial to efficient conversion: rotor kinetic energy to stored inductive energy with ∼50% efficiency, stored inductive energy to projectile kinetic energy with ∼30% efficiency. The switches must operate with a precision and repeatability of 10 -5 s, readily achievable with explosives. The opening switches must be structurally and thermally capable of carrying megampere currents for more than 100 ms (∼10 5 C) and develop 10 kV upon opening, stay open for 10 - 2 s, and safely and reliably dissipate megajoules of inductive energy in the event of a fault, a failure of the switch to operate or an attempt to commutate into an open circuit

  7. Underground Nuclear Explosions and Release of Radioactive Noble Gases

    Science.gov (United States)

    Dubasov, Yuri V.

    2010-05-01

    Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.

  8. THE BIGGEST EXPLOSIONS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Johnson, Jarrett L.; Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Heger, Alex; Chen, Ke-Jung

    2013-01-01

    Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of ∼55, 000 M ☉ , however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ∼10 55 erg instead of collapsing to a BH. Such events, ∼10, 000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ≅ 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 × 10 7 M ☉ , much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after ∼ ☉ after ∼> 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today

  9. Establishment of data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the Former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    Ermolenko, N.A.; Kopnichev, Yu.F.; Kunakov, V.G.; Kunakova, O.K.; Rakhmatullin, M.Kh.; Sokolova, I.N.; Vybornyy, Zh.I. [AN SSSR, Moscow (Russian Federation). Inst. Fiziki Zemli

    1995-06-01

    In this report results of work on establishment of a data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the former Soviet Union are described. This work was carried out in the Complex Seismological Expedition (CSE) of the Joint Institute of Physics of the Earth of the Russian Academy of Sciences and Lawrence Livermore National Laboratory. The recording system, methods of investigations and primary data processing are described in detail. The largest number of digital records was received by the permanent seismic station Talgar, situated in the northern Tien Shan, 20 km to the east of Almaty city. More than half of the records are seismograms of underground nuclear explosions and chemical explosions. The nuclear explosions were recorded mainly from the Semipalatinsk test site. In addition, records of the explosions from the Chinese test site Lop Nor and industrial nuclear explosions from the West Siberia region were obtained. Four records of strong chemical explosions were picked out (two of them have been produced at the Semipalatinsk test site and two -- in Uzbekistan). We also obtained 16 records of crustal earthquakes, mainly from the Altai region, close to the Semipalatinsk test site, and also from the West China region, close to the Lop Nor test site. In addition, a small number of records of earthquakes and underground nuclear explosions, received by arrays of temporary stations, that have been working in the southern Kazakhstan region are included in this report. Parameters of the digital seismograms and file structure are described. Possible directions of future work on the digitizing of unique data archive are discussed.

  10. Workshop on explosions, BLEVEs, fires, etc.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this workshop will be to provide a bridge between engineering practices, modeling, and measurement of fires and explosions, and use this information in a practical manner to improve the fire safety of the process facility. New techniques and information are available on the means to prevent, predict and mitigate fires and explosions. A review of BLEVEs and methods for preventing and protecting against the effects of BLEVES in large petrochemical facilities. Observations and the use of models that have been successful in predicting the effects of vapor explosions for the prevention of collapse of structures and mitigation of the effects of vapor explosions in process facilities are presented. Recent work involving the measurement of radiation from large jet fires at the Kuwaiti oil fields and fire tests of crude oil spills on the sea is discussed. Fire radiation measurement can be used to predict effects on structures, facilities, and the complexity of fire fighting operations required for control of spill and pool fires. Practical applications of techniques for prevention and control of explosions within building, resulting from failures of autoclaves or release of flammable gas to the atmosphere of the building are discussed.

  11. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  12. Development of a technique using MCNPX code for determination of nitrogen content of explosive materials using prompt gamma neutron activation analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabadi, M.N., E-mail: mnnasrabadi@ast.ui.ac.ir [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Bakhshi, F.; Jalali, M.; Mohammadi, A. [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-12-11

    Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma 10.8 MeV following radioactive neutron capture by {sup 14}N nuclei. We aimed to study the feasibility of using field-portable prompt gamma neutron activation analysis (PGNAA) along with improved nuclear equipment to detect and identify explosives, illicit substances or landmines. A {sup 252}Cf radio-isotopic source was embedded in a cylinder made of high-density polyethylene (HDPE) and the cylinder was then placed in another cylindrical container filled with water. Measurements were performed on high nitrogen content compounds such as melamine (C{sub 3}H{sub 6}N{sub 6}). Melamine powder in a HDPE bottle was placed underneath the vessel containing water and the neutron source. Gamma rays were detected using two NaI(Tl) crystals. The results were simulated with MCNP4c code calculations. The theoretical calculations and experimental measurements were in good agreement indicating that this method can be used for detection of explosives and illicit drugs.

  13. Use of explosives in pipeline construction work

    Energy Technology Data Exchange (ETDEWEB)

    Ball, M J

    1976-08-01

    Explosives are an essential tool in Great Britain's pipeline-construction industry, with applications on dry land and under water, in trench blasting and tunneling for road and service crossings, demolition of unwanted sections, and removal of coatings. Nobels Explosive Co. Ltd. describes basic explosives operations as pertaining to the requirements of rock trenching, submarine operations, thrust-bore and tunneling operations, demolitions, and precision blasting.

  14. Health Consequences and Management of Explosive Events

    Directory of Open Access Journals (Sweden)

    Abbas Ostadtaghizadeh

    2016-01-01

    Conclusion: Because of the wide range and adverse impacts of explosions, healthcare authorities and staff should have a good grasp of preventive principles, as well as protection and management of explosion sites. Besides they have to be familiar with treating the injured. It is recommended that training courses and simulated explosive events be designed and run by the healthcare sector.

  15. New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E.; Tappan, Bryce C.; Hiskey, Michael A.; Son, Steve F.; Harry, Herbert; Montoya, Dennis; Hagelberg, Stephanie [Dynamic Experimentation Division, DX-2 Materials Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-12-01

    This paper describes the explosive sensitivity and performance properties of two novel high-nitrogen materials, 3,6-bis-nitroguanyl-1,2,4,5-tetrazine (1, (NQ{sub 2}Tz)) and its corresponding bis-triaminoguanidinium salt (2, (TAG){sub 2}(NQ){sub 2}Tz). These materials exhibit very low pressure dependence in burning rate. Flash pyrolysis/FTIR spectroscopy was performed, and insight into this interesting burning behavior was obtained. Our studies indicate that 1 and 2 exhibit highly promising energetic materials properties. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  16. Vulcanian explosions at Volcán de Colima, Mexico: modelling the conduit processes

    Science.gov (United States)

    Varley, N. R.; Stevenson, J.; Johnson, J.; Reyes, G.; Weber, K.; Sanderson, R.

    2006-12-01

    Activity at Volcán de Colima has increased over the past 8 years, and is possibly building towards a significant eruption. Monitoring its current activity is therefore critical, with recent expansion of the network providing new types of data which need to be understood. Recent activity has consisted of 3 effusive episodes lasting up to 22 months, separated by periods characterised by daily Vulcanian eruptions of small to moderate size; the largest producing pyroclastic flows reaching over 5 km, representing the most significant since the last Plinian event (1913). A model has been proposed to explain the mechanism of the Vulcanian explosions, derived through integrating different data including seismicity, SO2 flux and the ascent velocity and thermal emission of the eruption column. Infrasound measurements have helped to demonstrate the variability in the distribution of energy produced by the events. Swarms of low frequency seismic events were associated with the largest magnitude explosions and have been examined statistically with variations observed in the magnitude-frequency relationship of each swarm and their distribution. Seismic evidence of migration of the source has been identified, maybe explained by brittle fracturing associated with an increasing pressure differential within the conduit system. Volcán de Colima has a complex edifice structure with explosions switching between multiple vents and showing pulsing. Variation in remotely monitored fumarole temperatures has also been related to the explosive activity. It is clear that small variations of certain critical factors within the conduit system can lead to a transition between effusive and explosive activity. Frequent transitions at Volcán de Colima provide an ideal opportunity to analyse variations in the observable signals and deduce relationships with changes within the conduit that influence magma ascent and degassing, such as its volatile contents or ascent velocity. One goal of this

  17. Determining the explosion risk level and the explosion hazard area for a group of natural gas wells

    Science.gov (United States)

    Gligor, A.; Petrescu, V.; Deac, C.; Bibu, M.

    2016-11-01

    Starting from the fact that the natural gas engineering profession is generally associated with a high occupational risk, the current paper aims to help increase the safety of natural gas wells and reduce the risk of work-related accidents, as well as the occurrence of professional illnesses, by applying an assessment method that has proven its efficiency in other industrial areas in combination with a computer-aided design software. More specifically, the paper focuses on two main research directions: assessing the explosion risk for employees working at natural gas wells and indicating areas with a higher explosion hazard by using a modern software that allows their presentation in 3D. The appropriate zoning of industrial areas allows to group the various functional areas function of the probability of the occurrence of a dangerous element, such as an explosive atmosphere and subsequently it allows also to correctly select the electrical and mechanical equipment that will be used in that area, since electrical apparatuses that are otherwise found in normal work environments cannot generally be used in areas with explosion hazard, because of the risk that an electric spark, an electrostatic discharge etc. ignites the explosive atmosphere.

  18. Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces.

    Science.gov (United States)

    Kendziora, Christopher A; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; Byers, Jeff; Andrew McGill, R

    2015-11-01

    We are developing a technique for the standoff detection of trace explosives on relevant substrate surfaces using photothermal infrared (IR) imaging spectroscopy (PT-IRIS). This approach leverages one or more compact IR quantum cascade lasers, which are tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface and detect increases in thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral, and temporal dimensions as vectors within a detection algorithm. The ability to detect trace analytes at standoff on relevant substrates is critical for security applications but is complicated by the optical and thermal analyte/substrate interactions. This manuscript describes a series of PT-IRIS experimental results and analysis for traces of RDX, TNT, ammonium nitrate, and sucrose on steel, polyethylene, glass, and painted steel panels. We demonstrate detection at surface mass loadings comparable with fingerprint depositions ( 10μg/cm2 to 100μg/cm2) from an area corresponding to a single pixel within the thermal image.

  19. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  20. Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-01-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  1. Time-resolved dynamics of nanosecond laser-induced phase explosion

    International Nuclear Information System (INIS)

    Porneala, Cristian; Willis, David A

    2009-01-01

    Visualization of Nd : YAG laser ablation of aluminium targets was performed by a shadowgraph apparatus capable of imaging the dynamics of ablation with nanosecond time resolution. Direct observations of vaporization, explosive phase change and shock waves were obtained. The influence of vaporization and phase explosion on shock wave velocity was directly measured. A significant increase in the shock wave velocity was observed at the onset of phase explosion. However, the shock wave behaviour followed the form of a Taylor-Sedov spherical shock below and above the explosive phase change threshold. The jump in the shock wave velocity above phase explosion threshold is attributed to the release of stored enthalpy in the superheated liquid surface. The energy released during phase explosion was estimated by fitting the transient shock wave position to the Taylor scaling rules. Results of temperature calculations indicate that the vapour temperature at the phase explosion threshold is slightly higher than the critical temperature at the early stages of the shock wave formation. The shock wave pressure nearly doubled when transitioning from normal vaporization to phase explosion.

  2. Filling bore-holes with explosive

    Energy Technology Data Exchange (ETDEWEB)

    Alfredsson, S H

    1965-03-02

    In this device for filling boreholes formed in a rock formation with particulate explosive, the explosive is conveyed into the hole by means of a pressure fluid through a tube which has a lesser diameter than the hole. The tube is characterized by a lattice work arranged externally on it, and having a structure adapted to allow passage of a pressure fluid returning between the tube and the wall of the hole, but retaining particles of explosive entrained by the returning pressure fluid. In another arrangement of the device, the lattice work has the form of a brush, including filaments or bristles which are dimensioned to bridge the spacing between the tube and the wall of the hole. (12 claims)

  3. Calculating overpressure from BLEVE explosions

    Energy Technology Data Exchange (ETDEWEB)

    Planas-Cuchi, E.; Casal, J. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Chemical Engineering, Centre for Technological Risk Studies; Salla, J.M. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Heat Engines

    2004-11-01

    Although a certain number of authors have analyzed the prediction of boiling liquid expanding vapour explosion (BLEVE) and fireball effects, only very few of them have proposed methodologies for predicting the overpressure from such explosions. In this paper, the methods previously published are discussed and shown to introduce a significant overestimation due to erroneous thermodynamic assumptions - ideal gas behaviour and isentropic vapour expansion - on which they are based (in fact, they give the maximum value of overpressure which can be caused by a BLEVE). A new approach is proposed, based on the - more realistic - assumption of an adiabatic and irreversible expansion process; the real properties of the substance involved in the explosion are used. The two methods are compared through the application to a given case. (author)

  4. Evidence for nearby supernova explosions

    International Nuclear Information System (INIS)

    Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova (SN) explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction

  5. Rotor Systems Research Aircraft /RSRA/ canopy explosive severance/fracture

    Science.gov (United States)

    Bement, L. J.

    1976-01-01

    The Rotor Systems Research Aircraft (RSRA), a compound rotor/fixed-wing aircraft, incorporates an emergency escape system for the three crew members; to achieve unobstructed egress, the overhead acrylic canopies of each crew member will be explosively severed and fractured into predictably small, low-mass pieces. A canopy explosive severance/fracture system was developed under this investigation that included the following system design considerations: selection of canopy and explosive materials, determining the acrylic's explosive severance and fracture characteristics, evaluating the effects of installation variables and temperature, determining the most effective explosive patterns, conducting full-scale, flat and double-curvature canopy tests, and evaluating the effects of back-blast of the explosive into the cockpit.

  6. Explosives remain preferred methods for platform abandonment

    International Nuclear Information System (INIS)

    Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.; Mackey, V. III

    1996-01-01

    Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp's Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they required that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains

  7. Modeling the explosion-source region: An overview

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1993-01-01

    The explosion-source region is defined as the region surrounding an underground explosion that cannot be described by elastic or anelastic theory. This region extends typically to ranges up to 1 km/(kt) 1/3 but for some purposes, such as yield estimation via hydrodynamic means (CORRTEX and HYDRO PLUS), the maximum range of interest is less by an order of magnitude. For the simulation or analysis of seismic signals, however, what is required is the time resolved motion and stress state at the inelastic boundary. Various analytic approximations have been made for these boundary conditions, but since they rely on near-field empirical data they cannot be expected to reliably extrapolate to different explosion sites. More important, without some knowledge of the initial energy density and the characteristics of the medium immediately surrounding the explosion, these simplified models are unable to distinguish chemical from nuclear explosions, identify cavity decoupling, or account for such phenomena as anomalous dissipation via pore collapse

  8. Off-center point explosion in a spheroid

    International Nuclear Information System (INIS)

    Morita, Kazuhiko; Sakashita, Shiro

    1978-01-01

    An off-center point explosion in a spheroid with exponential or Gaussian density distribution is investigated by applying the generalized Laumbach and Probstein method. For a typical example, we calculate the explosion in a spheroid with the eccentricity e = 0.7. If the separation distance between the center of the spheroid and the explosion point is larger than three times of the density scale height, the shock wave may almost propagate toward the direction of the minor axis of symmetry, within the polar angle of 30 0 . The shock envelope elongates toward the same direction and may form a polar jet and/or a tilted jet. But, in the case of an explosion in the equatorial plane (perpendicular to the minor axis of symmetry), two plasmas with the same form may be ejected into two different directions with the angle smaller than 180 0 . Explosion models of double radio sources and related objects are suggested. (author)

  9. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    International Nuclear Information System (INIS)

    Pushkarev, Alexander I.; Isakova, Yulia I.

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode. (15th asian conference on electrical discharge)

  10. Explosions and light curves of supernovae

    International Nuclear Information System (INIS)

    Gaffet, B.

    1975-01-01

    The models developed to explain supernovae explosions are reviewed. The first one is thermonuclear explosion (simple or preceded by an implosion phase); the neutrino emission which results of such an explosion can have an important dynamical effect, according as the star is opaque or transparent to them; another theory involves the radiation pressure of the pulsar which is formed in the center of the star. The origin of the supernovae brightness is also uncertain: the initial heat due to the explosion does not seem to be sufficient; the brightness can result from the diffusion of the heat through the ejected matter or can be transported more rapidly by a shock wave. A model in which the heat is produced by the pulsar seems compatible with most observations (shapes of the brightness curves and the continuum spectra, expansion velocities, temperature and luminosity at the peak, total kinetic energy) [fr

  11. Application of neutron/gamma transport codes for the design of explosive detection systems

    International Nuclear Information System (INIS)

    Elias, E.; Shayer, Z.

    1994-01-01

    Applications of neutron and gamma transport codes to the design of nuclear techniques for detecting concealed explosives material are discussed. The methodology of integrating radiation transport computations in the development, optimization and analysis phases of these new technologies is discussed. Transport and Monte Carlo codes are used for proof of concepts, guide the system integration, reduce the extend of experimental program and provide insight into the physical problem involved. The paper concentrates on detection techniques based on thermal and fast neutron interactions in the interrogated object. (authors). 6 refs., 1 tab., 5 figs

  12. An examination of Southwest Pacific explosive cyclones, 1989 to 2009

    International Nuclear Information System (INIS)

    Black, M T; Pezza, A B; Kreft, P

    2010-01-01

    This study has assembled a climatology of Southwest Pacific explosively developing cyclones, based on the European Centre for Medium-Range Weather Forecasts' ERA-Interim reanalysis data, over the 21-year period from 1989 to 2009. The recently developed 'combined explosive' expression, a refinement of the 'relative explosive' criterion, was used to identify cyclones deemed explosive with respect to both the drop in central pressure and the climatological pressure gradient. Over the period of analysis, 47 explosive cyclones were identified within the Southwest Pacific, equating to an average of 2.2 explosive events per year. Seasonally, explosive cyclones are most frequent during the winter months, while least frequent during the summer. Two case explosive systems are briefly considered, with their corresponding measures of intensity and scale placed into climatological perspective.

  13. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li_4Ti_5O_1_2 anode

    International Nuclear Information System (INIS)

    Huang, Peifeng; Ping, Ping; Li, Ke; Chen, Haodong; Wang, Qingsong; Wen, Jennifer; Sun, Jinhua

    2016-01-01

    Highlights: • The heat generation and gas production of four main thermal-chemical reactions are detected. • The fire-impingement takes an unordinary thermal runaway propagation for battery module. • There is a “smoldering period” before the explosion of lithium ion battery module. • Semenov and Frank-Kamenetskii models are used to analysis and predict the onset of runaway. - Abstract: Insight of the thermal characteristics and potential flame spread over lithium-ion battery (LIB) modules is important for designing battery thermal management system and fire protection measures. Such thermal characteristics and potential flame spread are also dependent on the different anode and cathode materials as well as the electrolyte. In the present study, thermal behavior and flame propagation over seven 50 A h Li(Ni_1_/_3Mn_1_/_3Co_1_/_3)O_2/Li_4Ti_5O_1_2 large format LIBs arranged in rhombus and parallel layouts were investigated by directly heating one of the battery units. Such batteries have already been used commercially for energy storage while relatively little is known about its safety features in connection with potential runaway caused fire and explosion hazards. It was found in the present heating tests that fire-impingement resulted in elevated temperatures in the immediate vicinity of the LIBs that were in the range of between 200 °C and 900 °C. Such temperature aggravated thermal runaway (TR) propagation, resulting in rapid temperature rise within the battery module and even explosions after 20 min of “smoldering period”. The thermal runaway and subsequent fire and explosion observed in the heating test was attributed to the violent reduction of the cathode material which coexisted with the electrolyte when the temperature exceeded 260 °C. Separate laboratory tests, which measured the heat and gases generation from samples of the anode and cathode materials using C80 calorimeter, provided insight of the physical-chemistry processes inside the

  14. 30 CFR 75.1311 - Transporting explosives and detonators.

    Science.gov (United States)

    2010-07-01

    ... noncombustible materials. (c) When explosives and detonators are transported on conveyor belts— (1) Containers of... explosives or detonators, a person shall be at each transfer point between belts and at the unloading location; and (4) Conveyor belts shall be stopped before explosives or detonators are loaded or unloaded...

  15. 29 CFR 1926.902 - Surface transportation of explosives.

    Science.gov (United States)

    2010-07-01

    ... electric) shall not be transported in the same vehicle with other explosives. (e) Vehicles used for... prevent contact with containers of explosives. (h) Every motor vehicle or conveyance used for transporting... Carriers. (b) Motor vehicles or conveyances transporting explosives shall only be driven by, and be in the...

  16. Numerical Simulation of Explosive Forming Using Detonating Fuse

    Directory of Open Access Journals (Sweden)

    H Iyama

    2017-09-01

    Full Text Available The explosive forming is a characteristic method. An underwater shock wave is generated by underwater explosion of an explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming shape is depend on the shock pressure distribution act on the metal plate. This pressure distribution is able to change by the shape of explosive, a mass of explosive and a shape of pressure vessel. On the other hand, we need the pressure vessel for food processing by the underwater shock wave. Therefore, we propose making the pressure vessel by this explosive forming. One design suggestion of pressure vessel made of stainless steel was considered. However, we cannot decide suitable conditions, the mass of the explosive and the distance between the explosive and the metal plate to make the pressure vessel. In order to decide these conditions, we have tried the numerical simulation on this explosive forming. The basic simulation method was ALE (Arbitrary Laglangian Eulerian method including with Mie-Grümeisen EOS (equation of state, JWL EOS, Johnson-Cook constitutive equation for a material model. In this paper, the underwater pressure contours to clear the propagations of the underwater shock wave, forming processes and deformation velocity of the metal plate is shown and it will be discussed about those results.

  17. Do peaceful nuclear explosions have a future

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The idea of peaceful uses for nuclear explosive devices arose almost simultaneously with the concept of the nuclear explosion itself. It has been a powerful idea in that it soon generated major study efforts in the United States and the USSR and also captured the interest of many developing nations. But in spite of this considerable interest and much expenditure of funds and effort, the expectation that economically viable uses will be found for peaceful nuclear explosions looks even more distant now that when the first studies were initiated. This, at least, is the conclusion of two recent U.S. studies of the economic feasibility and time scale for application of peaceful nuclear explosions by the United States. The larger of these two studies was prepared by the Gulf Universities Research Consortium, and dealt particularly with possibilities for use in the United States by 1990 of contained, i.e., underground, peaceful nuclear explosions. This paper provides briefer analysis by an ad hoc panel assesses the implications of the Gulf report, considers other uses for peaceful nuclear explosions, and summarizes the reasons why there is only a small possibility that there will be significant use of them by the United States before the year 2000

  18. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  19. Decreasing Friction Sensitivity for Primary Explosives

    Science.gov (United States)

    Matyáš, Robert; Šelešovský, Jakub

    2014-04-01

    Primary explosives are a group of explosives that are widely used in various initiating devices. One of their properties is sufficient sensitivity to initiating stimuli. However, their sensitivity often introduces a safety risk during their production and subsequent handling. It is generally known that water can be used to desensitize these compounds. The most commonly used industrial primary explosives (lead azide, lead styphnate, tetrazene, and diazodinitrophenol) were mixed with water in various ratios and the sensitivity to friction was determined for all mixtures. It was found that even a small addition of water (5-10%) considerably lowered the friction sensitivity.

  20. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    International Nuclear Information System (INIS)

    Nutt, G.L.

    1991-01-01

    This papent describes a method for suppressing the tendency of a porous solid high explosive to ignite and detonate. It comprises: filling substantially all the press of the solid high explosive material with a predetermined pore radius of at least 10μm with a relatively inert, stable, pore filling material in liquid form, the pore filling being selected from gallium, rubidium-potassium eutectic, and Wood's metal; and solidifying the pore filling material in the pores of the explosive material

  1. On the permeability of thermally damaged PBX 9501

    Energy Technology Data Exchange (ETDEWEB)

    Zerkle, David K. [Decision Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Asay, Blaine W.; Parker, Gary R.; Dickson, Peter M. [Dynamic and Energetic Materials Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Smilowitz, Laura B.; Henson, Bryan F. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2007-06-15

    Theoretical analysis, modeling, and simulation are used to provide insight into the development of permeability during thermal damage of the high explosive PBX 9501. In a recently published article, Terrones et al. [1] conclude that samples of PBX 9501 thermally damaged at 186 C are not permeable to gas flow in a manner consistent with Darcy's Law. We disagree with their conclusion. We show that they have misreported data from the literature, and that their argument depends on a fluid flow model that is physically incorrect and is applied with inappropriate physical parameters. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. Bulk-loaded emulsion explosives technology

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.G. [Blasting Analysis International, Inc., Allentown, PA (United States)

    1995-01-01

    The largest use of emulsion explosives and emulsion-Anfo blends is in surface mining operations. An emulsion explosive is a two-phase system: the inner phase is madeup of an oxidizer solution; the outer phase is made up of oils or an oil/wax blend. Emulsion Anfo blends have been used to expand drill patterns, increase fragmentation, and provide extra energy for blast casting. 3 tabs.

  3. Regional moment: Magnitude relations for earthquakes and explosions

    Energy Technology Data Exchange (ETDEWEB)

    Patton, H.J.; Walter, W.R. (Lawrence Livermore National Lab., CA (United States))

    1993-02-19

    The authors present M[sub o]:m[sub b] relations using m[sub b](P[sub n]) and m[sub b](L[sub g]) for earthquakes and explosions occurring in tectonic and stable areas. The observations for m[sub b](P[sub n]) range from about 3 to 6 and show excellent separation between earthquakes and explosions on M[sub o]:m[sub b] plots, independent of the magnitude. The scatter in M[sub o]:M[sub b] observations for NTS explosions is small compared to the earthquake data. The M[sub o]:m[sub b](L[sub g]) data for Soviet explosions overlay the observations for US explosions. These results, and the small scatter for NTS explosions, suggest weak dependence of M[sub o]:m[sub b] relations on emplacement media. A simple theoretical model is developed which matches all these observations. The model uses scaling similarity and conservation of energy to provide a physical link between seismic moment and a broadband seismic magnitude. Three factors, radiation pattern, material property, and apparent stress, contribute to the separation between earthquakes and explosions. This theoretical separation is independent of broadband magnitude. For US explosions in different media, the material property and apparent stress contributions are shown to compensate for one another, supporting the observations that M[sub o]:M[sub b] is nearly independent of source geology. 19 refs., 2 figs., 1 tab.

  4. Explosion-proof lighting units according to EC standards

    Energy Technology Data Exchange (ETDEWEB)

    Olenik, H; Weyer, K

    1982-03-01

    Electrical equipment, e.g. lights, may be the cause of ignition in explosive atmospheres unless special measures are taken to prevent ignition. For an exact definition and description of explosion protection measures, the German VDE regulations contain specifications for construction and testing. There is a special administrative procedure to ensure that these explosion protection measures are checked by an official testing authority and that electrical equipment will receive a certificate of its suitability for explosive environments. The construction specifications have been elaborated by a VDE commission and are constantly updated.

  5. Dimensional analysis of small-scale steam explosion experiments

    International Nuclear Information System (INIS)

    Huh, K.; Corradini, M.L.

    1986-01-01

    Dimensional analysis applied to Nelson's small-scale steam explosion experiments to determine the qualitative effect of each relevant parameter for triggering a steam explosion. According to experimental results, the liquid entrapment model seems to be a consistent explanation for the steam explosion triggering mechanism. The three-dimensional oscillatory wave motion of the vapor/liquid interface is analyzed to determine the necessary conditions for local condensation and production of a coolant microjet to be entrapped in fuel. It is proposed that different contact modes between fuel and coolant may involve different initiation mechanisms of steam explosions

  6. 77 FR 55108 - Explosive Siting Requirements

    Science.gov (United States)

    2012-09-07

    ... energy, or a chemical explosion requiring a chemical reaction. Furthermore, an accident may happen... for energetic liquids. \\4\\ Crowl, D.A., Understanding Explosions, AIAA Center for Chemical Process... chemical hazards of energetic liquids used at commercial launch sites. Finally, a site map must now be at a...

  7. Multi-scale fracture damage associated with underground chemical explosions

    Science.gov (United States)

    Swanson, E. M.; Sussman, A. J.; Wilson, J. E.; Townsend, M. J.; Prothro, L. B.; Gang, H. E.

    2018-05-01

    Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive source are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.

  8. The concept of explosives malfunctioning in rock blasting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.

    1993-11-01

    The purpose is to identify the critical conditions that cause malfunctioning for some commonly used explosives. Experiments are described that measure sympathetic detonation, desensitization, and cut-offs for two variables: spacing and delay. Explosive malfunctioning is depicted on a delay spacing chart that has different regions. On the chart, the shape and size of each region can vary from one explosive to another. Results are presented from over 70 blasts, that were conducted in the underground drift at the CANMET Experimental Mine, to identify the malfunctioning characteristics of specific emulsion, water gel, and dynamite explosives. For each experiment, two parallel blastholes (with diameter of 32 mm and depth of 1.7 m) were drilled downwards, and full coupling was achieved. The results are presented for the three types of explosives tested. 11 refs., 7 figs.

  9. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  10. Vapour cloud explosion hazard greater with light feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Windebank, C.S.

    1980-03-03

    Because lighter chemical feedstocks such as propylene and butylenes are more reactive than LPG's they pose a greater risk of vapor cloud explosion, particularly during their transport. According to C.S. Windebank (Insurance Tech. Bur.), percussive unconfined vapor cloud explosions (PUVCE's) do not usually occur below the ten-ton threshold for saturated hydrocarbons but can occur well below this threshold in the case of unsaturated hydrocarbons such as propylene and butylenes. Boiling liquid expanding vapor explosions (BLEVE's) are more likely to be ''hot'' (i.e., the original explosion is associated with fire) than ''cold'' in the case of unsaturated hydrocarbons. No PUVCE or BLEVE incident has been reported in the UK. In the US, 16 out of 20 incidents recorded between 1970 and 1975 were related to chemical feedstocks, including propylene and butylenes, and only 4 were LPG-related. The average losses were $20 million per explosion. Between 1968 and 1978, 8% of LPG pipeline spillages led to explosions.

  11. JRR-3 cold neutron source facility H2-O2 explosion safety proof testing

    International Nuclear Information System (INIS)

    Hibi, T.; Fuse, H.; Takahashi, H.; Akutsu, C.; Kumai, T.; Kawabata, Y.

    1990-01-01

    A cold Neutron Source (CNS) will be installed in Japan Research Reactor-3 (JRR-3) in Japan Atomic Energy Research Institute (JAERI) during its remodeling project. This CNS holds liquid hydrogen at a temperature of about 20 K as a cold neutron source moderator in the heavy water area of the reactor to moderate thermal neutrons from the reactor to cold neutrons of about 5 meV energy. In the hydrogen circuit of the CNS safety measures are taken to prevent oxygen/hydrogen reaction (H 2 -O 2 explosion). It is also designed in such manner that, should an H 2 -O 2 explosion take place, the soundness of all the components can be maintained so as not to harm the reactor safety. A test hydrogen circuit identical to that of the CNS (real components designed by TECHNICATOME of France) was manufactured to conduct the H 2 -O 2 explosion test. In this test, the detonation that is the severest phenomenon of the oxygen/hydrogen reaction took place in the test hydrogen circuit to measure the exerted pressure on the components and their strain, deformation, leakage, cracking, etc. Based on the results of this measurement, the structural strength of the test hydrogen circuit was analyzed. The results of this test show that the hydrogen circuit components have sufficient structural strength to withstand an oxygen/hydrogen reaction

  12. Nuclear Explosions 1945-1998

    Energy Technology Data Exchange (ETDEWEB)

    Bergkvist, Nils-Olov; Ferm, Ragnhild

    2000-07-01

    The main part of this report is a list of nuclear explosions conducted by the United States, the Soviet Union, the United Kingdom, France, China, India and Pakistan in 1945-98. The list includes all known nuclear test explosions and is compiled from a variety of sources including officially published information from the USA, Russia and France. The details given for each explosion (date, origin time, location, yield, type, etc.) are often compiled from more than one source because the individual sources do not give complete information. The report includes a short background to nuclear testing and provides brief information on the Comprehensive Nuclear-Test-Ban Treaty and the verification regime now being established to verify compliance with the treaty. It also summarizes nuclear testing country by country. The list should be used with some caution because its compilation from a variety of sources means that some of the data could be incorrect. This report is the result of cooperation between the Defence Research Establishment (FOA) and the Stockholm International Peace Research Institute (SIPRI)

  13. Statistical estimation of loads from gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Hoeiset, Stian

    1998-12-31

    In the design of structures in the offshore and process industries, the possibility of a gas explosion must always be considered. The main uncertainties in computerized simulation of gas explosions are the assumptions of the gas cloud, the location of the ignition point and the properties of the simulator itself. This thesis quantifies the levels of these uncertainties by performing a large number of simulations on three offshore modules and one onshore plant. It is found that (1) there is an approximate linear relation between pressure and gas volume, (2) it may be possible to find a linear relation between pressure and impulse, (3) there is an inverse relation between pressure and duration, (4) the response of offshore structures exposed to gas explosions are rarely in the impulsive regime, (5) loading rates vary widely in magnitude, (6) an assumption of a triangular explosion pulse is often correct, (7) louvres increase pressure, impulse and duration of an explosion. The effect of ignition point location is studied in detail. It is possible to derive an ignition point uncertainty load factor that shows predictable behaviour by generalizing the non-parametric properties of the explosion pressure. A model for taking into account the uncertainties regarding gas volume, ignition point location and simulator imperfectness is proposed. The model is intended to produce a characteristic load for structural design. 68 refs., 51 figs., 36 tabs.

  14. Analysis of supercritical vapor explosions using thermal detonation wave theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamoun, B.I.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixing conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.

  15. 27 CFR 555.180 - Prohibitions relating to unmarked plastic explosives.

    Science.gov (United States)

    2010-04-01

    ... unmarked plastic explosives. 555.180 Section 555.180 Alcohol, Tobacco Products, and Firearms BUREAU OF... Marking of Plastic Explosives § 555.180 Prohibitions relating to unmarked plastic explosives. (a) No person shall manufacture any plastic explosive that does not contain a detection agent. (b) No person...

  16. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  17. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  18. Mathematical modelling of the decomposition of explosives

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2010-01-01

    Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.

  19. CFD analysis of gas explosions vented through relief pipes.

    Science.gov (United States)

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.

  20. Effect of Nano-Magnesium Hydride on the Thermal Decomposition Behaviors of RDX

    International Nuclear Information System (INIS)

    Yao, M.; Chen, L.; Rao, G.; Peng, J.; Zou, J.; Zeng, X.

    2013-01-01

    In order to improve the detonation performance of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) explosive, addictive with high heat values were used, and magnesium hydride (MgH 2 ) is one of the candidates. However, it is important to see whether MgH 2 is a safe addictive. In this paper, the thermal and kinetic properties of RDX and mixture of RDX/MgH 2 were investigated by differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC), respectively. The apparent activation energy (E) and frequency factor (A) of thermal explosion were calculated based on the data of DSC experiments using the Kissinger and Ozawa approaches. The results show that the addition of MgH 2 decreases both E and A of RDX, which means that the mixture of RDX/MgH 2 has a lower thermal stability than RDX, and the calculation results obtained from the ARC experiments data support this too. Besides, the most probable mechanism functions about the decomposition of RDX and RDX/MgH 2 were given in this paper which confirmed the change of the decomposition mechanism.

  1. Surface and body waves from surface and underground explosions

    International Nuclear Information System (INIS)

    Kusubov, A.S.

    1976-06-01

    The characteristics of surface and ground waves were recorded for surface and underground explosions up to 100 tons and 40 kt in magnitude, respectively, and a preliminary analysis of these results is presented. The experiments were conducted at NTS in the Yucca Flats, Nevada. Ground motions were detected with triaxial geophones along seismic lines extending up to 16 miles from the point of explosions. A comparison of Rayleigh waves generated by surface and underground explosions in the same lake bed is presented indicating a very different behavior of surface and ground waves from the two types of explosions. The magnitude of the transverse wave for surface shots was smaller by a factor of two than its longitudinal counterpart. The dependence of apparent periods on the blast energy was not apparent at a fixed distance from the explosions. Changes in the apparent period with distance for both types of explosion are compared indicating a strong layering effect of the lake bed. The ground motion study was complimented by excavation of cavities generated by the explosions

  2. Charging method of water hole with ANFO explosive

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Susumu

    1988-02-28

    It has been investigated how to charge a water hole with an inexpensive explosive for blasting. An experiment was made using the combination of a plasticized resin hose and the ANFO charger as the method for making the most of the ANFO explosive aiming at charging a hole with the explosive at a low cost without damaging the hole wall. The experimental result indicates that any water hole with spring water can be charged with the explosive using the ANFO charger combined with the plasticized resin hose. The method is superior to conventional methods in cost and workability because the working atmosphere is not aggravated and the hole wall is not damaged without using an expensive vacuum collector. Charging a blasting hole 165 mm or less in diameter with the explosive will be investigated for commercialization in future. (4 figs)

  3. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  4. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.

    Science.gov (United States)

    Kranz, William D; Strange, Nicholas A; Goodpaster, John V

    2014-12-01

    Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.

  5. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    Science.gov (United States)

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Explosive performance on the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKown, T.O.

    1994-03-01

    The non-proliferation experiment, originally called the chemical kiloton experiment, was planned and executed by Lawrence Livermore National Laboratory to investigate the seismic yield relationship and distinguishing seismic signals between a nuclear event and a large mass conventional explosion. The Los Alamos National Laboratory planned and conducted experiments to further their studies of the source function for signals observed seismically. Since all investigations were contingent on the performance of the emplaced chemical explosive, an array of diagnostic measurements was fielded in the emplaced explosive. The CORRTEX system was used to investigate the explosive initiation and to determine the detonation velocities in multiple levels and in numerous directions. A description of the CORRTEX experiments fielded, a review of the data obtained and some interpretations of the data are reported.

  7. Explosive composition with group VIII metal nitroso halide getter

    Science.gov (United States)

    Walker, F.E.; Wasley, R.J.

    1982-06-22

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm[sup 2] or less of energy fluence.

  8. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    Science.gov (United States)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  9. A systematic study of the explosion energy issue in core collapse supernova theory

    Science.gov (United States)

    Yamamoto, Yu

    2016-06-01

    Massive stars with main sequence masses greater than 8 solar mass (Msun) the main target of CCSNe researches. According to initial mass function (IMF) they occupy about 15As a matter of fact, supernova theorists have failed to reproduce this energetic stellar explosion for about a half century because micro and macro physics are highly complex and are mutual influenced. The theoretical investigation of the explosion mechanism is based on numerical simulations, which will ultimately require computational sources of exsa scales. With recent remarkable developments both in hardware and software, however, more realistic physics are incorporated and research group are beginning to overcome the difficulties, reporting successful explosions in their numerical models. The successful is still partial, unfortunately, since in the most of the cases the explosion energy hardly reaches the typical value (10^51erg). What is worse other groups found no explosion for almost same setups. The robust explosion mechanism has not yet been ascertained and is still a remaining issue. The purpose of this paper is to study how far our understanding of "neutrino heating mechanism", the current paradigm, has reached, or put another way, to expose what kind of physics are still missing to explain observations , such as explosion energy and nickel mass. As already remarked the physics in CCSNe are quite complicated with extremely high Reynolds number, highly uncertain equation of state (EOS) at supra-nuclear densities, copious neutrinos not in thermal nor chemical equilibrium with matter normally. I believe that it is justified to devote a somewhat large number of pages to the introduction. It will be also helpful for understanding the motivation of this paper. Starting with evidence from supernova light curves I will then move to the basics idea of neutrino heating mechanism and summarize some recent developments in various micro and macro physics. Key factors in the theory of massive

  10. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  11. Advances in impact resistance testing for explosion-proof electrical equipment

    Directory of Open Access Journals (Sweden)

    Pasculescu Vlad Mihai

    2017-01-01

    Full Text Available The design, construction and exploitation of electrical equipment intended to be used in potentially explosive atmospheres presents a series of difficulties. Therefore, the approach of these phases requires special attention concerning technical, financial and occupational health and safety aspects. In order for them not to generate an ignition source for the explosive atmosphere, such equipment have to be subjected to a series of type tests aiming to decrease the explosion risk in technological installations which operate in potentially explosive atmospheres. Explosion protection being a concern of researchers and authorities worldwide, testing and certification of explosion-proof electrical equipment, required for their conformity assessment, are extremely important, taking into account the unexpected explosion hazard due to potentially explosive atmospheres, risk which has to be minimized in order to ensure the occupational health and safety of workers, for preventing material losses and for decreasing the environmental pollution. Besides others, one of the type tests, which shall be applied, for explosion-proof electrical equipment is the impact resistance test, described in detail in EN 60079 which specifies the general requirements for construction, testing and marking of electrical equipment and Ex components intended for use in explosive atmospheres. This paper presents an analysis on the requirements of the impact resistance test for explosion-proof electrical equipment and on the possibilities to improve this type of test, by making use of modern computer simulation tools based on finite element analysis, techniques which are widely used nowadays in the industry and for research purposes.

  12. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays

    Science.gov (United States)

    Lichtenstein, Amir; Havivi, Ehud; Shacham, Ronen; Hahamy, Ehud; Leibovich, Ronit; Pevzner, Alexander; Krivitsky, Vadim; Davivi, Guy; Presman, Igor; Elnathan, Roey; Engel, Yoni; Flaxer, Eli; Patolsky, Fernando

    2014-06-01

    The capability to detect traces of explosives sensitively, selectively and rapidly could be of great benefit for applications relating to civilian national security and military needs. Here, we show that, when chemically modified in a multiplexed mode, nanoelectrical devices arrays enable the supersensitive discriminative detection of explosive species. The fingerprinting of explosives is achieved by pattern recognizing the inherent kinetics, and thermodynamics, of interaction between the chemically modified nanosensors array and the molecular analytes under test. This platform allows for the rapid detection of explosives, from air collected samples, down to the parts-per-quadrillion concentration range, and represents the first nanotechnology-inspired demonstration on the selective supersensitive detection of explosives, including the nitro- and peroxide-derivatives, on a single electronic platform. Furthermore, the ultrahigh sensitivity displayed by our platform may allow the remote detection of various explosives, a task unachieved by existing detection technologies.

  13. Current trends in development of explosives in world mining

    Energy Technology Data Exchange (ETDEWEB)

    Dobnikar, S.

    1987-01-01

    Surveys development of manufacturing industrial explosives in the 19th and 20th centuries, from first use of black powder, ammonium nitrate and TNT to the use of ANFO, slurries and water gel type explosives. Achievements of explosive producers with worldwide reputation (Ireco Chemicals, Du Pont, Atlas Powder Chemical, Nitro Nobel, Nippon Oil and Fats Co., Thermex Energy Co.) for manufacturing safe, reliable explosives used in surface and underground coal and ore mining (including gassy coal mines) and for quarrying are mentioned. Main characteristics of IREMITE, IREGEL, TOVEX, POURVEX, DRIVEX, Detagel, ANFO (both gel- and emulsion-type), Emulgite and Emulite are presented. A critical opinion about future trends in industrial explosive development is given. 10 refs., 7 tabs.

  14. Explosion-Induced Implosions of Cylindrical Shell Structures

    Science.gov (United States)

    Ikeda, C. M.; Duncan, J. H.

    2010-11-01

    An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.

  15. 49 CFR 173.60 - General packaging requirements for explosives.

    Science.gov (United States)

    2010-10-01

    ... explosives contained in the package, so that neither interaction between the explosives and the packaging... 49 Transportation 2 2010-10-01 2010-10-01 false General packaging requirements for explosives. 173...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1...

  16. Seismic coupling of nuclear explosions

    International Nuclear Information System (INIS)

    Larson, D.B.

    1989-01-01

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10 -3 to as low as 5.8 x 10 -6 . Other experiments in PMMA, reported recently by Stout and Larson 8 provide additional particle velocity data to strains of 10 -1

  17. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    International Nuclear Information System (INIS)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-01-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives

  18. HSE assessment of explosion risk analysis in offshore safety cases

    Energy Technology Data Exchange (ETDEWEB)

    Brighton, P.W.M.; Fearnley, P.J.; Brearley, I.G. [Health and Safety Executive, Bootle (United Kingdom). Offshore Safety Div.

    1995-12-31

    In the past two years HSE has assessed around 250 Safety Cases for offshore oil and gas installations, building up a unique overview of the current state of the art on fire and explosion risk assessment. This paper reviews the explosion risk methods employed, focusing on the aspects causing most difficulty for assessment and acceptance of Safety Cases. Prediction of overpressures in offshore explosions has been intensively researched in recent years but the justification of the means of prevention, control and mitigation of explosions often depends on much additional analysis of the frequency and damage potential of explosions. This involves a number of factors, the five usually considered being: leak sizes; gas dispersion; ignition probabilities; the frequency distribution of explosion strength; and the prediction of explosion damage. Sources of major uncertainty in these factors and their implications for practical risk management decisions are discussed. (author)

  19. Shock-induced explosive chemistry in a deterministic sample configuration.

    Energy Technology Data Exchange (ETDEWEB)

    Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III (,; ); Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith

    2005-10-01

    Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.

  20. Physics of phenomena in the zone close to an underground nuclear explosion; Physique des phenomenes en zone proche des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Maury, J; Levret, C [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a description of the phenomenology of underground explosions, the basic laws governing the propagation in the ground of the energy produced by the explosion are given. The reports considers hydrodynamics, the mechanics of solids, the equations of state for solids and gases in the case of very high and medium pressures, and the dynamical strength of solids. These various elements make it possible to draw up a system of equations which define completely the changes with time of the shock-wave produced in the ground by the explosion. (authors) [French] Apres une description de la phenomenologie des explosions souterraines, on expose les lois fondamentales regissant la propagation dans le sol de l'energie degagee par l'explosion. L'expose comprend des developpements sur l'hydrodynamique, la mecanique des solides, les equations d'etat des solides et des gaz, aux tres fortes et moyennes pressions, et sur la resistance dynamique des solides. Ces differents elements permettent d'ecrire un systeme d'equations qui definissent completement l'evolution dans le temps de l'onde de choc emise dans le sol par l'explosion. (auteurs)

  1. Shallow magma diversions during explosive diatreme-forming eruptions.

    Science.gov (United States)

    Le Corvec, Nicolas; Muirhead, James D; White, James D L

    2018-04-13

    The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.

  2. 49 CFR 1544.213 - Use of explosives detection systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Use of explosives detection systems. 1544.213...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.213 Use of explosives detection systems. (a... explosives detection system approved by TSA to screen checked baggage on international flights. (b) Signs and...

  3. Studies on compatibility of energetic materials by thermal methods

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    2010-04-01

    Full Text Available The chemical compatibility of explosives, pyrotechnics and propellants with those materials is studied to evaluate potential hazards when in contact with other materials during production, storage and handling. Compatibility can be studied by several thermal methods as DSC (differential scanning calorimetry, TG (Thermogravimetry, VST (Vacuum stability test and others. The test methods and well defined criteria are the most important elements when a compatibility study is being accomplished. In this paper, the compatibility of two very important high explosives used in ammunition, RDX (Cyclo-1,3,5-trimethylene-2,4,6-trinitramine and HMX (Cyclotetramethylene tetranitramine was studied with the materials: fluoroelastomer (Viton and powdered aluminum (Al, using DSC and VST methods. The criteria to judge the compatibility between materials is based on a standardization agreement (STANAG 4147, 2001, and the final conclusion is that explosives and this materials are compatible, but in DSC it was observed that the peak of decomposition temperature of the admixture of RDX with Al decreased in 3º C and another peak appeared after the decomposition peak.

  4. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2016-09-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.

  5. Seismic and source characteristics of large chemical explosions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V.; Kostuchenko, V.N.; Pernik, L.M.; Sultanov, D.D.; Zcikanovsky, V.I.

    1995-01-01

    From the very beginning of its arrangement in 1947, the Institute for Dynamics of the Geospheres RAS (former Special Sector of the Institute for physics of the Earth, RAS) was providing scientific observations of effects of nuclear explosions, as well as large-scale detonations of HE, on environment. This report presents principal results of instrumental observations obtained from various large-scale chemical explosions conducted in the Former-Soviet Union in the period of time from 1957 to 1989. Considering principal aim of the work, tamped and equivalent chemical explosions have been selected with total weights from several hundreds to several thousands ton. In particular, the selected explosions were aimed to study scaling law from excavation explosions, seismic effect of tamped explosions, and for dam construction for hydropower stations and soil melioration. Instrumental data on surface explosions of total weight in the same range aimed to test military technics and special objects are not included.

  6. Electronic cigarette explosions involving the oral cavity.

    Science.gov (United States)

    Harrison, Rebecca; Hicklin, David

    2016-11-01

    The use of electronic cigarettes (e-cigarettes) is a rapidly growing trend throughout the United States. E-cigarettes have been linked to the risk of causing explosion and fire. Data are limited on the associated health hazards of e-cigarette use, particularly long-term effects, and available information often presents conflicting conclusions. In addition, an e-cigarette explosion and fire can pose a unique treatment challenge to the dental care provider because the oral cavity may be affected heavily. In this particular case, the patient's injuries included intraoral burns, luxation injuries, and alveolar fractures. This case report aims to help clinicians gain an increased knowledge about e-cigarette design, use, and risks; discuss the risk of spontaneous failure and explosion of e-cigarettes with patients; and understand the treatment challenges posed by an e-cigarette explosion. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  7. Local magnitudes of small contained explosions.

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  8. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  9. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    International Nuclear Information System (INIS)

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada

    2009-01-01

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M defl , give explosions spanning a range of kinetic energies, K ∼ (1.0-1.2) x 10 51 erg, and 56 Ni masses, M( 56 Ni) ∼ 0.6-0.8 M sun , which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  10. Optimal dynamic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  11. Proof testing of an explosion containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, E.D. [Esparza (Edward D.), San Antonio, TX (United States); Stacy, H.; Wackerle, J. [Los Alamos National Lab., NM (United States)

    1996-10-01

    A steel containment vessel was fabricated and proof tested for use by the Los Alamos National Laboratory at their M-9 facility. The HY-100 steel vessel was designed to provide total containment for high explosives tests up to 22 lb (10 kg) of TNT equivalent. The vessel was fabricated from an 11.5-ft diameter cylindrical shell, 1.5 in thick, and 2:1 elliptical ends, 2 in thick. Prior to delivery and acceptance, three types of tests were required for proof testing the vessel: a hydrostatic pressure test, air leak tests, and two full design charge explosion tests. The hydrostatic pressure test provided an initial static check on the capacity of the vessel and functioning of the strain instrumentation. The pneumatic air leak tests were performed before, in between, and after the explosion tests. After three smaller preliminary charge tests, the full design charge weight explosion tests demonstrated that no yielding occurred in the vessel at its rated capacity. The blast pressures generated by the explosions and the dynamic response of the vessel were measured and recorded with 33 strain channels, 4 blast pressure channels, 2 gas pressure channels, and 3 displacement channels. This paper presents an overview of the test program, a short summary of the methodology used to predict the design blast loads, a brief description of the transducer locations and measurement systems, some of the hydrostatic test strain and stress results, examples of the explosion pressure and dynamic strain data, and some comparisons of the measured data with the design loads and stresses on the vessel.

  12. Intermittent Explosive Disorder

    Science.gov (United States)

    ... explosive disorder involves repeated, sudden episodes of impulsive, aggressive, violent behavior or angry verbal outbursts in which you react grossly out of proportion to the situation. Road rage, domestic abuse, throwing or breaking objects, or other temper tantrums ...

  13. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  14. Solid-phase microextraction coupled to gas chromatography for the determination of 2,3-dimethyl-2,3-dinitrobutane as a marking agent for explosives.

    Science.gov (United States)

    Li, Xiujuan; Zeng, Zhaorui; Zeng, Yi

    2007-06-15

    This paper investigates the detection of 2,3-dimethyl-2,3-dinitrobutane (DMNB), a marking agent in explosives, by gas chromatography (GC) with electron capture detection using solid-phase microextraction (SPME) as a sample preparation technique. The 25,27-dihydroxy-26,28-oxy (2',7'-dioxo-3',6'-diazaoctyl) oxy-p-tert-butylcalix[4]arene/hydroxy-terminated silicone oil coated fiber was highly sensitive to trap DMNB from ammonium nitrate matrix. The analysis was performed by extracting 2g of explosives for 30s at room temperature and then immediately introducing into the heated GC injector for 1min of thermal desorption. The method showed good linearity in the range from 0.01 to 1.0mug/g. The relative standard deviations for these extractions were <8%. The calculated limit of detection for DMNB (S/N=3) was 4.43x10(-4)mug/g, which illustrates that the proposed systems are suitable for explosive detection at trace level. This is the first report of an SPME-GC system shown to extract marking agent in explosives for subsequent detection in a simple, rapid, sensitive, and inexpensive manner.

  15. Preliminary results for explosion bonding of beryllium to copper

    International Nuclear Information System (INIS)

    Butler, D.J.; Dombrowski, D.E.

    1995-01-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques

  16. Five-component propagation model for steam explosion analysis

    International Nuclear Information System (INIS)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun

    1999-01-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  17. Critique of the Board-Hall model for thermal detonations in UO2--Na systems

    International Nuclear Information System (INIS)

    Williams, D.C.

    1976-01-01

    The Board--Hall model for detonating thermal explosions is reviewed and some criticisms are offered in terms of its application to UO 2 -Na systems. The basic concept of a detonation-like thermal explosion is probably valid provided certain fundamental conditions can be met; however, Board and Hall's arguments as to just how these conditions can be met in UO 2 -Na mixtures appear to contain serious flaws. Even as given, the model itself predicts that a very large triggering event is needed to initiate the process. More importantly, the model for shock-induced fragmentation greatly overestimates the tendency for such fragmentation to occur. The shock-dispersive effects of mixtures are ignored. Altogether, the model's deficiencies imply that, as given, it is not applicable to LMFBR accident analysis; nonetheless, one cannot completely rule out the possibility of meeting the fundamental conditions for detonation by other mechanisms

  18. Techniques of industrial radiology in military explosives

    International Nuclear Information System (INIS)

    Alves, L.E.G.

    1985-01-01

    The use of industrial radiology techniques id very important for military explosive fabrication. The cylindrical-ogive bodies made in forged metal have their interior fulfilled with high melted explosive and they must explode when they reach the target. The granades, as these bodies are called, are thrown by cannons and their interior are submitted to high pressures and accelerations which can cause a premature detonation, in most case, in interior of tube, in case of they have defects in explosive mass. The origins of defects, its localization and classification presenting the techniques used and disposable in Brazil are discussed. (M.C.K.) [pt

  19. Action Replay of Powerful Stellar Explosion

    Science.gov (United States)

    2008-03-01

    Astronomers have made the best ever determination of the power of a supernova explosion that was visible from Earth long ago. By observing the remnant of a supernova and a light echo from the initial outburst, they have established the validity of a powerful new method for studying supernovas. Using data from NASA's Chandra X-ray Observatory, ESA's XMM-Newton Observatory, and the Gemini Observatory, two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth. They concluded that the supernova occurred about 400 years ago (in Earth’s time frame), and was unusually bright and energetic. X-ray Image of SNR 0509-67.5 X-ray Image of SNR 0509-67.5 This result is the first time two methods - X-ray observations of a supernova remnant and optical observations of the expanding light echoes from the explosion - have both been used to estimate the energy of a supernova explosion. Up until now, scientists had only made such an estimate using the light seen soon after a star exploded, or using remnants that are several hundred years old, but not from both. "People didn't have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations using Gemini. "But we've done the next best thing by looking around the site of the explosion and constructing an action replay of it." People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Discovery of Most Recent Supernova in Our Galaxy NASA Unveils Cosmic Images Book in Braille for Blind Readers In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a so-called Type Ia supernova, caused by a white dwarf star in a binary system that reaches a critical mass and explodes. In

  20. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  1. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    OpenAIRE

    N Matsuo; M Otuka; H Hamasima; K Hokamoto; S Itoh

    2016-01-01

    Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated ...

  2. Early light curves for Type Ia supernova explosion models

    Science.gov (United States)

    Noebauer, U. M.; Kromer, M.; Taubenberger, S.; Baklanov, P.; Blinnikov, S.; Sorokina, E.; Hillebrandt, W.

    2017-12-01

    Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach STELLA for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.

  3. Energy and impacts of pressure vessel explosions

    International Nuclear Information System (INIS)

    Kurttila, H.

    1999-01-01

    In this paper the explosion energy is considered to be same as the energy of pressure vessel discharge. This is the maximum energy which can be obtained from the process. The energy can be used or it can cause the violence of an explosion accident. (orig.)

  4. Detection Dynamics Of Nitrogen Based Explosive Quantities In Selected Cylindrical Containers

    Directory of Open Access Journals (Sweden)

    Ngusha Tavershima Almighty

    2017-12-01

    Full Text Available An experimental set up for examining the variation of detection intensity with explosive quantity has been studied. Containers made from ceramic carbon steel wood and HDPE were filled with explosive masses ranging from 10 kg to 500 kg and irradiated by a 14.1 MeV point isotropic neutron source. The resulting gamma photons were analyzed for their C N and O composition and the sum computed to yield a quantity known as the material quotient MQ. Examination of MQ values indicates an initial increase in detection intensity with increasing explosive quantity. Saturation is however reached at an explosive quantity of about 25kg where detection intensity reduces with further increase in explosive quantity. Effects of variation in explosive quantity appeared to be more pronounced for explosives contained in HDPE and wooden containers and least pronounced for those in steel containers. Source-detector configuration was identified as a major factor affecting effective detection of large masses of explosives.

  5. Physics of phenomena in the zone close to an underground nuclear explosion; Physique des phenomenes en zone proche des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Maury, J.; Levret, C. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a description of the phenomenology of underground explosions, the basic laws governing the propagation in the ground of the energy produced by the explosion are given. The reports considers hydrodynamics, the mechanics of solids, the equations of state for solids and gases in the case of very high and medium pressures, and the dynamical strength of solids. These various elements make it possible to draw up a system of equations which define completely the changes with time of the shock-wave produced in the ground by the explosion. (authors) [French] Apres une description de la phenomenologie des explosions souterraines, on expose les lois fondamentales regissant la propagation dans le sol de l'energie degagee par l'explosion. L'expose comprend des developpements sur l'hydrodynamique, la mecanique des solides, les equations d'etat des solides et des gaz, aux tres fortes et moyennes pressions, et sur la resistance dynamique des solides. Ces differents elements permettent d'ecrire un systeme d'equations qui definissent completement l'evolution dans le temps de l'onde de choc emise dans le sol par l'explosion. (auteurs)

  6. Peaceful nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    Article V of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) specifies that the potential benefits of peaceful applications of nuclear explosions be made available to non-nuclear weapon states party to the Treaty 'under appropriate international observation and through appropriate international procedures'. The International Atomic Energy Agency's responsibility and technical competence in this respect have been recognized by its Board of Governors, the Agency's General Conference and the United Nations' General Assembly. Since 1968 when the United Nations Conference of Non-Nuclear Weapon States also recommended that the Agency initiate the necessary studies in the peaceful nuclear explosions (PNE) field, the Agency has taken the following steps: 1. The exchange of scientific and technical information has been facilitated by circulating information on the status of the technology and through the Agency's International Nuclear Information System. A bibliography of PNE-related literature was published in 1970. 2. In 1972, guidelines for 'the international observation of PNE under the provisions of NPT and analogous provisions in other international agreements' were developed and approved by the Board of Governors. These guidelines defined the basic purpose of international observation as being to verify that in the course of conducting a PNE project the intent and letter of Articles I and II of the NPT are not violated. 3. In 1974, an advisory group developed 'Procedures for the Agency to Use in Responding to Requests for PNE-Related Services'. These procedures have also been approved by the Board of Governors. 4. The Agency has convened a series of technical meetings which reviewed the 'state-of-the- art'. These meetings were convened in 1970, 1971, 1972 and in January 1975. The Fourth Technical Committee was held in Vienna from 20-24 January 1975 under the chairmanship of Dr. Allen Wilson of Australia with Experts from: Australia, France, Federal

  7. Raman hyperspectral imaging in conjunction with independent component analysis as a forensic tool for explosive analysis: The case of an ATM explosion.

    Science.gov (United States)

    Almeida, Mariana Ramos; Logrado, Lucio Paulo Lima; Zacca, Jorge Jardim; Correa, Deleon Nascimento; Poppi, Ronei Jesus

    2017-11-01

    In this work, Raman hyperspectral imaging, in conjunction with independent component analysis, was employed as an analytical methodology to detect an ammonium nitrate fuel oil (ANFO) explosive in banknotes after an ATM explosion experiment. The proposed methodology allows for the identification of the ANFO explosive without sample preparation or destroying the sample, at quantities as small as 70μgcm -2 . The explosive was identified following ICA data decomposition by the characteristic nitrate band at 1044cm -1 . The use of Raman hyperspectral imaging and independent component analysis shows great potential for identifying forensic samples by providing chemical and spatial information. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Excavation research with chemical explosives

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, William E; Day, Walter C [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-01

    The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment.

  9. Excavation research with chemical explosives

    International Nuclear Information System (INIS)

    Vandenberg, William E.; Day, Walter C.

    1970-01-01

    The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment

  10. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  11. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  12. Trend analysis of explosion events at overseas nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Hiroki

    2008-01-01

    We surveyed failures caused by disasters (e.g., severe storms, heavy rainfall, earthquakes, explosions and fires) which occurred during the 13 years from 1995 to 2007 at overseas nuclear power plants (NPPs) from the nuclear information database of the Institute of Nuclear Safety System. Incorporated (INSS). The results revealed that explosions were the second most frequent type of failure after fires. We conducted a trend analysis on such explosion events. The analysis by equipment, cause, and effect on the plant showed that the explosions occurred mainly at electrical facilities, and thus it is essential to manage the maintenance of electrical facilities for preventing explosions. In addition, it was shown that explosions at transformers and batteries, which have never occurred at Japan's NPPs, accounted for as much as 55% of all explosions. The fact infers that this difference is attributable to the difference in maintenance methods of transformers (condition based maintenance adopted by NPPs) and workforce organization of batteries (inspections performed by utilities' own maintenance workers at NPPs). (author)

  13. MODELING SNR CASSIOPEIA A FROM THE SUPERNOVA EXPLOSION TO ITS CURRENT AGE: THE ROLE OF POST-EXPLOSION ANISOTROPIES OF EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F., E-mail: orlando@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo “G.S. Vaiana,” Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2016-05-01

    The remnants of core-collapse supernovae (SNe) have complex morphologies that may reflect asymmetries and structures developed during the progenitor SN explosion. Here we investigate how the morphology of the supernova remnant Cassiopeia A (Cas A) reflects the characteristics of the progenitor SN with the aim of deriving the energies and masses of the post-explosion anisotropies responsible for the observed spatial distribution of Fe and Si/S. We model the evolution of Cas A from the immediate aftermath of the progenitor SN to the three-dimensional interaction of the remnant with the surrounding medium. The post-explosion structure of the ejecta is described by small-scale clumping of material and larger-scale anisotropies. The hydrodynamic multi-species simulations consider an appropriate post-explosion isotopic composition of the ejecta. The observed average expansion rate and shock velocities can be well reproduced by models with ejecta mass M {sub ej} ≈ 4 M {sub ⊙} and explosion energy E {sub SN} ≈ 2.3 × 10{sup 51} erg. The post-explosion anisotropies (pistons) reproduce the observed distributions of Fe and Si/S if they had a total mass of ≈0.25 M {sub ⊙} and a total kinetic energy of ≈1.5 × 10{sup 50} erg. The pistons produce a spatial inversion of ejecta layers at the epoch of Cas A, leading to the Si/S-rich ejecta physically interior to the Fe-rich ejecta. The pistons are also responsible for the development of the bright rings of Si/S-rich material which form at the intersection between the reverse shock and the material accumulated around the pistons during their propagation. Our result supports the idea that the bulk of asymmetries observed in Cas A are intrinsic to the explosion.

  14. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  15. A row-charge nuclear cratering explosion in alluvial rocks

    International Nuclear Information System (INIS)

    Kireev, V.V.; Kedrovskij, O.L.; Valentinov, Yu.A.; Myasnikov, K.V.; Nikiforov, G.A.; Prozorov, L.B.; Potapov, V.K.

    1975-01-01

    A brief description is given of the first row-charge nuclear cratering explosion in alluvial rocks carried out on the route of the Pechora-Kolva canal. The authors explain the purposes of the explosion, describe the geological conditions, indicate the emplacement parameters and yields of the charges, present data on the dynamics of development of the explosion and report on its seismic effects. The parameters of the resulting trench cut and the characteristics of the rock ejecta are also given. The possibility of using nuclear explosions for hydrotechnological projects requiring large excavations in a thick stratum of weak water-bearing rocks is considered

  16. Steam explosion simulation code JASMINE v.3 user's guide

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Maruyama, Yu; Nakamura, Hideo

    2008-07-01

    A steam explosion occurs when hot liquid contacts with cold volatile liquid. In this phenomenon, fine fragmentation of the hot liquid causes extremely rapid heat transfer from the hot liquid to the cold volatile liquid, and explosive vaporization, bringing shock waves and destructive forces. The steam explosion due to the contact of the molten core material and coolant water during severe accidents of light water reactors has been regarded as a potential threat to the integrity of the containment vessel. We developed a mechanistic steam explosion simulation code, JASMINE, that is applicable to plant scale assessment of the steam explosion loads. This document, as a manual for users of JASMINE code, describes the models, numerical solution methods, and also some verification and example calculations, as well as practical instructions for input preparation and usage of the code. (author)

  17. The Physical Basis of Lg Generation by Explosion Sources

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Stevens; G. E. Baker; H. Xu; T. J. Bennett; N. Rimer; S. D. Day

    2004-12-20

    The goal of this project has been to develop a quantitative predictive capability for explosion-generated Lg phases with a sound and unambiguous physical basis. The research program consisted of a theoretical investigation of explosion-generated Lg combined with an observational study. The specific question addressed by this research program is how the Lg phase is generated by underground nuclear explosions. This question is fundamental to how Lg phases are interpreted for use in explosion yield estimation and earthquake/explosion discrimination. To constrain modeling, we have extensively reviewed the existing literature and complemented that work with an examination of several explosion data sets, most notably: (1) Degelen Mountain explosions recorded between 7 and 57 km, with corresponding recordings at Borovoye, at approximately 650 km; (2) recordings from Russian deep seismic sounding experiments; (3) NTS explosion sources including the NPE and nuclear tests covering a range of source depths and media properties. A simple point explosion in an infinite medium generates no shear waves, so the Lg phase is generated entirely by non-spherical components of the source and conversions through reflections and scattering. We find that the most important contributors to the Lg phase are: (1) P to S conversion at the free surface and other near source interfaces, (2) S waves generated directly by a realistically distributed explosion source including nonlinear effects due to the free surface and gravity, and (3) Rg scattering to Lg. Additional effects that contribute significantly to Lg are scattering of converted S phases that traps more of the converted P-to-S in the crust, and randomization of the components of Lg. The pS phase from a spherically symmetric explosion source in media with P-wave velocity less than upper mantle S-wave velocity is trapped in the crust and can explain the observed radial and vertical Lg. The free surface pS converted phase from the same

  18. On the prompt identification of traces of explosives

    Science.gov (United States)

    Trobajo, M. T.; López-Cabeceira, M. M.; Carriegos, M. V.; Díez-Machío, H.

    2014-12-01

    Some recent results in the use of Raman spectroscopy for recognition of explosives are reviewed. Experimental study using spectra data base has been developed. In order to simulate a more real situation, both blank substances and explosives substances have been considered in this research. Statistic classification techniques have been performed. Estimations of prediction errors were obtained by cross-validation methods. These results can be applied in airport security systems in order to prevent terror acts (by the detection of explosive/flammable substances).

  19. Study of the decomposition of phase stabilized ammonium nitrate (PSAN) by simultaneous thermal analysis: determination of kinetic parameters

    OpenAIRE

    Simões, P. N.; Pedroso, L. M.; Portugal, A. A.; Campos, J. L.

    1998-01-01

    Ammonium nitrate (AN) has been extensively used both in explosive and propellant formulations. Unlike AN, there is a lack of information about the thermal decomposition and related kinetic analysis of phase stabilized ammonium nitrate (PSAN). Simultaneous thermal analysis (DSC-TG) has been used in the thermal characterisation of a specific type of PSAN containing 1.0% of NiO (stabilizing agent) and 0.5% of Petro (anti-caking agent) as additives. Repeated runs covering the nominal heating rate...

  20. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  1. Study by Monte Carlo methods of an explosives detection system made up with a D-D neutron generator and NaI(Tl) gamma detectors.

    Science.gov (United States)

    Cevallos Robalino, Lenin E; García Fernández, Gonzalo Felipe; Gallego, Eduardo; Guzmán-García, Karen A; Vega-Carrillo, Hector Rene

    2018-02-17

    Detection of hidden explosives is of utmost importance for homeland security. Several configurations of an Explosives Detection System (EDS) to intercept hidden threats, made up with a Deuterium-Deuterium (D-D) compact neutron generator and NaI (Tl) scintillation detectors, have been evaluated using MCNP6 code. The system's response to various samples of explosives, such as RDX and Ammonium Nitrate, is analysed. The D-D generator is able to produce fast neutrons with 2.5 MeV energy in a maximum yield of 10 10 n/s. It is surrounded by high-density polyethylene to thermalize the fast neutrons and to optimize interactions with the sample inspected, whose emission of gamma rays gives a characteristic spectrum of the elements that constitute it. This procedure allows to determine its chemical composition and to identify the type of substance. The necessary shielding is evaluated to estimate its thicknesses depending on the admissible dose of operation, using lead and polyethylene. The results show that its functionality is promising in the field of national security for explosives inspection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Evaluation of the Thermochemical Code - CHEETAH 2.0 for Modelling Explosives Performance

    National Research Council Canada - National Science Library

    Lu, Jing

    2001-01-01

    The Lawrence Livermore National Laboratory CHEETAH 2.0 program has been used to analyse a number of conventional ideal explosive ingredients, ideal explosive compositions, non-ideal explosive compositions, and new and proposed explosives...

  3. 36 CFR 331.5 - Explosives and fireworks.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Explosives and fireworks. 331... CONSERVATION AREA, KENTUCKY AND INDIANA § 331.5 Explosives and fireworks. Unless otherwise authorized in writing by the District Engineer. (a) The possession or use of fireworks is prohibited. (b) The possession...

  4. Recent Advances in Understanding Large Scale Vapour Explosions

    International Nuclear Information System (INIS)

    Board, S.J.; Hall, R.W.

    1976-01-01

    In foundries, violent explosions occur occasionally when molten metal comes into contact with water. If similar explosions can occur with other materials, hazardous situations may arise for example in LNG marine transportation accidents, or in liquid cooled reactor incidents when molten UO 2 contacts water or sodium coolant. Over the last 10 years a large body of experimental data has been obtained on the behaviour of small quantities of hot material in contact with a vaporisable coolant. Such experiments generally give low energy yields, despite producing fine fragmentation of the molten material. These events have been interpreted in terms of a wide range of phenomena such as violent boiling, liquid entrainment, bubble collapse, superheat, surface cracking and many others. Many of these studies have been aimed at understanding the small scale behaviour of the particular materials of interest. However, understanding the nature of the energetic events which were the original cause for concern may also be necessary to give confidence that violent events cannot occur for these materials in large scale situations. More recently, there has been a trend towards larger experiments and some of these have produced explosions of moderately high efficiency. Although occurrence of such large scale explosions can depend rather critically on initial conditions in a way which is not fully understood, there are signs that the interpretation of these events may be more straightforward than that of the single drop experiments. In the last two years several theoretical models for large scale explosions have appeared which attempt a self contained explanation of at least some stages of such high yield events: these have as their common feature a description of how a propagating breakdown of an initially quasi-stable distribution of materials is induced by the pressure and flow field caused by the energy release in adjacent regions. These models have led to the idea that for a full

  5. The explosion-proof container, satisfying the IAEA norms on safety

    International Nuclear Information System (INIS)

    Syrunin, M.A.; Fedorenko, A.G.; Ivanov, A.G.; Abakumov, A.I.; Nizovtsev, P.N.; Loginov, P.G.; Smolyakov, A.A.; Solov'ev, V.P.

    1998-01-01

    Safety of radioactive materials (RM) transportation is under strict control of the international norms of IAEA, aimed to ensure non-proliferation of hazardous materials in the environments. At the same time the nuclear countries use much more dangerous transportations of two types of hazardous materials. Probability of emergency explosion of high explosives (HE) during transportation and storage of such constructions is not equal to zero. HE explosion can be caused by: 1)excess of mechanical effects, allowable by the norms, on an explosive 2)lightening or fire 3)terrorist attack 4)radio controlled or time controlled mechanism in case of the terrorist device. It is obvious that an accident with explosion HE element of the nuclear weapon in an usual container, which meets the IAEA norms, but is not explosion-proof, will result in its destruction, RM dispersal, and inadmissible pollution of the environments. Therefore, it is urgent need for development of the container, which is able to withstand explosion of HE, placed in it, and to confine released RM inside of it. The experimental prototype of the load-bearing shell of the explosion-proof container (EC) can be the successfully tested spherical steel - glass plastic shell, having high-strength throats and lids. Having weight of 45-50 kg it is able to withstand internal explosion with energy more than 1.4 kg of the TNT equivalent. To preserve the explosion-proofness property in the abnormal environments during transportation, the explosion-proof container should be placed in the protective supporting transport device or the transport container (TC), consisting of the external thin-walled steel shell and the damping heat-proof layer from heat-resistant foam plastic. To justify the design parameters of such container, the tests for development and revision of the numerical model parameters were carried out. With use of this model the calculations were performed to calculate loads and the container response to 1

  6. Analysis of causes of combustible mixture explosions inside production floor areas

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2016-01-01

    Full Text Available The work provides a cause analysis for major industrial explosions and a review of the causes of combustive air-gas mixture generation in a production environment. It has been established that during operation of explosive production facilities, it is process equipment that, as a rule, creates explosive environment inside the floor area. A qualitative method for determination of a potential accident has been reviewed. Analysis of the nature of explosion effect on building structures and equipment has shown that exposions characterised by absence of equipment and building structure disintegration normally have a localized character. It has been identified that during explosions inside process equipment, the largest structural damage occurs in spots hit by equipment debris. Complete destruction of building structures and equipment is caused by explosions inside equipment containing large quantities of combustible products. It has been identified that most explosions are accompanied by partial or total destruction of building structures and equipment. Therefore, measures taken to protect equipment and buildings from explosion effects lack efficiency.

  7. Short term forecasting of explosions at Ubinas volcano, Perú

    Science.gov (United States)

    Traversa, P.; Lengliné, O.; Macedo, O.; Metaxian, J. P.; Grasso, J. R.; Inza, A.; Taipe, E.

    2011-11-01

    Most seismic eruption forerunners are described using Volcano-Tectonic earthquakes, seismic energy release, deformation rates or seismic noise analyses. Using the seismic data recorded at Ubinas volcano (Perú) between 2006 and 2008, we explore the time evolution of the Long Period (LP) seismicity rate prior to 143 explosions. We resolve an average acceleration of the LP rate above the background level during the 2-3 hours preceding the explosion onset. Such an average pattern, which emerges when stacking over LP time series, is robust and stable over all the 2006-2008 period, for which data is available. This accelerating pattern is also recovered when conditioning the LP rate on the occurrence of an other LP event, rather than on the explosion time. It supports a common mechanism for the generation of explosions and LP events, the magma conduit pressure increase being the most probable candidate. The average LP rate acceleration toward an explosion is highly significant prior to the higher energy explosions, supposedly the ones associated with the larger pressure increases. The dramatic decay of the LP activity following explosions, still reinforce the strong relationship between these two processes. We test and we quantify the retrospective forecasting power of these LP rate patterns to predict Ubinas explosions. The prediction quality of the forecasts (e.g. for 17% of alarm time, we predict 63% of Ubinas explosions, with 58% of false alarms) is evaluated using error diagrams. The prediction results are stable and the prediction algorithm validated, i.e. its performance is better than the random guess.

  8. Explosives Classifications Tracking System User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Genoni, R.P.

    1993-10-01

    The Explosives Classification Tracking System (ECTS) presents information and data for U.S. Department of Energy (DOE) explosives classifications of interest to EM-561, Transportation Management Division, other DOE facilities, and contractors. It is intended to be useful to the scientist, engineer, and transportation professional, who needs to classify or transport explosives. This release of the ECTS reflects upgrading of the software which provides the user with an environment that makes comprehensive retrieval of explosives related information quick and easy. Quarterly updates will be provided to the ECTS throughout its development in FY 1993 and thereafter. The ECTS is a stand alone, single user system that contains unclassified, publicly available information, and administrative information (contractor names, product descriptions, transmittal dates, EX-Numbers, etc.) information from many sources for non-decisional engineering and shipping activities. The data is the most up-to-date and accurate available to the knowledge of the system developer. The system is designed to permit easy revision and updating as new information and data become available. These, additions and corrections are welcomed by the developer. This user manual is intended to help the user install, understand, and operate the system so that the desired information may be readily obtained, reviewed, and reported.

  9. Detection of hidden explosives by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Li Xinnian; Guo Junpeng; Luo Wenyun; Wang Chuanshan; Fang Xiaoming; Yu Tailiu

    2008-01-01

    The paper describes the method and principle for detection of hidden explosive by fast neutron activation analysis (FNAA). The method of detection of explosives by FNAA has the specific properties of simple determination equipments, high reliability, and low detecting cost, and would be beneficial to the applicability and popularization in the field of protecting and securing nation. The contents of nitrogen and oxygen in four explosives, more then ten common materials and TNT samples covered with soil, were measured by FNAA. 14 MeV fast neutrons were generated from (d, t) reaction with a 400 kV Cockcroft Walton type accelerator. The two-dimension distributions for nitro- gen and oxygen counting rates per unit mass of determined matters were obtained, and the characteristic area of explosives and non-explosives can be defined. By computer aided pattern recognition, the samples were identified with low false alarm or omission rates. The Monte-Carlo simulation indicates that there is no any radiation at 15 m apart from neutron source and is safe for irradiation after 1 h. It is suggested that FNAA may be potential in remote controlling for detection hidden explosive system with multi-probe large array. (authors)

  10. Explosion hazards of LPG-air mixtures in vented enclosure with obstacles.

    Science.gov (United States)

    Zhang, Qi; Wang, Yaxing; Lian, Zhen

    2017-07-15

    Numerical simulations were performed to study explosion characteristics of liquefied petroleum gas (LPG) explosion in enclosure with a vent. Unlike explosion overpressure and dynamic pressure, explosion temperature of the LPG-air mixture at a given concentration in a vented enclosure has very little variation with obstacle numbers for a given blockage ratio. For an enclosure without obstacle, explosion overpressures for the stoichiometric mixtures and the fuel-lean mixtures reach their maximum within the vent and that for fuel-rich mixture reaches its maximum beyond and near the vent. Dynamic pressures produced by an indoor LPG explosion reach their maximum always beyond the vent no matter obstacles are present or not in the enclosure. A LPG explosion in a vented enclosure with built-in obstacles is strong enough to make the brick and mortar wall with a thickness of 370mm damaged. If there is no obstacle in the enclosure, the lower explosion pressure of several kPa can not break the brick and mortar wall with a thickness of 370mm. For a LPG explosion produced in an enclosure with a vent, main hazards, within the vent, are overpressure and high temperature. However main hazards are dynamic pressure, blast wind, and high temperature beyond the vent. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  12. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  13. Numerical Simulation of Explosive Forming Using Detonating Fuse

    OpenAIRE

    H Iyama; Y Higa; M Nishi; S Itoh

    2017-01-01

    The explosive forming is a characteristic method. An underwater shock wave is generated by underwater explosion of an explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming ...

  14. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  15. Development of a non-explosive release actuator using shape memory alloy wire.

    Science.gov (United States)

    Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju

    2013-01-01

    We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.

  16. An experimental study of the molten glass/water thermal interaction. Topical report

    International Nuclear Information System (INIS)

    Arakeri, V.H.; Catton, I.; Kastenberg, W.E.

    1977-06-01

    Molten glass interacts explosively with water under certain contact mode conditions. The contact mode found explosive is as follows: molten glass enters the water bath in the film boiling regime (as predicted by Henry's correlation) and soon after entry, the vapor film is perturbed sufficiently by an external pressure pulse. The ensuing reaction proceeds basically along the same lines as energetic tin/water interactions observed by several investigators. In the absence of this pressure pulse, the event is non-energetic. The reported findings are for a combination in which the hot material has a very low thermal diffusivity and the calculated interface temperature is significantly (175C) below its melting temperature. This is similar to the characteristics of the UO2/sodium combination. The observed explosive glass/water interactions show growth times of the order of a few milliseconds. The particulate size distribution from the present tests was coarser than the particulate size distribution from some in-pile and out-of-pile UO2/sodium interaction tests

  17. Explosive Ordnance Disposal (EOD) Ensembles: Biophysical Characteristics and Predicted Work Times With and Without Chemical Protection and Active Cooling Systems

    Science.gov (United States)

    2015-04-29

    Integrated groin protector (IGP), and Boot Protector); GORE lined leather combat boots; and NOMEX® gloves with Velcro ; and EOD9 full face helmet... effective heat removal or cooling capacity of the active cooling system could not be obtained on the manikin, reasonable estimates can be used to...Price MJ, & Oldroyd M. The effect of heat acclimation on thermal strain during explosives ordnance disposal (EOD) related activity in moderate and

  18. Seismic Methods of Identifying Explosions and Estimating Their Yield

    Science.gov (United States)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.

    2014-12-01

    Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models

  19. Response of Radon in a seismic calibration explosion, Israel

    International Nuclear Information System (INIS)

    Zafrir, H.; Steinitz, G.; Malik, U.; Haquin, G.; Gazit-Yaari, N.

    2009-01-01

    Radon measurements were performed at shallow levels during an in-land 20-ton seismic calibration explosion experiment, simulating a 2.6-M L earthquake, to investigate the influence of the explosive blast and the transitory seismic wave fields on the Radon transport in the country rock, adjacent to the focus of the explosion. The experiment was conducted in a basalt quarry in the northern margin of the Beit Shean valley (Israel). Five gamma-ray sensors were placed, at a depth of about 2 m, along a line located 17-150 m from the edge of the explosion zone. Measurements commenced 4 days before and continued for 9 days after the explosion with 15 min integrations. A 10-s sampling was used in the interval of several hours before and after the explosion itself. Diurnal variations of Radon, reflecting the typical variation pattern of Radon in the shallow environment, were registered before and after the explosion. No significant change in the overall Radon concentration was observed as a consequence of the main explosion as well as three smaller experimental shots (0.5-2 tons) in the 2 h prior to the calibration blast. The seismological data indicate that the transient excess pressure at the farthest Radon sensor was above 5 bar m -1 during 0.2-0.4 s, and evidently much higher at the nearest sensors, but none of the sensors responded by recording any exceptional change in the Radon concentration. Moreover the hypothesis that additional Radon may emanate from solid grains as a result of the excess local pressure exerted by the blast is also not observed. In contrast to a real earthquake event an explosion experiment has neither eventual preceding nor following geodynamic activity. Therefore the absence of significant Radon anomalies during or after the blast does not contradict assumptions, observations or conclusions as the occurrence of Radon anomalies prior or after an earthquake event due to associated long-term geodynamic processes.

  20. Detecting and modeling persistent self-potential anomalies from underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    McKague, H.L.; Kansa, E.; Kasameyer, P.W.

    1992-01-01

    Self-potential anomalies are naturally occurring, nearly stationary electric fields that are detected by measuring the potential difference between two points on (or in) the ground. SP anomalies arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress report on our work toward detecting explosion-related SP signals at the Nevada Test Site (NTS) and in understanding the physics of these anomalies that persist and continue changing over periods of time that range from months to years. As background, we also include a brief description of how SP signals arise, and we mention their use in other areas such as exploring for geothermal resources and locating seepage through dams. Between the years 1988 and 1991, we surveyed the areas around seven underground nuclear tests for persistent SP anomalies. We not only detected anomalies, but we also found that various phenomena could be contributing to them and that we did not know which of these were actually occurring. We analyzed our new data with existing steady state codes and with a newly developed time-dependent thermal modeling code. Our results with the new code showed that the conductive decay of the thermal pulse from an underground nuclear test could produce many of the observed signals, and that others are probably caused by movement of fluid induced by the explosion. 25 refs

  1. Droplet solidification and the potential for steam explosions

    International Nuclear Information System (INIS)

    Epstein, M.; Fauske, H.K.; Luangdilok, W.

    2009-01-01

    It is well known that under certain circumstances a mixture of coarse-hot (molten) drops in water formed from pouring a hot melt into water explodes. This so-called 'steam explosion' is generally believed to involve steam-bubble-collapse-induced fine fragmentation of the melt drops and concomitant water vaporization on a timescale that is short compared with the steam pressure relief time. Motivated by the idea put forth by Okkonen and Sehgal that rapid solidification would render UO 2 -containing (Corium) melt drops stiff and resistant to the steam-bubble-collapse-induced fragmentation required to support an explosion, here we combine solidification theory with an available theory of the stability of thin, submerged crusts subject to acceleration to predict the 'cutoff time' beyond which melt-drop fragmentation is suppressed by crust cover rigidity. Illustration calculations show that the cutoff time for Corium melt drops in water is a fraction of a second and probably shorter than the time it takes to form the explosion-prerequisite-coarse-premixture configuration of melt drops in water, while the opposite is true for the molten aluminum oxide/water system for which the window of opportunity for an explosion is predicted to be several seconds. These theoretical findings are consistent with early experiments that revealed molten uranium oxide or Corium pours into water to be non-explosive and that produced steam explosions upon pouring molten aluminum oxide into water. Also in this paper, the recent TROI Corium/water interaction experiments are examined and it is concluded that they do not contravene the earlier experimental observations that the pouring of prototypical Corium mixtures into water does not result in steam explosions with destructive potential. (author)

  2. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  3. Modelling and simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeter, Olav

    1998-12-31

    This thesis presents a three-dimensional Computational Fluid Dynamics (CFD) code (EXSIM94) for modelling and simulation of gas explosions in complex geometries. It gives the theory and validates the following sub-models : (1) the flow resistance and turbulence generation model for densely packed regions, (2) the flow resistance and turbulence generation model for single objects, and (3) the quasi-laminar combustion model. It is found that a simple model for flow resistance and turbulence generation in densely packed beds is able to reproduce the medium and large scale MERGE explosion experiments of the Commission of European Communities (CEC) within a band of factor 2. The model for a single representation is found to predict explosion pressure in better agreement with the experiments with a modified k-{epsilon} model. This modification also gives a slightly improved grid independence for realistic gas explosion approaches. One laminar model is found unsuitable for gas explosion modelling because of strong grid dependence. Another laminar model is found to be relatively grid independent and to work well in harmony with the turbulent combustion model. The code is validated against 40 realistic gas explosion experiments. It is relatively grid independent in predicting explosion pressure in different offshore geometries. It can predict the influence of ignition point location, vent arrangements, different geometries, scaling effects and gas reactivity. The validation study concludes with statistical and uncertainty analyses of the code performance. 98 refs., 96 figs, 12 tabs.

  4. Computer program for storage and retrieval of thermal-stability data for explosives

    International Nuclear Information System (INIS)

    Ashcraft, R.W.

    1981-06-01

    A computer program for storage and retrieval of thermal stability data has been written in HP Basic for the HP-9845 system. The data library is stored on a 9885 flexible disk. A program listing and sample outputs are included as appendices

  5. Nuclear explosive driven experiments

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment

  6. Underground nuclear explosions. Study of the cavity radius

    International Nuclear Information System (INIS)

    Michaud, L.

    1968-11-01

    An underground nuclear explosion creates a cavity due to the expansion of the surrounding medium vaporized by the shot. The cavity radius is related to the energy of explosion and to the overburden pressure of the medium. The introduction of new elements such as the environment of the device (in a deep hole or in a tunnel) and the cohesion of the medium leads to a relationship which determines this radius. The known French and American underground explosions performed in various media, energy and overburden conditions, satisfy this relationship with a good precision. (author) [fr

  7. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Science.gov (United States)

    2010-07-01

    ...) After firing an electric blast from a blasting machine, the leading wires shall be immediately... 29 Labor 8 2010-07-01 2010-07-01 false Initiation of explosive charges-electric blasting. 1926.906... Use of Explosives § 1926.906 Initiation of explosive charges—electric blasting. (a) Electric blasting...

  8. 30 CFR 18.62 - Tests to determine explosion-proof characteristics.

    Science.gov (United States)

    2010-07-01

    ... characteristics. 18.62 Section 18.62 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inspections and Tests § 18.62 Tests to determine explosion-proof characteristics. (a) In testing for explosion-proof characteristics of an enclosure, it shall be filled and surrounded with various explosive mixtures...

  9. 30 CFR 75.1312 - Explosives and detonators in underground magazines.

    Science.gov (United States)

    2010-07-01

    ... magazines. 75.1312 Section 75.1312 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5 feet...

  10. 36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.

    Science.gov (United States)

    2010-07-01

    ... weapons and fireworks. 327.13 Section 327.13 Parks, Forests, and Public Property CORPS OF ENGINEERS... ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.13 Explosives, firearms, other weapons and fireworks. (a) The... explosives or explosive devices of any kind, including fireworks or other pyrotechnics, is prohibited unless...

  11. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Chen, Xiaodong

    2018-03-01

    Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This report discusses the recovery from the February 9, 1991 small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant. Custom processing is a small scale dissolution facility which processes nuclear material in an economical fashion. The material dissolved in this facility was uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid. The paper explained the release of fission material, and the decontamination and recovery of the fuel material. The safety and protection procedures were also discussed. Also described was the chemical analysis which was used to speculate the most probable cause of the explosion. (MB)

  13. Simulation of explosive welding with ANFO mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, A.A. Akbari; Burley, Stephen J.; Al-Hassani, S.T.S. [Department of Mechanical, Aerospace and Manufacturing Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Byers Brown, W. [Mass Action Research Consultancy, Devonshire House, 14 Corbar Road, Buxton, SK17 6RQ (United Kingdom)

    2004-06-01

    The work described here arose from a study into explosive welding. As part of that study, the impact velocity of stainless steel and titanium plates to grazing detonation of ANFO/perlite, the velocity of detonation were measured. Computer simulation required a new model which copes with an equation of state of low explosives. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  14. Gas pollutants from detonation and combustion of industrial explosives

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J.; Pines, A.; Gois, J.C.; Portugal, A. (University of Coimbra, Coimbra (Portugal). Mechanical Engineering Dept.)

    1993-01-01

    The potential hazards of fumes, from blasting operations in underground mines, have long been recognised. Beyond this normal use of explosives, there are also large amounts of energy substances which cannot be used because their life time is outdated or they are not within the minimal quality requirements. There is a lack of information concerning tests, procedures and theoretical predictions of pollutant concentrations in fumes from detonation and combustion operations with industrial explosives. The most common industrial explosives in Portugal are ammonium nitrate-fuel oil compositions (anfo), and dynamite. Recently, ammonium nitrate based emulsion explosives are more and more used in industrial applications. This paper presents the structure and fundamental thermodynamic equations of THOR computer code to calculate the combustion and detonation products (CO[sub 2], CO, H[sub 2]O, N[sub 2], O[sub 2], H[sub 2], OH, NO, H, N, O, HCN, NH[sub 3], NO[sub 2], N[sub 2]O, CH[sub 4] gases and two kinds of solid carbon - graphite and diamond) for the minimum value of Gibbs free energy, using three well known equations of state - BKW, H9 and H12. Detonation experiments are described and gas analysis discussed. Measured pollutants concentrations (CO, CO[sub 2], NO and NO[sub 2]), as a function of volume of explosion chamber, prove the dependence of expansion mechanisms on CO and NO formation and recombination and validate theoretical predictions. Incineration of explosives in a fluidised bed is described. Products composition from isobare adiabatic combustion of selected explosives has been calculated and correlated with previous calculations for a detonation regime. The obtained results demonstrate the possibility of predicting gas composition of detonation and combustion products of industrial explosives. 22 refs., 14 figs., 1 tab.

  15. Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala

    Science.gov (United States)

    Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.

    2016-12-01

    Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an

  16. Structure and properties of joints of two-ply steel using ''elastic'' explosives

    International Nuclear Information System (INIS)

    Gel'man, A.S.; Savel'ev, S.A.; Kulakevich, Ya.S.; Sharypov, N.A.; Drogovejko, I.Z.; Domolego, I.E.

    1980-01-01

    Some experimental data on structure and properties of compounds during cladding of sheets made of St3 with sheets of nichrome and steel 12Kh18N10T with the use of ''elastic'' explosives are presented. It is shown that the use of ''elastic'' explosives permits to decrease r parameter sufficiently, (where r - is the ratio of explosive mass to the mass of throwen phate) that reduces considerably the specific consumption explosives in comparison with the consumption conventional mixture explosives. Peculiarities of tested ''elastic'' explosives make their application perspective in two cases - at cladding of complex curved surfaces (drums, tube blanks etc.), as sell as at applications of burst chambers, where explosive mass limits dimensions of cladding blanks and details [ru

  17. Water-bearing explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G M

    1970-12-21

    An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)

  18. 29 CFR 1926.904 - Storage of explosives and blasting agents.

    Science.gov (United States)

    2010-07-01

    ..., electric blasting caps, detonating primers, and primed cartridges shall not be stored in the same magazine... feet of explosives and detonator storage magazine. (d) No explosives or blasting agents shall be... 29 Labor 8 2010-07-01 2010-07-01 false Storage of explosives and blasting agents. 1926.904 Section...

  19. Forensic analysis of explosions: Inverse calculation of the charge mass

    NARCIS (Netherlands)

    Voort, M.M. van der; Wees, R.M.M. van; Brouwer, S.D.; Jagt-Deutekom, M.J. van der; Verreault, J.

    2015-01-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU fP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estïmate the charge mass and point of origin based on observed damage

  20. The Soviet program for peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1996-01-01

    The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people 'to turn your spears into pitchforks and your swords into plowshares.' As the scientists at Los Alamos worked on developing the world's first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits

  1. The Soviet program for peaceful uses of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M.D.

    1996-07-24

    The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people `to turn your spears into pitchforks and your swords into plowshares.` As the scientists at Los Alamos worked on developing the world`s first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits.

  2. Quantitative risk analysis of gas explosions in tunnels; probability, effects, and consequences

    NARCIS (Netherlands)

    Weerheijm, J.; Voort, M.M. van der; Verreault, J.; Berg, A.C. van den

    2015-01-01

    Tunnel accidents with transports of combustible liquefied gases may lead to explosions. Depending on the substance involved this can be a Boiling Liquid Expanding Vapour Explosion (BLEVE), a Gas Expansion Explosion (GEE) or a gas explosion. Quantification of the risk of these scenarios is important

  3. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  4. Numerical Simulation on Smoke Spread and Temperature Distribution in a Corn Starch Explosion

    Science.gov (United States)

    Lin, CherngShing; Hsu, JuiPei

    2018-01-01

    It is discovered from dust explosion accidents in recent years that deep causes of the accidents lies in insufficient cognition of dust explosion danger, and no understanding on danger and information of the dust explosion. In the study, Fire Dynamics Simulator (FDS) evaluation tool is used aiming at Taiwan Formosa Fun Coast explosion accidents. The calculator is used for rebuilding the explosion situation. The factors affecting casualties under explosion are studied. The injured personnel participating in the party are evaluated according to smoke diffusion and temperature distribution for numerical simulation results. Some problems noted in the fire disaster after actual explosion are proposed, rational site analysis is given, thereby reducing dust explosion risk grade.

  5. Asymmetric explosion of core-collapse supernovae

    International Nuclear Information System (INIS)

    Kazeroni, Remi

    2016-01-01

    A core-collapse supernova represents the ultimate stage of the evolution of massive stars.The iron core contraction may be followed by a gigantic explosion which gives birth to a neutron star.The multidimensional dynamics of the innermost region, during the first hundreds milliseconds, plays a decisive role on the explosion success because hydrodynamical instabilities are able to break the spherical symmetry of the collapse. Large scale transverse motions generated by two instabilities, the neutrino-driven convection and the Standing Accretion Shock Instability (SASI),increase the heating efficiency up to the point of launching an asymmetric explosion and influencing the birth properties of the neutron star. In this thesis, hydrodynamical instabilities are studied using numerical simulations of simplified models. These models enable a wide exploration of the parameter space and a better physical understanding of the instabilities, generally inaccessible to realistic models.The non-linear regime of SASI is analysed to characterize the conditions under which a spiral mode prevails and to assess its ability to redistribute angular momentum radially.The influence of rotation on the shock dynamics is also addressed. For fast enough rotation rates, a corotation instability overlaps with SASI and greatly impacts the dynamics. The simulations enable to better constrain the effect of non-axisymmetric modes on the angular momentum budget of the iron core collapsing into a neutron star. SASI may under specific conditions spin up or down the pulsar born during the explosion. Finally, an idealised model of the heating region is studied to characterize the non-linear onset of convection by perturbations such as those produced by SASI or pre-collapse combustion inhomogeneities. The dimensionality issue is examined to stress the beneficial consequences of the three-dimensional dynamics on the onset of the explosion. (author) [fr

  6. Analysis of ventilation systems subjected to explosive transients: far-field analysis

    International Nuclear Information System (INIS)

    Tang, P.K.; Andrae, R.W.; Bolstad, J.W.; Duerre, K.H.; Gregory, W.S.

    1981-11-01

    Progress in developing a far-field explosion simulation computer code is outlined. The term far-field implies that this computer code is suitable for modeling explosive transients in ventilation systems that are far removed from the explosive event and are rather insensitive to the particular characteristics of the explosive event. This type of analysis is useful when little detailed information is available and the explosive event is described parametrically. The code retains all the features of the TVENT code and allows completely compressible flow with inertia and choking effects. Problems that illustrate the capabilities and limitations of the code are described

  7. Pyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2016-01-01

    Full Text Available Pyrotechnic release devices such as explosive bolts are prevalent for many applications due to their merits: high reliability, high power-to-weight ratio, reasonable cost, and more. However, pyroshock generated by an explosive event can cause failures in electric components. Although pyroshock propagations are relatively well understood through many numerical and experimental studies, the prediction of pyroshock generation is still a very difficult problem. This study proposes a numerical method for predicting the pyroshock of a ridge-cut explosive bolt using a commercial hydrocode (ANSYS AUTODYN. A numerical model is established by integrating fluid-structure interaction and complex material models for high explosives and metals, including high explosive detonation, shock wave transmission and propagation, and stress wave propagation. To verify the proposed numerical scheme, pyroshock measurement experiments of the ridge-cut explosive bolts with two types of surrounding structures are performed using laser Doppler vibrometers (LDVs. The numerical analysis results provide accurate prediction in both the time (acceleration and frequency domains (maximax shock response spectra. In maximax shock response spectra, the peaks due to vibration modes of the structures are observed in both the experimental and numerical results. The numerical analysis also helps to identify the pyroshock generation source and the propagation routes.

  8. Background on the commercial explosive chosen for the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mammele, M.E.

    1994-12-31

    The requirements of the Chemical Kiloton Experiment as outlined in the original explosives bid package provided DYNO NOBEL/Alpha-Ireco, Inc. with a unique challenge. The size of the chamber, the total volume of explosives required, the chemical energy equivalent of one kiloton, the time-frame of loading the chamber, transportation, safety, were all necessary considerations in choosing this particular explosive. The rationale for choosing this particular emulsion/ANFO blend of blasting agent explosive will be presented. DYNO NOBEL INC in-house theoretical predictions as to the explosive performance potential of the blasting agent will be compared to some of the actual data acquired upon detonation. The results of this type of experiment may provide new insight as to the efficiency of the energy release of typical commercial explosives.

  9. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion

    Science.gov (United States)

    Tsventoukh, M. M.

    2018-05-01

    A model has been developed for the explosive electron emission cell pulse of a vacuum discharge cathode spot that describes the ignition and extinction of the explosive pulse. The pulse is initiated due to hydrodynamic tearing of a liquid-metal jet which propagates from the preceding cell crater boundary and draws the ion current from the plasma produced by the preceding explosion. Once the jet neck has been resistively heated to a critical temperature (˜1 eV), the plasma starts expanding and decreasing in density, which corresponds to the extinction phase. Numerical and analytical solutions have been obtained that describe both the time behavior of the pulse plasma parameters and their average values. For the cell plasma, the momentum per transferred charge has been estimated to be some tens of g cm/(s C), which is consistent with the known measurements of ion velocity, ion erosion rate, and specific recoil force. This supports the model of the pressure-gradient-driven plasma acceleration mechanism for the explosive cathode spot cells. The ohmic electric field within the explosive current-carrying plasma has been estimated to be some tens of kV/cm, which is consistent with the known experimental data on cathode potential fall and explosive cell plasma size. This supports the model that assumes the ohmic nature of the cathode potential fall in a vacuum discharge.

  10. 30 CFR 75.1313 - Explosives and detonators outside of magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and detonators outside of magazines... § 75.1313 Explosives and detonators outside of magazines. (a) The quantity of explosives outside a magazine for use in a working section or other area where blasting is to be performed shall— (1) Not exceed...

  11. Techniques for detecting explosives and contraband

    International Nuclear Information System (INIS)

    Vourvopoulos, G.

    1994-01-01

    Because terrorism continues to be a societal threat, scientists are still searching for ways to identify concealed weapons that can be used in terrorist attacks. Explosives are singled out for particular attention because they can easily be shaped to look innocuous, and are still hard to detect. At present, there are three methods under development for the detection of explosives: X-ray imaging, vapour detection and nuclear techniques, and this article will concentrate on the latter. Since there is no single technology that can address all the questions concerning the detection of explosives and other illicit contraband, the philosophy that emerges is that of an integral system combining methodologies. Such a system could contain a nuclear technology device, a vapour detector, and an X-ray imaging device, all backed by an intelligence gathering system. In this paper methods are suggested for identifying explosives which may be used in terrorist attacks and for detecting concealed drugs. Techniques discussed are X-ray imaging, combining high and low energy x-ray machines, vapour detection using a ''sniffer'' to collect vapour samples then analysing the vapour by gas chromatography, chemiluminescence and mass spectroscopy and nuclear techniques. Nuclear techniques, such as neutron activation analysis, are discussed in detail but it is stressed that they need to be carried out at speed to eliminate disruption and delay at airports etc. (UK)

  12. Asymmetric Explosion of Type Ia Supernovae and Their Observational Signatures

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    2010-01-01

    The nature of Type Ia supernova (SN Ia) explosions has not yet been clarified, despite their importance in astrophysics and cosmology. Recent theoretical investigations suggest that asymmetric distribution of initial thermonuclear sparks may be a key in the SN Ia explosion mechanism. In this paper, the first observational evidence of the asymmetry in SN Ia explosions is presented: We have found that late-time nebular spectra of various SNe Ia show a diversity in wavelengths of emission lines. This feature is inconsistent with any spherically symmetric explosion models, and indicates that the innermost region, a likely product of the deflagration wave propagation, shows an off-set with respect to the explosion center. The diversity in the emission-line wavelengths could naturally be explained by a combination of different viewing angles.

  13. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  14. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Jung, Ho-Young; Park, Jeong-Hun

    2015-11-01

    Co-contamination of explosives and heavy metals (HMs) in soil, particularly army shooting range soil, has received increasing environmental concern due to toxicity and risks to ecological systems. In this study, a subcritical water (SCW) extraction process was used to remediate the explosives-plus-HMs-co-contaminated soil. A quantitative evaluation of explosives in the treated soil, compared with untreated soil, was applied to assess explosive removal. The immobilization of HMs was assessed by toxicity characteristic leaching procedure tests, and by investigating the migration of HMs fractions. The environmental risk of HMs in the soil residue was assessed according to the risk assessment code (RAC) and ecological risk indices (Er and RI). The results indicated that SCW treatment could eliminate the explosives, >99%, during the remediation, while the HM was effectively immobilized. The effect of water temperature on reducing the explosives and the risk of HMs in soil was observed. A marked increase in the non-bioavailable concentration of each HM was observed, and the leaching rate of HMs was decreased by 70-97% after SCW treatment at 250 °C, showing the effective immobilization of HMs. According to the RAC or RI, each tested HM showed no or low risk to the environment after treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Some analytical methods for explosives: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Selig, W.

    1965-12-08

    This report is the second compilation of methods for analyzing explosives. All the methods were developed for routine performance by techniques, and an attempt has therefore been made to keep them as simple as possible. Methods are presented for analyzing plastic-bonded explosives based on sym-cyclomethylenetetra-nitramine (HMX), based on viton in addition to HMX, and based on pentraerythritol tetranitrate (PETN).

  16. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.

    1996-01-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials

  17. Supernova Explosions Stay In Shape

    Science.gov (United States)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  18. Experimental Study of Structure/Behavior Relationship for a Metallized Explosive

    Science.gov (United States)

    Bukovsky, Eric; Reeves, Robert; Gash, Alexander; Glumac, Nick

    2017-06-01

    Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. 29 CFR 1926.903 - Underground transportation of explosives.

    Science.gov (United States)

    2010-07-01

    ...) Trucks used for the transportation of explosives underground shall have the electrical system checked weekly to detect any failures which may constitute an electrical hazard. A certification record which... powered by the truck's electrical system, shall be prohibited. (g) Explosives and blasting agents shall be...

  20. Soviet experience with peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1976-01-01

    The Soviet Union is pursuing an active program for developing peaceful uses of nuclear explosions (PNE). They have reported 16 explosions, with applications ranging from putting out oil-well fires and stimulating oil recovery to creating instant dams and canals. The data reported generally agree with U.S. experience. Seismic data collected by western sources on explosions outside the known Soviet test sites indicate that the Soviet program is at least twice as large as they have reported. The accelerated pace of these events suggests that in some applications the Soviet PNE program is approaching routine industrial technology