WorldWideScience

Sample records for thermal expansion material

  1. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  2. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    OpenAIRE

    Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun

    2017-01-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...

  3. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  4. Local behaviour of negative thermal expansion materials

    International Nuclear Information System (INIS)

    Fornasini, P.; Dalba, G.; Grisenti, R.; Purans, J.; Vaccari, M.; Rocca, F.; Sanson, A.

    2006-01-01

    EXAFS can represent a powerful probe of the local behaviour of negative thermal expansion (NTE) materials, thanks to the possibility of measuring the expansion of selected inter-atomic bonds and the perpendicular relative atomic displacements. The effectiveness of EXAFS for NTE studies is illustrated by a comparison of results recently obtained on germanium, CuCl and the cuprites Cu 2 O and Ag 2 O

  5. Anisotropic thermal expansion in flexible materials

    Science.gov (United States)

    Romao, Carl P.

    2017-10-01

    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  6. Thermal Expansion Properties of Aerospace Materials

    Science.gov (United States)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  7. Negative thermal expansion materials: technological key for control of thermal expansion.

    Science.gov (United States)

    Takenaka, Koshi

    2012-02-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over -30 ppm K -1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  8. Negative thermal expansion materials: technological key for control of thermal expansion

    Directory of Open Access Journals (Sweden)

    Koshi Takenaka

    2012-01-01

    Full Text Available Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  9. Negative thermal expansion materials: technological key for control of thermal expansion

    International Nuclear Information System (INIS)

    Takenaka, Koshi

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K −1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade. (topical review)

  10. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Science.gov (United States)

    Shen, Fei-Ran; Kuang, Hao; Hu, Feng-Xia; Wu, Hui; Huang, Qing-Zhen; Liang, Fei-Xiang; Qiao, Kai-Ming; Li, Jia; Wang, Jing; Liu, Yao; Zhang, Lei; He, Min; Zhang, Ying; Zuo, Wen-Liang; Sun, Ji-Rong; Shen, Bao-Gen

    2017-10-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10-6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  11. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Directory of Open Access Journals (Sweden)

    Fei-Ran Shen

    2017-10-01

    Full Text Available Materials with zero thermal expansion (ZTE or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10−6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  12. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  13. Seal assembly for materials with different coefficients of thermal expansion

    Science.gov (United States)

    Minford, Eric [Laurys Station, PA

    2009-09-01

    Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.

  14. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  15. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  16. Pressure effects on thermal conductivity and expansion of geologic materials

    International Nuclear Information System (INIS)

    Sweet, J.N.

    1979-02-01

    Through analysis of existing data, an estimate is made of the effect of pressure or depth on the thermal conductivity and expansion of geologic materials which could be present in radioactive waste repositories. In the case of homogeneous dense materials, only small shifts are predicted to occur at depths less than or equal to 3 km, and these shifts will be insignificant as compared with those caused by temperature variations. As the porosity of the medium increases, the variation of conductivity and expansion with pressure becomes greater, with conductivity increasing and expansion decreasing as pressure increases. The pressure dependence of expansion can be found from data on the temperature variation of the isobaric compressibility. In a worst case estimate, a decrease in expansion of approx. 25% is predicted for 5% porous sandstone at a depth of 3 km. The thermal conductivity of a medium with gaseous inclusions increases as the porosity decreases, with the magnitude of the increase being dependent on the details of the porosity collapse. Based on analysis of existing data on tuff and sandstone, a weighted geometric mean formula is recommended for use in calculating the conductivity of porous rock. As a result of this study, it is recommended that measurement of rock porosity versus depth receive increased attention in exploration studies and that the effect of porosity on thermal conductivity and expansion should be examined in more detail

  17. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  18. Investigation of Thermal Expansion of a Glass Ceramic Material with an Extra-Low Thermal Linear Expansion Coefficient

    Science.gov (United States)

    Kompan, T. A.; Korenev, A. S.; Lukin, A. Ya.

    2008-10-01

    The artificial material sitall CO-115M was developed purposely as a material with an extra-low thermal expansion. The controlled crystallization of an aluminosilicate glass melt leads to the formation of a mixture of β-spodumen, β-eucryptite, and β-silica anisotropic microcrystals in a matrix of residual glass. Due to the small size of the microcrystals, the material is homogeneous and transparent. Specific lattice anharmonism of these microcrystal materials results in close to zero average thermal linear expansion coefficient (TLEC) of the sitall material. The thermal expansion coefficient of this material was measured using an interferometric method in line with the classical approach of Fizeau. To obtain the highest accuracy, the registration of light intensity of the total interference field was used. Then, the parameters of the interference pattern were calculated. Due to the large amount of information in the interference pattern, the error of the calculated fringe position was less than the size of a pixel of the optical registration system. The thermal expansion coefficient of the sitall CO-115M and its temperature dependence were measured. The TLEC value of about 3 × 10-8 K-1 to 5 × 10-8 K-1 in the temperature interval from -20 °C to +60 °C was obtained. A special investigation was carried out to show the homogeneity of the material.

  19. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  20. Giant Thermal Expansion in 2D and 3D Cellular Materials.

    Science.gov (United States)

    Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di

    2018-03-25

    When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The thermal expansion of hard magnetic materials of the Nd-Fe-B system

    Science.gov (United States)

    Savchenko, Igor; Kozlovskii, Yurii; Samoshkin, Dmitriy; Yatsuk, Oleg

    2017-10-01

    The results of dilatometric measurement of the thermal expansion of hard magnetic materials brands N35M, N35H and N35SH containing as a main component the crystalline phase of Nd2Fe14B type are presented. The temperature range from 200 to 750 K has been investigated by the method of dilatometry with an error of 1.5-2×10-7 K-1. The approximation dependences of the linear thermal expansion coefficient have been obtained. The character of changes of the thermal coefficient of linear expansion in the region of the Curie point has been specified, its critical indices and critical amplitudes have been defined.

  2. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    Science.gov (United States)

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  3. Tailored functional materials with controlled thermal expansion and excellent thermal conductivity

    International Nuclear Information System (INIS)

    Korb, G.; Sebo, P.

    1997-01-01

    Engineering materials are mainly used for structures. Therefore high-strength, stiffness and sufficient toughness are of prime importance. For a long time engineers thought first in terms of metals. Material scientists developed alloys tailored to the needs of industry. Ceramics are known to be brittle and therefore not suitable in the first place for structural application under stress. Polymers with their low modulus became attractive when reinforced with high-strength fibres. Composites processed by polymer, metal or ceramic matrices and high-strength reinforcements have been introduced into many sectors of industry. Engineering materials for structural applications fulfil a function: they withstand high stresses, temperatures, fatigue, creep etc. But usually we do not call them functional materials. Functional materials serve applications apart from classical engineering fields. Electricity conducting materials, semi conductors, memory alloys and many others are called functional materials. Because of the fact that the basic physical properties cannot be changed in single-phase materials, the combination of two and more materials with different properties lead to components with new and tailored properties. A few techniques for preparation are described as powder metallurgy, infiltration of prepegs and compaction of precoated fibres/particles. The lecture is focusing on carbon fibre/particle reinforced Metal Matrix Materials. The achievable properties, in particular the thermal conductivity originating from the base materials is depending on the orientation of the fibres and interfacial contacts in the composite. The carefully controlled expansion behaviour is the most important property to use the material as a heat sink in electronic assemblies. (author)

  4. The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials

    Science.gov (United States)

    Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David

    2007-01-01

    This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.

  5. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  6. A Negative Thermal Expansion Material of ZrMgMo3O12

    International Nuclear Information System (INIS)

    Song Wen-Bo; Liang Er-Jun; Liu Xian-Sheng; Li Zhi-Yuan; Yuan Bao-He; Wang Jun-Qiao

    2013-01-01

    A material with the formula ZrMgMo 3 O 12 having negative thermal expansion is presented and characterized. It is shown that ZrMgMo 3 O 12 crystallizes in an orthorhombic symmetry with space group Pnma(62) or Pna2 1 (33) and exhibits negative thermal expansion in a large temperature range (α l = −3.8 × 10 −6 K −1 from 300K to 1000K by x-ray diffraction and α l = −3.73 × 10 −6 K −1 from 295K to 775K by dilatometer). ZrMgMo 3 O 12 remains the orthorhombic structure without phase transition or decomposition at least from 123K to 1200K and is not hygroscopic. These properties make it an excellent material with negative thermal expansion for a variety of applications

  7. Plastic deformation tests on fragile materials using a thermal expansion machine

    International Nuclear Information System (INIS)

    Orozco, E.; Morales, A.; Mendoza, A.

    1991-01-01

    Applying an electrical current on an iron bar, a thermal expansion can be induced. We have taken advantage of this to deform fragile materials, in order to study their mechanical properties. In this paper we show some gels and high T c oxide superconductors (Author)

  8. The thermal expansion of hard magnetic materials of the Nd-Fe-B system

    Directory of Open Access Journals (Sweden)

    Savchenko Igor

    2017-01-01

    Full Text Available The results of dilatometric measurement of the thermal expansion of hard magnetic materials brands N35M, N35H and N35SH containing as a main component the crystalline phase of Nd2Fe14B type are presented. The temperature range from 200 to 750 K has been investigated by the method of dilatometry with an error of 1.5-2×10-7 K-1. The approximation dependences of the linear thermal expansion coefficient have been obtained. The character of changes of the thermal coefficient of linear expansion in the region of the Curie point has been specified, its critical indices and critical amplitudes have been defined.

  9. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  10. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Directory of Open Access Journals (Sweden)

    Amparo Borrell, Olga García-Moreno, Ramón Torrecillas, Victoria García-Rocha and Adolfo Fernández

    2012-01-01

    Full Text Available Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C. The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  11. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    International Nuclear Information System (INIS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-01-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  12. Effects of Brass (Cu3Zn2) as High Thermal Expansion Material on Shrink Disc Performance During High Thermal Loading

    Science.gov (United States)

    Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA

    2018-03-01

    This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.

  13. Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.

    Science.gov (United States)

    Mullaney, Benjamin R; Goux-Capes, Laurence; Price, David J; Chastanet, Guillaume; Létard, Jean-François; Kepert, Cameron J

    2017-10-20

    External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.

  14. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining

    Directory of Open Access Journals (Sweden)

    Masahiko Kanaoka et al

    2007-01-01

    Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.

  15. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  16. A Noncontact Measurement Technique for the Density and Thermal Expansion Coefficient of Solid and Liquid Materials

    Science.gov (United States)

    Chung, Sang K.; Thiessen, David B.; Rhim, Won-Kyu

    1996-01-01

    A noncontact measurement technique for the density and the thermal expansion refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2-3 mm diameter samples can be levitated, melted, and radiatively cooled in a vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045-1565 C. The result for the liquid phase density can be expressed by p = 8.848 + (6.730 x 10(exp -4)) x T (degC) g/cu cm within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by Beta=(9.419 x 10(exp -5)) - (7.165 x 10(exp -9) x T (degC)/K within 0.2% accuracy.

  17. A Micro-Test Structure for the Thermal Expansion Coefficient of Metal Materials

    Directory of Open Access Journals (Sweden)

    Qingying Ren

    2017-02-01

    Full Text Available An innovative micro-test structure for detecting the thermal expansion coefficient (TEC of metal materials is presented in this work. Throughout this method, a whole temperature sensing moveable structures are supported by four groups of cascaded chevrons beams and packed together. Thermal expansion of the metal material causes the deflection of the cascaded chevrons, which leads to the capacitance variation. By detecting the capacitance value at different temperatures, the TEC value of the metal materials can be calculated. A finite element model has been established to verify the relationship between the TEC of the material and the displacement of the structure on horizontal and vertical directions, thus a function of temperature for different values of TEC can be deduced. In order to verify the analytical model, a suspended-capacitive micro-test structure has been fabricated by MetalMUMPs process and tested in a climate chamber. Test results show that in the temperature range from 30 °C to 80 °C, the TEC of the test material is 13.4 × 10−6 °C−1 with a maximum relative error of 0.8% compared with the given curve of relationship between displacement and temperature.

  18. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

    Science.gov (United States)

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier

    2016-09-01

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound \\text{FeSi} over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.

  19. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  20. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    International Nuclear Information System (INIS)

    Omar, M.S.

    2012-01-01

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å 3 for bulk to 57 Å 3 for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10 −6 K −1 for a bulk crystal down to a minimum value of 0.1 × 10 −6 K −1 for a 6 nm diameter nanoparticle.

  1. Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond

    Directory of Open Access Journals (Sweden)

    Cora Lind

    2010-04-01

    Full Text Available Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.

  2. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  3. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  4. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  5. Thermal expansion of doped lanthanum gallates

    Indian Academy of Sciences (India)

    Administrator

    Since the components are in intimate mechanical contact, any stress generated due to their thermal expansion mis- match during thermal cycling could lead to catastrophic failure of the cell. The functional materials must have similar thermal expansions to avoid mechanical stresses. Hence it is useful to study the thermal ...

  6. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  7. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2009-01-01

    The lattice thermal expansion of the transuranium nitride solid solutions was measured to investigate the composition dependence. The single-phase solid solution samples of (Np 0.55 Am 0.45 )N, (Pu 0.59 Am 0.41 )N, (Np 0.21 Pu 0.52 Am 0.22 Cm 0.05 )N and (Pu 0.21 Am 0.18 Zr 0.61 )N were prepared by carbothermic nitridation of the respective transuranium dioxides and nitridation of Zr metal through hydride. The lattice parameters were measured by the high temperature X-ray diffraction method from room temperature up to 1478 K. The linear thermal expansion of each sample was determined as a function of temperature. The average thermal expansion coefficients over the temperature range of 293-1273 K for the solid solution samples were 10.1, 11.5, 10.8 and 8.8 x 10 -6 K -1 , respectively. Comparison of these values with those for the constituent nitrides showed that the average thermal expansion coefficients of the solid solution samples could be approximated by the linear mixture rule within the error of 2-3%.

  8. DESIGN OF AN EDUCATIONAL SIMULATION PROGRAM USING DIGITAL VIDEO PROCESSING TO DETERMINE THE THERMAL EXPANSION OF MATERIALS

    Directory of Open Access Journals (Sweden)

    V. Gökhan BÖCEKÇİ

    2013-01-01

    Full Text Available The present report describes the realization of an educational simulation program to determine the amount of linear thermal expansion in experimental materials. An interferogram signal derived from an interferometric measurement system was modeled as a video signal in a computer environment. A simulation program was designed from the model signal in order to detect the amount of expansion in materials. The simulation program determined the amount of to heat by detecting the number of fringes in interferogram video signals of the material. This simulation program facilitated experimental studies n academic institutions which are deprived of interferometric measurement systems.

  9. Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials.

    Science.gov (United States)

    Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T

    2016-10-10

    Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.

  10. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  11. Thermal expansion and density measurements of molten and solid materials at high temperatures by the gamma attenuation technique

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1979-05-01

    An apparatus is described for the measurement of the density and thermal expansion of molten materials to 3200 0 K using the gamma attenuation technique. The precision of the experimental technique was analytically examined for both absolute and relative density determinations. Three analytical expressions used to reduce data for liquid density determinations were evaluated for their precision. Each allows use of a different set of input data parameters, which can be chosen based on experimental considerations. Using experimentally reasonable values for the precision of the parameters yields a similar resultant density precision from the three methods, on the order of 0.2%. The analytical method for measurements of the linear thermal expansion of solids by the gamma method is also described. To demonstrate the use of the technique on reasonably well-characterized systems, data are presented for (1) the density and thermal expansion of molten tin, lead, and aluminum to 1300 0 K, (2) the thermal expansion of solid aluminum to the melting point, and (3) the thermal expansion of a low melting point glass through the transition temperature and melting region. The data agree very well with published results using other methods where such published data exist

  12. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  13. Evaluation of long-term stability of low thermal expansion coefficient materials using gauge block interferometers

    Science.gov (United States)

    Hirai, Akiko; Bitou, Youichi; Oike, Yoshiyuki

    2018-06-01

    The long-term stability of NEXCERA™ ceramics having a low coefficient of thermal expansion was evaluated over a period of eight years. Several gauge blocks of differing lengths were prepared, using two types of NEXCERA. Each gauge block was kept wrung to a platen and its absolute length was periodically measured by gauge block interferometer during the eight years. Relative uncertainties of measurement of changes in gauge block length were estimated as 4.1  ×  10‑8 and 2.9  ×  10‑8 for 200 mm and 800 mm gauge blocks, respectively. The experimental results show the trend of expansion and a relative change of less than 0.1  ×  10‑6/year for every gauge block.

  14. Investigation of the thermal expansion of the refractory materials at high temperatures

    Science.gov (United States)

    Kostanovskiy, A.; Kostanovskaya, M.; Zeodinov, M.; Pronkin, A.

    2017-11-01

    We present the experimental investigation of the relative elongation and the coefficient of linear thermal expansion for monocrystaline alumina Al2O3 (1200 K - 1860 K), zirconia ZrO2 (1200 K - 2730 K) and siliconized silicon carbide SiC+Si (1150 K - 2500 K) in the specified range of temperatures. The following approach is used to measure the relative elongation: the through-cylindrical-marks located in the centre of isothermal part of the sample, and the measurement of temperature by two blackbody models, taken out of the area of the sample where the relative elongation is measured.

  15. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  17. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  18. Linear Thermal Expansion Measurements of Lead Magnesium Niobate (PMN) Electroceramic Material for the Terrestrial Planet Finder Coronagraph

    Science.gov (United States)

    Karlmann, Paul B.; Halverson, Peter G.; Peters, Robert D.; Levine, Marie B.; VanBuren, David; Dudik, Matthew J.

    2005-01-01

    Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre- selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 3 10K. Expansion and contraction of the test samples with temperature was measured using a JPL developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.

  19. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Fasong [The State Key Lab of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Departments of Physics, College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn [The State Key Lab of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Lin, Jing; Ding, Yingchun [Departments of Physics, College of Science, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-04-15

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surface of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10{sup −6}(K{sup −1}) at the range of 298 K–598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K–748 K.

  20. Heat conduction coefficient and coefficient of linear thermal expansion of electric insulation materials for superconducting magnetic system

    International Nuclear Information System (INIS)

    Deev, V.I.; Sobolev, V.P.; Kruglov, A.B.; Pridantsev, A.I.

    1984-01-01

    Results of experimental investigation of heat conduction coefficient and coefficient of linear thermal expansion and thermal shrinkages of the STEF-1 textolite-glass widely used in superconducting magnetic systems as electric insulating and structural material are presented. Samples of two types have been died: sample axisa is perpendicular to a plae of fiberglass layers ad sample axis is parallel to a plane of fiberglass layers. Heat conduction coefficient was decreased almost a five times with temperature decrease from 300 up to 5K and was slightly dependent on a sample type. Temperature variation of linear dimensions in a sample of the first type occurs in twice as fast as compared to the sample of the second type

  1. Thermal expansion: Metallic elements and alloys. [Handbook

    Science.gov (United States)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  2. High thermal expansion, sealing glass

    Science.gov (United States)

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  3. Thermal expansion and phase transformation studies on some materials by high temperature x-ray powder diffractometry

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Kutty, K.V.G.; Jajoo, H.K.; Ananthakrishnan, S.K.; Asurvatharaman, R.

    1988-01-01

    A high temperature chamber based on electrical resistance heating has been integrated to an existing x-ray powder diffractometer. The system is capable of going upto 2500degC at programmed rates of heating. Temperature measurement is carried out by means by Pt/Rh or W/Re thermocouples or by optical pyrometry depending upon the temperature range. Provision exists for performing high temperature x-ray diffractometry in vacuum or in a gaseous atmosphere of low x-ray absorption. The x-ray optical alignment has been ensured by accurately measuring the unit cell lengths of x-ray diffraction standards like silicon and tungsten. The thermocouples have been calibrated within the system by monitoring the melting points of gold and silver. The well characterized transformation of zirconia from the monoclinic to tetragonal structure occuring around 1100degC has been satisfactorily reproduced . The high temperature phase transitions in some rare earth oxides have been studi ed. lattice parameter measurements on a variety of materials as a function of temperature upto 1500degC have been carried out and the data found to be in agreement with the literature values. From the measured lattice parameter values, percentage thermal expansion and coefficients of thermal expansion have been calculated for many substances from room temperature to 15000degC. (author). 20 refs., 9 figs

  4. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  5. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  6. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  7. A Simple Method for Determining Thermal Expansion Coefficient of Solid Materials with a Computer-aided Electromagnetic Dilatometer Measuring System

    Directory of Open Access Journals (Sweden)

    Z. EZZOUINE

    2015-07-01

    Full Text Available In this study, we present a newly designed electromagnetic dilatometer with micrometer accuracy for the measurement of the coefficient of thermal expansion of a solid in the 30 °C – 96 °C temperature range .The device has a graphical user interface to view real time data measurement. Iron and copper were subjected to temperature change in the thermal expansion experiment causing them to expand linearly. The voltage delivered in the electromagnetic dilatometer system, which includes the information about linear expansion and temperature change were transferred to a computer via a data acquisition card, presented by a program created in the LabVIEW environment, and the amount of linear expansion was detected in real time. The minimal change in length of the sample that can be resolved is 5µm, which yields the sensitivity comprised between 10-4 µm and 10-5 µm. In order to calibrate the electromagnetic dilatometer, thermal expansion coefficients of copper and Iron have been measured. By this technique, the thermal expansion coefficient can be determined with an acceptable accuracy. The present results appear also to agree well with those reported previously in the literature.

  8. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.

    Science.gov (United States)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-21

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  9. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  10. Study of Ti4+ substitution in ZrW2O8 negative thermal expansion materials

    International Nuclear Information System (INIS)

    Buysser, Klaartje de; Driessche, Isabel van; Putte, Bart van de; Schaubroeck, Joseph; Hoste, Serge

    2007-01-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2 -WO 3 -ZrO 2 mixtures revealed the formation of Zr 1-x Ti x W 2 O 8 solid solutions. A noticeable decrease in unit cell parameter 'a' and in the order-disorder transition temperature could be seen in the case of Zr 1-x Ti x W 2 O 8 solid solutions. Studies performed on other ZrW 2 O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry. - Graphical abstract: This study indicates that the phase transition temperature in our materials Zr 1-x Ti x W 2 O 8 is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice-free volume, lowering the phase transition temperature

  11. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  12. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  13. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  14. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  15. Thermal expansion of LATGS crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Kandil, S.H.; Hamed, A.E.; Stankowska, J.

    1989-04-01

    The thermal expansion of triglycine sulphate crystals doped with L-α alanine (LATGS) has been studied around the phase transition temperature (30-60 deg. C) using thermomechanical analysis TMA. With increasing the content of admixture, the transition temperature (T c ) was shifted towards higher values, while the relative changes in the dimension of the crystals (ΔL/L 0 ) of the studied directions varied both in the para- and ferroelectric phases. The transition width in the case of doped crystals was found to be broad, and this broadening increases with increasing the content of L-α alanine. (author). 12 refs, 3 figs

  16. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  17. New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications

    Directory of Open Access Journals (Sweden)

    Abdollah Saboori

    2017-12-01

    Full Text Available In this research, copper nanocomposites reinforced by graphene nanoplatelets (GNPs were fabricated using a wet mixing method followed by a classical powder metallurgy route. In order to find the best dispersion technique, ball milling and wet mixing were chosen. Qualitative evaluation of the structure of the graphene after mixing indicated that the wet mixing is an appropriate technique to disperse the GNPs. Thereafter, the influence of graphene content on microstructure, density, hardness, elastic modulus, and thermal expansion coefficient of composites was investigated. It was shown that by increasing the graphene content the aggregation of graphene is more obvious and, thus, these agglomerates affect the final properties adversely. In comparison with the unreinforced Cu, Cu–GNP composites were lighter, and their hardness and Young’s modulus were higher as a consequence of graphene addition. According to the microstructural observation of pure copper and its composites after sintering, it was concluded that grain refinement is the main mechanism of strengthening in this research. Apart from the mechanical characteristics, the coefficient of thermal expansion of composites decreased remarkably and the combination of this feature with appropriate mechanical properties can make them a promising candidate for use in electronic packaging applications.

  18. Controlling Thermal Expansion: A Metal?Organic Frameworks Route

    OpenAIRE

    Balestra, Salvador R. G.; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A. Rabdel; Calero, Sofia

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal?organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model m...

  19. Thermal and Hygric Expansion of High Performance Concrete

    OpenAIRE

    J. Toman; R. Černý

    2001-01-01

    The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on th...

  20. Thermal expansion studies on zircaloy-2

    International Nuclear Information System (INIS)

    Sivabharathy, M.; Senthilkumar, A.; Palanichamy, P.; Ramachandran, K.

    2016-01-01

    Zircaloy-2 and Zr-2.5% Nb alloys are widely used in the pressurized heavy water reactors (PHWR) as the material for the pressure tubes. The pressure tube operates at 573 K, 11 MPa internal pressures and is subjected to neutron flux of the order of 1013 n/cm 2 /s. These conditions lead to degradations in the pressure tube with respect to dimensional changes, deterioration in mechanical properties due to irradiation embrittlement, thereby reducing its flaw tolerance, the growth of existing flaws, which were too small or 'insignificant' at the time of installation. Physical and chemical properties of materials are also very essential in nuclear industry and the relations among them is of interest in the selection of materials when they are used in the design and manufacturing of devices particularly for atomic reactors.Studies on the relations between mechanical and thermal properties are of interest to the steel and metal industries as these would give useful information on the relation between hardness and thermal diffusivity (α) of steel. Jayakumar et al have already carried out the ultrasonic and metallographic investigations to see that all the heat-treated specimens retained essentially the martensite structure. In this present work, thermal expansion measurements on useful reactor material, Zircaloy-2 with different sample. Given a β-quenching treatment by heating to 1223 K and holding for 2 h, followed by water quenching. These specimens were then thermally aged for 1 h in the temperature range 473 to 973 K and air-cooled. For all samples, the thermal expansion was carried out and the results are correlated with ultrasonic measurements, metallographic and photoacoustic studies. (author)

  1. Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds.

    Science.gov (United States)

    Wang, Wei; Huang, Rongjin; Li, Wen; Tan, Jie; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Li, Laifeng

    2015-01-28

    A zero thermal expansion material in a pure form of NaZn13-type La(Fe,Si)13 was fabricated. Through optimizing the chemical composition, an isotropic zero thermal expansion material is achieved. The obtained materials exhibit a low expansion of |α| linear thermal expansion) over a broad temperature range (15-150 K). The present study indicates that the thermal expansion behavior of the NaZn13-type La(Fe,Si)13 compounds depends mainly on the content of Si element. This new material is desirable in many fields of industry as a reliable and low-cost zero thermal expansion material.

  2. 6th International Symposium on Thermal Expansion

    CERN Document Server

    1978-01-01

    This 6th International Symposium on Thermal Expansion, the first outside the USA, was held on August 29-31, 1977 at the Gull Harbour Resort on Hecla Island, Manitoba, Canada. Symposium Chairman was Ian D. Peggs, Atomic Energy of Canada Limited, and our continuing sponsor was CINDAS/Purdue University. We made considerable efforts to broaden the base this year to include more users of expansion data but with little success. We were successful, however, in establishing a session on liquids, an area which is receiving more attention as a logical extension to the high-speed thermophysical property measurements on materials at temperatures close to their melting points. The Symposium had good international representation but the overall attendance was, disappointingly, relatively low. Neverthe­ less, this enhanced the informal atmosphere throughout the meeting with a resultant frank exchange of information and ideas which all attendees appreciated. A totally new item this year was the presentation of a bursary to ...

  3. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    Science.gov (United States)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  4. Colossal negative thermal expansion in reduced layered ruthenate.

    Science.gov (United States)

    Takenaka, Koshi; Okamoto, Yoshihiko; Shinoda, Tsubasa; Katayama, Naoyuki; Sakai, Yuki

    2017-01-10

    Large negative thermal expansion (NTE) has been discovered during the last decade in materials of various kinds, particularly materials associated with a magnetic, ferroelectric or charge-transfer phase transition. Such NTE materials have attracted considerable attention for use as thermal-expansion compensators. Here, we report the discovery of giant NTE for reduced layered ruthenate. The total volume change related to NTE reaches 6.7% in dilatometry, a value twice as large as the largest volume change reported to date. We observed a giant negative coefficient of linear thermal expansion α=-115 × 10 -6  K -1 over 200 K interval below 345 K. This dilatometric NTE is too large to be attributable to the crystallographic unit-cell volume variation with temperature. The highly anisotropic thermal expansion of the crystal grains might underlie giant bulk NTE via microstructural effects consuming open spaces in the sintered body on heating.

  5. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  6. Thermal and Hygric Expansion of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on the values of linear hygric expansion coefficients are very significant and cannot be neglected in practical applications.

  7. Negative thermal expansion induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu 3 Fe 4 O 12 and LaCu 3 Fe 4- x Mn x O 12 , as well as in Bi or Ni substituted BiNiO 3 . The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10 -6 K -1 near room temperature, in the temperature range which can be controlled by substitution.

  8. Thermal expansion of L-ascorbic acid

    Science.gov (United States)

    Nicolaï, B.; Barrio, M.; Tamarit, J.-Ll.; Céolin, R.; Rietveld, I. B.

    2017-04-01

    The specific volume of vitamin C has been investigated by X-ray powder diffraction as a function of temperature from 110 K up to complete degradation around 440 K. Its thermal expansion is relatively small in comparison with other organic compounds with an expansivity α v of 1.2(3) × 10-4 K-1. The structure consists of strongly bound molecules in the ac plane through a dense network of hydrogen bonds. The thermal expansion is anisotropic. Along the b axis, the expansion has most leeway and is about 10 times larger than in the other directions.

  9. Controlling Thermal Expansion: A Metal–Organic Frameworks Route

    Science.gov (United States)

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal–organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host–guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion. PMID:28190918

  10. Controlling Thermal Expansion: A Metal-Organic Frameworks Route.

    Science.gov (United States)

    Balestra, Salvador R G; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-11-22

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host-guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion.

  11. Synthesis, microstructure and thermal expansion studies

    Indian Academy of Sciences (India)

    Abstract. We report on the synthesis, microstructure and thermal expansion studies on Ca0.5+/2Sr0.5+/2Zr4P6−2Si2O24 ( = 0.00 to 1.00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures ...

  12. Negative thermal expansion near two structural quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion

  13. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3

    OpenAIRE

    Jinlong Zhu; Jianzhong Zhang; Hongwu Xu; Sven C. Vogel; Changqing Jin; Johannes Frantti; Yusheng Zhao

    2014-01-01

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal P...

  14. Thermal linear expansion coefficient of structural graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.

    1995-01-01

    The data now available on radiation induced changes of linear thermal expansion coefficients (CTE) for native structural carbon materials (SCM) irradiated with high fluences are summarized. For different types of native and foreign SCM dose dependences of CTE changes in the temperature range of 300...1600 K and at fluences up to (2...3)x10 22 n/cm 2 (E>0.18 meV) are compared. On the base of this comparison factors defined the CTE changes under neutron irradiation are revealed and the explanation of observed phenomena is offered. Large number of the factors revealed does not allowed to calculate CTE radiation induced changes. 39 refs.; 16 figs.; 5 tabs

  15. Thermal and hygroscopic expansion characteristics of bamboo

    OpenAIRE

    Huang, Puxi; Chang, Wen-shao; Ansell, Martin P.; Bowen, Chris R.; Chew, John Y. M.; Adamak, Vana i

    2017-01-01

    The expansion and contraction of bamboo caused by temperature and moisture variations must be evaluated\\ud if bamboo is to be utilised as a building material. However, detailed expansion data, especially data in the ascent and\\ud descent processes of temperature and moisture are unexplored. The aim of this study is to investigate the expansion\\ud characteristics of Phyllostachys edulis (Moso bamboo) in ascent and descent processes of temperature and moisture.\\ud The measurement of linear ther...

  16. Thermal expansion behaviour of granites

    Czech Academy of Sciences Publication Activity Database

    Plevová, Eva; Vaculíková, Lenka; Kožušníková, Alena; Ritz, M.; Simha Martynková, G.

    2016-01-01

    Roč. 123, č. 2 (2016), s. 1555-1561 ISSN 1388-6150 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : thermomechanical analysis * differential thermal analysis * granites Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.953, year: 2016 http://link.springer.com/article/10.1007/s10973-015-4996-z

  17. The critical thermal expansion of gadolinium

    International Nuclear Information System (INIS)

    Robinson, K.; Lanchester, P.C.

    1978-01-01

    Measurements have been made of the critical thermal expansion of single crystals of gadolinium, prepared by solid state electrotransport processing. Although the expansion data can be fitted to a simple power law with exponents lambda + =-0.25, lambda - =-0.33, these values are not predicted by theory and a discontinuity remains at Tsub(c)=293.620 K. It is suggested that the results relate to a region of crossover to uniaxial dipolar behaviour. (Auth.)

  18. Thermal expansion of quaternary nitride coatings

    Science.gov (United States)

    Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.

    2018-04-01

    The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .

  19. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Abbasi, Ali Reza; Seifi, Ali Reza

    2014-01-01

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  20. Thermal expansion of diamond at low temperatures.

    Science.gov (United States)

    Stoupin, Stanislav; Shvyd'ko, Yuri V

    2010-02-26

    Temperature variation of a lattice parameter of a synthetic diamond crystal (type IIa) was measured using high-energy-resolution x-ray Bragg diffraction in backscattering. A 2 order of magnitude improvement in the measurement accuracy allowed us to directly probe the linear thermal expansion coefficient at temperatures below 100 K. The lowest value measured was 2x10{-9} K-1. It was found that the coefficient deviates from the expected Debye law (T3) while no negative thermal expansion was observed. The anomalous behavior might be attributed to tunneling states due to low concentration impurities.

  1. Thermal Expansion Anomaly Regulated by Entropy

    Science.gov (United States)

    Liu, Zi-Kui; Wang, Yi; Shang, Shunli

    2014-11-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  2. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  3. Form factor expansion for thermal correlators

    NARCIS (Netherlands)

    Pozsgay, B.; Takács, G.

    2010-01-01

    We consider finite temperature correlation functions in massive integrable quantum field theory. Using a regularization by putting the system in finite volume, we develop a novel approach (based on multi-dimensional residues) to the form factor expansion for thermal correlators. The first few terms

  4. Principles of Thermal Expansion in Feldspars

    Science.gov (United States)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  5. Shape, size and temperature dependency of thermal expansion ...

    Indian Academy of Sciences (India)

    M GOYAL

    2018-05-19

    May 19, 2018 ... Oriental J. Chem.32(4), 2193 (2016), is extended in the present study using Qi and Wang model [Mater. Chem. Phys. ... Nanomaterials; shape factor; size effect; thermal expansion; equation of state. ... als are different from that of their bulk material. ..... and 1c along with the present calculated results. It is.

  6. Preliminary thermal expansion screening data for tuffs

    International Nuclear Information System (INIS)

    Lappin, A.R.

    1980-03-01

    A major variable in evaluating the potential of silicic tuffs for use in geologic disposal of heat-producing nuclear wastes is thermal expansion. Results of ambient-pressure linear expansion measurements on a group of tuffs that vary treatly in porosity and mineralogy are presente here. Thermal expansion of devitrified welded tuffs is generally linear with increasing temperature and independent of both porosity and heating rate. Mineralogic factors affecting behavior of these tuffs are limited to the presence or absence of cristobalite and altered biotite. The presence of cristobalite results in markedly nonlinear expansion above 200 0 C. If biotite in biotite-hearing rocks alters even slightly to expandable clays, the behavior of these tuffs near the boiling point of water can be dominated by contraction of the expandable phase. Expansion of both high- and low-porosity tuffs containing hydrated silicic glass and/or expandable clays is complex. The behavior of these rocks appears to be completely dominated by dehydration of hydrous phases and, hence, should be critically dependent on fluid pressure. Valid extrapolation of the ambient-pressure results presented here to depths of interest for construction of a nuclear-waste repository will depend on a good understanding of the interaction of dehydration rates and fluid pressures, and of the effects of both micro- and macrofractures on the response of tuff masss

  7. Thermal expansion coefficient determination by CBED

    International Nuclear Information System (INIS)

    Angelini, P.; Bentley, J.

    1984-01-01

    The present application of CBED involves measurements of thermal-expansion coefficients by measurement of changes in HOLZ line positions as a function of temperature. Previous work on this subject was performed on Si at a constant accelerating voltage of 100 kV between about 90 and 600 K. Diffraction patterns were recorded and line shifts correlated to lattice parameter changes. Differences were noted between values determined by CBED and accepted thermal expansion values. Significant HOLZ line interactions and splitting occurring in the (111) patterns were noted to contribute to the differences. Preliminary measurements have been made on Al, Al 2 O 3 , and single-crystal tau (Ni/sub 20.3/Ti/sub 2.7/B 6 ). An example of changes in HOLZ lines present in (114) patterns for Al are shown and the effect of temperature on the position of lines in the pattern illustrated

  8. Intrinsic thermal expansion of crystal defects

    International Nuclear Information System (INIS)

    Ganne, J.-P.

    1981-02-01

    Although the phenomenon of thermal expansion has long been known, the intrinsic thermal expansion coefficient (ITEC) βsub(d) of a point defect, derived from its formation volume vsub(d), has never been measured directly. The differential dilatometer by interferometry built by ASTY and GILDER is described. It has allowed βsub(d) to be measured for several defects. Vacancies and small interstitial loops were produced in aluminium by low temperature (20 K) fast neutron irradiation followed by an anneal up to the beginning of stage III (160 K). The very high value of the measured ratio βsub(d)/β 0 (12+-4) is comparable with a lattice statics calculated (42) value (11.5 0 [fr

  9. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  10. Automation of a thermal expansion instrument

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.L.

    1979-03-01

    Automation of a thermal expansion instrument using a minicomputer system and with analog-to-digital converter inputs and flip-flop relay outputs is described. The necessary hardware link and the software were developed to allow equipment control, data acquisition, data reduction, and report generation by the minicomputer. The design of the automation allows non-programmers to run the experiment, reduce the data, and generate the report.

  11. Thermal expansion of U.S. and Australian SYNROC B

    International Nuclear Information System (INIS)

    Kase, H.R.; Case, E.D.; Tesk, J.A.

    1985-01-01

    For the safe disposal of nuclear waste, a synthetic rock (SYNROC) was developed. Continuing research in this field has led to US and Australian versions of SYNROC B. For both materials, the thermal expansion and expansivity have been determined by the temperature range from 296 to 1100 K. Although both versions of SYNROC B have basically the same composition and agree in the major constituent phases, the U.S. version expands slightly more than the Australian one. With increasing temperature, the difference becomes greater and runs up to 3.5% at 1100 K. Because of the good linearity in the temperature dependence of the relative thermal expansion (ΔL/L /sub o/ ), a linear regression was made and the resulting equations determined

  12. Thermal expansion data of (Th,U)O2 fuels

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Banerjee, J.; Bhagat, R.K.; Ramachandran, R.; Majumdar, S.; Purushotham, D.S.C.

    2000-04-01

    Thermal expansion data for sintered ThO 2 and ThO 2 containing 2, 4, 6, 10 and 20% UO 2 pellets were measured using a high temperature dilatometer in the temperature range from ambient to 1773 K. The dilatometer was first calibrated using a standard graphite sample as reference material. The reproducibility of the dilatometer was tested by measuring the coefficient of expansion of tungsten (NBS SRM 737) and comparing the data with that recommended by National Bureau of Standard. It was observed that there is close agreement between the experimental and reported data. The coefficient of expansion data of (Th,U)O 2 fuel indicate that out of all the six compositions, ThO 2 +2%UO 2 showed the maximum expansion of around 1.75% at 1773 K. However, the expansion data for all the compositions were very close to each other. Empirical equation correlating thermal expansion and temperature for all six compositions have been generated and reported. (author)

  13. Two Decades of Negative Thermal Expansion Research: Where Do We Stand?

    Science.gov (United States)

    Lind, Cora

    2012-01-01

    Negative thermal expansion (NTE) materials have become a rapidly growing area of research over the past two decades. The initial discovery of materials displaying NTE over a large temperature range, combined with elucidation of the mechanism behind this unusual property, was followed by predictions that these materials will find use in various applications through controlled thermal expansion composites. While some patents have been filed and devices built, a number of obstacles have prevented the widespread implementation of NTE materials to date. This paper reviews NTE materials that contract due to transverse atomic vibrations, their potential for use in controlled thermal expansion composites, and known problems that could interfere with such applications. PMID:28817027

  14. Operator product expansion and its thermal average

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1998-05-01

    QCD sum rules at finite temperature, like the ones at zero temperature, require the coefficients of local operators, which arise in the short distance expansion of the thermal average of two-point functions of currents. We extend the configuration space method, applied earlier at zero temperature, to the case at finite temperature. We find that, upto dimension four, two new operators arise, in addition to the two appearing already in the vacuum correlation functions. It is argued that the new operators would contribute substantially to the sum rules, when the temperature is not too low. (orig.) 7 refs.

  15. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  16. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  17. Achieving dynamic behaviour and thermal expansion in the organic solid state via co-crystallization.

    Science.gov (United States)

    Hutchins, Kristin M; Groeneman, Ryan H; Reinheimer, Eric W; Swenson, Dale C; MacGillivray, Leonard R

    2015-08-01

    Thermal expansion involves a response of a material to an external stimulus that typically involves an increase in a crystallographic axis (positive thermal expansion (PTE)), although shrinking with applied heat (negative thermal expansion (NTE)) is known in rarer cases. Here, we demonstrate a means to achieve dynamic molecular motion and thermal expansions in organic solids via co-crystallizations. One co-crystal component is known to exhibit dynamic behaviour in the solid state while the second, when varied systematically, affords co-crystals with linear thermal expansion coefficients that range from colossal to nearly zero. Two co-crystals exhibit rare NTE. We expect the approach to guide the design of molecular solids that enable predesigned motion related to thermal expansion processes.

  18. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

    Science.gov (United States)

    Xu, Hang; Pasini, Damiano

    2016-01-01

    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS. PMID:27721437

  19. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  20. Multiple thermal transitions and anisotropic thermal expansions of vertically aligned carbon nanotubes

    Science.gov (United States)

    Ya'akobovitz, Assaf

    2016-10-01

    Vertically aligned carbon nanotubes (VA-CNTs) hold the potential to play an instrumental role in a wide variety of applications in micro- and nano-devices and composites. However, their successful large-scale implementation in engineering systems requires a thorough understanding of their material properties, including their thermal behavior, which was the focus of the current study. Thus, the thermal expansion of as-grown VA-CNT microstructures was investigated while increasing the temperature from room temperature to 800 °C and then cooling it down. First thermal transition was observed at 191 ± 68 °C during heating, and an additional thermal transition was observed at 523 ± 138 °C during heating and at similar temperatures during cooling. Each thermal transition was characterized by a significant change in the coefficient of thermal expansion (CTE), which can be related to a morphological change in the VA-CNT microstructures. Measurements of the CTEs in the lateral directions revealed differences in the lateral thermal behaviors of the top, middle, and bottom portions of the VA-CNT microstructures, again indicating that their morphology dominates their thermal characteristics. A hysteretic behavior was observed, as the measured values of CTEs were altered due to the applied thermal loads and the height of the microstructures was slightly higher compared to its initial value. These findings provide an insight into the anisotropic thermal behavior of VA-CNT microstructures and shed light on the relationship between their morphology and thermal behavior.

  1. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  2. Modeling of Viscosity and Thermal Expansion of Bioactive Glasses

    OpenAIRE

    Farid, Saad B. H.

    2012-01-01

    The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...

  3. Thermal expansion and magnetostriction studies on iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liran

    2010-09-19

    In this work, a 3-terminal capacitance dilatometer was set up and used for measurements of the thermal expansion and magnetostriction of novel superconducting iron pinictides and related materials. In particular, RFeAsO with R = La, Ce, Pr, Sm, Gd, LaFeASO{sub 1-x}F{sub x} and Ca(F{sub 1-c}Co{sub x}){sub 2}As{sub 2} have been investigated. The data on polycrystalline LaFeAsO{sub 1-x} are the first published thermal expansion data on this material. The lattice effects at the structural and the magnetic phase transition have been investigated and the phase diagram upon F-doping has been studied. A main result is the observation of a previously unknown fluctuation regime for the doping level x ≤ 0.04 over a large T range above the structural transition temperature T{sub S}. The absence of any structural anomalies in the normal state of the superconducting LaFeAlO{sub 1-x}F{sub x} samples with x ≥ 0.05 corroborates the discontinuous character of the phase boundary not only for the magnetism but also for the structural degrees of freedom. Similarly, the presence of high-temperature fluctuations is found for all RFeAsO undoped materials under study. The discussion of the probable origin of the fluctuations as well as the definition of the structural transition temperature T{sub S} are done. The low temperature features shown by the thermal expansion data for RFeAsO are caused by the onset of long range magnetic order of the 4f-moments and their different configurations. In particular, PrFeAsO, which has a very pronounced anomaly associated with Pr-ordering exhibits a large magnetostriction at low temperatures. By discussing this effect along with the magnetization, resistivity and other measurements, it is found that this large magneto-elastic effect may originate from the correlations between the momentum from Fe{sup 3+} and Pr{sup 3+}. Last, the thermal expansion of Ca(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} 122 single crystals is investigated. Ca(Fe{sub 1-x}Co{sub x

  4. Thermal expansion and phase transitions of α-AlF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Morelock, Cody R.; Hancock, Justin C. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2014-11-15

    ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppm K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.

  5. HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2013-05-01

    Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

  6. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  7. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G; Shimakawa, Yuichi; Attfield, J Paul

    2011-06-14

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion linear expansion coefficient for Bi(0.95)La(0.05)NiO(3) is -137×10(-6) K(-1) and a value of -82×10(-6) K(-1) is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders.

  8. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design : research project capsule.

    Science.gov (United States)

    2009-01-01

    PROBLEM: The coefficient of thermal expansion (CTE) is a fundamental property of construction : materials such as steel and concrete. Although the CTE of steel is a well-defined : constant, the CTE of concrete varies substantially with aggregate type...

  9. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  10. Thermal expansion of Ti-substituted barium hexaferrite

    NARCIS (Netherlands)

    Hernandez-Gomez, P.; Francisco, de C.; Brabers, V.A.M.; Dalderop, J.H.J.

    2000-01-01

    Thermal expansion measurements in the range of 20–500 °C were carried out on both poly- and single crystalline samples of the hexagonal magnetoplumbite ferrite with composition BaTiFe11O19. The continuous scanning of the thermal expansion reveals the existence of a -type anomaly near the Curie

  11. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    Directory of Open Access Journals (Sweden)

    Akihiro Takezawa

    2015-07-01

    Full Text Available Additive manufacturing (AM could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than −1 × 10−4 K−1 was observed for each test piece of the N = 3 experiment.

  12. Hygroscopicity and bulk thermal expansion in Y2W3O12

    International Nuclear Information System (INIS)

    Sumithra, S.; Umarji, A.M.

    2005-01-01

    Negative thermal expansion material, Y 2 W 3 O 12 has been synthesized by the solid-state method and bulk thermal expansion of the material has been investigated from 300 to 1100 K. The material reversibly forms a trihydrate composition whose X-ray diffraction pattern can be indexed to an orthorhombic unit cell with a = 10.098(1) A, b = 13.315(3) A, c = 9.691(4) A. The cell volume of the hydrated pattern is 7% smaller than the unhydrated cell volume. According to the dilatometric studies, the material shows a 3-6% increase in the linear strain at about 400 K, which can be attributed to the removal of water. Sintering the material at 1473 K leads to large grain size of >100 μm, which results in a large hysteresis in the bulk thermal expansion behavior. Hot pressing at 1273 K under a uniaxial pressure of 25 MPa results in a fine-grained (2-5 μm) ceramic. Glazing the ceramic prevents moisture pick up and a linear thermal expansion over the entire temperature range 1100-300 K and an average linear thermal expansion co-efficient of -9.65 x 10 -6 /K is observed. The effect of water on the thermal expansion behavior of this system is discussed

  13. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  14. Using a Michelson Interferometer to Measure Coefficient of Thermal Expansion of Copper

    Science.gov (United States)

    Scholl, Ryan; Liby, Bruce W.

    2009-01-01

    When most materials are heated they expand. This concept is usually demonstrated using some type of mechanical measurement of the linear expansion of a metal rod. We have developed an alternative laboratory method for measuring thermal expansion by using a Michelson interferometer. Using the method presented, interference, interferometry, and the…

  15. Dolomite addition effects on the thermal expansion of ceramic tiles

    International Nuclear Information System (INIS)

    Marino, Luis Fernando Bruno; Boschi, Anselmo Ortega

    1997-01-01

    The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)

  16. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic α-ZrW2O8 and cubic ZrMo2O8, from T=(0 to 400) K

    International Nuclear Information System (INIS)

    Stevens, Rebecca; Linford, Jessica; Woodfield, Brian F.; Boerio-Goates, Juliana.; Lind, Cora; Wilkinson, Angus P.; Kowach, Glen

    2003-01-01

    The molar heat capacities of crystalline cubic α-ZrW 2 O 8 and cubic ZrMo 2 O 8 have been measured at temperatures from (0.6 to 400) K. At T=298.15 K, the standard molar heat capacities are (207.01±0.21) J·K -1 ·mol -1 for the tungstate and (210.06±0.42) J·K -1 ·mol -1 for the molybdate. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropies for the tungstate and molybdate are (257.96±0.50) J·K -1 ·mol -1 and (254.3±1) J·K -1 ·mol -1 , respectively. The uncertainty of the entropy of the cubic ZrMo 2 O 8 is larger due to the presence of small chemical and phase impurities whose effects cannot be corrected for at this time. The heat capacities of the negative thermal expansion materials have been compared to the weighted sums of their constituent binary oxides. Both negative thermal expansion materials have heat capacities which are significantly greater than the sum of the binary oxides over the entire temperature region

  17. Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12.

    Science.gov (United States)

    Rimmer, Leila H N; Dove, Martin T

    2015-05-13

    A simulation study of negative thermal expansion in Y2W3O12 was carried out using calculations of phonon dispersion curves through the application of density functional perturbation theory. The mode eigenvectors were mapped onto flexibility models and results compared with calculations of the mode Grüneisen parameters. It was found that many lower-frequency phonons contribute to negative thermal expansion in Y2W3O12, all of which can be described in terms of rotations of effectively rigid WO4 tetrahedra and Y-O rods. The results are strikingly different from previous phonon studies of higher-symmetry materials that show negative thermal expansion.

  18. Low-temperature thermal expansion measurements in PrV2Al20

    International Nuclear Information System (INIS)

    Magata, A.; Matsumoto, Y.; Tsujimoto, M.; Tomita, T.; Sakai, A.; Nakatsuji, S.; Kiichler, R.

    2016-01-01

    We have measured thermal expansion of PrV 2 Al 20 and LaV 2 Al 20 from room temperature down to 2 K, using a capacitance dilatometer. Linear thermal expansion ΔL/L along [111] direction decreases monotonically on cooling in both materials. The extracted 4ƒ electrons contribution of the linear thermal expansion coefficient a clearly shows a broad peak at ∼ 30 K which may correspond to the crystal electric field excited state at 40 K suggested in the previous specific heat study. (paper)

  19. Measurement of thermal expansion for a Li2TiO3 pebble bed

    International Nuclear Information System (INIS)

    Hisashi Tanigawa; Mikio Enoeda; Masato Akiba

    2006-01-01

    In the current design of the blanket with ceramic breeders, pebbles of breeding materials are packed into a container and used as a pebble bed. Thermal and mechanical conditions externally loaded on the bed affect thermal and mechanical properties of the bed. It is necessary to analyze thermo-mechanical properties of the bed under controlled thermal and mechanical conditions. In the present paper, thermal expansion of a Li 2 TiO 3 pebble bed was investigated. Our apparatus consists of a tensile test-apparatus and a measurement chamber. Pebbles of Li 2 TiO 3 with 2 mm diameter were used. They were packed into a container made of alumina. At first, thermal expansion of the apparatus was calibrated because the measured deformation included thermal expansions of the load rods and the container. Instead of the pebble bed, a column made of copper was installed and thermal expansion of the system was measured for the calibration. Taking into account the estimated thermal expansion of the column, thermal expansion of the rods and the container could be analyzed. Based on the correction, thermal expansion of the pebble bed was measured under compression of 0.1 MPa. Temperature of the bed was regulated from room temperature to 973 K. From the measured expansion of the bed, average thermal expansion coefficient was estimated. For the beds with different packing factors ranging from 65.5 to 68.5 %, thermal expansion coefficients were 1.4 ± 0. 10-5 K -1 . In the first measurement of the beds without pre-loading, expansion coefficients were larger for the cooling process than heating. When the beds were successively heated and cooled, the difference decreased. This means that relocation of the pebbles arises in the first heat treatment and progress of compaction is larger in the cooling process than heating. After a few heat treatments, packing states of the beds reach stable and expansion coefficients for both heat and cooling processes are close. In the case of the beds that

  20. Thermal expansion of UO2 and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Ho Kang, Kweon; Jin Ryu, Ho; Chan Song, Kee; Seung Yang, Myung

    2002-01-01

    The lattice parameters of simulated DUPIC fuel and UO 2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO 2 , and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO 2 . For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO 2 and simulated DUPIC fuel are 10.471x10 -6 and 10.751x10 -6 K -1 , respectively

  1. Residual stress of particulate polymer composites with reduced thermal expansion

    International Nuclear Information System (INIS)

    Nishino, T; Kotera, M; Sugiura, Y

    2009-01-01

    Thermal expansion behavior was investigated for tangusten zirconium phosphate (Zr 2 (WO 4 )(PO 4 ) 2 (ZWP)) particulate filled poly(ether ether ketone) (PEEK) composite. ZWP is known as ceramic filler with a negative thermal expansion. By incorporating ZWP with 40 volume %, the linear thermal expansion coefficient of the PEEK composite was reduced to almost same value (2.53 X 10 -5 K -1 ) with that of aluminum. This decrease was found to be quite effective for the decrease of the residual stress at the interface between aluminum plate and the composite.

  2. Thermal expansion study of simulated DUPIC fuel using neutron diffraction

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Bae, J. H.; Kim, H. S.; Song, K. C.; Yang, M. S.; Choi, Y. N.; Han, Y. S.; Oh, H. S.

    2001-07-01

    The lattice parameters of simulated DUPIC fuel and UO2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO2 and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO2. For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO2 and simulated DUPIC fuel are 10.471 ''10-6 and 10.751 ''10-6 K-1, respectively

  3. Thermal conductivity and thermal expansion of stainless steels D9 and HT9

    International Nuclear Information System (INIS)

    Leibowitz, L.; Blomquist, R.A.

    1988-01-01

    Renewed interest in the use of metallic fuels in liquid-metal fast breeder reactors has prompted study of the thermodynamic and transport properties of its materials. Two stainless steels are of particular interest because of their good performance under irradiation. These are D9, an austenitic steel, and HT9, a ferritic steel. Thermal conductivity and thermal expansion data for these alloys are of particular interest in assessing in-reactor behavior. Because literature data were inadequate, measurements of these two properties for the two steels were performed and are reported to 1200 K. Of particular interest is the influence on these properties of a phase transition in HT9

  4. Thermal expansion measurements on boron carbide and europium sesquioxide by laser interferometry

    International Nuclear Information System (INIS)

    Preston, S.D.

    1980-01-01

    A laser interferometer technique for measuring the absolute linear thermal expansion of small annular specimens is described. Results are presented for unirradiated boron carbide (B 4 C) and europia (Eu 2 O 3 ) up to 1000 0 C. Both compounds are neutron-absorbing materials of potential use in fast-reactor control rods and data on their thermophysical properties, in particular linear thermal expansion, are essential to the control rod designers. (author)

  5. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    Science.gov (United States)

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-15

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  6. Thermal expansion of spinel-type Si3N4

    DEFF Research Database (Denmark)

    Paszkowics, W.; Minkikayev, R.; Piszora, P.

    2004-01-01

    The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K......The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K...

  7. Thermal conductivity and thermal expansion of hot-pressed trisodium uranate (Na3UO4)

    International Nuclear Information System (INIS)

    Hofman, G.L.; Bottcher, J.H.; Buzzell, J.A.; Schwartzenberger, G.M.

    1986-01-01

    Thermal conductivity and thermal expansion of Na 3 UO 4 prepared by two different reaction processes were determined over a temperature range of 20-1000 0 C. Compositional differences in the samples resulting from the different reaction processes have a pronounced effect on thermal expansion and on thermal conductivity below 500 0 C. Above 500 0 C, these compositional differences in the thermal conductivities decrease. (orig.)

  8. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity

    Science.gov (United States)

    Oddone, Valerio; Boerner, Benji; Reich, Stephanie

    2017-12-01

    High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.

  9. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  10. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  11. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    International Nuclear Information System (INIS)

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H

    2009-01-01

    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  12. Thermal Expansion Behavior of Hot-Pressed Engineered Matrices

    Science.gov (United States)

    Raj, S. V.

    2016-01-01

    Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.

  13. Method for measurement of relative differences in thermal expansion coefficients (LWBR development program)

    International Nuclear Information System (INIS)

    Alexander, J.E.

    1978-06-01

    The report describes a test which was conducted to determine the variation in thermal expansion coefficients of specimens from several material heats of Type 304 stainless steel. The purpose of this document is to identify the procedures, equipment, and analysis used in performing this test. From a review of the data which were used in establishing the values given for mean coefficient of thermal expansion in the 1968 ASME Boiler and Pressure Vessel Code, Section III, a +-3.3-percent maximum variation was determined for Type 304 CRES in the temperature range of interest. The results of the test reduced this variation to +-0.53 percent based on a 95/99-percent tolerance interval for the material tested. The testing equipment, procedure, and analysis are not complicated and this type of test is recommended for applications in which the variation in thermal expansion coefficients is desired for a limited number of material heats

  14. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method.

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  15. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-03-01

    Full Text Available Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS. The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  16. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  17. Glass-ceramic hermetic seals to high thermal expansion metals

    Science.gov (United States)

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  18. Evaluation of tank thermal expansion data in CALDEX

    International Nuclear Information System (INIS)

    Suda, S.; Weh, R.

    1991-01-01

    A thermal expansion test involving a large annular input reprocessing tank was carried out as a part of the CALDEX Project at the TEKO test facility in Karlsruhe, FRG. The objective of this test was to investigate thermal expansion properties of the tank and effects on various pressure and level measurement instruments used in the determination of liquid volume. In the thermal expansion test, a weak nitric acid solution was heated internally to a temperature of 60 degrees C by means of steam injection through the sparge ring. After heating, the annular tank took about one hour to thermally equilibrate, and it took another hour for the sparge ring and pulsator pipes to fill before thermal effects could be followed. The temperature at the end of the test, after tank and its contents had cooled undisturbed for fifty hours, was 29.9 degrees C. Thirteen instrument readings were obtained during each measurement cycle of roughly 70 seconds for a total of over 2800 readings per instrument. Thermal expansion effects for the CALDEX annular tank were consistent with that reported for cylindrical tanks. Temperature variations effect each type of probe in a way that depends on the properties of the probe and the characteristics of the measurement system. 3 refs., 4 figs., 3 tabs

  19. Thermal expansion properties of calcium aluminate hydrates

    International Nuclear Information System (INIS)

    Song, Tae Woong

    1986-01-01

    In order to eliminate the effect of impurities and aggregates on the thermomechanical properties of the various calcium aluminate hydrates, and to prepare clinkers in which all calcium aluminates are mixed homogeneously, chemically pure CaO and Al 2 O 3 were weighed, blended and heated in various conditions. After quantitative X-ray diffractometry(QXRD), the synthesized clinker was hydrated and cured under the conditions of 30 deg C, W/C=0.5, relative humidity> 90% respectively during 24 hours. And then differential thermal analysis(DTA), thermogravimetry(TG), micro calorimetry, thermomechanical analysis(TMA) and scanning electron microanalysis(SEM) were applied to examine the thermal properties of samples containing, calcium aluminate hydrates in various quantity. (Author)

  20. Zirconium titanate: stability and thermal expansion; Titanato de circonio: estabilidad termodinamica y expansion termica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, E.; Moreno, R.; Baudin, C.

    2011-07-01

    Zirconium titanate is a well known compound in the field of electro ceramics, although it has also been used in catalyst and sensors applications. The crystallographic thermal expansion anisotropy of this compound makes it a potential candidate as constituent of structural components. In general, to assure the structural integrity and microstructural homogeneity of a ceramic piece, relatively low cooling rates from the fabrication temperature are required. This requirement is essential for zirconium titanate because thermal expansion as well as phase distribution is affected by small variations in the composition and cooling rate. This work reviews the available data on the phase equilibrium relationships in the systems ZrO{sub 2}-TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}-Y{sub 2}O{sub 3}. The main discrepancies as well as the possible origins of them are discussed. Additionally, the crystallographic thermal expansion data in the current literature are reviewed. (Author) 56 refs.

  1. Thermal expansion of coexistence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature T cu of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  2. Low temperature thermal expansion of liquid Helium-4

    International Nuclear Information System (INIS)

    Berthold, J.E.

    1976-01-01

    Results of a measurement of the thermal expansion of liquid He-4 are presented along the saturated vapor pressure curve at low temperatures (0.1 - 0.6 0 K). The thermal expansion is related to the low momentum region of the He-4 excitation spectrum, and the results of this measurement are analyzed to gain information concerning deviations from linearity in the phonon region of the spectrum. The data is also compared with theoretical predictions of Alrich and Bhatt and McMillan and with the thermal expansion measurement of Van Degrift. In addition a discussion of previous experimental evidence on the shape of the low momentum region of the dispersion relation is presented

  3. Glass ceramics for sealing to high-thermal-expansion metals

    International Nuclear Information System (INIS)

    Wilder, J.A. Jr.

    1980-10-01

    Glass ceramics were studied, formulated in the Na 2 O CaO.P 2 O 5 , Na 2 O.BaOP 2 O 5 , Na 2 O.Al 2 O 3 .P 2 O 5 , and Li 2 O.BaO.P 2 O 5 systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na 2 O.CaO.P 2 O 5 and Na 2 O.BaO.P 2 O 5 systems have coefficients of thermal expansion in the range 140 x 10 -1 per 0 C less than or equal to α less than or equal to 225 x 10 -7 per 0 C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo 3 , (NaPO 3 ) 3 , NaBa(PO 3 ) 3 , and NaCa(PO 3 ) 3 . Glass ceramics formed in the Na 2 O.Al 2 O 3 .P 2 O 5 systems have coefficients of thermal expansion greater than 240 x 10 -7 per 0 C, but they have extensive microcracking. Due to their low thermal expansion values (α less than or equal to 120 x 10 -7 per 0 C), glass ceramics in the Li 2 O.BaO.P 2 O 5 system are unsuitable for sealing to high thermal expansion metals

  4. Setting time and thermal expansion of two endodontic cements.

    Science.gov (United States)

    Santos, Alailson D; Araújo, Eudes B; Yukimitu, Keizo; Barbosa, José C; Moraes, João C S

    2008-09-01

    The purpose of this study was to evaluate the setting time and the thermal expansion coefficient of 2 endodontic cements, MTA-Angelus and a novel cement called CER. The setting time was determined in accordance to ANSI/ADA specifications no. 57. Three samples of 10 mm diameter and 2 mm thickness were prepared for each cement. The thermal expansion measurements were performed by strain gauge technique. Four samples of each cement were prepared using silicone rings of 5 mm diameter and 2 mm thickness. The data were analyzed statistically using the Student t test. The setting time obtained for the MTA-Angelus and CER cements was 15 (SD 1) min and 7 (SD 1) min, respectively. The linear coefficient of thermal expansion was 8.86 (SD 0.28) microstrain/ degrees C for MTA-Angelus and 11.76 (SD 1.20) microstrain/ degrees C for CER. The statistical analysis showed significant difference (P linear coefficient of thermal expansion between the 2 cements. The CER cement has a coefficient of expansion similar to dentin, which could contribute to a decrease of microleakage degree.

  5. Thermal expansion of crystals of the N2 type

    International Nuclear Information System (INIS)

    Tolkachev, A.M.; Manzhelii, V.G.; Azarenkov, V.P.; Jezowski, A.; Kosobutskaya, E.A.

    1981-01-01

    Linear expansion coefficients of low temperature crystals with linear molecules and Pa3 lattice N 2 (2-21 K), CO(2-28 K), CO 2 (2-25 K), N 2 O(2-90 K) were measured. A version of the law of corresponding states to describe the translational component of the thermal expansion of the substances studied and other low temperature crystals with close-packed lattices is proposed. In the thermal properties of crystals consisting of molecules without inversion centre, we have found anomalies interpreted as the evidence of a partial dipole ordering. (orig.)

  6. Unravelling the fundamentals of thermal and chemical expansion of BaCeO3 from first principles phonon calculations.

    Science.gov (United States)

    Løken, Andreas; Haugsrud, Reidar; Bjørheim, Tor S

    2016-11-16

    Differentiating chemical and thermal expansion is virtually impossible to achieve experimentally. While thermal expansion stems from a softening of the phonon spectra, chemical expansion depends on the chemical composition of the material. In the present contribution, we, for the first time, completely decouple thermal and chemical expansion through first principles phonon calculations on BaCeO 3 , providing new fundamental insights to lattice expansion. We assess the influence of defects on thermal expansion, and how this in turn affects the interpretation of chemical expansion and defect thermodynamics. The calculations reveal that the linear thermal expansion coefficient is lowered by the introduction of oxygen vacancies being 10.6 × 10 -6 K -1 at 300 K relative to 12.2 × 10 -6 K -1 for both the protonated and defect-free bulk lattice. We further demonstrate that the chemical expansion coefficient upon hydration varies with temperature, ranging from 0.070 to 0.115 per mole oxygen vacancy. Ultimately, we find that, due to differences in the thermal expansion coefficients under dry and wet conditions, the chemical expansion coefficients determined experimentally are grossly underestimated - around 55% lower in the case of 10 mol% acceptor doped BaCeO 3 . Lastly, we evaluate the effect of these volume changes on the vibrational thermodynamics.

  7. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    International Nuclear Information System (INIS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-01-01

    High pressure powder X-ray diffraction studies of several A 2 Mo 3 O 12 materials (A 2 =Al 2 , Fe 2 , FeAl, and AlGa) were conducted up to 6–7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga 2 Mo 3 O 12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations. - Graphical abstract: Overlay of variable pressure X-ray diffraction data of Al 2 Mo 3 O 12 collected in a diamond anvil cell. Both subtle and discontinuous phase transitions are clearly observed. - Highlights: • The high pressure behavior of A 2 Mo 3 O 12 (A=Al, Fe, (AlGa), (AlFe)) was studied. • All compounds undergo the same sequence of pressure-induced phase transitions. • The phase transition pressures correlate with the average size of the A-site cation. • All transitions were reversible with hysteresis. • Previously studied Ga 2 Mo 3 O 12 undergoes the same sequence of transitions.

  8. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lei [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Qin, Feiyu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sanson, Andrea [Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy; Huang, Liang-Feng [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Pan, Zhao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sun, Qiang [International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China; Wang, Lu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Guo, Fangmin [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Aydemir, Umut [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Department of Chemistry, Koc University, Sariyer, Istanbul 34450, Turkey; Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Sun, Chengjun [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Aquilanti, Giuliana [Elettra Sincrotrone Trieste, Basovizza, Trieste I-34149, Italy; Rondinelli, James M. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

    2018-03-15

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.

  9. Thermal expansion of ceramic samples containing natural zeolite

    Science.gov (United States)

    Sunitrová, Ivana; Trník, Anton

    2017-07-01

    In this study the thermal expansion of ceramic samples made from natural zeolite is investigated. Samples are prepared from the two most commonly used materials in ceramic industry (kaolin and illite). The first material is Sedlec kaolin from Czech Republic, which contains more than 90 mass% of mineral kaolinite. The second one is an illitic clay from Tokaj area in Hungary, which contains about 80 mass% of mineral illite. Varying amount of the clay (0 % - 50 %) by a natural zeolite from Nižný Hrabovec (Slovak Republic), containing clinoptilolite as major mineral phase is replaced. The measurements are performed on cylindrical samples with a diameter 14 mm and a length about 35 mm by a horizontal push - rod dilatometer. Samples made from pure kaolin, illite and zeolite are also subjected to this analysis. The temperature regime consists from linear heating rate of 5 °C/min from 30 °C to 1100 °C. The results show that the relative shrinkage of ceramic samples increases with amount of zeolite in samples.

  10. Thermal expansion and thermal stress in the moon and terrestrial planets - Clues to early thermal history

    Science.gov (United States)

    Solomon, S. C.; Chaiken, J.

    1976-01-01

    The paper discusses how features of the surface geology of the moon and also Mars and Mercury impose constraints on the volumetric expansion or contraction of a planet and consequently provide a test of thermal history models. The moon has changed very little in volume over the last 3.8 b.y. Thermal models satisfying this constraint involve early heating and perhaps melting of the outer 200 km of the moon and an initially cold interior. Mercury has contracted by about 2 km in radius since emplacement of its present surface, so core formation must predate that surface. A hot initial temperature distribution is implied.

  11. Thermal expansion of epoxy-fiberglass composite specimens

    International Nuclear Information System (INIS)

    McElroy, D.L.; Weaver, F.J.; Bridgman, C.

    1986-01-01

    The thermal expansion behavior of three epoxy-fiberglass composite specimens was measured from 20 to 120 0 C (70 to 250 0 F) using a fused quartz push-rod dilatometer. Billets produced by vacuum impregnating layers of two types of fiberglass cloth with an epoxy resin were core-drilled to produce cylindrical specimens. These were used to study expansion perpendicular and parallel to the fiberglass layers. The dilatometer is held at a preselected temperature until steady-state is indicated by stable length and temperature data. Before testing the composite specimens, a reliability check of the dilatometer was performed using a copper secondary standard. This indicated thermal expansion coefficient (α) values within +-2% of expected values from 20 to 200 0 C

  12. Thermal expansion of martensitic A15 superconductors: V3Si

    International Nuclear Information System (INIS)

    Finlayson, T.R.; Liu, M.; Smith, T.F.

    1995-01-01

    The martensite phase morphology of V 3 Si has been controlled by the application of appropriate stress fields to a single crystal. With this procedure, it is possible to transform the crystal to a single, tetragonal domain, enabling the thermal expansion coefficients for the tetragonal a and c axes to be measured, using high-resolution, capacitance dilatometry. Expansion anomalies were found at low temperatures, well below the superconducting critical temperature, for both the a and c axes. The tetragonality continues increasing on cooling at low temperatures, which, predicted by theory, should have been inhibited by the onset of superconductivity. In addition, anisotropy in thermal expansion is found up to 50 K, which is well above the conventional M s temperature of 21 K. (orig.)

  13. Effect of pressure on thermal expansion of UNiGa

    International Nuclear Information System (INIS)

    Honda, F.; Andreev, A.V.; Havela, L.; Prokes, K.; Sechovsky, V.

    1997-01-01

    The thermal expansion of single crystalline UNiGa has been measured along the crystallographic axes (a and c) under pressures up to 1.1 GPa. The linear thermal expansion both in the paramagnetic and antiferromagnetic ranges is strongly anisotropic. The antiferromagnetic ordering is accompanied by considerable (10 -4 ) linear spontaneous magnetostrictions (along the a- and c-axis) of different signs (-0.8 x 10 -4 and 1.8 x 10 -4 ). The mutual compensation of these two effects causes the volume effect to be rather small (∝10 -5 ). Two of the four magnetic phase transitions in UNiGa indicated by the expansion anomalies under ambient pressure are suppressed by pressures above 0.5 GPa. Results of our experiments allow to construct a pressure-temperature (p-T) magnetic phase diagram. (orig.)

  14. Quantum elasticity of graphene: Thermal expansion coefficient and specific heat

    NARCIS (Netherlands)

    Burmistrov, I.S.; Gornyi, I.V.; Kachorovskii, V.Y.; Katsnelson, M.I.; Mirlin, A.D.

    2016-01-01

    We explore thermodynamics of a quantum membrane, with a particular application to suspended graphene membrane and with a particular focus on the thermal expansion coefficient. We show that an interplay between quantum and classical anharmonicity-controlled fluctuations leads to unusual elastic

  15. Analysis of thermal expansivity of solids at extreme compression

    Directory of Open Access Journals (Sweden)

    J. Shanker

    2008-12-01

    Full Text Available Thermodynamics of solids in the limit of infinite pressure formulated by Stacey reveals that the thermal expansivity (alpha of solids tends to zero at infinite pressure. The earlier models for the volume dependence of thermal expansivity do not satisfy the infinite pressure behaviour of thermal expansivity. The expressions for the volume dependence of the isothermal Anderson- Grüneisen parameter (delta T considered in the derivation of earlier formulations for alpha (V have been found to be inadequate. A formulation for the volume dependence of delta T is presented here which is similar to the model due to Burakovsky and Preston for the volume dependence of the Grüneisen parameter. The new formulation for alpha (V reveals that delta T infinity must be greater than zero for satisfying the thermodynamic result according to which alpha tends to zero at infinite pressure. It is found that our model fits well the experimental data on thermal expansivity alpha (V for hcp iron corresponding to a wide range of pressures (0-360 GPa.

  16. Thermal expansion of the superconducting ferromagnet UCoGe

    NARCIS (Netherlands)

    Gasparini, A.; Huang, Y.K.; Hartbaum, J.; v. Löhneysen, H.; de Visser, A.

    2010-01-01

    We report measurements of the coefficient of linear thermal expansion, α(T), of the superconducting ferromagnet UCoGe. The data taken on a single-crystalline sample along the orthorhombic crystal axes reveal a pronounced anisotropy with the largest length changes along the b axis. The large values

  17. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature.

  18. Negative thermal expansion in Sc2(WO4)3

    International Nuclear Information System (INIS)

    Evans, J.S.O.; Mary, T.A.; Sleight, A.W.

    1998-01-01

    Sc 2 (WO 4 ) 3 has been found to show the highly unusual property of negative thermal expansion over a temperature range of 10 to 1,073 K. Powder neutron diffraction data from 10 to 450 K shows an essentially linear decrease in cell volume as a function of temperature. The intrinsic linear coefficient of thermal expansion from this data is -2.2 x 10 -6 K -1 . The linear coefficient of thermal expansion measured on a ceramic bar of Sc 2 (WO 4 ) 3 can be as negative as -11 x 10 -6 K -1 due to microstructure changes as a function of temperature. Rietveld refinement as a function of temperature suggests that the intrinsic negative thermal expansion can be related to transverse vibrations of bridging oxygen atoms in the structure. The anharmonic nature of these vibrations leads to a coupled tilting of the quasi-rigid framework polyhedra. This tilting in turn causes the structure to become more dense with increasing temperature

  19. COMPACT ATHERMAL OPTICAL WAVEGUIDE USING THERMAL EXPANSION AMPLIFICATION

    DEFF Research Database (Denmark)

    2001-01-01

    A method of temperature stabilising optical waveguides having positive thermal optical path length expansion, in particular fiber Bragg gratings or optical fiber DFB lasers or optical fiber DBR lasers, comprising affixing the optical waveguide to at least two points of a negative expanding fixture...

  20. Spring-like motion caused large anisotropic thermal expansion in nonporous M(eim)2 (M = Zn, Cd).

    Science.gov (United States)

    Liu, Zhanning; Liu, Chenxi; Li, Qiang; Chen, Jun; Xing, Xianran

    2017-09-20

    Two nonporous coordination polymers were found to possess large anisotropic thermal expansion, which was derived from the flexible structures. A "spring-like" thermal motion was proposed to illustrate the mechanism. Compound Cd(eim) 2 (eim = 2-ethylimidazole) possesses large linear and reversible thermal expansion properties and the emission intensity shows a linear decrease with temperature, making it a candidate for thermo-responsive materials.

  1. Synthesis and thermal expansion hysteresis of Ca1–xSrxZr4P6O24

    Indian Academy of Sciences (India)

    Unknown

    tural family of new low thermal expansion materials known as ... The members of this family have received .... present work, five different compositions in CSZP were prepared and ... and a Mettler electronic balance with the model AE 240.

  2. Thermal expansion at low temperatures of glass-ceramics and glasses

    Energy Technology Data Exchange (ETDEWEB)

    White, G K [National Measurement Lab., Sydney (Australia)

    1976-08-01

    The linear thermal expansion coefficient, ..cap alpha.., has been measured from 2 to 32 K and from 55 to 90 K for a machineable glass-ceramic, an 'ultra-low expansion' titanium silicate glass (Corning ULE), and ceramic glasses (Cer-Vit and Zerodur), and for glassy carbon. ..cap alpha.. is negative for the ultra-low expansion materials below 100 K, as for pure vitreous silica. Comparative data are reported for ..cap alpha..-quartz , ..cap alpha..-cristobalite, common opal, and vitreous silica.

  3. Thermal expansion of the magnetorefrigerant Gd5(Si,Ge)4

    NARCIS (Netherlands)

    Brück, E.H.; Nazih, M.; de Visser, A.; Zhang, L.; Tegus, O.

    2003-01-01

    We report thermal expansion measurements carried out on a single-crystal of the giant magnetocaloric effect material Gd5(Si0.43Ge0.57)4. At the magneto-structural phase transition at T0~240 K, large steps in the relative length change ÄL/L along the principle crystallographic axes are observed. The

  4. Thermal transfer in multilayer materials

    Energy Technology Data Exchange (ETDEWEB)

    Bouayad, H.; Mokhtari, A.; Martin, C.; Fauchais, P. [Laboratoire de Materiaux Ceramiques et Traitements de Surface, 87 - Limoges (France)

    1993-12-31

    It is easier to measure the thermal diffusivity (a) of material rather than its thermal conductivity (k), a simple relationship (k=a cp) allowing to calculate k provided and cp are measured. However this relationship applies only if the considered material is homogenous. For composite materials, especially for multilayers ones, we have developed an analytical model and a numerical one. The first one allows to determine the thermal diffusivity and conductivity of a two-layer material. The second one allows to determine the thermal diffusivity of one of the layers provided the values of (a) are known for the two other layers (for a two or three-layer material). The use of the two models to calculate the apparent diffusivity of a two layer material results in values in fairly good agreement. (Authors). 4 refs., 3 figs., 3 tabs.

  5. Thermal expansion properties of Bi-2212 in Ag or an Ag-alloy matrix

    International Nuclear Information System (INIS)

    Tenbrink, J.; Krauth, H.

    1994-01-01

    The thermal expansion properties of polycrystalline Bi 2 Sr 2 Ca 1 Cu 2 O 8+x melt-processed bulk specimens, and Bi 2 Sr 2 Ca 1 Cu 2 O 8+x monocore as well as multifilamentary round wires in Ag or Ag-alloy matrix have been investigated over the temperature range from -150 to 800 degrees C. Although the thermal expansion of Bi 2 Sr 2 Ca 1 Cu 2 O 8+x is distinctly lower compared with Ag, the thermal expansion properties of the Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or AgNiMg-alloy composite conductors are essentially governed by the matrix material. The thermal expansion of the encountered oxide-dispersion-strengthened AgNiMg alloys is only slightly lower compared with that of pure Ag. Therefore the thermal expansion of all investigated Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or Ag-alloy composite wires was found to be close to that of pure Ag. The reason for this striking behaviour is shown to be related to a surprisingly low elastic modulus of the polycrystalline Bi-2212 wire cores of the order of 10 to a maximum 40 GPa. (author)

  6. Thermal expansion and its impacts on thermal transport in the FPU-α-β model

    Directory of Open Access Journals (Sweden)

    Xiaodong Cao

    2015-05-01

    Full Text Available We study the impacts of thermal expansion, arising from the asymmetric interparticle potential, on thermal conductance in the FPU-α-β model. A nonmonotonic dependence of the temperature gradient and thermal conductance on the cubic interaction parameter α are shown, which corresponds to the variation of the coefficient of thermal expansion. Three domains with respect to α can be identified. The results are explained based on the detailed analysis of the asymmetry of the interparticle potential. The self-consistent phonon theory, which can capture the effect of thermal expansion, is developed to support our explanation in a quantitative way. Our result would be helpful to understand the issue that whether there exist normal thermal conduction in the FPU-α-β model.

  7. Anisotropic thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Madsen, Solveig Røgild; Lock, Nina; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2014-06-01

    Ionothermal reaction between Mn(II)(acetate)2·4H2O and 1,3,5-benzenetricarboxylic acid (H3BTC) in either of the two ionic liquids 1-ethyl-3-methylimidazolium bromide (EMIMBr) and 1-ethyl-3-methylimidazolium tosylate (EMIMOTs) resulted in the formation of the new metal-organic framework (MOF) EMIM[Mn(II)BTC] (BTC = 1,3,5-benzenetricarboxylate). The compound crystallizes in the orthorhombic space group Pbca with unit-cell parameters of a = 14.66658 (12), b = 12.39497 (9), c = 16.63509 (14) Å at 100 K. Multi-temperature single-crystal (15-340 K) and powder X-ray diffraction studies (100-400 K) reveal strongly anisotropic thermal expansion properties. The linear thermal expansion coefficients, αL(l), attain maximum values at 400 K along the a- and b-axis, with αL(a) = 115 × 10(-6) K(-1) and αL(b) = 75 × 10(-6) K(-1). At 400 K a negative thermal expansion coefficient of -40 × 10(-6) K(-1) is observed along the c-axis. The thermal expansion is coupled to a continuous deformation of the framework, which causes the structure to expand in two directions. Due to the rigidity of the linker, the expansion in the ab plane causes the network to contract along the c-axis. Hirshfeld surface analysis has been used to describe the interaction between the framework structure and the EMIM cation that resides within the channel. This reveals a number of rather weak interactions and one governing hydrogen-bonding interactions.

  8. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  9. Compressibility and thermal expansion of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lindelov, H.; Gerward, Leif

    2002-01-01

    The compressibility and thermal expansion of the cubic silicon nitride (c-Si3N4) phase have been investigated by performing in situ x-ray powder-diffraction measurements using synchrotron radiation, complemented with computer simulations by means of first-principles calculations. The bulk...... compressibility of the c-Si3N4 phase originates from the average of both Si-N tetrahedral and octahedral compressibilities where the octahedral polyhedra are less compressible than the tetrahedral ones. The origin of the unit cell expansion is revealed to be due to the increase of the octahedral Si-N and N-N bond...

  10. Magnetic susceptibilities and thermal expansion of artificial graphites

    International Nuclear Information System (INIS)

    Cornuault, P.; Herpin, A.; Hering, H.; Seguin, M.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    Starting from measurements of the magnetic susceptibility made in the two principal directions of a graphite bar, the distribution function of the normals to the carbon planes in the crystallites has been evaluated. The effect of different variation in the manufacturing process on this crystalline anisotropy has been studied. From this crystalline anisotropy we have calculated the thermal expansion coefficient possessed by a compact mass of crystallites having exactly the same orientational anisotropy as the porous body consideration. The difference between this and the observed expansion coefficient leads to the determination of the expansion of the non-graphitic part of the mass which turns out to have a negative value and is also anisotropic. We have attempted to draw some conclusions from this result. (author) [fr

  11. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.

    Science.gov (United States)

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  12. Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion

    International Nuclear Information System (INIS)

    Dudek, Krzysztof K; Attard, Daphne; Caruana-Gauci, Roberto; Grima, Joseph N; Wojciechowski, Krzysztof W

    2016-01-01

    Unimode metamaterials made from rotating rigid triangles are analysed mathematically for their mechanical and thermal expansion properties. It is shown that these unimode systems exhibit positive Poisson’s ratios irrespective of size, shape and angle of aperture, with the Poisson’s ratio exhibiting giant values for certain conformations. When the Poisson’s ratio in one loading direction is larger than +1, the systems were found to exhibit the anomalous property of negative linear compressibility along this direction, that is, the systems expand in this direction when hydrostatically compressed. Also discussed are the thermal expansion properties of these systems under the assumption that the units exhibit increased rotational agitation once subjected to an increase in temperature. The effect of the geometric parameters on the aforementioned thermo-mechanical properties of the system, are discussed, with the aim of identifying negative behaviour. (paper)

  13. Structure and thermal expansion of NbC complex carbides

    International Nuclear Information System (INIS)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-01-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear exspansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical expemental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying

  14. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    OpenAIRE

    Wei Wang; Wei Wang; Huiming Liu; Rongjin Huang; Rongjin Huang; Yuqiang Zhao; Chuangjun Huang; Shibin Guo; Yi Shan; Laifeng Li; Laifeng Li; Laifeng Li

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K) environment easily. This paper describes the design and ...

  15. Thermal expansion studies on Hafnium titanate (HfTiO4)

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Subramanian, G.G.S.; Antony, M.P.

    2006-01-01

    The lattice thermal expansion characteristics of hafnium titanate (HfTiO 4 ) have been studied by measuring the lattice parameter as a function of temperature by high temperature X-ray diffraction technique (HT-XRD) in the temperature range 298-1973K. Percentage linear thermal expansion and mean linear thermal expansion coefficients were computed from the lattice parameter data. The thermal expansion of HfTiO 4 is highly anisotropic. The expansivity along 'a' axis is large; as compared to the expansivity along 'b' axis which is negative below 1073 K. The percentage linear thermal expansion in the temperature range 298-1973 K along a, b and c axis are 2.74, 0.901 and 1.49 respectively. Thermal expansion values obtained in the present study are in reasonable agreement with the existing thermal expansion data. (author)

  16. The intrinsic thermal expansion of point defects in Al

    International Nuclear Information System (INIS)

    Asty, Michel.

    1975-11-01

    The differential length measurement between two specimens, on pure and the other containing point defects, leads to the intrinsic thermal coefficient of expansion β(d) of the defect. A differential dilatometer by Laser interferometry is described operating between 77 and 300 K, with a sensitivity of about 100A on the length difference between an alloy sample and a pure dummy. Concerning substitutional impurities in aluminium between -190 deg C and -90 deg C, the intrinsic thermal coefficient of expansion of the defect β(d) is shown to have an absolute value much larger than the thermal expansion coefficient β 0 of the aluminium matrix: β(d)/β 0 =+3 to +6 for the magnesium impurity, β(d)/β 0 =-3 to -4 for the calcium impurity, and to be independent of the temperature. The existing theoretical models give evaluations for away from modeles theoriques existant sont tres loin d'expliquer les resultats experimentaux. high temperature, the results show that vacancies and divacancies, before collapsing in dislocation loops, form multivacancy clusters with large formation volumes: such a property makes these clusters comparable to cavities where the formation volume per vacancy is equal to the atomic volume of the matrix [fr

  17. Modeling the thermal deformation of TATB-based explosives. Part 1: Thermal expansion of “neat-pressed” polycrystalline TATB

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-08

    thermal deformation of engineered components whose consolidation process is generally more complex than isostatic or die-pressed specimens. Finally, an envisioned application of the modeling approach to simulating thermal expansion of weapon systems and components is outlined along with necessary future work to introduce the effects of binder and ratcheting behavior. Key conclusions from this work include the following. Both porosity and grain aspect ratio have an influence on the thermal expansion of polycrystal TATB considering realistic material variability. Thepreferred orientation of the single crystal TATB [001] poles within a polycrystal gives rise to pronounced anisotropy of the macroscopic thermal expansion. The extent of this preferred orientation depends on the magnitude of deformation, and consequently, is expected to vary spatially throughout manufactured components much like porosity. The modeling approach presented here has utility toward bringing spatially variable microstructural features into macroscale system engineering modelsAbstract Not Provided

  18. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    Science.gov (United States)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  19. Microwavable thermal energy storage material

    Science.gov (United States)

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  20. Thermal expansion of superconducting fulleride and borocarbide compounds

    International Nuclear Information System (INIS)

    Burkhart, G.J.

    1995-08-01

    In order to detact and analyze thermodynamic phase transitions, the investigation of the thermal expansion via capacitance dilatometry is a powerful experimental technique, due to the extremely high resolution (ΔL/L∝10 -8 -10 -10 ). With respect to the air sensitivity of the fullerides a dilatometer operating under inert atmosphere was designed and the thermal expansion of polycrystalline fulleride (Rb 3 C 60 , K 3 C 60 ) and borocarbide (YNi 2 B 2 C, LuNi 2 B 2 C) compounds was determined in the temperature range 5-320 K. Most effort was focused on a quantitative evaluation of the discontinuity in the thermal expansivity α at the superconducting transition. The results are discussed in the context of the Ehrenfest relation, which connects the jump in the thermal expansivity Δα with the pressure dependence of the superconducting transition temperature dT c /dp and the jump in the specific heat Δc p /T c at the superconducting transition. For Rb 3 C 60 and K 3 C 60 the jump in the specific heat can be derived via the Ehrenfest relation using the results of the thermal expansion measurements and the well-known pressure dependence of the superconducting transition temperature. The derived values for Rb 3 C 60 and K 3 Cu 60 are Δc p /T c ∝75mJ/molK 2 and Δc p /T c ∝64 mJ.molK 2 , respectively. The directly measured specific heat jump of K 3 C 60 gives approximately the same value of Δc p /T c , and, therefore, the use of the Ehrenfest relation on fullerides is justified. The specific heat jumps Δc p /T c , determined from theoretically derived values of the density of states at the Fermi level N(E F ) and the McMillan-parameter λ, exceed the experimental results by a factor of 1.5-2. This finding reflects the uncertainty concerning the superconducting parameters N(E F ) and λ. (orig.)

  1. Widespread range expansions shape latitudinal variation in insect thermal limits

    Science.gov (United States)

    Lancaster, Lesley T.

    2016-06-01

    Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change--for instance to predict which regions are most susceptible to climate change-induced biodiversity loss. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

  2. Thermal conductivity of granular materials

    Energy Technology Data Exchange (ETDEWEB)

    Buyevich, Yu A

    1974-01-01

    Stationary heat transfer in a granular material consisting of a continuous medium containing spherical granules of other substances is considered under the assumption that the spatial distribution of granules is random. The effective thermal conductivity characterizing macroscopic heat transfer in such a material is expressed as a certain function of the conductivities and volume fractions of the medium and dispersed substances. For reasons of mathematical analogy, all the results obtained for the thermal conductivity are valid while computing the effective diffusivity of some admixture in granular materials as well as for evaluation of the effective electric conductivity or the mean dielectric and magnetic permeabilities of granular conductors and dielectrics. (23 refs.)

  3. Electrical properties and thermal expansion of strontium aluminates

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchuk, K.V. [Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Yaremchenko, A.A., E-mail: ayaremchenko@ua.pt [Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Fagg, D.P. [TEMA-NRD, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2014-11-15

    Highlights: • Sr{sub 3}Al{sub 2}O{sub 6}, SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25} ceramics are semiconductors. • Electrical conductivity is as low as 10{sup −6}−4×10{sup −5} S/cm at 1273 K in dry air. • SrAl{sub 2}O{sub 4} is a mixed conductor with predominant ionic conductivity. • Sr{sub 3}Al{sub 2}O{sub 6} shows significant contribution of protonic transport in wet atmospheres. • Average TECs vary in the range (8.5–11.1)×10{sup −6} K{sup −1} and are p(O{sub 2})-independent. - Abstract: Strontium aluminate ceramics, including Sr{sub 3}Al{sub 2}O{sub 6}, SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25}, synthesized by glycine–nitrate combustion and sintered at 1773 K in air, were characterized by thermal analysis, dilatometry and electrical measurements in controlled atmospheres. All studied strontium aluminates are semiconductors with electrical conductivities as low as 10{sup −6}−4×10{sup −5} S/cm at 1273 K in dry air. Electrical measurements in controlled atmospheres in combination with ion transference number determination demonstrated that SrAl{sub 2}O{sub 4} is a mixed conductor with predominant ionic conductivity and increasing n-type and p-type electronic contributions under highly reducing and oxidizing conditions, respectively. While the behavior of electrical conductivity of Sr{sub 3}Al{sub 2}O{sub 6} in dry atmospheres was qualitatively similar to that of SrAl{sub 2}O{sub 4}, a significant increase of conductivity in wet atmospheres was attributed to a protonic contribution to electrical conduction, in correlation with thermogravimetric data and the tendency of this material to form a hydrogarnet at low temperatures. The average thermal expansion coefficients of strontium aluminates, (8.5–11.1)×10{sup −6} K{sup −1} at 333–1373 K, increase with increasing strontium content in the sequence Sr{sub 4}Al{sub 14}O{sub 25} < SrAl{sub 2}O{sub 4} < Sr{sub 3}Al{sub 2}O{sub 6} and are essentially

  4. Thermal expansion behavior of fluor-chlorapatite crystalline solutions

    Science.gov (United States)

    Hovis, G.; Harlov, D.; Gottschalk, M.; Hudacek, W.; Wildermuth, S.

    2009-04-01

    Apatite Ca5(PO4)3(F,Cl,OH,CO3) occurs widely as an accessory mineral in many igneous and metamorphic rocks and in nature displays a wide range of F-Cl-OH-CO3 mixtures (e.g., O'Reilly and Griffin, 2000) that have been used to interpret the role of fluids, e.g. Cl, F, and OH activities, during metamorphic and igneous processes (e.g., Harlov and Förster, 2002). It is important, therefore, to understand the thermodynamic behavior of these solid solutions, including their thermal expansion properties. Fluorapatite - chlorapatite samples were synthesized at the GFZ-Potsdam (Hovis, Harlov, Hahn and Steigert, 2007) using an adaptation of the molten flux method of Cherniak (2000). Dry CaF2 and CaCl2 (0.1 mole total) were mixed with Ca3(PO4)2 (0.03 moles), placed in a Pt crucible, equilibrated for 15 hours at 1375 °C, cooled to 1220 °C at 3 °C/hour, removed from the oven and cooled in air. Crystals were separated from the flux by boiling the quenched product in water. F:Cl fractions for each sample were determined via Rietveld refinement of X-ray powder diffraction data. Chemical homogeneity was confirmed by Rietveld refinement and high-contrast back-scattered electron imaging. Room-temperature unit-cell volumes were determined at the GFZ-Potsdam through Rietveld analysis of X-ray powder diffraction data and also at Lafayette College by standard unit-cell refinement techniques (Holland and Redfern, 1997) using NBS/NIST 640a Si as an internal standard. High-temperature unit-cell dimensions were calculated from X-ray powder diffraction data collected at Cambridge University from room temperature to 1000 °C on a Bruker D8 X-ray diffractometer. NBS Si again was utilized as an internal standard; high-temperature Si peak positions were taken from Parrish (1953). Results indicate that despite the considerable size difference between fluorine and chlorine ions, reflected by substantially different unit-cell sizes at room temperature, the coefficient of thermal expansion across

  5. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    Science.gov (United States)

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  6. Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.

    Science.gov (United States)

    Mathew, John P; Patel, Raj; Borah, Abhinandan; Maliakkal, Carina B; Abhilash, T S; Deshmukh, Mandar M

    2015-11-11

    We study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K. Using finite element simulations to model the experimentally observed frequency shifts, we show that the thermal conductivity of a nanowire can be approximated in the 10-60 K temperature range by the empirical form κ = bT W/mK, where the value of b for a nanowire was found to be b = 0.035 W/mK(2), significantly lower than bulk values. Also, local heating allows us to independently vary the temperature of the nanowire relative to the clamping points pinned to the bath temperature. We suggest a loss mechanism (dissipation ~10(-4)-10(-5)) originating from the interfacial clamping losses between the metal and the semiconductor nanostructure.

  7. Experimental investigation of linear thermal expansion of pyrolytic graphite at high temperatures

    Science.gov (United States)

    Senchenko, V. N.; Belikov, R. S.

    2017-11-01

    Using the previously described [1] experimental setup for investigation of the thermophysical properties of refractory materials under high pressure and temperature a few experiments with pyrolytic graphite were carried out. The density of the material was equal to 2.18 g/cm3. Experimental data on the linear thermal expansion in the perpendicular and parallel to the basal plane direction were obtained. Thermal expansion in the perpendicular to the basal plane direction during the heating from room temperature up to the melting point was 16.4 ± 1.6%. The results obtained allow calculating the density of pyrolytic graphite in the wide range of high temperatures up to the melting point.

  8. Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate.

    Science.gov (United States)

    Fortes, A Dominic; Suard, Emmanuelle; Knight, Kevin S

    2011-02-11

    The vast majority of materials shrink in all directions when hydrostatically compressed; exceptions include certain metallic or polymer foam structures, which may exhibit negative linear compressibility (NLC) (that is, they expand in one or more directions under hydrostatic compression). Materials that exhibit this property at the molecular level--crystalline solids with intrinsic NLC--are extremely uncommon. With the use of neutron powder diffraction, we have discovered and characterized both NLC and extremely anisotropic thermal expansion, including negative thermal expansion (NTE) along the NLC axis, in a simple molecular crystal (the deuterated 1:1 compound of methanol and water). Apically linked rhombuses, which are formed by the bridging of hydroxyl-water chains with methyl groups, extend along the axis of NLC/NTE and lead to the observed behavior.

  9. Thermal Expansion and Density Data of UO2 and Simulated Fuel for Standard Reference

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Na, S. H.; Lee, J. W.; Kang, K. H.

    2010-01-01

    Standard Reference Data (SRD) is the scientific, technical data whose reliability and accuracy are evaluated by scientist group. Since SRD has a great impact on the improvement of national competitiveness by stirring up technological innovation in every sector of industries, many countries are making great efforts on establishing SRD in various areas. Data center for nuclear fuel material in Korea Atomic Energy Research Institute plays a role to providing property data of nuclear fuel material at high temperature, pressure, and radiation which are essential for the safety evaluation of nuclear power. In this study, standardization of data on thermal expansion and density of UO 2 were carried out in the temperature range from 300 K to 3100 K via uncertainty evaluation of indirectly produced data. Besides, standardization of data on thermal expansion and density of simulated fuel were also done in the temperature range from 350 K to 1750 K via uncertainty evaluation of directly produced data

  10. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    Science.gov (United States)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  11. Linear thermal expansion coefficient measurement technology in hot cell

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Choo, Yong Sun; Ahn, Sang Bok; Hong, Kwon Pyo; Lee, K. S.

    1998-06-01

    To establish linear thermal expansion coefficient measurement technology in hot cell, we reviewed and evaluated various measuring technology by paper and these were compared with the data produced with pre-installed dilatometer in hot cell. Detailed contents are as follows; - The theory of test. - Review of characteristics for various measurement technology and compatibility with hot cell. - Review of standard testing regulations(ASTM). - System calibration of pre-installed dilatometer. - Performance test of pre-installed dilatometer. (author). 12 refs., 15 tabs., 8 figs

  12. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  13. Deformation analysis considering thermal expansion of injection mold

    International Nuclear Information System (INIS)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok

    2015-01-01

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations

  14. Deformation analysis considering thermal expansion of injection mold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok [Samsung Electronics Co., LTD., Seoul (Korea, Republic of)

    2015-09-15

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

  15. Measurement of thermal expansion coefficient of graphene diaphragm using optical fiber Fabry–Perot interference

    International Nuclear Information System (INIS)

    Li, Cheng; Liu, Qianwen; Peng, Xiaobin; Fan, Shangchun

    2016-01-01

    Application of the Fabry–Perot (FP) interference method for determining the coefficient of thermal expansion (CTE) of a graphene diaphragm is investigated in this paper. A miniature extrinsic FP interferometric (EFPI) sensor was fabricated by using an approximate 8-layer graphene diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule with an inner diameter of 125 μ m, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse FP interferometer with a cavity length of 36.13 μ m. Double reference FP cavities using two cleaved optical fibers as reflectors were also constructed to differentially cancel the thermal expansion effects of the trapped gas and adhesive material. A temperature test demonstrated an approximate cavity length change of 166.1 nm °C −1 caused by film thermal expansion in the range of 20–60 °C. Then along with the established thermal deformation model of the suspended circular diaphragm, the calculated CTE ranging from  −9.98  ×  10 −6 K −1 to  −2.09  ×  10 −6 K −1 conformed well to the previously measured results. The proposed method would be applicable in other types of elastic materials as the sensitive diaphragm of an EFPI sensor over a wide temperature range. (paper)

  16. Thermal expansion anomaly and thermal conductivity of U3O8

    International Nuclear Information System (INIS)

    Schulz, B.

    1975-01-01

    The anomaly in the thermal expansion of U 3 O 8 and results of the thermal conductivity of this compound are described. U 3 O 8 powder heat treated at 1,223 K was consolidated by pressing and sintering in air at 1,223 and 1,373 K to a density of 66% and 80.8% TD. The O/U ratio was 2.67 and 2.63 respectively, the crystal structure being orthorhombic in both cases. For UOsub(2.63) the thermal linear expansion was measured in the temperature range 293 K-1,063 K in pressing direction and normal to it, while for UOsub(2.67) measurements were done parallel to the pressing direction. The curves of the linear thermal expansion from 373 K up to 623 K show negative values and above positive for the three curves. The results are related to known data of phase-transition-temperatures of the orthorhombic U 3 O 8 . Measurements of the thermal conductivity were done on UOsub(2.67). Because of the high porosity of the samples, known relationships for the porosity correction of the thermal conductivity were proved on alumina with 34 % porosity. The values of the thermal conductivity of UOsub(2.67) (corrected to zero porosity) show a very slight temperature dependence, they are about three times lower than those of the stoichiometric uranium dioxide in the same temperature range

  17. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively.

    Science.gov (United States)

    Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu

    2013-10-09

    If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for

  18. Thermal expansion and volumetric changes during indium phosphide melting

    International Nuclear Information System (INIS)

    Glazov, V.M.; Davletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.

    1977-01-01

    The results of the measurements of a thermal expansion were summed up at various temperatures as a diagram in coordinates (Δ 1/1) approximately F(t). It was shown that an appreciable deviation of the relationship (Δ1/1) approximately f(t) from the linear law corresponded to a temperature of 500-550 deg C. It was noted that the said deviation was related to an appreciable thermal decomposition of indium phosphide as temperature increased. The strength of the inter-atomic bond of indium phosphide was calculated. Investigated were the volumetric changes of indium phosphide on melting. The resultant data were analyzed with the aid of the Clausius-Clapeyron equation

  19. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  20. Thermal expansion behaviour of high performance PEEK matrix composites

    International Nuclear Information System (INIS)

    Goyal, R K; Mulik, U P; Tiwari, A N; Negi, Y S

    2008-01-01

    The thermal expansion behaviour of high performance poly(ether-ether-ketone) (PEEK) composites reinforced with micro- (8 μm) and nano- (39 nm) sized Al 2 O 3 particles was studied. The distribution of Al 2 O 3 in the PEEK matrix was studied by scanning electron microscopy and transmission electron microscopy. The coefficient of thermal expansion (CTE) was reduced from 58 x 10 -6 deg. C -1 for pure PEEK to 22 x 10 -6 deg. C -1 at 43 vol% micro-Al 2 O 3 and to 23 x 10 -6 deg. C -1 at 12 vol% nano-Al 2 O 3 composites. For a given volume fraction, nano-Al 2 O 3 particles are more effective in reducing the CTE of composites than that of micro-Al 2 O 3 particles. This may be attributed to the much higher interfacial area or volume of nanocomposites than that of microcomposites. The upper limit and lower limit of the Schapery model separately fit closely the CTE of the micro- and nano-composites, respectively. Other models such as the rule of mixture and Kerner and Turner models were also correlated with the data

  1. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  2. Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Fathy, A.; El-Kady, Omyma

    2013-01-01

    Highlights: ► The copper–alumina composites were prepared by powder metallurgy (P/M) method with nano-Cu/Al 2 O 3 powders. ► The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. ► The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. ► The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. ► Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. - Abstract: Copper–alumina composites were prepared by powder metallurgy (P/M) technology. Nano-Cu/Al 2 O 3 powders, was deoxidized from CuO/Al 2 O 3 powders which synthesized by thermochemical technique by addition of Cu powder to an aqueous solution of aluminum nitrate. The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. The large variation in the thermal conductivities can be related to the microstructural characteristics of the interface between Al 2 O 3 and the Cu-matrix. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The reduction of thermal conductivity and coefficient of thermal expansion were

  3. Effect of irradiation on thermal expansion of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Senor, D.J.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC f /SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) β-SiC at all temperatures

  4. Thermal expansion of UO2-Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Une, Katsumi

    1986-01-01

    In recent years, more consideration has been given to the application of UO 2 -Gd 2 O 3 burnable poison fuel to LWRs in order to improve the core physics and to extend the burnup. It has been known that UO 2 forms a single phase cubic fluorite type solid solution with Gd 2 O 3 up to 20 - 30 wt.% above 1300 K. The addition of Gd 2 O 3 to UO 2 lattices changes the properties of the fuel pellets. The limited data on the thermal expansion of UO 2 -Gd 2 O 3 fuel exist, but those are inconsistent. UO 2 -Gd 2 O 3 fuel pellets were fabricated, and the linear thermal expansion of UO 2 and UO 2 -(5, 8 and 10 wt.%)Gd 2 O 3 fuel pellets was measured with a differential dilatometer over the temperature range of 298 - 1973 K. A sapphire rod of 6 mm diameter and 15.5 mm length was used as the reference material. After the preheating cycle, the measurement was performed in argon atmosphere. The results for UO 2 pellets showed excellent agreement with the data in literatures. The linear thermal expansion of UO 2 -Gd 2 O 3 fuel pellets showed the increase with increasing the Gd 2 O 3 content. Consideration must be given to this excessive expansion in the fuel design of UO 2 -Gd 2 O 3 pellets. The equations for the linear thermal expansion and density of UO 2 -Gd 2 O 3 fuel pellets were derived by the method of least squares. (Kako, I.)

  5. Phase behaviour, thermal expansion and compressibility of SnMo 2 O 8

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.; Evans, John S.O. (Durham); (GIT)

    2018-02-01

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298–513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ'. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family. Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ~36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.

  6. History-dependent thermal expansion in NbO{sub 2}F

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Josefsberg, Ryan E.; Gallington, Leighanne C.; Morelock, Cody R.; Monaco, Christopher M. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2014-05-01

    Materials with cubic ReO{sub 3}-type structures are of interest for their low or negative thermal expansion characteristics. TaO{sub 2}F is known to display almost zero thermal expansion over a wide temperature range. On heating NbO{sub 2}F, its volume coefficient of thermal expansion decreases from ∼+45 ppm K{sup −1} at 100 K to almost zero at 400 K. NbO{sub 2}F is cubic between 100 and 500 K. Samples of “NbO{sub 2}F” prepared by the digestion of Nb{sub 2}O{sub 5} in aqueous HF followed by mild drying contain hydroxyl defects and metal vacancies. On heating, they can undergo irreversible chemical changes while maintaining a cubic ReO{sub 3}-type structure. The possibility of hydroxyl defect incorporation should be considered when preparing oxyfluorides for evaluation as battery materials. - Graphical abstract: “NbO{sub 2}F” prepared by the digestion of Nb{sub 2}O{sub 5} in HF contains cation vacancies and hydroxyl groups. It undergoes irreversible changes on heating to low temperatures, unlike NbO{sub 2}F prepared by the solid state reaction of Nb{sub 2}O{sub 5} and NbF{sub 5}. - Highlights: • The digestion of Nb{sub 2}O{sub 5} in aqueous HF followed by mild drying does not produce NbO{sub 2}F. • The ReO{sub 3}-type product from the HF digestion of Nb{sub 2}O{sub 5} contains metal vacancies and hydroxyl. • The thermal expansion coefficient of NbO{sub 2}F decreases on heating and approaches zero at ∼400 K.

  7. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  8. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-09-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol% TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol% it is approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999% HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  9. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-01-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol percent TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol percent approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999 percent HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  10. Thermal expansion and pressure effect in MnWO4

    International Nuclear Information System (INIS)

    Chaudhury, R.P.; Yen, F.; Cruz, C.R. de la; Lorenz, B.; Wang, Y.Q.; Sun, Y.Y.; Chu, C.W.

    2008-01-01

    MnWO 4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order. We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T 1 =7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low-temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure

  11. Linear thermal expansion of SrTiO3

    International Nuclear Information System (INIS)

    Tsunekawa, S.; Watanabe, H.F.J.; Takei, H.

    1984-01-01

    The linear thermal expansion of SrTiO 3 in the temperature range 10 to 150 K is measured with a relative accuracy of 5 x 10 -7 by using a three-terminal capacitance dilatometer. The dilation ΔL/L of a single-domain crystal is converted to the ratio of the pseudo-cubic cell constants a(T)/a(T/sub a/) by the equation a(T)/a(T/sub a/) = [1 + (ΔL/L)/sub T/]/[1 + (ΔL/L)/sub T//sub a/], where L is the specimen length, T/sub a/ is the cubic-to-tetragonal transition temperature and T 6 octahedra around the [001] axis. The temperature at which the dilation shows a minimum, 37.5 K, is very close to the transition point T/sub c/ = (32 +- 5) K predicted by Cowley. (author)

  12. Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K

    Science.gov (United States)

    Kompan, T. A.; Kondratiev, S. V.; Korenev, A. S.; Puhov, N. F.; Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.

    2018-03-01

    The paper is devoted to a new high-temperature dilatometer, a part of the State Primary Standard of the thermal expansion coefficient (TEC) unit. The dilatometer is designed for investigation and certification of materials for TEC standards in the range of extremely high temperatures. The critical review of existing methods of TEC measurements is given. Also, the design, principles of operation and metrological parameters of the new device are described. The main attention is paid to the system of machine vision that allows accurate measurement of elongation at high temperatures. The results of TEC measurements for graphite GIP-4, single crystal Al2O3, and some other materials are also presented.

  13. Thermal expansion in 3d-metal Prussian Blue Analogs-A survey study

    International Nuclear Information System (INIS)

    Adak, Sourav; Daemen, Luke L.; Hartl, Monika; Williams, Darrick; Summerhill, Jennifer; Nakotte, Heinz

    2011-01-01

    -Williams series of metal complex stability. Highlights: → Thermal expansion behavior of 17 Prussian Blue Analogs has been studied via XRD. → Nine compounds display negative thermal expansion (NTE) behavior. → All compounds of the M II 3 [Co III (CN) 6 ] 2 family exhibit NTE behavior. → Magnitude of the NTE in M II 3 [Co III (CN) 6 ] 2 follows the order Mn>Fe>Co>Ni>Cu< Zn. → NTE materials show correlations with lattice parameters and Irving-Williams series.

  14. Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8.

    Science.gov (United States)

    Tallentire, Sarah E; Child, Felicity; Fall, Ian; Vella-Zarb, Liana; Evans, Ivana Radosavljević; Tucker, Matthew G; Keen, David A; Wilson, Claire; Evans, John S O

    2013-08-28

    We describe the synthesis and characterization of a family of materials, Zr1-xSnxMo2O8 (0 thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from -7.9(2) × 10(-6) to +5.9(2) × 10(-6) K(-1) (12-500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of "cubic" SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material.

  15. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  16. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  17. Thermal expansion studies on europium titanate (Eu2TiO5)

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Subramanian, G.G.S.; Antony, M.P.

    2008-01-01

    The lattice thermal expansion characteristics of europium titanate (Eu 2 TiO 5 ) have been studied by measuring the lattice parameter by high temperature X-ray diffraction technique (HT-XRD) in the temperature range 298-1573K. Percentage linear thermal expansion and mean linear thermal expansion coefficients were computed from the lattice parameter data. The percentage linear thermal expansion in the temperature range 298-1573 K along a, b and c axes are 1.05, 1.15 and 0.95 respectively. (author)

  18. Molecular dynamics study of the thermal expansion coefficient of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nejat Pishkenari, Hossein, E-mail: nejat@sharif.edu; Mohagheghian, Erfan; Rasouli, Ali

    2016-12-16

    Due to the growing applications of silicon in nano-scale systems, a molecular dynamics approach is employed to investigate thermal properties of silicon. Since simulation results rely upon interatomic potentials, thermal expansion coefficient (TEC) and lattice constant of bulk silicon have been obtained using different potentials (SW, Tersoff, MEAM, and EDIP) and results indicate that SW has a better agreement with the experimental observations. To investigate effect of size on TEC of silicon nanowires, further simulations are performed using SW potential. To this end, silicon nanowires of different sizes are examined and their TEC is calculated by averaging in different directions ([100], [110], [111], and [112]) and various temperatures. Results show that as the size increases, due to the decrease of the surface effects, TEC approaches its bulk value. - Highlights: • MD simulations of TEC and lattice constant of bulk silicon. • Effects of four potentials on the results. • Comparison to experimental data. • Investigating size effect on TEC of silicon nanowires.

  19. Investigation of Key Parameters of Rock Cracking Using the Expansion of Vermiculite Materials

    Science.gov (United States)

    Ahn, Chi-Hyung; Hu, Jong Wan

    2015-01-01

    The demand for the development of underground spaces has been sharply increased in lieu of saturated ground spaces because the residents of cities have steadily increased since the 1980s. The traditional widely used excavation methods (i.e., explosion and shield) have caused many problems, such as noise, vibration, extended schedule, and increased costs. The vibration-free (and explosion-free) excavation method has currently attracted attention in the construction site because of the advantage of definitively solving these issues. For such reason, a new excavation method that utilizes the expansion of vermiculite with relatively fewer defects is proposed in this study. In general, vermiculite materials are rapidly expanded in volume when they receive thermal energy. Expansion pressure can be produced by thermal expansion of vermiculite in a steel tube, and measured by laboratory tests. The experimental tests are performed with various influencing parameters in an effort to seek the optimal condition to effectively increase expansion pressure at the same temperature. Then, calibrated expansion pressure is estimated, and compared to each model. After analyzing test results for expansion pressure, it is verified that vermiculite expanded by heat can provide enough internal pressure to break hard rock during tunneling work. PMID:28793610

  20. Ultra low and negative expansion glass–ceramic materials ...

    Indian Academy of Sciences (India)

    Ultra low and negative expansion glass–ceramic materials have been obtained from pyrophyllite and blast furnace slag. The batch composition was modified with the addition of lithium carbonate, hydrated alumina, boric acid and nucleating agent (titania). The batch was melted at 1400°C followed by casting in the form of ...

  1. Experimental Field Tests and Finite Element Analyses for Rock Cracking Using the Expansion of Vermiculite Materials

    Directory of Open Access Journals (Sweden)

    Chi-hyung Ahn

    2016-01-01

    Full Text Available In the previous research, laboratory tests were performed in order to measure the expansion of vermiculite upon heating and to convert it into expansion pressure. Based on these test results, this study mainly focuses on experimental field tests conducted to verify that expansion pressure obtained by heating vermiculite materials is enough to break massive and hard granite rock with an intention to excavate the tunnel. Hexahedral granite specimens with a circular hole perforated in the center were constructed for the experimental tests. The circular holes were filled with vermiculite plus thermal conduction and then heated using the cartridge heater. As a result, all of hexahedral granite specimens had cracks in the surface after 700-second thermal heating and were finally spilt into two pieces completely. The specimen of larger size only requires more heating time and expansion pressure. The material properties of granite rocks, which were obtained from the experimental tests, were utilized to produce finite element models used for numerical analyses. The analysis results show good agreement with the experimental results in terms of initial cracking, propagation direction, and expansion pressure.

  2. Anisotropic thermal expansion behaviors of copper matrix in β-eucryptite/copper composite

    International Nuclear Information System (INIS)

    Wang Lidong; Xue Zongwei; Qiao Yingjie; Fei, W.D.

    2012-01-01

    Highlights: ► The thermal expansion behaviors of Cu matrix were studied by in situ XRD. ► The expansion of Cu{1 1 1} plane is linear, that of Cu{2 0 0} is nonlinear. ► The anisotropic thermal expansion of Cu is related to the twinning of Cu matrix. ► The twinning of Cu matrix makes the CTE of the composite increasing. - Abstract: A β-eucryptite/copper composite was fabricated by spark plasma sintering process. The thermal expansion behaviors of Cu matrix of the composite were studied by in situ X-ray diffraction during heating process. The results show that Cu matrix exhibits anisotropic thermal expansion behaviors for different crystallographic directions, the expansion of Cu{1 1 1} plane is linear in the temperature range from 20 °C to 300 °C and the expansion of Cu{2 0 0} is nonlinear with a inflection at about 180 °C. The microstructures of Cu matrix before and after thermal expansion testing were investigated using transmission electronic microscope. The anisotropic thermal expansion behavior is related to the deformation twinning formed in the matrix during heating process. At the same time, the deformation twinning of Cu matrix makes the average coefficient of thermal expansion of the composite increase.

  3. Local Thermal Insulating Materials For Thermal Energy Storage ...

    African Journals Online (AJOL)

    Thermal insulation is one of the most important components of a thermal energy storage system. In this paper the thermal properties of selected potential local materials which can be used for high temperature insulation are presented. Thermal properties of seven different samples were measured. Samples consisted of: ...

  4. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  5. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1981-01-01

    Preliminary data on the thermal propertes of a course-grained rock salt from Avery Island, Louisiana, indicate that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7 W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573 K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 /K at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  6. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1980-01-01

    Preliminary data on the thermal properties of a coarse-grained rock salt from Avery Island, Louisiana, indicates that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  7. Thermal expansion of proton solid electrolytes on the basis of BaCeO3

    International Nuclear Information System (INIS)

    Gorelov, V.P.; Arestova, N.V.; Kurumchin, Eh.Kh.; Vdovin, G.K.

    1995-01-01

    Thermal expansion of BaCeO 3 base ceramics is under study. It is shown that within the range of 600-800 deg C solid electrolytes on barium cerate basis exhibity the anomaly of thermal expansion. This fact makes their application difficult. 9 refs., 3 figs

  8. The effect of gamma irradiation on the thermal expansion behaviour of oriented polypropylene

    International Nuclear Information System (INIS)

    Godjevargov, L.; Novakovic, L.J.; Kostoski, D.

    1991-01-01

    Quenched and air-cooled samples of oriented polypropylene have been irradiated to 300 kGy adsorbed dose in the presence of air. The parallel thermal expansion coefficient decreases and becomes negative with increasing orientation. The effect of adsorbed dose on the thermal expansion behaviour is practically negligible. (author) 4 refs.; 4 figs

  9. Shape memory effects, thermal expansion and B19' martensite texture in titanium nickelide

    International Nuclear Information System (INIS)

    Zel'dovich, V.I.; Sobyanina, G.A.; Rinkevich, O.S.; Gundyrev, V.M.

    1996-01-01

    The influence of plastic deformation by tension and cold rolling on shape memory effect, reverse shape memory effect, thermal expansion and texture state of martensite in titanium nickelide is under study. The relationship of thermal expansion coefficient to the value of strain during direct and reverse shape memory effect is established

  10. Fabrication of low thermal expansion SiC/ZrW{sub 2}O{sub 8} porous ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Poowancum, A; Matsumaru, K; Juarez-Ramirez, I; Ishizaki, K [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Torres-Martinez, L M [Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, San Nicolas de los Garza, NL, C.P. 66451 (Mexico); Fu, Z Y [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 (China); Lee, S W, E-mail: anurat@ishizaki.nagaokaut.ac.jp [Department of Environment Engineering, Sun Moon University, 100, Kalsan-ri, Tangjeong-myeon, Asan, Chungnam 336-708 (Korea, Republic of)

    2011-03-15

    Low or zero thermal expansion porous ceramics are required for several applications. In this work near zero thermal expansion porous ceramics were fabricated by using SiC and ZrW{sub 2}O{sub 8} as positive and negative thermal expansion materials, respectively, bonded by soda lime glass. The mixture of SiC, ZrW{sub 2}O{sub 8} and soda lime glass was sintered by Pulsed Electric Current Sintering (PECS, or sometimes called Spark Plasma Sintering, SPS) at 700 deg. C. Sintered samples with ZrW{sub 2}O{sub 8} particle size smaller than 25 {mu}m have high thermal expansion coefficient, because ZrW{sub 2}O{sub 8} has the reaction with soda lime glass to form Na{sub 2}ZrW{sub 3}O{sub 12} during sintering process. The reaction between soda lime glass and ZrW{sub 2}O{sub 8} is reduced by increasing particle size of ZrW{sub 2}O{sub 8}. Sintered sample with ZrW{sub 2}O{sub 8} particle size 45-90 {mu}m shows near zero thermal expansion.

  11. High thermal conductivity materials for thermal management applications

    Science.gov (United States)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    2018-05-29

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  12. Thermal expansion studies on Inconel-600[reg] by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Raju, S.; Sivasubramanian, K.; Divakar, R.; Panneerselvam, G.; Banerjee, A.; Mohandas, E.; Antony, M.P.

    2004-01-01

    The lattice thermal expansion characteristics of Inconel-600[reg] have been studied by high temperature X-ray diffraction (HT-XRD) technique in the temperature range 298-1200 K. Altogether four experimental runs were conducted on thin foils of about 75-100 μm thickness. The diffraction profiles have been accurately calibrated to offset the shift in 2θ values introduced by sample buckling at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean linear thermal expansion coefficients as a function of temperature. The thermal expansion values estimated in the present study show a fair degree of agreement with other existing dilatometer based bulk thermal expansion estimates. The lattice parameter for this alloy at 300 K is found to be 0.3549(1) nm. The mean linear thermal expansivity is found to be 11.4 x 10 -6 K -1

  13. Laboratory measurements of the coefficient of thermal expansion of Olkiluoto drill core samples

    International Nuclear Information System (INIS)

    Aakesson, U.

    2012-04-01

    The coefficient of thermal expansion and the wet density has been determined on 22 specimens from the ONKALO drillholes ONK-PP167, ONK-PP199, ONK-PP224, ONK-PP225 and ONK-PP226, Olkiluoto, Finland. The coefficient of thermal expansion has been determined in the temperature interval 20-60 deg C. The results indicated that the thermal expansion was almost linear, and the coefficient of thermal expansion for the investigated specimens range between 3.2 and 14.4 x 10 -6 mm/mm deg C, and the wet density between 2,610 and 2,820 kg/m 3 . The granite pegmatite has slightly lower coefficient of thermal expansion and wet density than gneissic rocks. (orig.)

  14. Elucidating the mechanism responsible for anomalous thermal expansion in a metal-organic framework.

    Science.gov (United States)

    van Heerden, Dewald P; Esterhuysen, Catharine; Barbour, Leonard J

    2016-03-14

    The previously reported anisotropic thermal expansion of a three-dimensional metal-organic framework (MOF) is examined by means of theoretical calculations. Inspection of the 100, 190, 280 and 370 K single crystal X-ray diffraction (SCD) structures indicated a concerted change in the coordination sphere of the zinc centre leading to elongation of the coordination helix in the crystallographic c direction (the Zn-O(H)-Zn angle expands), while the largely unaltered ligands (the ZnLZn distance remains constant) are pulled closer together in the ab plane. This study develops and evaluates a mechanistic model at the DFT level of theory that reproduces the convergent expansion of the coordination helix of the material. The linear increase in energy calculated for extension of a model consisting of six zinc centres and truncated ligands compares favourably with results obtained from a periodic DFT evaluation of the SCD structures. It was also found that the anisotropic thermal expansion trend could be reproduced qualitatively by Molecular Dynamics (MD) simulations in the NPT ensemble.

  15. Handleable shapes of thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J. T.

    1989-01-17

    Handleable and machineable shapes of thermal insulation material are made by compacting finely divided thermal insulation material into the cells of a reinforcing honeycomb insulation material into the cells of a reinforcing honeycomb structure. The finely divided thermal insulation material may be, for example, silica aerogel, pyrogenic silica, carbon black, silica gel, volatilised silica, calcium silicate, vermiculate or perlite, or finely divided metal oxides such as alumina or titania. The finely divided thermal insulation material may include an infra-red opacifier and/or reinforcing fibres. The reinforcing honeycomb structure may be made from, for example, metals such as aluminium foil, inorganic materials such as ceramics, organic materials such as plastics materials, woven fabrics or paper. A rigidiser may be employed. The shapes of thermal insulation material are substantially rigid and may be machines, for example by mechanical or laser cutting devices, or may be formed, for example by rolling, into curved or other shaped materials. 12 figs.

  16. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Veronika Petráňová

    2016-02-01

    Full Text Available Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i.e. texture.

  17. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    OpenAIRE

    Veronika Petráňová; Jaroslav Valach; Alberto Viani; Marta Peréz Estébanez

    2016-01-01

    Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i....

  18. Irreversible ocean thermal expansion under carbon dioxide removal

    Science.gov (United States)

    Ehlert, Dana; Zickfeld, Kirsten

    2018-03-01

    In the Paris Agreement in 2015 countries agreed on holding global mean surface air warming to well below 2 °C above pre-industrial levels, but the emission reduction pledges under that agreement are not ambitious enough to meet this target. Therefore, the question arises of whether restoring global warming to this target after exceeding it by artificially removing CO2 from the atmosphere is possible. One important aspect is the reversibility of ocean heat uptake and associated sea level rise, which have very long (centennial to millennial) response timescales. In this study the response of sea level rise due to thermal expansion to a 1 % yearly increase of atmospheric CO2 up to a quadrupling of the pre-industrial concentration followed by a 1 % yearly decline back to the pre-industrial CO2 concentration is examined using the University of Victoria Earth System Climate Model (UVic ESCM). We find that global mean thermosteric sea level (GMTSL) continues to rise for several decades after atmospheric CO2 starts to decline and does not return to pre-industrial levels for over 1000 years after atmospheric CO2 is restored to the pre-industrial concentration. This finding is independent of the strength of vertical sub-grid-scale ocean mixing implemented in the model. Furthermore, GMTSL rises faster than it declines in response to a symmetric rise and decline in atmospheric CO2 concentration partly because the deep ocean continues to warm for centuries after atmospheric CO2 returns to the pre-industrial concentration. Both GMTSL rise and decline rates increase with increasing vertical ocean mixing. Exceptions from this behaviour arise if the overturning circulations in the North Atlantic and Southern Ocean intensify beyond pre-industrial levels in model versions with lower vertical mixing, which leads to rapid cooling of the deep ocean.

  19. Degradation of rocks, through cracking caused by differential thermal expansion, in relation to nuclear waste repositories

    International Nuclear Information System (INIS)

    McLaren, J.R.; Davidge, R.W.; Titchell, I.; Sincock, K.; Bromley, A.

    1982-01-01

    Heating to temperatures up to 500 0 C gives a reduction in Young's modulus and increases in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anistropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined. 6 figures, 2 tables

  20. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.

    Science.gov (United States)

    Wang, S G; Mei, Y; Long, K; Zhang, Z D

    2009-09-17

    The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  1. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K

    Directory of Open Access Journals (Sweden)

    Mei Y

    2009-01-01

    Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  2. Virtual thermal expansion coefficient of Cu precipitated in the Fe95Cu5 alloy

    International Nuclear Information System (INIS)

    Koeszegi, L.; Somogyvari, Z.

    1999-01-01

    Complete text of publication follows. Precipitations on grain boundaries play very important role in the formation of material's characteristics like embrittlement, durability etc. It was already shown [1] that Cu precipitations are under different stress conditions than the bulk material. The situation is more complicated in the case when a construction is exposed to temperature changes as well. In that case not only the residual stresses during the fabrication but the different thermal expansion coefficients can produce additional problems. This situation was modelled using Fe 95 Cu 5 alloy where Cu precipitates on the grain boundaries. The alloy was produced by high-frequency melting and an extra heat treatment was used to produce a quasi-equilibrium state. Pure Cu was also measured to compare the behaviours. Cu(111) Bragg peak was measured at different temperatures by high resolution neutron diffraction. The measurements were carried out on the G5-2 spectrometer at LLB in Saclay. Measurements show that not only residual stress can be recognised on the Cu precipitates but the thermal expansion coefficient of these precipitates definitly differ from the ones of pure Cu. (author)

  3. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic {alpha}-ZrW{sub 2}O{sub 8} and cubic ZrMo{sub 2}O{sub 8}, from T=(0 to 400) K

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Rebecca; Linford, Jessica; Woodfield, Brian F.; Boerio-Goates, Juliana. E-mail: boerio-goates@byu.edu; Lind, Cora; Wilkinson, Angus P.; Kowach, Glen

    2003-06-01

    The molar heat capacities of crystalline cubic {alpha}-ZrW{sub 2}O{sub 8} and cubic ZrMo{sub 2}O{sub 8} have been measured at temperatures from (0.6 to 400) K. At T=298.15 K, the standard molar heat capacities are (207.01{+-}0.21) J{center_dot}K{sup -1}{center_dot}mol{sup -1} for the tungstate and (210.06{+-}0.42) J{center_dot}K{sup -1}{center_dot}mol{sup -1} for the molybdate. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropies for the tungstate and molybdate are (257.96{+-}0.50) J{center_dot}K{sup -1}{center_dot}mol{sup -1} and (254.3{+-}1) J{center_dot}K{sup -1}{center_dot}mol{sup -1}, respectively. The uncertainty of the entropy of the cubic ZrMo{sub 2}O{sub 8} is larger due to the presence of small chemical and phase impurities whose effects cannot be corrected for at this time. The heat capacities of the negative thermal expansion materials have been compared to the weighted sums of their constituent binary oxides. Both negative thermal expansion materials have heat capacities which are significantly greater than the sum of the binary oxides over the entire temperature region.

  4. Status of material development for lifetime expansion of beryllium reflector

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, C [Materion Brush Beryllium and Composites, California (United States); Tsuchiya, Kunihiko; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Hatano, Y [Univ. of Toyama, Toyama (Japan); Chakrov, P [INP-KNNC, Almaty (Kazakhstan); Kodama, M [Nippon Nuclear Fuel Development Co., Ltd., Oarai, Ibaraki (Japan)

    2012-03-15

    Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Materion Brush Beryllium and Composites (former, Brush Wellman Inc.). As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has carried out the cooperation experiments to extend the operating lifetime of the beryllium reflector elements. It will first be necessary to determine which of the material's physical, mechanical and chemical properties will be the most influential on that choice. The irradiation testing plans to evaluate the various beryllium grades are also briefly considered and prepared. In this paper, material selection, irradiation test plan and PEI development for lifetime expansion of beryllium are described for material testing reactors. (author)

  5. Enhanced thermal expansion control rod drive lines for improving passive safety of fast reactors

    International Nuclear Information System (INIS)

    Edelmann, M.; Baumann, W.; Kuechle, M.; Kussmaul, G.; Vaeth, W.; Bertram, A.

    1992-01-01

    The paper presents a device for increasing the thermal expansion effect of control rod drive lines on negative reactivity feedback in fast reactors. The enhanced thermal expansion of this device can be utilized for both passive rod drop and forced insertion of absorbers in unprotected transients, e.g. ULOF. In this way the reactor is automatically brought into a permanently subcritical state and temperatures are kept well below the boiling point of the coolant. A prototype of such a device called ATHENa (German: Shut-down by THermal Expansion of Na) is presently under construction and will be tested. The paper presents the principle, design features and thermal properties of ATHENs as well as results of reactor dynamics calculations of ULOF's for EFR with enhanced thermal expansion control rod drive lines. (author)

  6. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  7. Prediction and control of the coefficient of thermal expansion of concrete

    International Nuclear Information System (INIS)

    Ziegeldorf, S.; Kleiser, K.; Hilsdorf, H.K.

    1979-01-01

    Prediction and control of the coefficient of thermal expansion of concrete. In this report various procedures for the prediction of the coefficient of thermal expansion of concrete are summarized. The values predicted with these procedures are compared to experimental data. In the experimental investigation the coefficient of thermal expansion of various types of aggregates and types of concrete both in a dry and a moist state in the temperature range RT/180 0 C have been measured. The most significant result obtained is that for equal volume fractions the thermal properties of coarse aggregates have a more pronounced effect upon thermal expansion of concrete than those of fine aggregates. In the analysis an attempt has been made to estimate the thermal expansion of concrete from the properties of the concrete components by means of a finite element procedure. On the basis of the experimental data and of the analysis of internal temperature stresses in the concrete a simple relationship for the determination of the coefficient of thermal expansion of concrete has been deduced. In this relationship different thermal properties of coarse and fine aggregates may be taken into account. Compared to other methods this relationship yields, both for dry and for moist concrete, values which are in good agreement with the experimental data. (orig.) [de

  8. Uniaxial negative thermal expansion facilitated by weak host-guest interactions.

    Science.gov (United States)

    Engel, Emile R; Smith, Vincent J; Bezuidenhout, Charl X; Barbour, Leonard J

    2014-04-25

    A nitromethane solvate of 18-crown-6 was investigated by means of variable-temperature single-crystal X-ray diffraction in response to a report of abnormal unit cell contraction. Exceptionally large positive thermal expansion in two axial directions and negative thermal expansion along the third was confirmed. The underlying mechanism relies exclusively on weak electrostatic interactions to yield a linear thermal expansion coefficient of -129 × 10(-6) K(-1), the largest negative value yet observed for an organic inclusion compound.

  9. Molecular dynamics calculations of the thermal expansion properties and melting points of Si and Ge

    International Nuclear Information System (INIS)

    Timon, V; Brand, S; Clark, S J; Abram, R A

    2006-01-01

    The thermal expansion properties and melting points of silicon and germanium are calculated using molecular dynamics simulations within the density functional theory framework. An isothermal-isobaric (NPT) ensemble is considered in a periodic system with a relatively small number of particles per unit cell to obtain the thermal expansion data over a range of temperatures, and it is found that the calculated thermal expansion coefficients and bond lengths agree well with experimental data. Also, the positions of discontinuities in the potential energy as a function of temperature are in good agreement with the experimental melting points

  10. Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF)

    Science.gov (United States)

    Sugawara, Jun; Maloney, Chris

    2016-07-01

    NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.

  11. Negative thermal expansion in TiF{sub 3} from the first-principles prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Yuan, Peng-Fei; Wang, Fei; Sun, Qiang; Liang, Er-Jun [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Center for Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Jia, Yu, E-mail: jiayu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Center for Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Guo, Zheng-Xiao, E-mail: z.x.guo@ucl.ac.uk [Deparment of Chemistry, University College London, London WC1H 0AJ (United Kingdom)

    2014-08-01

    Highlights: • Rhombohedral TiF{sub 3} as a new NTE material is predicted from first-principles calculation. • The NTE mechanism is proposed based on the analysis of vibrational properties. • The rotation coupling of TiF{sub 6} octahedra at low frequencies is most responsible for NTE. - Abstract: In negative thermal expansion (NTE) materials, rhombohedral TiF{sub 3} as a new member is predicted from first-principles calculation. The NTE behavior of rhombohedral TiF{sub 3} occurs at low temperatures. In our work, the NTE mechanism is elaborated in accordance with vibrational modes. It is confirmed that the rigid unit mode (RUM) of internal TiF{sub 6} octahedra in low-frequency optical range is most responsible for the NTE properties.

  12. A discrete element model of brittle damages generated by thermal expansion mismatch of heterogeneous media

    Directory of Open Access Journals (Sweden)

    André Damien

    2017-01-01

    Full Text Available At the macroscopic scale, such media as rocks or ceramics can be seen as homogeneous continuum. However, at the microscopic scale these materials involve sophisticated micro-structures that mix several phases. Generally, these micro-structures are composed by a large amount of inclusions embedded in a brittle matrix that ensures the cohesion of the structure. These materials generally exhibit complex non linear mechanical behaviors that result from the interactions between the different phases. This paper proposes to study the impact of the diffuse damages that result from the thermal expansion mismatch between the phases in presence. The Discrete Element Method (DEM that naturally take into account discontinuities is proposed to study these phenomena.

  13. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  14. Analytical method for thermal stress analysis of plasma facing materials

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  15. Analytical method for thermal stress analysis of plasma facing materials

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2001-01-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed

  16. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  17. Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers

    International Nuclear Information System (INIS)

    Cheng, Chao-Lin; Fang, Weileun; Tsai, Ming-Han

    2015-01-01

    Many standard CMOS processes, provided by existing foundries, are available. These standard CMOS processes, with stacking of various metal and dielectric layers, have been extensively applied in integrated circuits as well as micro-electromechanical systems (MEMS). It is of importance to determine the material properties of the metal and dielectric films to predict the performance and reliability of micro devices. This study employs an existing approach to determine the coefficients of thermal expansion (CTEs) of metal and dielectric films for standard CMOS processes. Test cantilevers with different stacking of metal and dielectric layers for standard CMOS processes have been designed and implemented. The CTEs of standard CMOS films can be determined from measurements of the out-of-plane thermal deformations of the test cantilevers. To demonstrate the feasibility of the present approach, thin films prepared by the Taiwan Semiconductor Manufacture Company 0.35 μm 2P4M CMOS process are characterized. Eight test cantilevers with different stacking of CMOS layers and an auxiliary Si cantilever on a SOI wafer are fabricated. The equivalent elastic moduli and CTEs of the CMOS thin films including the metal and dielectric layers are determined, respectively, from the resonant frequency and static thermal deformation of the test cantilevers. Moreover, thermal deformations of cantilevers with stacked layers different to those of the test beams have been employed to verify the measured CTEs and elastic moduli. (paper)

  18. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    Science.gov (United States)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  19. Phase transitions and thermal expansion in Ni51- x Mn36 + x Sn13 alloys

    Science.gov (United States)

    Kaletina, Yu. V.; Gerasimov, E. G.; Kazantsev, V. A.; Kaletin, A. Yu.

    2017-10-01

    Thermal expansion and structural and magnetic phase transitions in alloys of the Ni-Mn-Sn system have been investigated. The spontaneous martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is 1.5 × 10-3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13( x = 4) alloys have been established.

  20. In2Mo3O12: A low negative thermal expansion compound

    International Nuclear Information System (INIS)

    Marinkovic, Bojan A.; Ari, Monica; Jardim, Paula Mendes; Avillez, Roberto R. de; Rizzo, Fernando; Ferreira, Fabio Furlan

    2010-01-01

    Orthorhombic In 2 Mo 3 O 12 has low negative linear coefficient of thermal expansion (α l = -1.85 x 10 -6 o C -1 ) as evaluated by X-ray powder diffraction using a synchrotron facility. The linear coefficient of thermal expansion for orthorhombic In 2 Mo 3 O 12 is directly dependent on the inherent volume distortion parameter (υ) of InO 6 . This finding strongly corroborates the recently proposed relationship between the linear coefficient of thermal expansion in A 2 M 3 O 12 compounds (α l ) and the distortion level of AO 6 polyhedra. With the increase of inherent distortion parameter (υ) of AO 6 polyhedra, the linear coefficient of thermal expansion becomes more negative. Another important feature of AO 6 polyhedra, including InO 6 , is that their distortion increases as a function of temperature. Orthorhombic In 2 Mo 3 O 12 is stable in the studied temperature range, 370-760 o C.

  1. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design.

    Science.gov (United States)

    2011-12-01

    With the development of the Mechanistic Empirical Pavement Design Guide (MEPDG) as a new pavement design tool, the : coefficient of thermal expansion (CTE) is now considered a more important design parameter in estimating pavement : performance inclu...

  2. Determination of coefficient of thermal expansion for Portland Cement Concrete pavements for MEPDG Implementation

    Science.gov (United States)

    2012-10-01

    The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...

  3. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design : technical summary report.

    Science.gov (United States)

    2011-12-01

    The coefficient of thermal expansion (CTE) has been widely considered as a fundamental property of : Portland cement concrete (PCC) pavement but has never played an important role in the thickness design : procedure for PCC pavement until recently. I...

  4. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  5. The thermal expansion of austenitic manganese and manganese-chromium steels

    International Nuclear Information System (INIS)

    Richter, F.

    1977-01-01

    The linear coefficient of thermal expansion was determined by dilatometer for 5 Mn steels and 6 Mn-Cr steels between -196 and +500 0 C. Because of the antiferromagnetic properties, the thermal expansion of austenitic Mn and Mn-Cr steels is determined by the position of the magnetic changeover temperature (Neel temperature), which depends on the chemical composition of the steel. Below the Neel temperature, the thermal coefficient of expansion is greatly reduced by volumetric magnetostriction (Invar effect). For this reason, one can only give approximate values for thermal expansion for all Mn and Mn-Cr steels in the temperature range of -100 0 C to about +100 0 C. (GSC) [de

  6. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  7. Diamond Thermal Expansion Measurement Using Transmitted X-ray Back-diffraction.

    OpenAIRE

    Giles, Carlos; Adriano, Cris; Lubambo, Adriana Freire; Cusatis, Cesar; Mazzaro, Irineu; Hönnicke, Marcelo Goncalves

    2015-01-01

    The linear thermal expansion coefficient of diamond has been measured using forward-diffracted profiles in X-ray backscattering. This experimental technique is presented as an alternative way of measuring thermal expansion coefficients of solids in the high-resolution Bragg backscattering geometry without the intrinsic difficulty of detecting the reflected beam. The temperature dependence of the lattice parameter is obtained from the high sensitivity of the transmitted profiles to the Bragg a...

  8. Stiffness and thermal expansion of ZrB2: an ab initio study

    International Nuclear Information System (INIS)

    Milman, V; Winkler, B; Probert, M I J

    2005-01-01

    The stiffness and thermal expansion coefficient of ZrB 2 are calculated within the density functional theory formalism. The stiffness tensor obtained here using the static finite strain technique is in good agreement with the results of resonant ultrasonic measurements and points to a possible misinterpretation of the experimentally obtained compression data. The methodology of evaluating thermal expansion coefficients from molecular dynamics simulations for small unit cells is validated for a number of systems: metals, semiconductors and insulators

  9. Crystal structure and thermal expansion of CsCaI3:Eu and CsSrBr3:Eu scintillators

    Science.gov (United States)

    Loyd, Matthew; Lindsey, Adam; Patel, Maulik; Koschan, Merry; Melcher, Charles L.; Zhuravleva, Mariya

    2018-01-01

    The distorted-perovskite scintillator materials CsCaI3:Eu and CsSrBr3:Eu prepared as single crystals have shown promising potential for use in radiation detection applications requiring a high light yield and excellent energy resolution. We present a study using high temperature powder X-ray diffraction experiments to examine a deleterious high temperature phase transition. High temperature phases were identified through sequential diffraction pattern Rietveld refinement in GSAS II. We report the linear coefficients of thermal expansion for both high and low temperature phases of each compound. Thermal expansion for both compositions is greatest in the [0 0 1] direction. As a result, Bridgman growth utilizing a seed oriented with the [0 0 1] along the growth direction should be used to mitigate thermal stress.

  10. Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites

    International Nuclear Information System (INIS)

    Wu, Jianhua; Zhang, Hailong; Zhang, Yang; Li, Jianwei; Wang, Xitao

    2012-01-01

    Highlights: ► Al–Cu/diamond composites have been produced by a squeeze casting method. ► Cu alloying is an effective approach to promoting interface bonding between metal matrix and diamond. ► Alloying Cu to Al matrix improves thermal conductivity and reduces coefficient of thermal expansion of the composites. -- Abstract: Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10 −6 to 6 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al 2 Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.

  11. Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite

    International Nuclear Information System (INIS)

    Wu, Huang; Drzal, Lawrence T.

    2014-01-01

    Thermal expansion is one of the major concerns for polymer composites. In this research, graphene nanoplatelets (GNPs) were added to polyetherimide (PEId) thermoplastic polymer in order to reduce the coefficient of thermal expansion (CTE) of the injection molded composite. First, the coefficient of linear thermal expansion (LTE) was measured in three directions in the anisotropic coupon: 0°, 90° and the out of plane Z direction. It is found that the GNP particles are very effective in terms of reducing the LTE in 0° direction due to high degree of alignment. After annealing above glass transition temperature, significant increase of 0° LTE and decrease of Z° LTE were observed. The bulk CTE was calculated by adding up the LTEs in all three directions and is found to be independent of annealing. Second, several models were applied to predict both CTE and LTE. It is found that Schapery's lower limit model fits the experimental CTE very well. Chow's model was applied for LTEs in three directions. The behavior of GNP-5/PEId composites is explained by the combination of Chow's model and morphology obtained by scanning electron microscope (SEM). - Highlights: • Coefficient of thermal expansion (CTE) of polymer composite is characterized. • Reduction of linear thermal expansion depends on filler orientation. • Filler orientation is characterized based on the location of the specimen. • Filler orientation is changed by annealing, causing subsequent change in CTE. • CTE and linear thermal expansion coefficient are modeled

  12. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.

    Science.gov (United States)

    Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos

    2003-10-01

    Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on

  13. Self-Consistency Method to Evaluate a Linear Expansion Thermal Coefficient of Composite with Dispersed Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available The rational use of composites as structural materials, while perceiving the thermal and mechanical loads, to a large extent determined by their thermoelastic properties. From the presented review of works devoted to the analysis of thermoelastic characteristics of composites, it follows that the problem of estimating these characteristics is important. Among the thermoelastic properties of composites occupies an important place its temperature coefficient of linear expansion.Along with fiber composites are widely used in the technique of dispersion hardening composites, in which the role of inclusions carry particles of high-strength and high-modulus materials, including nanostructured elements. Typically, the dispersed particles have similar dimensions in all directions, which allows the shape of the particles in the first approximation the ball.In an article for the composite with isotropic spherical inclusions of a plurality of different materials by the self-produced design formulas relating the temperature coefficient of linear expansion with volume concentration of inclusions and their thermoelastic characteristics, as well as the thermoelastic properties of the matrix of the composite. Feature of the method is the self-accountability thermomechanical interaction of a single inclusion or matrix particles with a homogeneous isotropic medium having the desired temperature coefficient of linear expansion. Averaging over the volume of the composite arising from such interaction perturbation strain and stress in the inclusions and the matrix particles and makes it possible to obtain such calculation formulas.For the validation of the results of calculations of the temperature coefficient of linear expansion of the composite of this type used two-sided estimates that are based on the dual variational formulation of linear thermoelasticity problem in an inhomogeneous solid containing two alternative functional (such as Lagrange and Castigliano

  14. A study of the coefficient of thermal expansion of nuclear graphites

    International Nuclear Information System (INIS)

    Hacker, P.J.

    2001-02-01

    This thesis presents the results of a study of the Coefficient of Thermal Expansion (CTE) of two grades of nuclear graphite that are used as the moderator in the Magnox and Advanced Gas-Cooled reactors operated in the UK. This work has two main aims, the first is to characterise those elements of the graphite microstructure that control CTE within these materials and to relate these to the effects induced within the reactor. The second is to develop a microstructural model, of general applicability, that can initially be applied to model the CTE changes within the graphites under reactor conditions (neutron irradiation and radiolytic oxidation). These aims have been met by study in three interlinked areas, theoretical, experimental and modelling. Previous to this study, a loose assembly of single crystals together with changes in small scale nanometric porosity (Mrozowski cracks) were used to describe CTE behaviour of nuclear graphite both as-received and under reactor conditions. Within the experimental part of this thesis the graphite nanostructure was studied using, primarily, Transmission Electron Microscopy (TEM). This work concluded that structure on this scale was complex and that the loose assembly of single crystals was a poor microstructural approximation for modelling the CTE of these materials. Other experimental programmes measured the CTE of highly oxidised samples and simulated the effects of irradiation. The former discovered that CTE remained largely unaffected to high weight losses. This insensitivity was explained by ''The Continuous Network Hypothesis'' that was also related to classical percolation theory. The final part of the thesis modelled an abstraction of the key microstructural features identified in the previous parts of the thesis. This approach has been applied to AGR moderator graphite where it has successfully modelled the thermal expansion behaviour of the as-received, irradiated and oxidised material. (author)

  15. Thermal expansion and lattice parameters of shaped metal deposited Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Swarnakar, Akhilesh Kumar; Van der Biest, Omer [Katholieke Universiteit Leuven, MTM, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Baufeld, Bernd, E-mail: b.baufeld@sheffield.ac.uk [Katholieke Universiteit Leuven, MTM, Kasteelpark Arenberg 44, 3001 Leuven (Belgium)

    2011-02-10

    Research highlights: > Measurement of thermal expansion and of the lattice parameters of Ti-6Al-4V fabricated by shaped metal deposition up to 1100 {sup o}C. > The observation of alpha to beta transformation not reflected in the expansion but in the contraction curve is explained by non-equilibrium alpha phase of the SMD material. > Denuding of the {alpha} phase and enrichment of the {beta} phase of Vanadium due to high temperature experiments. > The unit cell volumes derived from lattice parameters measured by X-ray diffraction are at room temperature larger for the {alpha} than for the {beta} phase. With increasing temperature the unit cell volume of the {beta} phase increases stronger than the one of the {alpha} phase resulting in a similar unit cell volume at the {beta} transus temperature. - Abstract: Thermal expansion and lattice parameters are investigated up to 1100 deg. C for Ti-6Al-4V components, fabricated by shaped metal deposition. This is a novel additive layer manufacturing technique where near net-shape components are built by tungsten inert gas welding. The as-fabricated SMD Ti-6Al-4V components exhibit a constant coefficient of thermal expansion of 1.17 x 10{sup -5} K{sup -1} during heating up to 1100 {sup o}C, not reflecting the {alpha} to {beta} phase transformation. During cooling a stalling of the contraction is observed starting at the {beta} transus temperature. These high temperature experiments denude the {alpha} phase of V and enrich the {beta} phase. The development of the lattice parameters in dependence on temperature are observed with high temperature X-ray diffraction. The unit cell volumes derived from these parameters are at room temperature larger for the {alpha} than for the {beta} phase. With increasing temperature the unit cell volume of the {beta} phase increases stronger than the one of the {alpha} phase resulting in a similar unit cell volume at the {beta} transus temperature. These observations are interpreted as an

  16. Giant thermal expansion and α-precipitation pathways in Ti-alloys.

    Science.gov (United States)

    Bönisch, Matthias; Panigrahi, Ajit; Stoica, Mihai; Calin, Mariana; Ahrens, Eike; Zehetbauer, Michael; Skrotzki, Werner; Eckert, Jürgen

    2017-11-10

    Ti-alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti-Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10 -6 to -95.1×10 -6  °C -1 ) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″ lean and α″ iso . Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti-Nb alloys and β-stabilized Ti-alloys in general.

  17. The Origin of Uni-axial Negative Thermal Expansion in a Layered Perovskite

    Science.gov (United States)

    Ablitt, Chris; Craddock, Sarah; Senn, Mark; Mostofi, Arash; Bristowe, Nicholas

    Using first-principles calculations within the quasi-harmonic approximation (QHA), we explain the origin of experimentally observed uni-axial negative thermal expansion (NTE) in a layered perovskite: the Ruddlesden-Popper (RP) oxide Ca2MnO4, which has anti-ferromagnetic ordering at low temperatures and is closely related to Ca3Mn2O7, which exhibits hybrid improper ferroelectricity and uni-axial NTE in competing phases. Dynamic tilts of MnO6 octahedra, common in many complex oxides, drive the expansion of the a axis and contraction of the c axis of the tetragonal NTE phase. We find that ferroelastic RP phases with a frozen octahedral rotation are unusually compliant to particular combinations of strains along different axes. The atomic mechanism responsible is characteristic of the perovskite/rock-salt interfaces present in the RP structure. We show that the contribution from this anisotropic elasticity must be taken into account in order to accurately predict NTE over the temperature range observed in experiment. A similar compliance to cooperative strains is found in other systems with uni-axial NTE. The development of this mechanistic understanding of NTE in complex oxides may pave the way for designing tunable multifunctional materials. The authors would like to acknowledge support from the EPSRC and the Centre for Doctoral Training in Theory and Simulation of Materials.

  18. Linear Thermal Expansion Measurements with Sub-Atomic Resolution for the Study of Phase Transitions in Novel Condensed Matter Systems. Final Report

    International Nuclear Information System (INIS)

    Neumeier, John J.

    2010-01-01

    This grant has involved numerous projects focusing on further development of thermal expansion measurement technology. Significant improvements to our novel quartz thermal expansion cell have been realized. We have developed an absolute method for measuring the thermal expansion of materials under consideration for use in thermal expansion cell construction. The work associated with this grant has significantly expanded the capabilities and infrastructure for the measurement of the thermal expansion of solids at Montana State University. The techniques we develop have been transferred to students and postdocs through the training they receive. The National High Magnetic Field Laboratory (NHMFL) in Los Alamos has collaborated with the PI to import our quartz thermal expansion cells for measurements in pulsed-magnetic field as part of their user program. The significant progress made with our technology is expected to impact important problems in materials physics. Collaborations with LANL, ANL, BNL and ORNL formed a significant portion of the scientific work. Numerous scientific investigations associated with this grant have already appeared in the archival literature, or have been submitted. Some other work is still in progress, and will be the subject of future grant proposals and publications.

  19. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    International Nuclear Information System (INIS)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan

    2016-01-01

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  20. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  1. Application of inverse models and XRD analysis to the determination of Ti-17 beta-phase Coefficients of Thermal Expansion

    OpenAIRE

    Fréour , Sylvain; Gloaguen , David; François , Marc; Guillén , Ronald

    2006-01-01

    International audience; The scope of this work is the determination of the coefficients of thermal expansion of the Ti-17 beta-phase. A rigorous inverse thermo-elastic self-consistent scale transition inicro-mechanical model extended to multi-phase materials was used. The experimental data required for the application of the inverse method were obtained from both the available literature and especially dedicated X-ray diffraction lattice strain measurements performed on the studied (alpha + b...

  2. Application of inverse models and XRD analysis to the determination of Ti-17 {beta}-phase coefficients of thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Freour, S. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)]. E-mail: freour@crttsn.univ-nantes.fr; Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Guillen, R. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)

    2006-04-15

    scope of this work is the determination of the coefficients of thermal expansion of the Ti-17 {beta}-phase. A rigorous inverse thermo-elastic self-consistent scale transition micro-mechanical model extended to multi-phase materials was used. The experimental data required for the application of the inverse method were obtained from both the available literature and especially dedicated X-ray diffraction lattice strain measurements performed on the studied ({alpha} + {beta}) two-phase titanium alloy.

  3. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    Science.gov (United States)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  4. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  5. Controlling Thermal Conduction by Graded Materials

    Science.gov (United States)

    Ji, Qin; Huang, Ji-Ping

    2018-04-01

    Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace’s equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat. Support by the National Natural Science Foundation of China under Grant No. 11725521, by the Science and Technology Commission of Shanghai Municipality under Grant No. 16ZR1445100

  6. High-resolution thermal expansion measurements under helium-gas pressure

    Science.gov (United States)

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  7. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  8. Dynamic thermal expansivity of liquids near the glass transition

    DEFF Research Database (Denmark)

    Niss, Kristine; Gundermann, Ditte; Christensen, Tage Emil

    2012-01-01

    Based on previous works on polymers by Bauer et al. [ Phys. Rev. E 61 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ......Based on previous works on polymers by Bauer et al. [ Phys. Rev. E 61 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704...... the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer....

  9. Expansion-matched passively cooled heatsinks with low thermal resistance for high-power diode laser bars

    Science.gov (United States)

    Leers, Michael; Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart

    2006-02-01

    The lifetime of high-power diode lasers, which are cooled by standard copper heatsinks, is limited. The reasons are the aging of the indium solder normally employed as well as the mechanical stress caused by the mismatch between the copper heatsink (16 - 17ppm/K) and the GaAs diode laser bars (6 - 7.5 ppm/K). For micro - channel heatsinks corrosion and erosion of the micro channels limit the lifetime additionally. The different thermal behavior and the resulting stress cannot be compensated totally by the solder. Expansion matched heatsink materials like tungsten-copper or aluminum nitride reduce this stress. A further possible solution is a combination of copper and molybdenum layers, but all these materials have a high thermal resistance in common. For high-power electronic or low cost medical applications novel materials like copper/carbon compound, compound diamond or high-conductivity ceramics were developed during recent years. Based on these novel materials, passively cooled heatsinks are designed, and thermal and mechanical simulations are performed to check their properties. The expansion of the heatsink and the induced mechanical stress between laser bar and heatsink are the main tasks for the simulations. A comparison of the simulation with experimental results for different material combinations illustrates the advantages and disadvantages of the different approaches. Together with the boundary conditions the ideal applications for packaging with these materials are defined. The goal of the development of passively-cooled expansion-matched heatsinks has to be a long-term reliability of several 10.000h and a thermal resistance below 1 K/W.

  10. Effect of gamma irradiation on density and thermal expansion changes of uniaxial oriented LLDPE

    International Nuclear Information System (INIS)

    Kacarevic-Popovic, Z.; Kostoski, D.; Novakovic, Lj.

    1998-01-01

    Complete text of publication follows. It is well known that gamma irradiation induces cross-linking in the amorphous phase of isotropic polyethylene, or chain scission in highly oriented fibers and films. Thermomechanical behavior and values of density are the reflection of the changes induced by gamma irradiation. Namely, scission of macromolecules, in general, increases thermal expansion coefficient and decreases density and vice versa. On the other hand, as it is well known, the thermal expansion behavior of oriented polymers shows marked anisotropy. It was found that many highly oriented polymers show a negative coefficient of thermal expansion in the draw direction and a positive coefficient in the transverse direction. It has been suggested that, apart from any intrinsic crystalline contribution, a significant part of the negative thermal expansion coefficients obtained for highly oriented polymers arises from the effect of entropy internal stresses in the amorphous regions. From our previous work, the thermal coefficients in draw direction of irradiated samples rise in the glass transition temperature range and it was related to the effects of cross-linking in the amorphous phase of LDPE. In our present work we observed initial decrease in density with absorbed dose, up to 35 kGy, and subsequent increase up to a dose of 500 kGy. The observed increase in thermal expansion coefficient followed the changes in density and is related to the parallel processes of chain scission and net cross-linking in the amorphous phase of LLDPE, induced by gamma irradiation

  11. Dynamics of plasma expansion in the pulsed laser material interaction

    Indian Academy of Sciences (India)

    at different ambient gas pressures using an adiabatic expansion model. ... Pulsed laser; plasma expansion; plasma ionization; plume dimension. 1. ...... De A, Shakhatov V A, Pascale De O 2001 Optical emission spectroscopy and modeling of.

  12. Spin fluctuations and low temperature features of thermal coefficient of linear expansion of iron monosilicide

    International Nuclear Information System (INIS)

    Volkov, A.G.; Kortov, S.V.; Povzner, A.A.

    1996-01-01

    The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density

  13. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    Energy Technology Data Exchange (ETDEWEB)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332‐0245 (United States)

    2017-05-15

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression also reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.

  14. Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers

    NARCIS (Netherlands)

    State, M.; Brands, P.J.; Vosse, van de F.N.

    2010-01-01

    Novel ultrasound backing materials based on polymer composites with improved dimensional stability and low coefficient of thermal expansion are being developed and analyzed. For this purpose a filled epoxy resin (Stycast1265), a commonly used backing material, was considered reference material and

  15. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  16. Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.

    Science.gov (United States)

    Jaing, Cheng-Chung

    2011-03-20

    This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

  17. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  18. Nonreciprocal Thermal Material by Spatiotemporal Modulation

    Science.gov (United States)

    Torrent, Daniel; Poncelet, Olivier; Batsale, Jean-Chirstophe

    2018-03-01

    The thermal properties of a material with a spatiotemporal modulation, in the form of a traveling wave, in both the thermal conductivity and the specific heat capacity are studied. It is found that these materials behave as materials with an internal convectionlike term that provides them with nonreciprocal properties, in the sense that the heat flux has different properties when it propagates in the same direction or in the opposite one to the modulation of the parameters. An effective medium description is presented which accurately describes the modulated material, and numerical simulations support this description and verify the nonreciprocal properties of the material. It is found that these materials are promising candidates for the design of thermal diodes and other advanced devices for the control of the heat flow at all scales.

  19. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  20. Modeling Thermal Ignition of Energetic Materials

    National Research Council Canada - National Science Library

    Gerri, Norman J; Berning, Ellen

    2004-01-01

    This report documents an attempt to computationally simulate the mechanics and thermal regimes created when a threat perforates an armor envelope and comes in contact with stowed energetic material...

  1. Thermal expansion studies on low-dimensional frustrated quantum magnets. The case of κ-(BEDT-TTF)2Cu2(CN)3 and azurite

    International Nuclear Information System (INIS)

    Manna, Rudra Sekhar

    2012-01-01

    Thermal expansion measurements provide a sensitive tool for exploring a material's thermodynamic properties in condensed matter physics as they provide useful information on the electronic, magnetic and lattice properties of a material. In this thesis, thermal expansion measurements have been carried out both at ambient-pressure and under hydrostatic pressure conditions. From the materials point of view, the spin-liquid candidate κ-(BEDT-TTF) 2 Cu 2 (CN) 3 has been studied extensively as a function of temperature and magnetic field. Azurite, Cu 3 (CO 3 ) 2 (OH) 2 - a realization of a one-dimensional distorted Heisenberg chain is also studied both at ambient and hydrostatic pressure to demonstrate the proper functioning of the newly built setup ''thermal expansion under pressure''.

  2. Experimental and theoretical evidence of a supercritical-like transition in an organic semiconductor presenting colossal uniaxial negative thermal expansion.

    Science.gov (United States)

    van der Lee, Arie; Roche, Gilles H; Wantz, Guillaume; Moreau, Joël J E; Dautel, Olivier J; Filhol, Jean-Sébastien

    2018-04-28

    Thermal expansion coefficients of most materials are usually small, typically up to 50 parts per million per kelvin, and positive, i.e. materials expand when heated. Some materials show an atypical shrinking behavior in one or more crystallographic directions when heated. Here we show that a high mobility thiophene-based organic semiconductor, BHH-BTBT , has an exceptionally large negative expansion between 95 and 295 K (-216 BTBT , a much studied organic semiconductor with a closely related molecular formula and 3D crystallographic structure. Complete theoretical characterization of BHH-BTBT using ab initio molecular dynamics shows that below ∼200 K two different α and β domains exist of which one is dominant but which dynamically exchange around and above 210 K. A supercritical-like transition from an α dominated phase to a β dominated phase is observed using DSC measurements, UV-VIS spectroscopy, and X-ray diffraction. The origin of the extreme negative and positive thermal expansion is related to steric hindrance between adjacent tilted thiophene units and strongly enhanced by attractive S···S and S···C interactions within the highly anharmonic mixed-domain phase. This material could trigger the tailoring of optoelectronic devices highly sensitive to strain and temperature.

  3. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  4. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  5. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites.

    Science.gov (United States)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-01-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23 × 10 -6 K -1 (192-305 K) and -1167.09 × 10 -6 K -1 (246-305 K) have been obtained in Mn 0.90 Fe 0.10 NiGe and MnNi 0.90 Fe 0.10 Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn 0.92 Fe 0.08 NiGe/ x %Cu, the CTE gradually changes from -64.92 × 10 -6 K -1 (125-274 K) to -4.73 × 10 -6 K -1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  6. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites

    Directory of Open Access Journals (Sweden)

    Wenjun Zhao

    2018-02-01

    Full Text Available Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE behaviors with the coefficients of thermal expansion (CTE of −285.23 × 10−6 K−1 (192–305 K and −1167.09 × 10−6 K−1 (246–305 K have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K to −4.73 × 10−6 K−1 (173–229 K with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM state into ferromagnetic (FM state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  7. Stability Evaluation of Buildings in Urban Area Using Persistent Scatterer Interfometry -Focused on Thermal Expansion Effect

    Science.gov (United States)

    Choi, J. H.; Kim, S. W.; Won, J. S.

    2017-12-01

    The objective of this study is monitoring and evaluating the stability of buildings in Seoul, Korea. This study includes both algorithm development and application to a case study. The development focuses on improving the PSI approach for discriminating various geophysical phase components and separating them from the target displacement phase. A thermal expansion is one of the key components that make it difficult for precise displacement measurement. The core idea is to optimize the thermal expansion factor using air temperature data and to model the corresponding phase by fitting the residual phase. We used TerraSAR-X SAR data acquired over two years from 2011 to 2013 in Seoul, Korea. The temperature fluctuation according to seasons is considerably high in Seoul, Korea. Other problem is the highly-developed skyscrapers in Seoul, which seriously contribute to DEM errors. To avoid a high computational burden and unstable solution of the nonlinear equation due to unknown parameters (a thermal expansion parameter as well as two conventional parameters: linear velocity and DEM errors), we separate a phase model into two main steps as follows. First, multi-baseline pairs with very short time interval in which deformation components and thermal expansion can be negligible were used to estimate DEM errors first. Second, single-baseline pairs were used to estimate two remaining parameters, linear deformation rate and thermal expansion. The thermal expansion of buildings closely correlate with the seasonal temperature fluctuation. Figure 1 shows deformation patterns of two selected buildings in Seoul. In the figures of left column (Figure 1), it is difficult to observe the true ground subsidence due to a large cyclic pattern caused by thermal dilation of the buildings. The thermal dilation often mis-leads the results into wrong conclusions. After the correction by the proposed method, true ground subsidence was able to be precisely measured as in the bottom right figure

  8. Thermal Expansion of Three Closed Cell Polymeric Foams at Cryogenic Temperatures

    Science.gov (United States)

    Stokes, Eric

    2006-01-01

    The Space Shuttle External Tank (ET) contains the liquid H2 fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines (SSME) in the orbiter during lift-off and ascent. The ET thermal protection system consists of sprayed-on foam insulation and pre-molded ablator materials. The closed-cell foams are the external coating on the ET and are responsible for minimizing the amount of moisture that condenses out and freezes on the tank from the humid air in Florida while it is on the pad with cryogenic propellant awaiting launch. This effort was part of the overall drive to understand the behavior of these materials under use-conditions. There are four specially-engineered closed-cell foams used on the tank. The thermal expansion (contraction) of three of the polyurethane and polyisocyanurate foams were measured from -423 F (the temperature of liquid hydrogen) to 125 F under atmospheric conditions and under vacuum. One of them, NCFI 24-124, is a mechanically-applied material and covers the main acreage of the tank, accounting for 77 percent of the total foam used. Another, BX-265, is also a mechanically-applied and hand-sprayed material used on the tank's "closeout" areas. PDL 1034 is a hand-poured foam used for filling odd-shaped cavities in the tank, Measurements were made in triplicate in the three primary material directions in the case of the first two materials and the two primary material directions in the case of the last. Task 1 was developing the techniques for getting a uniform heating rate and minimizing axial and radial thermal gradients in the specimens. Temperature measurements were made at four locations in the specimens during this initial development phase of testing. Major challenges that were overcome include developing techniques for transferring the coolant, liquid helium (-452 F), from its storage container to the test facility with a minimal transfer of heat to the coolant and control of the heating

  9. Peculiarities of linear thermal expansion of CuInS2 single crystal

    International Nuclear Information System (INIS)

    Akira, Nagaoka; Kenji, Yoshino; Hideto, Miyake

    2010-01-01

    Full text : I-III-VI 2 chalcopyrire semiconductors have made rapid progress in recent years. In addition chalcopyrite semiconductors show unique thermal properties. Usually, liner thermal expansion in semiconductors increases with increasing temperature. However, liner thermal expansion of most chalcopyrite semiconductors decreases at low temperature. For example, AgGaSe 2 shows decreasing the liner thermal expansion below 100 K 1 , 2). It is well known that high-quality single crystals of the I-III-VI 2 compounds are difficult to grow because most of the compounds grow through a peritectic reaction or a solid state transition during the cooling process. CuInS 2 single crystal can be grown by traveling heater method (THM), which is one of the solution growth techniques. Advantages of the THM growth are following that growth temperature is low compared with that of the other melt growth and larger crystals can be grown compared with a conventional solution growth. In a previous study, CuGaS 2 , CuGaSe 2 , CuGaTe 2 , CuInSe 2 ternary compounds have been obtained by the THM technique. In this work, it is investigated a liner thermal expansion of single crystal CuInS 2 by using X-ray diffraction. Measurement temperature was changed from 10 K to 300 K. From results of XRD measurement, it is calculated lattice constants of a and c axes and the liner thermal expansion. As a result, lattice constants of a axis increase with increasing temperature, that of c axis decreases with increasing temperature. The liner thermal expansion decreases for T 2 single crystal at low temperature

  10. Dynamic thermal expansivity of liquids near the glass transition.

    Science.gov (United States)

    Niss, Kristine; Gundermann, Ditte; Christensen, Tage; Dyre, Jeppe C

    2012-04-01

    Based on previous works on polymers by Bauer et al. [Phys. Rev. E 61, 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ultraviscous regime. Compared to the method of Bauer et al., the dynamical range has been extended by making time-domain experiments and by making very small and fast temperature steps. The modeling of the experiment presented in this paper includes the situation in which the capacitor is not full because the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer.

  11. Stopping, heating, thermalization and expansion at SPS energies

    CERN Document Server

    Gaardhoje, J J

    1997-01-01

    The Pb beam at 158AGeV from the CERN SPS accelerator which was taken into use in the fall of 1994 has opened a new dimension in the study of highly excited nuclear matter in heavy ion reactions. It has now become possible to form reasonably large volumes (containing more than 300 nucleons) in central collisions between heavy ions, with energy and matter densities in some parts of the volume exceeding those expected for the phase transition from hadronic matter to deconfined quark and gluon matter. In this talk we discuss some features of the expansion of the hot and compressed system that may be learned by analysing the single particle spectra of baryons and mesons with emphasis on data from the NA44 experiment.

  12. Bimetallic low thermal-expansion panels of Co-base and silicide-coated Nb-base alloys for high-temperature structural applications

    International Nuclear Information System (INIS)

    Rhein, R.K.; Novak, M.D.; Levi, C.G.; Pollock, T.M.

    2011-01-01

    Research highlights: → Low net thermal expansion bimetallic structural lattice constructed. → Temperatures on the order of 1000 deg. C reached. → Improved silicide coating for niobium alloy developed. - Abstract: The fabrication and high temperature performance of low thermal expansion bimetallic lattices composed of Co-base and Nb-base alloys have been investigated. A 2D sheet lattice with a coefficient of thermal expansion (CTE) lower than the constituent materials of construction was designed for thermal cycling to 1000 deg. C with the use of elastic-plastic finite element analyses. The low CTE lattice consisted of a continuous network of the Nb-base alloy C-103 with inserts of high CTE Co-base alloy Haynes 188. A new coating approach wherein submicron alumina particles were incorporated into (Nb, Cr, Fe) silicide coatings was employed for oxidation protection of the Nb-base alloy. Thermal gravimetric analysis results indicate that the addition of submicron alumina particles reduced the oxidative mass gain by a factor of four during thermal cycling, increasing lifetime. Bimetallic cells with net expansion of 6 x 10 -6 /deg. C and 1 x 10 -6 /deg. C at 1000 deg. C were demonstrated and their measured thermal expansion characteristics were consistent with analytical models and finite element analysis predictions.

  13. Application of double modulation for measurement of the thermal expansion coefficient of liquid metals

    International Nuclear Information System (INIS)

    Blagonravov, L A; Karchevskiy, O O; Ivannikov, P V; Soboleva, A V

    2008-01-01

    The first results of the thermal expansion coefficient measurement obtained for liquid conductors using a new modulation method are presented. The method is based on a superposition of two periodical influences on a liquid metal. The thermal expansion coefficient α P is determined by means of measuring the amplitudes of oscillations of electric current power w ∼ and pressure p ∼ . In the present work the K-Na alloy of the eutectic composition was used as a sample. Distinction of the experimental data obtained by authors from the literature data is 30 to 40%. Such a difference is in the range of error of determination of α P from the density data of K-Na alloy. The method allows direct determination of the thermal expansion coefficient of liquid conductors in absolute units

  14. Thermal expansion of ThO2-2 wt% UO2 by HT-XRD

    International Nuclear Information System (INIS)

    Tyagi, A.K.; Mathews, M.D.

    2000-01-01

    The linear thermal expansion of polycrystalline ThO 2 -2 wt% UO 2 has been investigated from room temperature to 1473 K in flowing helium atmosphere using high temperature X-ray diffractometry. ThO 2 -2 wt% UO 2 shows a marginally higher linear thermal expansion as compared to pure ThO 2 . The average linear and volume thermal expansion coefficients of ThO 2 -2 wt% UO 2 are found to be α-bar a =9.74x10 -6 K -1 and α-bar v =29.52x10 -6 K -1 (298-1473 K). This study will be useful in designing the nuclear reactor fuel assembly based on ThO 2

  15. Lattice thermal expansions of NpN, PuN and AmN

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2008-01-01

    Lattice parameters of NpN, PuN and AmN were measured by a high temperature X-ray diffraction method from room temperature up to 1478 K. Linear thermal expansions of these TRU nitrides were determined as a function of temperature. The average coefficients of linear thermal expansion from 293 to 1273 K were 8.8, 11.1 and 11.2 x 10 -6 K -1 for NpN, PuN and AmN, respectively. The instantaneous coefficient of thermal expansion either at 293 or at 1273 K against the reciprocal decomposition temperature under 1 atm of nitrogen showed a linear relationship for TiN, ZrN, HfN, UN, NpN and PuN. Based on this relationship, the decomposition temperature of AmN was roughly predicted to be 2700 K

  16. Linear thermal expansion measurements on silicon from 6 to 340 K

    International Nuclear Information System (INIS)

    Lyon, K.G.; Salinger, G.L.; Swenson, C.A.; White, G.K.

    1977-01-01

    Linear thermal expansion measurements have been carried out from 6 to 340 K on a high-purity silicon sample using a linear absolute capacitance dilatometer. The accuracy of the measurements varies from +- 0.01 x 10 -8 K -1 at the lowest temperatures to +- 0.1 x 10 -8 K -1 or 0.1%, whichever is greater, near room temperature, and is sufficient to establish silicon as a thermal expansion standard for these temperatures. The agreement with previous data is satisfactory at low temperatures and excellent above room temperature where laser-interferometry data of comparable accuracy exist. Thermal expansions calculated from ultrasonic and heat-capacity data are preferred below 13 K where experimental problems occurred

  17. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  18. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  19. The rate of thermal expansion of a thin metallic slab of arbitrary shape.

    Science.gov (United States)

    Lee, Y C

    2009-08-12

    In a previous paper the rate of thermal expansion of a long, slender insulating bar has been worked out. Our present aim is to extend that work to the thermal expansion rate of not only a long metallic bar, but to further generalize it to a thin metallic slab of arbitrary shape. Assuming that the thickness of the slab is small compared to the linear dimension of its area we again take advantage of the two distinct, disparate timescales to turn the familiar problem of thermal expansion into a time-dependent problem of the rate of the expansion. Based on the previously established finite physical momentum of an acoustic phonon when translational invariance is broken, we show that the combined pressure of the phonons and the free electrons due to their outward momenta would suffer a Doppler reduction as the specimen expands upon heating. This Doppler reduction gives rise to damping of the expanding motion, thus yielding as a first result the time of thermal expansion of a long slender metal bar. The generalization to the important case of a thin metallic slab of any shape is then worked out in detail before a concluding section containing a long physical discussion and summary.

  20. A solar engine using the thermal expansion of metals.

    Science.gov (United States)

    Beam, R.; Jedlicka, J.

    1973-01-01

    A thermal engine which uses solid metal as the single-phase working substance to convert solar energy into small amounts of mechanical energy is described. Test data are given for an engine whose working substance was annealed 304-type steel welded into a thin-walled tube that was mounted in a bearing at each end (making it free to rotate about its axis) with a flywheel mass at its midpoint. When heated on its upper surface, the tube rotates producing steady power. The theory of the engine is outlined.

  1. Anomalous thermal expansion in YMn2, Y6Mn23 and YMn12

    International Nuclear Information System (INIS)

    Gratz, E.; Gurjazkas, D.; Mueller, H.; Kottar, A.

    1997-01-01

    The thermal expansion coefficient α(T) of YMn 2 , Y 6 Mn 23 and YMn 12 is presented in the temperature range 4.2-1000 K together with α(T) of YCo 2 and YNi 2 . The strong variation of α(T) of the Y-Mn compounds in their paramagnetic state is discussed under the assumption that there exist Mn atoms with different electronic configurations and therefore with different atomic volumes. Changes of the concentration of these different Mn atoms with temperature reveal this anomalous thermal expansion. (orig.)

  2. Thermal expansion coefficient measurement from electron diffraction of amorphous films in a TEM.

    Science.gov (United States)

    Hayashida, Misa; Cui, Kai; Malac, Marek; Egerton, Ray

    2018-05-01

    We measured the linear thermal expansion coefficients of amorphous 5-30 nm thick SiN and 17 nm thick Formvar/Carbon (F/C) films using electron diffraction in a transmission electron microscope. Positive thermal expansion coefficient (TEC) was observed in SiN but negative coefficients in the F/C films. In case of amorphous carbon (aC) films, we could not measure TEC because the diffraction radii required several hours to stabilize at a fixed temperature. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Thermal expansion and spontaneous magnetostriction of R2Co7 intermetallic compounds

    International Nuclear Information System (INIS)

    Andreev, A.V.; Bartashevich, M.I.; Deryagin, A.V.; Zadvorkin, S.M.; Tarasov, E.N.

    1988-01-01

    Thermal expansion of R 2 Co 7 (R=Y, Nd, Gd, Tb) single crystals was invesigated by the method of X-ray dilatometry. Anomalous of thermal expansion, taking place during magnetic ordering and spin reorientation were used to determine linear and volumetric magnetistriction deformations. Constants of anisotropic magnetostriction of all R 2 Co 7 compounds with nonzero orbital moment of rare earth ion were calculated on the basis of single-ion model according to deformation values and with account of temperature dependences of the magnitude and direction of magnetic moment

  4. Linear thermal expansion coefficient of MgAl2O4(s)

    International Nuclear Information System (INIS)

    Dash, A.; Samui, P.; Naik, Y.P.; Chaudhary, Z.S.

    2011-01-01

    The coefficient of linear thermal expansion (α av ) of MgAl 2 O 4 (s) has been determined using a Netzsch 402 PC dilatometer with Al 2 O 3 (s) as the push-rod. The change in length per unit length was recorded as a function of temperature between room temperature to 1273 K at a heating rate of 8 K.min /1 , in argon flowing atmosphere. The average of three measurements was quoted as the α av for MgAl 2 O 4 (s). The linear thermal expansion was measured to an accuracy of ±3%. (author)

  5. Thermal expansion studies of ThW2O8 and UWO6

    International Nuclear Information System (INIS)

    Keskar, Meera; Krishnan, K.; Sali, S.K.

    2014-01-01

    Thorium and uranium oxysalts with hexavalent cations of elements of VI th group of the periodic table are important from mineralogical, environmental and technological points of view. Several molybdates and tungstates of uranium and thorium are known to have similar structural and thermo-physical properties. Earlier, thermal expansion behavior of ThMo 2 O 8 and UMoO 6 were reported from our laboratory. In the present work, thermal expansion behavior of ThW 2 O 8 and UWO 6 studied under vacuum from ambient to 1000 and 800℃, respectively using high temperature X-ray diffraction (HTXRD) technique is reported

  6. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  7. Linear thermal expansion coefficient (at temperatures from 130 to 800 K) of borosilicate glasses applicable for coupling with silicon in microelectronics

    OpenAIRE

    Sinev, Leonid S.; Petrov, Ivan D.

    2017-01-01

    Processing results of measurements of linear thermal expansion coefficients and linear thermal expansion of two brands of borosilicate glasses --- LK5 and Borofloat 33 --- are presented. The linear thermal expansion of glass samples have been determined in the temperature range 130 to 800 K (minus 143 to 526 $\\deg$C) using thermomechanical analyzer TMA7100. Relative imprecision of indirectly measured linear thermal expansion coefficients and linear thermal expansion of both glass brands is le...

  8. Phase Change Materials for Thermal Energy Storage

    OpenAIRE

    Stiebra, L; Cabulis, U; Knite, M

    2014-01-01

    Phase change materials (PCMs) for thermal energy storage (TES) have become an important subject of research in recent years. Using PCMs for thermal energy storage provides a solution to increase the efficiency of the storage and use of energy in many domestic and industrial sectors. Phase change TES systems offer a number of advantages over other systems (e.g. chemical storage systems): particularly small temperature distance between the storage and retrieval cycles, small unit sizes and lo...

  9. Passive thermal management using phase change materials

    Science.gov (United States)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  10. Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points

    Science.gov (United States)

    Pavlik, Alfred; Ushakov, Sergey V.; Navrotsky, Alexandra; Benmore, Chris J.; Weber, Richard J. K.

    2017-11-01

    Knowledge of thermal expansion and high temperature phase transformations is essential for prediction and interpretation of materials behavior under the extreme conditions of high temperature and intense radiation encountered in nuclear reactors. Structure and thermal expansion of Lu2O3 and Yb2O3 were studied in oxygen and argon atmospheres up to their melting temperatures using synchrotron X-ray diffraction on laser heated levitated samples. Both oxides retained the cubic bixbyite C-type structure in oxygen and argon to melting. In contrast to fluorite-type structures, the increase in the unit cell parameter of Yb2O3 and Lu2O3 with temperature is linear within experimental error from room temperature to the melting point, with mean thermal expansion coefficients (8.5 ± 0.6) · 10-6 K-1 and (7.7 ± 0.6) · 10-6 K-1, respectively. There is no indication of a superionic (Bredig) transition in the C-type structure or of a previously suggested Yb2O3 phase transformation to hexagonal phase prior to melting.

  11. Uncertainty Evaluation of the Thermal Expansion of Gd2O3-ZrO2 with a System Calibration Factor

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kweon Ho; Na, Sang Ho; Song, Kee Chan

    2007-01-01

    Both gadolinia (Gd 2 O 3 ) and zirconia (ZrO 2 ) are widely used in the nuclear industry, including a burnable absorber and additives in the fabrication of a simulated fuel. Thermal expansions of a mixture of gadolinia (Gd 2 O 3 ) 20 mol% and zirconia (ZrO 2 ) 80 mol% were measured by using a dilatometer (DIL402C) from room temperature to 1500 .deg. C. Uncertainties in the measurement should be quantified based on statistics. Referring to the ISO (International Organization for Standardization) guide, the uncertainties of the thermal expansion were quantified for three parts - the initial length, the length variation, and the system calibration factor. The whole system, the dilatometer, is composed of many complex sub-systems and in fact it is difficult to consider all the uncertainties of the sub-systems. Thus, the system calibration factor was introduced with a standard material for the uncertainty evaluation. In this study, a new system calibration factor was formulated in a multiplicative way. Further, the effect of calibration factor with random deviation was investigated for the uncertainty evaluation of a thermal expansion

  12. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances.

    Science.gov (United States)

    Yegin, Cengiz; Nagabandi, Nirup; Feng, Xuhui; King, Charles; Catalano, Massimo; Oh, Jun Kyun; Talib, Ansam J; Scholar, Ethan A; Verkhoturov, Stanislav V; Cagin, Tahir; Sokolov, Alexei V; Kim, Moon J; Matin, Kaiser; Narumanchi, Sreekant; Akbulut, Mustafa

    2017-03-22

    As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m K), which are very high considering their relatively low elastic modulus values on the order of 21.2-28.5 GPa. The synergistic combination of these properties led to the ultralow total thermal resistivity values in the range of 0.38-0.56 mm 2 K/W for a typical bond-line thickness of 30-50 μm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.

  13. Thermal conductivity of highly porous mullite material

    International Nuclear Information System (INIS)

    Barea, Rafael; Osendi, Maria Isabel; Ferreira, Jose M.F.; Miranzo, Pilar

    2005-01-01

    The thermal diffusivity of highly porous mullite materials (35-60 vol.% porosity) has been measured up to 1000 deg C by the laser flash method. These materials were fabricated by a direct consolidation method based on the swelling properties of starch granules in concentrated aqueous suspensions and showed mainly spherical shaped pores of about 30 μm in diameter. From the point of view of heat conduction, they behave as a bi-phase material of voids dispersed in the continuous mullite matrix. The temperature dependence of thermal conductivity for the different porosities was modeled by a simple equation that considers the contribution to heat conduction of the mullite matrix and the gas inside the pores, as well as the radiation. The thermal conductivity of the matrix was taken from the measurements done in a dense mullite while the conductivity in the voids was assumed to be that of the testing atmosphere

  14. Linear Coefficient of Thermal Expansion of Porous Anodic Alumina Thin Films from Atomic Force Microscopy

    OpenAIRE

    Zhang, Richard X; Fisher, Timothy; Raman, Arvind; Sands, Timothy D

    2009-01-01

    In this article, a precise and convenient technique based on the atomic force microscope (AFM) is developed to measure the linear coefficient of thermal expansion of a porous anodic alumina thin film. A stage was used to heat the sample from room temperature up to 450 K. Thermal effects on AFM probes and different operation modes at elevated temperatures were also studied, and a silicon AFM probe in the tapping mode was chosen for the subsequent measurements due to its temperature insensitivi...

  15. Thermal expansion of the heavy-fermion compound CeInCu2 at high pressure

    International Nuclear Information System (INIS)

    Kagayama, Tomoko; Oomi, Gendo; Onuki, Yoshichika; Komatsubara, Takemi

    1994-01-01

    The thermal expansion coefficient α of the heavy-fermion compound CeInCu 2 has been measured at high pressure up to 2 GPa in the temperature range from 6 to 300 K. It is found that the linear term in α(T) at low temperature decreases by the application of pressure. ((orig.))

  16. Heat capacity and thermal expansion of the itinerant helimagnet MnSi.

    Science.gov (United States)

    Stishov, S M; Petrova, A E; Khasanov, S; Kh Panova, G; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-06-11

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi.

  17. Review of thermal expansion and density of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Andrew, J.F.; Latimer, T.W.

    1975-07-01

    The published literature on linear thermal expansion and density of uranium and plutonium carbide nuclear fuels, including UC, PuC, (U,Pu)C, U 2 C 3 , Pu 2 C 3 , and (U,Pu) 2 C 3 , is critically reviewed. Recommended values are given in tabular form and additional experimental studies needed for completeness are outlined. 16 tables, 52 references

  18. Heat capacity and thermal expansion of the itinerant helimagnet MnSi

    International Nuclear Information System (INIS)

    Stishov, S M; Petrova, A E; Khasanov, S; Panova, G Kh; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-01-01

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi

  19. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    Science.gov (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  20. Studies on thermal expansion and XPS of urania-thoria solid solutions

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Panneerselvam, G.; Bera, Santanu; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2000-01-01

    The thermal expansion characteristics of polycrystalline (U y Th 1-y )O 2 solid solutions with y=0.13, 0.55 and 0.91 were determined in the temperature range from 298 to 1973 K by means of X-ray diffraction technique. For these temperatures, the average linear thermal expansion coefficients for (U 0.13 Th 0.87 )O 2 , (U 0.55 Th 0.45 )O 2 and (U 0.91 Th 0.09 )O 2 are 1.033x10 -5 , 1.083x10 -5 and 1.145x10 -5 K -1 , respectively. The measured thermal expansion values were compared with those calculated by applying the equations for linear thermal expansion of pure urania and thoria. It was shown that the stoichiometric (U, Th)O 2 solid solutions are almost ideal at least up to 2000 K. The binding energies of U 4f 7/2 and Th 4f 7/2 electrons of (U 0.1 Th 0.9 )O 2 , (U 0.25 Th 0.75 )O 2 , (U 0.50 Th 0.50 )O 2 , (U 0.75 Th 0.25 )O 2 and (U 0.90 Th 0.10 )O 2 were experimentally determined by X-ray photoelectron spectroscopy. The result showed the presence of only U 4+ and Th 4+ chemical states in the stoichiometric urania-thoria solid solutions

  1. Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films

    Science.gov (United States)

    Jairo A. Diaz; Xiawa Wu; Ashlie Martini; Jeffrey P. Youngblood; Robert J. Moon

    2013-01-01

    The coefficient of thermal expansion (CTE) of cellulose nanocrystal (CNC) films was characterized using novel experimental techniques complemented by molecular simulations. The characteristic birefringence exhibited by CNC films was utilized to calculate the in-plane CTE of selforganized and shear-oriented self-standing CNC films from room temperature to 100 °...

  2. Synthesis and thermal expansion study of (Th1-xGdx)O2-y

    International Nuclear Information System (INIS)

    Keskar, Meera; Sali, S.K.; Dahale, N.D.; Krishnan, K.; Kannan, S.

    2012-01-01

    Thermal expansion of (Th 1-x Gd x )O 2-y (x = 0, 0.15, 0.3, 0.86 and 1) was studied using high temperature X-ray diffraction (HTXRD) technique. Synthesis of the solid solutions was carried out by gel combustion method using citric acid as fuel

  3. Reliability of thermal interface materials: A review

    International Nuclear Information System (INIS)

    Due, Jens; Robinson, Anthony J.

    2013-01-01

    Thermal interface materials (TIMs) are used extensively to improve thermal conduction across two mating parts. They are particularly crucial in electronics thermal management since excessive junction-to-ambient thermal resistances can cause elevated temperatures which can negatively influence device performance and reliability. Of particular interest to electronic package designers is the thermal resistance of the TIM layer at the end of its design life. Estimations of this allow the package to be designed to perform adequately over its entire useful life. To this end, TIM reliability studies have been performed using accelerated stress tests. This paper reviews the body of work which has been performed on TIM reliability. It focuses on the various test methodologies with commentary on the results which have been obtained for the different TIM materials. Based on the information available in the open literature, a test procedure is proposed for TIM selection based on beginning and end of life performance. - Highlights: ► This paper reviews the body of work which has been performed on TIM reliability. ► Test methodologies for reliability testing are outlined. ► Reliability results for the different TIM materials are discussed. ► A test procedure is proposed for TIM selection BOLife and EOLife performance.

  4. Contrast Enhanced Microscopy Digital Image Correlation: A General Method to Contact-Free Coefficient of Thermal Expansion Measurement of Polymer Films

    Science.gov (United States)

    Jairo A. Diaz; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Thermal expansion represents a vital indicator of the processing history and dimensional stability of materials. Solvent-sensitive, thin, and compliant samples are particularly challenging to test. Here we describe how textures highlighted by contrast enhanced optical microscopy modes (i.e., polarized light (PL), phase contrast (PC)) and bright field (BF) can be used...

  5. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  6. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure.

    Science.gov (United States)

    Zhao, Ying-Ying; Hu, Feng-Xia; Bao, Li-Fu; Wang, Jing; Wu, Hui; Huang, Qing-Zhen; Wu, Rong-Rong; Liu, Yao; Shen, Fei-Ran; Kuang, Hao; Zhang, Ming; Zuo, Wen-Liang; Zheng, Xin-Qi; Sun, Ji-Rong; Shen, Bao-Gen

    2015-02-11

    MnCoGe-based compounds undergo a giant negative thermal expansion (NTE) during the martensitic structural transition from Ni2In-type hexagonal to TiNiSi-type orthorhombic structure. High-resolution neutron diffraction experiments revealed that the expansion of unit cell volume can be as large as ΔV/V ∼ 3.9%. The optimized compositions with concurrent magnetic and structural transitions have been studied for magnetocaloric effect. However, these materials have not been considered as NTE materials partially due to the limited temperature window of phase transition. The as-prepared MnCoGe-based compounds are quite brittle and naturally collapse into powders. By using a few percents (3-4%) of epoxy to bond the powders, we introduced residual stress in the bonded samples and thus realized the broadening of structural transition by utilizing the specific characteristics of lattice softening enforced by the stress. As a result, giant NTE (not only the linear NTE coefficient α but also the operation-temperature window) has been achieved. For example, the average α̅ as much as -51.5 × 10(-6)/K with an operating temperature window as wide as 210 K from 122 to 332 K has been observed in a bonded MnCo0.98Cr0.02Ge compound. Moreover, in the region between 250 and 305 K near room temperature, the α value (-119 × 10(-6)/K) remains nearly independent of temperature. Such an excellent performance exceeds that of most other materials reported previously, suggesting it can potentially be used as a NTE material, particularly for compensating the materials with large positive thermal expansions.

  7. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Science.gov (United States)

    Botean, Adrian-Ioan

    2018-02-01

    This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.

  8. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Directory of Open Access Journals (Sweden)

    Botean Adrian - Ioan

    2018-01-01

    Full Text Available This paper aims determining the linear thermal expansion coefficient (CTE of polylactic acid (PLA using an optical method for measuring deformations called digital image correlation method (DIC. Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE for the copper cylinder on the surface of which are placed the two discs of PLA.

  9. Debye temperature, thermal expansion, and heat capacity of TcC up to 100 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Song, T., E-mail: songting@mail.lzjtu.cn [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, X.B. [School of Physics and Information Science, Tianshui Normal University, Tianshui 741000 (China); Ouyang, Y.H.; Zhang, C.L.; Su, W.F. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2015-01-15

    Highlights: • A number of thermodynamic properties of rocksalt TcC are investigated for the first time. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • The pressure and temperature up to about 100 GPa and 3000 K, respectively. - Abstract: Debye temperature, thermal expansion coefficient, and heat capacity of ideal stoichiometric TcC in the rocksalt structure have been studied systematically by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of Debye temperature, thermal expansion coefficient, constant-volume heat capacity, and constant-pressure heat capacity on pressure and temperature are successfully predicted. All the thermodynamic properties of TcC with rocksalt phase have been predicted in the entire temperature range from 300 to 3000 K and pressure up to 100 GPa.

  10. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.

    Science.gov (United States)

    Li, Wen; Huang, Rongjin; Wang, Wei; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Li, Laifeng

    2015-02-28

    The cubic NaZn13-type La(Fe,Al)13 compounds were synthesized, and their linear thermal expansion properties were investigated in the temperature range of 4.2-300 K. It was found that these compounds exhibit abnormal thermal expansion behavior, i.e., pronounced negative thermal expansion (NTE) or zero thermal expansion (ZTE) behavior, below the Curie temperature due to the magnetovolume effect (MVE). Moreover, in the La(Fe,Al)13 compounds, the modification of the coefficient of thermal expansion (CTE) as well as the abnormal thermal expansion (ATE) temperature-window is achieved through optimizing the proportion of Fe and Al. Typically, the average CTE of the LaFe13-xAlx compounds with x = 1.8 reaches as large as -10.47 × 10(-6) K(-1) between 100 and 225 K (ΔT = 125 K). Also, the ZTE temperature-window of the LaFe13-xAlx compounds with x = 2.5 and x = 2.7 could be broadened to 245 K (from 5 to 250 K). Besides, the magnetic properties of these compounds were measured and correlated with the abnormal thermal expansion behavior. The present results highlight the potential application of such La(Fe,Al)13 compounds with abnormal thermal expansion properties in cryogenic engineering.

  11. The characterisation of VSe2: a study of the thermal expansion

    International Nuclear Information System (INIS)

    Wiegers, G.A.

    1981-01-01

    The thermal expansion of VSe 2 from 40-1175 K has been determined by x-ray diffraction. The lattice expansion is linear with temperature from 40 to about 300 K with αsub(a) = 18.6 x 10 -6 K -1 and αsub(c) = 9.8 x 10 -6 K -1 . The behaviour αsub(a) > αsub(c) is anomalous for a layer compound. From the relation between the thermal expansion and the elastic constants it follows that either the elastic constants of VSe 2 are anomalous for a layer compound or the elastic constants are normal but there is a large anisotropy in the Gruneisen functions γsub(a) and γsub(c) (γsub(a) > γsub(c)) together with a relatively large value of the cross compliance constant s 13 . The latter possibility is probably true. The physical origin lies in the electronic structure; the exceptionally high ratio c/a (1.823 at 40 K, 1.818 at 300 K) due to a band Jahn-Teller type distortion, decreases at increasing temperature. The expansion above about 300 K is no longer linear; with increasing temperature the expansion of the a axis increases while that of the c axis becomes almost zero. The non-linear behaviour is ascribed to the formation of Frenkel defects: intrasandwich vanadium is transferred to the interstitial sites in the Van der Waals gap. (author)

  12. Lattice parameters and thermal expansion of delta-VNsub(1-x) from 298-1000 K

    International Nuclear Information System (INIS)

    Lengauer, W.; Ettmayer, P.

    1986-01-01

    The thermal expansion of VNsub(1-x) was determined from measurements of the lattice parameters in the temperature range of 298-1000 K and in the composition range of VNsub(0.707) - VNsub(0.996). Within the accuracy of the results the expansion of the lattice parameter with temperature is not dependent on the composition. The lattice parameter as a function of composition ([N]/[V] = 0.707-0.996) and temperature (198-1000 K) is given by a([N]/[V], T) = 0.38872+0.02488 ([N]/[V]) - (1.083+-0.021) x 10 -4 Tsup(1/2) + (6.2+-0.1) x 10 - sup6T. The coefficient of linear thermal expansion as a function of temperature (in the same range) is given by α(T) = a([N]/[V], T) -1 [(-5.04+-0.01) x 10 -5 Tsup(1/2) + (6.2+-0.1) x 10 -6 ]. The average linear thermal expansion coefficient is αsub(av) = 9.70 +- 0.15 x 10 -6 K -1 (298-1000 K). The data are compared with those of several fcc transition metal nitrides collected and evaluated from the literature. (Author)

  13. Thermal expansion of NZP-family alkali-metal (Na, K) zirconium phosphates

    International Nuclear Information System (INIS)

    Orlova, A.I.; Kemenov, D.V.; Pet'kov, V.I.; Samojlov, S.G.; Kazantsev, G.N.

    2000-01-01

    By means of high-temperature X-ray diffraction one investigated into thermal expansion of alkali-zirconium phosphates crystallizing in NaZr 2 (PO 4 ) 3 structure type within 20-700 deg C temperature range. One synthesized phosphates of A x Zr 2.25-0.25x (PO 4 ) 3 type two series where A-Na (x = 0.5; 1.0; 2.0; 3.0; 4.0; 5.0) and K (x = 1.0; 3.0; 5.0). One calculated for them a and c parameters of the elementary cells and α a and α c linear expansion temperature coefficients. Anisotropy of thermal expansion the maximum one for AZr 2 (PO 4 ) 3 and Na 5 Zr(PO 4 ) 3 phosphates was determined. K 5 Zr(PO 4 ) 3 compound was characterized by the minimum thermal expansion at the near-zero anisotropy of Na 5 Zr(PO 4 ) 3 [ru

  14. The relationship between irradiation induced dimensional change and the coefficient of thermal expansion: A new look

    International Nuclear Information System (INIS)

    Hall, G.; Marsden, B.J.; Fok, A.; Smart, J.

    2002-01-01

    In the 1960s, J.H.W. Simmons derived a theoretical relationship between the coefficient of thermal expansion (CTE) and dimensional changes in irradiated graphite. At low irradiation dose, the theory was shown to be consistent with experimental observations. However, at higher doses the results diverge. Despite this, modified versions of this theory have been used as the basis of the design and life prediction calculations for graphite-moderated reactors. This paper revisits Simmons's theory, summarising the assumptions made in its derivation. The paper then modifies and applies the theory to the dimensional change and CTE change behaviour in isotropic nuclear graphite, making use of trends in irradiated behaviour recently derived using finite element analyses. The importance of these issues to present HTR technology is that the life of HTR graphite components is related to their irradiated dimensional change behaviour. A more in depth understanding of this behaviour will allow suitable graphite material to be selected or new graphite types to be developed. (author)

  15. Size effects on negative thermal expansion in cubic ScF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Guo, X. G.; Zhang, K. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Tong, P., E-mail: tongpeng@issp.ac.cn; Lin, J. C.; Wang, M.; Wu, Y.; Lin, S.; Xu, W.; Song, W. H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Huang, P. C. [University of Science and Technology of China, Hefei 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Y. P., E-mail: ypsun@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-07-11

    Scandium trifluoride (ScF{sub 3}), adopting a cubic ReO{sub 3}-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K–1100 K). Here, we report the size effects on the NTE properties of ScF{sub 3}. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead, the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO{sub 3}-type and other open-framework materials can be effectively adjusted by controlling the crystal size.

  16. Thermal expansion producing easier formation of a black phosphorus nanotube from nanoribbon on carbon nanotube

    Science.gov (United States)

    Cao, Jing; Cai, Kun

    2018-02-01

    As a novel one-dimensional material having excellent electrical properties, a black phosphorus (BP) nanotube has wide potential applications in nanodevices. A BP nanotube has not yet, however, been discovered in experiments or fabricated via chemical synthesis. In this study, the feasibility of forming a nanotube from a parallelogram nanoribbon upon a carbon nanotube (CNT) at different temperatures is discussed through the use of molecular dynamics simulations. Results obtained demonstrate that an ideal BP nanotube from the same nanoribbon can be obtained via self-assembly on a CNT at 50 K or lower temperature. At temperatures between 50-100 K, the BP nanotube formed from a single ribbon has defects at both ends. When the temperature is higher than 100 K, it is difficult to obtain a BP nanotube of high quality. It is discovered that when the ribbon can only wind upon the same CNT at low temperature, it may form into an ideal nanotube by increasing the temperature of the system. The reason is that the BP ribbon has a higher thermal expansion than the CNT under the same temperature difference.

  17. Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Terrones, M. [Universidad Carlos III, Madrid, Spain; Endo, M [Shinshu University; Munoz-Sandoval, Emilio [IPICyT; Kim, Y A [Shinshu University; Morelos-Bomez, Aaron [Shinshu University; Vega-Diaz, Sofia [Shinshu University

    2012-01-01

    We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N2 gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N2 molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS2, WS2, etc.

  18. Effects of cation substitution on thermal expansion and electrical properties of lanthanum chromites

    International Nuclear Information System (INIS)

    Ding Xifeng; Liu Yingjia; Gao Ling; Guo Lucun

    2006-01-01

    The effects of cation substitution on the sintering characteristics, thermal expansion and electrical conductivity properties of La(AE)Cr(M)O 3 (AE=Mg, Ca, Sr, M=Ni, Cu, Co) were investigated. The sinterability of alkaline metal earth (AE)-doped LaCrO 3 increased with AE contents in a sequence of Ca > Sr > Mg. Sr-doped LaCrO 3 sample had a TEC compatible with that of 8YSZ electrolyte. The transition metals of Ni, Co and Cu substituted in Cr-site further optimized the sinterability of La 0.85 Sr 0.15 CrO 3 in air. Ni and Co could effectively enhance the electrical conductivity from room temperature to 1123 K though the concomitant increase in TEC was distinctively large with Co doping. The TEC was controlled by co-doping Ni and Co in Cr-site, and La 0.85 Sr 0.15 Cr 0.95 Ni 0.02 Co 0.02 O 3 exhibited a TEC of 10.9 x 10 -6 /K, which was matched with that of 8YSZ, indicating that it could be suitable to be used as an SOFC interconnect material

  19. Synthesis of Defect Perovskites (He2–xx)(CaZr)F6 by Inserting Helium into the Negative Thermal Expansion Material CaZrF6

    Energy Technology Data Exchange (ETDEWEB)

    Hester, Brett R. [Georgia Inst. of Technology, Atlanta, GA (United States); dos Santos, António M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molaison, Jamie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hancock, Justin C. [Georgia Inst. of Technology, Atlanta, GA (United States); Wilkinson, Angus P. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-09-11

    Defect perovskites (He2–xx)(CaZr)F6 can be prepared by inserting helium into CaZrF6 at high pressure. They can be recovered to ambient pressure at low temperature. There are no prior examples of perovskites with noble gases on the A-sites. The insertion of helium gas into CaZrF6 both elastically stiffens the material and reduces the magnitude of its negative thermal expansion. It also suppresses the onset of structural disorder, which is seen on compression in other media. Measurements of the gas released on warming to room temperature and Rietveld analyses of neutron diffraction data at low temperature indicate that exposure to helium gas at 500 MPa leads to a stoichiometry close to (He11)(CaZr)F6. Helium has a much higher solubility in CaZrF6 than silica glass or crystobalite. An analogue with composition (H2)2(CaZr)F6 would have a volumetric hydrogen storage capacity greater than current US DOE targets. We anticipate that other hybrid perovskites with small neutral molecules on the A-site can also be prepared and that they will display a rich structural chemistry.

  20. Analytical method for estimating the thermal expansion coefficient of metals at high temperature

    International Nuclear Information System (INIS)

    Takamoto, S; Izumi, S; Nakata, T; Sakai, S; Oinuma, S; Nakatani, Y

    2015-01-01

    In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development. (paper)

  1. Pressure measurement using thermal properties of materials

    International Nuclear Information System (INIS)

    Cruz Pessoa, Jose Dalton; Calbo, Adonai Gimenes

    2004-01-01

    This work presents a design and two methods, one isothermal and one isovolumetric, for pressure measurements based on the compressibility coefficient (κ) and thermal expansibility (α) of the fluid under test. The setup and relevant construction details are described. To demonstrate the applicability of the isovolumetric measurement method, the setup was calibrated with respect to a Bourdon-type manometer; the other isothermic method was analyzed to determine construction details that could realize resolution requirements. The authors determined the effect of ambient temperature on device operation and the time response of the isovolumetric method. The device can be used to estimate the compressibility of a fluid and, in addition, could become an alternative for direct plant cell turgor measurement

  2. Elastic modulus, thermal expansion, and specific heat at a phase transition

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1975-01-01

    The interrelation of the elastic modulus, thermal-expansion coefficient, and specific heat of a transformed phase relative to the untransformed phase is calculated assuming a particular but useful form of the thermodynamic potential. For second-order phase transitions where this potential applies, measurements of modulus, expansion, and specific heat can yield the general (longitudinal as well as shear) first- and second-order stress (or strain) dependences of the transition temperature and of the order parameter at absolute zero. An exemplary application to one type of phase transition is given

  3. Thermal expansion of CeCu5.8Ag0.2

    International Nuclear Information System (INIS)

    Kuechler, R.; Gegenwart, P.; Heuser, K.; Scheidt, E.-W.; Stewart, G.R.; Steglich, F.

    2005-01-01

    We present low-temperature thermal expansion measurements on the heavy fermion system CeCu 5.8 Ag 0.2 , which is located at an antiferromagnetic (AF) quantum critical point (QCP). At zero magnetic field, the volume expansion coefficient divided by temperature shows a logarithmic divergence upon cooling below 1K. This temperature dependence is incompatible with the predictions of the itinerant spin-density wave theory for an AF QCP. The application of magnetic fields leads to a cross-over to Landau Fermi liquid behavior as expected for a zero-field QCP

  4. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    International Nuclear Information System (INIS)

    Arregui-Mena, José David; Margetts, Lee; Griffiths, D.V.; Lever, Louise; Hall, Graham; Mummery, Paul M.

    2015-01-01

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  5. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    Energy Technology Data Exchange (ETDEWEB)

    Arregui-Mena, José David, E-mail: jose.arreguimena@postgrad.manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Margetts, Lee, E-mail: lee.margetts@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Griffiths, D.V., E-mail: d.v.griffiths@mines.edu [Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); Lever, Louise, E-mail: louise.lever@manchester.ac.uk [Research Computing, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Hall, Graham, E-mail: graham.n.hall@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Mummery, Paul M., E-mail: paul.m.mummery@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2015-10-15

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  6. Advanced materials for thermal protection system

    Science.gov (United States)

    Heng, Sangvavann; Sherman, Andrew J.

    1996-03-01

    Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.

  7. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    International Nuclear Information System (INIS)

    Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F.

    2015-01-01

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1 0 FePt and soft magnetic L1 2 Fe 3 Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe 48 Pt 28 Ag 6 B 18 alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe 3 Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1 0 unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1 0 phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T C = 477 °C. This non-linear behavior above T C is tentatively linked to a diffusion/segregation mechanism of Ag. The promising hard magnetic properties as well as the

  8. Thermal conductivity of fusion solid breeder materials

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tam, S.W.

    1986-06-01

    Several simple and useful formulae for estimating the thermal conductivity of lithium-containing ceramic tritium breeder materials for fusion reactor blankets are given. These formulae account for the effects of irradiation, as well as solid breeder configuration, i.e., monolith or a packed bed. In the latter case, a coated-sphere concept is found more attractive in incorporating beryllia (a neutron multiplier) into the blanket than a random mixture of solid breeder and beryllia spheres

  9. Thermally Conductive Structural 2D Composite Materials

    Science.gov (United States)

    2012-08-14

    Dimensional Pitch Polyimide Composite Micrographs ........ 27 Figure 23. 4-Ply Silver Polyimide Laminate ...through-thickness thermal conductivity of up to 20 W/m.K. This novel structural prepreg material will be developed through engineering of an optimal fiber...with an EPON 862/Epikure W epoxy resin system to form unidirectional prepreg tapes. Each prepreg was then cut to 6 inch by 6 inch plies and

  10. Modeling of Disordered Binary Alloys Under Thermal Forcing: Effect of Nanocrystallite Dissociation on Thermal Expansion of AuCu3

    Science.gov (United States)

    Kim, Y. W.; Cress, R. P.

    2016-11-01

    Disordered binary alloys are modeled as a randomly close-packed assembly of nanocrystallites intermixed with randomly positioned atoms, i.e., glassy-state matter. The nanocrystallite size distribution is measured in a simulated macroscopic medium in two dimensions. We have also defined, and measured, the degree of crystallinity as the probability of a particle being a member of nanocrystallites. Both the distribution function and the degree of crystallinity are found to be determined by alloy composition. When heated, the nanocrystallites become smaller in size due to increasing thermal fluctuation. We have modeled this phenomenon as a case of thermal dissociation by means of the law of mass action. The crystallite size distribution function is computed for AuCu3 as a function of temperature by solving some 12 000 coupled algebraic equations for the alloy. The results show that linear thermal expansion of the specimen has contributions from the temperature dependence of the degree of crystallinity, in addition to respective thermal expansions of the nanocrystallites and glassy-state matter.

  11. Thermal Energy Storage with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lavinia Gabriela SOCACIU

    2012-08-01

    Full Text Available Thermal energy storage (TES systems provide several alternatives for efficient energy use and conservation. Phase change materials (PCMs for TES are materials supplying thermal regulation at particular phase change temperatures by absorbing and emitting the heat of the medium. TES in general and PCMs in particular, have been a main topic in research for the last 30 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. PCMs possesses the ability of latent thermal energy change their state with a certain temperature. PCMs for TES are generally solid-liquid phase change materials and therefore they need encapsulation. TES systems using PCMs as a storage medium offers advantages such as high TES capacity, small unit size and isothermal behaviour during charging and discharging when compared to the sensible TES.

  12. Linear thermal expansion data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.; Chocas, C.S.

    1992-07-01

    Experiment results are presented for linear thermal expansion measurements on tuffaceous rocks from the unsaturated < one at Yucca Mountain, Nevada. Data were obtained both with and without confining pressure. The accuracy of the unconfined data collected between 50 and 250 degrees C is better than 1.8 percent, with the precision better than 4.5;percent. The accuracy of the unconfined data collected between ambient temperature and 50 degrees C and is approximately 11 percent deviation from the true value, with a precision of 12 percent of the mean value. Because of experiment design and the lack of information related calibrations, the accuracy and precision of the confined thermal expansion measurements could not be determined

  13. Negative and Zero Thermal Expansion NiTi Superelastic Shape Memory Alloy by Microstructure Engineering

    Science.gov (United States)

    Sun, Qingping; Yu, Chao; Kang, Guozheng

    2018-03-01

    We report recent progress in tailoring the thermal expansion (TE) of nanocrystalline (NC) NiTi by microstructure hierarchical design and control without composition change. Fabrication and characterization methods are outlined and preliminary results of both experiment and mechanism-based modeling are presented to understand and get insight into the unusual TE phenomena. The important roles of the intrinsic thermal expansion anisotropy of B19' lattice and the suppression of phase transition by the extrinsic fabricated microstructure (cold rolling and annealing, grain size, defects, textures and volume fractions of nanoscaled B2 and B19' lattices) in the overall macroscopic TE behaviors of the superelastic NC NiTi polycrystal SMAs are emphasized.

  14. Dendritic solidification and thermal expansion of refractory Nb-Zr alloys investigated by electrostatic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.J.; Hu, L.; Wang, L.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2017-05-15

    The dendritic growth and thermal expansion of isomorphous refractory Nb-5%Zr, Nb-10%Zr, and Nb-15%Zr alloys were studied by electrostatic levitation technique. The obtained maximum undercoolings for the three alloys were 534 (0.2T{sub L}), 498 (0.19T{sub L}), and 483 K (0.18T{sub L}), respectively. Within these undercooling ranges, the dendritic growth velocities of the three alloys all exhibited power laws, and achieved 38.5, 34.0, and 27.1 m s{sup -1} at each maximum undercooling. The microstructures were characterized by coarse dendrites at small undercooling, while they transformed into refined dendrites under large undercooling condition. In addition, the measured thermal expansion coefficients of solid Nb-Zr alloys increased linearly with temperature. The values at liquid state were more than double of those at solid state, which also displayed linear dependence on temperature. (orig.)

  15. Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Navia, Paloma; Troncoso, Jacobo [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis, E-mail: romani@uvigo.e [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain)

    2010-01-15

    In order to study the influence of association on the isobaric thermal expansivity, this magnitude has been experimentally determined for a set of associating fluids within the temperature and pressure intervals (278.15 to 348.15) K and (5 to 55) MPa by means of calorimetric measurements. The 1-alcohol series, from methanol to 1-decanol, 2-pentanol, 3-pentanol, and 1-pentylamine were selected. With a view on checking the quality of the experimental data, they are compared with available literature values; good coherence was obtained for most of the studied liquids. The analysis of the experimental results reveals that the association capability presents a strong influence not only on the value of the isobaric thermal expansivity itself, but also on its behaviour against temperature and pressure.

  16. Temperature dependence of volume thermal expansion for NaCl and KCl crystals

    International Nuclear Information System (INIS)

    Fang Zhenghua

    2005-01-01

    A new relation for predicting volume thermal expansion of alkali halides at high temperatures is derived based on the assumption that the two different diffusional driving force models presented, respectively, by Sharma and Sharma (Indian J. Pure Appl. Phys. 29 (1991) 637) and Singh (J. Phys. Chem. Solids 63 (2002) 1935) are equivalent. The input parameters needed for the calculation are the volume thermal expansion coefficient and the isothermal Anderson-Gruneisen parameter, both at room temperature and zero pressure, which are available from the literature. The tests on NaCl and KCl crystals demonstrate that the agreement between the calculated results obtained by this relation and the corresponding experimental data is very good. The applicability of the relation as well as some thermodynamic relationships included in its derivation is discussed

  17. Inelastic neutron scattering an ab-initio calculation of negative thermal expansion in Ag2O

    International Nuclear Information System (INIS)

    Gupta, M.K.; Mittal, R.; Rols, S.; Chaplot, S.L.

    2012-01-01

    The compound Ag 2 O undergoes large and isotropic negative thermal expansion over 0-500 K. We report temperature dependent inelastic neutron scattering measurements and ab-initio calculations of the phonon spectrum. The temperature dependence of the experimental phonon spectrum shows strong anharmonic nature of phonon modes of energy around 2.4 meV. The ab-initio calculations reveal that the maximum negative Grüneisen parameter, which is a measure of the relevant anharmonicity, occurs for the transverse phonon modes that involve bending motions of the Ag 4 O tetrahedra. The thermal expansion is evaluated from the ab-initio calculation of the pressure dependence of the phonon modes, and found in good agreement with available experimental data.

  18. Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids

    International Nuclear Information System (INIS)

    Navia, Paloma; Troncoso, Jacobo; Romani, Luis

    2010-01-01

    In order to study the influence of association on the isobaric thermal expansivity, this magnitude has been experimentally determined for a set of associating fluids within the temperature and pressure intervals (278.15 to 348.15) K and (5 to 55) MPa by means of calorimetric measurements. The 1-alcohol series, from methanol to 1-decanol, 2-pentanol, 3-pentanol, and 1-pentylamine were selected. With a view on checking the quality of the experimental data, they are compared with available literature values; good coherence was obtained for most of the studied liquids. The analysis of the experimental results reveals that the association capability presents a strong influence not only on the value of the isobaric thermal expansivity itself, but also on its behaviour against temperature and pressure.

  19. Negative and Zero Thermal Expansion NiTi Superelastic Shape Memory Alloy by Microstructure Engineering

    Science.gov (United States)

    Sun, Qingping; Yu, Chao; Kang, Guozheng

    2018-02-01

    We report recent progress in tailoring the thermal expansion (TE) of nanocrystalline (NC) NiTi by microstructure hierarchical design and control without composition change. Fabrication and characterization methods are outlined and preliminary results of both experiment and mechanism-based modeling are presented to understand and get insight into the unusual TE phenomena. The important roles of the intrinsic thermal expansion anisotropy of B19' lattice and the suppression of phase transition by the extrinsic fabricated microstructure (cold rolling and annealing, grain size, defects, textures and volume fractions of nanoscaled B2 and B19' lattices) in the overall macroscopic TE behaviors of the superelastic NC NiTi polycrystal SMAs are emphasized.

  20. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  1. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure.

    Science.gov (United States)

    Rosa, Priscila F S; Thomas, Sean M; Balakirev, Fedor F; Betts, Jon; Seo, Soonbeom; Bauer, Eric D; Thompson, Joe D; Jaime, Marcelo

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L₀)/L₀] on the order of 10 -7 . Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hindered by the small working volumes typical of pressure cells.

  2. Analysis of equations of state and temperature dependence of thermal expansivity and bulk modulus for silicon

    International Nuclear Information System (INIS)

    Pandya, Tushar C; Bhatt, Apoorva D; Thakar, Nilesh A

    2012-01-01

    In the present paper an attempt has been made for the comparative study of different equations of state for silicon (Phase-1, cubic diamond structure) in the pressure range of 0-11 GPa. We compare the results of different equations of state (EOS) with available experimental data. The Kwon and Kim EOS is found to give far better agreement with the available experimental data. Results obtained by Poirier-Tarantola, Vinet, Tait and Suzuki's equations of state are not giving satisfactory agreement with the available experimental data. In the present study simple methods based on thermodynamic functions are presented to investigate the temperature dependence of thermal expansivity and bulk modulus for silicon. The results are reported for silicon. The calculated values of thermal expansivity are in good agreement with experimental data.

  3. Uniaxial Negative Thermal Expansion and Mechanical Properties of a Zinc-Formate Framework

    Directory of Open Access Journals (Sweden)

    Hongqiang Gao

    2017-02-01

    Full Text Available The thermal expansion behavior of a metal-formate framework, Zn(HCOO2·2(H2O (1, has been systematically studied via variable temperature single-crystal X-ray diffraction. Our results demonstrate that this formate exhibits significant negative thermal expansion (NTE, −26(2 MK−1 along its c-axis. Detailed structural analyses reveal that the large NTE response is attributed to the ‘hinge-strut’ like framework motion. In addition, the fundamental mechanical properties of framework 1 have been explored via nanoindentation experiments. The measured elastic modulus and hardness properties on the (00-2/(100/(110 facets are 35.5/35.0/27.1 and 2.04/1.83/0.47 GPa, respectively. The stiffness and hardness anisotropy can be correlated well with the underlying framework structure, like its thermoelastic behavior.

  4. Temperature dependence of thermal expansion of cadmium sulfide in the temperature range 20 - 820 K

    International Nuclear Information System (INIS)

    Oskotskij, V.S.; Kobyakov, I.B.; Solodukhin, A.V.

    1980-01-01

    The linear thermal expansion of cadmium sulfide is measured perpendicularly (α 1 ) and parallelly (α 2 ) to the hexagonal axis in the temperature range from 20 to 820 K. Anisotropy is low at up to 80 K; rises at higher temperatures; at 3OO K α 1 /α 3 ratio is 1.8; at 820 K, 2.4. Heat expansion is negative at temperatures lower than 104.5 K(α 1 ) and 126.0 K(α 2 ). It achieves the minimum at 43.6 K (α 1 ) and 52.5K (α 3 ). The theory of heat expansion is plotted in the Debue, approximation and cadmium sulfide is considered as an isotope crystal with average elastic constants. Two parameters of the theory are determined by the position and value of the minimum of volumetric thermal expansion of the model isotope crystal. The theoretic curve agrees well with the experimental one at temperatures up to 160 K, i.e in the range of applicability of the Debue approximation and the isotropic model

  5. Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface

    International Nuclear Information System (INIS)

    Chen, K.R.; King, T.C.; Hes, J.H.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Puretzky, A.A.; Donato, J.M.

    1999-01-01

    A self-similar theory and numerical hydrodynamic modeling is developed to investigate the effects of dynamic source and partial ionization on the acceleration of the unsteady expansion of laser-ablated material near a solid target surface. The dynamic source effect accelerates the expansion in the direction perpendicular to the target surface, while the dynamic partial ionization effect accelerates the expansion in all directions. The vaporized material during laser ablation provides a nonadiabatic dynamic source at the target surface into the unsteady expanding fluid. For studying the dynamic source effect, the self-similar theory begins with an assumed profile of plume velocity, u=v/v m =α+(1-α)ξ, where v m is the maximum expansion velocity, α is a constant, and ξ=x/v m t. The resultant profiles of plume density and plume temperature are derived. The relations obtained from the conservations of mass, momentum, and energy, respectively, all show that the maximum expansion velocity is inversely proportional to α, where 1-α is the slope of plume velocity profile. The numerical hydrodynamic simulation is performed with the Rusanov method and the Newton Raphson method. The profiles and scalings obtained from numerical hydrodynamic modeling are in good agreement with the theory. The dynamic partial ionization requires ionization energy from the heat at the expansion front, and thus reduces the increase of front temperature. The reduction of thermal motion would increase the flow velocity to conserve the momentum. This dynamic partial ionization effect is studied with the numerical hydrodynamic simulation including the Saha equation. With these effects, α is reduced from its value of conventional free expansion. This reduction on α increases the flow velocity slope, decreases the flow velocity near the surface, and reduces the thermal motion of plume, such that the maximum expansion velocity is significantly increased over that found from conventional models

  6. Criteria for accepting piping thermal expansion movements during FFTF plant startup

    International Nuclear Information System (INIS)

    Clark, G.L.; Anderson, M.J.

    1981-03-01

    A deflection measurement program was conducted as a final step in the design qualification of the Fast Flux Test Facility liquid sodium piping. Measurements were obtained from the ambient empty position, through the 400 0 F (204 0 C) sodium fill, to an 800 0 F (427 0 C) maximum iso-thermal test condition. The program was designed to confirm that the pipe responded as predicted under both deadweight and thermal expansion loads. This paper describes the design of the test programs; the criteria used to select appropriate measurement locations from the approximately 4000 supports used on this pipe; and the criteria used to accept test results

  7. HAYNES 244 alloy – a new 760 ∘C capable low thermal expansion alloy

    Directory of Open Access Journals (Sweden)

    Fahrmann Michael G.

    2014-01-01

    Full Text Available HAYNES® 244TM alloy is a new 760∘C capable, high strength low thermal expansion (CTE alloy. Its nominal chemical composition in weight percent is Ni – 8 Cr – 22.5 Mo – 6 W. Recently, a first mill-scale heat of 244 alloy was melted by Haynes International, and processed to various product forms such as re-forge billet, plate, and sheet. This paper presents key attributes of this new alloy (CTE, strength, low-cycle fatigue performance, oxidation resistance, thermal stability as they pertain to the intended use in rings and seals of advanced gas turbines.

  8. On the Kumar formulation for the temperature dependence of thermal expansivity

    International Nuclear Information System (INIS)

    Singh, C.P.; Chauhan, R.S.

    2004-01-01

    The expression for interionic separation obtained earlier by Kumar [Physica. B, Condensed Matter 205 (1995) 175] has been corrected so as to make it compatible with the value of the thermal expansivity at the initial temperature. The values of the interionic separations as a function of temperature calculated for NaCl and KCl using the modified formulation are found to present improved agreement with the experimental data at high temperatures up to the melting temperatures

  9. Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene

    International Nuclear Information System (INIS)

    Zhou, X; Zhang, Z Y; Zhang, Q M; Liu, Q; Ding, Y Y; Zhou, L; Cao, J

    2015-01-01

    We report the measurements of the densities of linear alkylbenzene at three temperatures over 4 to 23 °C with pressures up to 10 MPa. The measurements have been analysed to yield the isobaric thermal expansion coefficients and, so far for the first time, isothermal compressibilities of linear alkylbenzene. Relevance of results for current generation (i.e., Daya Bay) and next generation (i.e. JUNO) large liquid scintillator neutrino detectors are discussed. (paper)

  10. Morphology control and negative thermal expansion in cubic ZrWMoO8 powders

    International Nuclear Information System (INIS)

    Liu, Qinqin; Yang, Juan; Sun, Xiujuan; Cheng, Xiaonong

    2008-01-01

    Cubic ZrWMoO 8 powders with rod-like aggregate and thin fasciculus-like and flower-like rod cluster morphologies have been successfully fabricated with different amounts of (NH 4 ) 2 HPO 4 as surfactant using a hydrothermal method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry were utilized to investigate the influence of the addition of (NH 4 ) 2 HPO 4 on the crystallization process and crystal morphology of the resulting products. The results show that the purity and the thermal expansion property of the resulting products are not influenced by the addition of (NH 4 ) 2 HPO 4 . The cubic ZrWMoO 8 powders with both rod-like aggregate and flower-like rod cluster morphologies show a positive thermal expansion property in the temperature range from room temperature to 120 C, while they show a negative thermal expansion property in the temperature range from 120 C to 700 C. The abnormal thermal expansion property of cubic ZrWMoO 8 below 120 C is caused by the presence of water molecules. Investigations also show that the essence of the different morphologies of the ZrWMoO 8 particles obtained is the result of the different aggregation modes of the nanorods, which act as nuclei, and the corresponding aggregation process is dominated by the addition of (NH 4 ) 2 HPO 4 and its amount. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids

    Science.gov (United States)

    1977-01-01

    topography of the state of knowledge on the thermal expansion of nonmetallic solids. We believe there is also much food for reflec- West Lafayette...34 Lithium Silicates ......... 713 209 Magnesium Metasilicate MgSiO. .. ......... 715 210 Magnesium Orthosilicate Mg2 SiO . . . . . . . . . . . . 718 211...Antiferromagnetism of Praseodymium," Phys. Rev. Letters, 12(20), 553-5, 1964. 66. Goode, J.M., "Phase Transition Temperature of Polonium ,"J. Chem. Phys., 26(5), 1269

  12. Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys

    Science.gov (United States)

    1975-01-01

    the thermal expansion of metallic elements, alloys, and intermetallic compounds. We believe there is also much food for reflection by the specialist...24 39 Plutonium Pu ........ ............... 260 40’ t Polonium Po ..... ............... 270 41* Potassium K ..... ............... 271 42...923 209 NIckel-Palladium NI-Pd..................926 210 * Nickel-Pitaum Ni-Pt.................90 211 Nickel-Silicon NI-SI.................932 212

  13. Nickel-base alloys having a low coefficient of thermal expansion

    International Nuclear Information System (INIS)

    Baldwin, J.F.; Maxwell, D.H.

    1975-01-01

    Alloy compositions consisting predominantly of nickel, chromium, molybdenum, carbon, and boron are disclosed. The alloys possess a duplex structure consisting of a nickel--chromium--molybdenum matrix and a semi-continuous network of refractory carbides and borides. A combination of desirable properties is provided by these alloys, including elevated temperature strength, resistance to oxidation and hot corrosion, and a very low coefficient of thermal expansion

  14. Speed of thermal expansion of a long, thin insulating bar and the physical momentum of acoustic phonons

    International Nuclear Information System (INIS)

    Lee, Y C

    2008-01-01

    Thermal expansion is an everyday phenomenon. One would naturally be curious to see how fast the expansion proceeds. While the theory of thermal expansion in statistical thermal equilibrium is well known, the time-dependent process during thermal expansion is a more complex statistical dynamical problem. Contrary to intuitive expectations, it will be seen that the dynamical expansion process is generally different from the process of merely establishing temperature equilibration (thermal-kinetic equilibrium) because two vastly disparate timescales are at work. It will be shown that the finite speed of thermal expansion hinges upon a recently derived result that an acoustic phonon of wavevector q-vector≠0 does carry a finite physical momentum; it arises from anharmonicity, provided translational symmetry is broken. While the eventual mathematical formulation seems pedestrian, it is arrived at after several layers of physical thinking. Our final result shows that the time required for thermal expansion of a thin bar of length L by ΔL due to a given temperature increase ΔT is given by Δt L ∝ (L/ΔL) (L/c s ), where c s is the speed of sound. Its physical origin as well as its classical and quantum limits are fully discussed

  15. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  16. Cardboard Based Packaging Materials as Renewable Thermal Insulation of Buildings: Thermal and Life Cycle Performance

    OpenAIRE

    Čekon, Miroslav; Struhala, Karel; Slávik, Richard

    2017-01-01

    Cardboard based packaging components represent a material with a significant potential of renewable exploitation in buildings. This study presents the results of thermal and environmental analysis of existing packaging materials compared with standard conventional thermal insulations. Experimental measurements were performed to identify the thermal performance of studied cardboard packaging materials. Real-size samples were experimentally tested in laboratory measurements. The thermal resi...

  17. Radiative thermal rectification using superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Nefzaoui, Elyes, E-mail: elyes.nefzaoui@univ-poitiers.fr; Joulain, Karl, E-mail: karl.joulain@univ-poitiers.fr; Drevillon, Jérémie; Ezzahri, Younès [Institut Pprime, Université de Poitiers-CNRS-ENSMA, 2, Rue Pierre Brousse, Bâtiment B25, TSA 41105, 86073 Poitiers Cedex 9 (France)

    2014-03-10

    Thermal rectification can be defined as an asymmetry in the heat flux when the temperature difference between two interacting thermal reservoirs is reversed. In this Letter, we present a far-field radiative thermal rectifier based on high-temperature superconducting materials with a rectification ratio up to 80%. This value is among the highest reported in literature. Two configurations are examined: a superconductor (Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}) exchanging heat with (1) a black body and (2) another superconductor, YBa{sub 2}Cu{sub 3}O{sub 7} in this case. The first configuration shows a higher maximal rectification ratio. Besides, we show that the two-superconductor rectifier exhibits different rectification regimes depending on the choice of the reference temperature, i.e., the temperature of the thermostat. Presented results might be useful for energy conversion devices, efficient cryogenic radiative insulators engineering, and thermal logical circuits’ development.

  18. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus

    International Nuclear Information System (INIS)

    Sun, Hongyi; Liu, Gang; Li, Qingfang; Wan, X.G.

    2016-01-01

    The linear thermal expansion coefficients (LTEC) and thermomechanics of single-layer black and blue phosphorus are systematically studied using first-principles based on quasiharmonic approximation. We find the thermal expansion of black phosphorus is very anisotropic. The LTEC along zigzag direction has a turning from negative to positive at around 138 K, while the LTEC along armchair direction is positive (except below 8 K) and about 2.5 times larger than that along zigzag direction at 300 K. For blue phosphorus, the LTEC is negative in the temperature range from 0 to 350 K. In addition, we find that the Young's modulus and Poisson's ratio of black phosphorus along zigzag direction are 4 to 5 times larger than those along armchair direction within considered temperature range, showing a remarkable anisotropic in-plane thermomechanics property. The mechanisms of these peculiar thermal properties are also explored. This work provides a theoretical understanding of the thermal expansion and thermomechanics of this single layer phosphorus family, which will be useful in nanodevices. - Highlights: • The thermal properties of black and blue phosphorus are studied. • Black phosphorus shows remarkable anisotropic thermal expansion and thermomechanics properties. • Blue phosphorus shows novel negative thermal expansion. • The thermal expansion properties are well analyzed by grüneisen theory.

  19. Ternary alloy material prediction using genetic algorithm and cluster expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong [Iowa State Univ., Ames, IA (United States)

    2015-12-01

    This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we did our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe3VSi2 is a new stable phase and it can be very inspiring to the future experiments.

  20. Novel quantum criticality in CeRu2Si2 near absolute zero observed by thermal expansion and magnetostriction.

    Science.gov (United States)

    Yoshida, J; Abe, S; Takahashi, D; Segawa, Y; Komai, Y; Tsujii, H; Matsumoto, K; Suzuki, H; Onuki, Y

    2008-12-19

    We report linear thermal expansion and magnetostriction measurements for CeRu2Si2 in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal expansion coefficient and the magnetostriction coefficient were proportional to the temperature and magnetic field, respectively. In contrast, a pronounced non-Fermi-liquid effect was found below 50 mK. The negative contribution of thermal expansion and magnetostriction suggests the existence of an additional quantum critical point.

  1. Metallic Nanocomposites as Next-Generation Thermal Interface Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Charles C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagabandi, Nirup [Texas A& M University; Oh, Jun K. [Texas A& M University; Akbulut, Mustafa [Texas A& M University; Yegin, Cengiz [Texas A& M University

    2017-09-14

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownian motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of the

  2. Metallic Nanocomposites as Next-Generation Thermal Interface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Charles C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagabandi, Nirup [Texas A& M University; Oh, Jun Kyun [Texas A& M University; Akbulut, Mustafa [Texas A& M University; Yegin, Cengiz [Texas A& M University

    2017-07-27

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownian motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of the

  3. Effective thermal conductivity in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  4. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference

    Directory of Open Access Journals (Sweden)

    Stella Crosara Lopes

    2009-04-01

    Full Text Available The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs of the metals and ceramics. Verabond (VB Ni-Cr-Be alloy, Verabond II (VB2, Ni-Cr alloy, Pors-on 4 (P, Pd-Ag alloy, and IPS (I and Duceram (D ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01 for the MCBS test results (MPa, with PI showing higher MCBS (67.72 than the other pairs, which did not present any significant differences. The CTE (10-6 oC-1 differences were: VBI (0.54, VBD (1.33, VB2I (-0.14, VB2D (0.63, PI (1.84 and PD (2.62. Pearson's correlation test (r=0.17 was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.

  5. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference.

    Science.gov (United States)

    Lopes, Stella Crosara; Pagnano, Valéria Oliveira; Rollo, João Manuel Domingos de Almeida; Leal, Mônica Barbosa; Bezzon, Osvaldo Luiz

    2009-01-01

    The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS) of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics) and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs) of the metals and ceramics. Verabond (VB) Ni-Cr-Be alloy, Verabond II (VB2), Ni-Cr alloy, Pors-on 4 (P), Pd-Ag alloy, and IPS (I) and Duceram (D) ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length) made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length) of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01) for the MCBS test results (MPa), with PI showing higher MCBS (67.72) than the other pairs, which did not present any significant differences. The CTE (10(-6) oC(-1)) differences were: VBI (0.54), VBD (1.33), VB2I (-0.14), VB2D (0.63), PI (1.84) and PD (2.62). Pearson's correlation test (r=0.17) was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.

  6. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.

    Science.gov (United States)

    Huang, Rongjin; Liu, Yanying; Fan, Wei; Tan, Jie; Xiao, Furen; Qian, Lihe; Li, Laifeng

    2013-08-07

    La(Fe, Si)13-based compounds are well-known magnetocaloric materials, which show a pronounced negative thermal expansion (NTE) around the Curie temperature but have not been considered as NTE materials for industrial applications. The NaZn13-type LaFe13-xSix and LaFe11.5-xCoxSi1.5 compounds were synthesized, and their linear NTE properties were investigated. By optimizing the chemical composition, the sharp volume change in La(Fe, Si)13-based compounds was successfully modified into continuous expansion. By increasing the amount of Co dopant in LaFe11.5-xCoxSi1.5, the NTE shifts toward a higher temperature region, and also the NTE operation-temperature window becomes broader. Typically, the linear NTE coefficient identified in the LaFe10.5Co1.0Si1.5 compound reaches as much as -26.1 × 10(-6) K(-1), with an operation-temperature window of 110 K from 240 to 350 K, which includes room temperature. Such control of the specific composition and the NTE properties of La(Fe, Si)13-based compounds suggests their potential application as NTE materials.

  7. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  8. [The measurement of thermal expansion coefficient of Co-Cr alloy fabricated by selective laser melting].

    Science.gov (United States)

    Tian, Xiao-mei; Zeng, Li; Wei, Bin; Huang, Yi-feng

    2015-12-01

    To investigate the thermal expansion coefficient of different processing parameters upon the Co-Cr alloy prepared by selective laser melting (SLM) technique, in order to provide technical support for clinical application of SLM technology. The heating curve of self-made Co-Cr alloy was protracted from room temperature to 980°C centigrade with DIL402PC thermal analysis instrument, keeping temperature rise rate and cooling rate at 5 K/min, and then the thermal expansion coefficient of 9 groups of Co-Cr alloy was measured from 20°C centigrade to 500°C centigrade and 600°C centigrade. The 9 groups thermal expansion coefficient values of Co-Cr alloy heated from 20°C centigrade to 500°C centigrade were 13.9×10(-6)/K,13.6×10(-6)/K,13.9×10(-6)/K,13.7×10(-6)/K,13.5×10(-6)/K,13.8×10(-6)/K,13.7×10(-6)/K,13.7×10(-6)/K,and 13.9×10(-6)/K, respectively; when heated from 20°C centigrade to 600°C centigrade, they were 14.2×10(-6)/K,13.9×10(-6)/K,13.8×10(-6)/K,14.0×10(-6)/K,14.1×10(-6)/K,14.1×10(-6)/K,13.9×10(-6)/K,14.2×10(-6)/K, and 13.7×10(-6)/K, respectively. The results showed that the Co-Cr alloy has good matching with the VITA VMK 95 porcelain powder and can meet the requirement of clinic use.

  9. Effect of light-curing units on the thermal expansion of resin nanocomposites.

    Science.gov (United States)

    Park, Jeong-Kil; Hur, Bock; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2010-12-01

    To examine the thermal expansion of resin nanocomposites after light-curing using different light-curing units. Four different resin nanocomposites and four different light-curing units [quartz-tungsten-halogen (QTH), light emitting diode (LED), laser, and plasma arc] were chosen. Metal dies were filled with resin to make specimens and light-cured. The light intensity and light-curing time of the QTH and LED light-curing units were 1000 mW/cm2 and 40 seconds, 700 mW/cm2 and 40 seconds for the laser, and 1600 mW/cm2 and 3 seconds for the plasma arc. The coefficient of thermal expansion (CTE) was evaluated using a thermomechanical analyzer (TMA) at temperatures ranging from 30-80 degrees C. The CTE of the resin nanocomposites tested ranged from 28.5 to 65.8 (x 10(-6)/ degrees C), depending on the product and type of light-curing unit used. Among the specimens, Grandio showed the lowest CTE. The specimens cured using the plasma arc unit (Apollo 95E) showed the highest CTE. There was a linear correlation between the CTE and filler content (vol%) (R: -0.94-0.99 depending on the light-curing unit). The results may suggest a careful selection of the light-curing unit because there was more expansion in the specimens cured using the plasma arc unit than those cured by the other units.

  10. Effect of filler geometry on coefficient of thermal expansion in carbon nanofiber reinforced epoxy composites.

    Science.gov (United States)

    Cho, M; Jang, J; Suhr, J

    2011-02-01

    This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.

  11. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D. K.; Burrows, R. W.; Shinton, Y. D.

    1985-01-01

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations are discussed. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  12. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  13. Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2011-01-01

    Full Text Available A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus of the as-deposited GZO films decreased with thickness; the values for 30 nm and 500 nm thick films were 205 GPa and 117 GPa, respectively. The coefficient of linear thermal expansion of the GZO films was measured using the new technique in combination with in-situ residual stress measurement during heat-cycle testing. GZO films with 30–100 nm thickness had a coefficient of linear thermal expansion in the range of 4.3 × 10−6 – 5.6 × 10−6 °C−1.

  14. Flow and linear coefficient of thermal expansion of four types of Base Plate waxes compared with ADA standard

    Directory of Open Access Journals (Sweden)

    Monzavi A

    2002-07-01

    Full Text Available Waxes have a lot of applications in dentistry. Such materials are of thermoplastic type that undergoes deformation in different temperatures. Two important properties of base plate waxes are flow and their coefficient of linear thermal expansion. Recently, different institutions, inside the country, produce dentistry waxes, while they have not been standardized. Consequently, consumers' dissatisfaction are observed. In this research, the two above- mentioned factors were compared between three kinds of Iranian waxes with Cavex that is foreign production, based on test number 24 of ADA. To measure the flow rate in the temperatures of 23, 37 and 45°c, Wilcoxon statistical analysis was used. The results showed that in 23°c, the flow rate of Cavex and Azardent waxes met ADA standards; however, it was not true for two others types. In 37°c, the flow of none of the waxes was standardized and in 45°c their flow was acceptable, moreover, thermal expansion coefficient, for Cavex and Azardent types, was based on ADA standard.

  15. Effect of surface tension and coefficient of thermal expansion in 30 nm scale nanoimprinting with two flexible polymer molds

    International Nuclear Information System (INIS)

    Kim, Jae Kwan; Cho, Hye Sung; Jung, Ho-Sup; Suh, Kahp-Yang; Lim, Kipil; Kim, Ki-Bum; Choi, Dae-Geun; Jeong, Jun-Ho

    2012-01-01

    We report on nanoimprinting of polymer thin films at 30 nm scale resolution using two types of ultraviolet (UV)-curable, flexible polymer molds: perfluoropolyether (PFPE) and polyurethane acrylate (PUA). It was found that the quality of nanopatterning at the 30 nm scale is largely determined by the combined effects of surface tension and the coefficient of thermal expansion of the polymer mold. In particular, the polar component of surface tension may play a critical role in clean release of the mold, as evidenced by much reduced delamination or broken structures for the less polarized PFPE mold when patterning a relatively hydrophilic PMMA film. In contrast, such problems were not notably observed with a relatively hydrophobic PS film for both polymer molds. In addition, the demolding characteristic was also influenced by the coefficient of thermal expansion so that no delamination or uniformity problems were observed when patterning a UV-curable polymer film at room temperature. These results suggest that a proper polymeric mold material needs to be chosen for patterning polymer films under different surface properties and processing conditions, providing insights into how a clean demolding characteristic can be obtained at 30 nm scale nanopatterning. (paper)

  16. Thermal Expansion Properties of Fe-42Ni-Si Alloy Strips Fabricated by Melt Drag Casting Process

    International Nuclear Information System (INIS)

    Kim, Moo Kyum; Ahn, Yong Sik; Namkung, Jeong; Kim, Moon Chul; Kim, Yong Chan

    2007-01-01

    Thermal expansion property was investigated on Fe-42% Ni alloy strip added by alloying element of Si of 0∼1.5wt.%. The strip was fabricated by a melt drag casting process. Addition of Si enlarged the solid-liquid region and reduced the melting point which leads to the increase of the formability of a strip. The alloy containing 0.6 wt.% Si showed the lowest thermal expansion ratio in the temperature range between 20 to 350 .deg. C. The grain size was increased with reduction ratio and annealing temperature, which resulted in the decrease of the thermal expansion coefficient of strip. Because of grain refining by precipitation of Ni 3 Fe, the alloy strip containing 1.5 wt.% Si showed higher thermal expansion ratio compared with the alloy containing 0.6 wt.% Si

  17. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  18. Fabrication of epoxy composites with large-pore sized mesoporous silica and investigation of their thermal expansion.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2012-02-01

    We fabricate epoxy composites with low thermal expansion by using mesoporous silica particles with a large pore diameter (around 10 nm) as inorganic fillers. From a simple calculation, almost all the mesopores are estimated to be completely filled with the epoxy polymer. The coefficient of linear thermal expansion (CTE) values of the obtained epoxy composites proportionally decrease with the increase of the mesoporous silica content.

  19. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  20. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    Science.gov (United States)

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-09

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.

  1. Higher gradient expansion for linear isotropic peridynamic materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235

  2. Higher gradient expansion for linear isotropic peridynamic materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286516637235

  3. Fabrication and properties of polyimide composites filled with zirconium tungsten phosphate of negative thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Shi, XinWei, E-mail: Shixw@zzu.edu.cn [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Lian, Hong; Yan, XiaoSheng; Qi, Ruiqiong; Yao, Ning [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Li, Tao [Department of Technology & Physics, Zhengzhou University of Lightindustry, 5th Dongfeng Road, Zhengzhou 450002 (China)

    2016-08-15

    Negative thermal expansion Zr{sub 2}WP{sub 2}O{sub 12} (ZWP) powder prepared by hydrothermal method was used as fillers to tailor the thermal expansion coefficient (TEC) of the polyimide (PI)-based composites. A series of PI-based composites containing different loading (0–40 wt% or 0–19.6 vol%) of ZWP powder were fabricated by the in-situ polymerization technique. Their structures and properties were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Impedance meter, Thermal mechanical analysis (TMA) and Thermogravimetric analysis (TGA). The additions of ZWP steadily reduced the TEC of the PI matrix at all loadings studied. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of TEC. The thermal stability of the ZWP/PI composites can be enhanced with the increment of ZWP powder. The independence of the dielectric constant on frequency is improved by introduction of ZWP particles to PIs. The dielectric loss displays good stability, which indicates that the ZWP/PI composites show potential applications in microelectronic and aerospace industries. - Graphical abstract: With increasing of ZWP in the composites, the CTEs of the ZWP/PI were reduced. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of CTE of the composite. - Highlights: • Zr{sub 2}P{sub 2}WO{sub 12} was firstly used as filler to tune the TEC of polyimides. • The TECs of polyimides were reduced by introduction of Zr{sub 2}P{sub 2}WO{sub 12} powders. • Polyimides with reduced TECs have favorable thermal and dielectric properties.

  4. Thermal cycling fatigue of organic thermal interface materials using a thermal-displacement measurement technique

    Science.gov (United States)

    Steill, Jason Scott

    The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.

  5. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  6. Thermal expansion measurements by x-ray scattering and breakdown of Ehrenfest's relation in alloy liquids

    International Nuclear Information System (INIS)

    Gangopadhyay, A. K.; Blodgett, M. E.; Johnson, M. L.; Vogt, A. J.; Mauro, N. A.; Kelton, K. F.

    2014-01-01

    Measurements of sharp diffraction peaks as a function of temperature are routinely used to obtain precise linear expansion coefficients of crystalline solids. In this case, the relation between temperature dependent changes in peak position in momentum transfer (q 1 ) and volume expansion is straightforward (Ehrenfest's relation: q 1  = K(2π/d), where K is a constant and d is the interatomic spacing) and the data obtained are usually in close agreement with more direct measurements. With high intensity synchrotron x-ray and spallation neutron sources, it is also possible to accurately measure the positions of the much broader peaks for liquids and glasses. This has led to a debate on whether linear expansion coefficients derived from these data are an accurate representation of the volume expansion coefficients. We present here volume thermal expansion and x-ray diffraction data for a large number of glass-forming alloy liquids acquired in a containerless environment using the beamline electrostatic levitation technique. The data show a large difference in the values obtained from the two different techniques. Moreover, the position of the first peak (q 1 ) in the scattered intensity in the structure factor (S(q)) and the atomic volume v for all liquids follow a simple relationship, v∝(q 1 ) −ε . The exponent, ε = 2.28 (±0.11), is much different from the expected value of 3 from Ehrenfest's relation and shows no temperature dependence over the temperature range of the data collected

  7. Simultaneous measurement of thermo-optic and thermal expansion coefficients with a single arm double interferometer.

    Science.gov (United States)

    Domenegueti, Jose Francisco Miras; Andrade, Acacio A; Pilla, Viviane; Zilio, Sergio Carlos

    2017-01-09

    A low-cost single arm double interferometer was developed for the concurrent measurement of linear thermal expansion (α) and thermo-optic (dn/dT) coefficients of transparent samples with plane and parallel surfaces. Owing to its common-path optical arrangement, the device is compact and stable, and allows the simultaneous measurement of interferences arising from a low-finesse Fabry-Perot etalon and from a Mach-Zehnder-type interferometer. The method was demonstrated with measurements of solid (silica, BK7, SF6) and liquid (water, ethanol and acetone) samples.

  8. Absolute linear thermal-expansion measurements on copper and aluminum from 5 to 320 K

    International Nuclear Information System (INIS)

    Kroeger, F.R.; Swenson, C.A.

    1977-01-01

    A linear absolute dilatometer based on a three-terminal parallel-plate capacitor design has been used to obtain thermal expansion data for high-purity copper and aluminum from 5 to 320 K. These data have an absolute accuracy of +- 0.1% above 20 K for copper and above 30 K for aluminum, and agree well with published data at the higher temperatures. The disagreement which exists with other data below 5 K for copper and below 15 K for aluminum is believed to be sample dependent, but the mechanism is not known. The aluminum results in this region depend on the state of annealing of the sample

  9. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    Science.gov (United States)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  10. Thermal-vacuum facility with in-situ mechanical loading. [for testing space construction materials

    Science.gov (United States)

    Tennyson, R. C.; Hansen, J. S.; Holzer, R. P.; Uffen, B.; Mabson, G.

    1978-01-01

    The paper describes a thermal-vacuum space simulator used to assess property changes of fiber-reinforced polymer composite systems. The facility can achieve a vacuum of approximately .0000001 torr with temperatures ranging from -200 to +300 F. Some preliminary experimental results are presented for materials subjected to thermal loading up to 200 F. The tests conducted include the evaluation of matrix modulus and strength, coefficients of thermal expansion, and fracture toughness. Though the experimental program is at an early stage, the data appear to indicate that these parameters are influenced by hard vacuum.

  11. Accelerated expansion of laser-ablated materials near a solid surface

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    A dynamic source effect that accelerates the expansion of laser-ablated material in the direction perpendicular to the target is demonstrated. A self-similar theory shows that the maximum expansion velocity is proportional to c s /α, where 1-α is the slope of the velocity profile and c s is the sound speed. Numerical hydrodynamic modeling is in good agreement with the theory. A dynamic partial ionization effect is also studied. With these effects, α is reduced and the maximum expansion velocity is significantly increased over that found from conventional models. copyright 1995 The American Physical Society

  12. Protecting-group-free synthesis of taiwaniaquinone H using a one-pot thermal ring expansion/4π-electrocyclization strategy.

    Science.gov (United States)

    Yan, Xiuxiang; Hu, Xiangdong

    2014-06-06

    A strategy to the 6-5-6 tricyclic scaffold of taiwaniaquinoids was established on the basis of a one-pot thermal ring expansion/4π-electrocyclization process. The efficiency of this methodology has been demonstrated through its application in the total synthesis of taiwaniaquinone H, which has been accomplished in three steps and 14% overall yield in a protecting-group-free manner starting from commercially available materials.

  13. A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF.

    Science.gov (United States)

    Lama, Prem; Das, Raj Kumar; Smith, Vincent J; Barbour, Leonard J

    2014-06-21

    A novel semi-flexible Cd(II)-MOF has been synthesized and characterized by variable temperature powder and single-crystal X-ray diffraction. The material displays an unusual combination of thermal expansion (TE) i.e. negative, zero and positive, which is an extremely rare finding, especially for metal-organic frameworks as a result of a combined stretching-tilting mechanism.

  14. Reactive thermal waves in energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Larry G [Los Alamos National Laboratory

    2009-01-01

    Reactive thermal waves (RTWs) arise in several energetic material applications, including self-propagating high-temperature synthesis (SHS), high explosive cookoff, and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, by which I mean that (1) material motion is neglected, (2) the state dependence of reaction is Arrhenius in the temperature, and (3) the reaction rate is modulated by an arbitrary mass-fraction-based reaction progress function. Numerical simulations demonstrate that one's natural intuition, which is based mainly upon experience with inert materials and which leads one to expect diffusion processes to become relatively slow after a short time period, is invalid for high energy, state-sensitive reactive systems. Instead, theory predicts that RTWs can propagate at very high speeds. This result agrees with estimates for detonating heterogeneous explosives, which indicate that RTWs must spread from hot-spot nucleation sites at rates comparable to the detonation speed in order to produce experimentally-observed reaction zone thicknesses. Using dimensionless scaling and further invoking the high activation energy approximation, I obtain an analytic formula for the steady plane RTW speed from numerical calculations. I then compute the RTW speed for real explosives, and discuss aspects of their behavior.

  15. Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys

    Science.gov (United States)

    Ogorodnikova, O. M.; Maksimova, E. V.

    2018-05-01

    The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.

  16. The thermal expansion of a highly crystalline hexagonal BC2N compound synthesized under high temperature and pressure

    International Nuclear Information System (INIS)

    Wu Qinghua; Liu Zhongyuan; Hu Qianku; Li Hui; He Julong; Yu Dongli; Li Dongchun; Tian Yongjun

    2006-01-01

    The thermal expansion has been investigated for a highly crystalline hexagonal BC 2 N compound synthesized by the compression of a turbostratic B-C-N precursor with iron catalyst at the high temperature of 1500 deg. C and the high pressure of 5.5 GPa. The thermal expansion in the c direction is large and linear with an expansion coefficient of 35.86 x 10 -6 K -1 up to 1000 deg. C, while in the basal plane, the a dimension displays a slight linear contraction up to 750 deg. C with a contraction coefficient of -8.76 x 10 -7 K -1 , but above 750 deg. C a linear expansion is observed with a larger expansion coefficient of 1.52 x 10 -6 K -1

  17. Optical temperature sensor and thermal expansion measurement using a femtosecond micromachined grating in 6H-SiC.

    Science.gov (United States)

    DesAutels, G Logan; Powers, Peter; Brewer, Chris; Walker, Mark; Burky, Mark; Anderson, Gregg

    2008-07-20

    An optical temperature sensor was created using a femtosecond micromachined diffraction grating inside transparent bulk 6H-SiC, and to the best of our knowledge, this is a novel technique of measuring temperature. Other methods of measuring temperature using fiber Bragg gratings have been devised by other groups such as Zhang and Kahrizi [in MEMS, NANO, and Smart Systems (IEEE, 2005)]. This temperature sensor was, to the best of our knowledge, also used for a novel method of measuring the linear and nonlinear coefficients of the thermal expansion of transparent and nontransparent materials by means of the grating first-order diffracted beam. Furthermore the coefficient of thermal expansion of 6H-SiC was measured using this new technique. A He-Ne laser beam was used with the SiC grating to produce a first-order diffracted beam where the change in deflection height was measured as a function of temperature. The grating was micromachined with a 20 microm spacing and has dimensions of approximately 500 microm x 500 microm (l x w) and is roughly 0.5 microm deep into the 6H-SiC bulk. A minimum temperature of 26.7 degrees C and a maximum temperature of 399 degrees C were measured, which gives a DeltaT of 372.3 degrees C. The sensitivity of the technique is DeltaT=5 degrees C. A maximum deflection angle of 1.81 degrees was measured in the first-order diffracted beam. The trend of the deflection with increasing temperature is a nonlinear polynomial of the second-order. This optical SiC thermal sensor has many high-temperature electronic applications such as aircraft turbine and gas tank monitoring for commercial and military applications.

  18. Phases, lattice parameters and thermal expansion of HoNi5-xAlx, 3≥x≥0

    International Nuclear Information System (INIS)

    Grzeta, B.; Sorgic, B.; Blazina, Z.

    1998-01-01

    The phases, lattice parameters and linear coefficient of thermal expansion were determined by X-ray powder diffraction between room temperature and 873 K for the system HoNi 5-x Al x (3 ≥ x ≥ 0). Alloys were hexagonal, in the space group P6/mmm; for 2 ≥ x ≥ 0 they were isostructural with CaCu 5 , and for 3 ≥ x ≥ 2 they were isostructural with YCo 3 Ga 2 . In both cases, the unit-cell parameters a and c increased as the Al content increased. The linear thermal expansion coefficient was composition dependent. Each of the investigated alloys exhibited an anisotropy in thermal expansion, the linear expansion coefficient along the a axis being larger than along the c axis. (orig.)

  19. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2017-11-01

    Full Text Available Zr2WP2O12/ZrO2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr2WP2O12/ZrO2 composites with different mass ratio. Relative densities of all the resulting Zr2WP2O12/ZrO2 samples were also tested by Archimedes' methods. The obtained Zr2WP2O12/ZrO2 composites were comprised of orthorhombic Zr2WP2O12 and monoclinic ZrO2. As the increase of the Zr2WP2O12, the relative densities of Zr2WP2O12/ZrO2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr2WP2O12/ZrO2 composites can be tailored from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1 by changing the content of Zr2WP2O12. The 2:1 Zr2WP2O12/ZrO2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of −0.09 × 10−6 K−1. These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  20. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    Science.gov (United States)

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  1. Low-temperature thermal expansion of pure and inert gas-doped fullerite C sub 6 sub 0

    CERN Document Server

    Aleksandrovskii, A N; Eselson, V B; Gavrilko, V G; Manzhelii, V G; Udovidchenko, B G; Bakai, A S; Gadd, G E; Moricca, S; Sundqvist, B

    2003-01-01

    The low temperature (2-24 K) thermal expansion of pure (single-crystal and polycrystalline) C sub 6 sub 0 and polycrystalline C sub 6 sub 0 intercalated with He, Ne, Ar, and Kr has been investigated using the high-resolution capacitance dilatometer. The investigation of the time dependence of the sample length variations DELTA L(t) on heating by DELTA T shows that the thermal expansion is determined by the sum of positive and negative contributions, which have different relaxation times. The negative thermal expansion usually prevails at helium temperatures. The positive expansion is connected with the phonon thermalization of the system. The negative expansion is caused by reorientation of the C sub 6 sub 0 molecules. It is assumed that the reorientation is of a quantum character. The inert gas impurities affect the reorientation of the C6 sub sub 0 molecules very strongly, especially at liquid helium temperatures. A temperature hysteresis of the thermal expansion coefficient of Kr- and He-C sub 6 sub 0 solu...

  2. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition.

    Science.gov (United States)

    Xu, Kun; Li, Zhe; Liu, Enke; Zhou, Haichun; Zhang, Yuanlei; Jing, Chao

    2017-01-30

    We report a detailed study of two successive first-order transitions, including a martensitic transition (MT) and an antiferromagnetic (AFM)-ferromagnetic (FM)-like transition, in Mn 1-x Fe x NiGe (x = 0, 0.06, 0.11) alloys by X-ray diffraction, differential scanning calorimetry, magnetization and linear thermal expansion measurements. Such an AFM-FM-like transition occurring in the martensitic state has seldom been observed in the M(T) curves. The results of Arrott plot and linear relationship of the critical temperature with M 2 provide explicit evidence of its first-order magnetoelastic nature. On the other hand, their performances as magnetocaloric and negative thermal expansion materials were characterized. The isothermal entropy change for a field change of 30 kOe reaches an impressive value of -25.8 J/kg K at 203 K for x = 0.11 compared to the other two samples. It demonstrates that the magneto-responsive ability has been significantly promoted since an appropriate amount of Fe doping can break the local Ni-6Mn AFM configuration. Moreover, the Fe-doped samples reveal both the giant negative thermal expansion and near-zero thermal expansion for different temperature ranges. For instance, the average thermal expansion coefficient ā of x = 0.06 reaches -60.7 × 10 -6 /K over T = 231-338 K and 0.6 × 10 -6 /K over T = 175-231 K during cooling.

  3. Analysis of carbon based materials under fusion relevant thermal loads

    International Nuclear Information System (INIS)

    Compan, Jeremie Saint-Helene

    2008-01-01

    how anisotropy can be tailored and on the strategies which were applied for the production of the investigated materials. Textures of fibers and microstructures of matrices were also described. Thermo-physical properties such as thermal conductivity and thermal expansion of some CFCs were studied for different materials' orientations. For the first time, some off-axis results of thermal conductivity and thermal expansion for fusion related CFCs are displayed. Room temperature bending and tensile loading of CFCs were performed and they allowed relating the microstructural findings to the anisotropic mechanical response. Fiber architecture of CFCs and interfacial shear strength between the fiber and the matrix appeared to be the main parameters which dictate the fracture mechanisms. In addition, the analysis of five batches of one CFC permitted to understand the difficulty of reproducing such advanced material. The differences in terms of needling process were related to the variations of the tensile properties in the various fibrous directions. Finally, fusion-relevant transient heat loads were simulated on the investigated CBMs within various high heat flux facilities, i.e. electron beam, ion beam and plasma gun. Erosion scenarios at different scales were compiled in relation to the CBM properties but also the type of the transient event. The locally preferential erosion and ejection of material from the surface of the CBM are comprehensively described as well as their implications. This ejection of hot particles from the CBM surface (so-called Brittle Destruction (BD) mechanism) was defined, explained and analyzed. An experimental thermal shock resistance criterion based on thermal-shock induced weight loss is presented. After analyzing the anisotropic response of CFCs to transient heat loads in their three orthotropic fiber directions, attempts to reduce BD were done by loading them under off-axis orientations. It partly succeeded and led to the observation of

  4. Controlling thermal deformation by using composite materials having variable fiber volume fraction

    International Nuclear Information System (INIS)

    Bouremana, M.; Tounsi, A.; Kaci, A.; Mechab, I.

    2009-01-01

    In application, many thin structural components such as beams, plates and shells experience a through-thickness temperature variation. This temperature variation can produce both an in-plane expansion and an out-of-plane (bending) curvature. Given that these thin components interact with or connect to other components, we often wish to minimize the thermal deformation or match the thermal deformation of another component. This is accomplished by using a composite whose fibers have a negative axial thermal expansion coefficient. By varying the fiber volume fraction within a symmetric laminated beam to create a functionally graded material (FGM), certain thermal deformations can be controlled or tailored. Specifically, a beam can be designed which does not curve under a steady-state through-thickness temperature variation. Continuous gradation of the fiber volume fraction in the FGM layer is modelled in the form of a mth power polynomial of the coordinate axis in thickness direction of the beam. The beam results are independent of the actual temperature values, within the limitations of steady-state heat transfer and constant material properties. The influence of volume fiber fraction distributions are studied to match or eliminate an in-plane expansion coefficient, or to match a desired axial stiffness. Combining two fiber types to create a hybrid FGM can offer desirable increase in axial and bending stiffness while still retaining the useful thermal deformation behavior.

  5. Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report

    Science.gov (United States)

    Wieland, P. O.; Hawk, H. D.

    2001-01-01

    During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.

  6. Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory; Hickmott, Donald D [Los Alamos National Laboratory; Daemen, Luke L [Los Alamos National Laboratory; Hartl, Monika A [Los Alamos National Laboratory

    2009-01-01

    The structure of deuterated jarosite, KFe{sub 3}(SO{sub 4}){sub 2}(OD){sub 6}, was investigated using time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis reveals that with increasing temperature, its c dimension expands at a rate {approx}10 times greater than that for a. This anisotropy of thermal expansion is due to rapid increase in the thickness of the (001) sheet of [Fe(O,OH){sub 6}] octahedra and [SO{sub 4}] tetrahedra with increasing temperature. Fitting of the measured cell volumes yields a coefficient of thermal expansion, a = a{sub 0} + a{sub 1} T, where a{sub 0} = 1.01 x 10{sup -4} K{sup -1} and a{sub 1} = -1.15 x 10{sup -7} K{sup -2}. On heating, the hydrogen bonds, O1{hor_ellipsis}D-O3, through which the (001) octahedral-tetrahedral sheets are held together, become weakened, as reflected by an increase in the D{hor_ellipsis}O1 distance and a concomitant decrease in the O3-D distance with increasing temperature. On further heating to 575 K, jarosite starts to decompose into nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the breaking of the hydrogen bonds that hold the jarosite structure together.

  7. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound

    International Nuclear Information System (INIS)

    Yan-Ming, Hao; Xin-Yuan, Jiang; Chun-Jing, Gao; Yan-Zhao, Wu; Yan-Yan, Zhang

    2009-01-01

    The structure and magnetic properties of Y 2 Fe 14 Al 3 compound are investigated by means of x-ray diffraction and magnetization measurements. The Y 2 Fe 14 Al 3 compound has a hexagonal Th 2 Ni 17 -type structure. Negative thermal expansion is found in Y 2 Fe 14 Al 3 compound in the temperature range from 403 to 491K by x-ray dilatometry. The coefficient of the average thermal expansion is α-bar = –2.54 × 10 −5 K −1 . The spontaneous magnetostrictive deformations from 283 to 470K are calculated by means of the differences between the experimental values of the lattice parameters and the corresponding values extrapolated from the paramagnetic range. The result shows that the spontaneous volume magnetostrictive deformation ω S decreases from 5.74 × 10 −3 to nearly zero with temperature increasing from 283 to 470 K, the spontaneous linear magnetostrictive deformation λ c along the c-axis is larger than the spontaneous linear magnetostrictive deformation λ a in basal-plane in the same temperature below 350 K

  8. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2013-09-01

    Full Text Available The effect of individual and combined talc and glass fibers (GFs on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  9. Phase transition and thermal expansion studies of alumina thin films prepared by reactive pulsed laser deposition.

    Science.gov (United States)

    Balakrishnan, G; Thirumurugesan, R; Mohandas, E; Sastikumar, D; Kuppusami, P; Songl, J I

    2014-10-01

    Aluminium oxide (Al2O3) thin films were deposited on Si (100) substrates at an optimized oxygen partial pressure of 3 x 10(-3) mbar at room temperature by pulsed laser deposition (PLD). The films were characterized by high temperature X-ray diffraction (HTXRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The HTXRD pattern showed the cubic y-Al2O3 phase in the temperature range 300-973 K. At temperatures ≥ 1073 K, the δ and θ-phases of Al2O3 were observed. The mean linear thermal expansion coefficient and volume thermal expansion coefficient of γ-Al2O3 was found to be 12.66 x 10(-6) K(-1) and 38.87 x 10(-6) K(-1) in the temperature range 300 K-1073 K. The field emission scanning electron microscopy revealed a smooth and structureless morphology of the films deposited on Si (100). The atomic force microscopy study indicated the increased crystallinity and surface roughness of the films after annealing at high temperature.

  10. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance.

    Science.gov (United States)

    Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin

    2013-09-17

    The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  11. Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge.

    Science.gov (United States)

    Dyadkin, Vadim; Grigoriev, Sergey; Ovsyannikov, Sergey V; Bykova, Elena; Dubrovinsky, Leonid; Tsvyashchenko, Anatoly; Fomicheva, L N; Chernyshov, Dmitry

    2014-08-01

    A series of temperature-dependent single-crystal and powder diffraction experiments has been carried out using synchrotron radiation in order to characterize the monogermanides of Mn, Fe and their solid solutions. The MnGe single crystal is found to be enantiopure and we report the absolute structure determination. The thermal expansion, parametrized with the Debye model, is discussed from the temperature-dependent powder diffraction measurements for Mn(1-x)Fe(x)Ge (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9). Whereas the unit-cell dimension and the Debye temperature follow a linear trend as a function of composition, the thermal expansion coefficient deviates from linear dependence with increasing Mn content. No structural phase transformations have been observed for any composition in the temperature range 80-500 K for both single-crystal and powder diffraction, indicating that the phase transition previously observed with neutron powder diffraction most probably has a magnetic origin.

  12. Thermal expansion and magnetostriction of clathrate compound Pr3Pd20Ge6

    Science.gov (United States)

    Matsumoto, K.; Sekiguchi, Y.; Iwakami, O.; Ono, T.; Abe, S.; Ano, G.; Akatsu, M.; Mitsumoto, K.; Nemoto, Y.; Goto, T.; Takeda, N.; Kitazawa, H.

    2018-03-01

    In Pr3Pd20Ge6, the Pr ions are located at two different crystallographic sites, 4a and 8c site. Antiferro-quadrupole ordering (AFQ) of the 8c site occurs at 250 mK. Ac susceptibility measurement indicated that antiferromagnetic ordering (AFM) of the 4a site and Hyperfine-enhanced Pr nuclear magnetic ordering of the 8c site occur at 77 and 9 mK, respectively. To clarify the magnetic and quadrupole properties of Pr3Pd20Ge6, thermal expansion and magnetostriction measurements on single crystal sample were carried out along the [001] direction up to 8 T down to 500 μK using a capacitive dilatometer. In zero field, relative length change ΔL/L in [001] direction had a dip at AFQ and abrupt decrease at AFM ordering. From thermal expansion and isothermal magnetostriction measurements, magnetic phase diagram of Pr3Pd20Ge6 along [001] direction was obtained.

  13. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    Energy Technology Data Exchange (ETDEWEB)

    Nickols, A N [Codes Coordinator, Atomics International, P. O. Box 309, Canoga Park, California 91304 (United States)

    1975-03-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units.

  14. TEV—A Program for the Determination of the Thermal Expansion Tensor from Diffraction Data

    Directory of Open Access Journals (Sweden)

    Thomas Langreiter

    2015-02-01

    Full Text Available TEV (Thermal Expansion Visualizing is a user-friendly program for the calculation of the thermal expansion tensor αij from diffraction data. Unit cell parameters determined from temperature dependent data collections can be provided as input. An intuitive graphical user interface enables fitting of the evolution of individual lattice parameters to polynomials up to fifth order. Alternatively, polynomial representations obtained from other fitting programs or from the literature can be entered. The polynomials and their derivatives are employed for the calculation of the tensor components of αij in the infinitesimal limit. The tensor components, eigenvalues, eigenvectors and their angles with the crystallographic axes can be evaluated for individual temperatures or for temperature ranges. Values of the tensor in directions parallel to either [uvw]’s of the crystal lattice or vectors (hkl of reciprocal space can be calculated. Finally, the 3-D representation surface for the second rank tensor and pre- or user-defined 2-D sections can be plotted and saved in a bitmap format. TEV is written in JAVA. The distribution contains an EXE-file for Windows users and a system independent JAR-file for running the software under Linux and Mac OS X. The program can be downloaded from the following link: http://www.uibk.ac.at/mineralogie/downloads/TEV.html (Institute of Mineralogy and Petrography, University of Innsbruck, Innsbruck, Austria

  15. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    International Nuclear Information System (INIS)

    Nickols, A.N.

    1975-01-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units

  16. Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2014-01-01

    Nitrogen-expanded austenite, _N, with high and low nitrogen contents was produced from AISI 316 grade stainless steel powder by gaseous nitriding in ammonia/hydrogen gas mixtures. In situ synchrotron X-ray diffraction was applied to investigate the thermal expansion and thermal stability...... as a fitting parameter. The stacking fault density is constant for temperatures up to 680 K, whereafter it decreases to nil. Surprisingly, a transition phase with composition M4N (M = Fe, Cr, Ni, Mo) appears for temperatures above 770 K. The linear coefficient of thermal expansion depends on the nitrogen...

  17. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    Science.gov (United States)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  18. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  19. Composite materials for thermal energy storage: enhancing performance through microstructures.

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  1. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  2. Use of phase change materials during compressed air expansion for isothermal CAES plants

    Science.gov (United States)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  3. Thermal expansion behaviour and phase stability of AFe2As2 (A ...

    Indian Academy of Sciences (India)

    3Materials Research Center for Element Strategy, Tokyo Institute of .... rate determination of the atomic positions and thermal parameters. ..... is known that crystals grown out of FeAs self-flux show significantly different physical ... [5] J S Schilling, Handbook of high temperature superconductivity: Theory and experiments.

  4. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    OpenAIRE

    Monika Božiková; Ľubomír Híreš; Michal Valach; Martin Malínek; Jan Mareček

    2017-01-01

    In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of ...

  5. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal.

    Science.gov (United States)

    Pamato, Martha G; Wood, Ian G; Dobson, David P; Hunt, Simon A; Vočadlo, Lidunka

    2018-04-01

    On the basis of ab initio computer simulations, pre-melting phenomena have been suggested to occur in the elastic properties of hexagonal close-packed iron under the conditions of the Earth's inner core just before melting. The extent to which these pre-melting effects might also occur in the physical properties of face-centred cubic metals has been investigated here under more experimentally accessible conditions for gold, allowing for comparison with future computer simulations of this material. The thermal expansion of gold has been determined by X-ray powder diffraction from 40 K up to the melting point (1337 K). For the entire temperature range investigated, the unit-cell volume can be represented in the following way: a second-order Grüneisen approximation to the zero-pressure volumetric equation of state, with the internal energy calculated via a Debye model, is used to represent the thermal expansion of the 'perfect crystal'. Gold shows a nonlinear increase in thermal expansion that departs from this Grüneisen-Debye model prior to melting, which is probably a result of the generation of point defects over a large range of temperatures, beginning at T / T m > 0.75 (a similar homologous T to where softening has been observed in the elastic moduli of Au). Therefore, the thermodynamic theory of point defects was used to include the additional volume of the vacancies at high temperatures ('real crystal'), resulting in the following fitted parameters: Q = ( V 0 K 0 )/γ = 4.04 (1) × 10 -18  J, V 0 = 67.1671 (3) Å 3 , b = ( K 0 ' - 1)/2 = 3.84 (9), θ D = 182 (2) K, ( v f /Ω)exp( s f / k B ) = 1.8 (23) and h f = 0.9 (2) eV, where V 0 is the unit-cell volume at 0 K, K 0 and K 0 ' are the isothermal incompressibility and its first derivative with respect to pressure (evaluated at zero pressure), γ is a Grüneisen parameter, θ D is the Debye temperature, v f , h f and s f are the vacancy formation volume, enthalpy and entropy

  6. Thermal expansion of amorphous Zr65Al7.5Cu17.5Ni10 in the vicinity of the glass transition

    International Nuclear Information System (INIS)

    Geier, N.; Weiss, M.; Moske, M.; Samwer, K.

    2000-01-01

    The thermal expansion of non-crystalline Zr 65 Al 7.5 Cu 17.5 Ni 10 has been studied in the range of the glass transition and in the undercooled liquid using a dilatometric device. The measuring technique used permits reliable experimental results up to 40 K above the glass transition temperature. The linear thermal expansion coefficient obtained is almost constant in the glassy state with a value of 8.0 x 10 -6 K -1 . It discontinuously increases at the glass transition temperature yielding a value of 20.0 x 10 -6 K -1 in the undercooled liquid. The results are compared with specific heat measurements of the amorphous material in this temperature range and are interpreted in the framework of a cluster model. (orig.)

  7. The Thermal Expansion of Ring Particles and the Secular Orbital Evolution of Rings Around Planets and Asteroids

    Science.gov (United States)

    Rubincam, David P.

    2013-01-01

    The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.

  8. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  9. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target.

    Science.gov (United States)

    Dubey, P K; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  10. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    Science.gov (United States)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  11. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    International Nuclear Information System (INIS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-01-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique

  12. Effect of Aggregate Mineralogy and Concrete Microstructure on Thermal Expansion and Strength Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Jinwoo An

    2017-12-01

    Full Text Available Aggregate type and mineralogy are critical factors that influence the engineering properties of concrete. Temperature variations result in internal volume changes could potentially cause a network of micro-cracks leading to a reduction in the concrete’s compressive strength. The study specifically studied the effect of the type and mineralogy of fine and coarse aggregates in the normal strength concrete properties. As performance measures, the coefficient of thermal expansion (CTE and compressive strength were tested with concrete specimens containing different types of fine aggregates (manufactured and natural sands and coarse aggregates (dolomite and granite. Petrographic examinations were then performed to determine the mineralogical characteristics of the aggregate and to examine the aggregate and concrete microstructure. The test results indicate the concrete CTE increases with the silicon (Si volume content in the aggregate. For the concrete specimens with higher CTE, the micro-crack density in the interfacial transition zone (ITZ tended to be higher. The width of ITZ in one of the concrete specimens with a high CTE displayed the widest core ITZ (approx. 11 µm while the concrete specimens with a low CTE showed the narrowest core ITZ (approx. 3.5 µm. This was attributed to early-age thermal cracking. Specimens with higher CTE are more susceptible to thermal stress.

  13. Thermal expansion of the cryoprotectant cocktail DP6 combined with synthetic ice modulators in presence and absence of biological tissues.

    Science.gov (United States)

    Eisenberg, David P; Taylor, Michael J; Rabin, Yoed

    2012-10-01

    This study explores physical effects associated with the application of cryopreservation via vitrification using a class of compounds which are defined here as synthetic ice modulators (SIMs). The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. A sub-category of SIMs, referred to in the literature as synthetic ice blockers (SIBs), are compounds that interact directly with ice nuclei or crystals to modify their structure and/or rate of growth. The current study is part of an ongoing effort to characterize thermo-mechanical effects during vitrification, with emphasis on measuring the physical property of thermal expansion-the driving mechanism to thermo-mechanical stress. Materials under investigation are the cryoprotective agent (CPA) cocktail DP6 in combination with one of the following SIMs: 12% polyethylene glycol 400, 6% 1,3 cyclohexanediol, and 6% 2,3 butanediol. Results are presented for the CPA-SIM cocktail in the absence and presence of bovine muscle and goat artery specimens. This study focuses on the upper part of the cryogenic temperature range, where the CPA behaves as a fluid for all practical applications. Results of this study indicate that the addition of SIMs to DP6 allows lower cooling rates to ensure vitrification and extends the range of measurements. It is demonstrated that the combination of SIM with DP6 increases the thermal expansion of the cocktail, with implications for the likelihood of fracture formation-the most dramatic outcome of thermo-mechanical stress. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. An evaluation of the statistical variability in thermal expansion properties of steam generator tubesheet (SA-508) and tubing (Alloy-600TT)

    International Nuclear Information System (INIS)

    Riccardella, P.C.; Staples, J.F.; Kandra, J.T.

    2009-01-01

    Inspections of steam generator tubing are performed in U.S. PWRs as part of the Steam Generator Management Program. Westinghouse has recently completed a technical justification demonstrating that in steam generators with thermally treated Ni-Cr Alloy (Alloy 600TT) tubes that are hydraulically expanded into low alloy steel (SA-508) tubesheets, flaws in the region of the tubes below a certain distance from the top of the tubesheet, denoted H * , will not result in reactor coolant pressure boundary breach nor unacceptable primary-to-secondary leakage. This is because, even if a flaw in this region were to result in complete tube sever, if the length of undegraded tube in the tubesheet exceeds H*, neither operating nor accident loadings create sufficient pull-out forces to overcome the frictional forces between the tube and tubesheet. One key component of this technical justification is the differential thermal expansion between the tube and tubesheet, since a significant portion of the pullout strength of the hydraulically expanded tube-to-tubesheet joint is due to mechanical interference resulting from the larger expansion of the tubing relative to the tubesheet at a given temperature. To address this phenomenon, a detailed statistical evaluation of coefficient of thermal expansion (CTE) data for the tubesheet material (SA-508) and the tube material (thermally treated Alloy-600) was performed. Data used in the evaluation included existing test results obtained from a number of sources as well as extensive new laboratory data developed specifically for this purpose. The evaluation resulted in recommended statistical distributions of this property for the two materials including their means and probabilistic variability. In addition, it was determined that the CTE values reported in the ASME Code (Section II) represent reasonably conservative mean values for both the tubesheet and tubing material. (author)

  15. New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Navia, Paloma; Troncoso, Jacobo [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain)], E-mail: romani@uvigo.es

    2008-11-15

    A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient.

  16. The part of acoustic phonons in the negative thermal expansion of the layered structures and nanotubes based on them

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Sirenko, V.A.; Dolbin, A.V.; Gospodarev, I.A.; Syrkin, E.S.; Feodos'ev, S.B.; Bondar', I.S.; Sirenko, A.F.; Minakova, K.A.

    2016-01-01

    A negative linear thermal expansion observed experimentally in a number of crystalline compounds with a complicated lattice and anisotropic interaction between atoms. The nature of negative linear thermal expansion along a number of directions is explained on the basis of calculations which were carried out at a microscopic level. We analyze anomalies in the temperature dependence of the coefficients of linear thermal expansion (the LTEC) along different directions: in layered crystals, formed as a monoatomic layers (graphite and carbon nanofilms) and multilayer ''sand-wiches'' (dichalcogenides of transition metals); in multilayer crystal structures such as high-temperature superconductors in which the anisotropy of the interatomic interaction is not saved in the long-range order; in carbon nanotubes. The results of theoretical calculations are compared with the data of x-ray, neutron diffraction and dilatometric measurements.

  17. Mechanical and thermal expansion properties of β-eucryptite prepared by sol-gel methods and hot pressing

    International Nuclear Information System (INIS)

    Xia, L.; Wen, G.W.; Qin, C.L.; Wang, X.Y.; Song, L.

    2011-01-01

    Research highlights: → Dense LAS glass-ceramics were fabricated by sol-gel and hot pressing technique. → The LAS glass-ceramics have relative good mechanical properties. → The negative thermal expansion behavior of LAS glass-ceramics was investigated. -- Abstract: The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass-ceramics, prepared by sol-gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass-ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m 1/2 , respectively. The lithium aluminosilicate glass-ceramics hot pressed 1300 and 1350 o C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.

  18. New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure

    International Nuclear Information System (INIS)

    Navia, Paloma; Troncoso, Jacobo; Romani, Luis

    2008-01-01

    A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient

  19. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  20. Magnetic susceptibilities and thermal expansion of artificial graphites; Susceptibilites magnetiques et dilatation thermique des graphites artificiels

    Energy Technology Data Exchange (ETDEWEB)

    Cornuault, P; Herpin, A; Hering, H; Seguin, M [Commissariat a l' Energie Atomique, Paris (France); Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Starting from measurements of the magnetic susceptibility made in the two principal directions of a graphite bar, the distribution function of the normals to the carbon planes in the crystallites has been evaluated. The effect of different variation in the manufacturing process on this crystalline anisotropy has been studied. From this crystalline anisotropy we have calculated the thermal expansion coefficient possessed by a compact mass of crystallites having exactly the same orientational anisotropy as the porous body consideration. The difference between this and the observed expansion coefficient leads to the determination of the expansion of the non-graphitic part of the mass which turns out to have a negative value and is also anisotropic. We have attempted to draw some conclusions from this result. (author) [French] En partant des mesures de la susceptibilite magnetique faites dans les directions des axes principaux d'un barreau de graphite, on a calcule la fonction de distribution des perpendiculaires aux plans graphitiques dans les cristallites. On a etudie les effets que pouvaient provoquer des modifications dans le procede de fabrication sur l'anisotropie cristalline. En considerant cette anisotropie cristalline, nous avons calcule le coefficient de dilatation thermique pour un bloc compact de cristallites ayant exactement la meme anisotropie d'orientation que le corps poreux en question. La difference entre cette valeur et celle mesuree du coefficient de dilatation, nous permet de calculer la dilatation pour la partie non-graphitique du bloc, en l'occurence, on trouve une valeur negative du coefficient pour cette partie, qui est egalement anisotropique. On a essaye d'en tirer quelques conclusions. (auteur)