WorldWideScience

Sample records for thermal effect analysis

  1. Concrete containment analysis including thermal effects

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.

    1989-01-01

    Pretest predictions were made by the staff of the Engineering Mechanics Program at ANL for the response of the 1:6-scale reinforced concrete containment model that was tested to failure by liner tearing and leakage at the Sandia National Laboratories. Questions have been raised in regard to possible effects of temperature in combination with internal pressure on the behavior of the model. Specifically, if the containment had been subjected to elevated temperature as well as internal pressure, what differences in pressure capacity, failure mechanism and location would have been predicted when compared to the analysis of internal pressure alone. The purpose of this paper is to address these questions. 3 refs., 9 figs.

  2. Analysis and Experimental on Aircraft Insulation Thermal Bridge Effect

    Directory of Open Access Journals (Sweden)

    XIA Tian

    2017-06-01

    Full Text Available Two kinds of typical aircraft insulation structures were designed for the heat bridge in the metal ribs of aircraft insulation structures. In order to study the influence of heat bridge effect on thermal insulation performance, each configuration was analyzed by the transient heat transfer FEA, check point temperature was obtained in the hot surface temperature of 100 ℃, 200 ℃, 300 ℃, 424 ℃ respectively, and the validity of FEA was proved by insulation performance experiment. The result showed that the thermal bridge has a great influence to the insulation performance of insulation structure, and the thermal bridge influence should be considered adequately when the insulation structure designed. Additionally, the blocking method for thermal bridge is also put forward.

  3. Analysis of Thermal Radiation Effects on Temperatures in Turbine Engine Thermal Barrier Coatings

    Science.gov (United States)

    Siegel, Robert; Spuckler, Charles M.

    1998-01-01

    Thermal barrier coatings are important, and in some instances a necessity, for high temperature applications such as combustor liners, and turbine vanes and rotating blades for current and advanced turbine engines. Some of the insulating materials used for coatings, such as zirconia that currently has widespread use, are partially transparent to thermal radiation. A translucent coating permits energy to be transported internally by radiation, thereby increasing the total energy transfer and acting like an increase in thermal conductivity. This degrades the insulating ability of the coating. Because of the strong dependence of radiant emission on temperature, internal radiative transfer effects are increased as temperatures are raised. Hence evaluating the significance of internal radiation is of importance as temperatures are increased to obtain higher efficiencies in advanced engines.

  4. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    Directory of Open Access Journals (Sweden)

    Fadzil M. A.

    2017-01-01

    Full Text Available Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insulate a space from heat and sound. Fiberglass is flammable insulation material with R Value rated of R-2.9 to R-3.8 which meets the requirement in minimizing heat transfer. Finite element software, ABAQUS v6.13 employed for analyze non insulated wall and other insulated wall with different wall thicknesses. The several calculations related to overall heat movement, total energy consumption per unit area of wall, life cycle cost analysis and determination of optimal insulation thickness is calculated due to show the potential of the implementation in minimize heat transfer and generate potential energy saving in building operation. It is hoped that the study can contribute to better understanding on the potential building wall retrofitting works in increasing building serviceability and creating potential benefits for building owner.

  5. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    Science.gov (United States)

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  6. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    OpenAIRE

    Fadzil M. A.; Norliyati M. A.; Hilmi M. A.; Ridzuan A. R.; Wan Ibrahim M. H.; Assrul R. Z.

    2017-01-01

    Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insula...

  7. Using thermal analysis to evaluate the fire effects on organic matter content of Andisols

    Directory of Open Access Journals (Sweden)

    J. Neris

    2013-09-01

    Full Text Available Soil organic compounds play a relevant role in aggregate stability and thus, in the susceptibility of soils to erosion. Thermal analysis (N2 and air and chemical oxidation techniques (dichromate and permanganate oxidation were used to evaluate the effects of a forest fire on the organic matter of Andisols. Both thermal analysis and chemical methods showed a decrease in the organic matter content and an increase in the recalcitrance of the remaining organic compounds in the burned zones. Thermal analysis indicated an increase in the thermal stability of the organic compounds of fire-affected soils and a lower content of both labile and recalcitrant pools as a consequence of the fire. However, this decrease was relatively higher in the labile pool and lower in the recalcitrant one, indicative of an increase in the recalcitrance of the remaining organic compounds. Apparently, black carbon did not burn under our experimental conditions. Under N2, the results showed a lower labile and a higher recalcitrant and refractory contents in burned and some unburned soils, possibly due to the lower decomposition rate under N2 flux. Thermal analysis using O2 and the chemical techniques showed a positive relation, but noticeable differences in the total amount of the labile pool. Thermal analysis methods provide direct quantitative information useful to characterize the soil organic matter quality and to evaluate the effects of fire on soils.

  8. Analysis on the effect of hypersonic vehicle's optical window on infrared thermal imaging system

    Science.gov (United States)

    Dong, Liquan; Han, Ying; Kong, Lingqin; Liu, Ming; Zhao, Yuejin; Zhang, Li; Li, Yanhong; Tian, Yi; Sa, Renna

    2015-08-01

    According to the aero-thermal effects and aero-thermal radiation effects of the optical window, the thermo-optic effect, the elasto-optical effect and the thermal deformation of the optical window are analyzed using finite element analysis method. Also, the peak value and its location of the point spread function, which is caused by the thermo-optic effect and the dome thermal deformation, are calculated with the variance of time. Furthermore, the temperature gradient influence to the transmission of optical window, the variation trend of transmission as well as optical window radiation with time are studied based on temperature distribution analysis. The simulations results show that: When the incident light is perpendicular to the optical window, image shift is mainly caused by its thermal deformation, and the value of image shift is very small. Image shift is determined only by the angle of the incident light. With a certain incident angle, image shift is not affected by the gradient refractive index change. The optical window transmission is mainly affected by temperature gradient and thus not neglectable to image quality. Therefore, the selection of window cooling methods, needs not only consider the window temperature but try to eliminate the temperature gradient. When calculating the thermal radiation, the optical window should be regarded as volume radiation source instead of surface radiator. The results provide the basis for the optical window design, material selection and the later image processing.

  9. Analysis of effective radiant temperatures in a Pacific Northwest forest using Thermal Infrared Multispectral Scanner data

    Science.gov (United States)

    Sader, S. A.

    1986-01-01

    Analysis of Thermal Infrared Multispectral Scanner data collected over H. J. Andrews experimental forest in western Oregon indicated that aspect and slope gradient had a greater effect on the thermal emission of younger reforested clearcuts than of older stands. Older forest stands (older than 25 years) with greater amounts of green biomass and closed canopies, had lower effective radiant temperatures than younger, less dense stands. Aspect and slope had little effect on the effective radiant temperature of these older stands. Canopy temperature recorded at approximately 1:30 pm local time July 29, 1983 were nearly equal to maximum daily air temperature recorded at eight reference stands. The investigation provided some insights into the utility of the thermal sensor for detecting surface temperature differences related to forest composition and green biomass amounts in mountain terrain.

  10. Thermal stress analysis method considering geometric effect of risers in sand mold casting process

    Directory of Open Access Journals (Sweden)

    S. Y. Kwak

    2014-11-01

    Full Text Available Solidification and fluid flow analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great influence on thermal phenomena. The analysis domain is dramatically expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation difficult. However, it is difficult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources.

  11. Analysis of the thermal effect in diode end-pumped Er:YAG lasers by using Finite Element Method

    Science.gov (United States)

    Wang, Yujia; Wang, Qing; Na, QuanXin; Zhang, Yixuan; Gao, Mingwei; Zhang, Meng

    2018-01-01

    A new method for combining Finite Element Method (FEM) thermal analysis and thermo-mechanical coupling method for calculating the thermal lensing values in diode end-pumped Er:YAG lasers is proposed. A finite-element model is used to simulate the thermal effects in different Er:YAG crystals with pumping scenarios. The influences of pump powers, crystal absorption coefficients and crystal sizes on the Er:YAG thermal effects are discussed, and the relationship between the thermal effects and thermal lensing effects is analysed. A thermo-mechanical coupling model is also constituted for finite-element analysis based on the above results, and the focal length of the Er:YAG crystal with different pump powers are obtained by using this thermo-mechanical coupling model. The predicted thermal lensing values are compared with experimental results, which agree well with the simulated results.

  12. Interring Gas Dynamic Analysis of Piston in a Diesel Engine considering the Thermal Effect

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2015-01-01

    Full Text Available Understanding the interaction between ring dynamics and gas transport in ring pack systems is crucial and needs to be imperatively studied. The present work features detailed interring gas dynamics of piston ring pack behavior in internal combustion engines. The model is developed for a ring pack with four rings. The dynamics of ring pack are simulated. Due to the fact that small changes in geometry of the grooves and lands would have a significant impact on the interring gas dynamics, the thermal deformation of piston has been considered during the ring pack motion analysis in this study. In order to get the temperature distribution of piston head more quickly and accurately, an efficient method utilizing the concept of inverse heat conduction is presented. Moreover, a sensitive analysis based on the analysis of partial regression coefficients is presented to investigate the effect of groove parameters on blowby.

  13. Analysis of thermal effects in endoscopic nanocarriers-based photodynamic therapy applied to esophageal diseases

    Science.gov (United States)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Wilfert, O.; Hudcova, L.; Poliak, J.; Barcik, P.; Arce-Diego, J. L.

    2014-02-01

    In this work we propose a predictive model that allows the study of thermal effects produced when the optical radiation interacts with an esophageal or stomach disease with gold nanoparticles embedded. The model takes into account light distribution in the tumor tissue by means of a Monte Carlo method. Mie theory is used to obtain the gold nanoparticles optical properties and the thermal model employed is based on the bio-heat equation. The complete model was applied to two types of tumoral tissue (squamous cell carcinoma located in the esophagus and adenocarcinoma in the stomach) in order to study the thermal effects induced by the inclusion of gold nanoparticles.

  14. Transient thermal analysis of a titanium multiwall thermal protection system

    Science.gov (United States)

    Blosser, M. L.

    1982-01-01

    The application of the SPAR thermal analyzer to the thermal analysis of a thermal protection system concept is discussed. The titanium multiwall thermal protection system concept consists of alternate flat and dimpled sheets which are joined together at the crests of the dimples and formed into 30 cm by 30 cm (12 in. by 12 in.) tiles. The tiles are mechanically attached to the structure. The complex tile geometry complicates thermal analysis. Three modes of heat transfer were considered: conduction through the gas inside the tile, conduction through the metal, and radiation between the various layers. The voids between the dimpled and flat sheets were designed to be small enough so that natural convection is insignificant (e.g., Grashof number 1000). A two step approach was used in the thermal analysis of the multiwall thermal protection system. First, an effective normal (through-the-thickness) thermal conductivity was obtained from a steady state analysis using a detailed SPAR finite element model of a small symmetric section of the multiwall tile. This effective conductivity was then used in simple one dimensional finite element models for preliminary analysis of several transient heat transfer problems.

  15. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.H.; Son, J.E.; Lee, S.D.; Cho, S.I.; Ashtiani-Araghi, A.; Rhee, J.Y.

    2016-11-01

    If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE), which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE. (Author)

  16. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Directory of Open Access Journals (Sweden)

    Seung-Hwan Yang

    2016-03-01

    Full Text Available If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE, which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE.

  17. Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method

    Directory of Open Access Journals (Sweden)

    A. Selvakumar

    2013-04-01

    Full Text Available Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.

  18. Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method

    Directory of Open Access Journals (Sweden)

    A. Selvakumar

    2012-01-01

    Full Text Available Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.

  19. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2015-09-01

    Full Text Available This paper investigates the theoretical influence of buoyancy and thermal radiation on MHD flow over a stretching porous sheet. The model which constituted highly nonlinear governing equations is transformed using similarity solution and then solved using homotopy analysis method (HAM. The analysis is carried out up to the 5th order of approximation and the influences of different physical parameters such as Prandtl number, Grashof number, suction/injection parameter, thermal radiation parameter and heat generation/absorption coefficient and also Hartman number on dimensionless velocity, temperature and the rate of heat transfer are investigated and discussed quantitatively with the aid of graphs. Numerical results obtained are compared with the previous results published in the literature and are found to be in good agreement. It was found that when the buoyancy parameter and the fluid velocity increase, the thermal boundary layer decreases. In case of the thermal radiation, increasing the thermal radiation parameter produces significant increases in the thermal conditions of the fluid temperature which cause more fluid in the boundary layer due to buoyancy effect, causing the velocity in the fluid to increase. The hydrodynamic boundary layer and thermal boundary layer thickness increase as a result of increase in radiation.

  20. Acid Aging Effects on Surfaces of PTFE Gaskets Investigated by Thermal Analysis

    Directory of Open Access Journals (Sweden)

    C. Fragassa

    2016-12-01

    Full Text Available This paper investigates the effect of a prolonged acid attack on the surface of PTFE by Thermogravimetric Analysis (TGA and Differential Scanning Calorimetry (DSC. PTFE is very non-reactive, partly because of the strength of carbon–fluorine bonds and for its high crystallinity, and, as a consequence, it is often used in containers and pipework with reactive and corrosive chemicals. The PTFE under analysis is commercialized by two alternative producers in form of Teflon tapes. These tapes are adopted, as gaskets, in process plants where tires moulds are cleaned by acid solutions inside a multistage ultrasonic process. In this case, PTFE shows, in a relatively short operation time, inexplicably phenomena of surface degradation, which could be related, in general terms, to an acid attack. But, even considering the combined effect of ultrasonic waves, temperature, humidity and acid attack, the PTFE properties of resistance nominally exclude the risk of the extreme erosion phenomena as observed. The present experimental research aim at investigating this contradiction. A possible explanation could be related to the presence in the cleaning solution of unexpected fluorides, able to produce fluorinating agents and, thus, degrade carbon-fluorine bonds. Considering more the 300 chemical elements a tire compound consists in, it is really complex to preserve the original chemical composition of the cleaning solution. In this research PTFE samples have been treated with different mixtures of acids with the aim at investigating the different aging effects. The thermal analysis has permitted the experimental characterization of PTFE surface properties after acid attack, providing evidence of the degradation phenomena. In particular, the different acid treatments adopted for accelerating the aging of gaskets have highlighted the different behaviour of the PTFE matrix, but also differences between manufacturers.

  1. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil

    Directory of Open Access Journals (Sweden)

    Seme Youssef Reda

    2011-06-01

    Full Text Available In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG and Differential Scanning Calorimetry (DSC analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene, BHA (2, 3-tert-butyl-4-methoxyphenol, TBHQ (tertiary butyl hydroquinone, PG (propyl gallate - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.

  2. Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw2015@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Cai, Jianchao, E-mail: caijc@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Hu, Xiangyun, E-mail: xyhu@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Han, Qi, E-mail: hanqi426@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Liu, Shuang, E-mail: lius@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Zhou, Yingfang, E-mail: yingfang.zhou@abdn.ac.uk [School of Engineering, University of Aberdeen, FN 264, King' s College, Aberdeen, AB24 3UE (United Kingdom)

    2016-08-26

    A theoretical effective thermal conductivity model for nanofluids is derived based on fractal distribution characteristics of nanoparticle aggregation. Considering two different mechanisms of heat conduction including particle aggregation and convention, the model is expressed as a function of the fractal dimension and concentration. In the model, the change of fractal dimension is related to the variation of aggregation shape. The theoretical computations of the developed model provide a good agreement with the experimental results, which may serve as an effective approach for quantitatively estimating the effective thermal conductivity of nanofluids. - Highlights: • A thermal conductivity model is derived based on fractal aggregation distribution. • The relationship between aggregation shape and fractal dimension is analyzed. • Predictions of the proposed model show good agreement with experimental data.

  3. Thermal effect analysis of silicon microring optical switch for on-chip interconnect

    Science.gov (United States)

    Fang, Xiongfeng; Yang, Lin

    2017-10-01

    The silicon microring resonator plays an important role in large-scale, high-integrability modern switching matrixes and optical networks, as silicon photonics enables ring resonators of an unprecedented compact size. But as the nature of resonators is their sensitivity to temperature, their performances are vulnerable to being affected by thermal effect. In this paper, we analyze the dominant thermal effects to the application of silicon microring optical switch. On the one hand we theoretically analyze and experimentally measure the thermal crosstalk among adjacent microring optical switches with different distances, and give possible solutions to minimize the affect of thermal crosstalk. On the other hand we analyze and measure the thermooptic dynamic response of microring switch; the experiment shows for the thermal-tuning that the rising edge is around 2 μs, and the falling edge is around 35 μs. We give the explanation of the asymmetric rise-time and fall-time. Project supported by the Natural National Science Foundation of China (Nos. 61235001, 61575187, 61535002).

  4. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation.

    Science.gov (United States)

    Gomez-Tames, Jose; Sugiyama, Yukiya; Laakso, Ilkka; Tanaka, Satoshi; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-12-21

    Transcranial direct current stimulation (tDCS) is a neuromodulation scheme where a small current is delivered to the brain via two electrodes attached to the scalp. The electrode design is an important topic, not only as regards efficacy, but also from a safety perspective, as tDCS may be related to skin lesions that are sometimes observed after stimulation. Previous computational models of tDCS have omitted the effects of microscopic structures in the skin, and the different soak conditions of the electrodes, and model validation has been limited. In this study, multiphysics and multiscale analysis are proposed to demonstrate the importance of microscopic modeling of the skin, in order to clarify the effects of the internal electric field, and to examine temperature elevation around the electrodes. This novel microscopic model of the skin layer took into consideration the effect of saline/water penetration in hair follicles and sweat ducts on the field distribution around the electrodes. The temperature elevation in the skin was then computed by solving the bioheat equation. Also, a multiscale model was introduced to account for macroscopic and microscopic tissues of the head and skin, which was validated by measurement of the head resistance during tDCS. As a result, the electric field in the microscopic model of the skin was less localized when the follicles/ducts were filled with saline instead of hair or tap water. Temperature elevation was also lessened with saline, in comparison with other substances. Saline, which may penetrate the hair follicles and sweat ducts, suppressed the field concentration around the electrodes. For conventional magnitudes of current injection, and a head resistance of less than 10 kΩ, the temperature elevation in the skin when using saline-soaked electrodes was low, less than 0.1 °C, and unlikely to cause adverse thermal effects.

  5. Thermal microactuator dimension analysis

    Science.gov (United States)

    Azman, N. D.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    The focus of this study was to analyse the stress and thermal flow of thermal microactuator with different type of materials and parameter using COMSOL Multiphysics software. Simulations were conducted on the existing thermal actuator and integrated it to be more efficient, low cost and low power consumption. In this simulation, the U-shaped actuator was designed and five different materials of the microactuator were studied. The result showed that Si Polycrystalline was the most suitable material used to produce thermal actuator for commercialization.

  6. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Moon, Young Min; Lee, Dong Won; Lee, Sang Ik; Kim, Eung Soo; Yeom, Keum Soo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    The objective of the present research is to perform the separate effect tests and to assess the RELAP5/MOD3.2 code for the analysis of thermal-hydraulic behavior in the reactor coolant system and the improvement of the auditing technology of safety analysis. Three Separate Effect Tests (SETs) are the reflux condensation in the U-tube, the direct contact condensation in the hot-leg and the mixture level buildup in the pressurizer. The experimental data and the empirical correlations are obtained through SETs. On the ases of the three SET works, models in RELAP5 are modified and improved, which are compared with the data. The Korea Standard Nuclear Power Plant (KSNP) are assessed using the modified RELAP5. In the reflux condensation test, the data of heat transfer coefficients and flooding are obtained and the condensation models are modified using the non-iterative model, as results, modified code better predicts the data. In the direct contact condensation test, the data of heat transfer coefficients are obtained for the cocurrent and countercurrent flow between the mixture gas and the water in condition of horizontal stratified flow. Several condensation and friction models are modified, which well predict the present data. In the mixture level test, the data for the mixture level and the onset of water draining into the surge line are obtained. The standard RELAP5 over-predicts the mixture level and the void fraction in the pressurizer. Simple modification of model related to the pool void fraction is suggested. The KSNP is assessed using the standard and the modified RELAP5 resulting from the experimental and code works for the SETs. In case of the pressurizer manway opening with available secondary side of the steam generators, the modified code predicts that the collapsed level in the pressurizer is little accumulated. The presence and location of the opening and the secondary condition of the steam generators have an effect on the coolant inventory. The

  7. Sensitivity analysis of the effect of airflow velocity on the thermal comfort in underground mines

    Directory of Open Access Journals (Sweden)

    Pedram Roghanchi

    2016-01-01

    Full Text Available Displeasure in respect to air volumes and associated airflow velocities are well-documented complaints in underground mines. The complaints often differ in the form that there is too little airflow velocity or too much. In hot and humid climates such as those prevailing in many underground mines, convection heat transfer is the major mode of heat rejection from the human body, through the process of sweat evaporation. Consequently, the motion of the mine air plays a pivotal role in aiding this process. In this paper, a method was developed and adopted in the form of a “comfort model” to predict the optimum airflow velocity required to maintain heat comfort for the underground workforce at different activity levels (e.g. metabolic rates. Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wetness. Tolerable worker heat exposure times were also predicted in order to minimize thermal strain due to dehydration. The results indicate that an airflow velocity in the range of 1–2 m/s is the ideal velocity in order to provide a stress/strain free climate and also guarantee thermal comfort for the workers. Therefore, an optimal airflow velocity of 1.5 m/s for the miners' thermal comfort is suggested.

  8. Application of COMSOL Multiphysics in Thermal Effect Analysis of Electromagnetic Active Vibration Absorber

    Science.gov (United States)

    Hang, Su; Xue-tao, Weng

    2017-11-01

    At present, there are some researches in the thermal analysis of electromagnetic absorbers. The heating principle of electromagnetic absorber magnetic circuit is analysed, and the finite element method is used to numerically solve the temperature field in the working process of electromagnetic vibration absorber. The magnetic circuit simulation model of electromagnetic vibration absorber is established in Comsol Multiphysics finite element analysis software. And the grid Division, simulation analysis of the vibration absorber magnetic circuit structure of the internal temperature distribution, you can get the vibration absorber magnetic circuit in the working process of the temperature field of two-dimensional distribution graphics and magnetic circuit structure of different parts of the temperature rise contrast chart. The conclusion provides some theoretical reference for the design and research of electromagnetic active vibration absorber.

  9. Structural and Contact Analysis of a 3-Dimensional Disc-Pad Model with and without Thermal Effects

    Directory of Open Access Journals (Sweden)

    A. Belhocine

    2014-12-01

    Full Text Available The motivation of this work is to identify thermal effects on the structural and contact behaviour of a disc-pad assembly using a finite element approach. The first analysis is performed on the disc-pad model without the presence of thermal properties. Structural performance of the disc-pad model such as deformation and Von Mises stress is predicted. Next, thermomechanical analysis is performed on the same disc-pad model with the inclusion of convection, adiabatic and heat flux elements. The prediction results of temperature distribution, deformation, stress and contact pressure are presented. Comparison of the structural performance between the two analyses (mechanical and thermomechanical is also made. From this study, it can assist brake engineers to choose a suitable analysis in order to critically evaluate structural and contact behaviour of the disc brake assembly.

  10. Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed F. Zedan

    2016-06-01

    Full Text Available Thermal bridges in building walls are usually caused by mortar joints between insulated building blocks and by the presence of concrete columns and beams within the building envelope. These bridges create an easy path for heat transmission and therefore increase air-conditioning loads. In this study, the effects of mortar joints only on cooling and heating loads in a typical two-story villa in Riyadh are investigated using whole building energy analysis. All loads found in the villa, which broadly include ventilation, transmission, solar and internal loads, are considered with schedules based on local lifestyles. The thermal bridging effect of mortar joints is simulated by reducing wall thermal resistance by a percentage that depends on the bridges to wall area ratio (TB area ratio or Amj/Atot and the nominal thermal insulation thickness (Lins. These percentage reductions are obtained from a correlation developed by using a rigorous 2D dynamic model of heat transmission through walls with mortar joints. The reduction in thermal resistance is achieved through minor reductions in insulation thickness, thereby keeping the thermal mass of the wall essentially unchanged. Results indicate that yearly and monthly cooling loads increase almost linearly with the thermal bridge to wall area ratio. The increase in the villa’s yearly loads varies from about 3% for Amj/Atot = 0.02 to about 11% for Amj/Atot = 0.08. The monthly increase is not uniform over the year and reaches a maximum in August, where it ranges from 5% for Amj/Atot = 0.02 to 15% for Amj/Atot = 0.08. In winter, results show that yearly heating loads are generally very small compared to cooling loads and that heating is only needed in December, January and February, starting from late night to late morning. Monthly heating loads increase with the thermal bridge area ratio; however, the variation is not as linear as observed in cooling loads. The present results highlight the importance of

  11. Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene: A nonlinear analysis

    Science.gov (United States)

    Ahmadpoor, Fatemeh; Wang, Peng; Huang, Rui; Sharma, Pradeep

    2017-10-01

    The study of statistical mechanics of thermal fluctuations of graphene-the prototypical two-dimensional material-is rendered rather complicated due to the necessity of accounting for geometric deformation nonlinearity. Unlike fluid membranes such as lipid bilayers, coupling of stretching and flexural modes in solid membranes like graphene leads to a highly anharmonic elastic Hamiltonian. Existing treatments draw heavily on analogies in the high-energy physics literature and are hard to extend or modify in the typical contexts that permeate materials, mechanics and some of the condensed matter physics literature. In this study, using a variational perturbation method, we present a ;mechanics-oriented; treatment of the thermal fluctuations of elastic sheets such as graphene and evaluate their effect on the effective bending stiffness at finite temperatures. In particular, we explore the size, pre-strain and temperature dependency of the out-of-plane fluctuations, and demonstrate how an elastic sheet becomes effectively stiffer at larger sizes. Our derivations provide a transparent approach that can be extended to include multi-field couplings and anisotropy for other 2D materials. To reconcile our analytical results with atomistic considerations, we also perform molecular dynamics simulations on graphene and contrast the obtained results and physical insights with those in the literature.

  12. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Park, Hyun Sik; Kim, Hyoung Tae; Moon, Young Min; Choi, Sung Won; Hwang, Do Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-03-15

    The direct-contact condensation hear transfer coefficients are experimentally obtained in the following conditions : pure steam/steam in the presence of noncondensible gas, horizontal/slightly inclined pipe, cocurrent/countercurrent stratified flow with water. The empirical correlation for liquid Nusselt number is developed in conditions of the slightly inclined pipe and the cocurrent stratified flow. The several models - the wall friction coefficient, the interfacial friction coefficient, the correlation of direct-contact condensation with noncondensible gases, and the correlation of wall film condensation - in the RELAP5/MOD3.2 code are modified, As results, RELAP5/MOD3.2 is improved. The present experimental data is used for evaluating the improved code. The standard RELAP5/MOD3.2 code is modified using the non-iterative modeling, which is a mechanistic model and does not require any interfacial information such as the interfacial temperature, The modified RELAP5/MOD3.2 code os used to simulate the horizontally stratified in-tube condensation experiment which represents the direct-contact condensation phenomena in a hot leg of a nuclear reactor. The modeling capabilities of the modified code as well as the standard code are assessed using several hot-leg condensation experiments. The modified code gives better prediction over local experimental data of liquid void fraction and interfacial heat transfer coefficient than the standard code. For the separate effect test of the thermal-hydraulic phenomena in the pressurizer, the scaling analysis is performed to obtain a similarity of the phenomena between the Korea Standard Nuclear Power Plant(KSNPP) and the present experimental facility. The diameters and lengths of the hot-leg, the surge line and the pressurizer are scaled down with the similitude of CCFL and velocity. The ratio of gas flow rate is 1/25. The experimental facility is composed of the air-water supply tank, the horizontal pipe, the surge line and the

  13. Investigation on the Effect of Cooling Rate on Hot Tearing Susceptibility of Al2024 Alloy Using Thermal Analysis

    Science.gov (United States)

    Shabestari, S. G.; Ghoncheh, M. H.

    2015-12-01

    Effect of different cooling rates and Al-5Ti-1B grain refiner on hot tearing susceptibility of Al2024 alloy were studied using thermal analysis. Influence of cooling rates on microsegregation, and the amount of gas and shrinkage porosities was investigated. The cooling rates used in the present study range from 0.4 to 17.5 K s-1. To evaluate the hot tearing susceptibility, Clyne and Davies' criterion is used. To calculate solid fraction during solidification, solid fraction vs time is plotted based on Newtonian technique via thermal analysis. The results show that the hot tearing susceptibility reduces initially by increasing the cooling rate and then increases at higher cooling rates. Hot tearing susceptibility is decreased by grain refinement. Solidification characteristics of Al2024 e.g., microsegregation, gas, and shrinkage porosities are decreased by increasing cooling rate.

  14. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  15. Thermal analysis of underground power cable system

    Science.gov (United States)

    Rerak, Monika; Ocłoń, Paweł

    2017-10-01

    The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.

  16. Analysis of thermal energy storage material with change-of-phase volumetric effects

    Science.gov (United States)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    NASA's Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase Thermal Energy Storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 Phase Change Material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in three stages considering 1-D, 2-D, and 3-D canister geometries, respectively. The 1-D model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM natural convection. For the second stage, successful numerical techniques used in the 1-D phase change model are extended to a 2-D (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.

  17. Numerical Analysis on the Influence of Thermal Effects on Oil Flow Characteristic in High-Pressure Air Injection (HPAI Process

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2012-01-01

    Full Text Available In previous laboratory study, we have shown the thermal behavior of Keke Ya light crude oil (Tarim oilfield, branch of CNPC for high-pressure air injection (HPAI application potential study. To clarify the influences of thermal effects on oil production, in this paper, we derived a mathematical model for calculating oil flow rate, which is based on the heat conduction property in porous media from the combustion tube experiment. Based on remarkably limited knowledge consisting of very global balance arguments and disregarding all the details of the mechanisms in the reaction zone, the local governing equations are formulated in a dimensionless form. We use finite difference method to solve this model and address the study by way of qualitative analysis. The time-space dimensionless oil flow rate (qD profiles are established for comprehensive studies on the oil flow rate characteristic affected by thermal effects. It also discusses how these findings will impact HPAI project performances, and several guidelines are suggested.

  18. Analysis of the biological effects of a non-thermal plasma on saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyung S.; Baik, Ku Y.; Kim, Jung G.; Kim, Yun J.; Lee, Kyung A.; Jung, Ran J.; Cho, Guang S. [Kwangwoon University, Seoul (Korea, Republic of)

    2012-03-15

    The cellular and the molecular responses of eukaryotic yeast (Saccharomyces cerevisiae) to a non-thermal plasma at atmospheric pressure are analyzed. A plasma device with a dielectric barrier discharge is used in order to understand the mechanisms of the plasma action on eukaryotic microbes. When the yeast cells are exposed to a plasma (at a 2-mm distance) and then cultured on a YPD (yeast extract, peptone, and dextrose) - agar plate, the number of surviving cells is reduced over exposure time. More than a 50% reduction in number is observed after two exposures of 5 minutes' duration. In addition, very small whitish colonies appear after the two exposures. The microscopic analysis indicates that the yeast cells treated with this plasma exposure have rough and shrunken shapes in comparison to the oval shapes with smooth surfaces of the control cells. The profile of proteins analyzed by using 2-dimentional electrophoresis demonstrates that the level of proteins with high molecular weights is increased in plasma-treated cells.

  19. COMPARATIVE ANALYSIS OF EFFECT OF THERMAL SHOCK ON ADHESIVE JOINT STRENGTH

    Directory of Open Access Journals (Sweden)

    Mariusz Kłonica

    2016-12-01

    Full Text Available The aim of this study was a comparative analysis of static shear strength of single-lap adhesive joints of 316L steel adherends, measured prior to and after mechanical treatment with a P320 grit coated abrasive tool. The study was of comparative nature and focused on adhesive joints subjected to thermal cycling. The tests were carried out on joints bonded with Epidian 5 and Epidian 6 epoxy adhesives hardened with Z1 and PAC curing agents. The static shear strength tests results of single-lap adhesive joints were analysed with regard to different surface treatment variants. The scope of tests covered a relatively short fatigue cycle, i.e. 200 cycles in the range of temperatures between -40oC and +60oC. This paper includes the surface free energy and selected surface roughness parameters of substrates and images showing the surface of adherends before and after mechanical treatment with P320 grit coated abrasive tool.

  20. Effective thermal conductivity of condensed polymeric nanofluids ...

    Indian Academy of Sciences (India)

    ... scattering at matrix–particle boundaries. These two mechanisms are combined to arrive at an expression for their effective thermal conductivity. Analysis of the results reveals the possibility to tune the thermal conductivity of such nanosolids over a wide range using the right types of nanoparticles and right concentration.

  1. Systematic Analysis of the Effects of Mode Conversion on Thermal Radiation from Neutron Stars

    Science.gov (United States)

    Yatabe, Akihiro; Yamada, Shoichi

    2017-12-01

    In this paper, we systematically calculate the polarization in soft X-rays emitted from magnetized neutron stars, which are expected to be observed by next-generation X-ray satellites. Magnetars are one of the targets for these observations. This is because thermal radiation is normally observed in the soft X-ray band, and it is thought to be linearly polarized because of different opacities for two polarization modes of photons in the magnetized atmosphere of neutron stars and the dielectric properties of the vacuum in strong magnetic fields. In their study, Taverna et al. illustrated how strong magnetic fields influence the behavior of the polarization observables for radiation propagating in vacuo without addressing a precise, physical emission model. In this paper, we pay attention to the conversion of photon polarization modes that can occur in the presence of an atmospheric layer above the neutron star surface, computing the polarization angle and fraction and systematically changing the magnetic field strength, radii of the emission region, temperature, mass, and radii of the neutron stars. We confirmed that if plasma is present, the effects of mode conversion cannot be neglected when the magnetic field is relatively weak, B∼ {10}13 {{G}}. Our results indicate that strongly magnetized (B≳ {10}14 {{G}}) neutron stars are suitable to detect polarizations, but not-so-strongly magnetized (B∼ {10}13 {{G}}) neutron stars will be the ones to confirm the mode conversion.

  2. Thermal Bridge Effects in Walls Separating Rowhouses

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures.......In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures....

  3. Preliminary Analysis of Effects of Reduced Discharge onThermal Habitat of Pedersen Warm Springs Channel

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A preliminary report to study the potential impacts of possible flow reductions in thermal spring systems located in the Warm Springs area of Moapa Valley NWR on the...

  4. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    Science.gov (United States)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an

  5. Effect of various types of thermal pretreatment techniques on the hydrolysis, compositional analysis and characterization of water hyacinth.

    Science.gov (United States)

    Barua, Visva Bharati; Kalamdhad, Ajay S

    2017-03-01

    The aim of this work was to study the effect of four different types of thermal pretreatment techniques i.e., hot air oven, microwave, autoclave and hot water bath on the hydrolysis, compositional analysis and characterization of water hyacinth. To determine the most efficient thermal pretreatment technique exhibiting enhanced solubilisation. Highest solubilisation was achieved by hot air oven (55.5%), followed by microwave, hot water bath and autoclave. Bio-chemical methane potential (BMP) test of hot air oven pretreated and untreated water hyacinth was conducted. Cumulative methane production of 3039±32mLCH4/gVS was achieved by hot air oven pretreated water hyacinth at 90°C for 1h which was way higher than the cumulative methane production of untreated water hyacinth 2396±19mLCH4/gVS on the 35th day. Compositional analysis and characterization of water hyacinth were also investigated to study the changes in the pretreated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comment on Nemchinsky's analysis of the 'rocket' effect under conditions of thermal plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2007-07-07

    In a recent paper, Nemchinsky presents an analysis of the 'rocket' effect on the particle dynamics under conditions of thermal plasma spraying and claims that this effect is quite substantial with iron particles evaporating in an argon plasma flow as the calculation example. The same problem is re-examined in this communication by considering the intense evaporation of particles as a combined heat and mass transfer process and treating the 'rocket' force as a part of the total drag force acting on the evaporating particle. It is shown that the 'rocket' force caused by the non-uniform distribution of the evaporated-mass efflux from the evaporating particle makes up only a small percentage of the total drag force and thus is not important in determining the particle dynamics for the studied case. (comment)

  7. Thermal Bridge Effects in Window Grooves

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report thermal bridge effects in window grooves are analyzed. The analysis is performed using different thicknesses of the window groove insulation, to evaluate what the optimal solution is.All analysis in the report is performed using both 2- and 3-dimensional numerical analysis....

  8. Effects of water and sawdust additives on thermal effusivity, thermal ...

    African Journals Online (AJOL)

    The effects of water and sawdust additives on the thermal effusivity (e), thermal conductivity (λ), and durability of cement-stabilized laterites were investigated. The thermal effusivity (e) and conductivity(λ) have direct influ-ence on heat transfer and thermal insulation in buildings, and the parameters were determined by hot ...

  9. Thermal Analysis of Filler Reinforced Polymeric Composites

    Science.gov (United States)

    Ghadge, Mahesh Devidas

    Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is

  10. Thermal effects in supercapacitors

    CERN Document Server

    Xiong, Guoping; Fisher, Timothy S

    2015-01-01

    This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and  replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.

  11. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Park, Hyun Sik; Kim, Hyougn Tae; Moon, Young Min; Choi, Sung Won; Heo, Sun [Korea Advanced Institute Science and Technology, Taejon (Korea, Republic of)

    1999-04-15

    The loss-of-RHR accident during midloop operation has been important as results of the probabilistic safety analysis. The condensation models In RELAP5/MOD3 are not proper to analyze the midloop operation. To audit and improve the model in RELAP5/MOD3.2, several items of separate effect tests have been performed. The 29 sets of reflux condensation data is obtained and the correlation is developed with these heat transfer coefficient's data. In the experiment of the direct contact condensation in hot leg, the apparatus setting is finished and a few experimental data is obtained. Non-iterative model is used to predict the model in RELAP5/MOD3.2 with the results of reflux condensation and evaluates better than the present model. The results of the direct contact condensation in a hot leg represent to be similar with the present model. The study of the CCF and liquid entrainment in a surge line and pressurizer is selected as the third separate experiment and is on performance.

  12. Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects

    Directory of Open Access Journals (Sweden)

    C. Dhanapal

    2016-01-01

    Full Text Available This paper analyzes the peristaltic flow of an incompressible micropolar nanofluid in a tapered asymmetric channel in the presence of thermal radiation and heat sources parameters. The rotation of the nanoparticles is incorporated in the flow model. The equations governing the nanofluid flow are modeled and exact solutions are managed under long wavelength and flow Reynolds number and long wavelength approximations. Explicit expressions of axial velocity, stream function, microrotation, nanoparticle temperature, and concentration have been derived. The phenomena of shear stress and trapping have also been discussed. Finally, the influences of various parameters of interest on flow variables have been discussed numerically and explained graphically. Besides, the results obtained in this paper will be helpful to those who are working on the development of various realms like fluid mechanics, the rotation, Brownian motion, thermophoresis, coupling number, micropolar parameter, and the nondimensional geometry parameters.

  13. The micro thermal analysis of polymers

    CERN Document Server

    Grandy, D B

    2002-01-01

    This study is concerned with the development of micro-thermal analysis as a technique for characterising heterogeneous polymers. It is divided into two main parts. In the first part, the use of miniature Wollaston wire near-field thermal probes mounted in an atomic force microscope (AFM) to carry out highly localised thermal analysis (L-TA) of amorphous and semi-crystalline polymers is investigated. Here, the temperature of the probe sensor or tip is scanned over a pre-selected temperature range while in contact with the surface of a sample. It is thereby used to heat a volume of material of the order of several cubic micrometres. The effect of the glass transition, cold crystallisation, melting and degree of crystallinity on L-TA measurements is investigated. The materials used are poly(ethylene terephthalate), polystyrene and fluorocarbon-coated poly(butylene terephthalate). The primary measurements are the micro- or localised analogues of thermomechanical analysis (L-TMA) and differential thermal analysis ...

  14. Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finegan, Donal [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robinson, James B. [University College London; Heenan, Thomas M. M. [University College London; Smith, Katherine [Sharp Laboratories of Europe; Kendrick, Emma [Sharp Laboratories of Europe; University College London; Brett, Daniel J. L. [University College London; Shearing, Paul R. [University College London

    2017-12-06

    Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.

  15. Field Analysis of Stepwise Effective Thermal Conductivity along a Borehole Heat Exchanger under Artificial Conditions of Groundwater Flow

    Directory of Open Access Journals (Sweden)

    Yoshitaka Sakata

    2017-03-01

    Full Text Available Heat advection caused by groundwater flow can potentially improve the performance of a borehole heat exchanger. However, the required flow velocity is not achieved under most natural conditions. This study focuses on artificial groundwater flow generated by pumping and investigates the associated effect in a lowland area near the Toyohira River alluvial fan, Sapporo, Japan. Thermal response test results are compared under natural and artificial groundwater flow conditions. A pumping well is constructed one meter from the borehole. Temperature profiles are measured in the U-tube during testing, using a pair of optic fiber distributed temperature sensors. The effective thermal conductivity is calculated from the profiles obtained in each 10-m sub-layer; this thermal conductivity is termed the stepwise thermal conductivity. Additionally, the upward flow velocity in the pumping well is measured to estimate the mean groundwater flow velocity at the borehole. The results show that effective thermal conductivity increases at depths less than 50 m, where the pumping creates mean velocities greater than 0.1 m d−1 in each sub-layer (1.5 md−1 on average. Thus, a borehole length of 50 m is more reasonable at the test site for its efficiency in a ground source heat pump system coupled with the pumping well than that used.

  16. Effects of Solder Temperature on Pin Through-Hole during Wave Soldering: Thermal-Fluid Structure Interaction Analysis

    Directory of Open Access Journals (Sweden)

    M. S. Abdul Aziz

    2014-01-01

    Full Text Available An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C < T < 643.15 K (370°C. Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry.

  17. Analysis of the energetic/environmental performances of gas turbine plant: Effect of thermal barrier coatings and mass of cooling air

    Directory of Open Access Journals (Sweden)

    Ion Ion V.

    2009-01-01

    Full Text Available Zirconia stabilized with 8 wt.% Y2O3 is the most common material to be applied in thermal barrier coatings owing to its excellent properties: low thermal conductivity, high toughness and thermal expansion coefficient as ceramic material. Calculation has been made to evaluate the gains of thermal barrier coatings applied on gas turbine blades. The study considers a top ceramic coating Zirconia stabilized with 8 wt.% Y2O3 on a NiCoCrAlY bond coat and Inconel 738LC as substrate. For different thickness and different cooling air flow rates, a thermodynamic analysis has been performed and pollutants emissions (CO, NOx have been estimated to analyze the effect of rising the gas inlet temperature. The effect of thickness and thermal conductivity of top coating and the mass flow rate of cooling air have been analyzed. The model for heat transfer analysis gives the temperature reduction through the wall blade for the considered conditions and the results presented in this contribution are restricted to a two considered limits: (1 maximum allowable temperature for top layer (1200ºC and (2 for blade material (1000ºC. The model can be used to analyze other materials that support higher temperatures helping in the development of new materials for thermal barrier coatings.

  18. SPECTROSCOPIC STUDIES AND THERMAL ANALYSIS OF LEAD ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Lead, Tin, Schiff base, Infrared spectra, Thermal analysis. INTRODUCTION ... elemental analysis, infrared spectra as well as by their thermal analysis (DTA and TG). Analysis results are reported in Table 1. The percentage of lead and tin metals were determined using ..... PbO + 5C + 10C2H2 + N2 + CO.

  19. Finite element analysis of the effects of thermal obturation in maxillary canine teeth.

    Science.gov (United States)

    Er, Ozgür; Yaman, Sis Darendeliler; Hasan, Muvaffak

    2007-08-01

    The purpose of the present study was to determine the distribution and level of temperature, in a model of a maxillary canine, the surrounding periodontal tissues, and the bones, during a System B heat obturation technique simulation. The temperature distribution was determined by using a three-dimensional finite element analysis. The tooth was assumed to have undergone an endodontic treatment before the application. Heat applications of 200 degrees C and 100 degrees C were considered. By using the virtual model and the simulation technique, the maximum temperature in the periodontal ligament was found to be 43.5 degrees C. Within the assumptions and the limitations of the study, it was determined that the simulation of System B technique created no potentially harmful levels of temperature throughout the maxillary canine model.

  20. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  1. Thermal gradient analysis of solidifying casting

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2008-08-01

    Full Text Available For description of casting solidification and crystallization process the thermal derivative analysis (TDA is commonly used. Besides the process kinetics considered in TDA method to describe the solidification process, the thermal gradient analysis can be also used for this purpose [1, 2]. In conducted studies analysis of thermal gradient distribution inside the solidifying wedge casting was shown which enabled determination of heat flow intensity on casting section.

  2. Effects of solder temperature on pin through-hole during wave soldering: thermal-fluid structure interaction analysis.

    Science.gov (United States)

    Aziz, M S Abdul; Abdullah, M Z; Khor, C Y

    2014-01-01

    An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183(°)C) pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry.

  3. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations

    Science.gov (United States)

    Cheng, Xuemin; Yang, Yikang; Hao, Qun

    2016-01-01

    The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1–5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control. PMID:27763515

  4. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations

    Directory of Open Access Journals (Sweden)

    Xuemin Cheng

    2016-10-01

    Full Text Available The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1–5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.

  5. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations.

    Science.gov (United States)

    Cheng, Xuemin; Yang, Yikang; Hao, Qun

    2016-10-17

    The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1-5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.

  6. Effects of Solder Temperature on Pin Through-Hole during Wave Soldering: Thermal-Fluid Structure Interaction Analysis

    OpenAIRE

    M. S. Abdul Aziz; Abdullah, M. Z.; Khor, C. Y.

    2014-01-01

    An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was ...

  7. Effectiveness of thermal and athermal short-wave diathermy for the management of knee osteoarthritis: a systematic review and meta-analysis.

    Science.gov (United States)

    Laufer, Y; Dar, G

    2012-09-01

    To assess the effectiveness of short-wave diathermy (SWD) treatment in the management of knee osteoarthritis (KOA) and to assess whether the effects are related to the induction of a thermal effect. A systematic literature search was conducted in PubMed, CINAHL, PEDro, EMBASE, SPORTdiscus and Scholar Google. Included were trials that compared the use of SWD treatment in patients diagnosed with KOA with a control group (placebo SWD treatment or no intervention) and studies that used high-frequency electromagnetic energy (i.e., 27.12 MHz) with sufficient information regarding treatment dosage. Methodological quality of the included studies was assessed in accordance with the PEDro classification scale. A minimum of a 6/10 score was required for inclusion. Seven studies were included in the final analysis. Treatment protocols (dosage, duration, number of treatments) varied extensively between studies. The meta-analysis of the studies with low mean power did not favour SWD treatment for pain reduction, while the results of studies employing some thermal effect were significant. No treatment effect on functional performance measures was determined. This meta-analysis found small, significant effects on pain and muscle performance only when SWD evoked a local thermal sensation. However, the variability in the treatment protocols makes it difficult to draw definitive conclusions about the factors determining the effectiveness of SWD treatment. More research (using comparable protocols and outcome measurements) is needed to evaluate possible long-term effects of thermal SWD treatment and its cost effectiveness in patients with KOA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. SPS extraction kicker magnet thermal analysis

    CERN Document Server

    Timmins, M

    2004-01-01

    As the SPS accelerator will be used for the CNGS project and as LHC injector, the proton beams passing through its extraction kickers will have a much higher intensity than in the past. The image currents generated by this beam may provoke a temperature increase in the magnet's ferrite core to temperatures above the Curie temperature, unless the heat produced is effectively removed. A further complication arises from the fact that a high voltage is applied to the ferrites. The solution adopted consists in transferring the heat via Aluminium Nitride insulators to a water cooling circuit. The heat transfer analysis and the calculated thermal distribution of the magnet are presented.

  9. Analysis of the Effect of Construction and Operation of Thermal Expansion System Compounds on Steam Turbines Reliability

    Science.gov (United States)

    Murmansky, B. E.; Sosnovsky, A. Yu.; Brodov, Yu. M.

    2017-11-01

    The inspection results are presented of turbines of different types and capacity, showing the influence of various factors (such as increased frictional forces on the mating surfaces, clearance changes in the joints elements, TES elements design, state of the thermal expansions compensation system of pipelines) on the operation both of thermal expansion system and of the turbine as a whole. The data are presented on the effectiveness of various measures aimed to eliminate the causes of the turbine thermal expansion system deviations from its normal operation. The results are shown of the influence simulation of various factors (such as flanges and piping warming, ratio of clearance changes in the elements) on the probability of turbine TES hindrance. It is shown that clearance ratios employed in most turbines do not provide the stability of turbine TES against the external action of connected pipes. The simulation results permit to explain the bearing housings turns observed during inspections, resulting in a jam on the longitudinal keys, in temperature distribution changes on the thrust bearing pads, and in some cases in false readings of instruments rotor axial displacement.

  10. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  11. Effect of temperature and ridge-width on the lasing characteristics of InAs/InP quantum-dash lasers: A thermal analysis view

    Science.gov (United States)

    Alkhazraji, E.; Khan, M. T. A.; Ragheb, A. M.; Fathallah, H.; Qureshi, K. K.; Alshebeili, S.; Khan, M. Z. M.

    2018-01-01

    We investigate the thermal characteristics of multi-stack chirped barrier thickness InAs/InGaAlAs/InP quantum-dash-in-a-well lasers of different ridge widths 2, 3, 4 and 15 μm. The effect of varying this geometrical parameter on the extracted thermal resistance and characteristic temperature, and their stability with temperature are examined. The results show an inverse relation of ridge-width with junction temperature with 2 μm device exhibiting the largest junction temperature buildup owing to an associated high thermal resistance of ∼45 °C/W. Under the light of this thermal analysis, lasing behavior of different ridge-width quantum-dash (Qdash) lasers with injection currents and operating temperatures, is investigated. Thermionic carrier escape and phonon-assisted tunneling are found to be the dominant carrier transport mechanisms resulting in wide thermal spread of carriers across the available transition states of the chirped active region. An emission coverage of ∼75 nm and 3 dB bandwidth of ∼55 nm is exhibited by the 2 μm device, thus possibly exploiting the inhomogeneous optical transitions to the fullest. Furthermore, successful external modulation of a single Qdash Fabry-Perot laser mode via injection locking is demonstrated with eye diagrams at bit rates of 2-12 Gbit/s incorporating various modulation schemes. These devices are being considered as potential light sources for future high-speed wavelength-division multiplexed optical communication systems.

  12. The Effect of Core Configuration on Thermal Barrier Thermal Performance

    Science.gov (United States)

    DeMange, Jeffrey J.; Bott, Robert H.; Druesedow, Anne S.

    2015-01-01

    Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize heat transfer through interfaces and gaps and protect underlying temperature-sensitive components. The core insulation has a significant impact on both the thermal and mechanical properties of compliant thermal barriers. Proper selection of an appropriate core configuration to mitigate conductive, convective and radiative heat transfer through the thermal barrier is challenging. Additionally, optimization of the thermal barrier for thermal performance may have counteracting effects on mechanical performance. Experimental evaluations have been conducted to better understand the effect of insulation density on permeability and leakage performance, which can significantly impact the resistance to convective heat transfer. The effect of core density on mechanical performance was also previously investigated and will be reviewed. Simple thermal models were also developed to determine the impact of various core parameters on downstream temperatures. An extended understanding of these factors can improve the ability to design and implement these critical TPS components.

  13. Thermal image analysis for detecting facemask leakage

    Science.gov (United States)

    Dowdall, Jonathan B.; Pavlidis, Ioannis T.; Levine, James

    2005-03-01

    Due to the modern advent of near ubiquitous accessibility to rapid international transportation the epidemiologic trends of highly communicable diseases can be devastating. With the recent emergence of diseases matching this pattern, such as Severe Acute Respiratory Syndrome (SARS), an area of overt concern has been the transmission of infection through respiratory droplets. Approved facemasks are typically effective physical barriers for preventing the spread of viruses through droplets, but breaches in a mask"s integrity can lead to an elevated risk of exposure and subsequent infection. Quality control mechanisms in place during the manufacturing process insure that masks are defect free when leaving the factory, but there remains little to detect damage caused by transportation or during usage. A system that could monitor masks in real-time while they were in use would facilitate a more secure environment for treatment and screening. To fulfill this necessity, we have devised a touchless method to detect mask breaches in real-time by utilizing the emissive properties of the mask in the thermal infrared spectrum. Specifically, we use a specialized thermal imaging system to detect minute air leakage in masks based on the principles of heat transfer and thermodynamics. The advantage of this passive modality is that thermal imaging does not require contact with the subject and can provide instant visualization and analysis. These capabilities can prove invaluable for protecting personnel in scenarios with elevated levels of transmission risk such as hospital clinics, border check points, and airports.

  14. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  15. Analysis of thermally loaded transmissive optical elements

    Science.gov (United States)

    Michels, Gregory J.; Genberg, Victor L.

    2013-09-01

    The performance metrics of many optical systems are affected by temperature changes in the system through different physical phenomena. Temperature changes cause materials to expand and contract causing deformations of optical components. The resulting stress states in transmissive optics can cause refractive changes that can affect optical performance. In addition, the temperature changes themselves can cause changes in the refractive properties of transmissive optics. Complex distributions of refractive indices that relate to the thermal profile, the thermo-optic refractive index profile, within the optical media can be predicted by the finite element method. One current technique for representing such refractive index profiles is through the generation of optical path difference (OPD) maps by integration along integration paths. While computationally efficient, this method has limitations in its ability to represent the effect of the index changes for rays associated with multiple field points and multiple wavelengths. A more complete representation of the thermo-optic refractive index profile may be passed to the optical analysis software through the use of a user defined gradient index material. The interface consists of a dynamic link library (DLL) which supplies indices of refraction to a user defined gradient index lens as ray tracing calculations are being performed. The DLL obtains its refractive index description from a database derived from the thermal analysis of the optics. This process allows optical analysis software to perform accurate ray tracing for an arbitrary refractive index profile induced by changes in temperature.

  16. Entropy analysis in electrical magnetohydrodynamic (MHD flow of nanofluid with effects of thermal radiation, viscous dissipation, and chemical reaction

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2017-07-01

    Full Text Available The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations. The resultant system of equations is then solved numerically using implicit finite difference method. The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values. Keywords: Entropy generation, MHD nanofluid, Thermal radiation, Bejan number, Chemical reaction, Viscous dissipation

  17. Quick Spacecraft Thermal Analysis Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  18. Exergy analysis of thermal comfort

    OpenAIRE

    Prek, Matjaž

    2015-01-01

    Traditional methods of human thermal comfort are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, thesecond law of thermodynamics introduces the concept of exergy. It enables the determination of exergy consumption within the human body dependent on personal and environmental factors. We show that the existing methods of comfort assessment could be further expanded by t...

  19. Integration of Design, Thermal, Structural, and Optical Analysis, Including Thermal Animation

    Science.gov (United States)

    Amundsen, Ruth M.

    1993-01-01

    In many industries there has recently been a concerted movement toward 'quality management' and the issue of how to accomplish work more efficiently. Part of this effort is focused on concurrent engineering; the idea of integrating the design and analysis processes so that they are not separate, sequential processes (often involving design rework due to analytical findings) but instead form an integrated system with smooth transfers of information. Presented herein are several specific examples of concurrent engineering methods being carried out at Langley Research Center (LaRC): integration of thermal, structural and optical analyses to predict changes in optical performance based on thermal and structural effects; integration of the CAD design process with thermal and structural analyses; and integration of analysis and presentation by animating the thermal response of a system as an active color map -- a highly effective visual indication of heat flow.

  20. Window design : visual and thermal consequences : analysis of the thermal and daylighting performance of windows

    NARCIS (Netherlands)

    Bergem-Jansen, P.M. van; Soeleman, R.S.

    1979-01-01

    Selected results of an analysis for the thermal and lighting requirements associated with windows in utility buildings are presented. This analysis concerns the effects of r¡indow size and shape, orientation and of different ways of supplementing the daylight by artifieial light for a typical office

  1. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  2. Thermal strain analysis of optic fiber sensors.

    Science.gov (United States)

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  3. Thermal Strain Analysis of Optic Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ying Huang

    2013-01-01

    Full Text Available An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  4. Thermal Analysis of TRIO-CINEMA Mission

    Directory of Open Access Journals (Sweden)

    Jaegun Yoo

    2012-03-01

    Full Text Available Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO–CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average temperature of top and bottom solar panels from -70°C to -40°C and decrease the average temperature of the magnetometer from +93°C to -4°C using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.

  5. Dynamic thermal analysis of machines in running state

    CERN Document Server

    Wang, Lihui

    2014-01-01

    With the increasing complexity and dynamism in today’s machine design and development, more precise, robust and practical approaches and systems are needed to support machine design. Existing design methods treat the targeted machine as stationery. Analysis and simulation are mostly performed at the component level. Although there are some computer-aided engineering tools capable of motion analysis and vibration simulation etc., the machine itself is in the dry-run state. For effective machine design, understanding its thermal behaviours is crucial in achieving the desired performance in real situation. Dynamic Thermal Analysis of Machines in Running State presents a set of innovative solutions to dynamic thermal analysis of machines when they are put under actual working conditions. The objective is to better understand the thermal behaviours of a machine in real situation while at the design stage. The book has two major sections, with the first section presenting a broad-based review of the key areas of ...

  6. Analysis of thermal process of pozzolan production

    Directory of Open Access Journals (Sweden)

    Mejía De Gutiérrez, R.

    2004-06-01

    Full Text Available The objective of this study was evaluated the effect of heat treatment parameters on the pozzolanic activity of natural kaolin clays. The experimental design included three factors: kaolin type, temperature and time. Five types of Colombian kaolin clays were thermally treated from 400 to 1000 °C by 1, 2, and 3 hours. The raw materials and the products obtained were characterized by X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR and Differential Thermal / Thermo gravimetric Analysis (DTAJ TGA. The pozzolanic activity of thermally treated samples according to chemical and mechanical tests was investigated.

    El objetivo de este estudio fue caracterizar las variables de producción de un metacaolín de alta reactividad puzolánica. El diseño experimental utilizó un modelo factorial que consideró tres factores: tipo de caolín (C, temperatura y tiempo. A partir del conocimiento de las fuentes de caolín y el contacto con proveedores y distribuidores del producto a nivel nacional, se seleccionaron cinco muestras representativas de arcillas caoliníticas, las cuales se sometieron a un tratamiento térmico entre 400 y 1.000 ºC (seis niveles de temperatura y tres tiempos de exposición, 1, 2 y 3 horas. Los caolines de origen y los productos obtenidos de cada proceso térmico fueron evaluados mediante técnicas de tipo físico y químico, difracción de rayos X, infrarrojo FTIR, y análisis térmico diferencial (OTA, TGA. Complementariamente se evalúa la actividad puzolánica, tanto química como mecánica, del producto obtenido a diferentes temperaturas de estudio.

  7. Thermal Analysis of a TREAT Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dionissios [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, Arthur E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  8. Thermal Analysis of AC Contactor Using Thermal Network Finite Difference Analysis Method

    Science.gov (United States)

    Niu, Chunping; Chen, Degui; Li, Xingwen; Geng, Yingsan

    To predict the thermal behavior of switchgear quickly, the Thermal Network Finite Difference Analysis method (TNFDA) is adopted in thermal analysis of AC contactor in the paper. The thermal network model is built with nodes, thermal resistors and heat generators, and it is solved using finite difference method (FDM). The main circuit and the control system are connected by thermal resistors network, which solves the problem of multi-sources interaction in the application of TNFDA. The temperature of conducting wires is calculated according to the heat transfer process and the fundamental equations of thermal conduction. It provides a method to solve the problem of boundary conditions in applying the TNFDA. The comparison between the results of TNFDA and measurements shows the feasibility and practicability of the method.

  9. Characterization of Nanocomposites by Thermal Analysis

    Science.gov (United States)

    Corcione, Carola Esposito; Frigione, Mariaenrica

    2012-01-01

    In materials research, the development of polymer nanocomposites (PN) is rapidly emerging as a multidisciplinary research field with results that could broaden the applications of polymers to many different industries. PN are polymer matrices (thermoplastics, thermosets or elastomers) that have been reinforced with small quantities of nano-sized particles, preferably characterized by high aspect ratios, such as layered silicates and carbon nanotubes. Thermal analysis (TA) is a useful tool to investigate a wide variety of properties of polymers and it can be also applied to PN in order to gain further insight into their structure. This review illustrates the versatile applications of TA methods in the emerging field of polymer nanomaterial research, presenting some examples of applications of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA) and thermal mechanical analysis (TMA) for the characterization of nanocomposite materials.

  10. Root cause analysis of thermal sleeve separation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J. C.; Jhung, M. J.; Yu, S. O.; Kim, H. J.; Yune, Y. K.; Park, J. Y

    2006-01-15

    Thermal sleeves in the shape of thin wall cylinder seated inside the nozzle part of each Safety Injection (SI) line at Pressurized Water Reactors (PWRs) have such functions as prevention and relief of potential excessive transient thermal stress in the wall of SI line nozzle part which is initially heated up with hot water flowing in the primary coolant piping system when cold water is injected into the system through the SI nozzles during the SI operation mode. Recently, mechanical failures that the sleeves were separated from the SI branch pipe and fell into the connected cold leg main pipe occurred in sequence at some typical PWR plants in Korea. To find out the root cause of thermal sleeve breakaway failures, the flow situation in the junction of primary coolant main pipe and SI branch pipe, and the vibration modal characteristics of the thermal sleeve are investigated in detail by using both Computational Fluid Dynamic (CFD) code and structure analysis finite element code. As the results, the transient response in fluid force exerting on the local part of thermal sleeve wall surface to the primary coolant flow through the pipe junction area during the normal reactor operation mode shows oscillatory characteristics with frequencies ranging from 17 to 18, which coincide with one of the lower mode natural frequencies of thermal sleeve having a pinned support condition on the circumferential prominence on the outer surface of thermal sleeve which is put into the circumferential groove on the inner surface of SI nozzle at the mid-height of the thermal sleeve. In addition, the variation of force on the thermal sleeve surface yields alternating torques in the directions of two rectangular axes which are perpendicular to the longitudinal axis of cylindrical thermal sleeve, which cause rolling, pitching and rotating motions of the thermal sleeve. Consequently, it is seen that this flow situation surrounding the thermal sleeve during the normal reactor operation can

  11. Comparative effect of high pressure processing and traditional thermal treatment on the physicochemical, microbiology, and sensory analysis of olive jam

    Directory of Open Access Journals (Sweden)

    Delgado-Adamez, J.

    2013-09-01

    Full Text Available In the present work the effect of the processing by high hydrostatic pressures (HPP was assessed as an alternative to the thermal treatment of pasteurization in olive jam. The effects of both treatments on the product after processing were compared and stability during storage under refrigeration was assessed through the characterization of physicochemical, microbiological and sensory aspects. To assess the effect of processing, two HPP treatments (450 and 600MPa and thermal pasteurization (80 °C for 20 min were applied, comparing them with the unprocessed product. HPP 600MPa versus the rest of treatments showed a reduction in microorganisms, greater clarity and less browning, and sensory acceptance. The shelf-life of the refrigerated product would indicate the feasibility of the application of the HPP technology for food with similar shelf-life to that obtained with the traditional treatment of pasteurization, but with a better sensory quality.En el presente trabajo se valoró el efecto del procesado por altas presiones hidrostáticas (HPP como método alternativo al tratamiento térmico de pasteurización en la mermelada de aceitunas. Para ello se comparó el efecto de ambos tratamientos sobre el producto procesado y se evaluó su estabilidad durante el almacenamiento en refrigeración, mediante la caracterización de los aspectos físico-químicos, microbiológicos, y sensoriales. Para evaluar el efecto del procesado, se aplicaron dos tratamientos de HPP (450 y 600MPa y otro de pasteurización térmica (80 °C durante 20 min, comparándose con el producto no procesado. Las muestras tratadas con HPP 600MPa presentaron, frente al resto de tratamientos una reducción en la presencia de microorganismos, mayor claridad y menor pardeamiento, y una mayor aceptación sensorial. El estudio de la vida útil del producto en refrigeración, indicaría la viabilidad de la aplicación de la tecnología de HPP para obtener alimentos con vida útil similar

  12. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.

    Directory of Open Access Journals (Sweden)

    Denis Habauzit

    Full Text Available Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2, led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed. Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed. By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.

  13. A Multi-scale Approach to Urban Thermal Analysis

    Science.gov (United States)

    Gluch, Renne; Quattrochi, Dale A.

    2005-01-01

    An environmental consequence of urbanization is the urban heat island effect, a situation where urban areas are warmer than surrounding rural areas. The urban heat island phenomenon results from the replacement of natural landscapes with impervious surfaces such as concrete and asphalt and is linked to adverse economic and environmental impacts. In order to better understand the urban microclimate, a greater understanding of the urban thermal pattern (UTP), including an analysis of the thermal properties of individual land covers, is needed. This study examines the UTP by means of thermal land cover response for the Salt Lake City, Utah, study area at two scales: 1) the community level, and 2) the regional or valleywide level. Airborne ATLAS (Advanced Thermal Land Applications Sensor) data, a high spatial resolution (10-meter) dataset appropriate for an environment containing a concentration of diverse land covers, are used for both land cover and thermal analysis at the community level. The ATLAS data consist of 15 channels covering the visible, near-IR, mid-IR and thermal-IR wavelengths. At the regional level Landsat TM data are used for land cover analysis while the ATLAS channel 13 data are used for the thermal analysis. Results show that a heat island is evident at both the community and the valleywide level where there is an abundance of impervious surfaces. ATLAS data perform well in community level studies in terms of land cover and thermal exchanges, but other, more coarse-resolution data sets are more appropriate for large-area thermal studies. Thermal response per land cover is consistent at both levels, which suggests potential for urban climate modeling at multiple scales.

  14. Method of thermal derivative gradient analysis (TDGA

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2009-07-01

    Full Text Available In this work a concept of thermal analysis was shown, using for crystallization kinetics description the temperature derivatives after time and direction. Method of thermal derivative gradient analysis (TDGA is assigned for alloys and metals investigation as well as cast composites in range of solidification. The construction and operation characteristics were presented for the test stand including processing modules and probes together with thermocouples location. Authors presented examples of results interpretation for AlSi11 alloy castings with diversified wall thickness and at different pouring temperature.

  15. Giant thermal Hall effect in multiferroics

    Science.gov (United States)

    Ideue, T.; Kurumaji, T.; Ishiwata, S.; Tokura, Y.

    2017-08-01

    Multiferroics, in which dielectric and magnetic orders coexist and couple with each other, attract renewed interest for their cross-correlated phenomena, offering a fundamental platform for novel functionalities. Elementary excitations in such systems are strongly affected by the lattice-spin interaction, as exemplified by the electromagnons and the magneto-thermal transport. Here we report an unprecedented coupling between magnetism and phonons in multiferroics, namely, the giant thermal Hall effect. The thermal transport of insulating polar magnets (ZnxFe1-x)2Mo3O8 is dominated by phonons, yet extremely sensitive to the magnetic structure. In particular, large thermal Hall conductivities are observed in the ferrimagnetic phase, indicating unconventional lattice-spin interactions and a new mechanism for the Hall effect in insulators. Our results show that the thermal Hall effect in multiferroic materials can be an effective probe for strong lattice-spin interactions and provide a new tool for magnetic control of thermal currents.

  16. Thermal analysis of kieselguhr sludge

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2013-01-01

    Full Text Available It’s currently necessary to clarify the mechanisms of thermodynamic and mass transfer processes in capillary porous media. In this paper we obtain the thermogravimetric curves of evaporation drying kieselguhr sludge. It is also an analysis of the curves, allowing to choose the optimum conditions of drying.

  17. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis.

    Science.gov (United States)

    Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder

    2012-12-01

    Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  18. Short-term effects of air quality and thermal stress on non-accidental morbidity—a multivariate meta-analysis comparing indices to single measures

    Science.gov (United States)

    Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas

    2017-02-01

    Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

  19. Short-term effects of air quality and thermal stress on non-accidental morbidity-a multivariate meta-analysis comparing indices to single measures.

    Science.gov (United States)

    Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas

    2018-01-01

    Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

  20. Short-term effects of air quality and thermal stress on non-accidental morbidity—a multivariate meta-analysis comparing indices to single measures

    Science.gov (United States)

    Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas

    2018-01-01

    Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

  1. Micro-thermal analysis of polyester coatings

    NARCIS (Netherlands)

    Fischer, H.R.

    2010-01-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure

  2. Measuremental analysis of thermal performance of direct gain houses in Kanto district. Effects of thermal mass and caves; Kanto chiho ni tatsu direct gain jutaku no netsuseino jissoku. Netsuyoryo to hisashi no koka

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, K.; Sunaga, N.; Muro, K. [Tokyo Metropolitan University, Tokyo (Japan)

    1996-10-27

    The thermal performance of direct gain passive solar houses was measured. Mr. M`s two-storied RC residence with double glazing windows and thermal storage floors, walls and ceilings of brick or concrete was provided for measurement. Its double eaves of the south window and both SE and SW overhanging exterior walls play a role in sunshade. Mr. I`s two-storied wooden residence with thermal storage RC floors and brick walls, and no eaves of the south window and no overhanging exterior walls was also provided. The summer and winter measurement results were in complete contrast between the residences. In summer, large thermal mass and eaves of Mr. M`s residence were effective, while in winter, small thermal mass and no eaves of Mr. I`s residence were effective. The following ideas are important in design from the viewpoint of indoor thermal environment: a movable sunshade for taking in solar radiation as much as possible in winter, well-balanced arrangement of thermal storage parts with suitable thermal mass corresponding to movement of the sun, a large screen door for cross ventilation in summer, and a night insulation shutter for reducing heat loss in winter. 2 refs., 10 figs., 1 tab.

  3. Development of thermal models of footwear using finite element analysis.

    Science.gov (United States)

    Covill, D; Guan, Z W; Bailey, M; Raval, H

    2011-03-01

    Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort.

  4. The stagnation-point flow and heat transfer of nanofluid over a shrinking surface in magnetic field and thermal radiation with slip effects : a stability analysis

    Science.gov (United States)

    Ismail, N. S.; Arifin, N. M.; Nazar, R.; bachok, N.

    2017-09-01

    A numerical study is performed to evaluate the problem of stagnation - point flow and heat transfer towards a shrinking sheet with magnetic field and thermal radiation in nanofluid. The Buongiorno’s nanofluid model is used in this study along with slip effect at boundary condition. By using non-similar transformation, the governing equations are able to be reduced into an ordinary differential equation. Then, the ordinary differential equation can be solved by using the bvp4c solver in Matlab. A linear stability analysis shows that only one solution is linearly stable otherwise is unstable. Based on the numerical results obtained, the dual solutions do exist at certain ranges in this study. Then, the stability analysis is carried out to determine which one is stable between both of the solutions.

  5. Analysis of improved photovoltaic properties of pentacene/C 60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing

    Science.gov (United States)

    Yoo, Seunghyup; Potscavage, William J.; Domercq, Benoit; Han, Sung-Ho; Li, Tai-De; Jones, Simon C.; Szoszkiewicz, Robert; Levi, Dean; Riedo, Elisa; Marder, Seth R.; Kippelen, Bernard

    2007-10-01

    We report on the photovoltaic properties of organic solar cells based on pentacene and C 60 thin films with a focus on their spectral responses and the effect of thermal annealing. Spectra of external quantum efficiency (EQE) are measured and analyzed with a one-dimensional exciton diffusion model dependent upon the complex optical functions of pentacene films, which are measured by spectroscopic ellipsometry. An improvement in EQE is observed when the thickness of the bathocuproine (BCP) layer is decreased from 12 nm to 6 nm. Detailed analysis of the EQE spectra indicates that large exciton diffusion lengths in the pentacene films are responsible for the overall high EQE values near wavelengths of 668 nm. Analysis also shows that improvement in the EQE of devices with the thinner BCP layer can be attributed to a net gain in optical field distribution and improvement in carrier collection efficiency. An improvement in open-circuit voltage ( VOC) is also achieved through a thermal annealing process, leading to a net increase in power conversion efficiency. Integration of the EQE spectrum with an AM1.5 G spectrum yields a predicted power conversion efficiency of 1.8 ± 0.2%. The increase in VOC is attributed to a significant reduction in the diode reverse saturation current upon annealing.

  6. MR scanning, tattoo inks, and risk of thermal burn: An experimental study of iron oxide and organic pigments: Effect on temperature and magnetic behavior referenced to chemical analysis.

    Science.gov (United States)

    Alsing, K K; Johannesen, H H; Hvass Hansen, R; Dirks, M; Olsen, O; Serup, J

    2017-12-17

    Tattooed persons examined with magnetic resonance imaging (MRI) can develop burning sensation suggested in the literature to be thermal burn from the procedure. MRI-induced thermal effect and magnetic behavior of known tattoo pigments were examined ex vivo. Magnetic resonance imaging effects on 3 commonly used commercial ink stock products marketed for cosmetic tattooing was studied. A main study tested 22 formulations based on 11 pigment raw materials, for example, one line of 11 called pastes and another called dispersions. Samples were spread in petri dishes and tested with a 0.97 T neodymium solid magnet to observe visual magnetic behavior. Before MRI, the surface temperature of the ink was measured using an infrared probe. Samples were placed in a clinical 3T scanner. Two scans were performed, that is, one in the isocenter and one 30 cm away from the center. After scanning, the surface temperature was measured again. Chemical analysis of samples was performed by mass spectroscopy. Mean temperature increase measured in the isocenter ranged between 0.14 and 0.26°C (P tattoo pigments after MRI. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Development of Effective Algorithm for Coupled Thermal-Hydraulics – Neutron-Kinetics Analysis of Reactivity Transient

    OpenAIRE

    Peltonen, Joanna

    2009-01-01

    Analyses of nuclear reactor safety have increasingly required coupling of full three dimensional neutron kinetics (NK) core models with system transient thermal-hydraulics (TH) codes. To produce results within a reasonable computing time, the coupled codes use different spatial description of the reactor core. The TH code uses few, typically 5 to 20 TH channels, which represent the core. The NK code uses explicit node for each fuel assembly. Therefore, a spatial mapping of coarse grid TH and ...

  8. Performance analysis of photovoltaic thermal air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sopian, K.; Yigit, K.S.; Liu, H.T.; Kakac, S.; Veziroglu, T.N. [Miami Univ., Coral Gables, FL (United States). Dept. of Mechanical Engineering

    1996-11-01

    The performance of single-pass and double-pass combined photovoltaic thermal collectors are analyzed with steady-state models. The working fluid is air and the models are based on energy conservation at various nodes of the collector. Closed form solutions have been obtained for the differential equations of both the single-pass and double-pass collectors. Comparisons are made between the performances of the two types of combined photovoltaic thermal collectors. The results show that the new design, the double-pass photovoltaic thermal collector, has superior performance. Important parameters for both types of collector are identified, and their effects on the performances of the two types of collectors are presented in detail. (author)

  9. Thermal analysis applied to irradiated propolis

    Science.gov (United States)

    Matsuda, Andrea Harumi; Machado, Luci Brocardo; del Mastro, Nélida Lucia

    2002-03-01

    Propolis is a resinous hive product, collected by bees. Raw propolis requires a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of propolis for food and pharmaceutical industries have led to increasing interest in its technological behavior. Thermal analysis is a chemical analysis that gives information about changes on heating of great importance for technological applications. Ground propolis samples were 60Co gamma irradiated with 0 and 10 kGy. Thermogravimetry curves shown a similar multi-stage decomposition pattern for both irradiated and unirradiated samples up to 600°C. Similarly, through differential scanning calorimetry , a coincidence of melting point of irradiated and unirradiated samples was found. The results suggest that the irradiation process do not interfere on the thermal properties of propolis when irradiated up to 10 kGy.

  10. Thermal analysis applied to irradiated propolis

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Andrea Harumi; Machado, Luci Brocardo; Mastro, N.L. del E-mail: nelida@usp.br

    2002-03-01

    Propolis is a resinous hive product, collected by bees. Raw propolis requires a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of propolis for food and pharmaceutical industries have led to increasing interest in its technological behavior. Thermal analysis is a chemical analysis that gives information about changes on heating of great importance for technological applications. Ground propolis samples were {sup 60}Co gamma irradiated with 0 and 10 kGy. Thermogravimetry curves shown a similar multi-stage decomposition pattern for both irradiated and unirradiated samples up to 600 deg. C. Similarly, through differential scanning calorimetry , a coincidence of melting point of irradiated and unirradiated samples was found. The results suggest that the irradiation process do not interfere on the thermal properties of propolis when irradiated up to 10 kGy.

  11. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  12. Thermal Arrest Memory Effect in Ni-Mn-Ga Alloys

    Directory of Open Access Journals (Sweden)

    A. Rudajevova

    2008-01-01

    Full Text Available Dilatation characteristics were measured to investigate the thermal arrest memory effect in Ni53.6Mn27.1Ga19.3 and Ni54.2Mn29.4Ga16.4 alloys. Interruption of the martensite-austenite phase transformation is connected with the reduction of the sample length after thermal cycle. If a total phase transformation took place in the complete thermal cycle following the interruption, then the sample length would return to its original length. Analysis of these results has shown that the thermal arrest memory effect is a consequence of a stress-focusing effect and shape memory effect. The stress-focusing effect occurs when the phase transformation propagates radially in a cylindrical sample from the surface, inward to the center. Evolution and release of the thermoelastic deformations in both alloys during heating and cooling are analyzed.

  13. Thermodynamical analysis of human thermal comfort

    OpenAIRE

    Prek, Matjaž

    2015-01-01

    Traditional methods of human thermal comfort analysis are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, the second law of thermodynamics introduces the useful concept of exergy. It enables the determination of the exergy consumption within the human body dependent on human and environmental factors. Human body exergy consumption varies with the combination of environ...

  14. The effect of leucite crystallization and thermal history on thermal expansion measurement of dental porcelains

    Science.gov (United States)

    Khajotia, Sharukh Soli

    1997-12-01

    Objectives. Measurement of thermal expansion in glassy materials is complicated by thermal history effects. The purpose of this research was to determine whether the occurrence of structural relaxation in glassy materials, such as dental porcelains, and changes in porcelain leucite content could interfere with the accurate measurement of the coefficient of thermal expansion during the thermal expansion measurement itself. Methods. In a randomized design, thermal expansion specimens were fabricated using six commercial body porcelains and the leucite-containing Component No. 1 frit (Weinstein et al. patent, 1962), and subjected to one of the following heat treatments: a single heating run at 3sp°C/min in a conventional dilatometer followed by air quenching; three successive low-rate heating and cooling thermal expansion runs at 3sp°C/min in a conventional dilatometer; or three successive high-rate heating and cooling thermal expansion runs at 600sp°C/min in a laser dilatometer. The remaining specimens were left untreated and served as controls. Potential changes in porcelain leucite content were monitored via quantitative X-ray diffraction. Thermal expansion data for each run over a temperature range of 25-500sp°C and the leucite content of all specimens were subjected to repeated measures analysis of variance. Results. The thermal expansion coefficient measured on first slow heating was significantly lower than the values for succeeding low-rate heating and cooling runs in all materials (p $ 0.05). No significant effect of dilatometer thermal treatments on leucite content (p >$ 0.05) was shown for all materials studied using both dilatometers. Significance. The crystallization of additional amounts of leucite during thermal expansion runs can be ruled out as a possible interference in the determination of the thermal expansion coefficient of dental porcelain. Conventional dilatometer measurements exhibited structural relaxation during the first heating run, as

  15. The effect of thermal treatment on the enhancement of detection of adulteration in extra virgin olive oils by synchronous fluorescence spectroscopy and chemometric analysis

    Science.gov (United States)

    Mabood, F.; Boqué, R.; Folcarelli, R.; Busto, O.; Jabeen, F.; Al-Harrasi, Ahmed; Hussain, J.

    2016-05-01

    In this study the effect of thermal treatment on the enhancement of synchronous fluorescence spectroscopic method for discrimination and quantification of pure extra virgin olive oil (EVOO) samples from EVOO samples adulterated with refined oil was investigated. Two groups of samples were used. One group was analyzed at room temperature (25 °C) and the other group was thermally treated in a thermostatic water bath at 75 °C for 8 h, in contact with air and with light exposure, to favor oxidation. All the samples were then measured with synchronous fluorescence spectroscopy. Synchronous fluorescence spectra were acquired by varying the wavelength in the region from 250 to 720 nm at 20 nm wavelength differential interval of excitation and emission. Pure and adulterated olive oils were discriminated by using partial least-squares discriminant analysis (PLS-DA). It was found that the best PLS-DA models were those built with the difference spectra (75 °C-25 °C), which were able to discriminate pure from adulterated oils at a 2% level of adulteration of refined olive oils. Furthermore, PLS regression models were also built to quantify the level of adulteration. Again, the best model was the one built with the difference spectra, with a prediction error of 3.18% of adulteration.

  16. Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

    Science.gov (United States)

    Ghaebi, Hadi; Abbaspour, Ghader

    2017-11-01

    In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

  17. Parameter Uncertainty for Repository Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Greenberg, Harris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dupont, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).

  18. Thermal effects on PLATO point spread function

    Science.gov (United States)

    Gullieuszik, Marco; Magrin, Demetrio; Greggio, Davide; Ragazzoni, Roberto; Nascimbeni, Valerio; Bergomi, Maria; Biondi, Federico; Chinellato, Simonetta; Dima, Marco; Farinato, Jacopo; Marafatto, Luca; Viotto, Valentina; Munari, Matteo; Pagano, Isabella; Sicilia, Daniela; Basso, Stefano; Borsa, Francesco; Ghigo, Mauro; Spiga, Daniele; Bandy, Thimoty; Benz, Willy; Brändli, Mathias; Bruno, Giordano; De Roche, Thierry; Piazza, Daniele; Rieder, Martin; Brandeker, Alexis; Klebor, Maximilian; Mogulsky, Valery; Schweitzer, Mario; Wieser, Matthias; Erikson, Anders; Rauer, Heike

    2016-07-01

    Thermal effects in PLATO are analyzed in terms of uniform temperature variations, longitudinal and lateral temperature gradients. We characterize these effects by evaluating the PSF centroid shifts and the Enclosed Energy variations across the whole FoV. These patterns can then be used to gauge the thermal behavior of each individual telescope in order to improve the local photometric calibration across the PLATO field of view.

  19. Thermal CFD Analysis of Tubular Light Guides

    Directory of Open Access Journals (Sweden)

    Ondřej Šikula

    2013-12-01

    Full Text Available Tubular light guides are applicable for daylighting of windowless areas in buildings. Despite their many positive indoor climate aspects they can also present some problems with heat losses and condensation. A computer CFD model focused on the evaluation of temperature distribution and air flow inside tubular light guides of different dimensions was studied. The physical model of the tested light guides of lengths more than 0.60 m proves shows that Rayleigh numbers are adequate for a turbulent air flow. The turbulent model was applied despite the small heat flux differences between the turbulent and laminar model. The CFD simulations resulted into conclusions that the growing ratio of length/diameter increases the heat transmission loss/linear transmittance as much as by 50 percent. Tubular light guides of smaller diameters have lower heat transmission losses compared to the wider ones of the same lengths with the same outdoor temperature being taken into account. The simulation results confirmed the thermal bridge effect of the tubular light guide tube inside the insulated flat roof details. The thermal transmittance of the studied light guides in the whole roof area was substituted with the point thermal bridges. This substitution gives possibility for simple thermal evaluation of the tubular light pipes in roof constructions.

  20. Determination of Polymers Thermal Degradation by Color Change Analysis

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2016-01-01

    Full Text Available Context: It has been observed that thermal degradation of thermoplastic polymers, when they are reprocessed by injection, extrusion and extrusion / injection, undergo color changes in the product, although it not has been established as this change occurs. Method: It analyzed the effect on thermal degradation caused by polymer type, processing type, polymer grade, rotation speed of the extrusion screw and number of reprocessing, which is quantified by the color change using an empirical equation, with experimental data obtained by analysis through a microcolor colorimeter. Results: It was found that the color change analysis provides information about progress of the thermal degradation and stability of thermoplastic polymers, which are undergoing to multiple reprocessing events and processes. Conclusions: It was established that this technique can be implemented as a simple and efficient measure of thermoplastic products quality control, according to their color change.

  1. Analysis of electrical and thermal stress effects on PCBM:P3HT solar cells by photocurrent and impedance spectroscopy modeling

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Rizzo, Antonio; Cester, Andrea

    2017-01-01

    We investigated the effects of electrical stress and thermal storage by means of photocurrent, Impedance Spectroscopy and Open Circuit Voltage Decay models. The electrical stress damages only the active layer, by reducing the generation rate, the polaron separation probability and the carrier...... lifetime. The thermal stress also degrades the anode interface. This reflects on the appearance of an inflection in the I-V photocurrent shape close to the operative region....

  2. Saturn Ring Data Analysis and Thermal Modeling

    Science.gov (United States)

    Dobson, Coleman

    2011-01-01

    CIRS, VIMS, UVIS, and ISS (Cassini's Composite Infrared Specrtometer, Visual and Infrared Mapping Spectrometer, Ultra Violet Imaging Spectrometer and Imaging Science Subsystem, respectively), have each operated in a multidimensional observation space and have acquired scans of the lit and unlit rings at multiple phase angles. To better understand physical and dynamical ring particle parametric dependence, we co-registered profiles from these three instruments, taken at a wide range of wavelengths, from ultraviolet through the thermal infrared, to associate changes in ring particle temperature with changes in observed brightness, specifically with albedos inferred by ISS, UVIS and VIMS. We work in a parameter space where the solar elevation range is constrained to 12 deg - 14 deg and the chosen radial region is the B3 region of the B ring; this region is the most optically thick region in Saturn's rings. From this compilation of multiple wavelength data, we construct and fit phase curves and color ratios using independent dynamical thermal models for ring structure and overplot Saturn, Saturn ring, and Solar spectra. Analysis of phase curve construction and color ratios reveals thermal emission to fall within the extrema of the ISS bandwidth and a geometrical dependence of reddening on phase angle, respectively. Analysis of spectra reveals Cassini CIRS Saturn spectra dominate Cassini CIRS B3 Ring Spectra from 19 to 1000 microns, while Earth-based B Ring Spectrum dominates Earth-based Saturn Spectrum from 0.4 to 4 microns. From our fits we test out dynamical thermal models; from the phase curves we derive ring albedos and non-lambertian properties of the ring particle surfaces; and from the color ratios we examine multiple scattering within the regolith of ring particles.

  3. Thermal Sensor Arrays for The Combinatorial Analysis of Thin Films

    Science.gov (United States)

    McCluskey, Patrick James

    2011-12-01

    transport. The parallel nano-scanning calorimeter (PnSC) has an array of sensors optimized to sense changes in enthalpy. In this case heat loss sensitivity is minimized with sensor geometry and a reference measurement scheme. The minimal heat loss and small addendum result in sensitivity on the order of 10 nJ/K at heating rates on the order of 104 K/s. The sensitivity is demonstrated by measuring the characteristics of the melting transformation of a 25 nm In film. The combinatorial capabilities of the device are demonstrated by creating and analyzing a library of thin-film (290 nm) Ni-Ti-Zr samples with in-plane composition gradients. The Ni-Ti-Zr films are crystallized in-situ by local heating and the temperature dependence of the martensite transformation on Zr content is detected. Further analysis of the Ni-Ti-Zr samples reveals that the as-deposited amorphous samples crystallize in a multi-stage process that is a function of composition. The features of the calorimetry traces are identified with the help of x-ray diffraction measurements of the crystallized samples. Crystallization at these fast heating rates results in suppression of structural relaxation, increased crystallization temperature (allowing the detection of the glass transition), and an ultra-fine nanocrystalline grain structure with non-equilibrium phases. The characteristics of the martensite-austenite phase transformation are investigated by PnSC to determine the effects of high-temperature (900°C) heat treatments and low-temperature (450°C) thermal cycling. Heat treatments produce precipitates that vary with Zr content and alter the transformation temperature. Thermal cycling results in the accumulation of plastic deformation, which relaxes internal stresses and reduces the transformation temperature. This effect, known as thermal fatigue, is reduced in these samples due to the ultra-fine grain structure, which suppresses dislocation mobility.

  4. Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    George OGUNTALA

    2017-08-01

    Full Text Available In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the thermal performance of the porous fin increases. The numerical solutions by the Haar wavelet collocation method are in good agreement with the standard numerical solutions.

  5. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    Science.gov (United States)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  6. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  7. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    Science.gov (United States)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  8. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  9. APPLICATIONS OF THERMAL-WAVE PHYSICS TO SEMICONDUCTOR MATERIALS ANALYSIS

    OpenAIRE

    Rosencwaig, A.

    1983-01-01

    Nonspectroscopic applications of thermal-wave physics, in particular those involving materials analysis through thermal-wave imaging, and quantitative thin-film thickness measurements, are described for the study of semiconductor materials and devices.

  10. Differential thermal analysis microsystem for explosive detection

    DEFF Research Database (Denmark)

    Olsen, Jesper Kenneth; Greve, Anders; Senesac, L.

    2011-01-01

    A micro differential thermal analysis (DTA) system is used for detection of trace explosive particles. The DTA system consists of two silicon micro chips with integrated heaters and temperature sensors. One chip is used for reference and one for the measurement sample. The sensor is constructed a...... of the Xsense project at the Technical University of Denmark (DTU) which combines four independent sensing techniques, these micro DNT sensors will be included in handheld explosives detectors with applications in homeland security and landmine clearance.......A micro differential thermal analysis (DTA) system is used for detection of trace explosive particles. The DTA system consists of two silicon micro chips with integrated heaters and temperature sensors. One chip is used for reference and one for the measurement sample. The sensor is constructed...... as a small silicon nitride membrane incorporating heater elements and a temperature measurement resistor. In this manuscript the DTA system is described and tested by measuring calorimetric response of 3 different kinds of explosives (TNT, RDX and PETN). This project is carried out under the framework...

  11. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    Science.gov (United States)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  12. Thermal analysis of superconducting undulator cryomodules

    Science.gov (United States)

    Shiroyanagi, Y.; Doose, C.; Fuerst, J.; Harkay, K.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.

    2015-12-01

    A cryocooler-cooled superconducting undulator (SCU0) has been operating in the Advanced Photon Source (APS) storage ring since January of 2013. Based on lessons learned from the construction and operation of SCU0, a second superconducting undulator (SCU1) has been built and cold tested stand-alone. An excess cooling capacity measurement and static heat load analysis show a large improvement of cryogenic performance of SCU1 compared with SCU0. ANSYS-based thermal analysis of these cryomodules incorporating all the cooling circuits was completed. Comparisons between measured and calculated temperatures at the three operating conditions of the cryomodule (static, beam heat only, beam heat and magnet current) will be presented.

  13. Analysis of the effect of renal excretory system cooling during thermal radiofrequency ablation in an animal model

    Directory of Open Access Journals (Sweden)

    Andre Meireles

    2014-01-01

    Full Text Available Objective: Analysis of renal excretory system integrity and efficacy of radiofrequency ablation with and without irrigation with saline at 2 o C (SF2. Materials and Methods: The median third of sixteen kidneys were submitted to radiofrequency (exposition of 1 cm controlled by intra-surgical ultrasound, with eight minutes cycles and median temperature of 90 o C in eight female pigs. One excretory renal system was cooled with SF2, at a 30ml/min rate, and the other kidney was not. After 14 days of post-operatory, the biggest diameters of the lesions and the radiological aspects of the excretory system were compared by bilateral ascending pyelogram and the animals were sacrificed in order to perform histological analysis. Results: There were no significant differences between the diameters of the kidney lesions whether or not exposed to cooling of the excretory system. Median diameter of the cooled kidneys and not cooled kidneys were respectively (in mm: anteroposterior: 11.46 vs. 12.5 (p = 0.23; longitudinal: 17.94 vs. 18.84 (p = 0.62; depth: 11.38 vs. 12.25 (p = 0.47. There was no lesion of the excretory system or signs of leakage of contrast media or hydronephrosis at ascending pyelogram. Conclusion: Cooling of excretory system during radiofrequency ablation does not significantly alter generated coagulation necrosis or affect the integrity of the excretory system in the studied model.

  14. Thermal-Signature-Based Sleep Analysis Sensor

    Directory of Open Access Journals (Sweden)

    Ali Seba

    2017-10-01

    Full Text Available This paper addresses the development of a new technique in the sleep analysis domain. Sleep is defined as a periodic physiological state during which vigilance is suspended and reactivity to external stimulations diminished. We sleep on average between six and nine hours per night and our sleep is composed of four to six cycles of about 90 min each. Each of these cycles is composed of a succession of several stages of sleep that vary in depth. Analysis of sleep is usually done via polysomnography. This examination consists of recording, among other things, electrical cerebral activity by electroencephalography (EEG, ocular movements by electrooculography (EOG, and chin muscle tone by electromyography (EMG. Recordings are made mostly in a hospital, more specifically in a service for monitoring the pathologies related to sleep. The readings are then interpreted manually by an expert to generate a hypnogram, a curve showing the succession of sleep stages during the night in 30s epochs. The proposed method is based on the follow-up of the thermal signature that makes it possible to classify the activity into three classes: “awakening,” “calm sleep,” and “restless sleep”. The contribution of this non-invasive method is part of the screening of sleep disorders, to be validated by a more complete analysis of the sleep. The measure provided by this new system, based on temperature monitoring (patient and ambient, aims to be integrated into the tele-medicine platform developed within the framework of the Smart-EEG project by the SYEL–SYstèmes ELectroniques team. Analysis of the data collected during the first surveys carried out with this method showed a correlation between thermal signature and activity during sleep. The advantage of this method lies in its simplicity and the possibility of carrying out measurements of activity during sleep and without direct contact with the patient at home or hospitals.

  15. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  16. Thermal Analysis of Nanofluids Using Modeling and Molecular Dynamics Simulation

    Science.gov (United States)

    Namboori, P. K. Krishnan; Vasavi, C. S.; Gopal, K. Varun; Gopakumar, Deepa; Ramachandran, K. I.; Narayanan, B. Sabarish

    2010-10-01

    Nanofluids are nanotechnology-based heat transfer fluids obtained by suspending nanometer-sized particles in conventional heat transfer fluids in a stable manner. In many of the physical phenomena such as boiling and properties such as latent heat, thermal conductivity and heat transfer coefficient, there is significant change on addition of nanoparticles. These exceptional qualities of Nanofluids mainly depend on the atomic level mechanisms, which in turn govern all mechanical properties like strength, Young's modulus, Poisson's ratio, compressibility etc. Control over the fundamental thermo physical properties of the working medium will help to understand these unique phenomena of nanofluids to a great extent. Macroscopic modeling approaches, which are based on conventional relations of thermodynamics, have been proved to be incompetent to explain this difference. Atomistic `modeling and simulation' has been emerged out as an efficient alternative for this. The enhancement of thermal conductivity of water by suspending nanoparticle inclusions has been experimented and proved to be an effective method of enhancing convective heat dissipation. This work mainly deals with characterization of the thermal conductivity of nanofluids. Nano particle sized aluminium oxide; copper oxide and titanium dioxide have been taken in this work for the analysis of thermal conductivity. The effect of thermal conductivity on parameters like volume concentration of the fluid, nature of particle material and size of the particle has been computationally formulated. It has been found that there is an increase in effective thermal conductivity of the fluid by the addition of nanomaterials ascertaining an improvement in the heat transfer behavior of nanofluids. This facilitates the reduction in size of such heat transfer systems (radiators) and lead to increased energy and fuel efficiency, lower pollution and improved reliability.

  17. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  18. Infrared thermal facial image sequence registration analysis and verification

    Science.gov (United States)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  19. Microlevel thermal effects in metal matrix composites

    Science.gov (United States)

    Herakovich, Carl T.

    1990-01-01

    A method for studying the influence of thermal effects on the inelastic response of metal matrix composites is reviewed. A micromechanics approach based upon the method of cells is shown to be quite versatile for studying a variety of materials response phenomena. Yielding and inelastic response of the composite are predicted as functions of thermal stresses, yielding of the matrix, and imperfect fiber/matrix bonding. Results are presented in the form of yield surfaces and nonlinear stress-strain curves for unidirectional and laminated boron/aluminum and silicon-carbide/titanium.

  20. Thermal analysis of cement pastes with superabsorbent polymers

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede; Lukosiute, Irena

    2013-01-01

    Thermal analysis of cement systems is very helpful in the understanding of many different properties of cementitious compounds, both for the original reacting compounds, and also for the resulting hydration products. Superabsorbent polymers can be added to cement systems with many different reasons......, so it is relevant that fundamental knowledge of this new compound on the development of hydration is well understood [1-3]. This paper reports research on thermal analysis of cement pastes with superabsorbent polymers. We have studied several parameters: the concentration of SAP in the system......, the effect of particle size distribution, and their influence on the hydration process with focus on cement-silica systems. This is done at different thermodynamic conditions, so the energy of activation in the different systems can be accessed. This paper provides information relevant to hydration modelling...

  1. Effects of radiant temperature on thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, Ibrahim; Kaynakli, Omer; Yigit, Abdulvahap [Uludag University, Bursa (Turkey). Faculty of Engineering and Architecture, Department of Mechanical Engineering

    2007-09-15

    The aim of this paper is to investigate the local differences between body segments caused by high radiant temperature, and to analyze the interior surface temperatures for different wall and ceiling constructions with their effect on thermal comfort. For the segment-wise thermal interactions between human body and its surrounding, simulations have been conducted by appropriately modifying Gagge 2-node model to multi-segment case to demonstrate the local differences. Simulation results are found to be in good agreement with experimental and simulation results reported in the literature. To calculate the interior surface temperatures of the wall and ceiling, the sol-air temperature approach is used for convenience. It is shown in the paper that the body segments close the relatively hot surfaces are more affected than others and interior surface temperatures of un-insulated walls and ceilings exposed to a strong solar radiation reach high levels, all of which cause thermal discomfort for the occupants in buildings. (author)

  2. Thermal analysis studies of poly(etheretherketone)/hydroxyapatite biocomposite mixtures.

    Science.gov (United States)

    Meenan, B J; McClorey, C; Akay, M

    2000-08-01

    Biocomposite formulations which have the potential to combine the proven mechanical performance of poly(etheretherketone) (PEEK) with the inherent bioactivity of hydroxyapatite (HA), may have a utility as load-bearing materials in a medical implant context. The effect of thermal processing on the relevant properties of the PEEK and/or HA components in any fabricated composite structure is, however, an important consideration for their effective exploitation. This paper reports the results of a detailed thermal characterization study of a series of PEEK/HA mixtures using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC). The TGA analyses show minimal weight loss for all of the mixtures and for a pure PEEK sample up to approximately 530 degrees C. Above this point there is a sharp on-set of decomposition for the PEEK component in each case. The temperature at which this feature occurs varies for each mixture in the approximate range 539-556 degrees C. This observation is supported by the presence of exotherms in the corresponding DSC scans, in the same temperature region, which are also assigned to PEEK decomposition. The temperature at which the degradation on-set occurs is found to decrease with increasing HA contribution. The use of the modulated DSC technique allows a number of important thermal events, not easily identifiable from the data obtained by the conventional method, to be clearly observed. In particular, the glass transition temperature (Tg) of the polymer can now be accurately determined. Using these thermal analysis data, calculations of the % crystallinity of PEEK in the mixtures have been made and compared with that of a 100% polymer sample. From these studies it is evident that the presence of HA does not adversely affect the degree of crystallinity of the PEEK component in the mixtures of interest over the thermal range studied. Copyright 2000 Kluwer Academic

  3. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  4. Effect of C16TMA contents on the thermal stability of organo-bentonites: In situ X-ray diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kooli, Fethi, E-mail: fkooli@taibahu.edu.sa [Taibah University, Department of Chemistry, PO Box 30002, Al-Madinah Al-Munawwarah (Saudi Arabia)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer Organo-bentonites were prepared at C16TMABr/CEC ratios up to 11. Black-Right-Pointing-Pointer Disorder configuration of C16TMA cations was observed at higher C16TMABr/CEC ratios. Black-Right-Pointing-Pointer The evolved gases during the calcinations of organoclays were analyzed by MS-TG. Black-Right-Pointing-Pointer In situ XRD technique detected clearly the phase disorder in the range 50-150 Degree-Sign C. Black-Right-Pointing-Pointer Collapse of organoclays depended on the temperature and the used atmospheres. - Abstract: Different concentrations of cetyl trimethylammonium bromide solutions were cation exchanged with bentonite clay mineral, at room temperature. The resulting organoclays were characterized by elemental analysis C and N, X-ray diffraction and thermal gravimetric analysis. The evolved gases during the calcination of organoclays were identified by online mass spectrometry coupled with thermal gravimetry technique. Meanwhile, in situ X-ray diffraction was used to have insight on the thermal stability of the organoclays in air atmosphere. X-ray diffraction at room temperature indicated that a disorder transition phase from bilayer to paraffin configuration occurred at higher surfactant-cation exchange capacity ratios, with two phases at 3.25 and 2.00 nm, respectively. The in situ X-ray diffraction confirmed the presence of these two phases with improved reflections intensities in the range of 100-200 Degree-Sign C. Above this temperature, both phases collapsed due to the decomposition of the surfactants as recorded by mass spectrometry thermal gravimetric analysis.

  5. Deformation analysis considering thermal expansion of injection mold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok [Samsung Electronics Co., LTD., Seoul (Korea, Republic of)

    2015-09-15

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

  6. Aging effects on vertical graphene nanosheets and their thermal stability

    Science.gov (United States)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2017-10-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  7. Thermal analysis of wood-steel hybrid construction

    OpenAIRE

    Fonseca, E.M.M.; Ramos, H.M.E.; Silva, H.J.G.; Ferreira, Débora

    2013-01-01

    The main objective of this work is to provide the thermal analysis in wood-steel hybrid elements for building constructions under fire conditions. A transient thermal analysis with nonlinear material behaviour will be solved with ANSYS program. The use of wood-steel hybrid models has major advantages as increased fire resistance, and improved high strength. Wood is a lightweight material, easy to assemble, great architectural features, thermal and acoustic characteristics. However, the high v...

  8. Scaling thermal effects in radial flow

    Science.gov (United States)

    Hudspeth, R. T.; Guenther, R. B.; Roley, K. L.; McDougal, W. G.

    To adequately evaluate the environmental impact of siting nuclear waste repositories in basalt aquicludes, it is essential to know the effects on parameter identification algorithms of thermal gradients that exist in these basaltic aquicludes. Temperatures of approximately 60°C and pressures of approximately 150 atm can be expected at potential repository sites located at depths of approximately 1000 m. The phenomenon of over-recovery has been observed in some pumping tests conducted at the Hanford Nuclear Reservation located in the Pasco Basin adjacent to the Columbia River in the state of Washington, USA. This over-recovery phenomenon may possibly be due to variations in the fluid density caused by thermal gradients. To assess the potential effects of these thermal gradients on indirect parameter identification algorithms, a systematic scaling of the governing field equations is required in order to obtain dimensionless equations based on the principle of similarity. The constitutive relationships for the specific weight of the fluid and for the porosity of the aquiclude are shown to be exponentially dependent on the pressure gradient. The dynamic pressure is converted to the piezometric head and the flow equation for the piezometric head is then scaled in radial coordinates. Order-of-magnitude estimates are made for all variables in unsteady flow for a typical well test in a basaltic aquiclude. Retaining all nonlinear terms, the parametric dependency of the flow equation on the classical dimensionless thermal and hydraulic parameters is demonstrated. These classical parameters include the Batchelor, Fourier, Froude, Grashof, and Reynolds Numbers associated with thermal flows. The flow equation is linearized from order-of-magnitude estimates based on these classical parameters for application in parameter identification algorithms.

  9. Analysis of Thermal Performance in a Bidirectional Thermocycler by Including Thermal Contact Characteristics

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-12-01

    Full Text Available This paper illustrates an application of a technique for predicting the thermal characteristics of a bidirectional thermocycling device for polymerase chain reaction (PCR. The micromilling chamber is oscillated by a servo motor and contacted with different isothermal heating blocks to successfully amplify the DNA templates. Because a comprehensive database of contact resistance factors does not exist, it causes researchers to not take thermal contact resistance into consideration at all. We are motivated to accurately determine the thermal characteristics of the reaction chamber with thermal contact effects existing between the heater surface and the chamber surface. Numerical results show that the thermal contact effects between the heating blocks and the reaction chamber dominate the temperature variations and the ramping rates inside the PCR chamber. However, the influences of various temperatures of the ambient conditions on the sample temperature during three PCR steps can be negligible. The experimental temperature profiles are compared well with the numerical simulations by considering the thermal contact conductance coefficient which is empirical by the experimental fitting. To take thermal contact conductance coefficients into consideration in the thermal simulation is recommended to predict a reasonable temperature profile of the reaction chamber during various thermal cycling processes. Finally, the PCR experiments present that Hygromycin B DNA templates are amplified successfully. Furthermore, our group is the first group to introduce the thermal contact effect into theoretical study that has been applied to the design of a PCR device, and to perform the PCR process in a bidirectional thermocycler.

  10. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  11. Analysis of thermally-degrading, confined HMX

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  12. An Integrated Approach to Thermal Analysis of Pharmaceutical Solids

    Science.gov (United States)

    Riley, Shelley R. Rabel

    2015-01-01

    A three-tiered experiment for undergraduate Instrumental Analysis students is presented in which students characterize the solid-state thermal behavior of an active pharmaceutical ingredient (acetaminophen) and excipient (a-lactose hydrate) using differential scanning calorimetry, thermogravimetric analysis, and thermal microscopy. Students are…

  13. Application of thermal analysis techniques in activated carbon production

    Science.gov (United States)

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  14. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    Science.gov (United States)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  15. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    Science.gov (United States)

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  16. High Spatial Resolution Thermal Infrared Remote Sensing Data for Analysis of the Atlanta, Georgia, Urban Heat Island Effect and Its Impacts on the Environment

    Science.gov (United States)

    Quattrochi, Dale A.

    2007-01-01

    The twenty-first century is the first "urban century" according to the United Nations Development Program. The focus of cities reflects awareness of the growing percentage of the world's population that lives in urban areas. In environmental terms, cities are the original producers of many of the global problems related to waste disposal, air and water pollution, and associated environmental and ecological challenges. Expansion of cities, both in population and areal extent, is a relentless process. In 2000, approximately 3 billion people representing about 40% of the global population, resided in urban areas. Urban population will continue to rise substantially over the next several decades according to UN estimates, and most of this growth will Occur in developing countries. The UN estimates that by 2025, 60% of the world's population will live in urban areas. As a consequence, the number of"megacities" (those cities with populations of 10 million inhabitants or more) will increase by 100 by 2025. Thus, there is a critical need to understand urban areas and what their impacts are on environmental, ecological and hydrologic resources, as well as on the local, regional, and even global climate. One of the more egregious side effects of urbanization is the increase in surface and air temperatures that lead to deterioration in air quality. In the United States, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency in 1997, nearly 300 counties in 34 states will not meet these new air quality standards for ground level ozone. Mitigation of the urban heat island (UHI) effect is actively being evaluated as a possible way to reduce ground ozone levels in cities and assist states in improving air quality. Foremost in the analysis of how the UHI affects air quality and other environmental factors is the use of remote sensing technology and data to characterize urban land covers in sufficient detail to quantifiably measure

  17. Effects of insular stimulation on thermal nociception.

    Science.gov (United States)

    Denis, D J; Marouf, R; Rainville, P; Bouthillier, A; Nguyen, D K

    2016-05-01

    Electrical stimulation used for brain mapping in the postero-superior insula can evoke pain. The effects of prolonged high frequency insular stimulation on pain thresholds are unknown. Prolonged high frequency insular stimulation, by virtue of its inhibitory properties on networks, could decrease thermal nociception. Epileptic subjects had electrodes implanted in the insular cortex for the purpose of epileptic focus resection. Thermal and pressure nociceptive thresholds were tested bilaterally on the forearm on two consecutive days. Randomly assigned double-blind high frequency (150 Hz) insular stimulation took place for 10 min before pain testing either on the first day or on the second day. Six subjects (three females; mean age of 35 years) were included. Insular stimulation increased heat pain threshold on the ipsilateral (p = 0.003; n = 6) and contralateral sides (p = 0.047; n = 6). Differences in cold pain threshold did not reach statistical significance (ipsilateral: p = 0.341, contralateral: p = 0.143; n = 6), but one subject had a profound decrease in both heat and cold pain responses. Pressure pain threshold was not modified by insular stimulation (ipsilateral: p = 0.1123; contralateral: p = 0.1192; n = 6). Two of the three subjects who had a postero-superior operculo-insulectomy developed central pain with contralateral thermal nociceptive deficit. High frequency inhibitory postero-superior insular stimulation may have the potential to decrease thermal nociception. Together with previous studies, our data support the notion that the integrity of this brain region is necessary for thermal but not pressure nociceptive processing. © 2015 European Pain Federation - EFIC®

  18. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew D. Hinds

    2001-10-17

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise.

  19. Thermal analysis and design of passive solar buildings

    CERN Document Server

    Athienitis, AK

    2013-01-01

    Passive solar design techniques are becoming increasingly important in building design. This design reference book takes the building engineer or physicist step-by-step through the thermal analysis and design of passive solar buildings. In particular it emphasises two important topics: the maximum utilization of available solar energy and thermal storage, and the sizing of an appropriate auxiliary heating/cooling system in conjunction with good thermal control.Thermal Analysis and Design of Passive Solar Buildings is an important contribution towards the optimization of buildings as systems th

  20. Thermal effects in microfluidics with thermal conductivity spatially modulated

    Science.gov (United States)

    Vargas Toro, Agustín.

    2014-05-01

    A heat transfer model on a microfluidic is resolved analytically. The model describes a fluid at rest between two parallel plates where each plate is maintained at a differentially specified temperature and the thermal conductivity of the microfluidic is spatially modulated. The heat transfer model in such micro-hydrostatic configuration is analytically resolved using the technique of the Laplace transform applying the Bromwich Integral and the Residue theorem. The temperature outline in the microfluidic is presented as an infinite series of Bessel functions. It is shown that the result for the thermal conductivity spatially modulated has as a particular case the solution when the thermal conductivity is spatially constant. All computations were performed using the computer algebra software Maple. It is claimed that the analytical obtained results are important for the design of nanoscale devices with applications in biotechnology. Furthermore, it is suggested some future research lines such as the study of the heat transfer model in a microfluidic resting between coaxial cylinders with radially modulated thermal conductivity in order to achieve future developments in this area.

  1. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  2. Artificial Retina Project: Electromagnetic and Thermal Effects

    Energy Technology Data Exchange (ETDEWEB)

    Lazzi, Gianluca

    2014-08-29

    This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

  3. Thermal states of the Kitaev honeycomb model: Bures metric analysis

    Science.gov (United States)

    Abasto, Damian F.; Zanardi, Paolo

    2009-01-01

    We analyze the Bures metric over the canonical thermal states for the Kitaev honeycomb mode. In this way the effects of finite temperature on topological phase transitions can be studied. Different regions in the parameter space of the model can be clearly identified in terms of different temperature scaling behavior of the Bures metric tensor. Furthermore, we show a simple relation between the metric elements and the crossover temperature between the quasicritical and the quasiclassical regions. These results extend the analysis of Zhao and Zhou [e-print arXiv:/0803.0814v1] and Yang [Phys. Rev. A 78, 012304 (2008)] to finite temperatures.

  4. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    National Research Council Canada - National Science Library

    Hawileh, Rami A; Rasheed, Hayder A

    2017-01-01

    ...) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves...

  5. Thermal Performance Analysis of a Geologic Borehole Repository

    Energy Technology Data Exchange (ETDEWEB)

    Reagin, Lauren [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-16

    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of two WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to

  6. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    Science.gov (United States)

    Cheng, H.; Li, H. B.; Zhang, W.; Wu, Z. Q.; Liu, B. R.

    2016-09-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure

  7. Thermal analysis of a hypersonic wing test structure

    Science.gov (United States)

    Sandlin, Doral R.; Swanson, Neil J., Jr.

    1989-01-01

    The three-dimensional finite element modeling techniques developed for the thermal analysis of a hypersonic wing test structure (HWTS) are described. The computed results are compared to measured test data. In addition, the results of a NASA two-dimensional parameter finite difference local thermal model and the results of a contractor two-dimensional lumped parameter finite difference local thermal model will be presented.

  8. Effective thermal conductivity of a thin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, P.E. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering; Niemann, R.C. [Argonne National Lab., IL (United States)

    1996-12-31

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thickness. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relatively low thermal conductivity. Results indicate that, below some threshold thickness, the composite thermal conductivity increases with decreasing thickness, while above the threshold the thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between filler and matrix thermal conductivities.

  9. Physical effects of thermal pollution in lakes

    Science.gov (United States)

    Râman Vinnâ, Love; Wüest, Alfred; Bouffard, Damien

    2017-05-01

    Anthropogenic heat emissions into inland waters influence water temperature and affect stratification, heat and nutrient fluxes, deep water renewal, and biota. Given the increased thermal stress on these systems by growing cooling demands of riparian/coastal infrastructures in combination with climate warming, the question arises on how to best monitor and manage these systems. In this study, we investigate local and system-wide physical effects on the medium-sized perialpine Lake Biel (Switzerland), influenced by point-source cooling water emission from an upstream nuclear power plant (heat emission ˜700 MW, ˜18 W m-2 lake wide). We use one-dimensional (SIMSTRAT) and three-dimensional (Delft3D-Flow) hydrodynamic numerical simulations and provide model resolution guidelines for future studies of thermal pollution. The effects on Lake Biel by the emitted excess heat are summarized as: (i) clear seasonal trend in temperature increase, locally up to 3.4°C and system-wide volume mean ˜0.3°C, which corresponds to one decade of regional surface water climate warming; (ii) the majority of supplied thermal pollution (˜60%) leaves this short residence time (˜58 days) system via the main outlet, whereas the remaining heat exits to the atmosphere; (iii) increased length of stratified period due to the stabilizing effects of additional heat; (iv) system-wide effects such as warmer temperature, prolonged stratified period, and river-caused epilimnion flushing are resolved by both models whereas local raised temperature and river short circuiting was only identifiable with the three-dimensional model approach. This model-based method provides an ideal tool to assess man-made impacts on lakes and their downstream outflows.

  10. Thermal analysis of LED lamps for optimal driver integration

    NARCIS (Netherlands)

    Perpiñà, X.; Werkhoven, R.J.; Vellvehi, M.; Jakovenko, J.; Jordà, X.; Kunen, J.M.G.; Bancken, P.; Bolt, P.J.

    2015-01-01

    This paper studies the thermal influence of a light-emitting diode (LED) driver on a retrofit LED lamp, also reporting on a procedure for its thermal characterization and multiscale modeling. In this analysis, temperature is measured by infrared thermography and monitoring specific locations with

  11. Lumped thermal capacitance analysis of transient heat conduction ...

    African Journals Online (AJOL)

    The thermal energy transferred by unsteady flow of the coolant to the vessel was determined as internal energy change. Numerical algorithms for Matlab Code were implemented to generate data for transient analysis and simulation. The simulations indicated that the temperature variations and the the-rmal stresses were ...

  12. Thermal analysis of cold vacuum drying of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G.

    1998-07-20

    The thermal analysis examined transient thermal and chemical behavior of the Multi canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with Mark IV N, Reactor spent fuel in four fuel baskets and one scrap basket. This analysis provides the basis for the MCO thermal behavior at the CVD Facility for its Phase 2 Safety Analysis Report (revision 4).

  13. Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, E. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada); Djilali, N. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Bahrami, M. [Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada)

    2011-01-01

    Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a PEM fuel cell. The analysis of this process requires determination of the effective thermal conductivity as well as the thermal contact resistance associated with the interface between the GDL and adjacent surfaces/layers. In the present study, a custom-made test bed that allows the separation of effective thermal conductivity and thermal contact resistance in GDLs under vacuum and ambient conditions is described. Measurements under varying compressive loads are performed using Toray carbon paper samples with a porosity of 78% for a range of thicknesses. The measurements are complemented by compact analytical models that achieve good agreement with experimental data. A key finding is that thermal contact resistance is the dominant component of the total thermal resistance; neglecting this phenomenon may result in significant errors in evaluating heat transfer rates and temperature distributions. (author)

  14. Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: Hysteresis effect under cyclic compressive load

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, E. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada); Djilali, N. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Bahrami, M. [Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada)

    2010-12-15

    Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a PEM fuel cell. The analysis of this process requires the determination of the effective thermal conductivity as well as the thermal contact resistance between the GDL and adjacent surfaces/layers. The Part 1 companion paper describes an experimental procedure and a test bed devised to allow separation of the effective thermal conductivity and thermal contact resistance, and presents measurements under a range of static compressive loads. In practice, during operation of a fuel cell stack, the compressive load on the GDL changes. In the present study, experiments are performed on Toray carbon papers with 78% porosity and 5% PTFE under a cyclic compressive load. Results show a significant hysteresis in the loading and unloading cycle data for total thermal resistance, thermal contact resistance (TCR), effective thermal conductivity, thickness, and porosity. It is found that after 5 loading-unloading cycles, the geometrical, mechanical, and thermal parameters reach a ''steady-state'' condition and remain unchanged. A key finding of this study is that the TCR is the dominant component of the GDL total thermal resistance with a significant hysteresis resulting in up to a 34% difference between the loading and unloading cycle data. This work aims to clarify the impact of unsteady/cyclic compression on the thermal and structural properties of GDLs and provides new insights on the importance of TCR which is a critical interfacial transport phenomenon. (author)

  15. Structural and magnetic analysis of La0.67Ca0.33MnO3 nanoparticles thermally treated: Acoustic detection of the magnetocaloric effect

    Science.gov (United States)

    Pena, C. F.; Soffner, M. E.; Mansanares, A. M.; Sampaio, J. A.; Gandra, F. C. G.; da Silva, E. C.; Vargas, H.

    2017-10-01

    Nanoparticles of La0.67Ca0.33MnO3 were synthesized via the sol-gel method, thermally treated and characterized using X-ray diffraction, magnetization, electron spin resonance and magnetoacoustic experiments. The formation of the desired perovskite structure was verified and the average size of the nanoparticles was also determined. An increase of the particle size by rising the treatment temperature was observed. The Curie temperature and the isothermal entropy variation of the samples were obtained from the magnetization data. The isothermal entropy change, produced under the application of an external magnetic field, which expresses the magnetocaloric effect, became significantly larger for the samples treated at higher temperatures. These results are in good agreement with those obtained by magnetoacoustics, based on the direct and contactless measurement of the temperature change, validating the ability of the technique to study the magnetocaloric effect in reduced mass and nanoparticles samples.

  16. Spectroscopic, morphological, thermal and dielectrical analysis of ...

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... thesis of composite is evident from FTIR, XRD and SEM characterization techniques. The composite shows improved thermal stability as compared with pure PTh, which opens the gate for the material to be used for high-temperature appli- cation purposes. Dielectric study shows that the presence of.

  17. Homotopy analysis method for variable thermal conductivity heat flux gage with edge contact resistance

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Abdul [Gonzaga Univ., Spokane, WA (United States). Dept. of Mechanical Engineering; Khani, Farzad [Bakhtar Institute of Higher Education, Ilam (Iran, Islamic Republic of). Dept. of Mathematics; Darvishi, Mohammad Taghi [Razi Univ., Kermanshah (Iran, Islamic Republic of). Dept. of Mathematics

    2010-10-15

    The homotopy analysis method (HAM) has been used to develop an analytical solution for the thermal performance of a circular-thin-foil heat flux gage with temperature dependent thermal conductivity and thermal contact resistance between the edge of the foil and the heat sink. Temperature distributions in the foil are presented illustrating the effect of incident heat flux, radiation emission from the foil, variable thermal conductivity, and contact resistance between the foil and the heat sink. The HAM results agree up to four places of decimal with the numerical solutions generated using the symbolic algebra package Maple. This close comparison vouches for the high accuracy and stability of the analytic solution. (orig.)

  18. Analysis of intermediate pressure SiH4/He capacitively coupled plasma for deposition of an amorphous hydrogenated silicon film in consideration of thermal diffusion effects

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2017-08-01

    To achieve rapid, uniform deposition of an amorphous hydrogenated silicon (a-Si:H) film, a capacitively coupled plasma (CCP) is often used at an intermediate pressure (>100 Pa), with a silane (SiH4)-based mixture. At these pressures, heavy particle interactions (such as ion-ion, ion-neutral, and neutral-neutral reactions) contribute significantly to the formation of precursor radicals. By adding a consideration of the thermal diffusion effects to the neutral transport equation, the chemical processes have been numerically analyzed with variation in the number fraction of SiH4 and electrode spacing using a two-dimensional fluid model of radio frequency discharges in a cylindrically symmetric CCP reactor. The non-uniformity of the deposition rate profiles increases consistently as electrode spacing increases, although the non-uniformity of the plasma parameters decreases with the increase of electrode spacing. The simulated deposition rate profiles match well with the experimental data for the change of electrode spacing. Based on the validation of our model, we propose predictive designs to potentially improve the reactor and process by modifying the thermal and electrical surface conditions.

  19. Viscous Dissipation Effects on the Motion of Casson Fluid over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis

    Directory of Open Access Journals (Sweden)

    T. M. Ajayi

    2017-01-01

    Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.

  20. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    Science.gov (United States)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  1. a Study on the Thermal Vibration Analysis of the Graphite Disk Under Thermal Shock

    Science.gov (United States)

    Lee, Young-Shin; Kim, Jae-Hoon; Kim, Hyun-Soo; Kim, Duck-Hoi; Ku, Seong-Hoi; Moon, Soon-Il

    Graphite is applied to structural material of the high temperature reactor and nozzle of high energy rocket engine. The excessive vibration and stress field can be occurred for this material due to the severe thermal condition. In this study, the thermal stress and vibration characteristics of ATJ graphite under high temperature condition are investigated by finite element analysis (FEA). The specimen is designed as a disk shape in order to simulate the rocket nozzle combustion condition. The experiment of thermal heat is also conducted using by CO2 laser.

  2. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M

    2013-01-01

    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  3. Determining in-situ thermal conductivity of coarse textured materials through numerical analysis of thermal

    Science.gov (United States)

    Saito, H.; Hamamoto, S.; Moldrup, P.; Komatsu, T.

    2013-12-01

    Ground source heat pump (GSHP) systems use ground or groundwater as a heat/cooling source, typically by circulating anti-freezing solution inside a vertically installed closed-loop tube known as a U-tube to transfer heat to/from the ground. Since GSHP systems are based on renewable energy and can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems, use of GSHP systems has been rapidly increasing worldwide. However, environmental impacts by GSHP systems including thermal effects on subsurface physical-chemical and microbiological properties have not been fully investigated. To rigorously assess GSHP impact on the subsurface environment, ground thermal properties including thermal conductivity and heat capacity need to be accurately characterized. Ground thermal properties were investigated at two experimental sites at Tokyo University of Agriculture and Technology (TAT) and Saitama University (SA), both located in the Kanto area of Japan. Thermal properties were evaluated both by thermal probe measurements on boring core samples and by performing in-situ Thermal Response Tests (TRT) in 50-80 m deep U-tubes. At both TAT and SU sites, heat-pulse probe measurements gave unrealistic low thermal conductivities for coarse textured materials (dominated by particles > 75 micrometers). Such underestimation can be partly due to poor contact between probe and porous material and partly to markedly decreasing sample water content during drilling, carrying, and storing sandy/gravelly samples. A more reliable approach for estimating in-situ thermal conductivity of coarse textured materials is therefore needed, and may be based on the commonly used TRT test. However, analyses of TRT data is typically based on Kelvin's line source model and provides an average (effective) thermal property for the whole soil profile around the U-tube but not for each geological layer. The main objective of this study was therefore to develop a method

  4. Thermal stress analysis of the fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.

    1991-12-01

    This paper presents the results of a nonlinear finite-element analysis to determine the structural integrity of the walls of the nuclear fuel storage room in the Radio Isotope Power System Facility of the Fuels and Materials Examination Facility (FMEF) Project. The analysis was performed to assess the effects of thermal loading on the walls that would result from a loss-of-cooling accident. The results obtained from using the same three-dimensional finite-element model with different types of elements, the eight-node brick element and the nonlinear concrete element, and the calculated results using the analytical solutions, are compared. The concrete responses in terms of octahedral normal and shearing stresses are described. The crack and crush states of the concrete were determined on the basis of multiaxial failure criteria.

  5. The Effect of Thermal Mass on Annual Heat Load and Thermal Comfort in Cold Climate Construction

    DEFF Research Database (Denmark)

    Stevens, Vanessa; Kotol, Martin; Grunau, Bruno

    2016-01-01

    Thermal mass in building construction refers to a building material's ability to absorb and release heat based on changing environmental conditions. In building design, materials with high thermal mass used in climates with a diurnal temperature swing around the interior set-point temperature have...... been shown to reduce the annual heating demand. However, few studies exist regarding the effects of thermal mass in cold climates. The purpose of this research is to determine the effect of high thermal mass on the annual heat demand and thermal comfort in a typical Alaskan residence using energy...... that while increased thermal mass does have advantages in all climates, such as a decrease in summer overheating, it is not an effective strategy for decreasing annual heat demand in typical residential buildings in Alaska. (C) 2015 American Society of Civil Engineers....

  6. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  7. Shuttle TPS thermal performance and analysis methodology

    Science.gov (United States)

    Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.

    1983-01-01

    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.

  8. Competition between the Thermal Gradient and the Bimorph Effect in Locally Heated MEMS Actuators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mølhave, Kristian; Kristensen, Anders

    2009-01-01

    We have investigated the influence of thermal gradient effects in inhomogeneously heated MEMS/NEMS. The actuation perturbations caused by thermal gradients have been studied through static optothermal actuation experiments of a bi-material polymer based cantilever and supported by finite element...... modeling. As a result, bidirectional bending has been experimentally observed and interpreted as the competition between bimorph and thermal gradient effects. The competition has illustrated the importance of including the thermal gradient effect in the behavior analysis of bimorph driven MEMS/NEMS devices....

  9. The Analysis of Thermal Comfort in Kitchen

    Science.gov (United States)

    Ilma Rahmillah, Fety; Hotma Uli Tumanggor, Agustina; Dila Sari, Amarria

    2017-06-01

    Human also has a thermoreceptor which is a non-specialized sensory receptor that has relative changes in temperature. Thermal comfort is a very important element for human body. Kitchen as an important part of a home is often forgotten. Cooking in the kitchen is a routine activity which is done from the morning until the evening; begin with preparing breakfast, lunch and dinner. The problem in this study was the occurance of heat when cooking in the kitchen without air conditioning in tropical countries. This research analyzes thermal comfort while doing cooking activities in conventional kitchen with gas stoves in tropical dry season. Two residential kitchens are observed by measuring the temperature and humidity as well as analyze other possible factors. Psychometric chart is used to assess the comfort zone in the kitchen. This research is using Predicted Mean Vote (PMV) Index and Predicted Percentage Dissatisfied (PPD) Index. By using online psychometric chart, the sensation is in warm condition with the range value of PMV between 1.73 up to 2.36 and PPD 63% untill 90%. However, 71% respondents perceived morning kitchen thermal as comfortable.

  10. Effects of Screening on the Thermal Resistivity And Compressibility ...

    African Journals Online (AJOL)

    Models for computing thermal resistivity, compressibility ratio, and screening parameter of metals was developed and used to study the effects of screening on the thermal resistivity and compressibility ratio of metals. The results obtained revealed that the thermal resistivity of metals increases with an increase in the electron ...

  11. An effective thermal circuit model for electro-thermal simulation of SOI analog circuits

    Science.gov (United States)

    Cheng, Ming-C.; Zhang, Kun

    2011-08-01

    A physics-based thermal circuit model is developed for electro-thermal simulation of SOI analog circuits. The circuit model integrates a non-isothermal device thermal circuit with interconnect thermal networks and is validated with high accuracy against finite element simulations in different layout structures. The non-isothermal circuit model is implemented in BSIMSOI to account for self-heating effect (SHE) in a Spice simulator, and applied to electro-thermal simulation of an SOI cascode current mirror constructed using different layouts. Effects of layout design on electric and thermal behaviors are investigated in detail. Influences of BOX thickness are also examined. It has been shown that the proposed non-isothermal approach is able to effectively account for influences of layout design, self-heating, high temperature gradients along the islands, interconnect temperature distributions, thermal coupling, and heat losses via BOX and interconnects, etc., in SOI current mirror structures. The model provides basic concepts and thermal circuits that can be extended to develop an effective model for electro-thermal simulation of SOI analog ICs.

  12. Thermal analysis of disc brakes using finite element method

    Science.gov (United States)

    Jaenudin, Jamari, J.; Tauviqirrahman, M.

    2017-01-01

    Disc brakes are components of a vehicle that serve to slow or stop the rotation of the wheel. This paper discusses the phenomenon of heat distribution on the brake disc during braking. Heat distribution on the brake disc is caused by kinetic energy changing into mechanical energy. Energy changes occur during the braking process due to friction between the surface of the disc and a disc pad. The temperature resulting from this friction rises high. This thermal analysis on brake discs is aimed to evaluate the performance of an electric car in the braking process. The aim of this study is to analyze the thermal behavior of the brake discs using the Finite Element Method (FEM) through examining the heat distribution on the brake disc using 3-D modeling. Results obtained from the FEM reflect the effects of high heat due to the friction between the disc pad with the disc rotor. Results of the simulation study are used to identify the effect of the heat distribution that occurred during the braking process.

  13. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  14. The analysis of thermally stimulated processes

    CERN Document Server

    Chen, R; Pamplin, Brian

    1981-01-01

    Thermally stimulated processes include a number of phenomena - either physical or chemical in nature - in which a certain property of a substance is measured during controlled heating from a 'low' temperature. Workers and graduate students in a wide spectrum of fields require an introduction to methods of extracting information from such measurements. This book gives an interdisciplinary approach to various methods which may be applied to analytical chemistry including radiation dosimetry and determination of archaeological and geological ages. In addition, recent advances are included, such

  15. Analysis of a Radioisotope Thermal Rocket Engine

    Science.gov (United States)

    Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.

    2017-01-01

    The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.

  16. Investigation of the Effective Thermal Conductivity in Containment Wall of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of)

    2016-05-15

    Many computational codes used for analyzing pressure of containment was developed such as CAP (Containment Analysis Package). These computational codes consider concrete conductivity instead of thermal conductivity of containment wall which have special geometry as heat sink. For precise analysis, effective thermal conductivity of containment wall has to be measured in individual NPPs. Thermal properties of concrete such as thermal conductivity have been investigated as function of chemical composition and temperature. Generally, containment of OPR1000 is constructed by Prestressed (PS) concrete-a composite material. Containment wall of OPR1000 is made up of steel liner, tendon, rebar and concrete as shown in Figure 1. Role of steel liner protects release of radioactive materials so called leak tightness. The effective thermal conductivity of containment wall in OPR1000 is analyzed by numerical tool (CFD) and compared with thermal conductivity models in composite solids. The effective thermal conductivity of containment wall of OPR1000 is investigated by numerical analysis (CFD). The thermal conductivity of reinforced concrete is 18.6% higher than that of concrete only. Several models were compared with CFD results. Rayleigh-Parallel liner model agrees well with CFD results. Experiment results will be compared with CFD result and models. CFD result was calculated in low steel volume fraction (0.0809) than that of OPR1000 (0.1043). The effective thermal conductivity in OPR1000 has slightly higher than CFD result because of different volume fraction.

  17. Thermal control analysis of a primary mirror for large-aperture telescope

    Science.gov (United States)

    Tan, Yufeng; Wang, Jihong; Ren, Ge; Xie, Zongliang; He, Bi

    2017-07-01

    Extraneous thermal loads on the primary mirror of a large-aperture telescope directly influence the optical performance of the telescope through temperature gradients within the mirror and thermal boundary layer at the face sheet. In this paper, we propose a new thermal control system consisting of a flushing and sucking system for eliminating the excessive heat of a primary mirror. First, a 2.8 m-aperture lightweighted primary mirror is fabricated. Second, a thermo-optic analysis using finite element analysis is conducted in natural and forced convection. Finally, the optical performance denoted by Zernike polynomials with and without our proposed thermal control system is evaluated and examined. The comparative results reveal that the image quality of the primary mirror in forced convection is significantly enhanced with obvious reduction of optical surface distortion, thereby demonstrating the effectiveness of our proposed thermal control system.

  18. CFD analysis of aircraft fuel tanks thermal behaviour

    Science.gov (United States)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D’Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  19. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    conducted exploring the effects of the following parameters: pigment (hollow spheres) volume concentration (PVC), average sphere size or sphere size distribution, thermal conductivities of binder and sphere wall material, and sphere wall thickness. All the parameters affected the thermal conductivity...... of an epoxy coating, but simulations revealed that the most important parameters are the PVC, the sphere wall thickness, and the sphere wall material. The model can be used, qualitatively, to get an indication of the effect of important model parameters on the thermal conductivity of an HS-based coating...

  20. Thermal Hydraulic Analysis Using GIS on Application of HTR to Thermal Recovery of Heavy Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yangping Zhou

    2012-01-01

    Full Text Available At present, large water demand and carbon dioxide (CO2 emissions have emerged as challenges of steam injection for oil thermal recovery. This paper proposed a strategy of superheated steam injection by the high-temperature gas-cooled reactor (HTR for thermal recovery of heavy oil, which has less demand of water and emission of CO2. The paper outlines the problems of conventional steam injection and addresses the advantages of superheated steam injection by HTR from the aspects of technology, economy, and environment. A Geographic Information System (GIS embedded with a thermal hydraulic analysis function is designed and developed to analyze the strategy, which can make the analysis work more practical and credible. Thermal hydraulic analysis using this GIS is carried out by applying this strategy to a reference heavy oil field. Two kinds of injection are considered and compared: wet steam injection by conventional boilers and superheated steam injection by HTR. The heat loss, pressure drop, and possible phase transformation are calculated and analyzed when the steam flows through the pipeline and well tube and is finally injected into the oil reservoir. The result shows that the superheated steam injection from HTR is applicable and promising for thermal recovery of heavy oil reservoirs.

  1. THERMAL INSULATION EFFECTS ON ENERGY EFFICIENCY OF BUILDING STRUCTURES

    OpenAIRE

    M. Cvetkovska; Knezevic, M.; Rogac, M.

    2012-01-01

    This paper presents the use of Finite Element Method for heat transfer analysis. Connections wall-beam-floor structures with different positions of the thermal insulation have been analyzed and conclusions about energy efficiency and energy loss are made. Keywords: heat transfer, numerical analysis, finite elements, thermal insulation, energy efficiency.

  2. ISS-CREAM Thermal and Fluid System Design and Analysis

    Science.gov (United States)

    Thorpe, Rosemary S.

    2015-01-01

    Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.

  3. Analysis of Thermal Comfort in an Intelligent Building

    Science.gov (United States)

    Majewski, Grzegorz; Telejko, Marek; Orman, Łukasz J.

    2017-06-01

    Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  4. Thermal Analysis and Calorimetry Techniques for Catalytic Investigations

    Science.gov (United States)

    Le Parlouër, Pierre

    The use of thermal analysis and calorimetry techniques is quite an old and known field of applications for the catalytic investigations and many publications have been published on the various topics including analysis of catalysts, investigation of the processes during the preparation of catalysts, desactivation of catalysts and interaction of reactants or catalytic poisons with the catalysts. Differential thermal analysis, calorimetry and thermogravimetry are also used to characterize the catalysts, especially in the field of gas-solid and gas-liquid interactions. Since the last years, many technical improvements have appeared in the design and the use of thermal analyzers and calorimeters, particularly for the characterization of catalysts. This chapter gives a detailed overview of the uptodate thermal techniques covering various techniques including Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), the calorimetric techniques (including Isothermal Calorimetry, Titration Calorimetry), Thermogravimetric Analysis (TGA), the combined techniques (including TG-DTA and TG-DSC), the Evolved Gas Analysis (including TG-MS, TG-FTIR). Some examples of applications are given to illustrate the catalyst characterizations.

  5. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  6. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  7. Thermal-Mechanical Stress Analysis of PWR Pressure Vessel and Nozzles under Grid Load-Following Mode: Interim Report on the Effect of Cyclic Hardening Material Properties and Pre-existing Cracks on Stress Analysis Results

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-15

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results from thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.

  8. Modelling Phase Change in a 3D Thermal Transient Analysis

    OpenAIRE

    Haque, EEU; Hampson, PR

    2016-01-01

    A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine) is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC) results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer) and adjacent (metal) s...

  9. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  10. Aging Effects and Estimating Degradation Mechanisms of Thermally Upgraded Paper in Mineral Oil

    Science.gov (United States)

    Miyagi, Katsunori; Oe, Etsuo; Yamagata, Naoki

    The life of a transformer is limited to the deterioration of its solid insulation. Winding conductors and other solid insulation materials in oil-immersed transformers have been insulated using cellulose products. For many years, manufacturers have met the needs of special applications by designing transformers using thermally upgraded materials to achieve lighter weight, higher power density and increased life. Recently, the effect of thermally upgraded insulation on diagnostic techniques such as gas-in oil analysis, and their indication of insulation degradation have been reviewed. This paper describes evaluations of the thermal degradation characteristics and decomposition reactions in mineral transformer oil of amine-impregnated thermally upgraded paper insulation. The thermal resistance of the thermally upgraded paper is evaluated by comparison with Kraft paper insulation. Further, aging degradation mechanisms of decompositional degradation of the thermally upgraded paper due to aging in mineral transformer oil are proposed.

  11. Thermal analysis of spent nuclear fuels repository

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, F.; Salome, J.; Cardoso, F.; Velasquez, C.E.; Pereira, C. [Departamento de Engenharia Nuclear - Escola de Engenharia, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte MG, CEP 31270-901 (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores - CNPq, Asa Norte, Brazilia (Brazil); Viana, C. [Departamento de Engenharia Nuclear - Escola de Engenharia, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte MG, CEP 31270-901 (Brazil); Barros, G.P. [Comissao Nacional de Energia Nuclear-CNEN, Rua Gal Severiano, n 90 - Botafogo, 22290-901, Rio de Janeiro, RJ (Brazil)

    2016-07-01

    In the first part, Pressurized Water Reactor (PWR), Very High-Temperature Reactor (VHTR) and Accelerator-Driven Subcritical Reactor System (ADS) spent fuels (SF) were evaluated to the thermal of the spent fuel pool (SFP) without an external cooling system. The goal is to compare the water boiling time of the pool storing different types of spent nuclear fuels. This study used the software ANSYS Workbench 16.2 - student version. For the VHTR, two types of fuel were analyzed: (Th,TRU)O{sub 2} and UO{sub 2}. This part of the studies were performed for wet storage condition using a single type of SF and decay heat values at times t=0 and t=10 years after the reactor discharge. The ANSYS CFX module was used and the results show that the time that water takes to reach the boiling point varies from 2.4 minutes for the case of VHTR-(Th,TRU)O{sub 2} SF at time t=0 year after reactor discharge until 32.4 hours for the case of PWR SF at time t=10 years after the discharge reactor. The second part of this work consists of modeling a geological repository. Firstly, the temperature evaluation of the spent fuel from a PWR was analyzed. A PWR canister was simulated using the ANSYS transient thermal module. Then the temperature of canister could be computed during the time spent on a portion of a geological repository. The mean temperature on the canister surface increased during the first nine years, reaching a plateau at 35.5 C. degrees between the tenth and twentieth years after the geological disposal. The idea is to extend this study for the other systems analyzed in the first part. The idea is to include in the study, the spent fuels from VHTR and ADS and to compare the canister behavior using different spent fuels. (authors)

  12. Effect of thermal state and thermal comfort on cycling performance in the heat

    NARCIS (Netherlands)

    Schulze, E.; Daanen, H.A.M.; Levels, K.; Casadio, J.R.; Plews, D.J.; Kliding, A.E.; Siegel, R.; Laursen, P.B.

    2015-01-01

    Purpose: To determine the effect of thermal state and thermal comfort on cycling performance in the heat. Methods: Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial

  13. How to measure thermal effects of personal cooling systems : Human, thermal manikin and human simulator study

    NARCIS (Netherlands)

    Bogerd, N.; Psikuta, A.; Daanen, H.A.M.; Rossi, R.M.

    2010-01-01

    Thermal effects, such as cooling power and thermophysiological responses initiated upon application of a personal cooling system, can be assessed with (i) humans, (ii) a thermal manikin and (iii) a thermophysiological human simulator. In order to compare these methods, a cooling shirt (mild cooling)

  14. Prediction of the biochar carbon stability by thermal analysis

    Science.gov (United States)

    Méndez, Ana; Cely, Paola; Plaza, César; Paz-Ferreiro, Jorge; Gascó, Gabriel

    2015-04-01

    Thermal analysis (DTA, DSC, TG and dTG) has been used for decades to characterize carbonaceous materials used as fuels (oil, coal). Our research group has used these techniques for the characterisation of different biochars in order to assess proportions of labile and recalcitrant organic matter and to study the evolution of soil organic matter in soils amended with biochar. Thermal analysis could be used to determine the proximate analysis, i.e., the percentage of humidity, volatile matter and fixed carbon or to calculate the thermostability index, previously identified as a reliable parameter for evaluating the level of stability of organic matter in organic wastes and biochar. Relationship between the stability of biochar, the raw material and the pyrolysis conditions could be established by thermal analysis techniques.

  15. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  16. Transient thermal effects in Alpine permafrost

    Directory of Open Access Journals (Sweden)

    J. Noetzli

    2009-04-01

    Full Text Available In high mountain areas, permafrost is important because it influences the occurrence of natural hazards, because it has to be considered in construction practices, and because it is sensitive to climate change. The assessment of its distribution and evolution is challenging because of highly variable conditions at and below the surface, steep topography and varying climatic conditions. This paper presents a systematic investigation of effects of topography and climate variability that are important for subsurface temperatures in Alpine bedrock permafrost. We studied the effects of both, past and projected future ground surface temperature variations on the basis of numerical experimentation with simplified mountain topography in order to demonstrate the principal effects. The modeling approach applied combines a distributed surface energy balance model and a three-dimensional subsurface heat conduction scheme. Results show that the past climate variations that essentially influence present-day permafrost temperatures at depth of the idealized mountains are the last glacial period and the major fluctuations in the past millennium. Transient effects from projected future warming, however, are likely larger than those from past climate conditions because larger temperature changes at the surface occur in shorter time periods. We further demonstrate the accelerating influence of multi-lateral warming in steep and complex topography for a temperature signal entering the subsurface as compared to the situation in flat areas. The effects of varying and uncertain material properties (i.e., thermal properties, porosity, and freezing characteristics on the subsurface temperature field were examined in sensitivity studies. A considerable influence of latent heat due to water in low-porosity bedrock was only shown for simulations over time periods of decades to centuries. At the end, the model was applied to the topographic setting of the Matterhorn

  17. Long term energy performance analysis of Egbin thermal power ...

    African Journals Online (AJOL)

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  18. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    Science.gov (United States)

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  19. Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Tae Sup Yun

    2014-01-01

    Full Text Available The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100°C during heating to ~800°C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m−1 K−1. The surrogate aggregates effectively reduce the conductivity to ~1.25 W m−1 K−1 at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  20. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger

    Science.gov (United States)

    Shakiba, Ali; Vahedi, Khodadad

    2016-03-01

    This study attempts to numerically investigate the hydro-thermal characteristics of a ferrofluid (water and 4 vol% Fe3O4) in a counter-current horizontal double pipe heat exchanger, which is exposed to a non-uniform transverse magnetic field with different intensities. The magnetic field is generated by an electric current going through a wire located parallel to the inner tube and between two pipes. The single phase model and the control volume technique have been used to study the flow. The effects of magnetic field have been added to momentum equation by applying C++ codes in Ansys Fluent 14. The results show that applying this kind of magnetic field causes kelvin force to be produced perpendicular to the ferrofluid flow, changing axial velocity profile and creating a pair of vortices which leads to an increase in Nusselt number, friction factor and pressure drop. Comparing the enhancement percentage of Nusselt number, friction factor and pressure drop demonstrates that the optimum value of magnetic number for Reff=50 is between Mn=1.33×106 and Mn=2.37×106. So applying non-uniform transverse magnetic field can control the flow of ferrofluid and improve heat transfer process of double pipe heat exchanger.

  1. Analysis of laser transmission and thermal effects on the inner root surface during periodontal treatment with a 940-nm diode laser in an in vitro pocket model

    Science.gov (United States)

    Falkenstein, Fabian; Gutknecht, Norbert; Franzen, René

    2014-12-01

    The purpose of this study was to analyze thermal effects during laser-assisted periodontal treatment. An in vitro model for temperature measurements was developed to investigate different laser settings regarding pulp safety. Additionally, the influence of transmission on pulp temperature elevation was evaluated. Longitudinal root sections were irradiated with a 940-nm diode laser with 1.0 and 1.5 W in continuous wave mode. According to wall thicknesses, irradiation times were adjusted to 20 s for upper and 10 s for lower incisors, respectively. Transmission was relatively low in both upper (4.8% to 8.3% of incident power) and lower incisors (10.2% to 15.0%). Samples were embedded in a polyurethane model and six thermocouples were affixed. Regardless of dentine thickness, the middle third of the root was identified to be the area with the most heat load, where a temperature rise of 7.5°C (1.0 W) and 10.5°C (1.5 W) was registered in upper incisors. A difference of 1.5°C to 3°C was detected in lower incisors compared with uppers. All settings were safe except for 1.5 W, 20 s. Transmission affected heat generation remarkably. The proposed model provides advantages regarding heat transfer and enables for spatially resolved temperature measurements.

  2. Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  3. Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model

    Directory of Open Access Journals (Sweden)

    Ophir Navea

    2011-06-01

    Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.

  4. Thermal Transport in Supported Graphene: Substrate Effects on Collective Excitations

    Science.gov (United States)

    France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich

    2017-03-01

    A detailed computational analysis of thermal transport in supported graphene reveals the possibility of tuning its thermal conductivity by targeted chemical modifications of the substrate's surface. Based on classical molecular dynamics with an accurate charge-optimized bond-order force field and a time-domain normal-mode analysis, our approach allows us to distinguish collective from single-phonon excitations. The computations reveal a disproportional reduction of the thermal conductivity, due to the two different excitations, when graphene interacts with a substrate. Deposition of graphene on a bare silica surface leads to a dramatic reduction of the thermal conductivity and a change in the heat transport mechanism. Remarkably, partial hydroxylation of the silica surface almost doubles the thermal conductivity of the collective excitations. Thus, specific surface terminations allow for control of the thermal conductivity of graphene.

  5. SUPERALLOYS: AN INTRODUCTION WITH THERMAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    S. S. Raza

    2015-09-01

    Full Text Available Nickel based superalloys are commonly used materials in the aero industry and more specifically in the hot section of aero engines. These nickel and nickel iron based superalloys are precipitation strengthened alloys with a face centered cubic gamma matrix. Alloy 718, Allvac 718Plus and Waspaloy have been of great interest in the present study. Alloy 718 is a precipitation strengthened nickel-iron based alloy having gamma double prime phase (Ni3Nb as a main strengthening phase up to 650 °C. Waspaloy, another precipitation strengthened nickel base superalloy, has a very good strength at temperatures up to ~750 °C whereas Allvac 718Plus is a newly developed nickel based precipitation strengthened superalloy which retains good mechanical properties at up to ~700 °C. These three alloys were investigated in terms of how their respective solidification process reveals upon cooling.Latent heat of soloidification has been estimated for all three alloys. Differential thermal analyses (DTA have been used to approach the task. It was seen that Waspaloy has the smallest solidification range whereas Allvac 718Plus has the largest solidification interval in comparison. 

  6. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using......, to get an indication of the effect of important model parameters on the thermal conductivity of an insulation coating. With relevant data available for service life exposure conditions and raw material costs, the model can also be used as an optimization algorithm....... and experimental data with shell thickness and/or thermal conductivity of the shell as adjustable parameters. However, the experimental data was not sufficiently detailed to allow a separation of the effects of the two parameters. In the ideal case of no aerogel binder intrusion, a comparison with a coating...

  7. Recent advances on thermal analysis of stretchable electronics

    Directory of Open Access Journals (Sweden)

    Yuhang Li

    2016-01-01

    Full Text Available Stretchable electronics, which offers the performance of conventional wafer-based devices and mechanical properties of a rubber band, enables many novel applications that are not possible through conventional electronics due to its brittle nature. One effective strategy to realize stretchable electronics is to design the inorganic semiconductor material in a stretchable format on a compliant elastomeric substrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1–2 °C temperature increase is not allowed. This article reviews the recent advances in thermal management of stretchable inorganic electronics with focuses on the thermal models and their comparisons to experiments and finite element simulations.

  8. Room-temperature thermally induced relaxation effect in a two-dimensional cyano-bridged Cu-Mo bimetal assembly and thermodynamic analysis of the relaxation process

    Directory of Open Access Journals (Sweden)

    Yoshikazu Umeta

    2013-04-01

    Full Text Available We observed a photo-switching effect in [CuII(1,4,8,11-tetraazacyclodecane]2[MoIV(CN8]·10H2O by irradiation with 410-nm light around room temperature using infrared spectroscopy. This photo-switching is caused by the photo-induced charge transfer from MoIV to CuII. The photo-induced phase thermally relaxed to the initial phase with a half-life time of 2.7 × 101, 6.9 × 101, and 1.7 × 102 s at 293, 283, and 273 K, respectively. The relaxation process was analyzed using Hauser's equation, k = k0exp[−(Ea + Ea*γ / kBT], where k is the rate constant of relaxation, k0 is the frequency factor, Ea is the activation energy, Ea* is the additional activation energy due to the cooperativity, and γ is the fraction of the photo-induced phase. k0, Ea, and Ea* were evaluated as 1.28 × 107 ± 2.6 s−1, 4002 ± 188 cm−1, and 546 ± 318 cm−1, respectively. The value of Ea is much larger than that of the relaxation process for the typical light-induced spin crossover effect (Ea ≈ 1000 cm−1. Room-temperature photo-switching is an important issue in the field of optical functional materials. The present system is useful for the demonstration of high-temperature photo-switching material.

  9. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    Science.gov (United States)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  11. Thermal analysis of RFETS SS and C

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.S.

    2000-02-04

    In support of the gas generation test program (GGTP) for the 9975 shipping container, thermogravimetric analysis (TGA) was conducted. The objective of this activity was to determine the moisture content as an input to the gas generation model.

  12. The coke drum thermal kinetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Aldescu, Maria M.; Romero, Sim; Larson, Mel [KBC Advanced Technologies plc, Surrey (United Kingdom)

    2012-07-01

    The coke drum thermal kinetic dynamics fundamentally affect the coker unit yields as well as the coke product properties and unit reliability. In the drum the thermal cracking and polymerization or condensation reactions take place in a semi-batch environment. Understanding the fundamentals of the foaming kinetics that occur in the coke drums is key to avoiding a foam-over that could result in a unit shutdown for several months. Although the most dynamic changes with time occur during drum filling, other dynamics of the coker process will be discussed as well. KBC has contributed towards uncovering and modelling the complexities of heavy oil thermal dynamics. (author)

  13. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    Science.gov (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  14. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Pošarac Milica

    2009-01-01

    Full Text Available The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4 obtained by the modified glycine nitrate procedure (MGNP. Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase between yttria and alumina is formed, which improved thermal shock properties of the spinel refractories. Also densification of samples is enhanced by yttria addition.

  15. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    In both the materials, the crystal structure has been determined by X-ray single crystal analysis at room temperature (293 K). The compound structures consist of K + (or NH 4 + ) cations and double chains of CdCl 6 octahedra sharing one edge extending along b -axis. The mixture of KA + /NH 4 + cations are located ...

  16. Effect of organic modification on the thermal transformations of ...

    Indian Academy of Sciences (India)

    Abstract. X-ray diffraction (XRD) and thermal analysis techniques were used to study the thermal transforma- tions of raw (Maghnia bentonite) and modified bentonite (algae extract (ulvans) within clay). XRD data showed that the basal spacing (d001) was gradually decreased from ∼12.80 Å (6.90◦ (2θ)) at room temperature ...

  17. Variation in heat sink shape for thermal analysis

    Science.gov (United States)

    Wong, C. M.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Sauli, Z.

    2017-09-01

    The concern about the thermal performance of microelectronics is on the increase due to recent over-heating induced failures which have led to product recalls. Removal of excess heat from microelectronic systems with the use of heat sinks could improve thermal efficiency of the system. The shape of the heat sink model with difference fin configuration has significant influence on cooling performances. This paper investigates the effect of change in heat sink geometry on an electronic package through COMSOL Multiphysics software as well as the thermal performance of difference heat sink geometry corresponding to various air inlet velocities. Based on this study, plate fin heat sink has better thermal performance than strip pin fin and circular pin fin heat sink due to less obstruction of the heat sink design.

  18. Finite element thermal analysis of convectively-cooled aircraft structures

    Science.gov (United States)

    Wieting, A. R.; Thornton, E. A.

    1981-01-01

    The design complexity and size of convectively-cooled engine and airframe structures for hypersonic transports necessitate the use of large general purpose computer programs for both thermal and structural analyses. Generally thermal analyses are based on the lumped-parameter finite difference technique, and structural analyses are based on the finite element technique. Differences in these techniques make it difficult to achieve an efficient interface. It appears, therefore, desirable to conduct an integrated analysis based on a common technique. A summary is provided of efforts by NASA concerned with the development of an integrated thermal structural analysis capability using the finite element method. Particular attention is given to the development of conduction/forced-convection finite element methodology and applications which illustrate the capabilities of the developed concepts.

  19. Multidisciplinary Analysis of a Microsystem Device for Thermal Control

    Science.gov (United States)

    Moran, Matthew E.

    2002-07-01

    A microelectromechanical (MEMS) device is under development that uses the Stirling cycle to provide cooling or heating directly to a thermally loaded surface. This MEMS cooler can be used strictly in the cooling mode, or switched between cooling and heating modes in milliseconds for precise temporal and spatial temperature control. Potential applications include cooling and thermal control of: microsystems, electronics, sensors, biomedical devices, and spacecraft components. A primary challenge for further development is the multidisciplinary analysis required to characterize and optimize its performance. This paper describes the first-order thermodynamic analysis performed on the MEMS cooler and the resulting ideal performance curves generated. The basis for additional coupled analyses such as fluid/gas dynamics, thermal, electrostatic, structural, dynamic, material, and processing is addressed. Scaling issues relevant to the device and the breakdown of continuum theory in the micro-domain is also examined.

  20. Thermal analysis of nanofluids in microfluidics using an infrared camera.

    Science.gov (United States)

    Yi, Pyshar; Kayani, Aminuddin A; Chrimes, Adam F; Ghorbani, Kamran; Nahavandi, Saeid; Kalantar-zadeh, Kourosh; Khoshmanesh, Khashayar

    2012-07-21

    We present the thermal analysis of liquid containing Al(2)O(3) nanoparticles in a microfluidic platform using an infrared camera. The small dimensions of the microchannel along with the low flow rates (less than 120 μl min(-1)) provide very low Reynolds numbers of less than 17.5, reflecting practical parameters for a microfluidic cooling platform. The heat analysis of nanofluids has never been investigated in such a regime, due to the deficiencies of conventional thermal measurement systems. The infrared camera allows non-contact, three dimensional and high resolution capability for temperature profiling. The system was studied at different w/w concentrations of thermally conductive Al(2)O(3) nanoparticles and the experiments were in excellent agreement with the computational fluid dynamics (CFD) simulations.

  1. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... was developed in order to investigate the thermal behaviour of the solidifying metal. Three cylindrically shaped cast samples surrounded by different cooling materials were introduced in the same mould allowing a common metallurgical background for samples solidifying at different cooling rates. The proposed...

  2. An analysis of factors causing the occurrence of off-design thermally induced force effects in the zone of weld joint no. 111-1 in a PGV-1000M steam generator and recommendations on excluding them

    Science.gov (United States)

    Bakirov, M. B.; Levchuk, V. I.; Povarov, V. P.; Gromov, A. F.

    2014-08-01

    Inadmissible operational flaws occurring in the critical zones of heat-transfer and mechanical equipment are commonly revealed in all nuclear power plant units both in Russia and abroad. The number of such flaws will only grow in the future because the majority of nuclear power plants have been in operation for a time that is either close to or even exceeds the assigned service life. In this connection, establishing cause-and-effect relations with regard to accelerated incipience and growth of flaws, working out compensating measures aimed at reducing operational damageability, and setting up monitoring of equipment integrity degradation of during operation are becoming the matters of utmost importance. There is a need to introduce new approaches to comprehensive diagnostics of the technical state of important nuclear power plant equipment, including continuous monitoring of its operational damageability and the extent of its loading in the most critical zones. Starting from 2011, such a monitoring system has successfully been used for the Novovoronezh NPP Unit 5 in the zone of weld joint no. 111-1 of steam generator no. 4. Based on the results from operation of this system in 2011-2013, unsteady thermally induced force effects (periodic thermal shocks and temperature abnormalities) were reveled, which had not been considered in the design, and which have an essential influence on the operational loading of this part. Based on an analysis of cause-and-effect relations pertinent to temperature abnormalities connected with technological operations, a set of measures aimed at reducing the thermally induced force loads exerted on pipeline sections was developed, which includes corrections to the process regulations for safe operation and to the operating manuals (involving changes in the algorithms for manipulating with the stop and control valves in the steam generator blowdown system).

  3. Finite element analysis for dental implants subjected to thermal loads

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Khalili

    2013-10-01

    Full Text Available   Background and Aims: Dental implants have been studied for replacement of missing teeth for many years. Productivity of implants is extremely related to the stability and resistance under applied loads and the minimum stress in jaw bone. The purpose of this study was to study numerically the 3D model of implant under thermal loads.   Materials and Methods: Bone and the ITI implant were modeled in “Solidworks” software. To obtain the exact model, the bone was assumed as a linear orthotropic material. The implant system, including implant, abutment, framework and crown were modeled and located in the bone. After importing the model in Abaqus software, the material properties and boundary conditions and loads were applied and after meshing, the model was analyzed. In this analysis, the loads were applied in two steps. In the first step, the mechanical load was applied as tightening torque to the abutment and the abutment was tightened in the implant with 35 N.cm torque. In the second step, the thermal load originated from drinking cold and hot water was applied as thermal flux on the ceramic crown surface in this model.   Results: Thermal analysis results showed that the thermal gradient in the bone was about 5.5 and 4.9 degrees of centigrade in the case of drinking cold and hot water respectively , although the maximum gradient of the whole system was reduced to 14 degrees, which occurred, in the crown by drinking cold water.   Conclusion Thermal stresses were so small and it was because of the low thermal gradient. Maximum stresses occurred in the abutment were due to the tension preloads which were originated from the tightening torque.

  4. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Purpose: Cervical lesions are restored with class V preparation. The aim of this study was to use a three-dimensional finite element method to carry out a thermal analysis of the temperature and stress distributions of three different restorative materials used for class V cavities of maxillary molar teeth. Materials and Methods: ...

  5. Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis

    Science.gov (United States)

    Ferguson, Doug

    2016-01-01

    The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.

  6. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  7. ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014)

    NARCIS (Netherlands)

    Lever, T.; Haines, P.; Rouquerol, J.; Charsley, E.L.; Ekeren, P.J. van; Burlett, D.J.

    2014-01-01

    The widespread use of thermal analysis (TA) by scientists as a laboratory technique carries with it a working vocabulary. This document is intended to provide those working in the field with a consistent set of definitions to permit clear and precise communication as well as understanding. Included

  8. Measuring energy expenditure in sports by thermal video analysis

    DEFF Research Database (Denmark)

    Gade, Rikke; Larsen, Ryan Godsk; Moeslund, Thomas B.

    2017-01-01

    Estimation of human energy expenditure in sports and exercise contributes to performance analyses and tracking of physical activity levels. The focus of this work is to develop a video-based method for estimation of energy expenditure in athletes. We propose a method using thermal video analysis ...

  9. Thermal Analysis of Bending Under Tension Test

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Martins, Paulo A.F.; Bay, Niels

    2014-01-01

    sometimes can cause lubricant film breakdown and galling. In order to replicate the production conditions in bending under tension testing it is thus important to control the tool/workpiece interface temperature. This can be done by pre-heating the tool, but it is essential that the interface temperature......The tribological conditions in deep drawing can be simulated in the Bending Under Tension test to evaluate the performance of new lubricants, tool materials, etc. Deep drawing production with automatic handling runs normally at high rate. This implies considerable heating of the tools, which...... during testing is similar to the one in the production tool. A universal sheet tribo-tester has been developed, which can run multiple tests automatically from coil. This allows emulating the temperature increase as in production. The present work performs finite element analysis of the evolution...

  10. An empirical analysis of thermal protective performance of fabrics used in protective clothing.

    Science.gov (United States)

    Mandal, Sumit; Song, Guowen

    2014-10-01

    Fabric-based protective clothing is widely used for occupational safety of firefighters/industrial workers. The aim of this paper is to study thermal protective performance provided by fabric systems and to propose an effective model for predicting the thermal protective performance under various thermal exposures. Different fabric systems that are commonly used to manufacture thermal protective clothing were selected. Laboratory simulations of the various thermal exposures were created to evaluate the protective performance of the selected fabric systems in terms of time required to generate second-degree burns. Through the characterization of selected fabric systems in a particular thermal exposure, various factors affecting the performances were statistically analyzed. The key factors for a particular thermal exposure were recognized based on the t-test analysis. Using these key factors, the performance predictive multiple linear regression and artificial neural network (ANN) models were developed and compared. The identified best-fit ANN models provide a basic tool to study thermal protective performance of a fabric. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Effect of thermal treatment on Zn nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Acuña-Avila, Pedro E., E-mail: pacunaa004@alumno.uaemex.mx; López, Roberto; Vigueras-Santiago, Enrique; Hernández-López, Susana; Camacho-López, Marco [Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA). Facultad de Química de la Universidad Autónoma del Estado de México. Paseo Colón esquina Paseo Tollocan C.P. 50120, Toluca, Estado de México, México (Mexico); Ornelas-Gutierrez, Carlos; Antunez, Wilber [Centro de investigación en Materiales Avanzados S. C. (CIMAV). Miguel de Cervantes N° 120. C.P. 31109. Chihuahua, Chihuahua, México (Mexico)

    2015-06-15

    Metallic Zn nanodisks with hexagonal morphology were obtained onto glass substrate under vacuum thermal evaporation. A thermal characterization of Zn nanodiks showed a lower oxidation temperature than source powder Zn. Different thermal treatment on Zn nanodisks played an important role on the morphology, crystal size and surface vibrational modes of ZnO. The growth of ZnO nanoneedles started at the edge of metallic zinc hexagonal structures according with SEM images, the higher temperature the longer needles were grown. XRD diffractogram confirmed the wurtzite structure of ZnO with metallic nuclei. A wide band between 530 and 580 cm{sup −1} of Raman scattering corresponded at surface vibrational modes not observed at higher temperature.

  12. An analysis of influential factors on outdoor thermal comfort in summer

    Science.gov (United States)

    Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei

    2012-09-01

    A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships

  13. Time-dependent thermal effects in GRB afterglows

    Energy Technology Data Exchange (ETDEWEB)

    Postnov, K.A.; Blinnikov, S.I.; Kosenko, D.I.; Sorokina, E.I

    2004-06-01

    Time-dependent thermal effects should accompany standard non-thermal afterglows of GRB when {gamma}-rays pass through inhomogeneous surroundings of the GRB site. Thermal relaxation of an optically thin plasma is calculated using time-dependent collisional ionization of the plasma ion species. X-ray emission lines are similar to those found in the fading X-ray afterglow of GRB 011211. Thermal relaxation of clouds or shells around the GRB site could also contribute to the varying late optical GRB afterglows, such as in GRB 021004 and GRB 030329.

  14. Determination of thermally induced effects and design guidelines of optomechanical accelerometers

    Science.gov (United States)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Jiao, Xufen; Han, Dandan; Chen, Peiwen; Liu, Dong; Yang, Yongying; Yang, Guoguang

    2017-11-01

    Thermal effects, including thermally induced deformation and warm up time, are ubiquitous problems for sensors, especially for inertial measurement units such as accelerometers. Optomechanical accelerometers, which contain light sources that can be regarded as heat sources, involve a different thermal phenomenon in terms of their specific optical readout, and the phenomenon has not been investigated systematically. This paper proposes a model to evaluate the temperature difference, rise time and thermally induced deformation of optomechanical accelerometers, and then constructs design guidelines which can diminish these thermal effects without compromising other mechanical performances, based on the analysis of the interplay of thermal and mechanical performances. In the model, the irradiation of the micromachined structure of a laser source is considered a dominant factor. The experimental data obtained using a prototype of an optomechanical accelerometer approximately confirm the validity of the model for the rise time and response tendency. Moreover, design guidelines that adopt suspensions with a flat cross-section and a short length are demonstrated with reference to the analysis. The guidelines can reduce the thermally induced deformation and rise time or achieve higher mechanical performances with similar thermal effects, which paves the way for the design of temperature-tolerant and robust, high-performance devices.

  15. Heat transfer analysis of skin during thermal therapy using thermal wave equation.

    Science.gov (United States)

    Kashcooli, Meisam; Salimpour, Mohammad Reza; Shirani, Ebrahim

    2017-02-01

    Specifying exact geometry of vessel network and its effect on temperature distribution in living tissues is one of the most complicated problems of the bioheat field. In this paper, the effects of blood vessels on temperature distribution in a skin tissue subjected to various thermal therapy conditions are investigated. Present model consists of counter-current multilevel vessel network embedded in a three-dimensional triple-layered skin structure. Branching angles of vessels are calculated using the physiological principle of minimum work. Length and diameter ratios are specified using length doubling rule and Cube law, respectively. By solving continuity, momentum and energy equations for blood flow and Pennes and modified Pennes bioheat equations for the tissue, temperature distributions in the tissue are measured. Effects of considering modified Pennes bioheat equation are investigated, comprehensively. It is also observed that blood has an impressive role in temperature distribution of the tissue, especially at high temperatures. The effects of different parameters such as boundary conditions, relaxation time, thermal properties of skin, metabolism and pulse heat flux on temperature distribution are investigated. Tremendous effect of boundary condition type at the lower boundary is noted. It seems that neither insulation nor constant temperature at this boundary can completely describe the real physical phenomena. It is expected that real temperature at the lower levels is somewhat between two predicted values. The effect of temperature on the thermal properties of skin tissue is considered. It is shown that considering temperature dependent values for thermal conductivity is important in the temperature distribution estimation of skin tissue; however, the effect of temperature dependent values for specific heat capacity is negligible. It is seen that considering modified Pennes equation in processes with high heat flux during low times is significant

  16. Investigation of thermal effects in through-silicon vias using scanning thermal microscopy.

    Science.gov (United States)

    Wielgoszewski, Grzegorz; Jóźwiak, Grzegorz; Babij, Michał; Baraniecki, Tomasz; Geer, Robert; Gotszalk, Teodor

    2014-11-01

    Results of quantitative investigations of copper through-silicon vias (TSVs) are presented. The experiments were performed using scanning thermal microscopy (SThM), enabling highly localized imaging of thermal contrast between the copper TSVs and the surrounding material. Both dc and ac active-mode SThM was used and differences between these variants are shown. SThM investigations of TSVs may provide information on copper quality in TSV, as well as may lead to quantitative investigation of thermal boundaries in micro- and nanoelectronic structures. A proposal for heat flow analysis in a TSV, which includes the influence of the boundary region between the TSV and the silicon substrate, is presented; estimation of contact resistance and boundary thermal conductance is also given. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Risk analysis of the thermal sterilization process. Analysis of factors affecting the thermal resistance of microorganisms.

    Science.gov (United States)

    Akterian, S G; Fernandez, P S; Hendrickx, M E; Tobback, P P; Periago, P M; Martinez, A

    1999-03-01

    A risk analysis was applied to experimental heat resistance data. This analysis is an approach for processing experimental thermobacteriological data in order to study the variability of D and z values of target microorganisms depending on the deviations range of environmental factors, to determine the critical factors and to specify their critical tolerance. This analysis is based on sets of sensitivity functions applied to a specific case of experimental data related to the thermoresistance of Clostridium sporogenes and Bacillus stearothermophilus spores. The effect of the following factors was analyzed: the type of target microorganism; nature of the heating substrate; pH, temperature; type of acid employed and NaCl concentration. The type of target microorganism to be inactivated, the nature of the substrate (reference or real food) and the heating temperature were identified as critical factors, determining about 90% of the alteration of the microbiological risk. The effect of the type of acid used for the acidification of products and the concentration of NaCl can be assumed to be negligible factors for the purposes of engineering calculations. The critical non-uniformity in temperature during thermobacteriological studies was set as 0.5% and the critical tolerances of pH value and NaCl concentration were 5%. These results are related to a specific case study, for that reason their direct generalization is not correct.

  18. Modelling Phase Change in a 3D Thermal Transient Analysis

    Directory of Open Access Journals (Sweden)

    E Haque

    2016-09-01

    Full Text Available A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer and adjacent (metal surfaces. Initial temperatures are established using a liner extrapolation based on experimental data. Results yield good correlation with experimental data.

  19. Modeling and analysis of AGS thermal shock experiments

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.; Kim, S.H.; Haines, J.R.

    1998-11-01

    An overview is provided on modeling and analysis of thermal shock experiments conducted with high-energy, short-pulse energy deposition in a mercury filled container in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). The simulation framework utilized along with results of simulations for pressure and strain profiles are presented. While the magnitude of peak strain predictions versus data are in reasonable agreement, the temporal variations were found to differ significantly in selected cases, indicating lack of modeling of certain physical phenomena or due to uncertainties in the experimental data gathering techniques. Key thermal-shock related issues and uncertainties are highlighted.

  20. Pulsed pump: Thermal effects in solid state lasers under super ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 67; Issue 6. Pulsed ... Pulse pump; thermal effects; thermal lensing; phase shift; diode-pumped solid state laser; super-Gaussian pump profile. Abstract. Solid state laser (SSL) powers can be realistically scaled when pumped by a real, efficient and multimode pulse.

  1. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between different phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and diamond ...

  2. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...

  3. Effect of urbanization on the thermal structure in the atmosphere

    Science.gov (United States)

    R. Viskanta; R. O. Johnson; R. W., Jr. Bergstrom

    1977-01-01

    An unsteady two-dimensional transport model was used to study the short-term effects of urbanization and air pollution on the thermal structure in the urban atmosphere. A number of simulations for summer conditions representing the city of St. Louis were performed. The diurnal variation of the surface temperature and thermal structure are presented and the influences...

  4. Thermal dose requirement for tissue effect: experimental and clinical findings

    Science.gov (United States)

    Dewhirst, Mark; Viglianti, Benjamin L.; Lora-Michiels, Michael; Hoopes, P. Jack; Hanson, Margaret A.

    2003-06-01

    In this review we have summarized the basic principles that govern the relationships between thermal exposure (temperature and time of exposure) and thermal damage, with an emphasis on normal tissue effects. We have also attempted to identify specific thermal dose information (for safety and injury) for a variety of tissues in a variety of species. We address the use, accuracy and difficulty of conversion of an individual time and temperature (thermal dose) to a standardized value (eg equivalent minutes at 43degC) for comparison of thermal treatments. Although, the conversion algorithm appears to work well within a range of moderately elevated temperatures (2-15degC) above normal physiologic baseline (37-39degC) there is concern that conversion accuracy does not hold up for temperatures which are minimally or significantly above baseline. An extensive review of the literature suggests a comprehensive assessment of the "thermal dose-to-tissue effect" has not previously been assembled for most individual tissues and never been viewed in a semi-comprehensive (tissues and species) manner. Finally, we have addressed the relationship of thermal dose-to-effect vs. baseline temperature. This issues is important since much of the thermal dose-to-effect information has been accrued in animal models with baseline temperatures 1-2 deg higher than that of humans.

  5. Electrical and Thermal Performance Analysis for a Highly Concentrating Photovoltaic/Thermal System

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2015-01-01

    Full Text Available A 30 kW highly concentrating photovoltaic/thermal (HCPV/T system has been constructed and tested outdoors. The HCPV/T system consists of 32 modules, each of which consists of point-focus Fresnel lens and triple-junction solar cells with a geometric concentrating ratio of 1090x. The modules are connected to produce both electrical and thermal energy. Performance analysis has been conducted from the viewpoint of thermodynamics. The experimental results show that highest photovoltaic efficiency of 30% and instantaneous thermal efficiency of 30% can be achieved at the same time, which means the total solar energy conversion efficiency of the HCPV/T system is higher than 60%. The photovoltaic efficiency increases with direct irradiance when the direct irradiance is below 580 W/m2, but it remains nearly unchanged when the direct irradiation is higher than 580 W/m2. The instantaneous thermal efficiency decreases during water heating process. However, the electrical performance of the system is not affected obviously by water temperature. Highest exergetic efficiency of 35.4% can be produced by the HCPV/T system. The exergetic efficiency is mainly affected by irradiation level, which is similar to the characteristics of photovoltaic performance.

  6. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  7. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  8. Generic repository design concepts and thermal analysis (FY11).

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2011-08-01

    disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

  9. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)

    1995-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  10. Advaced Spatio-Temporal Thermal Analysis of Electronic Systems

    Directory of Open Access Journals (Sweden)

    Miroslav Hrianka

    2003-01-01

    Full Text Available The article gives a brief review the of diagnostics and analysis possibilities by a spatio-temporal approach into electronic system in infrared bandwidth. The two dimensional image grabbed by the thermo vision camera provides information about the surface temperature distribution of an electronic system. The main idea is based on the analysis of the object which consists of a temporal sequence of a spatial thermal images. Advanced analysis is achieved by morphological image gradient spatio-temporal model: The mentioned method provides a total temperature system evaluation as well as it allows separate analysis in the chosen determined temperature area.

  11. Thermal Analysis of an Industrial Furnace

    Directory of Open Access Journals (Sweden)

    Mirko Filipponi

    2016-10-01

    Full Text Available Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss. To perform this study, CFD simulation software was used. Results show that when the door opens, because of temperature and pressure differences between the furnace and the ambient air, turbulence is created. Results also show that the amount of energy lost for an opening of 10 min for radiation, convection and conduction is equal to 5606 MJ where convection is the main contributor, with 5020 MJ. The model created, after being validated, has been applied to perform other simulations, in order to improve the energy performance of the furnace. Results show that reducing the opening time of the door saves energy and limits pollutant emissions.

  12. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  13. Majorana Demonstrator Bolted Joint Mechanical and Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.

    2012-06-01

    The MAJORANA DEMONSTRATOR is designed to probe for neutrinoless double-beta decay, an extremely rare process with a half-life in the order of 1026 years. The experiment uses an ultra-low background, high-purity germanium detector array. The germanium crystals are both the source and the detector in this experiment. Operating these crystals as ionizing radiation detectors requires having them under cryogenic conditions (below 90 K). A liquid nitrogen thermosyphon is used to extract the heat from the detectors. The detector channels are arranged in strings and thermally coupled to the thermosyphon through a cold plate. The cold plate is joined to the thermosyphon by a bolted joint. This circular plate is housed inside the cryostat can. This document provides a detailed study of the bolted joint that connects the cold plate and the thermosyphon. An analysis of the mechanical and thermal properties of this bolted joint is presented. The force applied to the joint is derived from the torque applied to each one of the six bolts that form the joint. The thermal conductivity of the joint is measured as a function of applied force. The required heat conductivity for a successful experiment is the combination of the thermal conductivity of the detector string and this joint. The thermal behavior of the joint is experimentally implemented and analyzed in this study.

  14. Revised Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2006-04-11

    following an interruption of flow to the column were calculated. The transient calculations were terminated after the maximum resin bed temperature reached the Technical Standard of 60 C, which was set to prevent significant resin degradation. The LANL column differs from the FWR column in that it has a significantly smaller radius, 3.73 cm nominal versus approximately 28 cm. It follows that natural convection removes heat much more effectively from the LANL column, so that the column may reach thermal equilibrium. Consequently, the calculations for a flow interruption were extended until an approach to thermal equilibrium was observed. The LANL ion exchange process also uses a different resin than was used in the FWR column. The LANL column uses Reillex HPQ{trademark} resin, which is more resistant to attack by nitric acid than the Ionac 641{trademark} resin used in the FWR column. Heat generation from the resin oxidation reaction with nitric acid is neglected in this analysis since LANL will be treating the resin to remove the LTE prior to loading the resin in the columns. Calculations were performed using a finite difference computer code, which incorporates models for absorption and elution of plutonium and for forced and natural convection within the resin bed. Calculations for normal column operation during loading were performed using an initial temperature and a feed temperature equal to the ambient air temperature. The model for the normal flow calculations did not include natural convection within the resin bed. The no flow calculations were started with the temperature and concentration profiles at the end of the loading stage, when there would be a maximum amount of plutonium either adsorbed on the resin or in the feed solution in the column.

  15. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    Science.gov (United States)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  16. Effects of thermal treatments on donkey milk nutritional characteristics.

    Science.gov (United States)

    Polidori, Paolo; Vincenzetti, Silvia

    2013-12-01

    Human breast milk is the best nutritional support to ensure right development and influence immune status of the newborn infant. However, when it is not possible to breast feed it may be necessary to use commercial infant formulas that mimic, where possible, the levels and types of nutrients present in human milk. Despite this, some formula-fed infants develop allergy and/or atopic disease compared to breast-fed infants. Most infants with cow's milk protein allergy (CMPA) develop symptoms before 1 month of age, often within 1 week after introduction of cow's milk-based formula. Donkey milk may be considered a good substitute for cow's milk in feeding children with CMPA since its composition is very similar to human milk. An in-depth analysis of the donkey milk protein profile has been performed in this study. The interest was focused on the milk proteins considered safe for the prevention and treatment of various disorders in human. Since donkey milk supply is related to its seasonal availability during the year, in this study were evaluated the effects of different thermal treatments on the protein fractions of donkey milk. The results obtained in fresh, frozen, powdered and lyophilized donkey milk showed different values in total proteins, caseins, whey proteins and lysozyme content. This study demonstrated the possibility of using lyophilization in order to maintain the nutritional characteristics of donkey milk. The article presents some promising patents on the effects of thermal treatments on donkey milk nutritional characteristics.

  17. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    Science.gov (United States)

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  18. Thermal analysis of line-defect photonic crystal lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Ottaviano, Luisa; Chen, Yaohui

    2015-01-01

    We report a systematic study of thermal effects in photonic crystal membrane lasers based on line-defect cavities. Two material platforms, InGaAsP and InP, are investigated experimentally and numerically. Lasers with quantum dot layers embedded in an InP membrane exhibit lasing at room temperature...

  19. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).

    Science.gov (United States)

    Pereira, Maria J; Amaral, Joao S; Silva, Nuno J O; Amaral, Vitor S

    2016-12-01

    Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM's ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni-Mn-Ga thin films using localized nano-thermal analysis is presented.

  20. Analytical transient analysis of Peltier device for laser thermal tuning

    Science.gov (United States)

    Sheikhnejad, Yahya; Vujicic, Zoran; Almeida, Álvaro J.; Bastos, Ricardo; Shahpari, Ali; Teixeira, António L.

    2017-08-01

    Recently, industrial trends strongly favor the concepts of high density, low power consumption and low cost applications of Datacom and Telecom pluggable transceiver modules. Hence, thermal management plays an important role, especially in the design of high-performance compact optical transceivers. Extensive care should be taken on wavelength drift for thermal tuning lasers using thermoelectric cooler and indeed, accurate expression is needed to describe transient characteristics of the Peltier device to achieve maximum controllability. In this study, the exact solution of governing equation is presented, considering Joule heating, heat conduction, heat flux of laser diode and thermoelectric effect in one dimension.

  1. Nanostructural analysis of water distribution in hydrated multicomponent gels using thermal analysis and NMR relaxometry.

    Science.gov (United States)

    Codoni, Doroty; Belton, Peter; Qi, Sheng

    2015-06-01

    Highly complex, multicomponent gels and water-containing soft materials have varied applications in biomedical, pharmaceutical, and food sciences, but the characterization of these nanostructured materials is extremely challenging. The aim of this study was to use stearoyl macrogol-32 glycerides (Gelucire 50/13) gels containing seven different species of glycerides, PEG, and PEG-esters, as model, complex, multicomponent gels, to investigate the effect of water content on the micro- and nanoarchitecture of the gel interior. Thermal analysis and NMR relaxometry were used to probe the thermal and diffusional behavior of water molecules within the gel network. For the highly concentrated gels (low water content), the water activity was significantly lowered due to entrapment in the dense gel network. For the gels with intermediate water content, multiple populations of water molecules with different thermal responses and diffusion behavior were detected, indicating the presence of water in different microenvironments. This correlated with the network architecture of the freeze-dried gels observed using SEM. For the gels with high water content, increased quantities of water with similar diffusion characteristics as free water could be detected, indicating the presence of large water pockets in these gels. The results of this study provide new insights into structure of Gelucire gels, which have not been reported before because of the complexity of the material. They also demonstrate that the combination of thermal analysis and NMR relaxometry offers insights into the structure of soft materials not available by the use of each technique alone. However, we also note that in some instances the results of these measurements are overinterpreted and we suggest limitations of the methods that must be considered when using them.

  2. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  3. Thermal Mass & Dynamic Effects Danish Building Regulation

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Selman, Ayser Dawod; Heiselberg, Per

    will focus on three main aspects: ♦ Assess the robustness of the monthly calculation method by varying the input parameters (Part 3) ♦ Better take into consideration the thermal mass in the actual tool by updating the utilisation factors used for the calculation of cooling and heating (Part 3) ♦ Find...... a method to evaluate night-time ventilation in the monthly calculation (Part 4)...

  4. STATISTICAL ANALYSIS OF A SODA LIME GLASS THERMAL SHOCK RESISTANCE

    Directory of Open Access Journals (Sweden)

    Gilbert FANTOZZI

    2011-09-01

    Full Text Available Comparatively to the as received soda lime glass samples, the strength distribution after thermal shocks showed the appearance of a second branch in the Weibull curves. This branch is observed for temperature differences (ΔT equal or higher than the critical temperature difference (ΔTc for both water and motor oil cooling baths. The dispersion is more spread out in these two baths in comparison with the olive oil bath probably because of more pronounced slow crack growth effect. The Weibull modulus varies according to the used cooling bath and the considered temperature difference. In the case of thermal shock caused by air blast cooling at T = 20°C, a bimodal distribution is observed for only the critical state. The initial cracking time, obtained by acoustic emission, corresponds to the unstable propagation of the most critical defect. The number of cracks induced by thermal shock is proportional to the number of acoustic events.

  5. Effects of thermal insulation on electrical connections and outlet boxes

    Science.gov (United States)

    Beausoliel, R. W.; Clifton, J. R.; Meese, W. J.

    1981-04-01

    When residential walls are retrofitted with foamed-in urea formaldehyde or blown-in cellulose thermal insulations, the insulation may enter electrical outlet and switch boxes. The effects of these thermal insulations on the durability of electrical components were studied. These studies were carried out at 44, 75, and 96 percent relative humidities with test periods between one and twelve months. Laboratory test methods were developed and tests performed to determine the electrical and corrosive effects of urea formaldehyde and cellulose thermal insulation contained in electrical outlet and switch boxes.

  6. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Directory of Open Access Journals (Sweden)

    Behnam Pourhassan

    2016-04-01

    Full Text Available In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  7. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)

    2016-04-10

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  8. Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn

    CERN Document Server

    Pourhassan, Behnam

    2016-01-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  9. Thermal mechanically coupled finite element analysis in metal-forming processes

    NARCIS (Netherlands)

    van der Lugt, J.; Huetink, Han

    1986-01-01

    A combined Eulerian-Lagrangian finite element formulation is presented for the analysis of metal-forming, coupled with thermal effects. The procedure developed involves incrementally solving a coupled set of equations for both the displacement and the temperature. The material properties may be

  10. Thermal /Soret/ diffusion effects on interfacial mass transport rates

    Science.gov (United States)

    Rosner, D. E.

    1980-01-01

    It is shown that thermal (Soret) diffusion significantly alters convective mass transport rates and important transition temperatures in highly nonisothermal flow systems involving the transport of 'heavy' species (vapors or particles). Introduction of the Soret transport term is shown to result in mass transfer effects similar to those of 'suction' and a homogeneous chemical 'sink'. It is pointed out that this analogy provides a simple method of correlating and predicting thermal diffusion effects in the abovementioned systems.

  11. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  12. EFFECTS OF SURFACE MORPHOLOGY ON THERMAL CONTACT RESISTANCE

    Directory of Open Access Journals (Sweden)

    Haiming Huang

    2011-01-01

    Full Text Available The thermal contact resistance is common in aerospace industry, nuclear reactors and electronic equipments. The work addresses a new scheme for determining the thermal contact resistance between a smooth surface of a film and a rough surface of a metal specimen. The finite element method was used as a tool to explore the surface morphology effect on the thermal contact resistance while the temperature of the contact surface was determined by a regression method. According to the results developed, the temperature on the contact surfaces linearly drops with the increasing average height of surface roughness and nonlinearly drops with the increasing ratio between non-contact area and nominal contact area. On the other hand, the thermal contact resistance increases linearly with increases in the average height of the surface roughness. What's more, the thermal contact resistance increases in a non-linear manner as the ratio of the non-contact area to the nominal contact area is increasing.

  13. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.S.

    1994-08-23

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

  14. Thermal stress analysis of reusable surface insulation for shuttle

    Science.gov (United States)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1974-01-01

    An iterative procedure for accurately determining tile stresses associated with static mechanical and thermally induced internal loads is presented. The necessary conditions for convergence of the method are derived. An user-oriented computer program based upon the present method of analysis was developed. The program is capable of analyzing multi-tiled panels and determining the associated stresses. Typical numerical results from this computer program are presented.

  15. Thermal Analysis of Iodine Satellite (iSAT)

    Science.gov (United States)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  16. ICTAC Nomenclature of Thermal Analysis (IUPAC Recommendations 2014

    Directory of Open Access Journals (Sweden)

    Macan J. (translator

    2015-09-01

    Full Text Available The widespread use of thermal analysis (TA by scientists as a laboratory technique carries with it a working vocabulary. This document is intended to provide those working in the field with a consistent set of definitions to permit clear and precise communication as well as understanding. Included in the document are the definitions of 13 techniques, 54 terms within the glossary, as well as symbols and units.

  17. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  18. Systems Analysis for Thermal Infrared ` THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Sun, Jingye; Brindley, Helen E.; Liang, Xiaoxin; Lucyszyn, Stepan

    2015-05-01

    The ` THz Torch' concept was recently introduced by the authors for providing secure wireless communications over short distances within the thermal infrared (10-100 THz). Unlike conventional systems, thermal infrared can exploit front-end thermodynamics with engineered blackbody radiation. For the first time, a detailed power link budget analysis is given for this new form of wireless link. The mathematical modeling of a short end-to-end link is provided, which integrates thermodynamics into conventional signal and noise power analysis. As expected from the Friis formula for noise, it is found that the noise contribution from the pyroelectric detector dominates intrinsic noise. From output signal and noise voltage measurements, experimental values for signal-to-noise ratio (SNR) are obtained and compared with calculated predictions. As with conventional communications systems, it is shown for the first time that the measured SNR and measured bit error rate found with this thermodynamics-based system resembles classical empirical models. Our system analysis can serve as an invaluable tool for the development of thermal infrared systems, accurately characterizing each individual channel and, thus, enables the performance of multi-channel ` THz Torch' systems to be optimized.

  19. Postbuckling analysis of a thermally driven microbeam under realistic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tayefeh, Mohsen; Bahrami, Mohsen [Department of Mechanical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2006-04-01

    Thermal buckling behavior of line shape microactuators in a fully coupled field process is simulated. As a consequence of the miniaturizing, some effects belong to coupling of different physical fields appear, and some issues, which are minor at macroscopic scales, have to be taken into account. In order to have a robust design of these micro-systems, it is important to correctly analyze the coupling between electrical, thermal and mechanical fields. Rregarding effect of more physical aspects and ignoring the simplifying statements, the calculated results are consistent more with reported experimental measurements in the literature. recommended modifications not only improve the results to be consistent with experiments, but also play key roles for the development of MEMS actuators based on jouleheating effects such as Heactuators and Hexsil tweezers. While the simulation of micro actuators mostly consist of coupled field analyses, the results proves the requirement of transferring more detailed outputs from one field to another one as inputs.

  20. Engineering Aerothermal Analysis for X-34 Thermal Protection System Design

    Science.gov (United States)

    Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent

    1998-01-01

    Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier-Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.

  1. On the thermal stability of a radiating plasma subject to nonlocal thermal conduction. I - Linear analysis

    Science.gov (United States)

    Chun, E.; Rosner, R.

    1993-01-01

    We study the linear stability of an optically thin uniform radiating plasma subject to nonlocal heat transport. We derive the dispersion relation appropriate to this problem, and the marginal wavenumbers for instability. Our analysis indicates that nonlocal heat transport acts to reduce the stabilizing influence of thermal conduction, and that there are critical values for the electron mean free path such that the plasma is always unstable. Our results may be applied to a number of astrophysical plasmas, one such example being the halos of clusters of galaxies.

  2. Effect of interfacial treatment on the thermal properties of thermal conductive plastics

    Directory of Open Access Journals (Sweden)

    2007-09-01

    Full Text Available In this paper, ZnO, which is processed by different surface treatment approaches, is blended together with polypropylene to produce thermal conductive polymer composites. The composites are analyzed by Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM to investigate the surface modification of filler, their distribution in the matrix and the condition of two-phase interface. Optimized content of filler surface modifier is investigated as well. The results showed that using low-molecular coupling agent produces positive effect to improve the interface adhesion between filler and matrix, and the thermal conductivity of the composite as well. Macro-molecular coupling agent can strongly improve two-phase interface, but it is not beneficial at obtaining a high thermal conductivity. The blend of ZnO without modification and polypropylene has many defects in the two-phase interface, and the thermal conductivity of the composite is between those of composites produced by previous two approaches. The surface treatment of the filler also allowed producing the composites with lower coefficient of thermal expansion (CTE. As for the content of low-molecular coupling agent, it obtains the best effect at 1.5 wt%.

  3. Vacuum Insulation Panels: Analysis of the Thermal Performance of Both Single Panel and Multilayer Boards

    Directory of Open Access Journals (Sweden)

    Alfonso Capozzoli

    2015-03-01

    Full Text Available The requirements for improvement in the energy efficiency of buildings, mandatory in many EU countries, entail a high level of thermal insulation of the building envelope. In recent years, super-insulation materials with very low thermal conductivity have been developed. These materials provide satisfactory thermal insulation, but allow the total thickness of the envelope components to be kept below a certain thickness. Nevertheless, in order to penetrate the building construction market, some barriers have to be overcome. One of the main issues is that testing procedures and useful data that are able to give a reliable picture of their performance when applied to real buildings have to be provided. Vacuum Insulation Panels (VIPs are one of the most promising high performing technologies. The overall, effective, performance of a panel under actual working conditions is influenced by thermal bridging, due to the edge of the panel envelope and to the type of joint. In this paper, a study on the critical issues related to the laboratory measurement of the equivalent thermal conductivity of VIPs and their performance degradation due to vacuum loss has been carried out utilizing guarded heat flux meter apparatus. A numerical analysis has also been developed to study thermal bridging effect when VIP panels are adopted to create multilayer boards for building applications.

  4. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  5. Various startup system designs of HPLWR and their thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qi [School of Physics and Engineering, Sun Yat-sen University, Guangzhou (China); Cai, Jiejin, E-mail: chiven77@hotmail.com [School of Physics and Engineering, Sun Yat-sen University, Guangzhou (China); Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Guangzhou (China)

    2013-12-15

    Highlights: • An axial one-dimensional (1D) single channel model is developed for the HPLWR core. • Various startup systems for HPLWR have been investigated and found feasible. • Characteristics of the component required for HPLWR startup designs are studied. -- Abstract: This paper summarizes the results of various startup system designs and their thermal analysis of the high performance light water reactor (HPLWR) which is the European version of the various supercritical water cooled reactor proposals. In order to study the thermal-hydraulic characteristics of the HPLWR core, a simplified axial one-dimensional (1D) single channel model is developed, which consists of fuel, cladding, coolant and moderator. The model is verified by the related results of Seppälä (2008). Both constant pressure startup systems and sliding pressure startup systems of HPLWR are presented. In constant pressure startup system, the reactor starts at supercritical pressure. It appears that compared with other SCWR designs, the weight of the component required for constant pressure startup of HPLWR is medium and reasonable. Constant pressure startup systems are found feasible from thermal analysis. And for sliding pressure startup, the reactor starts at subcritical pressure. The adequate core power of 25% with 28% flow rate and a feedwater temperature of 280 °C are determined during pressurization phase. The thermal analysis results show that the sliding pressure startup systems for HPLWR are also feasible. Considering the same flow rate as the supercritical-pressure light water-cooled fast reactor (SCFR), the component weight required is reduced in HPLWR.

  6. Thermal transient analysis of steel hollow sections exposed to fire

    Directory of Open Access Journals (Sweden)

    Lenka Lausova

    2016-03-01

    Full Text Available The paper describes a study of non-uniform temperature distribution across the section of steel structures where elevated temperature causes additive internal forces due to restrained conditions. The work provides comparison of a heat field at the time of fire in the non-protected steel hollow cross-sections of different sizes. The study compares simplified calculations according to valid standard and numerical simulations in finite element analysis of steel structures exposed to fire loading from three sides. Numerical thermal analysis is also compared with results obtained from the fire testing in VSB-Technical University of Ostrava.

  7. Stress analysis in curved composites due to thermal loading

    Science.gov (United States)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  8. Effects of torsion on the thermal conductivity of multi-layer graphene

    Science.gov (United States)

    Si, Chao; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai

    2017-05-01

    This work employs the equilibrium molecular dynamics method to study the effects of torsion on the thermal conductivity of multi-layer graphene. Thermal conductivities of twisted 10-layer 433.91 × 99.68 Å2 graphene with torsion angles of 0°, 11.25°, 22.5°, 33.75°, 45°, 67.5°, 90°, 112.5°, and 135° are calculated. The corresponding radial distribution functions and nearest atomic distances are calculated to reveal the effects of torsion on lattice structures. The spectral energy density (SED) method is utilized to analyze the phonon transport properties. It is very interesting that the thermal conductivity of multi-layer graphene decreases slightly at first and then increases with the increasing torsion angle, and the valley is located at θG = 22.5° with the lowest thermal conductivity of 4692.40 W m-1 K-1. The torsion effect can be considered as a combination of the compression effect and the dislocation effect. Further SED analysis confirms that the effect of dislocation on thermal conductivities can be negligible, while the compression effect decreases the phonon lifetimes of flexural out-of-plane acoustic (ZA) branches and increases the ZA group velocities and the phonon specific heat. The decrease becomes dominated when the torsion angle is small, whereas the increase becomes more and more dominated when the torsion angle becomes larger, which are responsible for the reported variation of thermal conductivities.

  9. Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells

    Science.gov (United States)

    Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu

    2017-09-01

    Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.

  10. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  11. Atomic-scale friction : thermal effects and capillary condensation

    NARCIS (Netherlands)

    Jinesh, Kochupurackal Balakrishna Pillai

    2006-01-01

    This work entitled as "Atomic-scale friction: thermal effects and capillary condensation" is a study on the fundamental aspects of the origin of friction from the atomic-scale. We study two realistic aspects of atomic-scale friction, namely the effect of temperature and the effect of relative

  12. Analysis of convective longitudinal fin with temperature-dependent thermal conductivity and internal heat generation

    Directory of Open Access Journals (Sweden)

    M.G. Sobamowo

    2017-03-01

    Full Text Available In this study, analysis of heat transfer in a longitudinal rectangular fin with temperature-dependent thermal conductivity and internal heat generation was carried out using finite difference method. The developed systems of non-linear equations that resulted from the discretization using finite difference scheme were solved with the aid of MATLAB using fsolve. The numerical solution was validated with the exact solution for the linear problem. The developed heat transfer models were used to investigate the effects of thermo-geometric parameters, coefficient of heat transfer and thermal conductivity (non-linear parameters on the temperature distribution, heat transfer and thermal performance of the longitudinal rectangular fin. From the results, it shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin. Also, for the solution to be thermally stable, the fin thermo-geometric parameter must not exceed a specific value. However, it was established that the increase in temperature-dependent properties and internal heat generation values increases the thermal stability range of the thermo-geometric parameter. The results obtained in this analysis serve as basis for comparison of any other method of analysis of the problem.

  13. Kinetic study of Mongolian coals by thermal analysis

    Directory of Open Access Journals (Sweden)

    Jargalmaa S

    2018-02-01

    Full Text Available Thermal analysis was used for the thermal characterization of the coal samples. The experiments were performed to study the pyrolysis and gasification kinetics of typical Mongolian brown coals. Low rank coals from Shivee ovoo, Ulaan ovoo, Aduun chuluun and Baganuur deposits have been investigated. Coal samples were heated in the thermogravimetric apparatus under argon at a temperature ranges of 25-1020ºC with heating rates of 10, 20, 30 and 40ºC/min. Thermogravimetry (TG and derivative thermogravimetry (DTG were performed to measure weight changes and rates of weight losses used for calculating the kinetic parameters. The activation energy (Ea was calculated from the experimental results by using an Arrhenius type kinetic model.

  14. Thermal and Electrical Analysis of Mars Rover RTGs

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    2012-01-19

    The RTG designs described in the preceding paper in these proceedings were analyzed for their thermal and electrical performance. Each analysis consisted of coupled thermal, thermoelectric, and electrical analyses, using Fairchild-generated specialized computer codes. These were supplemented with preliminary structural and mass analyses. For each design, various cases representing different operating conditions (water-cooled/radiation-cooled, BOM/EOM, summer/winter, day/night) and different thermoelectric performance assumptions (from conservative to optimistic) were analyzed; and for every case, the heat flow rates, temperatures and electrical performance of each layer of thermoelectric elements and of the overall RTG were determined. The analyses were performed in great detail, to obtain accurate answers permitting meaningful comparisons between different designs. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments.

  15. Fluid and thermal performance analysis of PMSM used for driving

    Science.gov (United States)

    Ding, Shuye; Cui, Guanghui; Li, Zhongyu; Guan, Tianyu

    2016-03-01

    The permanent magnet synchronous motor (PMSM) is widely used in ships under frequency conversion control system. The fluid flow performance and temperature distribution of the PMSM are difficult to clarify due to its complex structure and variable frequency control condition. Therefore, in order to investigate the fluid and thermal characteristics of the PMSM, a 50 kW PMSM was taken as an example in this study, and a 3-D coupling analysis model of fluid and thermal was established. The fluid and temperature fields were calculated by using finite volume method. The cooling medium's properties, such a velocity, streamlines, and temperature, were then analyzed. The correctness of the proposed model, and the rationality of the solution method, were verified by a temperature test of the PMSM. In this study, the changing rheology on the performance of the cooling medium and the working temperature of the PMSM were revealed, which could be helpful for designing the PMSM.

  16. Effective Thermal Conductivity of Insulating Material made from Recycled Newspapers

    Science.gov (United States)

    Yamada, Etsuro; Takahashi, Kaneko; Sato, Mitsuo; Ishii, Yukihiro

    In this paper, the experimental results are represented on the effective thermal conductivity of cellulose insulation powder which is made from recycled newspapers. This insulating material is useful for energy and resources saving. The steady state cylindrical absolute method is employed by considering the accuracy of measurement. The experimental results are compared with the ones measured previously by other methods. The main results obtained are as follows (1) The effective thermal conductivity of this insulating material increases with increasing temperature and effective specific density, respectively. But, these increasing rate is not so large. (2) The effective thermal conductivity is about 0.04-0.06[W/mK] at the range of the effective specific density less than 100 [kg/m3]. This value is comparable with other industrial insulating materials.

  17. Effects of non-thermal plasma on mammalian cells.

    Directory of Open Access Journals (Sweden)

    Sameer Kalghatgi

    2011-01-01

    Full Text Available Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS. We have utilized γ-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers.

  18. Effect of microstructure of graphite on the nonreductive thermal ion emission in thermal ionization mass spectrometry.

    Science.gov (United States)

    Wei, H Z; Jiang, S Y; Xiao, Y K

    2010-02-25

    The emission behavior of polyatomic ions in the ionization source of thermal ionization mass spectrometry (TIMS) was investigated. The results suggest that the presence of a graphite promoter plays a key role for the formation and stable emission of polyatomic ions, such as M(2)X(+), M(2)BO(2)(+), Cs(2)NO(2)(+), and Cs(2)CNO(+). Our data further implied that the intensity of M(2)X(+) and M(2)BO(2)(+) increases and the emission temperature decreases with increasing cationic and anionic radius. During the boron isotopic measurement using the Cs(2)BO(2)(+)-graphite-PTIMS method, the isobaric interference ion Cs(2)CNO(+) cannot be transformed from nitrate or organic compounds containing an amide group but can be induced by the existence of trace amounts of boron because of its special electron-deficiency property (B(3+)). Characterization on the planar crystalline structure of various graphite samples with SEM, TEM, and Raman spectroscopy confirmed the relationship of the emission capacity of polyatomic ions and the crystal microstructure of graphite and provides direct evidence that graphite with a perfect parallel and equidistant layer orientation shows a beneficial effect on the emission of polyatomic ions in TIMS. The mechanism study on the formation of polyatomic ions opens the possibility to establish high precision methods for isotopic composition analysis of more nonmetal elements with the TIMS technique.

  19. Effects of Building Design Elements on Residential Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yingbao Yang

    2017-12-01

    Full Text Available Residential thermal environment affects the life of residents in terms of their physical and mental health. Many studies have shown that building design elements affect the urban thermal environment. In this study, Nanjing City was used as the study area. A three-dimensional microclimate model was used to simulate and analyze the effects of four main factors, namely, building height, density, layout and green ratio, on thermal environment in residential areas. Results showed that 25% building density obtained a low average air temperature (ATa and average predicted mean vote (APMV during 24 h. Thus, a higher building height indicates a lower ATa and APMV and better outdoor comfort level. In addition, peripheral layout had the lowest ATa and APMV, followed by the determinant and point group layouts. The green ratio increased from 0% to 50% with a 10% step and the ATa and APMV decreased gradually. However, when the green ratio increased from 30% to 40%, ATa and APMV decreased most. The effects of building height, density and green ratio on the thermal environment in residential areas were interactive. The effects of building density, green ratio and layout on hourly air temperature and hourly predicted mean vote in daytime varied from these indicators during night time. How the four building design elements interact with thermal environment were probed from two aspects of air temperature and thermal comfort based on the validated ENVI-met, which is the element of novelty in this study. However, thermal comfort has rarely been considered in the past studies about urban outdoor thermal environment.

  20. Integrated Software Environment for Pressurized Thermal Shock Analysis

    Directory of Open Access Journals (Sweden)

    Dino Araneo

    2011-01-01

    Full Text Available The present paper describes the main features and an application to a real Nuclear Power Plant (NPP of an Integrated Software Environment (in the following referred to as “platform” developed at University of Pisa (UNIPI to perform Pressurized Thermal Shock (PTS analysis. The platform is written in Java for the portability and it implements all the steps foreseen in the methodology developed at UNIPI for the deterministic analysis of PTS scenarios. The methodology starts with the thermal hydraulic analysis of the NPP with a system code (such as Relap5-3D and Cathare2, during a selected transient scenario. The results so obtained are then processed to provide boundary conditions for the next step, that is, a CFD calculation. Once the system pressure and the RPV wall temperature are known, the stresses inside the RPV wall can be calculated by mean a Finite Element (FE code. The last step of the methodology is the Fracture Mechanics (FM analysis, using weight functions, aimed at evaluating the stress intensity factor (KI at crack tip to be compared with the critical stress intensity factor KIc. The platform automates all these steps foreseen in the methodology once the user specifies a number of boundary conditions at the beginning of the simulation.

  1. Assessing swine thermal comfort by image analysis of postural behaviors.

    Science.gov (United States)

    Xin, H

    1999-01-01

    Postural behavior is an integral response of animals to complex environmental factors. Huddling, nearly contacting one another on the side, and spreading are common postural behaviors of group-housed animals undergoing cold, comfortable, and warm/hot sensations, respectively. These postural patterns have been routinely used by animal caretakers to assess thermal comfort of the animals and to make according adjustment on the environmental settings or management schemes. This manual adjustment approach, however, has the inherent limitations of daily discontinuity and inconsistency between caretakers in interpretation of the animal comfort behavior. The goal of this project was to explore a novel, automated image analysis system that would assess the thermal comfort of swine and make proper environmental adjustments to enhance animal wellbeing and production efficiency. This paper describes the progress and on-going work toward the achievement of our proposed goal. The feasibility of classifying the thermal comfort state of young pigs by neural network (NN) analysis of their postural images was first examined. It included exploration of using certain feature selections of the postural behavioral images as the input to a three-layer NN that was trained to classify the corresponding thermal comfort state as being cold, comfortable, or warm. The image feature selections, a critical step for the classification, examined in this study included Fourier coefficient (FC), moment (M), perimeter and area (P&A), and combination of M and P&A of the processed binary postural images. The result was positive, with the combination of M and P&A as the input feature to the NN yielding the highest correct classification rate. Subsequent work included the development of hardware and computational algorithms that enable automatic image segmentation, motion detection, and the selection of the behavioral images suitable for use in the classification. Work is in progress to quantify the

  2. Early detection of metabolic and energy disorders by thermal time series stochastic complexity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lutaif, N.A. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Palazzo, R. Jr [Departamento de Telemática, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, Campinas, SP (Brazil); Gontijo, J.A.R. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil)

    2014-01-17

    Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.

  3. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  4. [Using infrared thermal asymmetry analysis for objective assessment of the lesion of facial nerve function].

    Science.gov (United States)

    Liu, Xu-long; Hong, Wen-xue; Song, Jia-lin; Wu, Zhen-ying

    2012-03-01

    The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some lesions of facial nerve function are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to capture the alteration of the infrared thermal distribution. This paper presents a new method of analysis of the thermal asymmetry named effective thermal area ratio, which is a product of two variables. The first variable is mean temperature difference between the specific facial region and its contralateral region. The second variable is a ratio, which is equal to the area of the abnormal region divided by the total area. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results show: that the mean specificity and sensitivity of this method are 0.90 and 0.87 respectively, improved by 7% and 26% compared with conventional methods. Spearman correlation coefficient between effective thermal area ratio and the degree of facial nerve function is an average of 0.664. Hence, concerning the diagnosis and assessment of facial nerve function, infrared thermography is a powerful tool; while the effective ther mal area ratio is an efficient clinical indicator.

  5. Photon-induced thermal effects in superconducting coplanar waveguide resonators

    Science.gov (United States)

    Wang, Yiwen; Zhou, Pinjia; Wei, Lianfu; Li, Haijie; Zhang, Beihong; Zhang, Miao; Wei, Qiang; Fang, Yurong; Cao, Chunhai

    2013-10-01

    We experimentally investigated the optical responses of a superconducting niobium resonator. It was found that, with increasing radiation power, the resonance frequency increases monotonically below around 500 mK, decreases monotonically above around 1 K, and exhibits a nonmonotonic behavior at around 700 mK. These observations show that one can operate the irradiated resonator in three temperature regimes, depending on whether two-level system (TLS) effects or kinetic inductance effects dominate. Furthermore, we found that the optical responses at ultra-low temperatures can be qualitatively regarded as a photon-induced thermalization effect of TLSs, which could be utilized to achieve thermal sensitive photon detections.

  6. A theoretical analysis of local thermal equilibrium in fibrous materials

    Directory of Open Access Journals (Sweden)

    Tian Mingwei

    2015-01-01

    Full Text Available The internal heat exchange between each phase and the Local Thermal Equilibrium (LTE scenarios in multi-phase fibrous materials are considered in this paper. Based on the two-phase heat transfer model, a criterion is proposed to evaluate the LTE condition, using derived characteristic parameters. Furthermore, the LTE situations in isothermal/adiabatic boundary cases with two different heat sources (constant heat flux and constant temperature are assessed as special transient cases to test the proposed criterion system, and the influence of such different cases on their LTE status are elucidated. In addition, it is demonstrated that even the convective boundary problems can be generally estimated using this approach. Finally, effects on LTE of the material properties (thermal conductivity, volumetric heat capacity of each phase, sample porosity and pore hydraulic radius are investigated, illustrated and discussed in our study.

  7. Analysis of the variation of range parameters of thermal cameras

    Science.gov (United States)

    Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał

    2016-10-01

    Measured range characteristics may vary considerably (up to several dozen percent) between different samples of the same camera type. The question is whether the manufacturing process somehow lacks repeatability or the commonly used measurement procedures themselves need improvement. The presented paper attempts to deal with the aforementioned question. The measurement method has been thoroughly analyzed as well as the measurement test bed. Camera components (such as detector and optics) have also been analyzed and their key parameters have been measured, including noise figures of the entire system. Laboratory measurements are the most precise method used to determine range parameters of a thermal camera. However, in order to obtain reliable results several important conditions have to be fulfilled. One must have the test equipment capable of measurement accuracy (uncertainty) significantly better than the magnitudes of measured quantities. The measurements must be performed in a controlled environment thus excluding the influence of varying environmental conditions. The personnel must be well-trained, experienced in testing the thermal imaging devices and familiar with the applied measurement procedures. The measurement data recorded for several dozen of cooled thermal cameras (from one of leading camera manufacturers) have been the basis of the presented analysis. The measurements were conducted in the accredited research laboratory of Institute of Optoelectronics (Military University of Technology).

  8. Finite element analysis of the distortion of a crystal monochromator from synchrotron radiation thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.R.; Hoyer, E.H.; Thompson, A.C.

    1985-10-01

    The first crystal of the Brown-Hower x-ray monochromator of the LBL-EXXON 54 pole wiggler beamline at Stanford Synchrotron Radiation Laboratory (SSRL) is subjected to intense synchrotron radiation. To provide an accurate thermal/structural analysis of the existing monochromator design, a finite element analysis (FEA) was performed. A very high and extremely localized heat flux is incident on the Si (220) crystal. The crystal, which possesses pronouncedly temperature-dependent orthotropic properties, in combination with the localized heat load, make the analysis ideally suited for finite element techniques. Characterization of the incident synchrotron radiation is discussed, followed by a review of the techniques employed in modeling the monochromator and its thermal/structural boundary conditions. The results of the finite element analysis, three-dimensional temperature distributions, surface displacements and slopes, and stresses, in the area of interest, are presented. Lastly, the effects these results have on monochromator output flux and resolution are examined.

  9. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  10. Analysis of the thermal properties of nanomodified epoxy composite

    Directory of Open Access Journals (Sweden)

    FOMIN Nikolay Egorovich

    2014-02-01

    Full Text Available The paper presents the results of experimental research of epoxy composites modified by nanoparticles. The results were obtained by the method of thermogravimetric analysis. The dependences between the intensity of the processes of thermal degradation in the air and technological factors and content of nanoparticles have been determined. The optimal concentration of 5 types of nanomodifiers besed on carbon nanoclusters adducts, which are functionalized carbon compounds has been revealed. The obvious advantage of these modifiers is their high solubility in polar solvents, that makes the use of these modifiers easier and allows disusing the additional sonication. Investigation of thermooxidation processes of modified epoxy resins was performed in a dynamic mode using TGA/SDTA851e module of STARe System in the temperature range 25÷800⁰C in air atmosphere with simultaneous removal of the gaseous decomposition products. Aluminum oxide (Al₂O₃ was used as the etalon, the temperature speed set was 10 deg./min. It was found out that the process of thermal degradation consists of two stages. The first step is characterized by the main oxidative degradation of polymer and the loss of up to 80% of the original sample weight, the second step is accompanied by the further oxidative decomposition of epoxy composite related to the carbon skeleton destruction. It was proved experimentally that injection of modifiers changes thermal-oxidative decomposition processes and also changes specific energy of epoxy composite according to the type and concentration of nanomodifier. It was shown that the injection of optimal amounts of modifier allows increase of the thermal and energy characteristics, and as a result, the durability of epoxy coatings exposed to aggressive climatic factors.

  11. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods.

    Science.gov (United States)

    Oliveira, A Virgílio M; Gaspar, Adélio R; Quintela, Divo A

    2008-11-01

    The present work is dedicated to a comparative analysis of calculation methods about clothing insulation with a thermal manikin operating under the thermal comfort regulation mode. The serial, global, and parallel calculation methods are considered and the thermal insulation results for garments (30) and ensembles (9) are discussed. The serial and parallel methods presents the higher and lower values, respectively, and the differences were sometimes significant. Considering the results for the effective thermal insulation, the mean values of the relative differences between the serial and global methods were 25.7% for the daily wear garments, 45.2% for the cold protective garments and 38.5% for the ensembles. The corresponding mean values for the global and parallel methods were 8.7, 15.8, and 10.5%, respectively. Since any uneven clothing insulation is to be expected as a source of error, particular care must be required when the calculation methods deal with cold protective clothing.

  12. Reduced order models for thermal analysis : final report : LDRD Project No. 137807.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E., Jr.; Gartling, David K.

    2010-09-01

    This LDRD Senior's Council Project is focused on the development, implementation and evaluation of Reduced Order Models (ROM) for application in the thermal analysis of complex engineering problems. Two basic approaches to developing a ROM for combined thermal conduction and enclosure radiation problems are considered. As a prerequisite to a ROM a fully coupled solution method for conduction/radiation models is required; a parallel implementation is explored for this class of problems. High-fidelity models of large, complex systems are now used routinely to verify design and performance. However, there are applications where the high-fidelity model is too large to be used repetitively in a design mode. One such application is the design of a control system that oversees the functioning of the complex, high-fidelity model. Examples include control systems for manufacturing processes such as brazing and annealing furnaces as well as control systems for the thermal management of optical systems. A reduced order model (ROM) seeks to reduce the number of degrees of freedom needed to represent the overall behavior of the large system without a significant loss in accuracy. The reduction in the number of degrees of freedom of the ROM leads to immediate increases in computational efficiency and allows many design parameters and perturbations to be quickly and effectively evaluated. Reduced order models are routinely used in solid mechanics where techniques such as modal analysis have reached a high state of refinement. Similar techniques have recently been applied in standard thermal conduction problems e.g. though the general use of ROM for heat transfer is not yet widespread. One major difficulty with the development of ROM for general thermal analysis is the need to include the very nonlinear effects of enclosure radiation in many applications. Many ROM methods have considered only linear or mildly nonlinear problems. In the present study a reduced order model is

  13. DOE-Managed HLW and SNF Research: FY15 EBS and Thermal Analysis Work Package Status.

    Energy Technology Data Exchange (ETDEWEB)

    Matteo, Edward N. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report examines the technical elements necessary to evaluate EBS concepts and perform thermal analysis of DOE-Managed SNF and HLW in the disposal settings of primary interest – argillite, crystalline, salt, and deep borehole. As the disposal design concept is composed of waste inventory, geologic setting, and engineered concept of operation, the engineered barrier system (EBS) falls into the last component of engineered concept of operation. The waste inventory for DOE-Managed HLW and SNF is closely examined, with specific attention to the number of waste packages, the size of waste packages, and the thermal output per package. As expected, the DOE-Managed HLW and SNF inventory has a much smaller volume, and hence smaller number of canisters, as well a lower thermal output, relative to a waste inventory that would include commercial spent nuclear fuel (CSNF). A survey of available data and methods from previous studies of thermal analysis indicates that, in some cases, thermo-hydrologic modeling will be necessary to appropriately address the problem. This report also outlines scope for FY16 work -- a key challenge identified is developing a methodology to effectively and efficiently evaluate EBS performance in each disposal setting on the basis of thermal analyses results.

  14. Structural analysis of a thermal insulation retainer assembly

    Science.gov (United States)

    Greene, William H.; Gray, Carl E., Jr.

    1989-01-01

    In January 1989 an accident occurred in the National Transonic Facility wind tunnel at NASA Langley Research Center that was believed to be caused by the failure of a thermal insulation retainer. A structural analysis of this retainer assembly was performed in order to understand the possible failure mechanisms. Two loading conditions are important and were considered in the analysis. The first is the centrifugal force due to the fact that this retainer is located on the fan drive shaft. The second loading is a differential temperature between the retainer assembly and the underlying shaft. Geometrically nonlinear analysis is required to predict the stiffness of this component and to account for varying contact regions between various components in the assembly. High, local stresses develop in the band part of the assembly near discontinuities under both the centrifugal and thermal loadings. The presence of an aluminum ring during a portion of the part's operating life was found to increase the stresses in other regions of the band. Under the centrifugal load, high bending stresses develop near the intersection of the band with joints in the assembly. These high bending stresses are believed to be the most likely cause for failure of the assembly.

  15. Exergetic analysis of parabolic trough solar thermal power plants

    Science.gov (United States)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.

    2014-12-01

    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  16. Thermal-mechanical coupled analysis of a brake disk rotor

    Science.gov (United States)

    Belhocine, Ali; Bouchetara, Mostefa

    2013-08-01

    The main purpose of this study is to analyze the thermomechanical behavior of the dry contact between the brake disk and pads during the braking phase. The simulation strategy is based on computer code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles The thermal-structural analysis is then used with coupling to determine the deformation and the Von Mises stress established in the disk, the contact pressure distribution in pads. The results are satisfactory when compared to those of the specialized literature.

  17. Thermal analysis of the airflow around ATLAS muon end cap

    CERN Document Server

    Gasser, D

    2003-01-01

    A thermal analysis of the airflow inside the UX15 cavern and through the ATLAS detector is presented. This study is done using a CFD (Computational Fluid Dynamics) model. This model includes a simplified geometry of the detector and the experimental cavern, the ventilation flow rate and the released heat dissipation figures are taken into account. This analysis aims at estimate the temperature gradients that develop in the muons end cap area. Indeed, light rays seen by CCD camera will be used in this area in order to align the muon chambers. The rays should not be too much distorted by temperature difference, which would hinder the chamber alignment. The simulation results show that a light ray projected through the whole end cap area should not encounter a gradient higher than 5 K. Nevertheless, the results of this analysis are valid if and only if the spaces represented as empty in the model are allowed to remain empty in ATLAS.

  18. Theoretical investigation of some thermal effects in turbulence modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mathelin, Lionel [LIMSI-CNRS, Orsay (France); Bataille, Francoise [PROMES-CNRS, Perpignan (France); Ye, Zhou [Lawrence Livermore National Lab., Livermore, CA (United States)

    2008-11-15

    Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance.

  19. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence

  20. The Effect of Thermal Annealing Processes on Structural and Photoluminescence of Zinc Oxide Thin Film

    Directory of Open Access Journals (Sweden)

    Huai-Shan Chin

    2013-01-01

    Full Text Available This study used radio frequency sputtering at room temperature to prepare a zinc oxide (ZnO thin film. After deposition, the thin film was placed in a high-temperature furnace to undergo thermal annealing at different temperatures (300, 400, 500, and 600°C and for different dwelling times (15, 30, 45, and 60 min. The objective was to explore the effects that the described process had on the thin film’s internal structure and luminescence properties. A scanning electron microscope topographic image showed that the size of the ZnO crystals grew with increases in either the thermal annealing temperature or the dwelling time. However, significant differences in the levels of influence caused by increasing the thermal annealing temperature or dwelling time existed; the thermal annealing temperature had a greater effect on crystal growth when compared to the dwelling time. Furthermore, the crystallization directions of ZnO (002, (101, (102, and (103 can be clearly observed through an X-ray diffraction analysis, and crystallization strength increased with an increase in the thermal annealing temperature. The photoluminescence measurement spectra showed that ultraviolet (UV emission intensity increased with increases in thermal annealing temperature and dwelling time. However, when the thermal annealing temperature reached 600°C or when the dwelling time reached 60 min, even exhibited a weak green light emission peak.

  1. Peculiarities of determining the effective thermal conductivity of multilayer nanostructures under unsteady heating

    Science.gov (United States)

    Khvesyuk, V. I.; Chirkov, A. Yu

    2017-11-01

    Some features of pulse heating method are considered to study the main regularities of changes in the temperature of thin films in application to flash method. Heat exchange with the surrounding space is taken into account. The characteristic parameters of laser heating system are specified. The mathematical model of the heating process is based on the heat equation with effective heat conductivity. Such an analysis allows to estimate effective thermal diffusivity and thermal conductance including Kapitza conductance. For multi-layer nano-films Kapitza conductance can be estimated as its contribution to effective conductance is significant.

  2. Identification and analysis of factors affecting thermal shock resistance of ceramic materials in solar receivers

    Science.gov (United States)

    Hasselman, D. P. H.; Singh, J. P.; Satyamurthy, K.

    1980-01-01

    An analysis was conducted of the possible modes of thermal stress failure of brittle ceramics for potential use in point-focussing solar receivers. The pertinent materials properties which control thermal stress resistance were identified for conditions of steady-state and transient heat flow, convective and radiative heat transfer, thermal buckling and thermal fatigue as well as catastrophic crack propagation. Selection rules for materials with optimum thermal stress resistance for a particular thermal environment were identified. Recommendations for materials for particular components were made. The general requirements for a thermal shock testing program quantitatively meaningful for point-focussing solar receivers were outlined. Recommendations for follow-on theoretical analyses were made.

  3. A three-dimensional analysis of the effect of anisotropic gas diffusion layer(GDL) thermal conductivity on the heat transfer and two-phase behavior in a proton exchange membrane fuel cell(PEMFC)

    Science.gov (United States)

    He, Guangli; Yamazaki, Yohtaro; Abudula, Abuliti

    A three-dimensional and two-phase model was employed to investigate the effect of the anisotropic GDL thermal conductivity on the heat transfer and liquid water removal in the PEMFCs with serpentine flow field and semi-counter flow operation. The GDL with different anisotropic thermal conductivity in the three directions (x, y, z) was simulated for four cases. As a result, the water saturation, temperature, species, current, potential distribution and proton conductivity were obtained. According to the comparison between the results of each case, some new conclusions are obtained and listed as below: (1) The anisotropic GDL produces the high temperature difference than that of isotropic case, and the in-plane thermal conductivity perpendicular to the gas channels is more important than that of along channels, which may produce the larger temperature difference. (2) Water saturation decreases due to the large temperature difference in the anisotropic case, but some water vapor may condense in the area neighbor to the channel ribs due to the cool function of the current collector and the great temperature difference. (3) The anisotropic thermal conductivity in the through-plane direction and the in-plane direction perpendicular to the gas channels can lead to the decrease of the membrane conductivity. (4) The isotropic GDL is better than that of anisotropic one for the uniform current density. Also, in-plane thermal conductivity perpendicular to the channels has more negative effect on the current density distribution in the membrane than that of the along channels one.

  4. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Directory of Open Access Journals (Sweden)

    Ran Liu

    2015-07-01

    Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  5. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  6. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Science.gov (United States)

    Liu, Ran; Wang, Jia; Liu, Jing

    2015-07-01

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  7. An Analysis on the Moisture and Thermal Protective Performance of Firefighter Clothing Based on Different Layer Combinations and Effect of Washing on Heat Protection and Vapour Transfer Performance

    Directory of Open Access Journals (Sweden)

    Ozgur Atalay

    2015-01-01

    Full Text Available Fabric assemblies for firefighting clothing have been tested for heat protection and comfort. The constituent materials and fabric structures have been specifically selected and tailored for firefighters’ clothing. In order to do this, four types of outer shell fabrics, four types of moisture barrier fabrics, and four types of heat barriers with different weights and material compositions were used to make a multilayered fabric assembly. Heat transfer (flame, heat transfer (radiant, and water vapour resistance tests were conducted according to the latest EN469 test standard which also recommends washing tests. These tests reveal that material content and material brand have considerable effect on the required performance levels of heat protection. In addition, while washing tests have improved water vapor transfer properties, they have a deteriorating effect on heat protection performance. Considering heat protection and moisture comfort properties, the optimal assemblies are thereby identified.

  8. Thermal Analysis for the Dense Granular Target of CIADS

    Directory of Open Access Journals (Sweden)

    Kang Chen

    2016-01-01

    Full Text Available For the China Initiative Accelerator Driven System (CIADS, the energy of the protons is 250 MeV, and the current intensity will reach 10 milliamperes. A new concept of a dense granular spallation target is proposed for which the tungsten granules are chosen as the target material. After being bombarded with the accelerated protons from the accelerator, the tungsten granules with high-temperature flow out of the subcritical reactor and the heat is removed by the heat exchanger. One key issue of the target is to remove the 2.5 MW heat deposition safely. Another one is the heat exchange between the target and the subcritical reactor. Based on the model of effective thermal conductivity, a new thermal code is developed in Matlab. The new code is used to calculate the temperature field of the target area near active zone and it is partly verified by commercial CFD code Fluent. The result shows that the peak temperature of the target zone is nearly 740°C and the reactor and the target are proved to be uncoupled in thermal process.

  9. FY 2017 – Thermal Aging Effects on Advanced Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Wei-Ying [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  10. Evidence of Space-Charge Effects in Thermal Poling

    DEFF Research Database (Denmark)

    Wu, X.; Arentoft, Jesper; Wong, D.

    1999-01-01

    The in situ thermal poling processes in germanosilicate fibers for positive and negative poling voltages are significantly different. Thermal poling of silica fibers consists of two processes: the faster linear process of charge migration and the subsequent single exponential process of charge...... ionization. Both the shielding electrical field due to charge migration and the ionization electrical field due to charge ionization are able to be frozen-in at room temperature acid lead to the residual linear electrooptic effects, The observations support that the mechanism of the induced electrooptic...... effects is based on space charge electrical fields instead of dipole/bond orientation....

  11. Nonreciprocal light transmission based on the thermal radiative effect

    DEFF Research Database (Denmark)

    Liu, Li; Dong, Jianji; Ding, Yunhong

    2015-01-01

    Nonreciprocal light transmission is critical in building optical isolations and circulations in optical communication systems. Achieving high optical isolation and broad bandwidth with CMOS-compatibility are still difficult in silicon nano-photonics. Here we first experimentally demonstrate...... to the significant characteristics of the thermal radiative effect, which could cause a fiber displacement up to tens of microns. This powerful thermal radiative effect opens up a new opportunity for nonreciprocal light transmission which is promising to be used in complete on-chip nonreciprocal devices...

  12. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    The maximum thermal stress ratio positions inside the tube have been indicated as MX for all investigated cases. In the light of the thermal stress values, various designs can be applied to reduce thermal stress in grooved tubes. Keywords. Heat transfer; thermal stress; grooved tubes. 1. Introduction. Heat transfer in pipe flow ...

  13. An analysis of a charring ablator with thermal nonequilibrium, chemical kinetics, and mass transfer

    Science.gov (United States)

    Clark, R. K.

    1973-01-01

    The differential equations governing the transient response of a one-dimensional ablative thermal protection system are presented for thermal nonequilibrium between the pyrolysis gases and the char layer and with finite rate chemical reactions occurring. The system consists of three layers (the char layer, the uncharred layer, and an optical insulation layer) with concentrated heat sinks at the back surface and between the second and third layers. The equations are solved numerically by using a modified implicit finite difference scheme to obtain solutions for the thickness of the charred and uncharred layers, surface recession and pyrolysis rates, solid temperatures, porosity profiles, and profiles of pyrolysis-gas temperature, pressure, composition, and flow rate. Good agreement is obtained between numerical results and exact solutions for a number of simplified cases. The complete numerical analysis is used to obtain solutions for an ablative system subjected to a constant heating environment. Effects of thermal, chemical, and mass transfer processes are shown.

  14. Thermal Analysis of a Novel Cylindrical Transverse-Flux Permanent-Magnet Linear Machine

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2015-07-01

    Full Text Available This paper presents a novel staggered-teeth cylindrical transverse-flux permanent-magnet linear machine (TFPMLM, which aims to improve the power factor and force density. Due to the compact structure and high performance requirement, thermal problems should be seriously considered. The three-dimensional (3-D temperature field model is established. The determination of convection heat transfer coefficients is discussed. Equivalent thermal conductivities of stator core and winding are given to simplify the analysis. With the thermal effect of the adhesive coatings among permanent magnets (PMs and mover yoke taken into account, the temperature field distribution and variation rules of the TFPMLM are obtained using the finite volume method (FVM. The influences of slot filling factor and air flow velocity on the temperature field distribution are analyzed. It is found that the hottest spot of the TFPMLM appears in the middle of the end winding; and there is no risk of demagnetization for PMs.

  15. Thermal behavior analysis of PWR fuel during RIA at various fuel burnups using modified theatre code

    Directory of Open Access Journals (Sweden)

    Nawaz Amjad

    2016-01-01

    Full Text Available The fuel irradiation and burnup causes geometrical and dimensional changes in the fuel rod which affects its thermal resistance and ultimately affects the fuel rod behavior during steady-state and transient conditions. The consistent analysis of fuel rod thermal performance is essential for precise evaluation of reactor safety in operational transients and accidents. In this work, analysis of PWR fuel rod thermal performance is carried out under steady-state and transient conditions at different fuel burnups. The analysis is performed by using thermal hydraulic code, THEATRe. The code is modified by adding burnup dependent fuel rod behavior models. The original code uses as-fabricated fuel rod dimensions during steady-state and transient conditions which can be modified to perform more consistent reactor safety analysis. AP1000 reactor is considered as a reference reactor for this analysis. The effect of burnup on steady-state fuel rod parameters has been investigated. For transient analysis, hypothetical reactivity initiated accident was simulated by considering a triangular power pulse of variable pulse height (relative to the full power reactor operating conditions and pulse width at different fuel burnups which corresponds to fresh fuel, low and medium burnup fuels. The effect of power pulse height, pulse width and fuel burnup on fuel rod temperatures has been investigated. The results of reactivity initiated accident analysis show that the fuel failure mechanisms are different for fresh fuel and fuel at different burnup levels. The fuel failure in fresh fuel is expected due to fuel melting as fuel temperature increases with increase in pulse energy (pulse height. However, at relatively higher burnups, the fuel failure is expected due to cladding failure caused by strong pellet clad mechanical interaction, where, the contact pressure increases beyond the cladding yield strength.

  16. THERMIT2. BWR & PWR Thermal-Hydraulic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kazimi, M.S.; Kao, S.P.; Kelly, J.E. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1992-02-27

    THERMIT2, the most recent release of THERMIT, is intended for thermal-hydraulic analysis of both boiling and pressurized water reactor cores. It solves the three-dimensional, two-fluid equations describing the two-phase flow and heat transfer dynamics in rectangular coordinates. The two-fluid model uses separate partial differential equations expressing conservation of mass, momentum, and energy for each fluid. By expressing the exchange of mass, momentum, and energy between the fluids with physically-based mathematical models, the relative motion and thermal non-equilibrium between the fluids can exist. THERMIT2 offers the choice of either pressure or velocity boundary conditions at the top and bottom of the core. THERMIT2 includes a two-phase turbulent mixing model which provides subchannel analysis capability. THERMIT2 also solves the radial heat conduction equations for fuel pin temperatures, and calculates the heat flux from fuel pin to coolant with appropriate heat transfer models described by a boiling curve.

  17. Thermal analysis of two-dimensional structures in fire

    Directory of Open Access Journals (Sweden)

    I. Pierin

    Full Text Available The structural materials, as reinforced concrete, steel, wood and aluminum, when heated have their mechanical proprieties degraded. In fire, the structures are subject to elevated temperatures and consequently the load capacity of the structural elements is reduced. The Brazilian and European standards show the minimal dimensions for the structural elements had an adequate bearing capacity in fire. However, several structural checks are not contemplated in methods provided by the standards. In these situations, the knowledge of the temperature distributions inside of structural elements as function of time of exposition is required. The aim of this paper is present software developed by the authors called ATERM. The software performs the thermal transient analysis of two-dimensional structures. The structure may be formed of any material and heating is provided by means of a curve of temperature versus time. The data input and the visualization of the results is performed thought the GiD software. Several examples are compared with software Super TempCalc and ANSYS. Some conclusions and recommendations about the thermal analysis are presented

  18. Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC

    Science.gov (United States)

    Scheinherrová, Lenka; Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2017-07-01

    Development of concrete technology and the availability of variety of materials such as silica fume, mineral microfillers and high-range water-reducing admixtures make possible to produce Ultra-High Performance Concrete (UHPC) with compressive strength higher than 160 MPa. However, UHPC is prone to spall under high temperatures what limits its use for special applications only, such as offshore and marine structures, industrial floors, security barriers etc. The spalling is caused by the thermal stresses due to the temperature gradient during heating, and by the splitting force owing to the release of water vapour. Hybrid fibre reinforcement based on combination of steel and polymer fibres is generally accepted by concrete community as a functional solution preventing spalling. In this way, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) is produced possessing high mechanical strength, durability and resistance to water and salt ingress. Since UHPFRC find use in construction industry in tunnel linings, precast tunnel segments, and high-rise buildings, its behaviour during the high-temperature exposure and its residual parameters are of the particular importance. On this account, Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) were done in the paper to identify the structural and chemical changes in UHPFRC during its high-temperature load. Based on the experimental results, several physical and chemical processes that studied material underwent at high-temperatures were recognized. The obtained data revealed changes in the composition of the studied material and allowed identification of critical temperatures for material damage.

  19. Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool

    Energy Technology Data Exchange (ETDEWEB)

    Alan Riga, D. [Professor of Chemistry, Cleveland State University and TechCon Inc., 6325 Aldenham Dr., Cleveland, OH 44143-3331 (United States)

    1998-12-21

    Interdisciplinary methods and thermal analytical techniques in particular are effective tools in aiding the identification and characterization of materials in question involved in civil or criminal law. Forensic material science uses systematic knowledge of the physical or material world gained through analysis, observation and experimentation. Thermal analytical data can be used to aid the legal system in interpreting technical variations in quite often a complex system.Calorimetry and thermal microscopic methods helped define a commercial product composed of alkanes that was involved in a major law suit. The solid-state structures of a number of normal alkanes have unique crystal structures. These alkanes melt and freeze below room temperature to more than 60C below zero. Mixtures of specific alkanes have attributes of pure chemicals. The X-ray diffraction structure of a mixture of alkanes is the same as a pure alkane, but the melting and freezing temperature are significantly lower than predicted. The jury ruled that the product containing n-alkanes had the appropriate melting characteristics. The thermal-physical properties made a commercial fluid truly unique and there was no advertising infringement according to the law and the jury trialA combination of thermogravimetry, differential thermal analysis, infrared spectroscopy and macrophotography were used to conduct an extensive modeling and analysis of physical evidence obtained in a mobile home fire and explosion. A person's death was allegedly linked to the misuse of a kerosene space heater. The thermal analytical techniques showed that external heating was the cause of the space heater's deformation, not a firing of the heater with gasoline and kerosene. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Thermal analysis of wood of the main tree species of Central Siberia

    Directory of Open Access Journals (Sweden)

    S. R. Loskutov

    2015-12-01

    Full Text Available Thermal decomposition of wood from coniferous and deciduous species of Siberia has been studied using thermogravimetry (TG and differential scanning calorimetry (DSC. The tree species were larch Larix sibirica Ledeb., Scots pine Pinus sylvestris L., spruce Picea obovata Ledeb., fir Abies sibirica Ledeb., Siberian pine Pinus sibirica Du Tour., birch Betula pendula Roth., and aspen Populus tremula L. Thermal analysis of wood samples was carried out under oxidative (air and inert (argon atmospheres from 25 to 700 °С at heating rates 10, 20, 40 °С • min–1 (TG/DTG and from 25 to 590 °С at heating rates 10, 40 °С • min–1 (DSC. The stages of thermal decomposition, the temperature intervals, the mass loss, the mass loss rate, the temperature of DTG/DSC peaks, and heating effects were determined for each tree species. The kinetic thermal degradation parameters of wood were obtained by the Broido and Ozawa–Flynn–Wall models. The wood of coniferous and deciduous species of Siberia was characterized on the base of analysis of activation energy values at various stages of thermal decomposition and the relations of activation energy on conversion level of wood substance of different tree species, and also the comparison of mass loss at the same stages of thermal destruction, heating effects, residual mass and other parameters of TG/DTG, DSC. In our opinion, the results of this work present interest for researchers and specialists in the field of forest pyrology, wood science, dendrochemistry.

  1. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    Science.gov (United States)

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well. PMID:26633398

  2. Thermal analysis of the ambient air around a particle detector

    CERN Document Server

    Gasser, D

    2003-01-01

    The ATLAS particle detector will be in operation at CERN in a few years. The so-called "end cap muon chambers", which form a sub-system of this detector, need to be aligned accurately by means of light rays. Despite the significant amount of heat released in the air by the detector, the rays must not be too much distorted by temperature difference. In order to predict ambient temperature gradient, a thermal analysis is done using a CFD (Computational Fluid Dynamics) model. Because of the complexity of ATLAS geometry, relevant assumptions need to be made in order to get a suitable model for numerical analysis and which give reliable results at the same time.

  3. Periodontal plastic surgery: thermal effect analysis using Erbium:YAG Kesler's handpiece. Histochemical evaluation by Picrosirius red stain and polarization microscopy for collagen determination: in

    Science.gov (United States)

    Kesler, Gavriel; Koren, Rumelia; Kesler, Anat; Kristt, Don; Gal, Rivka

    2000-03-01

    Recent technological advances lead to an increase in the options for the treatment of the periodontal diseases. Lasers utilized for gingival soft tissue resurfacing mainly for esthetics purposes, require careful histopathological evaluation of the effects on tissue. Up to date no comparative clinical or histological studies have been performed, aiming at demonstration of the effects of laser irradiation on connective tissue, especially its most important component -- the collagen fibers. The alteration in the structures of this tissue plays the most important role in the healing process. The aim of the present study is to evaluate the influence of Erbium: YAG - Kesler's hand piece on gingival tissue. This handpiece is designed for gingival resurfacing, in cases of 'Gummy smile' and gingival pigmentation. The following irradiation parameters were used: energy per pulse -- 500 mJ, repetition rate 10 pps, spot size 3 mm. Gingival biopsies specimens of 10 patients, 6 with 'Gummy smile' and 4 with gingival pigmentation were examined before laser treatment, and at 7 and 14 days after laser treatment. The tissues were fixed in LNRS, embedded in paraffin, and sectioned into 5 micrometer thickness, dewaxed in xylol and stained with H&E and Picrosirius Red (PSR). The sections were examined by polarization microscopy. PSR is a collagen stain that differentiates collagen fiber density by the range of colors from green through yellow to red, and/or fiber size. This was utilized in the present study to evaluate the hypothesis that Erbium -- YAG (Er: YAG) laser energy is capable of remodeling the collagen fibers in the gingival connective tissue through a photothermal process. We found a significant difference between the structures of collagen fibers at the first week and at 14 days post treatment. In the normal gingiva the predominant polarization colors were in the red-orange range, signifying tightly packed, mature collagen. During the first postoperative week, collagen

  4. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    Science.gov (United States)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  5. Analysis and clustering of natural gas consumption data for thermal energy use forecasting

    Science.gov (United States)

    Franco, Alessandro; Fantozzi, Fabio

    2015-11-01

    In this paper, after a brief analysis of the connections between the uses of natural gas and thermal energy use, the natural gas consumption data related to Italian market are analyzed and opportunely clustered in order to compute the typical consumption profile in different days of the week in different seasons and for the different class of users: residential, tertiary and industrial. The analysis of the data shows that natural gas consumption profile is mainly related to seasonality pattern and to the weather conditions (outside temperature, humidity and wind chiller). There is also an important daily pattern related to industrial and civil sector that, at a lower degree than the previous one, does affect the consumption profile and have to be taken into account for defining an effective short and mid term thermal energy forecasting method. A possible mathematical structure of the natural gas consumption profile is provided. Due to the strong link between thermal energy use and natural gas consumption, this analysis could be considered the first step for the development of a model for thermal energy forecasting.

  6. Effects of microwave heating on the thermal states of biological tissues

    African Journals Online (AJOL)

    Effects of microwave heating on the thermal states of biological tissues. Nabil TM El-dabe, Mona AA Mohamed, Asma F El-Sayed. Abstract. A mathematical analysis of microwave heating equations in one-dimensional multi-layer model has been discussed. Maxwell's equations and transient bioheat transfer equation were ...

  7. Effect of pre-heating on the thermal decomposition kinetics of cotton

    Science.gov (United States)

    The effect of pre-heating at low temperatures (160-280°C) on the thermal decomposition kinetics of scoured cotton fabrics was investigated by thermogravimetric analysis under nonisothermal conditions. Isoconversional methods were used to calculate the activation energies for the pyrolysis after one-...

  8. Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup

    Directory of Open Access Journals (Sweden)

    Camelia Stanciu

    2017-01-01

    Full Text Available A simple effect one stage ammonia-water absorption cooling system fueled by solar energy is analyzed. The considered system is composed by a parabolic trough collector concentrating solar energy into a tubular receiver for heating water. This is stored in a fully mixed thermal storage tank and used in the vapor generator of the absorption cooling system. Time dependent cooling load is considered for the air conditioning of a residential two-storey house. A parametric study is performed to analyze the operation stability of the cooling system with respect to solar collector and storage tank dimensions. The results emphasized that there is a specific storage tank dimension associated to a specific solar collector dimension that could ensure the longest continuous startup operation of the cooling system when constant mass flow rates inside the system are assumed.

  9. The Effect of Particle Size on Thermal Conduction in Granular Mixtures

    Science.gov (United States)

    Lee, Junghwoon; Yun, Tae Sup; Choi, Sung-Uk

    2015-01-01

    Shredded rubber tire is a geomaterial that is potentially useful in environmental and engineering projects. Here, we study the effect of particle size ratio on the thermal conductivity of granular mixtures containing rubber tire particles. Glass beads were mixed at various volume fractions with rubber particles of varying size. The 3D network model analysis using synthetic packed assemblies was used to determine the dominant factors influencing the thermal conduction of the mixtures. Results present that mixtures with varying size ratios exhibit different nonlinear evolutions of thermal conductivity values with mixture fractions. In particular, mixtures with large insulating materials (e.g., rubber particles) have higher thermal conduction that those with small ones. This is because the larger insulating particles allow better interconnectivity among the conductive particles, thereby avoiding the interruption of the thermal conduction of the conductive particles. Similar tests conducted with natural sand corroborate the significant effect of the relative size of the insulating particles. The 3D network model identifies the heterogeneity of local and effective thermal conductivity and the influence of connectivity among conductive particles. A supplementary examination of electrical conductivity highlights the significance of local and long-range connectivity on conduction paths in granular mixtures. PMID:28793419

  10. The Effect of Particle Size on Thermal Conduction in Granular Mixtures

    Directory of Open Access Journals (Sweden)

    Junghwoon Lee

    2015-07-01

    Full Text Available Shredded rubber tire is a geomaterial that is potentially useful in environmental and engineering projects. Here, we study the effect of particle size ratio on the thermal conductivity of granular mixtures containing rubber tire particles. Glass beads were mixed at various volume fractions with rubber particles of varying size. The 3D network model analysis using synthetic packed assemblies was used to determine the dominant factors influencing the thermal conduction of the mixtures. Results present that mixtures with varying size ratios exhibit different nonlinear evolutions of thermal conductivity values with mixture fractions. In particular, mixtures with large insulating materials (e.g., rubber particles have higher thermal conduction that those with small ones. This is because the larger insulating particles allow better interconnectivity among the conductive particles, thereby avoiding the interruption of the thermal conduction of the conductive particles. Similar tests conducted with natural sand corroborate the significant effect of the relative size of the insulating particles. The 3D network model identifies the heterogeneity of local and effective thermal conductivity and the influence of connectivity among conductive particles. A supplementary examination of electrical conductivity highlights the significance of local and long-range connectivity on conduction paths in granular mixtures.

  11. Legacy effects of wildfire on stream thermal regimes and rainbow trout ecology: an integrated analysis of observation and individual-based models

    Science.gov (United States)

    Rosenberger, Amanda E.; Dunham, Jason B.; Neuswanger, Jason R.; Railsback, Steven F.

    2015-01-01

    Management of aquatic resources in fire-prone areas requires understanding of fish species’ responses to wildfire and of the intermediate- and long-term consequences of these disturbances. We examined Rainbow Trout populations in 9 headwater streams 10 y after a major wildfire: 3 with no history of severe wildfire in the watershed (unburned), 3 in severely burned watersheds (burned), and 3 in severely burned watersheds subjected to immediate events that scoured the stream channel and eliminated streamside vegetation (burned and reorganized). Results of a previous study of this system suggested the primary lasting effects of this wildfire history on headwater stream habitat were differences in canopy cover and solar radiation, which led to higher summer stream temperatures. Nevertheless, trout were present throughout streams in burned watersheds. Older age classes were least abundant in streams draining watersheds with a burned and reorganized history, and individuals >1 y old were most abundant in streams draining watersheds with an unburned history. Burned history corresponded with fast growth, low lipid content, and early maturity of Rainbow Trout. We used an individual-based model of Rainbow Trout growth and demographic patterns to determine if temperature interactions with bioenergetics and competition among individuals could lead to observed phenotypic and ecological differences among populations in the absence of other plausible mechanisms. Modeling suggested that moderate warming associated with wildfire and channel disturbance history leads to faster individual growth, which exacerbates competition for limited food, leading to decreases in population densities. The inferred mechanisms from this modeling exercise suggest the transferability of ecological patterns to a variety of temperature-warming scenarios.

  12. DESIGN AND THERMAL ANALYSIS OF FIXED AND TRACKING FLAT PLATE COLLECTORS

    OpenAIRE

    *Sudarshan T A

    2016-01-01

    This paper focuses on Thermal efficiency analysis of flat plate collectors. The instantaneous efficiency for a collector over a day is calculated. Application of solar energy for domestic and industrial heating purposes has been become very popular. However the effectiveness of presently used fixed flat plate collectors is low due to the moving nature of the energy source. In the present work, an attempt has been made to compare the performance of fixed flat plate water heater with that of he...

  13. A review on ergonomics of headgear: Thermal effects

    NARCIS (Netherlands)

    Bogerd, C.P.; Aerts, J.M.; Annaheim, S.; Bröde, P.; Bruyne, G. de; Flouris, A.D.; Kuklane, K.; Sotto Mayor, T.; Rossi, R.M.

    2015-01-01

    The thermal effects related to wearing headgear are complex and different studies have investigated single parts of this topic. This review aims at summarizing the different findings to give a complete overview on this topic as well as to suggest new perspectives. Headgear increases head insulation

  14. Thermal effects on parallel resonance energy of whistler mode wave

    Indian Academy of Sciences (India)

    Abstract. In this short communication, we have evaluated the effect of thermal velocity of the plasma particles on the energy of resonantly interacting energetic electrons with the propagating whistler mode waves as a function of wave frequency and L-value for the normal and disturbed magnetospheric conditions. During the ...

  15. Effective action for hard thermal loops in gravitational fields

    Directory of Open Access Journals (Sweden)

    R.R. Francisco

    2016-05-01

    Full Text Available We examine, through a Boltzmann equation approach, the generating action of hard thermal loops in the background of gravitational fields. Using the gauge and Weyl invariance of the theory at high temperature, we derive an explicit closed-form expression for the effective action.

  16. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high.

  17. Differential effects of thermal and chemical stressors on tissue balls ...

    African Journals Online (AJOL)

    Coral cell aggregates (tissue balls) from four species (Acropora muricata, Fungia repanda, Pavona cactus and Pocillopora damicornis) were used as an indicator to investigate the effects on the corals of thermal stress and of chemical extracts from three sponges (Adocia sp., Haliclona sp. and Lissodendoryx sp.) and one ...

  18. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    but rely on the concentration of hydrogen. The model ... first-order rate law. Lehmhus and Rausch (2004) have annealed TiH2 pow- der in air and argon. In argon, the powder does not develop a surface layer and as a result, a small amount of hydro- gen is lost ... rate effect on the thermal decomposition behaviour of TiH2.

  19. Analytical model of transient thermal effect on convectional cooled ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 4. Analytical model of transient thermal effect on convectional cooled end-pumped laser rod ... The transient analytical solutions of temperature distribution, stress, strain and optical path difference in convectional cooled end-pumped laser rod are derived.

  20. Infrared lens thermal effect: equivalent focal shift and calculating model

    Science.gov (United States)

    Zhang, Cheng-shuo; Shi, Zelin; Feng, Bin; Xu, Bao-shu

    2014-11-01

    It's well-know that the focal shift of infrared lens is the major factor in degeneration of imaging quality when temperature change. In order to figure out the connection between temperature change and focal shift, partial differential equations of thermal effect on light path are obtained by raytrace method, to begin with. The approximately solution of the PDEs show that focal shift is proportional to temperature change. And a formula to compute the proportional factor is given. In order to understand infrared lens thermal effect deeply, we use defocus by image plane shift at constant temperature to equivalently represent thermal effect on infrared lens. So equivalent focal shift (EFS) is defined and its calculating model is proposed at last. In order to verify EFS and its calculating model, Physical experimental platform including a motorized linear stage with built-in controller, blackbody, target, collimator, IR detector, computer and other devices is developed. The experimental results indicate that EFS make the image plane shift at constant temperature have the same influence on infrared lens as thermal effect and its calculating model is correct.

  1. On the effect of temperature dependent thermal conductivity on ...

    African Journals Online (AJOL)

    We consider the effect of temperature dependent thermal conductivity on temperature rise in biologic tissues during microwave heating. The method of asymptotic expansion is used for finding solution. An appropriate matching procedure was used in our method. Our result reveals the possibility of multiple solutions and it ...

  2. The effect of Acacia karroo supplementation and thermal ...

    African Journals Online (AJOL)

    The objective of the current study was to determine the effect of Acacia karroo supplementation and thermal preparation on consumer sensory scores of meat from indigenous Xhosa lop-eared goat breed. 18 castrated four-month-old Xhosa lop-eared kids were kept at the University of Fort Hare Farm until slaughter. Sample ...

  3. Thermal hydraulic analysis of the JMTR improved LEU-core

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Toshio; Nagao, Yoshiharu; Komukai, Bunsaku; Naka, Michihiro; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takeda, Takashi [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokai, Ibaraki (Japan)

    2003-01-01

    After the investigation of the new core arrangement for the JMTR reactor in order to enhance the fuel burn-up and consequently extend the operation period, the ''improved LEU core'' that utilized 2 additional fuel elements instead of formerly installed reflector elements, was adopted. This report describes the results of the thermal-hydraulic analysis of the improved LEU core as a part of safety analysis for the licensing. The analysis covers steady state, abnormal operational transients and accidents, which were described in the annexes of the licensing documents as design bases events. Calculation conditions for the computer codes were conservatively determined based on the neutronic analysis results and others. The results of the analysis, that revealed the safety criteria were satisfied on the fuel temperature, DNBR and primary coolant temperature, were used in the licensing. The operation license of the JMTR with the improved LEU core was granted in March 2001, and the reactor operation with new core started in November 2001 as 142nd operation cycle. (author)

  4. FUSION OF LANDSAT- 8 THERMAL INFRARED AND VISIBLE BANDS WITH MULTI-RESOLUTION ANALYSIS CONTOURLET METHODS

    Directory of Open Access Journals (Sweden)

    F. Farhanj

    2017-09-01

    Full Text Available Land surface temperature image is an important product in many lithosphere and atmosphere applications. This image is retrieved from the thermal infrared bands. These bands have lower spatial resolution than the visible and near infrared data. Therefore, the details of temperature variation can't be clearly identified in land surface temperature images. The aim of this study is to enhance spatial information in thermal infrared bands. Image fusion is one of the efficient methods that are employed to enhance spatial resolution of the thermal bands by fusing these data with high spatial resolution visible bands. Multi-resolution analysis is an effective pixel level image fusion approach. In this paper, we use contourlet, non-subsampled contourlet and sharp frequency localization contourlet transform in fusion due to their advantages, high directionality and anisotropy. The absolute average difference and RMSE values show that with small distortion in the thermal content, the spatial information of the thermal infrared and the land surface temperature images is enhanced.

  5. Fusion of - 8 Thermal Infrared and Visible Bands with Multi-Resolution Analysis Contourlet Methods

    Science.gov (United States)

    Farhanj, F.; Akhoondzadeh, M.

    2017-09-01

    Land surface temperature image is an important product in many lithosphere and atmosphere applications. This image is retrieved from the thermal infrared bands. These bands have lower spatial resolution than the visible and near infrared data. Therefore, the details of temperature variation can't be clearly identified in land surface temperature images. The aim of this study is to enhance spatial information in thermal infrared bands. Image fusion is one of the efficient methods that are employed to enhance spatial resolution of the thermal bands by fusing these data with high spatial resolution visible bands. Multi-resolution analysis is an effective pixel level image fusion approach. In this paper, we use contourlet, non-subsampled contourlet and sharp frequency localization contourlet transform in fusion due to their advantages, high directionality and anisotropy. The absolute average difference and RMSE values show that with small distortion in the thermal content, the spatial information of the thermal infrared and the land surface temperature images is enhanced.

  6. Numerical analysis of thermal deformation in laser beam heating of a steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Kim, Yong-Rae; Kim, Jae-Woong [Yeungnam University, Kyongsan (Korea, Republic of)

    2017-05-15

    Line heating is a widely used process for plate forming or thermal straightening. Flame heating and induction heating are the traditional heating processes used by industry for line heating. However, these two heating processes are ineffective when used on small steel plates. Thus, the laser beam heating with various power profiles were carried out in this study. A comparison of numerical simulation results and experimental results found a significant difference in the thermal deformation when apply a different power profile of laser beam heating. The one-sinusoid power profile produced largest thermal deformation in this study. The laser beam heating process was simulated by established a combined heat source model, and simulated results were compared with experimental results to confirm the model’s accuracy. The mechanism of thermal deformation was investigated and the effects of model parameters were studied intensively with the finite element method. Thermal deformation was found to have a significant relationship with the amount of central zone plastic deformation. Scientists and engineers could use this study’s verified model to select appropriate parameters in laser beam heating process. Moreover, by using the developed laser beam model, the analysis of welding residual stress or hardness could also be investigated from a power profile point of view.

  7. Numerical Analysis of a Paraffin/Metal Foam Composite for Thermal Storage

    Science.gov (United States)

    Di Giorgio, P.; Iasiello, M.; Viglione, A.; Mameli, M.; Filippeschi, S.; Di Marco, P.; Andreozzi, A.; Bianco, N.

    2017-01-01

    In the last decade, the use of Phase Change Materials (PCMs) as passive thermal energy storage has been widely studied both analytically and experimentally. Among the PCMs, paraffins show many advantages, such as having a high latent heat, a low vapour pressure, being chemically inert, stable and non-toxic. But, their thermal conductivity is very low with a high volume change during the melting process. An efficient way to increase their poor thermal conductivity is to couple them with open cells metallic foams. This paper deals with a theoretical analysis of paraffin melting process inside an aluminum foam. A mathematical model is developed by using the volume-averaged governing equations for the porous domain, made up by the PCM embedded into the metal foam. Non-Darcian and buoyancy effects are considered in the momentum equation, while the energy equations are modelled with the Local Thermal Non-Equilibrium (LTNE) approach. The PCM liquefaction is treated with the apparent heat capacity method and the governing equations are solved with a finite-element scheme by COMSOL Multiphysics®. A new method to calculate the coupling coefficients needed for the thermal model has been developed and the results obtained have been validated comparing them to experimental data in literature.

  8. Thermal-vacuum effects on polymer matrix composite materials

    Science.gov (United States)

    Tennyson, R. C.; Mabson, G. E.

    1991-01-01

    Results are presented on the thermal-vacuum response of a variety of fiber reinforced polymers matrix composites that comprised the UTIAS experiment on the LDEF satellite. Theoretical temperature-time predictions for this experiment are in excellent agreement with test data. Results also show quite clearly the effect of outgassing in the dimensional changes of these materials and the corresponding coefficients of thermal expansion. Finally, comparison with ground-based simulation tests are presented as well. Use of these data for design purposes are also given.

  9. Evaluating the thermal reduction effect of plant layers on rooftops

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chih-Fang [Department of Landscape Design and Management, National Chin-Yi University of Technology, No. 35, Lane 215, Sec. 1, Jhongshan Road, Taiping City, Taichung County 411 (China)

    2008-07-01

    This study examines the thermal reduction effect of plant layers on rooftops through experiments performed in a controlled environment. The relevant parameters are coverage ratio (CR) and total leaf thickness (TLT). Both parameters are positively correlated with thermal reduction ratio (TRR). The TRR data of all experiments were plotted on a grid system with CR on the x-axis and TLT on the y-axis. A TRR map was then drawn using the curve fitting process. The applicability of the TRR map drawn for Codiaeum variegatum (1) was further confirmed by performing experiments with Cordyline terminalis (1) and Ixora duffii (1) and by results of experiments on C. variegatum (2), C. terminalis (2), Duranta repens, and I. duffii (2) in outdoor environments. The TRR map provides quantitative and straightforward guidance on thermal reduction planting arrangements for green roofs. (author)

  10. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  11. Modeling and Analysis of AGS (1998) Thermal Shock Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R.; Kim, S.H.; Taleyarkhan, R.P.

    1999-11-14

    An overview is provided on modeling and analysis of thermal shock experiments conducted during 1998 with high-energy, short-pulse energy deposition in a mercury filled container in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). The simulation framework utilized along with the results of simulations for pressure and strain profiles are presented. While the magnitude of penk strain predictions versus data are in reasonable agreement, the temporal variations were found to differ significantly in selected cases, indicating lack of modeling of certain physical phenomena or due to uncertainties in the experimental data gathering techniques. Key thermal-shock related issues and uncertainties are highlighted. Specific experiments conducted at BNL's AGS facility during 1998 (the subject of this paper) involved high-energy (24 GeV) proton energy deposition in the mercury target over a time frame of - 0.1s. The target consisted of an - 1 m. long cylindrical stainless steel shell with a hemispherical dome at the leading edge. It was filled with mercury at room temperature and pressure. Several optical strain gages were attached to the surface of the steel target. Figure 1 shows a schematic representation of the test vessel along with the main dimensions and positions of three optical strain gages at which meaningful data were obtained. As

  12. FFTF horizontal sodium storage tank preliminary thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1995-02-21

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the drain tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The vertical tanks were the subject of a previous report and are not the subject of this report. The fourth tank is a horizontal cylindrical tank 18 feet in diameter, having an overall length of 31 feet and fabricated from carbon steel. The purpose of this work is to document the thermal analyses that were performed to ensure that the FFTF horizontal sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium drain tank is the type of insulation. The baseline case assumed four inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of four inches. Both cases assumed a total electrical trace heat load of 60 kW, evenly distributed on the tank heads and on the tank side wall (cylinder).

  13. FFTF vertical sodium storage tank preliminary thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1995-02-21

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall.

  14. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    Science.gov (United States)

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  15. Thermal properties of soils: effect of biochar application

    Science.gov (United States)

    Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy

    2014-05-01

    Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity

  16. Nonlinear response analysis and experimental verification for thin-walled plates to thermal-acoustic loads

    Directory of Open Access Journals (Sweden)

    Yundong SHA

    2017-12-01

    Full Text Available For large deflection strongly nonlinear response problem of thin-walled structure to thermal-acoustic load, thermal-acoustic excitation test and corresponding simulation analysis for clamped metallic thin-walled plate have been implemented. Comparing calculated values with experimental values shows the consistency and verifies the effectiveness of calculation method and model for thin-walled plate subjected to thermal-acoustic load. Then this paper further completes dynamic response calculation for the cross reinforcement plate under different thermal-acoustic load combinations. Based on the obtained time-domain displacement response, analyses about structure vibration forms are mainly focused on three typical motions of post-buckled plate, indicating that the relative strength between thermal load and acoustic load determines jump forms of plate. The Probability spectrum Density Functions (PDF of displacement response were drawn and analyzed by employing statistical analysis method, and it clearly shows that the PDF of post-buckled plate exhibits bimodal phenomena. Then the Power Spectral Density (PSD functions were used to analyze variations of response frequencies and corresponding peaks with the increase of temperatures, as well as how softening and hardening areas of the plate are determined. In the last section, this paper discusses the change laws of tensile stress and compressive stress in pre/post buckling areas, and gives the reasons for N glyph trend of the stress Root Mean Square (RMS. Keywords: Buckling, Experimental verification, Nonlinear response, Power spectral density, Probability spectrum density, Snap-through, Thermal-acoustic load, Thin-walled structure

  17. Quantitative characterization of multicomponent polymers by sample-controlled thermal analysis.

    Science.gov (United States)

    Sánchez-Jiménez, Pedro E; Pérez-Maqueda, Luis A; Crespo-Amorós, José E; López, Juan; Perejón, Antonio; Criado, José M

    2010-11-01

    This paper explores the potential of sample-controlled thermal analysis (SCTA) in order to perform compositional analysis of multicomponent polymeric materials by means of thermogravimetric experiments. In SCTA experiments, the response of the sample to the temperature determines the evolution of the temperature by means of a feedback system; thus, what is controlled is not the temperature-time profile, as in conventional analysis, but rather the evolution of the reaction rate with time. The higher resolving power provided by the technique has been used for determining the composition of polymer blends composed of polyvinyl chloride (PVC) and different commercial plasticizers, a system where the individual components have very similar thermal stabilities, thereby rendering useless thermogravimetric experiments run under conventional conditions. Different SCTA procedures, such as constant rate thermal analysis (CRTA), which has received special attention, and high-resolution and stepwise isothermal analysis have been tested, and the results obtained have been compared with linear heating rate technique. It has been proven that CRTA can be used to effectively determine the exact composition of the blend.

  18. Solar thermal plant impact analysis and requirements definition study

    Science.gov (United States)

    1982-01-01

    The technology and economics of solar thermal electric systems (STES) for electric power production is discussed. The impacts of and requirements for solar thermal electric power systems were evaluated.

  19. Effects of osmolytes on Pelodiscus sinensis creatine kinase: a study on thermal denaturation and aggregation.

    Science.gov (United States)

    Wang, Wei; Lee, Jinhyuk; Jin, Qin-Xin; Fang, Nai-Yun; Si, Yue-Xiu; Yin, Shang-Jun; Qian, Guo-Ying; Park, Yong-Doo

    2013-09-01

    The protective effect of osmolytes on the thermal denaturation and aggregation of Pelodiscus sinensis muscle creatine kinase (PSCK) was investigated by a combination of spectroscopic methods and thermodynamic analysis. Our results demonstrated that the addition of osmolytes, such as glycine and proline, could prevent thermal denaturation and aggregation of PSCK in a concentration-dependent manner. When the concentration of glycine and proline increased in the denatured system, the relative activation was significantly enhanced; meanwhile, the aggregation of PSCK during thermal denaturation was decreased. Spectrofluorometer results showed that glycine and proline significantly decreased the tertiary structural changes of PSCK and that thermal denaturation directly induced PSCK aggregation. In addition, we also built the 3D structure of PSCK and osmolytes by homology models. The results of computational docking simulations showed that the docking energy was relatively low and that the clustering groups were spread to the surface of PSCK, indicating that osmolytes directly protect the surface of the protein. P. sinensis are poikilothermic and quite sensitive to the change of ambient temperature; however, there were few studies on the thermal denaturation of reptile CK. Our study provides important insight into the protective effects of osmolytes on thermal denaturation and aggregation of PSCK. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Changes in Effective Thermal Conductivity During the Carbothermic Reduction of Magnetite Using Graphite

    Science.gov (United States)

    Kiamehr, Saeed; Ahmed, Hesham; Viswanathan, Nurni; Seetharaman, Seshadri

    2017-06-01

    Knowledge of the effective thermal diffusivity changes of systems undergoing reactions where heat transfer plays an important role in the reaction kinetics is essential for process understanding and control. Carbothermic reduction process of magnetite containing composites is a typical example of such systems. The reduction process in this case is highly endothermic and hence, the overall rate of the reaction is greatly influenced by the heat transfer through composite compact. Using Laser-Flash method, the change of effective thermal diffusivity of magnetite-graphite composite pellet was monitored in the dynamic mode over a pre-defined thermal cycle (heating at the rate of 7 K/min to 1423 K (1150 °C), holding the sample for 270 minutes at this temperature and then cooling it down to the room temperature at the same rate as heating). These measurements were supplemented by Thermogravimetric Analysis under comparable experimental conditions as well as quenching tests of the samples in order to combine the impact of various factors such as sample dilatations and changes in apparent density on the progress of the reaction. The present results show that monitoring thermal diffusivity changes during the course of reduction would be a very useful tool in a total understanding of the underlying physicochemical phenomena. At the end, effort is made to estimate the apparent thermal conductivity values based on the measured thermal diffusivity and dilatations.

  1. Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells

    Science.gov (United States)

    Shah, Krishna; Chalise, Divya; Jain, Ankur

    2016-10-01

    Thermal runaway is a well-known safety concern in Li-ion cells. Methods to predict and prevent thermal runaway are critically needed for enhanced safety and performance. While much work has been done on understanding the kinetics of various heat generation processes during thermal runaway, relatively lesser work exists on understanding how heat removal from the cell influences thermal runaway. Through a unified analysis of heat generation and heat removal, this paper derives and experimentally validates a non-dimensional parameter whose value governs whether or not thermal runaway will occur in a Li-ion cell. This parameter is named the Thermal Runaway Number (TRN), and comprises contributions from thermal transport within and outside the cell, as well as the temperature dependence of heat generation rate. Experimental data using a 26650 thermal test cell are in good agreement with the model, and demonstrate the dependence of thermal runaway on various thermal transport and heat generation parameters. This parameter is used to predict the thermal design space in which the cell will or will not experience thermal runaway. By combining all thermal processes contributing to thermal runaway in a single parameter, this work contributes towards a unified understanding of thermal runaway, and provides the fundamental basis for design tools for safe, high-performance Li-ion batteries.

  2. Occupancy Analysis of Sports Arenas Using Thermal Imaging

    DEFF Research Database (Denmark)

    Gade, Rikke; Jørgensen, Anders; Moeslund, Thomas B.

    2012-01-01

    . Reflections due to shiny surfaces are eliminated by analysing symmetric patterns. Occlusions are dealt with through a concavity anal- ysis of the binary regions. The system is tested in five different sports arenas, for more than three full weeks altogether. These tests showed that after a short......This paper presents a system for automatic analysis of the occupancy of sports arenas. By using a thermal camera for image capturing the number of persons and their location on the court are found without violating any privacy issues. The images are binarised with an automatic threshold method...... initialisation routine the system operates independent of the different environments. The system can very precisely distinguish between zero, some or many persons on the court and give a good indication of which parts of the court that has been used....

  3. Thermal analysis of microcrystalline cellulose prepared from esparto grass

    Directory of Open Access Journals (Sweden)

    Trache D.

    2013-07-01

    Full Text Available Alfa fibres are extracted from the plant Stippa tenacissima, or esparto grass (alfa is the Arab name for esparto, and grows in the dry regions of North Africa. It belongs to the graminacies family and grows to a height of about 1 m. These fibres are mostly used in the production of paper. Recently, they have been used as reinforcement in the production of biodegradable composites. The aim of the present work was to prepare microcrystalline cellulose from esparto grass using the hydrolysis process. The products obtained are characterized with thermogravimetric analysis. As a result, the thermal decomposing patterns of the cellulosic preparations, obtained by hydrochloric hydrolysis gave additional evidence to the relatively higher stability of the more crystalline cellulosic preparations. In the main decomposition stage, the cleavage of the glycosidic linkages of cellulose reduces the polymerization degree leading to the formation of CO2, H2O and other hydrocarbon derivatives.

  4. Transient Analysis of Thermal Protection System for X-33 Aircraft using MSC/NASTRAN

    Science.gov (United States)

    Miura, Hirokazu; Chargin, M. K.; Bowles, J.; Tam, T.; Chu, D.; Chainyk, M.; Green, Michael J. (Technical Monitor)

    1997-01-01

    X-33 is an advanced technology demonstrator vehicle for the Reusable Launch Vehicle (RLV) program. The thermal protection system (TPS) for the X-33 is composed of complex layers of materials to protect internal components, while withstanding severe external temperatures induced by aerodynamic heating during high speed flight. It also serves as the vehicle aeroshell in some regions using a stand-off design. MSC/NASTRAN thermal analysis capability was used to predict transient temperature distribution (within the TPS) throughout a mission, from launch through the cool-off period after landing. In this paper, a typical analysis model, representing a point on the vehicle where the liquid oxygen tank is closest to the outer mold line, is described. The maximum temperature difference between the outer mold line and the internal surface of the liquid oxygen tank can exceed 1500 F. One dimensional thermal models are used to select the materials and determine the thickness of each layer for minimum weight while insuring that all materials remain within the allowable temperature range. The purpose of working with three dimensional (3D) comprehensive models using MSC/NASTRAN is to assess the 3D radiation effects and the thermal conduction heat shorts of the support fixtures.

  5. Thermal Analysis of Braille Formed by Using Screen Printing and Inks with Thermo Powder

    Directory of Open Access Journals (Sweden)

    Svіtlana HAVENKO

    2015-03-01

    Full Text Available In order to improve the integration of blind people into society, suitable conditions should be provided for them. The expansion of Braille (BR use could serve the purpose. Depending on the materials used for Braille, it can be formed or printed in different ways: embossing, screen printing, thermoforming, digital printing. The aim of this research is to determine the effect of thermal properties of screen printing inks and inks with thermo-powder on the qualitative parameters of Braille. Screen printing inks and inks with thermo-powder were chosen for the research. Carrying out the qualitative analysis of printouts with Braille, the thermal stability was evaluated by analyzing the thermograms obtained with derivatograph Q-1500. This paper presents the findings of the thermogravimetric (TG, differential thermogravimetric (DTG and differential thermal analysis (DTA of printouts printed on paperboard Plike and using traditional screen printing inks and screen printing inks with thermo-powder. Based on the testing findings it is determined that thermal stability of printouts printed with thermo-powder ink is higher than printed with screen printing inks. It is determined that the appropriate temperature range of screen printing inks with thermo-powder drying is 98 ºC – 198 ºC because in this case better relief of Braille dots is obtained.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5702

  6. Multiharmonics Method Characterizing In-Plane Thermal Conductivity and TBR of Semiconductor Nanofilm on Substrate: Theoretical Analysis

    Science.gov (United States)

    Wang, Zhaoliang; Xu, Zhe; Du, Xiaoli; Tang, Dawei

    2017-02-01

    The in-plane thermal conductivity of semiconductor nanofilm is difficult to be tested due to suspension problem. The thermal boundary resistance (TBR) plays a key role in semiconductor nanoscale structures and nanoscale thermal experiments. By applying alternating current and direct current currents simultaneously on the semiconducting nanofilm on highly insulated substrate, multiharmonics including 1ω, 2ω and 3ω signals originating from the self-heating of nanofilm are measured. The thermal boundary resistance is introduced into the heat diffusion equation in in-plane direction. The expression of temperature oscillation and theoretical analysis of heat transport process show that the in-plane thermal conductivity and TBR can be decoupled from the multiharmonics in frequency domain. Thermal analysis justifies the multiharmonics method according to the effect of in-plane thermal conductivity, TBR between nanofilm and insulated substrate, resistance coefficient of semiconductor nanofilm on temperature oscillation at low frequency. Results show the multiharmonic method sensitivity variations depending on the TBR, the in-plane thermal conductivity, and the electric current frequency.

  7. THE EFFECTS OF UTILIZING GEOTHERMAL ENERGY IN THERMAL POWER PLANTS ON THE PLANT PERFORMANCE AND FUEL SAVING

    Directory of Open Access Journals (Sweden)

    Ahmet DAĞDAŞ

    2006-02-01

    Full Text Available The share of electricity production from thermal power plants for Turkey is about 61 %. Since the fossil fuels are rapidly consumed, the concept of fossil fuel saving is very important for humanity. In this paper, the effects of boiler feed water preheating by means of geothermal brine on overall performance and fossil fuel savings in thermal power plants are examined. According to the performed analysis, power plant thermal efficiency could be increased of 2-4 % via geothermal preheating. In this analysis, a hypothetical thermal power plant is considered and its performance is evaluated. According to analysis, 1 million US$ in fossil fuel savings and 4.1 % increase in thermal efficiency could be achieved by the use of geothermal preheating.

  8. Measurement of effective thermal conductivity of compacted granular media by the transient plane source technique

    Science.gov (United States)

    Dai, Weijing; Gan, Yixiang

    2017-06-01

    To successfully realise industrial applications handling granular media, especially those involving heating and cooling processes, the temperature fields must be properly evaluated according to the accurate thermal properties of the media. The knowledge the effective thermal conductivity is regarded as one of the fundamental aspects. However, due to the complicated relations between the effective thermal conductivity and the heterogeneity and complexity in the structures and composition of the granular media, the quantitative prediction of the conductivity is challenging. Therefore, experimental investigation of the effective thermal conductivity becomes desired and this can provide first-hand data for industrial reference and serve as the benchmark for the theoretical analysis. In this study, the transient plane source technique is employed to investigate the effective thermal conductivity of compacted granular beds by the application of the commercially available Hot Disk system. The granular beds of different particle size ranges are characterised under different mechanical loading conditions by different sensors. Experimental results are discussed and suggestion to achieve reliable experimental designs is provided.

  9. Effective thermal penetration depth in photo-irradiated ex vivo human tissues.

    Science.gov (United States)

    Stolik, Suren; Delgado, José Alberto; Anasagasti, Lorenzo; Pérez, Arllene Mariana

    2011-10-01

    In this work, a model of bioheat distribution is discussed for ex vivo human tissue samples, and the thermal penetration depth measurements performed on several tissues are presented. Optical radiation is widely applied in the treatment and diagnosis of different pathologies. A power density of incident light at 100 mW/cm(2) is sufficiently high enough to induce a temperature increase of >5°C in irradiated human tissue. In this case, knowledge of the thermal properties of the tissue is needed to achieve a better understanding of the therapeutic effects. The application of the diffusion approximation of the radiative transfer equation for the distribution of optical radiation, the experimental setup, and the results thereof are presented and discussed. The effective thermal penetration depth in the studied tissues has been determined to be in the range of 4.3-7.0 mm. The effective thermal penetration depth has been defined, and this could be useful for developing models to describe the thermal effects with a separate analysis of the tissue itself and the blood that irrigates it.

  10. Prediction of the Effective Thermal Conductivity of Powder Insulation

    Science.gov (United States)

    Jin, Lingxue; Park, Jiho; Lee, Cheonkyu; Jeong, Sangkwon

    The powder insulation method is widely used in structural and cryogenic systems such as transportation and storage tanks of cryogenic fluids. The powder insulation layer is constructed by small particle powder with light weight and some residual gas with high porosity. So far, many experiments have been carried out to test the thermal performance of various kinds of powder, including expanded perlite, glass microspheres, expanded polystyrene (EPS). However, it is still difficult to predict the thermal performance of powder insulation by calculation due to the complicated geometries, including various particle shapes, wide powder diameter distribution, and various pore sizes. In this paper, the effective thermal conductivity of powder insulation has been predicted based on an effective thermal conductivity calculationmodel of porous packed beds. The calculation methodology was applied to the insulation system with expanded perlite, glass microspheres and EPS beads at cryogenic temperature and various vacuum pressures. The calculation results were compared with previous experimental data. Moreover, additional tests were carried out at cryogenic temperature in this research. The fitting equations of the deformation factor of the area-contact model are presented for various powders. The calculation results show agood agreement with the experimental results.

  11. Effective Thermal Expansion Property of Consolidated Granular Materials.

    Science.gov (United States)

    Küçük, Gülşad; Gonzalez, Marcial; Cuitiño, Alberto M

    2017-11-09

    Thermally-assisted compaction of granular materials is of keen interest in many engineering applications. A proper estimation of the material behavior of compacted granular materials is contingent upon the knowledge of microstructure formation, which is highly dependent on the bulk material properties and processing conditions, during the deformation stage. Originating from the pair interactions between particles, the macroscopic properties are obtained using various homogenization techniques and postulating continuum constitutive laws. While pioneers in this field have laid fundamental groundwork regarding effective medium descriptions, there exists a discrepancy between discrete and continuum level solutions. In our previous work, we elaborated a Particle Mechanics Approach (PMA) that integrates thermal contact and Hertzian deformation models to understand the thermo-mechanically-coupled consolidation problem. We also considered the analogous problem from the perspective of the conventional Continuum Mechanics Approach (CMA). In this study, following the multi-scale modeling framework, we propose an effective thermal expansion coefficient for the thermally-assisted compaction of granular materials.

  12. Thermal Analysis of Brazing Seal and Sterilizing Technique to Break Contamination Chain for Mars Sample Return

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2015-01-01

    The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.

  13. Thermal analysis of brazing seal and sterilizing technique to break contamination chain for Mars sample return

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2015-03-01

    The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.

  14. The effect of allometric scaling in coral thermal microenvironments.

    Directory of Open Access Journals (Sweden)

    Robert H Ong

    Full Text Available A long-standing interest in marine science is in the degree to which environmental conditions of flow and irradiance, combined with optical, thermal and morphological characteristics of individual coral colonies, affects their sensitivity of thermal microenvironments and susceptibility to stress-induced bleaching within and/or among colonies. The physiological processes in Scleractinian corals tend to scale allometrically as a result of physical and geometric constraints on body size and shape. There is a direct relationship between scaling to thermal stress, thus, the relationship between allometric scaling and rates of heating and cooling in coral microenvironments is a subject of great interest. The primary aim of this study was to develop an approximation that predicts coral thermal microenvironments as a function of colony morphology (shape and size, light or irradiance, and flow velocity or regime. To do so, we provided intuitive interpretation of their energy budgets for both massive and branching colonies, and then quantified the heat-size exponent (b* and allometric constant (m using logarithmic linear regression. The data demonstrated a positive relationship between thermal rates and changes in irradiance, A/V ratio, and flow, with an interaction where turbulent regime had less influence on overall stress which may serve to ameliorate the effects of temperature rise compared to the laminar regime. These findings indicated that smaller corals have disproportionately higher stress, however they can reach thermal equilibrium quicker. Moreover, excellent agreements between the predicted and simulated microscale temperature values with no significant bias were observed for both the massive and branching colonies, indicating that the numerical approximation should be within the accuracy with which they could be measured. This study may assist in estimating the coral microscale temperature under known conditions of water flow and irradiance

  15. Influence of solder joint length to the mechanical aspect during the thermal stress analysis

    Science.gov (United States)

    Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che

    2017-09-01

    Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.

  16. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  17. An Electro-Thermal Analysis of a Variable-Speed Doubly-Fed Induction Generator in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2015-04-01

    Full Text Available This paper focuses on the electro-thermal analysis of a doubly-fed induction generator (DFIG in a wind turbine (WT with gear transmission configuration. The study of the thermal mechanism plays an important role in the development of cost-effective fault diagnostic techniques, design for reliability and premature failure prevention. Starting from an analysis of the DFIG system control and its power losses mechanism, a model that synthesizes the thermal mechanism of the DFIG and a WT system principle is developed to study the thermodynamics of generator stator winding. The transient-state and steady-state temperature characteristics of stator winding under constant and step-cycle patterns of wind speed are studied to show an intrinsic thermal process within a variable-speed WT generator. Thermal behaviors of two failure modes, i.e., generator ventilation system failure and generator stator winding under electric voltage unbalance, are examined in details and validated by both simulation and data analysis. The effective approach presented in this paper for generator fault diagnosis using the acquired SCADA data shows the importance of simulation models in providing guidance for post-data analysis and interpretation. WT generator winding lifetime is finally estimated based on a thermal ageing model to investigate the impacts of wind speed and failure mode.

  18. Electrical-thermal interaction study of electrical busway using finite element analysis

    Science.gov (United States)

    Ruazani, Arief Husaini; Saad, Abdullah Aziz; Ripin, Zaidi Mohd; Ali, Wan Mohd Amri Wan Mamat; Yusof, Mohamad Yusri; Samsuddin, Muhamad Syazwan; Ong, Heng Pin; Abdullah, Muhammad Khalil

    2017-07-01

    This paper presents an approach for determining temperature distribution on a 2200A busway model. Solidwork software was used in order to create 3D modeling of busway model. This paper proposes a simulation model developed by coupling the multiphysics between electrical analysis and thermal analysis. The coupling was done by using ANSYS Workbench and ANSYS Maxwell. Basically, the electrical analysis is performed onwards busway model in order to get the value of ohmic loss which is heat loss from the conductors in the busway. The ohmic loss results will be imported to thermal analysis in order to get the temperature result as well as temperature distribution. First, the direct current loading of the busbar, which neglect the alternating current effects, was considered. Second, the alternating current loading of busbar was used instead of direct current loading. The model of the second approach gives much more accurate result in term of temperature difference. The presented model was validated against temperature measurement on real size busway under electrical loading. The obtained results show that a very good agreement between computed and experimental data. Once the verification of the model is done, the busway configurations setup behavior is studied. Increasing number of feeder affects thermal stress concentration on busway joint.

  19. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    Science.gov (United States)

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  20. Electrical stimulation vs thermal effects in a complex electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Paniagua, Jesus M., E-mail: paniagua@unex.es [Department of Applied Physics, Polytechnic School, University of Extremadura. Avda. de la Universidad s/n, 10071 Caceres (Spain); Rufo, Montana; Jimenez, Antonio; Antolin, Alicia; Sanchez, Miguel [Department of Applied Physics, Polytechnic School, University of Extremadura. Avda. de la Universidad s/n, 10071 Caceres (Spain)

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10{sup -4}) than that based on thermal considerations (exposure quotient 0.16 10{sup -4}). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  1. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Gu [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jhung, Myung Jo, E-mail: mjj@kins.re.k [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2011-01-15

    Research highlights: Temperature of surge line due to stratified flow is defined using CFD analysis. Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. Fatigue usage factors due to thermal stratification are relatively low. Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  2. Aeroelastic analysis of versatile thermal insulation (VTI) panels with pinched boundary conditions

    Science.gov (United States)

    Carrera, Erasmo; Zappino, Enrico; Patočka, Karel; Komarek, Martin; Ferrarese, Adriano; Montabone, Mauro; Kotzias, Bernhard; Huermann, Brian; Schwane, Richard

    2014-03-01

    Launch vehicle design and analysis is a crucial problem in space engineering. The large range of external conditions and the complexity of space vehicles make the solution of the problem really challenging. The problem considered in the present work deals with the versatile thermal insulation (VTI) panel. This thermal protection system is designed to reduce heat fluxes on the LH2 tank during the long coasting phases. Because of the unconventional boundary conditions and the large-scale geometry of the panel, the aeroelastic behaviour of VTI is investigated in the present work. Known available results from literature related to similar problem, are reviewed by considering the effect of various Mach regimes, including boundary layer thickness effects, in-plane mechanical and thermal loads, non-linear effects and amplitude of limit cycle oscillations. A dedicated finite element model is developed for the supersonic regime. The models used for coupling the orthotropic layered structural model with Piston Theory aerodynamic models allow the calculations of flutter conditions in case of curved panels supported in a discrete number of points. An advanced computational aeroelasticity tool is developed using various dedicated commercial softwares (CFX, ZAERO, EDGE). A wind tunnel test campaign is carried out to assess the computational tool in the analysis of this type of problem.

  3. Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications

    Science.gov (United States)

    Hu, Enyuan

    high as 500°C without observable oxygen release. It shows comparable cyclability performance to the LNMO material with better rate capability. The undiminished high voltage capacity is due to the electrochemical activity of Fe in the system. Fe also plays the key role of stabilizing the system at Fe3O4 type spinel phase against further phase transformation to the rock salt phase, accounting for the superior thermal stability of LiNi1/3Mn 4/3Fe1/3O4. Thermal analysis of the lithium-ion battery indicates the key role of electric current in contributing to a thermal runaway. FLUENT simulation on a 10-cell battery shows that under fast discharging conditions, the temperature level can easily reach the threshold of malfunction and the battery temperature features a large distribution of 18°C. Simple air cooling is not effective enough in addressing the problem. Designed air cooling or liquid cooling is required for the normal operation of lithium-ion batteries in vehicles.

  4. Numerical thermal analysis of the vertical external partition made as the frame thin-walled steel structure

    Directory of Open Access Journals (Sweden)

    Major Maciej

    2017-01-01

    Full Text Available The article presents numerical thermal analysis of the vertical external partitions made in the lightweight steel framing technology. Steel posts that perform the structural role lead to the formation of linear thermal bridges and have a negative effect on the level of thermal transmittance U. Therefore, optimal solutions are being explored for such technologies. One of the solutions is to use perforated Thermo sections. The effect of perforated Thermo sections on energy loss was verified through comparison to the wall made of solid sections. Furthermore, the calculations analysed the effect of linear thermal bridges that are formed on wall connections in the corner. Computer simulation was employed to emphasize the significant differences in the temperature distribution in both analysed wall structures that resulted from constructional solutions.

  5. Exact Thermal Analysis of Functionally Graded Cylindrical and Spherical Vessels

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-07-01

    Full Text Available Thermal analyses of radially functionally graded (FG thick-walled a spherical vessel and an infinite cylindrical vessel or a circular annulus are conducted analytically by the steady-state 1-D Fourier heat conduction theory under Dirichlet’s boundary conditions. By employing simple-power material grading pattern the differential equations are obtained in the form of Euler-Cauchy types. Analytical solution of the differential equations gives the temperature field and the heat flux distribution in the radial direction in a closed form. Three different physical metal-ceramic pairs first considered to study the effect of the aspect ratio, which is defined as the inner radius to the outer radius of the structure, on the temperature and heat flux variation along the radial coordinate. Then a parametric study is performed with hypothetic inhomogeneity indexes for varying aspect ratios.

  6. Experimental analysis on physical and mechanical properties of thermal shock damage of granite

    Directory of Open Access Journals (Sweden)

    He Xiao

    2017-01-01

    Full Text Available The purpose of this study was to explore the changes of mechanical and physical properties of granite under different thermal loading effects. Uniaxial compression experiments studying the rules of the influence of temperature load on mechanical properties of granite were carried out. After high-temperature heating at above 600 °C, granite tended to have stronger ductility and plasticity as well as declined peak stress and compressive strength. Thermogravimetry - differential scanning calorimetry (TG-DSC analysis results showed that, thermal load at different temperatures induced reactions such as water loss, oxidation and crystallization in the microstructure of granite, which led to physical changes of granite. Hence it is concluded that, heating can significantly weaken the mechanical performance of granite, which provides an important support for the optimization of heating assisted processing of granite. It also reveals that, heating assisted cutting technique can effectively lower energy consumption and improve processing efficiency.

  7. Revisiting the effects of organic solvents on the thermal reduction of graphite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bujans, Fabienne, E-mail: fbarroso@ehu.es [Centro de Fisica de Materiales-Material Physics Center (CSIC-UPV/EHU), Paseo Manuel Lardizabal 5, 20018 San Sebastian (Spain); Fierro, Jose Luis G. [Instituto de Catalisis y Petroleoquimica, CSIC. Marie Curie, 2, Cantoblanco, 28049 Madrid (Spain); Alegria, Angel [Centro de Fisica de Materiales-Material Physics Center (CSIC-UPV/EHU), Paseo Manuel Lardizabal 5, 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Universidad del Pais Vasco (UPV/EHU) Apartado 1072, 20080 San Sebastian (Spain); Colmenero, Juan [Centro de Fisica de Materiales-Material Physics Center (CSIC-UPV/EHU), Paseo Manuel Lardizabal 5, 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Universidad del Pais Vasco (UPV/EHU) Apartado 1072, 20080 San Sebastian (Spain); Donostia International Physics Center, Paseo Manuel Lardizabal 4, 20018 San Sebastian (Spain)

    2011-11-10

    Highlights: Black-Right-Pointing-Pointer Retention of organic solvent on graphite oxide interlayer space. Black-Right-Pointing-Pointer Decreasing exfoliation temperature. Black-Right-Pointing-Pointer Close link between structure and thermal behavior of solvent treated graphite oxide. Black-Right-Pointing-Pointer Restacking inhibition of thermally reduced graphite oxide sheets. Black-Right-Pointing-Pointer Changes in kinetic mechanisms of thermal reduction. - Abstract: Treatment of graphite oxide (GO) with organic solvents via sorption from either liquid or gas phase, and subsequent desorption, induces profound changes in the layered GO structure: loss of stacking order, retention of trace amounts of solvents and decreasing decomposition temperature. This study presents new evidences of the effect of organic solvents on the thermal reduction of GO by means of thermogravimetric analysis, X-ray diffraction and X-ray photoelectron spectroscopy. The results reveal a relative higher decrease of the oxygen amounts in solvent-treated GO as compared to untreated GO and the restacking inhibition of the thermally reduced GO sheets upon slow heating. The kinetic experiments evidence changes occurring in the reduction mechanisms of the solvent-treated GO, which support the close link between GO structure and thermal properties.

  8. Effects of thermal shocks on the release of radioisotopes and on molten metal target vessels

    CERN Document Server

    Lettry, Jacques; Benedikt, Michael; Catherall, R; Cyvoct, G; Fabich, A; Georg, U; Gilardoni, S S; Jonsson, O; Ravn, H L; Sgobba, Stefano; Bauer, G; Bruchertseifer, H; Graber, T; Gudermann, C; Ni, L; Rastani, R

    2003-01-01

    The ISOLDE pulsed proton beam peak power amounts to 500 MW during the 2.4 ms proton pulse. The fraction of the proton pulse energy deposited in the target material is at the origin of severe thermal shocks. Quantitative measurement of their effect on the release of radioelements from ISOLDE targets was obtained by comparison of release profiles measured under different proton beam settings. The thermal shock induced in liquids (Pb, Sn, La) lead to mechanical failure of ISOLDE molten metal target vessels. Failure analysis is presented and discussed in the light of the response of mercury samples submitted to the ISOLDE beam and monitored by high-speed optical systems.

  9. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  10. Effects of thermal environment on sleep and circadian rhythm

    Directory of Open Access Journals (Sweden)

    Okamoto-Mizuno Kazue

    2012-05-01

    Full Text Available Abstract The thermal environment is one of the most important factors that can affect human sleep. The stereotypical effects of heat or cold exposure are increased wakefulness and decreased rapid eye movement sleep and slow wave sleep. These effects of the thermal environment on sleep stages are strongly linked to thermoregulation, which affects the mechanism regulating sleep. The effects on sleep stages also differ depending on the use of bedding and/or clothing. In semi-nude subjects, sleep stages are more affected by cold exposure than heat exposure. In real-life situations where bedding and clothing are used, heat exposure increases wakefulness and decreases slow wave sleep and rapid eye movement sleep. Humid heat exposure further increases thermal load during sleep and affects sleep stages and thermoregulation. On the other hand, cold exposure does not affect sleep stages, though the use of beddings and clothing during sleep is critical in supporting thermoregulation and sleep in cold exposure. However, cold exposure affects cardiac autonomic response during sleep without affecting sleep stages and subjective sensations. These results indicate that the impact of cold exposure may be greater than that of heat exposure in real-life situations; thus, further studies are warranted that consider the effect of cold exposure on sleep and other physiological parameters.

  11. The thermal analysis study of 3D bare chip laminated packaging structure

    Science.gov (United States)

    Huang, Bangze; Wu, Zhaohua

    2017-10-01

    In three dimensions bare chip encapsulation structure with three cascading layer, using ANSYS to establish three-dimensional finite element model of naked chip laminated packaging of the wire bonding, flip, wire bonding and flip chip form mixing, TSV, and carry on the thermal simulation analysis, the different ways of 3d bare chip laminated packaging of interconnection for the influence of thermal resistance Raj and TSV model between the filling material of different coefficient of thermal conductivity for the influence of heat conduction. Simulation results reflect: (1) the lead bonding, flip, the hybrid model, TSV for chip junction temperature respectively are Tj1=75.4843°C, Tj2=74.8014°C, Tj3=74.8014°C, Tj4=72.5233°C. The highest temperature difference is 2.961°C, showing that the interconnection to three layers of highest chip junction temperature effect of bare chip laminated packaging structure is not obvious;(2) by the calculation, the four kinds of the thermal resistance of interconnection simulation model respectively are R1ja=50.4843°C/W, R2ja=49.8014°C/W, R3ja=49.2115°C/W, R4ja=47.5233°C/W, illustrating that three-dimensional naked chip laminated packaging of different interconnection is not the same. Because different internal thermal channel causes the discrepancy of thermal resistance, the highest chip junction temperature is various.

  12. A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites

    Directory of Open Access Journals (Sweden)

    F. Xie

    2016-06-01

    Full Text Available A facile and efficient approach to reduce graphene oxide with Al particles and potassium hydroxide was developed at moderate temperature and the graphene/epoxy composite was prepared by mould casting method. The as-prepared graphene has been confirmed by Transmission electron microscopy, Fourier transform infrared spectrometer, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Thermal gravimetric analysis. This provides a new green way to synthesize graphene with high surface area and opens another opportunity for the production of graphene. Effects of graphene on thermal conductivity, thermal stability and microstructures of the epoxy-based composite were also investigated. The results showed that thermal conductivity of the composite exhibited a remarkable improvement with increasing content of graphene and thermal conductivity could reach 1.192 W/(m*K when filled with 3 wt% graphene. Moreover, graphene/epoxy composite exhibits good thermal stability with 3 wt% graphene.

  13. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  14. Effects of Thermal Tension Transients on the Muscle Crossbridge

    Science.gov (United States)

    Greene, Peter R.

    2016-09-01

    The transverse thermal fluctuations of the myosin molecule are significant. This paper explores the contribution of lateral myosin bending to the developed crossbridge force and power stroke. The equipartition theorem is used to calculate the mode amplitudes for myosin bending. Crossbridge axial force Fx and power stroke Δx are developed by transverse in-plane fluctuations along the y- and z-axes. Practical applications include the effects of temperature on the flexibility of the myosin molecule stiffness and tension, relevant to man-made fabrication of synthetic muscle using micromachines and nanowires. Scaling laws for the S2 bending amplitude depend on filament length, mode number, and stiffness, as n-2,L2, and (EI)-1. This paper quantifies the effects of thermal motion on the mechanics of miniature molecular motors, including the muscle crossbridge.

  15. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  16. Ordered Pinning Arrays with Tunable Geometry via Thermal Effects

    Science.gov (United States)

    Trastoy, Juan; Bernard, Rozenn; Briatico, Javier; Villegas, Javier E.; Malnou, Maxime; Bergeal, Nicolas; Lesueur, Jerome; Ulysse, Christian; Faini, Giancarlo

    2015-03-01

    We have used geometrically frustrated pinning arrays to create artificial vortex-ice. The pinning arrays are fabricated via ion irradiation of high-Tc superconducting films. These arrays present a very unique characteristic: the frustration can be reversibly switched on/off using temperature as a control knob, which allows stabilizing either a vortex-ice or a square vortex lattice. We have further investigated the thermal switching mechanism by studying the matching of the flux lattice to arrays that are incrementally deformed upon fabrication by introducing minute variations of the distance between pins. The array deformation exacerbates the thermal effects, leading to dramatic variations of the vortex distribution as a function of temperature. These results illustrate the strength of the temperature-induced reconfiguration effects, which may constitute a novel knob in fluxtronic devices based on vortex manipulation. Work supported by the French ANR MASTHER, the COST Action NanoSC, the Ville de Paris and the Galician Fundacion Barrie.

  17. Numerical investigation of a three-dimensional disc-pad model with and without thermal effects

    Directory of Open Access Journals (Sweden)

    Belhocine Ali

    2015-01-01

    Full Text Available This study aims to identify thermal effects in the structure and the contact behavior of a disc-pad assembly using a finite element approach. The first analysis is performed on the disc-pad model in the absence of thermal effects. The structural performance of the disc-pad model is predicted in terms of factors such as the deformation and Von Mises stress. Next, thermomechanical analysis is performed on the same disc-pad model with the inclusion of convection, adiabatic, and heat flux elements. The predicted temperature distribution, deformation, stress, and contact pressure are presented. The structural performance between the two analyses (mechanical and thermomechanical is compared. This study can assist brake engineers in choosing a suitable analysis method to critically evaluate the structural and contact behavior of the disc brake assembly.

  18. Influence of thermal effects on stability of nanoscale films and filaments on thermally conductive substrates

    Science.gov (United States)

    Seric, Ivana; Afkhami, Shahriar; Kondic, Lou

    2018-01-01

    We consider fluid films and filaments of nanoscale thickness on thermally conductive substrates exposed to external heating and discuss the influence of the variation of material parameters with temperature on film stability. Particular focus is on metal films exposed to laser irradiation. Due to the short length scales involved, the absorption of heat in the metal is directly coupled to the film evolution, since the absorption length and the film thickness are comparable. Such a setup requires self-consistent consideration of fluid mechanical and thermal effects. We approach the problem via volume-of-fluid-based simulations that include destabilizing liquid metal-solid substrate interaction potentials. These simulations couple fluid dynamics directly with the spatio-temporal evolution of the temperature field both in the fluid and in the substrate. We focus on the influence of the temperature variation of material parameters, in particular of surface tension and viscosity. Regarding variation of surface tension with temperature, the main finding is that while the Marangoni effect may not play a significant role in the considered setting, the temporal variation of surface tension (modifying normal stress balance) is significant and could lead to complex evolution including oscillatory evolution of the liquid metal-air interface. Temperature variation of film viscosity is also found to be relevant. Therefore, the variations of surface tensions and viscosity could both influence the emerging wavelengths in experiments. By contrast, the filament geometry is found to be much less sensitive to a variation of material parameters with temperature.

  19. Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis

    Science.gov (United States)

    Clayton, J. Louie

    2001-01-01

    This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.

  20. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  1. Simultaneous Thermal Analysis of Remediated Nitrate Salt Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-13

    The actinide engineering and science group (MET-1) have completed simultaneous thermal analysis and offgas analysis by mass spectrometry (STA-MS) of remediated nitrate salt (RNS) surrogates formulated by the high explosives science and technology group (M-7). The 1.0 to 1.5g surrogate samples were first analyzed as received, then a new set was analyzed with 100-200mL 10M HNO3 +0.3 MHF added, and a third set was analyzed after 200 mL of a concentrated Pu-AM spike (in 10M HNO3 +0.3 MHF) was added. The acid and spike solutions were formulated by the actinide analytical chemistry group (C-AAC) using reagent-grade HNO3 and HF, which was also used to dissolve a small quantity of mixed, high-fired PuO2/ AmO2 oxide.

  2. A review on ergonomics of headgear: Thermal effects

    OpenAIRE

    Bogerd, C.P.; Aerts, J.M.; Annaheim, S.; Bröde, P.; Bruyne, G. de; Flouris, A.D.; Kuklane, K.; Sotto Mayor, T.; Rossi, R.M.

    2015-01-01

    The thermal effects related to wearing headgear are complex and different studies have investigated single parts of this topic. This review aims at summarizing the different findings to give a complete overview on this topic as well as to suggest new perspectives. Headgear increases head insulation and therefore is mainly problematic under warm conditions, which is the focus of this review. Helmets do not affect physiological parameters other than the local skin temperature and sweat rate. Ho...

  3. Thermal stress analysis of STS VOD ladle according to the reinforcement of back filler

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. W.; Bae, S. I.; Song, J. I. [Changwon National Univ., Changwon (Korea, Republic of); Ham, K. C. [Inha Technical College, Incheon (Korea, Republic of)

    2000-07-01

    We analyzed thermal stress of the STS VOD ladle by the variation of material property of refractory, and determined the location of back filler using FE analysis. Thermal distribution of refractory of ladle between hot face and back face were decreased by the increasing the thermal conductivity, and thermal stress of refractory were decreased about 2 to 4 times with the decreasing the young's modulus coefficients. Back filler, which is constructed to absorb the thermal expansion of dolomite refractory, has relatively low thermal conductivity. Inner side of refractory of ladle maintained high temperature, but temperature of outer side of ladle decreased low. Consequently, inner expansion and outer contraction were appeared, and thermal stress were increased, so thermal stress by the construction of back filler were increased.

  4. Thermal Characteristic Analysis and Experimental Study of a Spindle-Bearing System

    Directory of Open Access Journals (Sweden)

    Li Wu

    2016-07-01

    Full Text Available In this paper, a thermo-mechanical coupling analysis model of the spindle-bearing system based on Hertz’s contact theory and a point contact non-Newtonian thermal elastohydrodynamic lubrication (EHL theory are developed. In this model, the effect of preload, centrifugal force, the gyroscopic moment, and the lubrication state of the spindle-bearing system are considered. According to the heat transfer theory, the mathematical model for the temperature field of the spindle system is developed and the effect of the spindle cooling system on the spindle temperature distribution is analyzed. The theoretical simulations and the experimental results indicate that the bearing preload has great effect on the frictional heat generation; the cooling fluid has great effect on the heat balance of the spindle system. If a steady-state heat balance between the friction heat generation and the cooling system cannot be reached, thermally-induced preload will lead to a further increase of the frictional heat generation and then cause the thermal failure of the spindle.

  5. Tuning the thermal conductance of molecular junctions with interference effects

    Science.gov (United States)

    Klöckner, J. C.; Cuevas, J. C.; Pauly, F.

    2017-12-01

    We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.

  6. Topological thermal Hall effect in frustrated kagome antiferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2017-01-01

    In frustrated magnets the Dzyaloshinsky-Moriya interaction (DMI) arising from spin-orbit coupling can induce a magnetic long-range order. Here, we report a theoretical prediction of the thermal Hall effect in frustrated kagome magnets such as KCr3(OH) 6(SO4) 2 and KFe3(OH) 6(SO4)2 . The thermal Hall effects in these materials are induced by scalar spin chirality as opposed to DMI in previous studies. The scalar spin chirality originates from the magnetic-field-induced chiral spin configuration due to noncoplanar spin textures, but in general it can be spontaneously developed as a macroscopic order parameter in chiral quantum spin liquids. Therefore, we infer that there is a possibility of the thermal Hall effect in frustrated kagome magnets such as herbertsmithite ZnCu3(OH) 6Cl2 and the chromium compound Ca10Cr7O28 , although they also show evidence of magnetic long-range order in the presence of applied magnetic field or pressure.

  7. Sensitivity analysis for daily building operation from the energy and thermal comfort standpoint

    Directory of Open Access Journals (Sweden)

    Ignjatović Marko G.

    2016-01-01

    Full Text Available Improving energy performance of buildings is one of the most important tasks for reaching sustainability. Assessing building energy consumption is performed more often with specialized simulation tools. Sensitivity analysis proved to be a valuable tool for creating more reliable and realistic building energy models and better buildings. This paper briefly describes the methodology for running global sensitivity analysis and tools that can be used, and presents the results of such an analysis conducted for winter period, daily, on input variables covering a real building's operation, control and occupant related parameters that affect both thermal comfort and heating energy consumption. Two sets of inputs were created. The only difference between these sets is an addition of clothing insulation and occupant heat gain as input variables. The reference building was simulated for three distinctive winter weeks. Two additional input variables have an effect especially on thermal comfort, but they do not disturb the relative order of other influential input variables. The common influential variables for both energy consumption and thermal comfort were identified and are: air handling unit sup-ply temperature and airflow rate and control system related parameters. This can help in future research into implementing the simulation-assisted optimized operation in real buildings. [Projekat Ministarstva nauke Republike Srbije, br. TR-33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  8. Quantitative measurement of carbon nanotubes released from their composites by thermal carbon analysis

    Science.gov (United States)

    Ogura, I.; Kotake, M.; Ata, S.; Honda, K.

    2017-06-01

    The release of free carbon nanotubes (CNTs) and CNTs partly embedded in matrix debris into the air may occur during mechanical and abrasion processes involving CNT composites. Since the harmful effects of CNT-matrix mixtures have not yet been fully evaluated, it is considered that any exposure to CNTs, including CNT-matrix mixtures, should be measured and controlled. Thermal carbon analysis, such as Method 5040 of the National Institute for Occupational Safety and Health, is one of the most reliable quantitative methods for measuring CNTs in the air. However, when CNTs are released together with polymer matrices, this technique may be inapplicable. In this study, we evaluated the potential for using thermal carbon analysis to determine CNTs in the presence of polymer matrices. Our results showed that thermal carbon analysis was potentially capable of determining CNTs in distinction from polyamide 12, polybutylene terephthalate, polypropylene, and polyoxymethylene. However, it was difficult to determine CNTs in the presence of polyethylene terephthalate, polycarbonate, polyetheretherketone, or polyamide 6.

  9. Micromechanical thermal analysis of interphase region in a titanium aluminide MMC

    Science.gov (United States)

    Naik, R. A.; Johnson, W. S.; Dicus, D. L.

    1990-01-01

    The high reactivity between the fiber and matrix in silicon carbide/titanium aluminide MMCs leads to the formation of brittle reaction products at the fiber/matrix (F/M) interface. Also, the high thermal expansion coefficient mismatch between the fiber and matrix leads to high tensile residual stresses at the F/M interface, and this can lead to premature cracking during cooldown. One solution to these problems is the use of a metallic fiber coating like Ta which acts as an F/M diffusion barrier and reacts with the matrix to form a beta stabilized compliant layer. A finite element micromechanics analysis was performed to study the effects of Ta and beta interphase layers on the thermal residual stresses during consolidation. A 5-micron-thick beta layer reduced cool-down stresses by 8 percent compared to a 2 percent reduction computed for a Ta layer of the same thickness. Plastic yielding in the Ta was not effective in reducing cool-down stresses. Compliant alpha-2 particles next to the stiffer gamma particles reduced stresses in the gamma particles by less than 2 percent. A simple closed form analysis was developed to calculate thermal residual stresses in a fiber/interphase/matrix system. A 2-micron-thick Ag interphase layer was found to reduce residual stresses by about 11 percent.

  10. Effect of high pressure on rheological and thermal properties of quinoa and maize starches.

    Science.gov (United States)

    Li, Guantian; Zhu, Fan

    2018-02-15

    Quinoa starch has small granules with relatively low gelatinization temperatures and amylose content. High hydrostatic pressure (HHP) is a non-thermal technique for food processing. In this study, effects of HHP up to 600MPa on physical properties of quinoa starch were studied and compared with those of a normal maize starch. Both starches gelatinized at 500 and 600MPa. The pressure of 600MPa completely gelatinized quinoa starch as revealed by thermal analysis. Dynamic rheological analysis showed that HHP improved the gel stability of both starches during cooling. HHP had little effects on amylopectin recrystallization and gel textural properties of starch. Overall, quinoa starch was more susceptible to HHP than maize starch. The effects of HHP on some rheological properties such as frequency dependence were different between these two types of starches. The differences could be attributed to the different composition, granular and chemical structures of starch, and the presence of granule remnants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Imaging laser-induced thermal fields and effects

    Science.gov (United States)

    Verdaasdonck, Rudolf M.

    1995-05-01

    Laser light interaction with biological tissues is a combination of optical, thermal and mechanical effects depending on the energy applied per unit of volume per unit of time. Visualization of the phenomena with a high temporal and spatial resolution, contributes to a better understanding of the mechanism of action, especially when pulsed lasers are involved. For this goal, setups were developed based on Schlieren techniques to image the interaction of pulsed (CO2, Holmium and Excimer) and CW (CO2, Nd:YAG, Cu-vapor) lasers with physiological media and biological tissues. In a 'fast' Schlieren setup, images of shock waves and fast expanding and imploding vapor bubbles were captured using very short light flashes (10 ns-10 microseconds). These recordings suggest that these explosive vapor bubbles seem to be the main dynamism for tissue ablation. In a 'color' Schlieren setup, very small changes in optical density of the media induced by temperature gradients, were color coded. Calibration of the color images to absolute temperatures were performed by using calculated temperature distributions and by thermocouple measurements. Cameras with high speed shutters (0.1-50 ms) enabled the recording of dynamic images of the thermal relaxation and heat diffusion in tissues during variation of pulse length and repetition rate. Despite pulse lengths Schlieren techniques were applied to study the thermal characteristics of laser probes, e.g. for the treatment of Benign Prostatic Hyperplasia (BPH). In combination with thermal modeling an optimal therapy might be predicted. Schlieren techniques, generating high-speed and 'thermal' images, can provide a good understanding of the ablation mechanism and the thermo-dynamics during laser-tissue interaction with continuous wave and pulse lasers.

  12. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    Science.gov (United States)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  13. Synthesis and Thermal Analysis of Vertically Aligned CNTS Grown on Copper Substrates (POSTPRINT)

    Science.gov (United States)

    2017-08-01

    AFRL-RQ-WP-TP-2017-0158 SYNTHESIS AND THERMAL ANALYSIS OF VERTICALLY ALIGNED CNTS GROWN ON COPPER SUBSTRATES (POSTPRINT) Levi Elston...AND SUBTITLE SYNTHESIS AND THERMAL ANALYSIS OF VERTICALLY ALIGNED CNTS GROWN ON COPPER SUBSTRATES (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...thermal interface material beyond synthesis . This effort extends prior work on carbon nanotube growth, by concentrating on ways to evaluate/measure CNT

  14. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  15. Hall Effect on Thermal Instability of Viscoelastic Dusty Fluid in Porous Medium

    Science.gov (United States)

    Singh, M.; Gupta, R. K.

    2013-08-01

    The effect of Hall currents and suspended dusty particles on the hydromagnetic stability of a compressible, electrically conducting Rivlin-Ericksen elastico viscous fluid in a porous medium is considered. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For the case of stationary convection, Hall currents and suspended particles are found to have destabilizing effects whereas compressibility and magnetic field have stabilizing effects on the system. The medium permeability, however, has stabilizing and destabilizing effects on thermal instability in contrast to its destabilizing effect in the absence of the magnetic field. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers are depicted graphically. The magnetic field, Hall currents and viscoelasticity parameter are found to introduce oscillatory modes in the systems, which did not exist in the absence of these parameters

  16. Using wavelet analysis to derive seepage rates from thermal records

    Science.gov (United States)

    Banzhaf, S.; Onderka, M.; Krein, A.; Scheytt, T.

    2012-04-01

    The use of thermal records to detect loosing and gaining reaches of streams and also to determine water fluxes between surface water and groundwater has attracted researchers in hydrological sciences worldwide. This method is attractive due to the high resolution and quality of the temperature data and the relatively low costs of the equipment needed to collect the data in the streambed and therefore is widely applied. Stream water temperature fluctuates on different time scales, with strong diurnal and seasonal fluctuations. When the temperature signal propagates into the aquifer, it is attenuated and shifted in time, where the degree of signal attenuation and its shift are determined by the fluid flow velocity, thermal properties of the sediment matrix, and the frequency of the temperature signal. High-frequency signals (diurnal or smaller) are damped more than low-frequency signals (seasonal or annual). Vertical fluxes can be estimated from the amplitude ratios of temperature oscillations measured between two depths in the stream bed by using the one-dimensional heat transport equation by STALLMAN (1965) when the sediment properties between this two depths are assumed to be homogeneous. However, before this calculations can be performed a time-frequency analysis has to be performed. In contrast to the Fourier transform, which is most common, the use of wavelets allows also to capture non steady-state frequency responses. This, of course, is a huge advantage of the wavelet analysis for hydrological applications as most environmental signals are non steady-state. Wavelet transform decomposes a signal into a time-frequency space and therefore localized intermittent periodicities in the signal can be detected. The wavelet power spectrum that is yielded then allows to separate these different periods, e.g. daily cycles and seasonal signals. To test this method, temperature data that was recorded for a period of 2 years in a stream and its riverbank at a field site in

  17. Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching.

    Science.gov (United States)

    Carstea, Elfrida M; Baker, Andy; Bieroza, Magdalena; Reynolds, Darren M; Bridgeman, John

    2014-09-15

    The fluorescence intensity of dissolved organic matter (DOM) in aqueous samples is known to be highly influenced by temperature. Although several studies have demonstrated the effect of thermal quenching on the fluorescence of DOM, no research has been undertaken to assess the effects of temperature by combining fluorescence excitation - emission matrices (EEM) and parallel factor analysis (PARAFAC) modelling. This study further extends previous research on thermal quenching by evaluating the impact of temperature on the fluorescence of DOM from a wide range of environmental samples, in the range 20 °C - 0 °C. Fluorescence intensity increased linearly with respect to temperature decrease at all temperatures down to 0 °C. Results showed that temperature affected the PARAFAC components associated with humic-like and tryptophan-like components of DOM differently, depending on the water type. The terrestrial humic-like components, C1 and C2 presented the highest thermal quenching in rural water samples and the lowest in urban water samples, while C3, the tryptophan-like component, and C4, a reprocessed humic-like component, showed opposite results. These results were attributed to the availability and abundance of the components or to the degree of exposure to the heat source. The variable thermal quenching of the humic-like components also indicated that although the PARAFAC model generated the same components across sites, the DOM composition of each component differed between them. This study has shown that thermal quenching can provide additional information on the characteristics and composition of DOM and highlighted the importance of correcting fluorescence data collected in situ. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Analysis Methods of HTLS Conductors in Terms of Mechanical and Thermal Criteria

    Directory of Open Access Journals (Sweden)

    Paweł Kubek

    2013-03-01

    Full Text Available A thermal modernization allows increasing the thermal rating of the existing lines. This especially concerns the older overhead lines designed for the +40°C temperature conductor limit. This paper presents reconductoring as the attractive method of existing line thermal modernization. The article provides an overview of issues related to the selection of the HTLS conductor for thermal uprating of existing overhead transmission lines. Some aspects related to the extension of the thermal, electrical and mechanical models used so far for analysis of HTLS conductors are presented in the paper.

  19. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    Administrator

    fraction, particle size and shape of nanoparticles also influence the thermal conductivity enhancement of nano- fluids. Zhang et al (2007) investigated the heat transfer per- formance of TiO2/water nanofluid for various volume fractions and temperatures. They observed that the effec- tive thermal conductivities of nanofluids ...

  20. Analysis of thermal comfort in Lagos, Nigeria | Komolafe | Global ...

    African Journals Online (AJOL)

    This paper reports a thermal comfort survey conducted in three locations in Lagos between July 1996 and June 1997 in which 50 fully acclimatized subjects cast over 6,000 individual votes of their subjective assessments of the thermal environments. The survey covered only residential buildings constructed of sandcrete ...

  1. Effective Thermal Conductivity of Graphite Materials with Cracks

    Science.gov (United States)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  2. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  3. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    Science.gov (United States)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  4. Effects of thermal treatment on colour and texture of Typha latifolia L.

    Science.gov (United States)

    Zhang, Min; Zhou, Yun-hua; Wang, Shaojin; Tang, Juming

    2012-04-01

    Through the analysis of the residual activity of peroxidase (POD), chromatic aberration, shear intensity and shear power, the effects of different thermal treatment times at 100°C on the POD, surface colour and texture of Typha latifolia L. were evaluated. The results showed that the activity of POD decreased with the increasing thermal treatment time at 100°C. The regeneration amount of POD increased first for some time and then started to decrease with the treatment time. Thermal treatment times 1.0 and 1.5 min at 100°C exhibited maximum regeneration of POD for the samples stored at 20 and 37°C, respectively. The sample had acceptable texture and surface colour when they were treated at 100°C for 4 min because the POD in the sample was inactivated to an acceptable level.

  5. Effects of Silver Microparticles and Nanoparticles on Thermal and Electrical Characteristics of Electrically Conductive Adhesives

    Science.gov (United States)

    Zulkarnain, M.; Fadzil, M. A.; Mariatti, M.; Azid, I. A.

    2017-11-01

    The effects of different volume fractions of silver (Ag) particles of different size (microsize, 2 μm to 3.5 μm diameter; nanosize, 80 nm diameter) on the thermal and electrical characteristics of epoxy-Ag electrically conductive adhesive (ECA) have been evaluated, as well as hybrid ECAs with both particle sizes at different ratios. Improved thermal and electrical conductivity resulted from the interaction between the particles, as evaluated by analysis of sample morphology. The interaction was altered to improve the conductivity. For both particle sizes, the electrical resistivity showed a transition from insulation to conduction at 6 vol.% Ag. In the hybrid system, the thermal conductivity decreased with increasing microparticle filler ratio. The electrical conductivity of the hybrid composite increased at 50:50 weight ratio.

  6. Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.

    2016-04-01

    Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.

  7. Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity

    CERN Document Server

    Krüger, C J; Andersson, N

    2014-01-01

    We study the oscillations of relativistic stars, incorporating key physics associated with internal composition, thermal gradients and crust elasticity. Our aim is to develop a formalism which is able to account for the state-of-the-art understanding of the complex physics associated with these systems. As a first step, we build models using a modern equation of state including composition gradients and density discontinuities associated with internal phase-transitions (like the crust-core transition and the point where muons first appear in the core). In order to understand the nature of the oscillation spectrum, we carry out cooling simulations to provide realistic snapshots of the temperature distribution in the interior as the star evolves through adolescence. The associated thermal pressure is incorporated in the perturbation analysis, and we discuss the presence of $g$-modes arising as a result of thermal effects. We also consider interface modes due to phase-transitions and the gradual formation of the...

  8. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Science.gov (United States)

    Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda

    2016-12-01

    The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  9. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  10. Effect of thermal power plant emissions on Catharanthus roseus L

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.M.; Pandey, V.; Shukla, J.; Singh, N.; Yunus, M.; Singh, S.N.; Ahmad, K.J. (National Botanical Research Institute, Lucknow (India))

    1990-06-01

    Most of the industrialized nations depend largely on the combustion of fossil fuels for their energy requirements. During the past few years in India quite a few thermal power plants have been commissioned to cater to the increasing energy requirements. As most of the power plants are coal-fired, a complex mixture of several pollutants is released in the atmosphere on the combustion of coal. Leaves by virtue of their unique position on plants and their functions, experience the maximum brunt of exposure and undergo certain changes in form, structure and function with the changes in surrounding environs, and such modifications are likely to serve as markers of environmental pollution. The present paper deals with the long term exposure effects of thermal power plant emissions on Catharanthus roseus L. - a common perennial shrub, with glossy leaves and white, mauve or pink colored flowers and of great medicinal value is grown as an ornamental plant all over the country.

  11. Analysis on energy consumption index system of thermal power plant

    Science.gov (United States)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  12. Monte Carlo analysis: error of extrapolated thermal conductivity from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    In this short report, we give an analysis of the extrapolated thermal conductivity of UO2 from earlier molecular dynamics (MD) simulations [1]. Because almost all material properties are functions of temperature, e.g. fission gas release, the fuel thermal conductivity is the most important parameter from a model sensitivity perspective [2]. Thus, it is useful to perform such analysis.

  13. Analysis of Thermal Stability of Different Counter on 28nm FPGA

    DEFF Research Database (Denmark)

    Gupta, Daizy; Yadav, Amit; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we are presenting the power analysis for thermal awareness of different counters. The technique we are using to do the analysis is based on 28 nm FPGA tech-nique. In this work during implementation on FPGA, we are going to analyze thermal stability of different counters in temperature...

  14. Theoretical analysis for the specific heat and thermal parameters of solid C60

    Science.gov (United States)

    Soto, J. R.; Calles, A.; Castro, J. J.

    1997-08-01

    We present the results of a theoretical analysis for the thermal parameters and phonon contribution to the specific heat in solid C60. The phonon contribution to the specific heat is calculated through the solution of the corresponding dynamical matrix, for different points in the Brillouin zone, and the construccion of the partial and generalized phonon density of states. The force constants are obtained from a first principle calculation, using a SCF Hartree-Fock wave function from the Gaussian 92 program. The thermal parameters reported are the effective temperatures and vibrational amplitudes as a function of temperature. Using this model we present a parametization scheme in order to reproduce the general behaviour of the experimental specific heat for these materials.

  15. High Temperature Exposure of HPC – Experimental Analysis of Residual Properties and Thermal Response

    Directory of Open Access Journals (Sweden)

    Pavlík Zbyšek

    2016-01-01

    Full Text Available The effect of high temperature exposure on properties of a newly designed High Performance Concrete (HPC is studied in the paper. The HPC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000°C respectively. Among the basic physical properties, bulk density, matrix density and total open porosity are measured. The mechanical resistivity against disruptive temperature action is characterised by compressive strength, flexural strength and dynamic modulus of elasticity. To study the chemical and physical processes in HPC during its high-temperature exposure, Simultaneous Thermal Analysis (STA is performed. Linear thermal expansion coefficient is determined as function of temperature using thermodilatometry (TDA. In order to describe the changes in microstructure of HPC induced by high temperature loading, MIP measurement of pore size distribution is done. Increase of the total open porosity and connected decrease of the mechanical parameters for temperatures higher than 200 °C were identified.

  16. Effective permittivity of saline ice under thermal variation

    Science.gov (United States)

    Nghiem, S. V.; Kwok, R.; Kong, J. A.; Shin, R. T.; Gow, A. J.; Arcone, S. A.

    1992-01-01

    A model for calculating the effective permittivity of saline ice under thermal variation is presented. The model includes multiphase inhomogeneities with multiple species characterized by orientation, size and shape distributions. The model is used to derive the effective permittivity as a function of temperature under the strong fluctuation theory which is extended to account for the complexity. The results calculated from the model are compared with experimental data at 4.8 GHz for saline ice grown at the US Army Cold Regions Research and Engineering Laboratory (CRREL). The comparison between measured and calculated complex permittivities is good for the imaginary part, and the difference is within 10 percent for the real part.

  17. Thermal Analysis of Solid Fuels in an Inert Atmosphere

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Szumera, Magdalena; Środa, Katarzyna

    2017-12-01

    The paper takes the analysis of thermal studies of different types of fuels. It allowed diversification of fuels depending on their composition and origin. Consideration of coal, biomass and waste (coal mule, sewage sludge) as fuel is nowadays an important aspect of energy in our country. It should be emphasized that Poland power engineering is based up to 95% on coal - the primary fuel. Mining industry, forced to deliver power engineering more and better fuel, must however, use a deeper cleaning of coal. This results in a continuous increase waste in the form of mule flotation. The best method of disposing these mule is combustion and co-combustion with other fuels. On the other hand, commonly increasing awareness state of the environment and the need to reduce CO2 emissions energy industry have committed to implement alternative solutions in order to gain power, through, i.a.: development technologies use of biomass, which is one of the most promising renewable energy sources in Poland. The paper presents the results of research TG-DTA fuels made in an inert atmosphere.

  18. The thermal analysis and derivative bronzes cast to plaster moulds

    Directory of Open Access Journals (Sweden)

    B. Pisarek

    2009-07-01

    Full Text Available It plaster moulds gets casted the alloys of following metals: Al, Cu, Ag, Au in precise and artistic founding. The investigation of the crys-tallization of bronzes in hot plaster moulds the method of the thermal analysis and derivative (TDA was not realized out so far. Probe TDAg and tripod enabling the execution of measurements on inductive casting machine INDUTHERM-VC 500D were designed for this technology especially. It was confirmed that one the method TDA can identify the crystallization process of the bronze in hot plaster moulds. The investigations of the superficial distribution of the concentration of elements in the microstructure of the studied grades of the bronze on X-ray microanalizer were conducted. It results that they be subject to in bronze CuSn10-C (B10 and the CuSn5Zn5Pb5-C (B555 of strong microsegregation from conducted investigations: Pb, Sn and Sb. The single separates of intermetallic phase κ was identified in the bronze B10 rich first of all in Zn, Sn, Sb and Fe, and two intermetallic phase, one rich were identified in the bronze B555 first of all in Zn, Sb, (Nor, Fe and second rich in Sn, Sb, (Nor, Fe. The most homogeneous microstructure from the bronze CuAl10Fe5Ni5-C (BA1055 is characterizes among the studied grades of the bronze in the cast state.

  19. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  20. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    Science.gov (United States)

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  1. Analysis of in-cavity thermal and pressure characteristics in aluminum alloy die casting

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasamy, Vasanth Kumar [The Ohio State Univ., Columbus, OH (United States)

    1996-01-01

    The lack of effective control of the die casting process is the primary reason for the occurrence of defective die cast products. A reliable process control system must be capable of measuring the process variables, comparing them to the standard or ideal values and making suitable alterations in the process to eliminate any deviation from the ideal. This study attempted to facilitate the development of such a process control system. A two pronged approach was used to achieve this objective. The experimental approach addressed some of the problems in the measurement of process variables. The analytical approach addressed some of the problems in the design of the process and subsequent identification of the ideal process variable values. The experimental approach concentrated on the measurement of in-cavity pressure and thermal characteristics of the die casting process. Kistler direct pressure sensors were evaluated and utilized for cavity pressure measurement during the die casting campaign. Thermal probes using staggered thermocouples were developed and utilized for the simultaneous measurement of die surface temperatures and heat flow rate through the die. The measured thermal and pressure characteristics were related to the injection characteristics measured using the shot control equipment of the Buhler H-250SC die casting machine used in the campaign. The analytical approach concentrated on the verification of the predictions of a computer numerical solidification analysis by comparison with the experimental data obtained as an output of the die casting campaign. Particular attention was paid to the predictions of thermal characteristics like freezing time and die surface temperature. A sensitivity analysis was also performed to determine the effect of changes in individual variables on the predictions of BINORM.

  2. Analysis of non-thermal velocities in the solar corona

    Directory of Open Access Journals (Sweden)

    L. Contesse

    2004-09-01

    Full Text Available We describe new ground-based spectroscopic observations made using a 40-cm aperture coronagraph over a whole range of radial distances (up to heights of 12' above the limb and along four different heliocentric directions N, E, S and W. The analysis is limited to the study of the brightest forbidden emission line of Fe XIV at 530.3nm, in order to reach the best possible signal-to-noise ratio. To make the results statistically more significant, the extracted parameters are averaged over the whole length of the slit, and measurements are repeated fives times at each position; the corresponding dispersions in the results obtained along the slit are given. Central line profile intensities and full line widths (FWHM are plotted and compared to measurements published by other authors closer to the limb. We found widths and turbulent (non-thermal velocities of significantly higher values above the polar regions, especially when a coronal hole is present along the line of sight. We do not see a definitely decreasing behaviour of widths and turbulent velocities in equatorial directions for larger radial distances, as reported in the literature, although lower values are measured compared to the values in polar regions. The variation in the high corona is rather flat and a correlation diagram indicates that it is different for different regions and different radial distances. This seems to be the first analysis of the profiles of this coronal line, up to large heights above the limb for both equatorial and polar regions.

  3. Heats of Mixing Using an Isothermal Titration Calorimeter: Associated Thermal Effects

    Directory of Open Access Journals (Sweden)

    Fabiola Socorro

    2009-06-01

    Full Text Available The correct determination of the energy generated or absorbed in the sample cell of an Isothermal Titration Calorimeter (ITC requires a thorough analysis of the calorimetric signal. This means the identification and quantification of any thermal effect inherent to the working method. In this work, it is carried out a review on several thermal effects, studied by us in previous work, and which appear when an ITC is used for measuring the heats of mixing of liquids in a continuous mode. These effects are due to: (i the difference between the temperature of the injected liquid and the temperature of the mixture during the mixing process, (ii the increase of the liquid volume located in the mixing cell and (iii the stirring velocity. Besides, methods for the identification and quantification of the mentioned effects are suggested.

  4. APPLICATION OF MONITORING, DIAGNOSIS, AND PROGNOSIS IN THERMAL PERFORMANCE ANALYSIS FOR NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    HYEONMIN KIM

    2014-12-01

    Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  5. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    Science.gov (United States)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  6. Ablative Thermal Response Analysis Using the Finite Element Method

    Science.gov (United States)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  7. Analysis of human factors on urban heat island and simulation of urban thermal environment in Lanzhou city, China

    Science.gov (United States)

    Pan, Jinghu

    2015-01-01

    Urban heat island (UHI) effect is a global phenomenon caused by urbanization. Because of the number and complexity of factors contributing to the urban thermal environment, traditional statistical methods are insufficient for acquiring data and analyzing the impact of human activities on the thermal environment, especially for identifying which factors are dominant. The UHI elements were extracted using thermal infrared remote sensing data to retrieve the land surface temperatures of Lanzhou city, and then adopting an object-oriented fractal net evolution approach to create an image segmentation of the land surface temperature (LST). The effects of urban expansion on the urban thermal environment were quantitatively analyzed. A comprehensive evaluation system of the urban thermal environment was constructed, the spatial pattern of the urban thermal environment in Lanzhou was assessed, and principal influencing factors were identified using spatial principal component analysis (SPCA) and multisource spatial data. We found that in the last 20 years, the UHI effect in Lanzhou city has been strengthened, as the UHI ratio index has increased from 0.385 in 1993 to 0.579 in 2001 and to 0.653 in 2011. The UHI expansion had a spatiotemporal consistency with the urban expansion. The four major factors that affect the spatial pattern of the urban thermal environment in Lanzhou can be ranked in the following order: landscape configuration, anthropogenic heat release, urban construction, and gradient from man-made to natural land cover. These four together accounted for 91.27% of the variance. A linear model was thus successfully constructed, implying that SPCA is helpful in identifying major contributors to UHI. Regression analysis indicated that the instantaneous LST and the simulated thermal environment have a good linear relationship, the correlation coefficient between the two reached 0.8011, highly significant at a confidence level of 0.001.

  8. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    Science.gov (United States)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  9. Mars Phoenix Scout Thermal Evolved Gas Analyzer (TEGA) Database: Thermal Database Development and Analysis

    Science.gov (United States)

    Sutter, B.; Archer, D.; Niles, P. B.; Stein, T. C.; Hamara, D.; Boynton, W. V.; Ming, D. W.

    2017-01-01

    The Mars Phoenix Scout Lander mission in 2008 examined the history of water, searched for organics, and evaluated the potential for past/present microbial habitability in a martian arctic ice-rich soil [1]. The Thermal Evolved Gas Analyzer (TEGA) instrument measured the isotopic composition of atmospheric CO2 and detected volatile bearing mineralogy (perchlorate, carbonate, hydrated mineral phases) in the martian soil [2-7]. The TEGA data are archived at the Planetary Data System (PDS) Geosciences Node but are reported in forms that require further processing to be of use to the non-TEGA expert. The soil and blank TEGA thermal data are reported as duty cycle and must be converted to differential power (mW) to allow for enthalpy calculations of exothermic/endothermic transitions. The exothermic/endothermic temperatures are also used to determine what phases (inorganic/organic) are present in the sample. The objectives of this work are to: 1) Describe how interpretable thermal data can be created from TEGA data sets on the PDS and 2) Provide additional thermal data interpretation of two Phoenix soils (Baby Bear, Wicked Witch) and include interpretations from three unreported soils (Rosy Red 1, 2, and Burning Coals).

  10. Effect of occupation on lipid peroxidation and antioxidant status in coal-fired thermal plant workers

    Science.gov (United States)

    Kaur, Sandeep; Gill, Manmeet Singh; Gupta, Kapil; Manchanda, KC

    2013-01-01

    Background: Air pollution from coal-fired power units is large and varied, and contributes to a significant number of negative environmental and health effects. Reactive oxygen species (ROS) have been implicated in the pathogenesis of coal dust-induced toxicity in coal-fired power plants. Aim: The aim of the study was to measure free radical damage and the antioxidant activity in workers exposed to varying levels of coal dust. Material and Methods: The study population consisted of workers in coal handling unit, turbine unit, and boiler unit (n = 50 each), working in thermal power plant; and electricians (n = 50) from same department were taken as controls. Lipid peroxidation was measured by malondialdehyde (MDA) levels and antioxidant activity was determined by superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Statistical analysis was carried out by Student's unpaired t-test. Result: MDA levels showed significant increase (P > 0.001) in the thermal power plant workers than the electricians working in the city. The levels of SOD and GPx were significantly higher (P > 0.001) in electricians as compared to subjects working in thermal plant. Among the thermal plant workers, the coal handling unit workers showed significant increase (P > 0.001) in MDA and significant decrease in SOD and GPx than the workers of boiler and turbine unit workers. Conclusion: Oxidative stress due to increase in lipid peroxidation and decrease in antioxidant activity results from exposure to coal dust and coal combustion products during thermal plant activities. PMID:24083143

  11. Thermal effects induced by laser ablation in non-homogeneous limestone covered by an impurity layer

    Science.gov (United States)

    Cocean, Alexandru; Pelin, Vasile; Cazacu, Marius Mihai; Cocean, Iuliana; Sandu, Ion; Gurlui, Silviu; Iacomi, Felicia

    2017-12-01

    This paper reports preliminary results concerning thermal effects induced by urban/industrial air pollutants deposited on a limestone rock when heated by pulsed laser in the cleaning process. The process of laser cleaning treatment of the crust is simulated using COMSOL Multiphysics 4.4, finite element analysis software. Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy and Laser Induced Breakdown Spectroscopy techniques have been used to analyze the chemical composition of the samples. Two elements found as being present into the dust and in the crust, such as iron and magnesium particles are used for simulation in COMSOL. Therefore, the profiles heat evolutions on the crust surface and inside limestone are obtained as thermal interactions between the three components (iron, magnesium and limestone), simulating the non-homogeneous materials. It has been observed that iron impurities caused by the dust deposition may damage the limestone through a process of overheating, as a consequence of a high thermal conduction phenomenon, recorded for the region with iron impurities and sizes of micrometric order are localized. The thermal contact between the three components results in plots that reflect their thermal interactions.

  12. Effects of thermal hydrolysis temperature on physical characteristics of municipal sludge.

    Science.gov (United States)

    Feng, Guohong; Guo, Yabing; Tan, Wei

    2015-01-01

    Effects of thermal hydrolysis temperature on the physical properties of municipal sludge was further studied by a series of experiments. There was a decrease in bound water content with an increase in hydrolysis temperature, while there was an increase in pH at temperatures below 120 °C, and a decrease at temperatures exceeding 120 °C. An analysis of settleability, centrifugation and vacuum filtration of the treated sludge indicated that the threshold temperature was 120 °C, which was the same as the temperature for the bound water content and particle size. In addition, raw sludge with a solids content of 100 g/L, exhibited significant non-Newtonian fluid characteristics. At thermal hydrolysis temperatures exceeding 120 °C, non-Newtonian fluid characteristics including liquid and solid characteristics were significantly weakened. The consistency index (k) decreased from 5.90 Pa·s to 0.068 Pa·s, while the flow index (n) increased from 0.31 to 0.74, suggesting that thermal hydrolysis sludge was much closer to Newtonian fluids compared to raw sludge. Modification of bound water content, particle size and viscosity with hydrolysis temperature, revealed the nature of improved dewaterability by thermal hydrolysis. The fractal dimension of the sludge floc increased from 2.74 to 2.90, meaning that the floc became more compact after thermal hydrolysis.

  13. Harmonic scalpel versus flexible CO2 laser for tongue resection: A histopathological analysis of thermal damage in human cadavers

    Directory of Open Access Journals (Sweden)

    Wolf Tamir

    2011-08-01

    Full Text Available Abstract Background Monopolar cautery is the most commonly used surgical cutting and hemostatic tool for head and neck surgery. There are newer technologies that are being utilized with the goal of precise cutting, decreasing blood loss, reducing thermal damage, and allowing faster wound healing. Our study compares thermal damage caused by Harmonic scalpel and CO2 laser to cadaveric tongue. Methods Two fresh human cadaver heads were enrolled for the study. Oral tongue was exposed and incisions were made in the tongue akin to a tongue tumor resection using the harmonic scalpel and flexible C02 laser fiber at various settings recommended for surgery. The margins of resection were sampled, labeled, and sent for pathological analysis to assess depth of thermal damage calculated in millimeters. The pathologist was blinded to the surgical tool used. Control tongue tissue was also sent for comparison as a baseline for comparison. Results Three tongue samples were studied to assess depth of thermal damage by harmonic scalpel. The mean depth of thermal damage was 0.69 (range, 0.51 - 0.82. Five tongue samples were studied to assess depth of thermal damage by CO2 laser. The mean depth of thermal damage was 0.3 (range, 0.22 to 0.43. As expected, control samples showed 0 mm of thermal damage. There was a statistically significant difference between the depth of thermal injury to tongue resection margins by harmonic scalpel as compared to CO2 laser, (p = 0.003. Conclusion In a cadaveric model, flexible CO2 laser fiber causes less depth of thermal damage when compared with harmonic scalpel at settings utilized in our study. However, the relevance of this information in terms of wound healing, hemostasis, safety, cost-effectiveness, and surgical outcomes needs to be further studied in clinical settings.

  14. Thermal processing of EVA encapsulants and effects of formulation additives

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F.J.; Glick, S.H. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  15. Analysis of near-field thermal energy transfer within the nanoparticles

    Science.gov (United States)

    Yuksel, Anil; Yu, Edward T.; Cullinan, Michael; Murthy, Jayathi

    2017-08-01

    Nanoscale size effects bring additional near-field thermal considerations when heating nanoparticles under high laser power. Scanning electron micrographs of a typical copper nanoparticle powder bed reveal that the nanoparticles are distributed log-normally with 116 nm mean radius and 48 nm standard deviation. In this paper, we solve Maxwell's equations in frequency domain to understand near-field thermal energy effects for different standard deviations. Log-normally distributed copper nanoparticle packings which have 116 nm mean radius with 3 different standard deviations (12, 48 and 84 nm) are created by using Discrete Element Model (DEM) in which certain number of particles are generated, specifying a position and radius for each. The solid particles interacting with the neighbouring particles are to be distributed randomly into the bed domain with an initial velocity and a boundary condition, which creates the particle packing within a defined time range under gravitational and weak van der Waals forces. Finite Difference Frequency Domain analysis, which yields the electromagnetic field distribution, is applied by solving Maxwell's equations to obtain absorption, scattering and extinction coefficients. We show that different particle distributions create different plasmonic effects in the bed domain which results in non-local heat transport. We calculate the surface plasmon effect due to the electromagnetic coupling between the nanoparticles and the dielectric medium under the different distributions. This analysis helps to reveal how sintering quality can be enhanced by creating stronger laser-particle interactions for specific groups of nanoparticles.

  16. Numerical analysis of thermal impact on hydro-mechanical properties of clay

    Directory of Open Access Journals (Sweden)

    Xuerui Wang

    2014-10-01

    Full Text Available As is known, high-level radioactive waste (HLW is commonly heat-emitting. Heat output from HLW will dissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical (THMC processes. In highly consolidated clayey rocks, thermal effects are particularly significant because of their very low permeability and water-saturated state. Thermal impact on the integrity of the geological barriers is of most importance with regard to the long-term safety of repositories. This study focuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using a coupled thermo-mechanical multiphase flow (TH2M model which is implemented in the finite element programme OpenGeoSys (OGS. The material properties of the numerical model are characterised by a transversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model based on van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based on Fourier's law. In the numerical approaches, special attention has been paid to the thermal expansion of three different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity. Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in the present model. The model has been applied to simulate a laboratory heating experiment on claystone. The numerical model gives a satisfactory representation of the observed material behaviour in the laboratory experiment. The comparison of the calculated results with the laboratory findings verifies that the simulation with the present numerical model could provide a deeper understanding of the observed effects.

  17. Analysis of regenerative thermal storage geometries for solar gas turbines

    CSIR Research Space (South Africa)

    Klein, P

    2014-08-01

    Full Text Available Ceramic heat regenerators are suited to providing thermal storage for concentrating solar power stations based on a recuperated gas turbine cycle. Randomly packed beds of spheres and saddles; honeycombs and checker bricks were identified...

  18. PCB-level Electro thermal Coupling Simulation Analysis

    Science.gov (United States)

    Zhou, Runjing; Shao, Xuchen

    2017-10-01

    Power transmission network needs to transmit more current with the increase of the power density. The problem of temperature rise and the reliability is becoming more and more serious. In order to accurately design the power supply system, we must consider the influence of the power supply system including Joule heat, air convection and other factors. Therefore, this paper analyzes the relationship between the electric circuit and the thermal circuit on the basis of the theory of electric circuit and thermal circuit.

  19. ANSYS workbench tutorial release 14 structural & thermal analysis using the ANSYS workbench release 14 environment

    CERN Document Server

    Lawrence, Kent L

    2012-01-01

    The exercises in ANSYS Workbench Tutorial Release 14 introduce you to effective engineering problem solving through the use of this powerful modeling, simulation and optimization software suite. Topics that are covered include solid modeling, stress analysis, conduction/convection heat transfer, thermal stress, vibration, elastic buckling and geometric/material nonlinearities. It is designed for practicing and student engineers alike and is suitable for use with an organized course of instruction or for self-study. The compact presentation includes just over 100 end-of-chapter problems covering all aspects of the tutorials.

  20. Analysis of thermal water utilization in the northeastern Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2012-12-01

    Full Text Available The presented research aims at identification of thermal water users in NE Slovenia, at finding type and amountof the produced thermal water as well as its utilization practice. The energetic overview has been upgradedby a description of current observational monitoring practice and thermal waste water management, but technologicalproblems of thermal water use and their mitigation are discussed also. We have ascertained that 14 of 26active geothermalwells tap the Mura Formation aquifer in which the only reinjection well is perforated also. Totalthermal water abstraction summed to 3.29 million m3 in 2011. Cascade use of thermal water is abundant, whereindividual space and sanitary water heating is followed by heating of spa infrastructure and balneology. Greenhouseheating systems and district heating were also identified. Operational monitoring of these geothermal wellsis generally insufficient, and geothermal aquifers are overexploited due to decades of historical water abstraction.All these facts indicate the need for applying appropriate measures which will improve their natural conditions aswell as simultaneously enable further and even higher thermal water utilization in the future.