WorldWideScience

Sample records for thermal earth gradient

  1. Thermal gradient analysis of solidifying casting

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2008-08-01

    Full Text Available For description of casting solidification and crystallization process the thermal derivative analysis (TDA is commonly used. Besides the process kinetics considered in TDA method to describe the solidification process, the thermal gradient analysis can be also used for this purpose [1, 2]. In conducted studies analysis of thermal gradient distribution inside the solidifying wedge casting was shown which enabled determination of heat flow intensity on casting section.

  2. Method of thermal derivative gradient analysis (TDGA

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2009-07-01

    Full Text Available In this work a concept of thermal analysis was shown, using for crystallization kinetics description the temperature derivatives after time and direction. Method of thermal derivative gradient analysis (TDGA is assigned for alloys and metals investigation as well as cast composites in range of solidification. The construction and operation characteristics were presented for the test stand including processing modules and probes together with thermocouples location. Authors presented examples of results interpretation for AlSi11 alloy castings with diversified wall thickness and at different pouring temperature.

  3. Fracture driven by a Thermal Gradient

    CERN Document Server

    Pla, O

    1995-01-01

    Motivated by recent experiments by Yuse and Sano (Nature, 362, 329 (1993)), we propose a discrete model of linear springs for studying fracture in thin and elastically isotropic brittle films. The method enables us to draw a map of the stresses in the material. Cracks generated by the model, imposing a moving thermal gradient in the material, can branch or wiggle depending on the driving parameters. The results may be used to compare with other recent theoretical work, or to design future experiments.

  4. High-thermal-gradient Superalloy Crystal Growth

    Science.gov (United States)

    Pearson, D. D.; Anton, D. L.; Giamei, A. F.

    1985-01-01

    Single, (001)-oriented crystals of PWA 1480 were processed in alumina/silica shell molds in a laboratory high gradient furnace. The furnace employs a graphite resistance heated element, a radiation baffle, and a water cooled radiation trap below the baffle. All crystals were grown in vacuum (10 torr) and all heat transfer was radiative. The element is constructed with a variable cross section that is tapered just above the baffle to maximize heat input and therefore thermal gradient. A maximum alloy temperature of 1600 C was used. A thermal gradient of 130 deg C/cm was recorded at 1370 C just above the solidus of the PWA 1480 alloys. Crystal bars with 14.4 and 17.5 mm diameters were grown in alumina/silica shell molds. Each crystal was started from a 1.6 mm pencil seed at a rate of 76 mm/hr and slowly accelerated to a rate of 200 mm/hr under computer control. Volume percent porosity and average pore size were measured as functions of distance in representative bars. Low cycle fatigue behavior and stress rupture properties were determined.

  5. Electron transfer across a thermal gradient.

    Science.gov (United States)

    Craven, Galen T; Nitzan, Abraham

    2016-08-23

    Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor-acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures.

  6. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    Energy Technology Data Exchange (ETDEWEB)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  7. The ion temperature gradient: An intrinsic property of Earth's magnetotail

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lin, Y.; Wang, X. Y.

    2017-08-01

    Although the ion temperature gradient along (XGSM) and across (ZGSM) the Earth's magnetotail, which plays a key role in generating the cross-tail current and establishing pressure balance with the lobes, has been extensively observed by spacecraft, the mechanism responsible for its formation is still unknown. We use multispacecraft observations and three-dimensional (3-D) global hybrid simulations to reveal this mechanism. Using THEMIS (Time History of Events and Macroscale Interactions during Substorms), Geotail, and ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) observations during individual, near-simultaneous plasma sheet crossings from 10 to 60 RE, we demonstrate that the ion temperature ZGSM profile is bell-shaped at different geocentric distances. This ZGSM profile is also prevalent in statistics of 200 THEMIS current sheet crossings in the near-Earth region. Using 3-D global hybrid simulations, we show that mapping of the XGSM gradient of ion temperature along magnetic field lines produces such a bell-shaped profile. The ion temperature mapping along magnetic field lines in the magnetotail enables construction of two-dimensional distributions of these quantities from vertical (north-south) spacecraft crossings. Our findings suggest that the ion temperature gradient is an intrinsic property of the magnetotail that should be considered in kinetic descriptions of the magnetotail current sheet. Toward this goal, we use theoretical approaches to incorporate the temperature gradient into kinetic current sheet models, making them more realistic.

  8. Brine migration in salt in a thermal gradient

    Science.gov (United States)

    Kang, M.; Lerche, M.; Lesher, C. E.

    2015-12-01

    Salt deposits have long been considered viable repositories for long-term storage of high-level nuclear waste. However, brine trapped in salt tends to migrate up thermal gradients, such as can develop around radioactive waste storage containers, potentially promoting corrosion of containment structures. Brine inclusions move up the temperature gradient through the three main steps: 1) the dissolution of salt at the hot side of the inclusion caused by increased salt solubility, 2) ordinary and thermal diffusion of dissolved salt ions within the inclusion, and 3) precipitation of salt at the cold side of the inclusion due to local supersaturation. This process of brine transport through salt under a thermal gradient is generally referred to as thermal migration. Here we investigated thermal migration of brine inclusion in salts for a wide range of mean temperatures (~ 50 °C to ~200 °C) and temperature gradients (~ 10 °C/cm to ~57 °C/cm). With time brine inclusions moving towards the heat source become elongated parallel to the thermal gradient. We quantified the rate of brine migration as a function of mean temperature and thermal gradient using time-lapse optical microscope. X -ray and neutron tomography were used to visualize and quantify 3D spatial distribution of brine inclusion in a salt crystal at different stages of thermal migration. Migration velocities are shown to increase with temperature, temperature gradient and size of inclusion. We find an abrupt increase in migration velocity at certain time steps of thermal migration. Migration velocities of brine inclusions ranged from 0.1 m/year to 30.7 m/year. Empirical equations at different velocity regions for brine inclusions were obtained by fitting exponential equations to the experimental data with high coefficient of determination values (R2> 0.94).The experimental results are in good agreement with the theoretical migration rates obtained using a previous analytical model.

  9. TIGER: Development of Thermal Gradient Compensation Algorithms and Techniques

    Science.gov (United States)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    2004-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external instruments. To address the problem of thermal gradients on the force measurement balance NASA-LaRC has initiated a research program called TIGER - Thermally-Induced Gradients Effects Research. The ultimate goals of the TIGER program are to: (a) understand the physics of the thermally-induced strain and its subsequent impact on load measurements and (b) develop a robust thermal gradient compensation technique. This paper will discuss the impact of thermal gradients on force measurement balances, specific aspects of the TIGER program (the design of a special-purpose balance, data acquisition and data analysis challenges), and give an overall summary.

  10. The thermal performance of earth buildings

    Directory of Open Access Journals (Sweden)

    Heathcote, K.

    2011-09-01

    Full Text Available This paper examines the theoretical basis for the thermal performance of earth walls and links it to some test results on buildings constructed by the author, and to their predicted performance using a sophisticated computer modelling program. The analysis shows that for all earth walls the steady state thermal resistance is low but that for walls greater than about 450 mm thick the cyclic thermal resistance is high and increases exponentially. Whilst the steady state resistance of all thickness walls is low and results in higher than normal average temperatures in summer and lower than normal in winter the ability of thick earth walls to even out the swings in temperature is thought to be responsible for the materials reputation. The paper notes that good passive design principles (such as providing internal thermal mass and large areas of glazing for winter performance will greatly improve the performance of earth buildings with thin walls, but it is the author’s opinion that external earth walls should be at least 450 mm thick to gain the full benefit of thermal mass.

    Este artículo examina la base teórica del comportamiento térmico de las paredes de tierra y la relaciona con varios resultados de test realizados sobre edificios construidos por el autor, y con su comportamiento previsto utilizando un sofisticado programa de modelado por ordenador. El análisis muestra que la resistencia térmica constante es baja para todas las paredes de tierra, pero que para muros con un grosor mayor que 450 mm la resistencia térmica cíclica es alta y se incrementa exponencialmente. Mientras que la resistencia térmica constante de las paredes de cualquier grosor es baja y se traduce en temperaturas más altas que la media en verano y más bajas que la media en invierno, la capacidad de las paredes gruesas de tierra para amortiguar las variaciones de temperatura es la responsable de la reputación de los materiales. El artículo señala que los

  11. Infrared scanners detect thermal gradients in building walls

    Science.gov (United States)

    Kantsios, A. G.

    1979-01-01

    Presents study on ability of infrared scanner used to detect thermal gradients in outside walls of two homes in Virginia Beach, Virginia under joint effort of Langley Research Center, Virginia Energy Office and Virginia Beach Energy Conservation Pilot Project. Details how study can be used to help minimize energy loss.

  12. Infrared characterization of thermal gradients on disc brakes

    Science.gov (United States)

    Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre

    2003-04-01

    The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.

  13. Thermal gradients in Southwestern United States and the effect on bridge bearing loads : final report.

    Science.gov (United States)

    2017-05-01

    Thermal gradients became a component of bridge design after soffit cracking in prestressed concrete bridges was attributed to nonlinear temperature distribution through the depth of the bridge. While the effect of thermal gradient on stress distribut...

  14. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    thermal gradient technique. Millimeter-size domains with crystallites uniformly, oriented in the direction of the thermal gradient are observed. Futhermore, the crystallites size and :orientation distribution are enhanced (e.g., increases and decreases, respectively) when film thickness is decreased......, to significantly decrease the distribution of crystal orientation obtained after crystallization using the thermal gradient technique....

  15. Convection induced by thermal gradients on thin reaction fronts

    Science.gov (United States)

    Ruelas Paredes, David R. A.; Vasquez, Desiderio A.

    2017-09-01

    We present a thin front model for the propagation of chemical reaction fronts in liquids inside a Hele-Shaw cell or porous media. In this model we take into account density gradients due to thermal and compositional changes across a thin interface. The front separating reacted from unreacted fluids evolves following an eikonal relation between the normal speed and the curvature. We carry out a linear stability analysis of convectionless flat fronts confined in a two-dimensional rectangular domain. We find that all fronts are stable to perturbations of short wavelength, but they become unstable for some wavelengths depending on the values of compositional and thermal gradients. If the effects of these gradients oppose each other, we observe a range of wavelengths that make the flat front unstable. Numerical solutions of the nonlinear model show curved fronts of steady shape with convection propagating faster than flat fronts. Exothermic fronts increase the temperature of the fluid as they propagate through the domain. This increment in temperature decreases with increasing speed.

  16. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng

    2012-06-26

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  17. Fire exposed steel columns with a thermal gradient over the cross-section

    NARCIS (Netherlands)

    Ojeda, O.D.; Maljaars, J.; Abspoel, R.

    2016-01-01

    Thermal gradients often occur in fire exposed structures. This paper considers thermal gradients over the cross-section of steel columns. By means of finite element simulations, the paper demonstrates that these gradients reduce the fiexural buckling resistance of the columns. This is due to the

  18. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  19. Finite-element modeling of thermal gradients during non-local thermal spin injection

    Science.gov (United States)

    Yang, Zihao; Giles, Brandon; Jamison, John; Myers, Roberto

    A new spin Seebeck experiment has been demonstrated, in which a laser is focused on an electrically isolated Pt absorbing pad on yttrium iron garnet (YIG), thermally generating a spin current in YIG. The spins diffuse laterally and are detected non-locally on a remote Pt detector via the inverse spin Hall effect (VISHEnon - local) . This geometry is expected to remove parasitic thermal transport voltages unrelated to the magnonic spin current that could contaminate VISHEnon - local . To validate this, 3D steady-state heat conduction equations are solved to determine the stray temperature gradient at the Pt detector as a function of distance from the laser heating source. We find that the temperature gradient beneath the Pt detector vanishes when the laser is laterally displaced (along x) by 50 μm. The gradient along the interface normal follows ∇Tz (x) ~e - 1 . 76 x and the gradient parallel to the interface follows ∇Tx (x) ~e - 0 . 08 x . Both gradients decay much faster than the measured VISHEnon - local (x) ~e - 0 . 025 x demonstrating the validity of the non-local geometry in probing laterally diffused spin. This work is supported by ARO-MURI W911NF-14-1-0016.

  20. Product differentiation during continuous-flow thermal gradient PCR.

    Science.gov (United States)

    Crews, Niel; Wittwer, Carl; Palais, Robert; Gale, Bruce

    2008-06-01

    A continuous-flow PCR microfluidic device was developed in which the target DNA product can be detected and identified during its amplification. This in situ characterization potentially eliminates the requirement for further post-PCR analysis. Multiple small targets have been amplified from human genomic DNA, having sizes of 108, 122, and 134 bp. With a DNA dye in the PCR mixture, the amplification and unique melting behavior of each sample is observed from a single fluorescent image. The melting behavior of the amplifying DNA, which depends on its molecular composition, occurs spatially in the thermal gradient PCR device, and can be observed with an optical resolution of 0.1 degrees C pixel(-1). Since many PCR cycles are within the field of view of the CCD camera, melting analysis can be performed at any cycle that contains a significant quantity of amplicon, thereby eliminating the cycle-selection challenges typically associated with continuous-flow PCR microfluidics.

  1. Competition between the Thermal Gradient and the Bimorph Effect in Locally Heated MEMS Actuators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mølhave, Kristian; Kristensen, Anders

    2009-01-01

    We have investigated the influence of thermal gradient effects in inhomogeneously heated MEMS/NEMS. The actuation perturbations caused by thermal gradients have been studied through static optothermal actuation experiments of a bi-material polymer based cantilever and supported by finite element...... modeling. As a result, bidirectional bending has been experimentally observed and interpreted as the competition between bimorph and thermal gradient effects. The competition has illustrated the importance of including the thermal gradient effect in the behavior analysis of bimorph driven MEMS/NEMS devices....

  2. The thermal state of the Earth

    Science.gov (United States)

    Lee, C.; Courtier, A.; Halama, R.; Jackson, M.; Larson, A. M.; Lawrence, J.; Wang, Z.; Warren, J.; Workman, R.; Xu, W.; Hirschmann, M.; Hart, S.; Stixrude, L.; Lithgow-Bertelloni, C.; Chen, W.

    2006-12-01

    There is currently a debate over whether the mantle source regions of "hotspots" are hotter than the ambient mantle. Some of the assumptions involved in estimating mantle temperatures have been questioned, leading to the suggestion that temperatures beneath "hotspots" may fall within the range of that beneath mid-ocean ridges. If "hotspots" are not hot, the existence of hot thermal plumes originating from a hot lower thermal boundary layer would be called into question. To shed light on this debate, we present independent estimates of the potential temperature of the mantle beneath ridges (ambient) and hotspots. Mantle potential temperatures were determined in four independent ways: 1) the calculated primary magma compositions of a global compilation of mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs); 2) transition zone thicknesses from SS precursors and receiver functions, 3) comparisons between melting models and the average thickness of oceanic crust, and 4) the bathymetry of ridge axes. Primary magma compositions for both MORBs and OIBs were calculated by incremental equilibrium addition of olivine back into primitive magmas until an olivine composition of forsterite 90 was reached. The calculated primary composition was assumed to represent the aggregate of polybaric fractional melts. The MgO and SiO2 contents of the primary magma were then used with an established olivine thermometer and a new barometer based on silica activity to calculate, respectively, the average temperature and pressure of equilibration with the mantle. The average potential temperature of the Earth's mantle based on thermobarometry of MORBs is 1370 +/- 50 oC. Seismic estimates of the transition zone thickness coupled with a thermodynamic-based model on how the transition zone thickness varies as a function of temperature yield a similar mantle potential temperature. Finally, average mantle potential temperature inferred from the thickness of oceanic crust and seafloor

  3. Radiation, Thermal Gradient and Weight: a threefold dilemma for PLATO

    Science.gov (United States)

    Magrin, Demetrio; Ragazzoni, Roberto; Bruno, Giordano; Piazza, Daniele; Borsa, Francesco; Ghigo, Mauro; Mogulsky, Valery; Bergomi, Maria; Biondi, Federico; Chinellato, Simonetta; Dima, Marco; Farinato, Jacopo; Greggio, Davide; Gullieuszik, Marco; Marafatto, Luca; Viotto, Valentina; Munari, Matteo; Pagano, Isabella; Sicilia, Daniela; Basso, Stefano; Spiga, Daniele; Bandy, Timothy; Brändli, Mathias; Benz, Willy; De Roche, Thierry; Rieder, Martin; Brandeker, Alexis; Klebor, Maximilian; Schweitzer, Mario; Wieser, Matthias; Erikson, Anders; Rauer, Heike

    2016-07-01

    The project PLAnetary Transits and Oscillations of stars (PLATO) is one of the selected medium class (M class) missions in the framework of the ESA Cosmic Vision 2015-2025 program. The mean scientific goal of PLATO is the discovery and study of extrasolar planetary systems by means of planetary transits detection. The opto mechanical subsystem of the payload is made of 32 normal telescope optical units (N-TOUs) and 2 fast telescope optical units (FTOUs). The optical configuration of each TOU is an all refractive design based on six properly optimized lenses. In the current baseline, in front of each TOU a Suprasil window is foreseen. The main purposes of the entrance window are to shield the following lenses from possible damaging high energy radiation and to mitigate the thermal gradient that the first optical element will experience during the launch from ground to space environment. In contrast, the presence of the window increases the overall mass by a non-negligible quantity. We describe here the radiation and thermal analysis and their impact on the quality and risks assessment, summarizing the trade-off process with pro and cons on having or dropping the entrance window in the optical train.

  4. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  5. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  6. Thermal fatigue issues in high-gradient particle accelerators

    CERN Document Server

    Heikkinen, Samuli Tapio; Neupert, Holger

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN (European Organization for Nuclear Research) as a possible future high-energy (0.5-5 TeV centre-of-mass) physics facility. The current aim of the CLIC Study Team is to demonstrate the key feasibility issues before 2010. CLIC will be about 33 kilometers long and will be buried 100 meters underground. The main linac of CLIC consists of accelerating structures with the following demanding performance requirements: accelerating gradients of about 150 MV/m, power flows of about 200 MW, 1-2 ìm dimensional tolerances, an optical-quality surface finish and ultimately a low mass production cost. About 80% of CLIC's 33 kilometer length will be filled with main beam accelerating structures, which will require of the order of ten thousand tons of raw material and millions of individual parts. One of the main limiting factors of the main linac accelerating structures is the thermal fatigue due to the pulsed surface heating. The accelerating RFpower pulses heat u...

  7. Thermal characterization of organic matter along a (hypothetical) coalification gradient

    Science.gov (United States)

    Cavallo, Ornella; Provenzano, Maria Rosaria; Zaccone, Claudio

    2017-04-01

    Geochemical transformations of organic carbon (C) in aquatic and terrestrial ecosystems are important starting points for genesis of peats, brown coals and other coal precursors. The humification process plays a key role in biogeochemical transformations of organic C and, as a result, in the first stages of coal precursors formation. Thermal analysis was used by Schnitzer and other scientists since 1950-1960s, in order to investigate the stability of several organic materials of industrial value including peat and coal. What soil scientists found was the general occurrence of two exothermic peaks (exotherm 1 and 2) due to decomposition and combustion reactions of organic compounds having different thermal stability and, consequently, different degree of humification. Thermogravimetric analysis (TG) was carried out on different samples reproducing a "hypothetical" coalification gradient as follows: peat (IHSS Pahokee peat standard), fulvic acid (FA), a peat humic acid (HA), leonardite (IHSS Gascoyne standard) and charcoal. An aliquot of about 20 mg of each sample was heated in a ceramic crucible from 50 to 850˚ C at 30˚ C min-1, at a gas flow rate of 30 mL min-1 using a PerkinElmer TGA4000 thermobalance. Samples were analysed both under nitrogen and under synthetic air. All analyses were carried out in triplicate and the average coefficient of variation was exothermic mass loss has occurred (TG-T50) was also calculated. Preliminary results obtained from TG analysis under air showed that WL2/WL1 ratio was lower for the FA sample and higher for leonardite and charcoal, following the order FAthermal degradation was obtained, with HF and HA showing a lower WL2/WL1 ratio (HF

  8. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  9. Influence of pouring temperature on a thermal gradient

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-01-01

    Full Text Available In the thesis there are presented results of computer simulation of casting solidification process, characteristics of solidification rate in several points as well as course of gradient change between these points. Based on the obtained results, an influence of initial conditions on temperature gradient during the solidification process was determined.

  10. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    Science.gov (United States)

    Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.

    2015-01-01

    Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates.

  11. Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect

    Science.gov (United States)

    Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.

    2004-01-01

    Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.

  12. Heat pumping using the thermal earth gradient to produce air conditioned and hot water with savings of up to 70%; Bombeo de calor utilizando el gradiente termico de la tierra para producir aire acondicionado y agua caliente con ahorros de hasta un 70%

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Ramirez, Alejandro [Novaenergia de Mexico S.A. de C.V. (Mexico)

    2003-07-01

    The pumping of heat using the Earth heat as partial energy source bases its principle on which the energy of the ground is constant and the energy efficiency to produce air conditioning and hot water simultaneously is important, obtaining savings up to 70%, comparing itself with the traditional equipment and what these operate of separated way to produce each one of them the cold air and the hot water. The use of this technology presents an opportunity to reduce the energy costs of and the demand of the company. [Spanish] El bombeo de calor utilizando el calor de la tierra como fuente parcial de energia basa su principio en que la energia del suelo es constante y el rendimiento energetico para producir simultaneamente aire acondicionado y agua caliente es importante, obteniendose ahorros hasta de un 70%, comparandose con los equipos tradicionales y que estos operan de manera separada para producir cada uno de ellos el aire frio y el agua caliente. El uso de esta tecnologia presenta una oportunidad para reducir los costos de energia y demanda de la empresa.

  13. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  14. Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient.

    Science.gov (United States)

    von May, Rudolf; Catenazzi, Alessandro; Corl, Ammon; Santa-Cruz, Roy; Carnaval, Ana Carolina; Moritz, Craig

    2017-05-01

    Critical thermal limits are thought to be correlated with the elevational distribution of species living in tropical montane regions, but with upper limits being relatively invariant compared to lower limits. To test this hypothesis, we examined the variation of thermal physiological traits in a group of terrestrial breeding frogs (Craugastoridae) distributed along a tropical elevational gradient. We measured the critical thermal maximum (CT max; n = 22 species) and critical thermal minimum (CT min; n = 14 species) of frogs captured between the Amazon floodplain (250 m asl) and the high Andes (3,800 m asl). After inferring a multilocus species tree, we conducted a phylogenetically informed test of whether body size, body mass, and elevation contributed to the observed variation in CT max and CT min along the gradient. We also tested whether CT max and CT min exhibit different rates of change given that critical thermal limits (and their plasticity) may have evolved differently in response to different temperature constraints along the gradient. Variation of critical thermal traits was significantly correlated with species' elevational midpoint, their maximum and minimum elevations, as well as the maximum air temperature and the maximum operative temperature as measured across this gradient. Both thermal limits showed substantial variation, but CT min exhibited relatively faster rates of change than CT max, as observed in other taxa. Nonetheless, our findings call for caution in assuming inflexibility of upper thermal limits and underscore the value of collecting additional empirical data on species' thermal physiology across elevational gradients.

  15. Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

    OpenAIRE

    S. Jain; D. D. Lam; A. Bose; H. Sharma; V. R. Palkar; C. V. Tomy; Y. Suzuki; A. A. Tulapurkar

    2014-01-01

    We present measurements of magneto-Seebeck effect on a spin valve with in-plane thermal gradient. We measured open circuit voltage and short circuit current by applying a temperature gradient across a spin valve stack, where one of the ferromagnetic layers is pinned. We found a clear hysteresis in these two quantities as a function of magnetic field. From these measurements, the magneto-Seebeck effect was found to be same as magneto-resistance effect.

  16. Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

    Directory of Open Access Journals (Sweden)

    S. Jain

    2014-12-01

    Full Text Available We present measurements of magneto-Seebeck effect on a spin valve with in-plane thermal gradient. We measured open circuit voltage and short circuit current by applying a temperature gradient across a spin valve stack, where one of the ferromagnetic layers is pinned. We found a clear hysteresis in these two quantities as a function of magnetic field. From these measurements, the magneto-Seebeck effect was found to be same as magneto-resistance effect.

  17. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2012-09-20

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A

  18. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario

    Science.gov (United States)

    Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele

    2018-03-01

    In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.

  19. Large concentration changes due to thermal diffusion effects in gas flow microsystems with temperature gradients

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Johannessen, Tue; Jensen, Søren

    Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.......7 % in an argon/helium mixture, when the flow is abruptly changed from a high value to a low value. Finite element simulations of the thermal diffusion in a geometry similar to the experimental setup reproduce the measurements....

  20. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  1. Parametric Thermal Soak Model for Earth Entry Vehicles

    Science.gov (United States)

    Agrawal, Parul; Samareh, Jamshid; Doan, Quy D.

    2013-01-01

    The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. An integrated tool called Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE is being developed as part of Entry Vehicle Technology project under In-Space Technology program. Integration of a multidisciplinary problem is a challenging task. Automation of the execution process and data transfer among disciplines can be accomplished to provide significant benefits. Thermal soak analysis and temperature predictions of various interior components of entry vehicle, including the impact foam and payload container are part of the solution that M-SAPE will offer to spacecraft designers. The present paper focuses on the thermal soak analysis of an entry vehicle design based on the Mars Sample Return entry vehicle geometry and discusses a technical approach to develop parametric models for thermal soak analysis that will be integrated into M-SAPE. One of the main objectives is to be able to identify the important parameters and to develop correlation coefficients so that, for a given trajectory, can estimate the peak payload temperature based on relevant trajectory parameters and vehicle geometry. The models are being developed for two primary thermal protection (TPS) materials: 1) carbon phenolic that was used for Galileo and Pioneer Venus probes and, 2) Phenolic Impregnated Carbon Ablator (PICA), TPS material for Mars Science Lab mission. Several representative trajectories were selected from a very large trade space to include in the thermal analysis in order to develop an effective parametric thermal soak model. The selected trajectories covered a wide range of heatload and heatflux combinations. Non-linear, fully transient, thermal finite element simulations were performed for the selected trajectories to generate the temperature histories at the interior of the vehicle. Figure 1 shows the finite element model

  2. INFLUENCE OF RARE-EARTH DOPING ON THE ELECTRICAL PROPERTIES OF HIGH VOLTAGE GRADIENT ZnO VARISTORS

    Directory of Open Access Journals (Sweden)

    LEI KE

    2013-03-01

    Full Text Available The influence of rare-earth doping on the electrical properties of ZnO varistors was investigated. In a lower doping region, the electrical properties were greatly improved with the increase of rare-earth contents. The highest voltage gradient value of 1968.0 V/mm was obtained with a rare-earth concentration of 0.06 mol. %. The microstructure of samples with different amounts of rare-earth oxides was examined and the notable decrease of grain size was identified as the origin for the increased voltage gradient. The doped rare-earth oxides dissolved at the grain boundaries and the excessive doping reduced the voltage across the single grain/grain boundary from 2.72 V to 0.91 V. The poor electrical properties in a higher doping region resulted from the degeneration of grain boundaries and the decrease of block density.

  3. TEMPERATURE SELECTION BY HATCHLING AND YEARLING FLORIDA RED-BELLIED TURTLES (PSEUDEMYS NELSONI) IN THERMAL GRADIENTS

    Science.gov (United States)

    We tested hatchling and yearling Florida red-bellied turtles (Pseudemys nelsoni) in laboratory thermal gradient chambers to determine if they would prefer particular temperatures. Most 1995 hatchlings selected the highest temperature zone of 27degrees C (Test 1) and 30 degrees ...

  4. Thermal history of the Earth and its petrological expression

    Science.gov (United States)

    Herzberg, Claude; Condie, Kent; Korenaga, Jun

    2010-03-01

    Non-arc basalts of Archean and Proterozoic age have model primary magmas that exhibit mantle potential temperatures TP that increase from 1350 °C at the present to a maximum of ˜ 1500-1600 °C at 2.5-3.0 Ga. The overall trend of these temperatures converges smoothly to that of the present-day MORB source, supporting the interpretation that the non-arc basalts formed by the melting of hot ambient mantle, not mantle plumes, and that they can constrain the thermal history of the Earth. These petrological results are very similar to those predicted by thermal models characterized by a low Urey ratio and more sluggish mantle convection in the past. We infer that the mantle was warming in deep Archean-Hadean time because internal heating exceeded surface heat loss, and it has been cooling from 2.5 to 3.0 Ga to the present. Non-arc Precambrian basalts are likely to be similar to those that formed oceanic crust and erupted on continents. It is estimated that ˜ 25-35 km of oceanic crust formed in the ancient Earth by about 30% melting of hot ambient mantle. In contrast, komatiite parental magmas reveal TP that are higher than those of non-arc basalts, consistent with the hot plume model. However, the associated excess magmatism was minor and oceanic plateaus, if they existed, would have had subtle bathymetric variations, unlike those of Phanerozoic oceanic plateaus. Primary magmas of Precambrian ambient mantle had 18-24% MgO, and they left behind residues of harzburgite that are now found as xenoliths of cratonic mantle. We infer that primary basaltic partial melts having 10-13% MgO are a feature of Phanerozoic magmatism, not of the early Earth, which may be why modern-day analogs of oceanic crust have not been reported in Archean greenstone belts.

  5. Thermal evolution of Earth with magnesium precipitation in the core

    Science.gov (United States)

    O'Rourke, Joseph G.; Korenaga, Jun; Stevenson, David J.

    2017-01-01

    Vigorous convection in Earth's core powers our global magnetic field, which has survived for over three billion years. In this study, we calculate the rate of entropy production available to drive the dynamo throughout geologic time using one-dimensional parameterizations of the evolution of Earth's core and mantle. To prevent a thermal catastrophe in models with realistic Urey ratios, we avoid the conventional scaling for plate tectonics in favor of one featuring reduced convective vigor for hotter mantle. We present multiple simulations that capture the effects of uncertainties in key parameters like the rheology of the lower mantle and the overall thermal budget. Simple scaling laws imply that the heat flow across the core/mantle boundary was elevated by less than a factor of two in the past relative to the present. Another process like the precipitation of magnesium-bearing minerals is therefore required to sustain convection prior to the nucleation of the inner core roughly one billion years ago, especially given the recent, upward revision to the thermal conductivity of the core. Simulations that include precipitation lack a dramatic increase in entropy production associated with the formation of the inner core, complicating attempts to determine its age using paleomagnetic measurements of field intensity. Because mantle dynamics impose strict limits on the amount of heat extracted from the core, we find that the addition of radioactive isotopes like potassium-40 implies less entropy production today and in the past. On terrestrial planets like Venus with more sluggish mantle convection, even precipitation of elements like magnesium may not sustain a dynamo if cooling rates are too slow.

  6. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  7. Dynamical and stationary critical behavior of the Ising ferromagnet in a thermal gradient

    Science.gov (United States)

    Muglia, J.; Albano, E. V.

    2012-08-01

    In this paper we present and discuss results of Monte Carlo numerical simulations of the two-dimensional Ising ferromagnet in contact with a heat bath that intrinsically has a thermal gradient. The extremes of the magnet are at temperatures T 1 Onsager critical temperature. In this way one can observe a phase transition between an ordered phase ( T T c ) by means of a single simulation. By starting the simulations with fully disordered initial configurations with magnetization m ≡ 0 corresponding to T = ∞, which are then suddenly annealed to a preset thermal gradient, we study the short-time critical dynamic behavior of the system. Also, by setting a small initial magnetization m = m 0, we study the critical initial increase of the order parameter. Furthermore, by starting the simulations from fully ordered configurations, which correspond to the ground state at T = 0 and are subsequently quenched to a preset gradient, we study the critical relaxation dynamics of the system. Additionally, we perform stationary measurements ( t → ∞) that are discussed in terms of the standard finite-size scaling theory. We conclude that our numerical simulation results of the Ising magnet in a thermal gradient, which are rationalized in terms of both dynamic and standard scaling arguments, are fully consistent with well established results obtained under equilibrium conditions.

  8. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng

    2013-03-20

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  9. UTILITY OF THE WEAK TEMPERATURE GRADIENT APPROXIMATION FOR EARTH-LIKE TIDALLY LOCKED EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Sean M. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Abbot, Dorian S., E-mail: smills@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2013-09-10

    Planets in M dwarf stars' habitable zones are likely to be tidally locked with orbital periods of the order of tens of days. This means that the effects of rotation on atmospheric dynamics will be relatively weak, which requires small horizontal temperature gradients above the boundary layer of terrestrial atmospheres. An analytically solvable and dynamically consistent model for planetary climate with only three free parameters can be constructed by making the weak temperature gradient (WTG) approximation, which assumes temperatures are horizontally uniform aloft. The extreme numerical efficiency of a WTG model compared to a three-dimensional general circulation model (GCM) makes it an optimal tool for Monte Carlo fits to observables over parameter space. Additionally, such low-order models are critical for developing physical intuition and coupling atmospheric dynamics to models of other components of planetary climate. The objective of this paper is to determine whether a WTG model provides an adequate approximation of the effect of atmospheric dynamics on quantities likely to be observed over the next decade. To do this, we first tune a WTG model to GCM output for an Earth-like tidally locked planet with a dry, 1 bar atmosphere, then generate and compare the expected phase curves of both models. We find that differences between the two models would be extremely difficult to detect from phase curves using the James Webb Space Telescope. This result demonstrates the usefulness of the WTG approximation when used in conjunction with GCMs as part of a modeling hierarchy to understand the climate of remote planets.

  10. Impact of Trapped Flux and Thermal Gradients on the SRF Cavity Quality Factor

    CERN Document Server

    Kugeler, O; Knobloch, J; Aull, S

    2012-01-01

    The obtained Q0 value of a superconducting niobium cavity is known to depend on various factors like the RRR of the Niobium material, crystallinity, chemical treatment history, the high-pressure rinsing process, or effectiveness of the magnetic shielding. We have observed that spatial thermal gradients over the cavity length during cool-down appear to contribute to a degradation of Q0. Measurements were performed in the Horizontal Bi-Cavity Test Facility (HoBiCaT) at HZB on TESLA type cavities as well as on disc- and rod-shaped niobium samples equipped with thermal, electrical and magnetic diagnostics. Possible explanations for the effect are discussed.

  11. An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient

    Science.gov (United States)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun

    2013-01-01

    Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.

  12. Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model

    Science.gov (United States)

    Subin, Z M; Milly, Paul C.D.; Sulman, B N; Malyshev, Sergey; Shevliakova, E

    2014-01-01

    Soil moisture is a crucial control on surface water and energy fluxes, vegetation, and soil carbon cycling. Earth-system models (ESMs) generally represent an areal-average soil-moisture state in gridcells at scales of 50–200 km and as a result are not able to capture the nonlinear effects of topographically-controlled subgrid heterogeneity in soil moisture, in particular where wetlands are present. We addressed this deficiency by building a subgrid representation of hillslope-scale topographic gradients, TiHy (Tiled-hillslope Hydrology), into the Geophysical Fluid Dynamics Laboratory (GFDL) land model (LM3). LM3-TiHy models one or more representative hillslope geometries for each gridcell by discretizing them into land model tiles hydrologically coupled along an upland-to-lowland gradient. Each tile has its own surface fluxes, vegetation, and vertically-resolved state variables for soil physics and biogeochemistry. LM3-TiHy simulates a gradient in soil moisture and water-table depth between uplands and lowlands in each gridcell. Three hillslope hydrological regimes appear in non-permafrost regions in the model: wet and poorly-drained, wet and well-drained, and dry; with large, small, and zero wetland area predicted, respectively. Compared to the untiled LM3 in stand-alone experiments, LM3-TiHy simulates similar surface energy and water fluxes in the gridcell-mean. However, in marginally wet regions around the globe, LM3-TiHy simulates shallow groundwater in lowlands, leading to higher evapotranspiration, lower surface temperature, and higher leaf area compared to uplands in the same gridcells. Moreover, more than four-fold larger soil carbon concentrations are simulated globally in lowlands as compared with uplands. We compared water-table depths to those simulated by a recent global model-observational synthesis, and we compared wetland and inundated areas diagnosed from the model to observational datasets. The comparisons demonstrate that LM3-TiHy has the

  13. Marangoni effects on a thin liquid film coating a sphere with axial or radial thermal gradients

    Science.gov (United States)

    Kang, Di; Nadim, Ali; Chugunova, Marina

    2017-07-01

    We study the time evolution of a thin liquid film coating the outer surface of a sphere in the presence of gravity, surface tension, and thermal gradients. We derive the fourth-order nonlinear partial differential equation that models the thin film dynamics, including Marangoni terms arising from the dependence of surface tension σ on temperature T. We consider two different imposed temperature distributions with axial or radial thermal gradients. We analyze the stability of a uniform coating under small perturbations and carry out numerical simulations in COMSOL for a range of parameter values. In the case of an axial temperature gradient, we find steady states either with uniform film thickness or with the fluid accumulating at the bottom or near the top of the sphere, depending on the total volume of liquid in the film, dictating whether gravity or Marangoni effects dominate. This suggests a potential method for the indirect measurement of d σ /d T by monitoring the thickness profile of the thin film. In the case of a radial temperature gradient, a stability analysis reveals the most unstable non-axisymmetric modes on an initially uniform coating film.

  14. Study of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator

    Directory of Open Access Journals (Sweden)

    Yusuke Fuchiwaki

    2014-10-01

    Full Text Available Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.

  15. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  16. Geothermal potential of West-Central New Mexico from geochemical and thermal gradient data

    Energy Technology Data Exchange (ETDEWEB)

    Levitte, D.; Gambill, D.T.

    1980-11-01

    To study the low temperature and Hot Dry Rock (HDR) geothermal potential of west-central New Mexico, 46 water samples were collected and geothermal gradient measurements were made in 29 wells. Water chemistry data indicate that all the samples collected are meteoric waters. High temperatures of samples taken from wells between Gallup and Tohatchi indicate these wells may derive water from a warm aquifer below the depth of the wells. The chemistries of the samples farther south on the Zuni Indian reservation suggest these waters are not circulating below 600 m of the surface. Geothermometry calculations support the conclusion that the waters sampled are meteoric. The geothermometry also indicates that the deep reservoir between Gallup and Tohatchi may be greater than 60/sup 0/C. Thermal gradient data indicate an area of high gradient on the Zuni Indian Reservation with a measured maximum of 67/sup 0/C/km between 181 m and 284 m. This high probably is not hydrologically controlled. The maximum gradients in the study area are 76/sup 0/C/km and 138/sup 0/C/km, measured just east of Springerville, Arizona. These gradients are undoubtedly controlled by circulating water, possibly heated by a magmatic source at depth and circulating back to the surface.

  17. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient.

    Science.gov (United States)

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; De Jonge, Maarten; Lambret, Philippe; Nilsson-Örtman, Viktor; Bervoets, Lieven; Stoks, Robby

    2013-09-01

    Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients. © 2013 John Wiley & Sons Ltd.

  18. Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?

    Science.gov (United States)

    Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.

    2018-01-01

    Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.

  19. The NTF Inlet Guide Vanes Thermal Gradient Problem and Its Mitigation

    Science.gov (United States)

    Venkat, Venki S.; Paryz, Roman W.; Bissett, Owen W.; Kilgore, W.

    2013-01-01

    The National Transonic Facility (NTF) utilizes Inlet Guide Vanes (IGV) to provide precise, quick response Mach number control for the tunnel. During cryogenic operations, the massive IGV structure can experience large thermal gradients, measured as "Delta T or (Delta)T", between the IGV ring and its support structure called the transfer case. If these temperature gradients are too large, the IGV structure can be stressed beyond its safety limit and cease operation. In recent years, (Delta)T readings exceeding the prescribed safety limits were observed frequently during cryogenic operations, particularly during model access. The tactical operation methods of the tunnel to minimize (Delta)T did not always succeed. One obvious option to remedy this condition is to warm up the IGV structure by disabling the main drive operation, but this "natural" warm up method can takes days in some cases, resulting in productivity loss. This paper documents the thermal gradient problem associated with the IGV structure during cryogenic operation and how the facility has recently achieved an acceptable mitigation which has resulted in improved efficiency of operations.

  20. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  1. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  2. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels

    KAUST Repository

    Wu, Congmin

    2013-04-04

    For a one-component fluid on a solid substrate, a thermal singularity may occur at the contact line where the liquid-vapor interface intersects the solid surface. Physically, the liquid-vapor interface is almost isothermal at the liquid-vapor coexistence temperature in one-component fluids while the solid surface is almost isothermal for solids of high thermal conductivity. Therefore, a temperature discontinuity is formed if the two isothermal interfaces are of different temperatures and intersect at the contact line. This leads to the so-called thermal singularity. The localized hydrodynamics involving evaporation/condensation near the contact line leads to a contact angle depending on the underlying substrate temperature. This dependence has been shown to lead to the motion of liquid droplets on solid substrates with thermal gradients (Xu and Qian 2012 Phys. Rev. E 85 061603). In the present work, we carry out molecular dynamics (MD) simulations as numerical experiments to further confirm the predictions made from our previous continuum hydrodynamic modeling and simulations, which are actually semi-quantitatively accurate down to the small length scales in the problem. Using MD simulations, we investigate the motion of evaporative droplets in one-component Lennard-Jones fluids confined in nanochannels with thermal gradients. The droplet is found to migrate in the direction of decreasing temperature of solid walls, with a migration velocity linearly proportional to the temperature gradient. This agrees with the prediction of our continuum model. We then measure the effect of droplet size on the droplet motion. It is found that the droplet mobility is inversely proportional to a dimensionless coefficient associated with the total rate of dissipation due to droplet movement. Our results show that this coefficient is of order unity and increases with the droplet size for the small droplets (∼10 nm) simulated in the present work. These findings are in semi

  3. Earth's gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: Envisat case study

    Science.gov (United States)

    Gómez, Natalia Ortiz; Walker, Scott J. I.

    2015-08-01

    The space debris population has grown rapidly over the last few decades with the consequent growth of impact risk between current objects in orbit. Active Debris Removal (ADR) has been recommended to be put into practice by several National Agencies in order to remove objects that pose the biggest risk for the space community. The most immediate target that is being considered for ADR by the European Space Agency is the Earth-observing satellite Envisat. In order to safely remove such a massive object from its orbit, a capturing process followed by a controlled reentry is necessary. However, current ADR methods that require physical contact with the target have limitations on the maximum angular momentum that can be absorbed and a de-tumbling phase prior to the capturing process may be required. Therefore, it is of utmost importance for the ADR mission design to be able to predict accurately how the target will be rotating at the time of capture. This article analyses two perturbations that affect an object in Low Earth Orbit (LEO), the Earth's gravity gradient and the eddy currents induced by the Earth's magnetic field. The gravity gradient is analysed using the equation of conservation of total energy and a graphical method is presented to understand the expected behaviour of any object under the effect of this perturbation. The eddy currents are also analysed by studying the total energy of the system. The induced torque and the characteristic time of decay are presented as a function of the object's magnetic tensor. In addition, simulations were carried out for the Envisat spacecraft including the gravity gradient perturbation as well as the eddy currents effect using the International Geomagnetic Reference Field IGRF-11 to model the Earth's magnetic field. These simulations show that the combined effect of these two perturbations is a plausible explanation for the rotational speed decay observed between April 2013 and September 2013.

  4. Co-pumped 130 W monolithic single frequency fiber amplifier with an optically induced thermal gradient

    Science.gov (United States)

    Zeringue, Clint; Vergien, Chris; Dajani, Iyad

    2011-06-01

    We present theoretical and experimental results of a 130 W continuous-wave (CW), single-frequency, 7 m, polarizationmaintaining (PM) Yb:doped fiber (25/400) μm amplifier simultaneously seeded with a combination of broadband and narrow-line signals. Experiments were performed for two thermal configurations and the SBS threshold of the doubly seeded amplifier is compared to the singly seeded case. In the first configuration, the fiber was wrapped around a cold spool held at 12° C to diminish thermally induced shifts in the acoustic resonance of the fiber, which is known to suppress stimulated Brillouin scattering (SBS). In this case, over 80 W of single-frequency output was obtained demonstrating an enhancement of 3 dB in the SBS threshold compared to the single-tone case whereby the SBS threshold was 40 W. In the second thermal configuration, 6 m of the fiber is wrapped around the same cold spool, but approximately 1 m of the fiber is left to cool in ambient conditions. In this case, an optically induced thermal gradient was formed due to the quantum defect heating associated with power transfer from the pump and broadband seed signals into the single-frequency signal at the output end of the fiber. Over 130 W of single-frequency output was demonstrated yielding an effective increase of ~5 dB in the SBS threshold when compared to the single-tone case.

  5. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    Science.gov (United States)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  6. Thermal stratification patterns in urban ponds and their relationships with vertical nutrient gradients.

    Science.gov (United States)

    Song, Keunyea; Xenopoulos, Marguerite A; Buttle, James M; Marsalek, Jiri; Wagner, Nicole D; Pick, Frances R; Frost, Paul C

    2013-09-30

    Ponds that collect and process stormwater have become a prominent feature of urban landscapes, especially in areas recently converted to residential land use in North America. Given their increasing number and their tight hydrological connection to residential catchments, these small aquatic ecosystems could play an important role in urban biogeochemistry. However, some physicochemical aspects of urban ponds remain poorly studied. Here we assessed the frequency and strength of water column stratification, using measurements of vertical water temperature profiles at high spatial and temporal frequency, in 10 shallow urban stormwater management ponds in southern Ontario, Canada. Many of the ponds were well stratified during much of the summer of 2010 as indicated by relatively high estimates of thermal resistance to mixing (RTRM) indices. Patterns of stratification reflected local weather conditions but also varied among ponds depending on their morphometric characteristics such as maximum water depth and surface area to perimeter ratio. We found greater vertical nutrient gradients and more phosphorus accumulation in bottom waters in ponds with strong and persistent stratification, which likely results from limited particle resuspension and more dissolved phosphorus (P) release from sediments. However, subsequent mixing events in the fall diminished vertical P gradients and possibly accelerated internal loading from the sediment-water interface. Our results demonstrate that stormwater ponds can experience unexpectedly long and strong thermal stratification despite their small size and shallow water depth. Strong thermal stratification and episodic mixing in ponds likely alter the quantity and timing of internal nutrient loading, and hence affect water quality and aquatic communities in downstream receiving waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...

  8. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  9. Towards improved knowledge of geology and global thermal regime from Swarm satellites magnetic gradient observations

    DEFF Research Database (Denmark)

    Ravat, Dhananjay; Olsen, Nils; Sabaka, Terence

    Anomaly Map compilation (ca. 2002), the original compilation corrected with satellite-altitude data sets, and Swarm constellation gradient corrected fields over the U.S. Using this U.S. study as a test, we examine the possibility of improving the spectral coverage in many regions of the world where...... and fidelity of the magnetic field downward continued to the Earth’s surface translate into improvements in the interpretation of anomalies for recognition of geologic variability and tectonic processes (e.g., recognizing details of geologic provinces, anomalous seafloor spreading patterns, etc., that can help...... on the interpretation, particularly the derived Curie depths and the thermal variation of the lithosphere. We examine the inaccuracies in anomalies and also their resulting interpretation using the U.S. aeromagnetic data where a full spectrum magnetic anomaly coverage is available (Ravat et al., 2009, USGS open files...

  10. Response of wetland herbaceous communities to gradients of light and substrate following disturbance by thermal pollution

    Science.gov (United States)

    Dunn, Christopher P.; Scott, Michael L.

    1987-01-01

    The influence of thermal disturbance and site characteristics on distribution of herbs was studied in portions of a 3020 ha wetland in the southeastern USA. Presence-absence of 52 species in 130 0.25 m2 plots was determined from four sites with different disturbance histories and from an undisturbed site. Data from the four disturbed sites were ordinated by detrended correspondence analysis. Differences in species composition among sites (coarse scale) were associated with water depth, light, and substrate type. Within a site (at a fine scale), correlation of environmental variables with ordination scores at a chronically disturbed site was weakly correlated with light (r=0.50). At two sites with episodic disturbance, species composition correlated significantly and positively with substrate and water depth. At a recovering site, vegetation patterns were moderately correlated with water depth (r=−0.52). Species richness was correlated with substrate type along the disturbance gradient. Our results are consistent the intermediate disturbance hypothesis and the subsidy-stress gradient concept.

  11. Influence of natural thermal gradients on whole animal rates of protein synthesis in marine gammarid amphipods.

    Directory of Open Access Journals (Sweden)

    Samuel P S Rastrick

    Full Text Available Although temperature is known to have an important effect on protein synthesis rates and growth in aquatic ectotherms held in the laboratory, little is known about the effects of thermal gradients on natural populations in the field. To address this issue we determined whole-animal fractional rates of protein synthesis (ks in four dominant species of gammarid amphipods with different distributions along the coasts of Western Europe from arctic to temperate latitudes. Up to three populations of each species were collected in the summer and ks measured within 48 h. Summer ks values were relatively high in the temperate species, Gammarus locusta, from Portugal (48°N and Wales (53°N and were maintained across latitudes by the conservation of translational efficiency. In sharp contrast, summer ks remained remarkably low in the boreal/temperate species G. duebeni from Wales, Scotland (58°N and Tromsø (70°N, probably as a temporary energy saving strategy to ensure survival in rapidly fluctuating environments of the high intertidal. Values for ks increased in acclimated G. duebeni from Scotland and Tromsø showing a lack of compensation with latitude. In the subarctic/boreal species, G. oceanicus, summer ks remained unchanged in Scotland and Tromsø but fell significantly in Svalbard (79°N at 5°C, despite a slight increase in RNA content. At 79°N, mean ks was 4.5 times higher in the circumpolar species G. setosus than in G. oceanicus due to a doubling in RNA content. The relationship between whole-animal protein synthesis rates and natural thermal gradients is complex, varies between species and appears to be associated with local temperatures and their variability, as well as changes in other environmental factors.

  12. Potential Use of a Salt Gradient Solar Pond to Store Thermal Energy

    Directory of Open Access Journals (Sweden)

    Daniel Vinícius Silva Veras

    2012-11-01

    Full Text Available Demand for energy sources that allow a sustainable development has stimulated studies on the acquisition of alternative energy, renewable and clean such as hydro, wind, biomass and solar energies. Therefore, the objective in this work was to evaluate the potential of a Salt Gradient Solar Pond (SGSP in order to obtain thermal energy from solar energy. A pilot solar pond with 1,76 m² of surface area and 1 m³ of volume was set up in Itapetinga, Bahia, and temperatures in upper and lower convective layers were monitored between August 20 and November 3, 2008. It was found that the temperature difference between the layers increased from 2°C to 13.2°C, with a medium value of 5.7°C for the period. Considering a 30% efficiency for utilization of stored energy, it would be possible increase by 10°C the temperature of 50 L of chilled milk in a dairy industry, thus demonstrating its potential. In the end of Spring or Summer the temperature difference would be superior. Results demonstrate the potential use of solar ponds by industries and farms in our country, as a renewable and non-polluting alternative, being able to store thermal energy from solar energy.

  13. A Block Preconditioned Conjugate Gradient-type Iterative Solver for Linear Systems in Thermal Reservoir Simulation

    Science.gov (United States)

    Betté, Srinivas; Diaz, Julio C.; Jines, William R.; Steihaug, Trond

    1986-11-01

    A preconditioned residual-norm-reducing iterative solver is described. Based on a truncated form of the generalized-conjugate-gradient method for nonsymmetric systems of linear equations, the iterative scheme is very effective for linear systems generated in reservoir simulation of thermal oil recovery processes. As a consequence of employing an adaptive implicit finite-difference scheme to solve the model equations, the number of variables per cell-block varies dynamically over the grid. The data structure allows for 5- and 9-point operators in the areal model, 5-point in the cross-sectional model, and 7- and 11-point operators in the three-dimensional model. Block-diagonal-scaling of the linear system, done prior to iteration, is found to have a significant effect on the rate of convergence. Block-incomplete-LU-decomposition (BILU) and block-symmetric-Gauss-Seidel (BSGS) methods, which result in no fill-in, are used as preconditioning procedures. A full factorization is done on the well terms, and the cells are ordered in a manner which minimizes the fill-in in the well-column due to this factorization. The convergence criterion for the linear (inner) iteration is linked to that of the nonlinear (Newton) iteration, thereby enhancing the efficiency of the computation. The algorithm, with both BILU and BSGS preconditioners, is evaluated in the context of a variety of thermal simulation problems. The solver is robust and can be used with little or no user intervention.

  14. Chemical interaction between a simulated nuclear waste glass and different backfill materials under a thermal gradient

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, C. [CEA-Saclay-DCC/DESD/SESD/Laboratory for Migration and Solid Geochemistry, 91191 Gif sur Yvette (France); Toulhoat, P.; Goffe, B. [Ecole Normale Superieure, Laboratory for Geology, URA-1316 du CNRS 24, rue Lhomand, 75231 Paris (France)

    1998-08-01

    The initial stage of a HLW disposal will be dominated by a strong thermal gradient that will exist between the hot canister and the 'cold' geological medium. In the case of hot wastes (MOX, direct disposal of used spent fuel, short interim storage), nuclear glass can begin to dissolve in groundwater and to interact with other materials in the presence of a thermal gradient. Moreover, it has already been demonstrated that thermal gradients strongly influence the hydrothermal corrosion of nuclear glass by creating large elemental segregation and subsequent mass transport processes. The aim of this article is to experimentally test whether the presence of a simulated engineered clay barrier affects these mass transport processes. In parallel, experiments were performed with different clays of various Si/Al ratios (smectite, kaolinite and allophane) as Si and Al are often invoked as possible rate limiting species for nuclear glass aging. A simulated nuclear glass was disposed between two layers of various clays, enclosed in a sealed gold tube filled with deionised water. The gold tube was put in a cold-seal vessel and submitted to a thermal field under high temperatures (300-200C, 140 bars, 100 days). High temperatures were used in order to enhance transformation kinetics as mass transport is supposed to be independent of the temperature. At the end of the experiments, the newly formed phases along the tube as well as the mineralogical transformations of the reactants were studied by integrated in-situ analyses (SEM, TEM, EDS and XRD). Precise descriptions of the mineralogical transformations are presented. The major result is a systematic re-crystallization of the initial clay under the influence of the leached elements from the glass (in particular Si and alkalies). The nuclear glass aging is strongly affected by the composition of the surrounding clay and consumes Al from the clay. The aluminous-rich medium seems to limit the glass corrosion and the

  15. Velocity gradients in the Earth's upper mantle: insights from higher mode surface waves

    Science.gov (United States)

    Fishwick, Stewart; Maupin, Valerie; Afonso, Juan Carlos

    2016-04-01

    The majority of seismic tomographic models of the uppermost mantle beneath Precambrian regions show a positive velocity gradient from the Moho to depths of around 100 km. It is becoming increasingly well recognised that this gradient is not readily compatible with simple models of a craton with constant composition and a steady-state geotherm and more complex compositional variations are invoked to explain this feature. At these depths most of the models are dominated by data from fundamental mode surface waves, and the combination of the sensitivity kernels alongside the choice of model parameterisation means that the velocity gradient could be an artefact of the particular inversion. Indeed, recent work using thermodynamically consistent velocity models suggests that in some cases there is not a requirement of this style of gradient. We investigate this aspect of the mantle structure further by returning to the Sa phase. This phase can be considered as the build up of a wave packet due to the overlapping group velocities of higher modes at periods of around 8 - 30 s. Using the Australian shield as a test-case we compare waveforms built from three different styles of velocity model. Firstly, the 1D model AU3 (Gaherty & Jordan, 1995) which did incorporate the Sa phase as part of the waveform in their modelling. Secondly, recent tomographic models of the Australian continent are used, which include no a priori information from the phase. Thirdly, a thermodynamically consistent velocity model that fits the broad dispersion characteristics of the tomography is tested. Finally, these synthetic waveforms are compared to real data crossing the Australian shield. The results illustrate small, but clear, variations in waveform dependent on the velocity structure. Complicating factors in any analysis involve the importance of having good knowledge of the crustal structure and a very accurate source depth (particularly if this is similar to the average crustal thickness).

  16. Earth's thermal radiation sensors for attitude determination systems of small satellites

    Science.gov (United States)

    Vertat, I.; Linhart, R.; Masopust, J.; Vobornik, A.; Dudacek, L.

    2017-07-01

    Satellite attitude determination is a complex process with expensive hardware and software and it could consume the most of resources (volume, mass, electric power), especially of small satellites as CubeSats. Thermal radiation infrared detectors could be one of useful sensors for attitude determination systems in such small satellites. Nowadays, these sensors are widely used in contact-less thermometers and thermo-cameras resulting in a low-cost technology. On low Earth orbits the infrared thermal sensors can be utilized for coarse attitude determination against a relative warm and close Earth's globe.

  17. Composition Distribution, Damping and Thermal Properties of the Thickness-Continuous Gradient Epoxy/Polyurethane Interpenetrating Polymer Networks

    Directory of Open Access Journals (Sweden)

    Xuesong Lv

    2017-01-01

    Full Text Available A thickness gradient interpenetrating polymer network (IPN was easily created that takes advantage of the relatively poor compatibility and curing rates discrepancy between epoxy (EP and polyurethane (PU. Ultraviolet absorption spectrum (UV-Vis, thermogravimetric (TG, Differential scanning calorimetry (DSC, Dynamic thermomechanical analysis (DMA, Atomic force microscope (AFM and water contact angle were adopted to characterize this IPN structure. We found that the absorption in visible light region, glass-transition temperatures (Tg, thermal decomposition temperatures (Td and Derjaguin–Muller–Toporov (DMT modulus were increasing along with the gradient direction from bottom side to top side of the IPN. While the absorption in ultraviolet region and adhesion force were decreasing along with the gradient direction from bottom side to top side of the IPN. DMA analysis demonstrates that this continuous gradient IPN has a good balance between the damping temperature range and the loss factor which is suitable for using as a self-supporting damping structure.

  18. Thermal conductivity of rare earth-uranium ternary oxides of the type RE 6UO 12

    Science.gov (United States)

    Krishnaiah, M. V.; Seenivasan, G.; Srirama Murti, P.; Mathews, C. K.

    2002-11-01

    The knowledge of thermophysical properties of the rare earth uranium ternary oxides of the type RE 6UO 12 (RE=La, Gd and Dy) is essential to understand the fuel performance during reactor operation and for modeling fuel behavior. Literature on the high temperature properties of this compound is not available and there is no report at all on the thermal conductivity of these compounds. Hence a study of thermal conductivity of this compound has been taken up. The compounds were synthesized by a solution combustion method using metal nitrates and urea. Thermal diffusivity of these compounds was measured by the laser flash method in the temperature range 673-1373 K. The specific heat data was computed using Neumann-Kopp's law. Thermal conductivity was calculated using the measured thermal diffusivity value, density and specific heat data for different temperatures. The temperature dependence of thermal conductivity and the implication of structural aspects of these compounds on the data are discussed here.

  19. RESPONSE OF HATCHLING AND YEARLING TURTLES TO THERMAL GRADIENTS: COMPARISON OF CHELYDRA SERPENTINA AND TRACHEMYS SCRIPTA

    Science.gov (United States)

    In laboratory test, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperature (Tbs) of C. serpentina were lower tha...

  20. Effect of thermal gradients on the electromigration lifetime in power electronics

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.; Weide-Zaage, K.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    2004-01-01

    The combined effects of electromigration and thermomigration are studied. Significantly shorter electromigration lifetimes are observed in the presence of a temperature gradient. This cannot be explained by thermomigration only, but is attributed to the effect of temperature gradient on

  1. Hydrologic impacts of past shifts of Earth's thermal equator offer insight into those to be produced by fossil fuel CO2.

    Science.gov (United States)

    Broecker, Wallace S; Putnam, Aaron E

    2013-10-15

    Major changes in global rainfall patterns accompanied a northward shift of Earth's thermal equator at the onset of an abrupt climate change 14.6 kya. This northward pull of Earth's wind and rain belts stemmed from disintegration of North Atlantic winter sea ice cover, which steepened the interhemispheric meridional temperature gradient. A southward migration of Earth's thermal equator may have accompanied the more recent Medieval Warm to Little Ice Age climate transition in the Northern Hemisphere. As fossil fuel CO2 warms the planet, the continents of the Northern Hemisphere are expected to warm faster than the Southern Hemisphere oceans. Therefore, we predict that a northward shift of Earth's thermal equator, initiated by an increased interhemispheric temperature contrast, may well produce hydrologic changes similar to those that occurred during past Northern Hemisphere warm periods. If so, the American West, the Middle East, and southern Amazonia will become drier, and monsoonal Asia, Venezuela, and equatorial Africa will become wetter. Additional paleoclimate data should be acquired and model simulations should be conducted to evaluate the reliability of this analog.

  2. Technical Note: Characterization of a static thermal-gradient CCN counter

    Directory of Open Access Journals (Sweden)

    G. P. Frank

    2007-06-01

    Full Text Available The static (parallel-plate thermal-gradient diffusion chamber (SDC was one of the first instruments designed to measure cloud condensation nuclei (CCN concentrations as a function of supersaturation. It has probably also been the most widely used type of CCN counter. This paper describes the detailed experimental characterization of a SDC CCN counter, including calibration with respect to supersaturation and particle number concentration. In addition, we investigated the proposed effect of lowered supersaturation because of water vapor depletion with increasing particle concentration. The results obtained give a better understanding why and in which way it is necessary to calibrate the SDC CCN counter. The calibration method is described in detail and can, in parts, be used for calibrations also for other types of CCN counters.

    We conclude the following: 1 it is important to experimentally calibrate SDC CCN counters with respect to supersaturation, and not only base the supersaturation on the theoretical description of the instrument; 2 the number concentration calibration needs to be performed as a function of supersaturation, also for SDC CCN counter using the photographic technique; and 3 we observed no evidence that water vapor depletion lowered the supersaturation.

  3. Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant

    Science.gov (United States)

    Raiji, A. M.; Renfroe, D. A.; Lalk, T. R.

    Power is generated by exploiting the natural atmospheric temperature gradient. A low grade energy source is used to vaporize a fluid which rises in a pipe to a higher elevation where it is condensed. The cycle is completed by passing the condensed liquid through a turbine as it returns to the lower elevation. A digital computer model was developed and used to simulate the operation of the cycle and to conduct a parameteric study. Life cycle cost analysis and energy analyses were conducted for the specific case of a TGUC using the ambient air at the lower elevation as an energy source. Although the cycle has a low thermal efficiency and is site specific, it is technically feasible. Variations in mass flow rate of the working fluid and elevation were found to affect the cycle power output to a large extent. The investment cost of a hypothetical 10 megawatt TGUC power plant was determined to be $3,080 per kilowatt, with life cycle busbar costs of electricity ranging from 47 to 55 Mills per kilowatt hour depending on the method of financing.

  4. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Coppi, B. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics)

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  5. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Coppi, B. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics

    1992-08-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  6. Preparation of Ultrahigh Potential Gradient of ZnO Varistors by Rare-Earth Doping and Low-Temperature Sintering

    Directory of Open Access Journals (Sweden)

    Lei Ke

    2013-01-01

    Full Text Available The effects of rare-earth doping and low-temperature sintering on electrical properties of ZnO varistors were investigated. The potential gradient (E1mA of the ZnO varistors increased significantly to 2247.2 V/mm after doping 0.08 mol% of Y2O3 and sintering at 800°C for 2 h. The notable decrease of the grain size with the given experimental conditions was the origin for the increase in E1mA. During the process of high-temperature sintering, both the oxygen at the grain boundary interface and the neutralisation of the ions on the depletion layer were directly reduced, which caused the weight loss and the internal derangement of double Schottky barriers.

  7. Characterization of Near-Earth Asteroid 2009 KC3 from Radar and Thermal Infrared Observations

    NARCIS (Netherlands)

    Taylor, Patrick A.; Howell, E. S.; Nolan, M. C.; Benner, L. A. M.; Brozovic, M.; Giorgini, J. D.; Vervack, R. J.; Fernandez, Y. R.; Magri, C.; Mueller, M.

    2010-01-01

    We will report on the size, shape, spin state, and reflective and thermal properties of C-type, Apollo-class, potentially hazardous, near-Earth asteroid 2009 KC3 (a = 3.2 AU, e = 0.7, i = 10 deg). This object was discovered by the Siding Spring Survey in May 2009 and subsequently observed in the

  8. Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect

    NARCIS (Netherlands)

    Delbo', Marco; dell'Oro, Aldo; Harris, Alan W.; Mottola, Stefano; Mueller, Michael

    2007-01-01

    Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the

  9. Thermal inertia of near-Earth asteroids and magnitude of the Yarkovsky effect

    NARCIS (Netherlands)

    Delbo, M.; Dell'Oro, A.; Harris, A. W.; Mottola, S.; Mueller, M.

    2006-01-01

    Thermal inertia of near-Earth asteroids and magnitude of the Yarkovsky effect M. Delbo* (1,2), A. Dell'Oro (2), A. W. Harris (3), S. Mottola (3), M. Mueller (3) (1) Observatoire de la Côte d'Azur B.P. 4229, 06034 Nice Cedex 4, France. (2) INAF-Osservatorio Astr. di Torino, via Osservatorio 20, 10025

  10. Thermal Inertia of near-Earth Asteroids and Strength of the Yarkovsky Effect

    NARCIS (Netherlands)

    Delbo, Marco; Dell'Oro, A.; Harris, A. W.; Mottola, S.; Mueller, M.

    2006-01-01

    Thermal inertia is the physical parameter that controls the temperature distribution over the surface of an asteroid. It affects the strength of the Yarkovsky effect, which causes orbital drift of km-sized asteroids and is invoked to explain the delivery of near-Earth asteroids (NEAs) from the main

  11. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  12. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion...... of the sample vessels, a back-pressure system with a constant leak rate was installed. Pressure is applied through high-pressure liquid chromatography (HPLC) pumps that run in constant pressure mode with variable flow rate, thereby regulating any pressure fluctuations. The device allows incubations along a wide...

  13. Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device.

    Science.gov (United States)

    Murugesan, Nithya; Panda, Tapobrata; Das, Sarit K

    2016-08-01

    Bacteria responds to changing chemical and thermal environment by moving towards or away from a particular location. In this report, we looked into thermal gradient generation and response of E. coli DH5α cells to thermal gradient in the presence and in the absence of spherical gold nanoparticles (size: 15 to 22 nm) in a static microfluidic environment using a polydimethylsiloxane (PDMS) made microfluidic device. A PDMS-agarose based microfluidic device for generating thermal gradient has been developed and the thermal gradient generation in the device has been validated with the numerical simulation. Our studies revealed that the presence of gold nanoparticles, AuNPs (0.649 μg/mL) has no effect on the thermal gradient generation. The E. coli DH5α cells have been treated with AuNPs of two different concentrations (0.649 μg/mL and 0.008 μg/mL). The thermotaxis behavior of cells in the presence of AuNPs has been studied and compared to the thermotaxis of E.coli DH5α cells in the absence of AuNPs. In case of thermotaxis, in the absence of the AuNPs, the E. coli DH5α cells showed better thermotaxis towards lower temperature range, whereas in the presence of AuNPs (0.649 μg/mL and 0.008 μg/mL) thermotaxis of the E. coli DH5α cells has been inhibited. The results show that the spherical AuNPs intervenes in the themotaxis of E. coli DH5α cells and inhibits the cell migration. The reason for the failure in thermotaxis response mechanism may be due to decreased F-type ATP synthase activity and collapse of membrane potential by AuNPs, which, in turn, leads to decreased ATP levels. This has been hypothesized since both thermotaxis and chemotaxis follows the same response mechanism for migration in which ATP plays critical role.

  14. Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.

    Directory of Open Access Journals (Sweden)

    Juan Diego Gaitán-Espitia

    Full Text Available The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC, in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits, influencing the biogeographic patterns of species' distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation. We tested two competing hypotheses regarding thermal adaptation (the "hotter is better" and the generalist-specialist trade-offs. Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints ("hotter is better" and thermal adaptations to their local environments (generalist-specialist trade-offs. This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.

  15. Earth Entry Requirements for Mars, Europa and Enceladus Sample Return Missions: A Thermal Protection System Perspective

    Science.gov (United States)

    Venkatapathy, Ethiraj; Gage, Peter; Ellerby, Don; Mahzari, Milad; Peterson, Keith; Stackpoole, Mairead; Young, Zion

    2016-01-01

    This oral presentation will be given at the 13th International Planetary Probe Workshop on June 14th, 2016 and will cover the drivers for reliability and the challenges faced in selecting and designing the thermal protection system (TPS). In addition, an assessment is made on new emerging TPS related technologies that could help with designs to meet the planetary protection requirements to prevent backward (Earth) contamination by biohazardous samples.

  16. Anomalous diurnal variation of atmospheric potential gradient and air-Earth current density observed at Maitri, Antarctica

    Science.gov (United States)

    Jeeva, K.; Gurubaran, S.; Williams, E. R.; Kamra, A. K.; Sinha, A. K.; Guha, A.; Selvaraj, C.; Nair, K. U.; Dhar, Ajay

    2016-11-01

    The scope of this paper is to explore the mechanisms operating over Maitri (70.76°S, 11.74°E, 117 m above mean sea level), a coastal Antarctic station, that produce an anomalous fair-weather diurnal pattern of the atmospheric electric potential gradient (PG) and air-Earth current density (AEC). The anomaly in the diurnal variations of AEC and the PG is displaying an ostensible minimum at 10 UT and a diminished response to the thunderstorm over the African continent in the 14-16 UT time frame. The data sets (2005-2014, except 2012) of the PG, and to some extent, AEC, from Maitri, are used to explore this anomaly. It follows that the fair-weather electrical phenomena over Maitri can be ascribed to global electrified convection on the one hand and to regional phenomena like convection due to the replacement of warm air by katabatic winds on the other hand. The katabatic winds originate on the polar plateau and blow from 130° at Maitri which are likely to transport various elements from the mountain slopes, and space charge from the polar plateau is expected to produce various disturbances in the PG and AEC monitored over the coastal Antarctica. This mechanism may be responsible for peaks in the early UT hours and also for the anomalous behavior of atmospheric electrical parameters observed at Maitri. Maitri data are compared with that of Carnegie cruise and Vostok to explain the source of anomaly.

  17. Reflection and thermal emission spectra of Earth-like extrasolar planets affected by clouds

    Science.gov (United States)

    Kitzmann, Daniel; Patzer, A. B. C.; von Paris, Philip; Rauer, Heike

    Clouds can have an important impact on the radiative transfer in planetary atmospheres by absorption and scattering of the incident stellar radiation and the thermal radiation from the surface. Consequently, the planetary emission and reflection spectra are strongly affected by the presence of clouds, resulting in e.g. the concealing of thermal surface emissions or dampening of molecular absorption bands in the infrared. To study these effects, a parametrised cloud description, accounting for two different types of clouds (low-level water and high-level ice clouds) and their partial overlap has been developed. The multi-layered cloud model is based on observations in the Earth's atmosphere and has been coupled with a one-dimensional radiative-convective steady state climate model to obtain low-resolution spectra of Earth-like extrasolar planets. In this contribution the impact of multi-layered on low-resolution thermal emission and reflec-tion spectra is presented for Earth-like planets orbiting different types of central stars, with special emphasis on so-called biomarker signatures. The influence of clouds on the ability to derive information about the planetary surface temperatures from low-resolution spectra is also discussed.

  18. Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach

    Science.gov (United States)

    Nematollahi, Mohammad Sadegh; Mohammadi, Hossein; Nematollahi, Mohammad Ali

    2017-11-01

    In this paper, a new formulation for analyzing free vibration of thin rectangular nanoplates under different thermal conditions is obtained based on the higher-order nonlocal strain gradient theory. Governing equations and non-classical boundary conditions of the nanoplate are derived by using the variational approach. The exact solution is obtained as a function of higher-order and lower-order nonlocal parameters, strain gradient length scale and temperature difference using Navier solution procedure. The influences of small-scale parameters on the vibrational behavior of the nanoplate are investigated for various thermal conditions. High and low temperature conditions are considered to study the effects of changes in temperature and small-scale parameters. It has been shown that increasing the nonlocal parameters decrease the natural frequency of the nanoplate, while increasing the strain gradient length scale will increase it. Also, the natural frequency of the nanoplate will increase by increasing the temperature difference in low temperature conditions, but it will decrease by increasing the temperature difference in high temperature conditions. Non-uniform behaviors are reported for some cases and softening effect and hardening effect are studied. To validate the solutions, the results are compared with previous researches.

  19. Effect of metallic nanoparticle fillers on the thermal conductivity of diatomaceous earth

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, Mouhamad S. [Department of Liberal Arts, Des Moines Area Community College, Des Moines, IA 50314 (United States); Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Srinivasan, Srilok [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Chang, Boyce [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Ghosh, Suvojit [Department of Engineering Physics, McMaster University, Hamilton, ON L8S4L8 (Canada); Balasubramanian, Ganesh, E-mail: bganesh@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States)

    2016-10-23

    Thermal conductivity of solid nanoparticles (aluminum) in a nanoporous solid matrix (diatomaceous earth) is examined to understand the effect of conductive fillers on the thermal properties of a porous material. We find that thermal conductivity is strongly dependent on load applied to prepare the mixture compacts, while porosity is influenced by the composition of the mixture. The addition of nanoparticles contributes to limited increases in thermal conductivity of the mixture by (1) increasing contact area between the mixture constituents and (2) reduction of porosity that leads to enhanced solid–gas coupling contribution. Thermal conductivity increases exponentially with external gas pressures due to the coupling effect between the solid particles and the entrapped air. - Highlights: • Thermal conductivity k of DE/AlNP mixture is more dependent on compaction than on Al concentration. • Nanoparticles affect k of DE by increase in solid contact area rather than by its effect on porosity. • When air content in mixture rises, k increases with gas pressures due to solid–gas coupling effect.

  20. Concentration gradient P3OT/PCBM photovoltaic devices fabricated by thermal interdiffusion of separately spin-cast organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, M.; Gopal, A.; Heflin, J.R. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Davis, R.M. [Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States)

    2009-10-15

    A series of organic photovoltaic devices consisting of concentration gradients of poly (3-octylthiophene) (P3OT) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester (PCBM) were fabricated by thermally-induced interdiffusion of consecutively spin-cast layers of P3OT and PCBM from solvents of chloroform and pyridine, respectively. The device performance was evaluated as a function of the layer thicknesses, interdiffusion temperature, and interdiffusion time. A maximum power conversion efficiency of 1.0% under AM1.5G simulated solar spectrum was obtained for 70 nm P3OT thickness, 45 nm PCBM thickness, and interdiffusion at 150 C for 20 min. Auger spectroscopy depth profiling measurements indicated that the optimal devices consist of concentration gradients of P3OT and PCBM extending across the entire film in opposite directions. (author)

  1. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  2. Thermal tolerance in the Andean toad Rhinella spinulosa (Anura: Bufonidae) at three sites located along a latitudinal gradient in Chile.

    Science.gov (United States)

    Riquelme, Nicza Alveal; Díaz-Páez, Helen; Ortiz, Juan Carlos

    2016-08-01

    Rhinella spinulosa is one of the anuran species with the greatest presence in Chile. This species mainly inhabits mountain habitats and is distributed latitudinally along the western slope of the Andes Range. These habitats undergo great temperature fluctuations, exerting pressure on the amphibian. To identify the physiological strategies and thermal behavior of this species, we analyzed the temperature variables CTmin, CTmax, TTR, τheat, and τcool in individuals of three sites from a latitudinal gradient (22°S to 37°S). The amphibians were acclimated to 10°C and 20°C and fed ad libitum. The results indicate that the species has a high thermal tolerance range, with a mean of 38.14±1.34°C, a critical thermal maxima of 34.6-41.4°C, and a critical thermal minima of 2.6-0.8°C, classifying the species as eurythermic. Furthermore, there were significant differences in CTmáx and TTR only in the northern site. The differences in thermal time constants between sites are due to the effects of size and body mass. For example, those from the central site had larger size and greater thermal inertia; therefore, they warmed and cooled in a slower manner. The wide thermal limits determined in R. spinulosa confirm that it is a thermo-generalist species, a characteristic that allows the species to survive in adverse microclimatic conditions. The level of plasticity in critical temperatures seems ecologically relevant and supports the acclimatization of thermal limits as an important factor for ectothermic animals to adapt to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comparison of the temperature accuracy between smart phone based and high-end thermal cameras using a temperature gradient phantom

    Science.gov (United States)

    Klaessens, John H.; van der Veen, Albert; Verdaasdonk, Rudolf M.

    2017-03-01

    Recently, low cost smart phone based thermal cameras are being considered to be used in a clinical setting for monitoring physiological temperature responses such as: body temperature change, local inflammations, perfusion changes or (burn) wound healing. These thermal cameras contain uncooled micro-bolometers with an internal calibration check and have a temperature resolution of 0.1 degree. For clinical applications a fast quality measurement before use is required (absolute temperature check) and quality control (stability, repeatability, absolute temperature, absolute temperature differences) should be performed regularly. Therefore, a calibrated temperature phantom has been developed based on thermistor heating on both ends of a black coated metal strip to create a controllable temperature gradient from room temperature 26 °C up to 100 °C. The absolute temperatures on the strip are determined with software controlled 5 PT-1000 sensors using lookup tables. In this study 3 FLIR-ONE cameras and one high end camera were checked with this temperature phantom. The results show a relative good agreement between both low-cost and high-end camera's and the phantom temperature gradient, with temperature differences of 1 degree up to 6 degrees between the camera's and the phantom. The measurements were repeated as to absolute temperature and temperature stability over the sensor area. Both low-cost and high-end thermal cameras measured relative temperature changes with high accuracy and absolute temperatures with constant deviations. Low-cost smart phone based thermal cameras can be a good alternative to high-end thermal cameras for routine clinical measurements, appropriate to the research question, providing regular calibration checks for quality control.

  4. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman [Institute of Planetology, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany); Breuer, Doris, E-mail: Vlada.Stamenkovic@dlr.de, E-mail: Lena.Noack@dlr.de, E-mail: Doris.Breuer@dlr.de, E-mail: Tilman.Spohn@dlr.de [Institute of Planetary Research, German Aerospace Center DLR, Rutherfordstrasse 2, 12489 Berlin (Germany)

    2012-03-20

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  5. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    Science.gov (United States)

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  6. Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.

    Science.gov (United States)

    Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua

    2017-04-18

    Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg0.9Fe0.1)2SiO4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.

  7. A new thermal gradient ice nucleation diffusion chamber instrument: design, development and first results using Saharan mineral dust

    Directory of Open Access Journals (Sweden)

    J. B. McQuaid

    2009-06-01

    Full Text Available A new Thermal Gradient ice nucleation Diffusion Chamber (TGDC capable of investigating ice nucleation efficiency of atmospherically important aerosols, termed Ice Nuclei (IN, has been designed, constructed and validated. The TGDC can produce a range of supersaturations with respect to ice (SSi over the temperature range of −10 to −34°C for sufficiently long time needed to observe the ice nucleation by the particles. The novel aspect of this new TGDC is that the chamber is run in static mode with aerosol particles supported on a Teflon substrate, which can be raised and lowered in a controlled way through the SSi profile within the chamber, and nucleation events are directly observed using digital photography. The TGDC consists of two ice coated plates to which a thermal gradient is applied to produce the range of SSi. The design of the TGDC gives the ability to understand time-related ice nucleation event information and to perform experiments at different temperatures and SSi conditions for different IN without changing the thermal gradient within the TGDC. The temperature and SSi conditions of the experimental system are validated by observing (NH42SO4 deliquescence and the results are in good agreement with the literature data. First results are presented of the onset ice nucleation for mineral dust sampled from the Saharan Desert, including images of nucleation and statistical distributions of onset ice nucleation SSi as a function of temperature. This paper illustrates how useful this new TGDC is for process level studies of ice nucleation and more experimental investigations are needed to better quantify the role of ice formation in the atmosphere.

  8. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  9. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    Science.gov (United States)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may

  10. Effects of anisotropic turbulent thermal diffusion on spherical magnetoconvection in the Earth's core

    Science.gov (United States)

    Ivers, D. J.; Phillips, C. G.

    2018-03-01

    We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found

  11. Rethinking plant functional types in Earth System Models: pan-tropical analysis of tree survival across environmental gradients

    Science.gov (United States)

    Johnson, D. J.; Needham, J.; Xu, C.; Davies, S. J.; Bunyavejchewin, S.; Giardina, C. P.; Condit, R.; Cordell, S.; Litton, C. M.; Hubbell, S.; Kassim, A. R. B.; Shawn, L. K. Y.; Nasardin, M. B.; Ong, P.; Ostertag, R.; Sack, L.; Tan, S. K. S.; Yap, S.; McDowell, N. G.; McMahon, S.

    2016-12-01

    Terrestrial carbon cycling is a function of the growth and survival of trees. Current model representations of tree growth and survival at a global scale rely on coarse plant functional traits that are parameterized very generally. In view of the large biodiversity in the tropical forests, it is important that we account for the functional diversity in order to better predict tropical forest responses to future climate changes. Several next generation Earth System Models are moving towards a size-structured, trait-based approach to modelling vegetation globally, but the challenge of which and how many traits are necessary to capture forest complexity remains. Additionally, the challenge of collecting sufficient trait data to describe the vast species richness of tropical forests is enormous. We propose a more fundamental approach to these problems by characterizing forests by their patterns of survival. We expect our approach to distill real-world tree survival into a reasonable number of functional types. Using 10 large-area tropical forest plots that span geographic, edaphic and climatic gradients, we model tree survival as a function of tree size for hundreds of species. We found surprisingly few categories of size-survival functions emerge. This indicates some fundamental strategies at play across diverse forests to constrain the range of possible size-survival functions. Initial cluster analysis indicates that four to eight functional forms are necessary to describe variation in size-survival relations. Temporal variation in size-survival functions can be related to local environmental variation, allowing us to parameterize how demographically similar groups of species respond to perturbations in the ecosystem. We believe this methodology will yield a synthetic approach to classifying forest systems that will greatly reduce uncertainty and complexity in global vegetation models.

  12. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  13. Some observations regarding the thermal flux from Earth's erupting volcanoes for the period 2000 to 2014

    Science.gov (United States)

    Wright, R.; Blackett, M.; Hill-Butler, C.

    2014-12-01

    This presentation will describe 15 years of MODIS observations of the thermal flux from Earth's sub-aerially erupting volcanoes. The MODVOLC algorithm has been providing data regarding volcanic eruptions on Earth to the volcanological community since the launch of Terra MODIS, via the internet, in near-real-time (http:modis.higp.hawaii.edu). During this time, eruptions at 102 volcanoes have been observed, including activity associated with mafic lava flows, lava lakes, vent-based explosive activity and felsic lava domes. This presentation will present an overview of how MODIS has documented every eruption to occur on Earth since 2000, and will describe some of the more interesting result that have been obtained from the analysis of this archive. The total amount of energy radiated into the atmosphere can be divided into two parts: a baseline level of emission which has increased gradually over this 15 period, superimposed on which are large "spikes" attributable to large, lava-flow-forming eruptions. The most intense eruption during this period of time was the 2004 eruption of Nyamuragira, in the Democratic Republic of Congo, whilst the largest magnitude event was the 2012-2013 eruption of Tolbachik, Russia. Spatio-temporal patterns in thermal output will be addressed. Time-series analysis of heat flux from these 102 volcanoes has revealed while some volcanoes exhibit statistically significant periodicity in the magnitude of their heat output, many do not.

  14. Layout-Driven Post-Placement Techniques for Temperature Reduction and Thermal Gradient Minimization

    DEFF Research Database (Denmark)

    Liu, Wei; Calimera, Andrea; Macii, Alberto

    2013-01-01

    With the continuing scaling of CMOS technology, on-chip temperature and thermal-induced variations have become a major design concern. To effectively limit the high temperature in a chip equipped with a cost-effective cooling system, thermal specific approaches, besides low power techniques...

  15. Introduction to the Special Session on Thermal Remote Sensing Data for Earth Science Research: The Critical Need for Continued Data Collection and Development of Future Thermal Satellite Sensors

    Science.gov (United States)

    Quattrochi, Dale a.; Luvall, Jeffrey C.; Anderson, Martha; Hook, Simon

    2006-01-01

    There is a rich and long history of thermal infrared (TIR) remote sensing data for multidisciplinary Earth science research. The continuity of TIR data collection, however, is now in jeopardy given there are no planned future Earth observing TIR remote sensing satellite systems with moderately high spatial resolutions to replace those currently in orbit on NASA's Terra suite of sensors. This session will convene researchers who have actively worked in the field of TIR remote sensing to present results that elucidate the importance of thermal remote sensing to the wider Earth science research community. Additionally, this session will also exist as a forum for presenting concepts and ideas for new thermal sensing systems with high spatial resolutions for future Earth science satellite missions, as opposed to planned systems such as the Visible/Infrared Imager/Radiometer (VIIRS) suite of sensors on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that will collect TIR data at very coarse iairesolutions.

  16. Morphological instability of a confined polymer film in a thermal gradient

    NARCIS (Netherlands)

    Schaffer, E; Harkema, S; Roerdink, M; Blossey, R; Steiner, U

    2003-01-01

    We report the experimental observation of a morphological instability of a confined polymer-air double layer sandwiched between two plates set to different temperatures. The homogeneous temperature gradient across the double layer causes the breakup of the polymer film into columns or stripes

  17. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    Science.gov (United States)

    Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  18. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  19. Thermal transport in a 2D stressed nanostructure with mass gradient

    Directory of Open Access Journals (Sweden)

    R. Barreto

    2015-05-01

    Full Text Available Inspired by some recent molecular dynamics (MD simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size. Received: 20 Novembre 2014, Accepted: 17 April 2015; Edited by: C. A. Condat, G. J. Sibona; DOI: http://dx.doi.org/10.4279/PIP.070008 Cite as: R Barreto, M F Carusela, A Mancardo Viotti, A G Monastra, Papers in Physics 7, 070008 (2015

  20. Thermally induced mode coupling in rare-earth doped fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2012-01-01

    We present a simple semianalytical model of thermally induced mode coupling in multimode rare-earth doped fiber amplifiers. The model predicts that power can be transferred from the fundamental mode to a higher-order mode when the operating power exceeds a certain threshold, and thus provides...... an explanation of recently reported mode instability in such fiber amplifiers under high average-power operation. We apply our model to a simple step-index fiber design, and investigate how the power threshold depends on various design parameters of the fiber....

  1. Determination of rare earths and thorium in apatites by thermal and epithermal neutron-activation analysis.

    Science.gov (United States)

    Brunfelt, A O; Roelandts, I

    1974-06-01

    A procedure is described for the non-destructive determination of Na, Mn, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu and Th in apatites by thermal and epithermal neutron-activation of independent portions of the material. The method was applied to three apatites with different contents. The precision obtained was better than +/-5% for La, Ce, Sm, Eu, Gd, Tb and Dy and +/-20% for Yb, Nd, Ho, Er and Lu for an apatite with a total rare-earth oxide content of the order of 1%. Determination of Ce, Tb and Yb could only be carried out with thermal neutron-activation analysis, while Gd, Ho and Er could only be determined after irradiation with epithermal neutrons.

  2. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  3. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  4. Anomalous thermal expansion in rare-earth gallium perovskites: a comprehensive powder diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Senyshyn, A; Trots, D M; Engel, J M; Ehrenberg, H; Fuess, H [Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt (Germany); Vasylechko, L [Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv (Ukraine); Hansen, T [Institut Max von Laue-Paul Langevin, 38042 Grenoble Cedex 9 (France); Berkowski, M [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)

    2009-04-08

    Crystal structures of rare-earth gallium perovskites LaGaO{sub 3}, PrGaO{sub 3}, NdGaO{sub 3} and Pr{sub 1-x}Nd{sub x}GaO{sub 3} (x = 0.25, 0.50, 0.75) solid solutions were investigated in the temperature range 12-300 K by high-resolution powder diffraction using synchrotron or neutron radiation. The previously reported negative thermal expansion in the b direction of the PrGaO{sub 3} lattice has been found to be persistent in Pr{sub 1-x}Nd{sub x}GaO{sub 3} solid solutions and its magnitude has been revealed as proportional to the amount of praseodymium. Evaluation of the obtained temperature evolution of cell dimensions indicated a weak anomalous behaviour of the b lattice parameter in NdGaO{sub 3}, and its origin is supposed to be the same as in PrGaO{sub 3}, i.e. a coupling of the crystal electric field levels with phonon excitations of about 23-25 meV energy. The performed bond length analysis revealed an anomalous behaviour of both LnO{sub 12} (Ln-rare-earth) and GaO{sub 6} coordination polyhedra, which can be a structural manifestation of anomalous thermal expansion in the considered compounds.

  5. Mapping surface flow in low gradient areas with thermal remote sensing

    DEFF Research Database (Denmark)

    Prinds, Christian; Petersen, Rasmus Jes; Greve, Mogens Humlekrog

    Thermal infrared (TIR) imagery has long been used for mapping groundwater-surface water interactions and mainly for locating areas of groundwater seepage in lakes and shorelines (Rundquist et al. 1985, Banks et al. 1996). In this study, we used the method for locating discharge from tile drains i...

  6. Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-12-01

    Full Text Available Aiming to relieve the large amount of wind power curtailment during the heating period in the North China region, a thermal-electric decoupling (TED approach is proposed to both bring down the constraint of forced power output of combined heat and power plants and increase the electric load level during valley load times that assist the power grid in consuming more wind power. The operating principles of the thermal-electric decoupling approach is described, the mathematical model of its profits is developed, the constraint conditions of its operation are listed, also, an improved parallel conjugate gradient is utilized to bypass the saddle problem and accelerate the optimal speed. Numerical simulations are implemented and reveal an optimal allocation of TED which with a rated power of 280 MW and 185 MWh heat storage capacity are possible. This allocation of TED could bring approximately 16.9 billion Yuan of economic profit and consume more than 80% of the surplus wind energy which would be curtailed without the participation of TED. The results in this article verify the effectiveness of this method that could provide a referential guidance for thermal-electric decoupling system allocation in practice.

  7. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  8. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-09-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  9. Thermal studies of a high gradient quadrupole magnet cooled with pressurized, stagnant superfluid

    CERN Document Server

    Chiesa, L; Kerby, J S; Lamm, M J; Novitski, I; Orris, D; Ozelis, J P; Peterson, Thomas J; Tartaglia, M; Zlobin, A V

    2001-01-01

    A 2-m long superconducting model of an LHC Interaction Region quadrupole magnet was wound with stabrite coated cable. The resulting low interstrand resistance and high AC losses presented the opportunity to measure magnet quench performance in superfluid as a function of helium temperature and heat deposition in the coil. Our motivation was to duplicate the high radiation heat loads predicted for the inner triplet quadrupoles at LHC and study the coil cooling conditions in the magnet. At the Magnet Test Facility in Fermilab's Technical Division, the magnet quench performance was tested as a function of bulk helium temperature and current ramp rate near the planned high luminosity interaction region field gradient of 205 T/m. AC loss measurements provided a correlation between current ramp rate and heat deposition in the coil. Analysis indicates that the results are consistent with there being little participation of superfluid helium in the small channels inside the inner layer in the heat removal from the co...

  10. The stability of weakly collisional plasmas with thermal and composition gradients

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chakraborty, S.

    2013-01-01

    temperature and composition. This allows us to discuss for the first time the dynamics of weakly collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that depending on the relative signs...... the magnetic field configurations that arise as a natural consequence of the HBI, which would be MTI stable in a homogeneous medium, could be alleviated if the mean molecular weight gradient is steep enough, i.e., (¿µ)/µ > (¿T)/T. This study constitutes a first step toward understanding the interaction between...... approximation if heavy elements are able to sediment in the inner region of the galaxy cluster. Motivated by the need to obtain a more complete picture of the dynamical properties of the ICM, we analyze the stability of a weakly collisional, magnetized plane-parallel atmosphere which is stratified in both...

  11. Nearshore thermal gradients of the Colorado River near the Little Colorado River confluence, Grand Canyon National Park, Arizona, 2010

    Science.gov (United States)

    Ross, Rob; Grams, Paul E.

    2013-01-01

    Construction and operation of Glen Canyon Dam has dramatically impacted the flow of the Colorado River through Glen, Marble, and Grand Canyons. Extremes in both streamflow and water temperature have been suppressed by controlled releases from the dam. Trapping of sediment in Lake Powell, the reservoir formed by Glen Canyon Dam, has also dramatically reduced the supply of suspended sediment entering the system. These changes have altered the riverine ecosystem and the habitat of native species, including fish such as the endangered humpback chub (Gila cypha). Most native fish are adapted to seasonally warm water, and the continuous relatively cold water released by the dam is one of the factors that is believed to limit humpback chub growth and survival. While average mainstem temperatures in the Colorado River are well documented, there is limited understanding of temperatures in the nearshore environments that fish typically occupy. Four nearshore geomorphic unit types were studied between the confluence of the Colorado and Little Colorado Rivers and Lava Canyon in the summer and fall of 2010, for study periods of 10 to 27 days. Five to seven sites were studied during each interval. Persistent thermal gradients greater than the 0.2 °C accuracy of the instruments were not observed in any of the sampled shoreline environments. Temperature gradients between the shoreline and mainstem on the order of 4 °C, believed to be important to the habitat-seeking behavior of native or nonnative fishes, were not detected.

  12. An Investigation of the Ranges of Validity of Asteroid Thermal Models for Near-Earth Asteroid Observations

    Science.gov (United States)

    Mommert, M.; Jedicke, R.; Trilling, D. E.

    2018-02-01

    The majority of known asteroid diameters are derived from thermal-infrared observations. Diameters are derived using asteroid thermal models that approximate their surface temperature distributions and compare the measured thermal-infrared flux with model-dependent predictions. The most commonly used thermal model is the Near-Earth Asteroid Thermal Model (NEATM), which is usually perceived as superior to other models like the Fast-Rotating Model (FRM). We investigate the applicability of the NEATM and the FRM to thermal-infrared observations of Near-Earth Objects using synthetic asteroids with properties based on the real Near-Earth Asteroid (NEA) population. We find the NEATM to provide more accurate diameters and albedos than the FRM in most cases, with a few exceptions. The modeling results are barely affected by the physical properties of the objects, but we find a large impact of the solar phase angle on the modeling results. We conclude that the NEATM provides statistically more robust diameter estimates for NEAs observed at solar phase angles less than ∼65°, while the FRM provides more robust diameter estimates for solar phase angles greater than ∼65°. We estimate that <5% of all NEA diameters and albedos derived up to date are affected by systematic effects that are of the same order of magnitude as the typical thermal model uncertainties. We provide statistical correction functions for diameters and albedos derived using the NEATM and FRM as a function of solar phase angle.

  13. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  14. Sustainable earth-based vs. conventional construction systems in the Mediterranean climate: Experimental analysis of thermal performance

    Science.gov (United States)

    Serrano, S.; de Gracia, A.; Pérez, G.; Cabeza, L. F.

    2017-10-01

    The building envelope has high potential to reduce the energy consumption of buildings according to the International Energy Agency (IEA) because it is involved along all the building process: design, construction, use, and end-of-life. The present study compares the thermal behavior of seven different building prototypes tested under Mediterranean climate: two of them were built with sustainable earth-based construction systems and the other five, with conventional brick construction systems. The tested earth-based construction systems consist of rammed earth walls and wooden green roofs, which have been adapted to contemporary requirements by reducing their thickness. In order to balance the thermal response, wooden insulation panels were placed in one of the earth prototypes. All building prototypes have the same inner dimensions and orientation, and they are fully monitored to register inner temperature and humidity, surface walls temperatures and temperatures inside walls. Furthermore, all building prototypes are equipped with a heat pump and an electricity meter to measure the electrical energy consumed to maintain a certain level of comfort. The experimentation was performed along a whole year by carrying out several experiments in free floating and controlled temperature conditions. This study aims at demonstrating that sustainable construction systems can behave similarly or even better than conventional ones under summer and winter conditions. Results show that thermal behavior is strongly penalized when rammed earth wall thickness is reduced. However, the addition of 6 cm of wooden insulation panels in the outer surface of the building prototype successfully improves the thermal response.

  15. Thermal inertia as an indicator of rockiness variegation on near-Earth asteroid surfaces

    Science.gov (United States)

    Ali-Lagoa, Victor; Delbo, Marco; Hanus, Josef

    2016-10-01

    Determining key physical properties of asteroids such as sizes and albedos or reflectance spectra is crucial to understand their origins and the processes that they have undergone during their evolution. In particular, one of the aims of NEOShield-2 project, funded by the European Union's Horizon 2020 Research and Innovation programme, is to physically characterize small near Earth asteroids (NEA) in an effort to determine effective mitigation strategies in case of impact with our planet [Harris et al. 2013 2013AcAau,90,80H].We performed thermophysical modelling of NEAs, such as (1685) Toro, and potentially hazardous asteroids (PHAs), such as (33342) 1998 WT24. In addition to size, thermophysical models (TPM) of asteroids can constrain the surface thermal inertia, which is related to the material composition and physical nature, namely its "rockiness" or typical size of the particles on its surface. These have observable effects on the surface temperature distribution as a function of time and thus on the thermal infrared fluxes we observe, to which we can fit our model.In the case of WT24, its thermal inertia has been previously constrained to be in the range 100-300 SI units [Harris et al. 2007, Icarus 188, 414H]. But this was based on a spherical shape model approximation since no shape model was available by the time. Such a low thermal inertia value seems in disagreement with a relatively high metal content of the enstatite chondrites, the meteorite type to which WT24, classified as an E-type [Lazzarin et al. 2004 A&A 425L, 25L], has been spectrally associated. Using a three-dimensional model and spin vector based on radar observations [Busch et al. 2008 Icarus 197, 375B], our TPM produces a higher best-fitting value of the thermal inertia. We also find the intriguing possibility that the hemisphere of WT24 dominated by concave terrains, possibly be the result of an impact crater, has a higher thermal inertia. This would be similar to the case of our Moon

  16. [Gradient elevation of temperature startup experiment of thermophilic ASBR treating thermal-hydrolyzed sewage sludge].

    Science.gov (United States)

    Ouyang, Er-Ming; Wang, Wei; Long, Neng; Li, Huai

    2009-04-15

    Startup experiment was conducted for thermophilic anaerobic sequencing batch reactor (ASBR) treating thermal-hydrolyzed sewage sludge using the strategy of the step-wise temperature increment: 35 degrees C-->40 degrees C-->47 degrees C-->53 degrees C. The results showed that the first step-increase (from 35 degrees C to 40 degrees C) and final step-increase (from 47 degrees C to 53 degrees C) had only a slight effect on the digestion process. The second step-increase (from 40 degrees C to 47 degrees C) resulted in a severe disturbance: the biogas production, methane content, CODeffluent and microorganism all have strong disturbance. At the steady stage of thermophilic ASBR treating thermal-hydrolyzed sewage sludge, the average daily gas production, methane content, specific methane production (CH4/CODinfluent), TCOD removal rate and SCOD removal rate were 2.038 L/d, 72.0%, 188.8 mL/g, 63.8%, 83.3% respectively. The results of SEM and DGGE indicated that the dominant species are obviously different at early stage and steady stage.

  17. Foliar Temperature Gradients as Drivers of Budburst in Douglas-fir: New Applications of Thermal Infrared Imagery

    Science.gov (United States)

    Miller, R.; Lintz, H. E.; Thomas, C. K.; Salino-Hugg, M. J.; Niemeier, J. J.; Kruger, A.

    2014-12-01

    Budburst, the initiation of annual growth in plants, is sensitive to climate and is used to monitor physiological responses to climate change. Accurately forecasting budburst response to these changes demands an understanding of the drivers of budburst. Current research and predictive models focus on population or landscape-level drivers, yet fundamental questions regarding drivers of budburst diversity within an individual tree remain unanswered. We hypothesize that foliar temperature, an important physiological property, may be a dominant driver of differences in the timing of budburst within a single tree. Studying these differences facilitates development of high throughput phenotyping technology used to improve predictive budburst models. We present spatial and temporal variation in foliar temperature as a function of physical drivers culminating in a single-tree budburst model based on foliar temperature. We use a novel remote sensing approach, combined with on-site meteorological measurements, to demonstrate important intra-canopy differences between air and foliar temperature. We mounted a thermal infrared camera within an old-growth canopy at the H.J. Andrews LTER forest and imaged an 8m by 10.6m section of a Douglas-fir crown. Sampling one image per minute, approximately 30,000 thermal infrared images were collected over a one-month period to approximate foliar temperature before, during and after budburst. Using time-lapse photography in the visible spectrum, we documented budburst at fifteen-minute intervals with eight cameras stratified across the thermal infrared camera's field of view. Within the imaged tree's crown, we installed a pyranometer, 2D sonic anemometer and fan-aspirated thermohygrometer and collected 3,000 measurements of net shortwave radiation, wind speed, air temperature and relative humidity. We documented a difference of several days in the timing of budburst across both vertical and horizontal gradients. We also observed clear

  18. Converting the ISS to an Earth-Moon Transport System Using Nuclear Thermal Propulsion

    Science.gov (United States)

    Paniagua, John; Maise, George; Powell, James

    2008-01-01

    Using Nuclear Thermal Propulsion (NTP), the International Space Station (ISS) can be placed into a cyclic orbit between the Earth and the Moon for 2-way transport of personnel and supplies to a permanent Moon Base. The ISS cycler orbit apogees 470,000 km from Earth, with a period of 13.66 days. Once a month, the ISS would pass close to the Moon, enabling 2-way transport between it and the surface using a lunar shuttle craft. The lunar shuttle craft would land at a desired location on the surface during a flyby and return to the ISS during a later flyby. At Earth perigee 7 days later at 500 km altitude, there would be 2-way transport between it and Earth's surface using an Earth shuttle craft. The docking Earth shuttle would remain attached to the ISS as it traveled towards the Moon, while personnel and supplies transferred to a lunar shuttle spacecraft that would detach and land at the lunar base when the ISS swung around the Moon. The reverse process would be carried out to return personnel and materials from the Moon to the Earth. The orbital mechanics for the ISS cycle are described in detail. Based on the full-up mass of 400 metric tons for the ISS, an ISP of 900 seconds, and a delta V burn of 3.3 km/sec to establish the orbit, 200 metric tons of liquid H-2 propellant would be required. The 200 metric tons could be stored in 3 tanks, each 8 meters in diameter and 20 meters in length. An assembly of 3 MITEE NTP engines would be used, providing redundancy if an engine were to fail. Two different MITEE design options are described. Option 1 is an 18,000 Newton, 100 MW engine with a thrust to weight ratio of 6.6/1 Option 2 is a 180,000 Newton, 1000 MW engine with a thrust to weight ratio of 23/1. Burn times to establish the orbit are ~1 hour for the large 3 engine assembly, and 10 hours for the small 3 engine assembly. Both engines would use W-UO2 cermet fuel at ~2750 K which has demonstrated the capability to operate for at least 50 hours in 2750 K hydrogen with

  19. Quasi-thermal noise and shot noise spectroscopy on a CubeSat in Earth's ionosphere

    Science.gov (United States)

    Maj, Ronald; Cairns, Iver H.

    2017-03-01

    We investigate the practicality of using quasi-thermal noise (QTN) and shot noise spectroscopy on a CubeSat in the Earth's ionosphere and constrain the satellite antenna length for optimal detection of these signals. The voltage spectra predicted for thermal Langmuir waves (QTN) and particle "shot noise" are modeled, and it is shown that the signals detected can provide two very good, independent, passive, in situ methods of measuring the plasma density and temperature in the ionosphere. The impact of the antenna potential ϕ is also discussed, and we show that the negative potential calculated for the ionosphere due to natural current flows has a significant impact on the voltage power level of the shot noise spectrum. The antenna configuration is also shown to play an important role in the shot noise, with a monopole configuration enhancing the spectrum significantly compared with a dipole. Antenna lengths on the order of 20-40 cm are found to be ideal for ionospheric plasma conditions, nicely matching CubeSat sizes and producing detectable thermal Langmuir waves and shot noise at the microvolt level. Further, with a continuous stream of data points at different latitudes and longitudes an orbiting CubeSat can produce a global picture for the ionospheric plasma density and temperature using QTN and shot noise signals. If implemented, especially in a constellation, these data would be more frequent and cover a much greater domain than current ground-based or single-satellite methods. This could lead to improved ionospheric models, such as the empirically based International Reference Ionosphere.

  20. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials.

    Science.gov (United States)

    Robinson, James B; Brown, Leon D; Jervis, Rhodri; Taiwo, Oluwadamilola O; Millichamp, Jason; Mason, Thomas J; Neville, Tobias P; Eastwood, David S; Reinhard, Christina; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2014-09-01

    A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature.

  1. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, M. T., E-mail: mariate9590@gmail.com; Barros, H.; Pino, F.; Sajo-Bohus, L. [Universidad Simón Bolívar, Nuclear Physics Laboratory, Sartenejas, Caracas (Venezuela, Bolivarian Republic of); Dávila, J. [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  2. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  3. DC Model Cable under Polarity Inversion and Thermal Gradient: Build-Up of Design-Related Space Charge

    Directory of Open Access Journals (Sweden)

    Nugroho Adi

    2017-07-01

    Full Text Available In the field of energy transport, High-Voltage DC (HVDC technologies are booming at present due to the more flexible power converter solutions along with needs to bring electrical energy from distributed production areas to consumption sites and to strengthen large-scale energy networks. These developments go with challenges in qualifying insulating materials embedded in those systems and in the design of insulations relying on stress distribution. Our purpose in this communication is to illustrate how far the field distribution in DC insulation systems can be anticipated based on conductivity data gathered as a function of temperature and electric field. Transient currents and conductivity estimates as a function of temperature and field were recorded on miniaturized HVDC power cables with construction of 1.5 mm thick crosslinked polyethylene (XLPE insulation. Outputs of the conductivity model are compared to measured field distributions using space charge measurements techniques. It is shown that some features of the field distribution on model cables put under thermal gradient can be anticipated based on conductivity data. However, space charge build-up can induce substantial electric field strengthening when materials are not well controlled.

  4. Mechanical behavior of flexible pavements undergoing thermal gradients - doi: 10.4025/actascitechnol.v33i3.10848

    Directory of Open Access Journals (Sweden)

    Grazielli Vassoler

    2011-07-01

    Full Text Available The proper structural understanding of a pavement should consider, according to the pavement mechanics, the aspects related to the traffic load, the environment and material properties. When asphaltic materials are used, the stress/strain relationships and the dependencies of load-time and temperature are key parameters for understanding flexible pavement performance. In this study, we employed the finite elements method to calculate stress/strain in flexible pavements structures considering temperature variation. The input data includes material stiffness, which is function of temperature and changes with position and time. The pavement temperature is obtained through the heat transfer differential equation, applying the Laplace transform and its numerical inversion. The finite elements grid was generated by the software ANSYS® and imported by the software MATLAB®. In order to determine the stiffness of the first layer (asphalt concrete we used the average of four nodes, depending on the each node temperature. The result evidences the importance of thermal gradients for the pavement analysis, both for the fatigue cracking and the accumulation of plastic deformations. The use of unique modulus for asphalt concrete layer generates results far from reality.

  5. A temperature gradient may support mother-infant thermal identification and communication in the breast crawl from birth to breastfeeding.

    Science.gov (United States)

    Zanardo, Vincenzo; Volpe, Francesca; de Luca, Federico; Straface, Gianluca

    2017-10-01

    The human female's nipple-areolar complex (NAC) is the point of arrival of a natural progression from birth to breastfeeding, linked to functional, chemical and biophysical cues that promote the breast crawl soon after birth. We investigated the thermal gradient generated by the lips of the neonate and warmth of the NAC, which may drive the infant directly to the nipple. We prospectively studied 41 full-term singleton infants and their mothers at the Policlinico Abano Terme, Italy, between January 1, 2015, and February 28, 2015. NAC and breast quadrant temperatures were assessed 6 ± 2 hours prepartum and one and two days postpartum, together with the neonates' lip temperature. The temperature of the neonates' lips was significantly lower than the forehead temperature on days one and two postpartum (delta = -1.24°C, p breast crawl and in the natural progression of the continuum from birth to breastfeeding. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  6. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    Science.gov (United States)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  7. MICROCLIMATE CARTOGRAPHY USING DATA FROM THE EARTH REMOTE SENSING AND SIMULATION OF THERMAL FIELDS

    Directory of Open Access Journals (Sweden)

    V. M. Shcherbakov

    2016-03-01

    Full Text Available Subject of Research. The paper proposes geoinformation technology that provides automated compiling of informative microclimatic map by co-processing of digital terrain models, historical dataof meteorological observations and satellite registration of plant vegetation index for a number of years. We present a new solution for urgent task of microclimate cartography according to satellite imagery and modeling of thermal fields. Method. Insolation and vegetation index NDVI were selected as indicators of microclimatic environment areas, showing the main microclimate forming factors that affect the condition of plants and the dynamics of their life cycle phases change. Main Results. We have done the comparison of the seasonal rhythm variability of microclimatic indicators for synchronicity and their being timed to each other. We have defined indicative properties of microclimate parameters, generalization degree of cartographic image, borders for microclimatic cartography. We have presented a fragment of microclimate map obtained with the use of the proposed GIS technology implemented in “ArcGIS” environment. Practical Relevance. Proposed technology allows the creation of formalized microclimate maps showing the distribution of insolation and photosynthetic activity of plants foliage on the Earth surface, taking into account the features of the terrain, and the search for locations favorable for growing the required crops and forecasting solution of problems in the sphere of nature.

  8. Structural investigation of the negative thermal expansion in yttrium and rare earth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Afonso, Candelaria; Torres, Manuel Eulalio; Sabalisck, Nanci; Sanchez-Fajardo, VIctor [Departamento de Fisica Basica, Universidad de La Laguna, Tenerife (Spain); Gonzalez-Silgo, Cristina; Gonzalez-Platas, Javier [Departamento de Fisica Fundamental II, Universidad de La Laguna, Tenerife (Spain); Lozano-GorrIn, Antonio Diego [Servicio Integrado de Difraccion de Rayos X, Universidad de La Laguna, Tenerife (Spain); Campo, Javier [Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza (Spain); RodrIguez-Carvajal, Juan, E-mail: csilgo@ull.es [Institut Laue-Langevin, Grenoble (France)

    2011-08-17

    The Sc{sub 2}(WO{sub 4}){sub 3}-type phase (Pbcn) of Y{sub 2}(MoO{sub 4}){sub 3}, Er{sub 2}(MoO{sub 4}){sub 3} and Lu{sub 2}(MoO{sub 4}){sub 3} has been prepared by the conventional solid-state synthesis with preheated oxides and the negative thermal expansion (NTE) has been investigated along with an exhaustive structural study, after water loss. Their crystal structures have been refined using the neutron and x-ray powder diffraction data of dehydrated samples from 150 to 400 K. The multi-pattern Rietveld method, using atomic displacements with respect to a known structure as parameters to refine, has been applied to facilitate the interpretation of the NTE behavior. Polyhedral distortions, transverse vibrations of A{center_dot}{center_dot}{center_dot}O-Mo (A = Y and rare earths) binding oxygen atoms, non-bonded distances A{center_dot}{center_dot}{center_dot}Mo and atomic displacements from the high temperature structure, have been evaluated as a function of the temperature and the ionic radii.

  9. Thermal expansion and magnetic properties of benzoquinone-bridged dinuclear rare-earth complexes.

    Science.gov (United States)

    Moilanen, Jani O; Mansikkamäki, Akseli; Lahtinen, Manu; Guo, Fu-Sheng; Kalenius, Elina; Layfield, Richard A; Chibotaru, Liviu F

    2017-10-10

    The synthesis and structural characterization of two benzoquinone-bridged dinuclear rare-earth complexes [BQ(MCl2·THF3)2] (BQ = 2,5-bisoxide-1,4-benzoquinone; M = Y (1), Dy (2)) are described. Of these reported metal complexes, the dysprosium analogue 2 is the first discrete bridged dinuclear lanthanide complex in which both metal centres reside in pentagonal bipyramidal environments. Interestingly, both complexes undergo significant thermal expansion upon heating from 120 K to 293 K as illustrated by single-crystal X-ray and powder diffraction experiments. AC magnetic susceptibility measurements reveal that 2 does not show the slow relation of magnetization in zero dc field. The absent of single-molecule behaviour in 2 arises from the rotation of the principal magnetic axis as compared to the pseudo-C5 axis of the pentagonal bipyramidal environment as suggested by ab initio calculations. The cyclic voltammetry and chemical reduction experiments demonstrated that complexes 1 and 2 can be reduced to radical species containing [BQ(3)˙(-)]. This study establishes efficient synthetic strategy to make bridged redox-active multinuclear lanthanide complexes with a pentagonal bipyramidal coordination environment that are potential precursors for single-molecule magnets.

  10. Across-arc patterns in mafic-magma chemistry controlled by thermal and chemical gradients at the slab interface

    Science.gov (United States)

    Mather, Tamsin; Watt, Sebastian; Pyle, David; Naranjo, Jose

    2014-05-01

    A range of recent studies demonstrate systematic across-arc variations in the volatile and trace element contents of primary arc magmas. Most of these studies used olivine-hosted melt inclusions to bypass upper crustal modifications, and thereby estimate the chemical composition of parental magmas in equilibrium with the mantle. The patterns preserved in these melts can be used to investigate variation in the volatile-rich flux that enters the core of the mantle wedge, and which is sourced from the subducting plate. Similarly, the implied variability in the composition of this flux provides information about fluid and melt transport through the mantle wedge, and of the mineral breakdown processes occurring within the downgoing slab. Here, we report on results from a detailed study of olivine-hosted melt inclusions sampled from a set of scoria cones in southern Chile. These samples include some highly primitive rocks from Apagado, with picritic composition and containing unzoned highly-forsteritic olivine (Fo88). Such rocks are extremely rare in continental arcs. The Chilean rocks display a variation in their water, CO2, and trace element content that suggests that the primary-melt chemistry reflects the pattern of element release at the subducting slab interface. This down-slab chemical gradient is consistent with predictions from modelling, geothermometry and experiments. The flux feeding the arc magmas becomes progressively less water-rich and increasingly dominated by hydrous melts over a distance of a few kilometres. We suggest that this change marks the onset of significant water-fluxed melting of sediment at the downgoing slab-surface. The short length scale of the across-arc chemical patterns in southern Chile is perhaps surprising. The fact that such changes are preserved within our sampled rocks suggests that there is limited across-arc mixing and focussing of fluids or melts as they ascend through the mantle wedge. Our results suggest that slab

  11. Thermal response experiments of {SiC}/{C} and {TiC}/{C} functionally gradient materials as plasma facing materials for fusion application

    Science.gov (United States)

    Araki, M.; Sasaki, M.; Kim, S.; Suzuki, S.; Nakamura, K.; Akiba, M.

    1994-09-01

    To evaluate the applicability of a functionally gradient technique for the fabrication of the armor tile or the interface of the divertor plate element for next fusion machines such as ITER/FER, {SiC}/{C} and {TiC}/{C} functionally gradient materials (FGMs) were prepared and tested using an electron and ion beams test facilities. FGM layer with a thickness of 1.0 mm was produced by CVD process on fine grain graphite. Their thermal resistivities were evaluated under a condition for surface heat fluxes up to 70 MW/m 2 for durations up to several seconds. As the results, we confirmed that FGMs are clearly better than non-FGMs from a view point of the reduction of thermal stress. Both FGM layers on the graphite bulk material could withstand a temperature difference as high as 1500 K without cracking or melting, leading us to conceive a promising prospect for the application of the divertor plate.

  12. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue

    Science.gov (United States)

    Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A.; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano

    2017-09-01

    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment.

  13. Effect of Thermal Gradients Created by Electromagnetic Fields on Cell-Membrane Electroporation Probed by Molecular-Dynamics Simulations

    Science.gov (United States)

    Song, J.; Garner, A. L.; Joshi, R. P.

    2017-02-01

    The use of nanosecond-duration-pulsed voltages with high-intensity electric fields (˜100 kV /cm ) is a promising development with many biomedical applications. Electroporation occurs in this regime, and has been attributed to the high fields. However, here we focus on temperature gradients. Our numerical simulations based on molecular dynamics predict the formation of nanopores and water nanowires, but only in the presence of a temperature gradient. Our results suggest a far greater role of temperature gradients in enhancing biophysical responses, including possible neural stimulation by infrared lasers.

  14. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, D.; Oberlander, P.

    2007-12-18

    The purpose of this study is to report on the results of a preliminary modeling framework to investigate the causes of the large hydraulic gradient north of Yucca Mountain. This study builds on the Saturated Zone Site-Scale Flow and Transport Model (referenced herein as the Site-scale model (Zyvoloski, 2004a), which is a three-dimensional saturated zone model of the Yucca Mountain area. Groundwater flow was simulated under natural conditions. The model framework and grid design describe the geologic layering and the calibration parameters describe the hydrogeology. The Site-scale model is calibrated to hydraulic heads, fluid temperature, and groundwater flowpaths. One area of interest in the Site-scale model represents the large hydraulic gradient north of Yucca Mountain. Nearby water levels suggest over 200 meters of hydraulic head difference in less than 1,000 meters horizontal distance. Given the geologic conceptual models defined by various hydrogeologic reports (Faunt, 2000, 2001; Zyvoloski, 2004b), no definitive explanation has been found for the cause of the large hydraulic gradient. Luckey et al. (1996) presents several possible explanations for the large hydraulic gradient as provided below: The gradient is simply the result of flow through the upper volcanic confining unit, which is nearly 300 meters thick near the large gradient. The gradient represents a semi-perched system in which flow in the upper and lower aquifers is predominantly horizontal, whereas flow in the upper confining unit would be predominantly vertical. The gradient represents a drain down a buried fault from the volcanic aquifers to the lower Carbonate Aquifer. The gradient represents a spillway in which a fault marks the effective northern limit of the lower volcanic aquifer. The large gradient results from the presence at depth of the Eleana Formation, a part of the Paleozoic upper confining unit, which overlies the lower Carbonate Aquifer in much of the Death Valley region. The

  15. Thermal and Chemical Gradients Along the Slab Interface Control Across-Arc Patterns in Compositions of Primitive Arc Magmas

    Science.gov (United States)

    Mather, T. A.; Pyle, D. M.; Watt, S. F.; Naranjo, J. A.

    2014-12-01

    Several studies of primitive mafic arc rocks have shown systematic across-arc variations in the volatile and trace element contents of primary arc magmas. Most of these studies used olivine-hosted melt inclusions in mafic scoria that had been transported rapidly to the surface from depth. These inclusions bypass upper crustal modifications, and constrain the chemical composition of parental magmas in equilibrium with the mantle. The patterns preserved in these melts can be used to explore spatial variation in the volatile-rich flux that enters the mantle wedge, sourced from the subducting plate. Variability in the composition of this flux provides information about fluid and melt transport through the mantle wedge, and of the mineral breakdown or melting processes occurring within the downgoing slab. We analysed olivine-hosted melt inclusions from scoria cones in southern Chile (40 - 42 S), including picrites with unzoned Mg-rich olivine (Fo88) from volcan Apagado. Samples show systematic variations in water, CO2, and trace element content that suggests that the primary-melt chemistry reflects the pattern of element release at the subducting slab interface. This down-slab chemical gradient is consistent with predictions from modelling and experiments. Down-slab, the flux feeding the arc magmas becomes progressively water-poor over a distance of a few km. We suggest that this change marks the onset of significant water-fluxed melting of sediment at the downgoing slab-surface. The short length scale of the across-arc chemical patterns in southern Chile is surprising. The fact that such changes are preserved within our sampled rocks suggests that there is limited across-arc mixing and focussing of fluids or melts as they ascend through the mantle wedge. Our results suggest that slab-surface inputs exert a first-order control on arc-magma chemistry. The chemical patterns that we observe are replicated in other arcs (e.g. Kamchatka, Izu-Bonin), despite the plate

  16. Thermal design of the EarthCARE MSI-VNS instrument

    NARCIS (Netherlands)

    Doornink, J.; Coesel, M.; Lemmen, M.H.J.; Hof, A. van 't

    2011-01-01

    The EarthCARE satellite mission objective is the observation of clouds and aerosols from low Earth orbit. The payload will include active remote sensing instruments being the W- band Cloud Profiling Radar (CPR) and the ATLID LIDAR. These are supported by the passive instruments BroadBand Radiometer

  17. Arc-jet test and analysis of Orbiter TPS inter-tile heating in high pressure gradient flow. [Thermal Protection System

    Science.gov (United States)

    Rochelle, W. C.; Battley, H. H.; Hale, W. M.; Gallegos, J. J.; Kimbrough, B. S.

    1978-01-01

    During entry of the Space Shuttle Orbiter, the convective heating within inter-tile gaps of the Thermal Protection System (TPS) material produces elevated tile sidewall temperatures in regions of high surface pressure gradient. Arc-jet tests have been conducted recently to obtain a measure of the gap heating down the TPS tile sidewalls at test conditions representative of Orbiter flight environments. The object of this paper is to present the gap heating correlations that were developed from a thermal analysis for 3-D curved and flat TPS tile segments. Predictions of gap sidewall temperature were obtained within 30 F of test data on both Wing Glove and Double Wedge models. Derived heating ratios were obtained for a range of test conditions (pressure, pressure gradient, enthalpy, boundary layer thickness, gap width, surface temperature, etc.). The results of the study, which showed that heating ratios varied with the pressure gradient times the square root of the surface pressure, are being used to provide an assessment of gap filler requirements on Orbiter forward fuselage/chine and wing glove regions.

  18. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I SBIR program is to develop polymer derived rare earth silicate nanocomposite environmental barrier coatings (EBC) for providing...

  19. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging a rapidly evolving state-of-the-art technical base empowered by Phase I NASA SBIR funding, NanoSonic's polymer derived rare earth silicate EBCs will...

  20. Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification

    Science.gov (United States)

    Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.

    2017-01-01

    Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.

  1. Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Using ASTER Thermal Infrared Data, Part I: Methodology and Decadal Change Detection

    Directory of Open Access Journals (Sweden)

    Xiaomin Du

    2015-05-01

    Full Text Available Coal fires that are induced by natural spontaneous combustion or result from human activities occurring on the surface and in underground coal seams destroy coal resources and cause serious environmental degradation. Thermal infrared image data, which directly measure surface temperature, can be an important tool to map coal fires over large areas. As the first of two parts introducing our coal fire detection method, this paper proposes a self-adaptive threshold-based approach for coal fire detection using ASTER thermal infrared data: the self-adaptive gradient-based thresholding method (SAGBT. This method is based on an assumption that the attenuation of temperature along the coal fire’s boundaries generates considerable numbers of spots with extremely high gradient values. The SAGBT method applied mathematical morphology thinning to skeletonize the potential high gradient buffers into the extremely high gradient lines, which provides a self-adaptive mechanism to generate thresholds according to the thermal spatial patterns of the images. The final threshold was defined as an average temperature value reading from the high temperature buffers (segmented by 1.0 σ from the mean and along a sequence of extremely high gradient lines (thinned from the potential high gradient buffers and segmented within the lower bounds, ranging from 0.5 σ to 1.5 σ and with an upper bound of 3.2 σ, where σ is the standard deviation, marking the coal fire areas. The SAGBT method used the basic outer boundary of the coal-bearing strata to simply exclude false alarms. The intermediate thresholds reduced the coupling with the temperature and converged by changing the potential high gradient buffers. This simple approach can be economical and accurate in identifying coal fire areas. In addition, it allows for the identification of thresholds using multiple ASTER TIR scenes in a consistent and uniform manner, and supports long-term coal fire change analyses using

  2. Thermal response of integral abutment bridges with mechanically stabilized earth walls.

    Science.gov (United States)

    2013-03-01

    The advantages of integral abutment bridges (IABs) include reduced maintenance costs and increased useful life spans. : However, improved procedures are necessary to account for the impacts of cyclic thermal displacements on IAB components, : includi...

  3. Thermal infrared spectrometer for earth science remote sensing applications : instrument modifications and measurement procedures

    NARCIS (Netherlands)

    Hecker, C.; Hook, S.; Meijde, M. van der; Bakker, W.H.; Werff, H.M.A. van der; Wilbrink, H.J.; Ruitenbeek, F.J.A. van; Smeth, J.B. de; Meer, F.D. van der

    2011-01-01

    In this article we describe a new instrumental setup at the University of Twente Faculty ITC with an optimized processing chain to measure absolute directional-hemispherical reflectance values of typical earth science samples in the 2.5 to 16 μm range. A Bruker Vertex 70 FTIR spectrometer was chosen

  4. Numerical evaluation of the coefficients of thermal expansion of fibers in composite materials using a lamina-scale cost function with quasi-analytical gradients

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Hyuk [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Charpentier, Jean Baptiste [École Nationale Supérieur des Mines de Saint-Étienne, Saint-Étienne (France); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-03-15

    In this work, the coefficients of thermal expansion (CTEs) of fibers in composite materials that contain microstructures are numerically evaluated using a lamina-scale cost function with quasi-analytical gradients. To consider the effects of fiber arrangements and local defects, such as interface debonding and voids, a variety of representative volume elements are modeled with a number of finite element meshes. Then, the CTEs of fibers are evaluated by minimizing a lamina-scale cost function that represents the difference between the measured CTEs and the computed CTEs by means of a computational homogenization scheme for the composite lamina. The descent direction of the cost function is obtained using quasi-analytical gradients that take partial derivatives from prediction models, such as the Schapery model and Hashin model defined in an explicit manner, which accelerates the minimization procedure. To verify the performance of the proposed scheme in terms of accuracy and efficiency, the CTEs of constituents calculated using the proposed scheme in a unidirectional composite lamina are compared with experimental values reported in the literature. Furthermore, the convergence behavior of the proposed scheme with quasi-analytical gradients is also investigated and compared with other minimization methods.

  5. Development of FIAT-Based Parametric Thermal Protection System Mass Estimating Relationships for NASA's Multi-Mission Earth Entry Concept

    Science.gov (United States)

    Sepka, Steven A.; Zarchi, Kerry; Maddock, Robert W.; Samareh, Jamshid A.

    2013-01-01

    Part of NASAs In-Space Propulsion Technology (ISPT) program is the development of the tradespace to support the design of a family of multi-mission Earth Entry Vehicles (MMEEV) to meet a wide range of mission requirements. An integrated tool called the Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE tool is being developed as part of Entry Vehicle Technology project under In-Space Technology program. The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. Part of M-SAPE's application required the development of parametric mass estimating relationships (MERs) to determine the vehicle's required Thermal Protection System (TPS) for safe Earth entry. For this analysis, the heat shield was assumed to be made of a constant thickness TPS. This resulting MERs will then e used to determine the pre-flight mass of the TPS. Two Mers have been developed for the vehicle forebaody. One MER was developed for PICA and the other consisting of Carbon Phenolic atop an Advanced Carbon-Carbon composition. For the the backshell, MERs have been developed for SIRCA, Acusil II, and LI-900. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed in this poster.

  6. A rapid fabrication of C/C composites by a thermal gradient chemical vapor infiltration method with vaporized kerosene as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiping [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: buickwang@hotmail.com; Qian Junmin [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Qiao Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Jin Zhihao [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-01-15

    A thermal gradient, atmospheric pressure chemical vapor infiltration method with simultaneous vaporized kerosene as a precursor for rapid fabrication of C/C composites was studied. By this method, carbon felts (bulk density {approx}0.2 g cm{sup -3}) were densified to C/C composites with density of 1.67 and 1.71 g cm{sup -3} when prepared at 1050 and 1150 deg. C for 6 h, respectively. X-ray diffraction result indicates that the composites have a strong ability to graphitize and the higher deposition temperature leads to the increased graphitization degree. Polarized light microscope and scanning electron microscope images reveal that fibers of the composites prepared for 6 h are surrounded by ring-shaped pyrocarbon matrix with a thickness of {approx}20 {mu}m, and that the matrix is delaminated to 4-6 layer-like regions. The deposition process is analyzed by dividing the reactor into four regions associated with specific functions and the reasons for the rapid fabrication are proposed as the short convection and diffusion path for the precursor and the existing of thermal gradient across the preform.

  7. Thermal Investigation in the Cappadocia Region, Central Anatolia-Turkey, Analyzing Curie Point Depth, Geothermal Gradient, and Heat-Flow Maps from the Aeromagnetic Data

    Science.gov (United States)

    Bilim, Funda; Kosaroglu, Sinan; Aydemir, Attila; Buyuksarac, Aydin

    2017-12-01

    In this study, curie point depth (CPD), heat flow, geothermal gradient, and radiogenic heat production maps of the Cappadocian region in central Anatolia are presented to reveal the thermal structure from the aeromagnetic data. The large, circular pattern in these maps matches with previously determined shallow (2 km in average) depression. Estimated CPDs in this depression filled with loose volcano-clastics and ignimbrite sheets of continental Neogene units vary from 7 to 12 km, while the geothermal gradient increases from 50 to 68 °C/km. Heat flows were calculated using two different conductivity coefficients of 2.3 and 2.7 Wm-1 K-1. The radiogenic heat production was also obtained between 0.45 and 0.70 μW m-3 in this area. Heat-flow maps were compared with the previous, regional heat-flow map of Turkey and significant differences were observed. In contrast to linear heat-flow increment through the northeast in the previous map in the literature, produced maps in this study include a large, caldera-like circular depression between Nevsehir, Aksaray, Nigde, and Yesilhisar cities indicating high geothermal gradient and higher heat-flow values. In addition, active deformation is evident with young magmatism in the Neogene and Quaternary times and a large volcanic cover on the surface. Boundaries of volcanic eruption centers and buried large intrusions are surrounded with the maxspots of the horizontal gradients of magnetic anomalies. Analytic signal (AS) map pointing-out exact locations of causative bodies is also presented in this study. Circular region in the combined map of AS and maxspots apparently indicates a possible caldera.

  8. Thermal Investigation in the Cappadocia Region, Central Anatolia-Turkey, Analyzing Curie Point Depth, Geothermal Gradient, and Heat-Flow Maps from the Aeromagnetic Data

    Science.gov (United States)

    Bilim, Funda; Kosaroglu, Sinan; Aydemir, Attila; Buyuksarac, Aydin

    2017-09-01

    In this study, curie point depth (CPD), heat flow, geothermal gradient, and radiogenic heat production maps of the Cappadocian region in central Anatolia are presented to reveal the thermal structure from the aeromagnetic data. The large, circular pattern in these maps matches with previously determined shallow (2 km in average) depression. Estimated CPDs in this depression filled with loose volcano-clastics and ignimbrite sheets of continental Neogene units vary from 7 to 12 km, while the geothermal gradient increases from 50 to 68 °C/km. Heat flows were calculated using two different conductivity coefficients of 2.3 and 2.7 Wm-1 K-1. The radiogenic heat production was also obtained between 0.45 and 0.70 μW m-3 in this area. Heat-flow maps were compared with the previous, regional heat-flow map of Turkey and significant differences were observed. In contrast to linear heat-flow increment through the northeast in the previous map in the literature, produced maps in this study include a large, caldera-like circular depression between Nevsehir, Aksaray, Nigde, and Yesilhisar cities indicating high geothermal gradient and higher heat-flow values. In addition, active deformation is evident with young magmatism in the Neogene and Quaternary times and a large volcanic cover on the surface. Boundaries of volcanic eruption centers and buried large intrusions are surrounded with the maxspots of the horizontal gradients of magnetic anomalies. Analytic signal (AS) map pointing-out exact locations of causative bodies is also presented in this study. Circular region in the combined map of AS and maxspots apparently indicates a possible caldera.

  9. Investigating Potential Causes for An Abrupt Change of Thermal State in Earth's Upper Mantle During the Great Oxygenation Event

    Science.gov (United States)

    Li, M.; McNamara, A. K.

    2014-12-01

    The oxygenic photosynthesis might have well evolved about 3 billion years ago, but there seems no great increase of atmospheric oxygen until the great oxygenation event (GOE) at about 2.4 Ga. One possibility for the suppressing of atmospheric oxygen level before the GOE is through consumption of oxygen by reduced volcanic gasses. The amount of atmospheric oxygen that could be consumed by volcanic gases depends on the absolute amount of volcanic gases as well as the redox state of the upper mantle. Evidence from the redox sensitive V/Sc ratio have shown that the redox state of the upper mantle have remained constant for the last 3.5 billion years (e.g., Li and Lee, 2004). If so, abrupt changes in thermal state of Earth's upper mantle could explain the rapid changes of degassing rate at the time of GOE. The Earth's lowermost mantle has been shown to be compositionally heterogeneous, which could be caused by the presence of dense, primordial material resulting from early differentiation processes. An important question is how do chemical heterogeneities in the lowermost mantle influence the secular cooling of the upper mantle. Here, we performed numerical calculations to explore the effects of themochemical convection on the thermal evolution of Earth's upper mantle. A large parameter space is explored, with varying Rayleigh number, viscosity, internal heating and density of chemical heterogeneities. We start with an initially hot mantle with a layer of dense material in the lowermost mantle. We found that when the mantle is hot, the dense material remains layered and covers the entire CMB, leading to low CMB heat flux. In this stage, the upper mantle cools down rapidly. However, as the mantle cools, the dense material is swept into discrete thermochemical piles by cold downwellings, leading to increasing CMB heat flux. The cooling rate of the mantle is temporarily reduced as this transition occurs. This occurs at a time consistent with the GOE event. Li, Z. X. A. and

  10. Effect of thermal non-equilibrium, seafloor topography and fluid advection on BSR-derived geothermal gradient

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, R.; Dewangan, P.; Ramprasad, T.; Kumar, B.J.P.; Vishwanath, K.

    ) in the southeastern and southwestern parts of the study area, a couple of closely spaced mounds (M1 and M2) are observed in the southwestern part and are associated with steep seafloor gradient, an elliptical shaped mound (M3) with its major axis extending SW... over the elliptical mound (M3) in the mid slope region. A distinct fault F1 is observed in N-S direction on the western edge of MTD-4. A ridge-like feature (SR1) trending NW-SE is observed as a continuation of outer toe-thrust in the southwestern part...

  11. METAL-MATRIX COMPOSITES AND THERMAL SPRAY COATINGS FOR EARTH MOVING MACHINES

    Energy Technology Data Exchange (ETDEWEB)

    D. Trent Weaver; Matthew T. Kiser; Frank W. Zok; Carlos G. Levi; Jeffrey Hawk

    2004-02-01

    In an effort to realize minimum of a 2x increase in wear life of ground engaging components used on mining machines, two potentially cost effective processes were explored for the production of tailored, highly abrasion resistant materials: (1) hybrid pressure casting of steel composites, and (2) arc lamp fusing of thermal spray coatings. Steel composites comprised of cermet or oxide hard particles were successfully produced using pressure casting processes, although a cost effective process has not yet been identified for oxide particles. Both composites achieved project wear targets in high stress gouging wear, but the cermet composites did not meet the targets in impact wear, due to poor matrix toughness resulting from particle dissolution. Oxide composites had superior toughness and are expected to meet impact wear goals. Arc lamp processing of thermal spray coatings was successfully demonstrated to produce a metallurgical bond at the coating interface. Functionally graded materials were developed and successfully fused to allow for the accommodation of thermal process stresses in an intermediate layer. Ultimately, three functionally graded materials were identified as having high stress, three-body abrasion resistance sufficient to exceed project goals.

  12. Synthesis, characterization and thermal behavior of rare earth amido sulfonates; Sintese, caracterizacao e comportamento termico de amidossulfonatos de terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, Jose Marques; Nunes, Ronaldo Spezia, E-mail: jmluiz@feg.unesp.br [Universidade Estadual Paulista Julio Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia. Departamento de Fisica e Quimica; Matos, Jivaldo do Rosario [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-09-01

    Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H{sub 3}NSO{sub 3}] and suspensions of rare earth hydroxycarbonates [Ln{sub 2}(OH){sub x}(CO{sub 3}){sub y}.zH{sub 2}O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH{sub 2}SO{sub 3}){sub 3}.xH{sub 2}O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H{sub 2}O molecules and NH{sub 2}SO{sub 3} groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln{sub 2}(SO{sub 4}){sub 3}] and (Ln{sub 2}O{sub 2}SO{sub 4}), besides formation of their oxides, was determined by thermogravimetry. (author)

  13. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    Science.gov (United States)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  14. Possible Patient Early Diagnosis by Ultrasonic Noninvasive Estimation of Thermal Gradients into Tissues Based on Spectral Changes Modeling

    OpenAIRE

    I. Bazan; Ramos, A.; H. Calas; Ramirez, A.; Pintle, R.; Gomez, T. E.; Negreira, C.; F. J. Gallegos; Rosales, A. J.

    2012-01-01

    To achieve a precise noninvasive temperature estimation, inside patient tissues, would open promising research fields, because its clinic results would provide early-diagnosis tools. In fact, detecting changes of thermal origin in ultrasonic echo spectra could be useful as an early complementary indicator of infections, inflammations, or cancer. But the effective clinic applications to diagnosis of thermometry ultrasonic techniques, proposed previously, require additional research. Before the...

  15. Thermal energy and the origin of life.

    Science.gov (United States)

    Muller, Anthonie W J; Schulze-Makuch, Dirk

    2006-04-01

    Life has evolved on Earth with electromagnetic radiation (light), fermentable organic molecules, and oxidizable chemicals as sources of energy. Biological use of thermal energy has not been observed although heat, and the thermal gradients required to convert it into free energy, are ubiquitous and were even more abundant at the time of the origin of life on Earth. Nevertheless, Earth-organisms sense thermal energy, and in suitable environments may have gained the capability to use it as energy source. It has been proposed that the first organisms obtained their energy by a first protein named pF(1) that worked on a thermal variation of the binding change mechanism of today's ATP sythase enzyme. Organisms using thermosynthesis may still live where light or chemical energy sources are not available. Possible suitable examples are subsurface environments on Earth and in the outer Solar System, in particular the subsurface oceans of the icy satellites of Jupiter and Saturn.

  16. Inducing magnetic anisotropy and optimized microstructure in rapidly solidified Nd-Fe-B based magnets by thermal gradient, magnetic field and hot deformation

    Science.gov (United States)

    Zhao, L. Z.; Li, W.; Wu, X. H.; Hussain, M.; Liu, Z. W.; Zhang, G. Q.; Greneche, J. M.

    2016-10-01

    Direct preparation of Nd-Fe-B alloys by rapid solidification of copper mold casting is a very simple and low cost process for mini-magnets, but these magnets are generally magnetically isotropic. In this work, high coercivity Nd24Co20Fe41B11Al4 rods were produced by injection casting. To induce magnetic anisotropy, temperature gradient, assisted magnetic field, and hot deformation (HD) procedures were employed. As-cast samples showed non-uniform microstructure due to the melt convection. The thermal gradient during solidification led to the formation of radially distributed acicular hard magnetic grains, which gives the magnetic anisotropy. The growth of the oriented grains was confirmed by phase field simulation. A magnetic field up to 1 T applied along the casting direction could not induce significant magnetic anisotropy, but it improved the magnetic properties by reducing the non-uniformity and forming a uniform microstructure. The annealed alloys exhibited high intrinsic coercivity but disappeared anisotropy. HD was demonstrated to be a good approach for inducing magnetic anisotropy and enhanced coercivity by deforming and refining the grains. This work provides an alternative approach for preparing fully dense Nd-rich anisotropic bulk Nd-Fe-B magnets.

  17. 3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment.

    Science.gov (United States)

    Ferrara, P; Ciofini, M; Esposito, L; Hostaša, J; Labate, L; Lapucci, A; Pirri, A; Toci, G; Vannini, M; Gizzi, L A

    2014-03-10

    We present a study of Yb:YAG active media slabs, based on a ceramic layered structure with different doping levels. We developed a procedure allowing 3D numerical analysis of the slab optical properties as a consequence of the thermal load induced by the pump process. The simulations are compared with a set of experimental results in order to validate the procedure. These structured ceramics appear promising in appropriate geometrical configurations, and thus are intended to be applied in the construction of High Energy Diode Pumped Solid State Laser (DPSSL) systems working in high repetition-rate pulsed regimes.

  18. Aqueous Rare Earth Element Patterns and Concentration in Thermal Brines Associated With Oil and Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles [University of Wyoming; Quillinan, Scott Austin [University of Wyoming; Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-13

    This study is part of a joint effort by the University of Wyoming (UW) School of Energy Resources (SER), the UW Engineering Department, Idaho National Laboratories (INL), and the United States Geological Survey (USGS) to describe rare earth element concentrations in oil and gas produced waters and in coal-fired power station ash ponds. In this work we present rare earth element (REE) and trace metal behavior in produced water from four Wyoming oil and gas fields and surface ash pond water from two coal-fired power stations. The concentration of REEs in oil and gas produced waters is largely unknown. For example, of the 150,000 entries in the USGS National Produced Waters Geochemical Database less than 5 include data for REEs. Part of the reason for this scarcity is the analytical challenge of measuring REEs in high salinity, hydrocarbon-bearing waters. The industry standard for water analysis struggles to detect REEs in natural waters under ideal conditions. The detection of REEs in oil and gas field samples becomes all but impossible with the background noise and interferences caused by high concentrations of non-REE ions and residual hydrocarbons. The INL team members have overcome many of these challenges (e.g. McLing, 2014), and continue to develop their methods. Using the methods of the INL team members we measured REEs in high salinity oil and gas produced waters. Our results show that REEs exist as a dissolved species in all waters measured for this project, typically within the parts per trillion range. The samples may be grouped into two broad categories analytically, and these categories match their genesis: Wyoming oil and gas brines contain elevated levels of Europium, and Wyoming industrial pond waters show elevation in heavy REEs (HREEs). While broadly true, important variations exist within both groups. In the same field Europium can vary by more than an order of magnitude, and likewise HREEs in industrial ponds at the same site can vary by more than

  19. Strong Thermal Anomalies in the Lowermost Mantle Explain a Large Fraction of Deep Earth Seismic Structure (Invited)

    Science.gov (United States)

    Schuberth, B. S.; Bunge, H.

    2010-12-01

    One major challenge in the study of Earth's deep interior is to improve existing conceptual models of mantle flow. Understanding the dynamic behavior of the mantle is important as it drives plate tectonics and controls the way the Earth looses its heat. Thus, it is a crucial factor in tectonic modeling or in simulations of the geodynamo and of the thermal history of the Earth. In the last decade, the classical viewpoint has been put into question that only a small part of the heat leaving the mantle at the top is coming from the underlying core (2-3 TW or ~5% of the total surface heat flux). A number of studies from various fields have recently promoted the idea of a much larger core contribution to the mantle energy budget of as much as 10 TW (~30% of the surface heat flow). For example, finite frequency tomography has produced images of large plumes in the lower mantle, which potentially carry a significant amount of heat to the surface (Nolet et al. [2006]). This strengthens the notion that the dynamic role of these plumes is larger than inferred classically from observation of dynamic topography. Here, we demonstrate that plume structures predicted for such a high core heat flux by high-performance computations of 3-D mantle flow are compatible with seismic tomography and small rates of polar wander. An important aspect in such comparisons is that the resolving power of seismic tomography is limited due to uneven data coverage. One possibility to account for this effect is to apply the resolution operator of the tomographic inversions to our synthetic structures. However, this operator can only be constructed for tomographic models with a small number of free parameters, thus limiting its use. Therefore, we will explore new ways to test dynamic flow calculations for Earth's mantle against seismic data and tomographic models. One possible approach is to perform large-scale simulations of 3-D seismic wave propagation through both tomographic models as well as our

  20. Metal oxide nanoparticles embedded in rare-earth matrix for low temperature thermal imaging applications

    Science.gov (United States)

    Rauwel, E.; Galeckas, A.; Rauwel, P.; Hansen, P.-A.; Wragg, D.; Nilsen, O.; Fjellvåg, H.

    2016-05-01

    We report on the synthesis and characterization of nanocomposites comprising of oxide nanoparticles (NPs) (ZnO, CaHfO3 and SrHfO3) embedded in rare-earth oxide (Eu2O3, Nd2O3) matrices by using atomic layer deposition. The different oxide surroundings allowed highlighting the role of interface defects in the recombination processes of charge carriers in the NPs. We provide a comparative analysis of optical absorption and emission properties of the constituents: thin films, free-standing and embedded NPs, and discuss the intrinsic and extrinsic nature of the luminescent sites in different nanocomposites. The photoluminescence properties of ZnO nanocomposites are clearly distinguishable from those of free-standing NPs in terms of overall quantum efficiency as well as intensity ratios of the characteristic blue and green emission bands associated with radiative transitions involving excitons and intrinsic defects, respectively. In contrast to PL enhancement due to surface-passivating effect of the surrounding media in the case of ZnO nanocomposites, the embedment of hafnia perovskites into oxide matrices generally leads to suppressed luminescence in the visible range, thus confirming its extrinsic, surface-defect related nature.

  1. Thermal Infrared Spectrometer for Earth Science Remote Sensing Applications—Instrument Modifications and Measurement Procedures

    Directory of Open Access Journals (Sweden)

    Freek van der Meer

    2011-11-01

    Full Text Available In this article we describe a new instrumental setup at the University of Twente Faculty ITC with an optimized processing chain to measure absolute directional-hemispherical reflectance values of typical earth science samples in the 2.5 to 16 µm range. A Bruker Vertex 70 FTIR spectrometer was chosen as the base instrument. It was modified with an external integrating sphere with a 30 mm sampling port to allow measuring large, inhomogeneous samples and quantitatively compare the laboratory results to airborne and spaceborne remote sensing data. During the processing to directional-hemispherical reflectance values, a background radiation subtraction is performed, removing the effect of radiance not reflected from the sample itself on the detector. This provides more accurate reflectance values for low-reflecting samples. Repeat measurements taken over a 20 month period on a quartz sand standard show that the repeatability of the system is very high, with a standard deviation ranging between 0.001 and 0.006 reflectance units depending on wavelength. This high level of repeatability is achieved even after replacing optical components, re-aligning mirrors and placement of sample port reducers. Absolute reflectance values of measurements taken by the instrument here presented compare very favorably to measurements of other leading laboratories taken on identical sample standards.

  2. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle: Reduced Conductivity of Fe-Bridgmanite

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin [Institute of Earth Sciences, Academia Sinica, Taipei Taiwan; Deschamps, Frédéric [Institute of Earth Sciences, Academia Sinica, Taipei Taiwan; Okuchi, Takuo [Institute for Planetary Materials, Okayama University, Misasa Japan; Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin Texas USA

    2017-07-01

    Complex seismic, thermal, and chemical features have been reported in Earth's lowermost mantle. In particular, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, altering the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion and iron spin and valence states in bridgmanite could affect its lattice thermal conductivity, but these effects remain largely unknown. Here we precisely measured the lattice thermal conductivity of Fe-bearing bridgmanite to 120 GPa using optical pump-probe spectroscopy. The conductivity of Fe-bearing bridgmanite increases monotonically with pressure but drops significantly around 45 GPa due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000 km depth. Modeling of our results applied to LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.

  3. Possible Patient Early Diagnosis by Ultrasonic Noninvasive Estimation of Thermal Gradients into Tissues Based on Spectral Changes Modeling

    Directory of Open Access Journals (Sweden)

    I. Bazan

    2012-01-01

    Full Text Available To achieve a precise noninvasive temperature estimation, inside patient tissues, would open promising research fields, because its clinic results would provide early-diagnosis tools. In fact, detecting changes of thermal origin in ultrasonic echo spectra could be useful as an early complementary indicator of infections, inflammations, or cancer. But the effective clinic applications to diagnosis of thermometry ultrasonic techniques, proposed previously, require additional research. Before their implementations with ultrasonic probes and real-time electronic and processing systems, rigorous analyses must be still made over transient echotraces acquired from well-controlled biological and computational phantoms, to improve resolutions and evaluate clinic limitations. It must be based on computing improved signal-processing algorithms emulating tissues responses. Some related parameters in echo-traces reflected by semiregular scattering tissues must be carefully quantified to get a precise processing protocols definition. In this paper, approaches for non-invasive spectral ultrasonic detection are analyzed. Extensions of author's innovations for ultrasonic thermometry are shown and applied to computationally modeled echotraces from scattered biological phantoms, attaining high resolution (better than 0.1°C. Computer methods are provided for viability evaluation of thermal estimation from echoes with distinct noise levels, difficult to be interpreted, and its effectiveness is evaluated as possible diagnosis tool in scattered tissues like liver.

  4. Possible patient early diagnosis by ultrasonic noninvasive estimation of thermal gradients into tissues based on spectral changes modeling.

    Science.gov (United States)

    Bazan, I; Ramos, A; Calas, H; Ramirez, A; Pintle, R; Gomez, T E; Negreira, C; Gallegos, F J; Rosales, A J

    2012-01-01

    To achieve a precise noninvasive temperature estimation, inside patient tissues, would open promising research fields, because its clinic results would provide early-diagnosis tools. In fact, detecting changes of thermal origin in ultrasonic echo spectra could be useful as an early complementary indicator of infections, inflammations, or cancer. But the effective clinic applications to diagnosis of thermometry ultrasonic techniques, proposed previously, require additional research. Before their implementations with ultrasonic probes and real-time electronic and processing systems, rigorous analyses must be still made over transient echotraces acquired from well-controlled biological and computational phantoms, to improve resolutions and evaluate clinic limitations. It must be based on computing improved signal-processing algorithms emulating tissues responses. Some related parameters in echo-traces reflected by semiregular scattering tissues must be carefully quantified to get a precise processing protocols definition. In this paper, approaches for non-invasive spectral ultrasonic detection are analyzed. Extensions of author's innovations for ultrasonic thermometry are shown and applied to computationally modeled echotraces from scattered biological phantoms, attaining high resolution (better than 0.1 °C). Computer methods are provided for viability evaluation of thermal estimation from echoes with distinct noise levels, difficult to be interpreted, and its effectiveness is evaluated as possible diagnosis tool in scattered tissues like liver.

  5. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body.

    Science.gov (United States)

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-07-21

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  6. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body

    Science.gov (United States)

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-01-01

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images. PMID:27455264

  7. Near Earth Asteroid Human Mission Possibilities Using Nuclear Thermal Rocket (NTR) Propulsion

    Science.gov (United States)

    Borowski, Stanley; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR is a proven technology that generates high thrust and has a specific impulse (Isp (is) approximately 900 s) twice that of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - all the requirements needed for a human mission to Mars. Ceramic metal fuel was also evaluated as a backup option. In NASA's recent Mars Design reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program - the 25 klbf 'Pewee' engine is sufficient for a human Mars mission when used in a clustered engine configuration. The 'Copernicus crewed NTR Mars transfer vehicle design developed for DRA 5.0 has significant capability that can enable reusable '1-year' round trip human missions to candidate near Earth asteroids (NEAs) like 1991 JW in 2027, or 2000 SG344 and Apophis in 2028. A robotic precursor mission to 2000 SG344 in late 2023 could provide an attractive Flight Technology Demonstration of a small NTR engine that is scalable to the 25 klbf-class engine used for human missions 5 years later. In addition to the detailed scientific data gathered from on-site inspection, human NEA missions would also provide a valuable 'check out' function for key elements of the NTR transfer vehicle (its propulsion module, TransHab and life support systems, etc.) in a 'deep space' environment prior to undertaking the longer duration Mars orbital and landing missions that

  8. Influence of thermal boundary conditions on convection and dynamos in early and present earth-like cores

    Science.gov (United States)

    Hori, K.; Wicht, J.; Dietrich, W.; Christensen, U. R.

    2012-12-01

    The early dynamos of Earth and Mars probably operated without an inner core being present. They were thus exclusively driven by secular cooling and radiogenic heating, whereas the present geodynamo is thought to be predominantly driven by buoyancy fluxes which arise from the release of latent heat and the compositional enrichment associated with inner core solidification. Dynamo simulations model the secular cooling by volumetric internal buoyancy sources and the inner core-related driving by bottom sources. The impact of the inner core growth on the ancient geodynamo has been discussed extensively but is still controversial. As for Mars, the Mars Global Surveyor detected a strong northern-southern dichotomy in the crustal magnetization. A scenario proposed so far is due to such an ancient dynamo, where thermal heterogeneities at the core mantle boundary (CMB) were imposed by the lower mantle structure. A key issue here is how easily influence of the boundary anomalies emerges. Here we show that the dynamos without inner core solidification are much more sensitive to the CMB heat flows imposed by the lower mantle structure. We compare three-dimensional convection-driven MHD dynamo simulations either driven by homogeneously distributed internal heat sources or by buoyancy sources at the inner core boundary (ICB). Several different boundary heat-flux patterns are used. The effects are found even when boundaries are homogeneous. The impact of the outer boundary condition, fixed temperature or fixed heat flux, is large when convection is predominantly driven by volumetric internal heating. In the dynamos driven by ICB buoyancy sources, the lower boundary condition becomes more important. In both cases, a fixed flux condition promotes larger convective scales than a fixed temperature condition. A dipolar magnetic field can further increase the flow scale. This different sensitivity may also extend to cases when CMB heat flows are laterally inhomogeneous. In the dynamos

  9. Diapirism on Venus and the Early Earth and The thermal effect of fluid flows in AECL's Tunnel Sealing Experiment

    Science.gov (United States)

    Robin, Catherine M. I.

    2010-12-01

    Flow instabilities occur at all scales in planetary systems. In this thesis we examine three cases of such instabilities, on three very different length scales. In the first part, we test the idea that Archean granite-greenstone belts (GGBs) form by crustal diapirism, or Rayleigh-Taylor instabilities. GGBs are characterized by large granitic domes (50-100 km in diameter) embedded in narrow keel-shaped greenstones. They are ubiquitous in Archean (> 2.5 Ga) terrains, but rare thereafter. We performed finite element calculations for a visco-elastic, temperature-dependent, non-Newtonian crust under conditions appropriate for the Archean, which show that dense low-viscosity volcanics overlying a felsic basement will overturn diapirically in as little as 10 Ma, displacing as much as 60 % of the volcanics to the lower crust. This surprisingly fast overturn rate suggests that diapiric overturn dominated crustal tectonics in the hot conditions of the Early Earth, becoming less important as the Earth cooled. Moreover, the deposition of large volumes of wet basaltic volcanics to the lower crust may provide the source for the formation of the distinctly Archean granitic rocks which dominate Earth's oldest continents. The second part examines the origin of Venusian coronae, circular volcanic features unique to Venus. Coronae are thought to result from small instabilities (diapirs) from the core-mantle boundary, which are typical of stagnant-lid convection. However, most young coronae are located in a region surrounded by long-lived hotspots, typical of a more active style of mantle convection. Using analogue experiments in corn syrup heated from below, we show that the co-existence of diapirs and long-lived mantle plumes are a direct consequence of the catastrophic overturn of the cold Venusian lithosphere thought to have occurred ˜ 700 Ma ago. In the last part we analyze the thermal effect of fluid flow through a full-scale experiment testing clay and concrete tunnel seals in

  10. Thermal effects on light emission in Yb sup 3 sup + -sensitized rare-earth doped optical glasses

    CERN Document Server

    Gouveia, E A; Gouveia-Neto, A S

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb sup 3 sup + -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb sup 3 sup + -codoped Ga sub 2 S sub 3 :La sub 2 O sub 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La sub 2 O sub 3 chalcogenide and fluoroindate glasses codoped with Pr sup 3 sup + /Yb sup 3 sup + , excited off-resonance at 1.064 mu m. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends u...

  11. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    Science.gov (United States)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  12. Correlation of Electrical Resistance to CMC Stress-Strain and Fracture Behavior Under High Heat-Flux Thermal and Stress Gradients

    Science.gov (United States)

    Appleby, Matthew; Morscher, Gregory; Zhu, Dongming

    2015-01-01

    Because SiCSiC ceramic matrix composites (CMCs) are under consideration for use as turbine engine hot-section components in extreme environments, it becomes necessary to investigate their performance and damage morphologies under complex loading and environmental conditions. Monitoring of electrical resistance (ER) has been shown as an effective tool for detecting damage accumulation of woven melt-infiltrated SiCSiC CMCs. However, ER change under complicated thermo-mechanical loading is not well understood. In this study a systematic approach is taken to determine the capabilities of ER as a relevant non-destructive evaluation technique for high heat-flux testing, including thermal gradients and localized stress concentrations. Room temperature and high temperature, laser-based tensile tests were conducted in which stress-dependent damage locations were determined using modal acoustic emission (AE) monitoring and compared to full-field strain mapping using digital image correlation (DIC). This information is then compared with the results of in-situ ER monitoring, post-test ER inspection and fractography in order to correlate ER response to convoluted loading conditions and damage evolution.

  13. Combustion synthesis and thermal expansion measurements of the rare earth-uranium ternary oxides RE 6UO 12 (RE=La, Nd and Sm)

    Science.gov (United States)

    Jena, Hrudananda; Asuvathraman, R.; Govindan Kutty, K. V.

    2000-08-01

    Rare earth-uranium ternary oxides were synthesized by a solution combustion route. The starting materials were the corresponding metal nitrates and urea. In these preparations, the metal nitrates act as oxidizer and urea as fuel. Highly exothermic decomposition of the metal nitrate-urea complexes on heating at about 500 K leads to a combustion process yielding RE 6UO 12 fine powders. Thermal expansion measurements of these compounds were carried out in the temperature range of 298-1173 K by high temperature X-ray powder diffractometry. The observed axial thermal expansion behaviour is explained on the basis of the crystal chemistry of the compounds.

  14. Infra-red and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems

    OpenAIRE

    Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P.P.

    2017-01-01

    A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountere...

  15. Metal-silicate partitioning of potassium at high pressure and temperature conditions and implications for thermal history of the Earth

    Science.gov (United States)

    Nomura, R.; Hirose, K.

    2011-12-01

    The possible presence of potassium in the Earth's core as a radioactive heat source can have a significant influence on the thermal evolution of the Earth (Buffett, 2002 GRL; Labrosse, 2003 PEPI). Core-mantle equilibration at high P-T (e.g. ~30 GPa, ~3450 K [Righter, 2011 EPSL]) was suggested from the mantle contents of siderophile elements. Basal magma ocean (Labrosse et al., 2007 Nature) also should be equilibrated with molten iron at the core-mantle boundary (CMB) (~135 GPa) due to its gravitational stability (Nomura et al., 2011 Nature). Previous experimental studies on potassium partitioning between liquid metal and silicate melt showed contradictory results on the concentration of potassium in the Earth's core because of experimental artifacts (K loss in metal phase), different (simplified) chemical compositions for study and large extrapolations to high P-T which suits for core-mantle equilibration at the base of the magma ocean. Recently, Corgne et al. (2007 EPSL) performed the partitioning experiments up to 7.7 GPa and 2200°C with chemical compositions of CI chondrite doped with moderate amount of S and K and revealed a significant effect of O contents in molten alloy on K partition coefficient while with negligible effect of P-T and S and C contents. The change in electronic structure of potassium from 4s- to 3d-like was predicted by theory (Bukowinski, 1976 GRL) and potassium alloying with nickel and iron was reported by experiments using diamond anvil cell at ~30 GPa and 2200 K (Parker et al., 1997 Science; Lee and Jeanloz, 2003 GRL). So, it is important to investigate the effect of pressure on K partition coefficient at the pressure conditions above ~30 GPa up to 135 GPa. Hirao et al. (2006 GRL) performed melting experiment at 135 GPa and 3500 K using laser-heated diamond anvil cell (LHDAC) and showed the value of partition coefficient Dk is 0.15, but their results lack the elemental mass balances between run products and starting materials. Our

  16. Constraints on the thermal and compositional nature of the Earth's mantle inferred from joint inversion of compressional and shear seismic waves and mineral physics data

    DEFF Research Database (Denmark)

    Tesoniero, Andrea

    Research: Solid Earth on October 2015. The second manuscript “S − to − P heterogeneity ratio in the lower mantle and thermo-chemical implications” has been submitted to Earth and Planetary Science Letters and it is currently under review process. This thesis represents the culmination of my Ph.D. project...... the results of a combined interdisciplinary study that includes seismology and mineral physics. The purpose is to augment our knowledge on the thermal and chemical nature of the inner Earth. A large global seismic database has been gathered and analyzed during the project and a new global joint compressional...... and submitted to international peer reviewed journals. The first manuscript “Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity.” has been accepted for publication on Journal of Geophysical...

  17. Thermal decomposition of heavy rare-earth butanoates, Ln(C3H7CO2)3 (Ln = Er, Tm, Yb and Lu) in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao

    2016-01-01

    was observed in all four compounds, but its course depends on the rare-earth element. Decomposition to sesquioxides proceeds via the formation of dioxymonocarbonates (Ln2O2CO3) and release of 4-heptanone (C3H7COC3H7) as well as carbon dioxide (CO2) without evidence for an intermediate oxobutanoate stage...... of Ln2O2CO3 and Ln2O3. The stability of this intermediate state seems to decrease with the mass of the rare-earth elements. Complete conversion to Ln2O3 is reached at about 1100 °C. The overall thermal decomposition behaviour of the title compounds is different from previous reports for other rare-earth...

  18. Avaliação dos índices de conforto térmico, parâmetros fisiológicos e gradiente térmico de ovinos nativos Assessment of thermal comfort indexes, physiological parameters and thermal gradient of native sheep

    Directory of Open Access Journals (Sweden)

    Neyla L. Ribeiro

    2008-12-01

    Full Text Available Esta pesquisa teve o objetivo de determinar os índices de conforto térmico em instalações para ovinos, analisar os parâmetros fisiológicos e o gradiente térmico de quatro grupos genéticos, na região semiárida paraibana. Foram utilizados 40 animais, dez por grupo genético, que foram: Cariri, Morada Nova, Barriga Negra e Cara Curta, todas fêmeas, alojadas aleatoriamente em quatro apriscos. Os índices ambientais dentro das instalações, principalmente das 11 às 15 h, ficaram acima da zona de conforto térmico para ovinos adultos, com exceção da umidade relativa do ar, que ficou com média diária de 67,5%. A temperatura retal dos animais esteve dentro da faixa normal, sendo o grupo genético Morada Nova o que apresentou menor valor (38,6 ºC. A frequência respiratória dos animais em cada grupo genético ficou acima do valor recomendado, porém o Morada Nova apresentou o menor valor (43,5 mov min-1; em contrapartida, o Cariri e o Barriga Negra apresentaram os maiores valores (48,0 e 47,3 mov min-1, respectivamente. Os animais com pelagem mais escura e de maior porte, como os da raça Cariri, apresentaram maior gradiente térmico entre a temperatura do ar e a temperatura superficial. Os animais apresentaram alto índice de tolerância ao calor, ou seja, bem adaptados ao ambiente tropical, podendo o grupo genético Cariri ser caracterizado como o menos adaptado e o Morada Nova considerado o mais bem adaptado às condições experimentais.The objective of this research was to determine the thermal comfort indexes for sheep raising installations, analyze the physiological parameters and the thermal gradient of four sheep genetic groups in the semi-arid region of the state of Paraiba, Brazil. Forty animals were used, being ten individuals per genetic group; the groups were: 'Cariri', 'Morada Nova', 'Barriga Negra' and 'Cara Curta'. All of them females and randomly housed in four adequate installations. The environmental indexes inside

  19. Examination of Surface Temperature Modification by Open-Top Chambers along Moisture and Latitudinal Gradients in Arctic Alaska Using Thermal Infrared Photography

    Directory of Open Access Journals (Sweden)

    Nathan C. Healey

    2016-01-01

    Full Text Available Passive warming manipulation methodologies, such as open-top chambers (OTCs, are a meaningful approach for interpretation of impacts of climate change on the Arctic tundra biome. The magnitude of OTC warming has been studied extensively, revealing an average plot-level warming of air temperature that ranges between 1 and 3 °C as measured by shielded resistive sensors or thermocouples. Studies have also shown that the amount of OTC warming depends in part on location climate, vegetation, and soil properties. While digital infrared thermometers have been employed in a few comparisons, most of the focus of the effectiveness of OTC warming has been on air or soil temperature rather than tissue or surface temperatures, which directly translate to metabolism. Here we used thermal infrared (TIR photography to quantify tissue and surface temperatures and their spatial variability at a previously unavailable resolution (3–6 mm2. We analyzed plots at three locations that are part of the International Tundra Experiment (ITEX-Arctic Observing Network (AON-ITEX network along both moisture and latitudinal gradients spanning from the High Arctic (Barrow, AK, USA to the Low Arctic (Toolik Lake, AK, USA. Our results show a range of OTC surface warming from 2.65 to 1.27 °C (31%–10% at our three sites. The magnitude of surface warming detected by TIR imagery in this study was comparable to increases in air temperatures previously reported for these sites. However, the thermal images revealed wide ranges of surface temperatures within the OTCs, with some surfaces well above ambient unevenly distributed within the plots under sunny conditions. We note that analyzing radiometric temperature may be an alternative for future studies that examine data acquired at the same time of day from sites that are in close geographic proximity to avoid the requirement of emissivity or atmospheric correction for validation of results. We foresee future studies using TIR

  20. Zircon record of fractionation, hydrous partial melting and thermal gradients at different depths in oceanic crust (ODP Site 735B, South-West Indian Ocean)

    Science.gov (United States)

    Pietranik, A.; Storey, C.; Koepke, J.; Lasalle, S.

    2017-03-01

    Felsic veins (plagiogranites) are distributed throughout the whole oceanic crust section and offer insight into late-magmatic/high temperature hydrothermal processes within the oceanic crust. Despite constituting only 0.5% of the oceanic crust section drilled in IODP Site 735B, they carry a significant budget of incompatible elements, which they redistribute within the crust. Such melts are saturated in accessory minerals, such as zircon, titanite and apatite, and often zircon is the only remaining phase that preserves magmatic composition and records processes of felsic melt formation and evolution. In this study, we analysed zircon from four depths in IODP Site 735B; they come from the oxide gabbro (depth approximately 250 m below sea floor) and plagiogranite (depths c. 500, 860, 940 m below sea floor). All zircons have similar ɛHf composition of c. 15 units indicating an isotopically homogenous source for the mafic magmas forming IODP Site 735B gabbro. Zircons from oxide gabbro are scarce and variable in composition consistent with their crystallization from melts formed by both fractionation of mafic magmas and hydrous remelting of gabbro cumulate. On the other hand, zircon from plagiogranite is abundant and each sample is characterized by compositional trends consistent with crystallization of zircon in an evolving melt. However, the trends are different between the plagiogranite at 500 m bsf and the deeper sections, which are interpreted as the record of plagiogranite formation by two processes: remelting of gabbro cumulate at 500 m bsf and fractionation at deeper sections. Zircon from both oxide gabbro and plagiogranite has δ18O from 3.5 to 6.0‰. Values of δ18O are best explained by redistribution of δ18O in a thermal gradient and not by remelting of hydrothermally altered crust. Tentatively, it is suggested that fractionation could be an older episode contemporaneous with gabbro crystallization and remelting could be a younger one, triggered by

  1. Multispectral Thermal Infrared Remote Sensing of Volcanic SO2 Plumes with NASA’s Earth Observing System

    Science.gov (United States)

    Realmuto, V. J.

    2009-12-01

    The instruments aboard NASA’s series of Earth Observing System satellites provide a rich suite of measurements for the mapping of volcanic plumes and clouds. This presentation will focus on applications of thermal multispectral infrared (TIR) data acquired with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate-Resolution Imaging Spectrometer (MODIS), and Atmospheric Infrared Sounder (AIRS) to the recent eruptions of Augustine and Sarychev volcanoes in Alaska and the Russian Kuril Islands, respectively. ASTER, MODIS, and AIRS provide complimentary information on the quantity and distribution of sulfur dioxide (SO2), silicate ash, and sulfate (SO4) aerosols within plumes. In addition, data from the Multi-angle Imaging SpectroRadiometer (MISR) are used to derive estimates of aerosol loading, cloud-top altitude, wind direction, and wind speed. MODIS is our workhorse for plume mapping projects. There are MODIS instruments on the Terra and Aqua platforms, ensuring at least two MODIS passes per day over most volcanoes and four passes per day over many volcanoes. The spatial resolution of MODIS TIR radiance measurements is 1 km (at nadir) over a ground swath of 2330 km. MODIS can detect both the 7.3 and 8.5 μm bands of SO2, although the 7.3 μm band is often obscured by water vapor absorption when plumes are altitudes below ~ 4 km. ASTER has five channels in the TIR, and can detect the 8.5 μm SO2 band. The high spatial resolution (90 m) of ASTER TIR radiance measurements results in high sensitivity to SO2 within a narrow ground swath (60 km). AIRS has over 2700 spectral channels between 3.7 and 15.4 μm, allowing us to make unambiguous identifications of SO2, SO4 aerosols, and ash over a ground swath of ~2330 km. AIRS can detect the 7.3 μm SO2 band, and the strength of this band partially offsets the coarse spatial resolution of this instrument (~17 km at nadir). The key to multi-sensor mapping is the availability of a standard set

  2. Water/rock interactions and mass transport within a thermal gradient Application to the confinement of high level nuclear waste; Interactions solide/solution et transferts de matiere dans un gradient de temperature. Application au confinement des dechets nucleaires de haute-activite

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Entreposage et de Stockage des Dechets]|[Ecole Normale Superieure, 92 - Fontenay-aux-Roses (France). Laboratoire de Geologie

    1998-12-31

    The initial stage of a high level nuclear waste disposal will be characterised by a large heat release within the near-field environment of the canisters. This heat flux caused by radioactive decay will lead to an increase of temperature and a subsequent thermal gradient between the `hot` canisters and the `cold`geological medium. In addition, this thermal gradient will decrease with time due to the heat decay although it could last hundred years. What will be the consequences of such a thermal field varying both on space and time for the alteration of the different constituents of the near field environment. In particular, what could be the effects on the radionuclides migration in the accidental case of an early breach of a canister during the thermal stage? This study brings significant answers to these questions in the light of a performance assessment study. This work is supported by a triple methodological approach involving experimental studies, modelling calculations and a natural analogues study. This complete work demonstrates that a thermal gradient leads to a large re-distribution of elements within the system: some elements are incorporated in the solid phases of the hot end (Si, Zr, Ca) whereas some others are in those of the cold end (Fe, Al, Zn). The confrontation of the results of very simple experiments with the results of a model built on equilibrium thermodynamics allow us to evidence the probable mechanisms causing this mass transport: out-of-equilibrium thermodiffusion processes coupled to irreversible precipitation. Moreover, the effects of the variation of temperatures with time is studied by the way of a natural system which underwent a similar temperature evolution as a disposal and which was initially rich in uranium: the Jurassic Alpine bauxites. In addition, part of the initial bauxite escaped this temperature transformations due to their incorporation in outer thrusting nappes. They are used as a reference. (author)

  3. Structural Behavior of a Long-Span Partially Earth-Anchored Cable-Stayed Bridge during Installation of a Key Segment by Thermal Prestressing

    Directory of Open Access Journals (Sweden)

    Sang-Hyo Kim

    2016-08-01

    Full Text Available This study investigated structural behavior of long-span partially earth-anchored cable-stayed bridges with a main span length of 810 m that use a new key segment closing method based on a thermal prestressing technique. A detailed construction sequence analysis matched with the free cantilever method (FCM was performed using a three-dimensional finite element (FE model of a partially earth-anchored cable-stayed bridge. The new method offers an effective way of connecting key segments by avoiding large movements resulting from the removal of the longitudinal restraint owing to the asymmetry of axial forces in the girders near the pylons. The new method develops new member forces through the process of heating the cantilever system before installing the key segment and cooling the system continuously after installing key segments. The resulting forces developed by the thermal process enhance the structural behavior of partially earth-anchored cable-stayed bridges owing to decreased axial forces in the girders.

  4. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation.

    Science.gov (United States)

    Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-08-24

    Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  5. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  6. Drilling and thermal gradient measurements at US Marine Corps Air Ground Combat Center, Twentynine Palms, California. Final report, October 1, 1983-March 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, D.T.; Flynn, T.; Ghusn, G. Jr.

    1984-01-01

    Seven temperature gradient holes were drilled at the Marine Corps Air Ground Combat Center, Twentynine Palms, California, as part of a cooperative research and development program, jointly funded by the Navy and Department of Energy. The purpose of this program was to assess geothermal resources at selected Department of Defense installations. Drill site selection was based on geophysical anomalies delineated by combined gravity, ground magnetic and aeromagnetic surveys. Temperature gradients ranged from 1.3/sup 0/C/100 m (1/sup 0/F/100 ft.) in hole No. 1 to 15.3/sup 0/C/100 m (8.3/sup 0/F/100 ft.) in temperature gradient hole No. 6. Large, positive geothermal gradients in temperature gradient holes 5 and 6, combined with respective bottom hole temperatures of 51.6/sup 0/C (125/sup 0/F) and 67/sup 0/C (153/sup 0/F), indicate that an extensive, moderate-temperature geothermal resource is located on the MCAGCC. The geothermal reservoir appears to be situated in old, unconsolidated alluvial material and is structurally bounded on the east by the Mesquite Lake fault and on the west by the Surprise Spring fault. If measured temperature gradients continue to increase at the observed rate, temperatures in excess of 80/sup 0/C (178/sup 0/F) can be expected at a depth of 2000 feet.

  7. Effect of thermally growth oxides (TGO) on adhesion strength for high purity yitria stabilised zirconia (YSZ) and rare - Earth lanthanum zirconates (LZ) multilayer thermal barrier coating before and after isothermal heat treatment

    Science.gov (United States)

    Yunus, Salmi Mohd; Johari, Azril Dahari; Husin, Shuib

    2017-12-01

    Investigation on the effect of Thermally Growth Oxides (TGO) on the adhesion strength for thermal barrier coating (TBC) was carried out. The TBC under studied was the multilayer systems which consist of NiCrAlY bond coat and YSZ/LZ ceramic coating deposited on Ni-based superalloy substrates. The development of thermally growth oxides (TGO) for both TBC systems after isothermal heat treatment was measured. Isothermal heat treatment was carried out at 1100 ˚C for 100 hours to age the samples. ASTM D4541: Standard Test Method for Pull-off Strength of Coatings using Portable Adhesion Tester was used to measure the adhesion strength of both TBC systems before and after heat treatment. The effect of the developed TGO on the measured adhesion strength was examined and correlation between them was established individually for both TBC systems. The failure mechanism of the both system was also identified; either cohesive or adhesive or the combination of both. The results showed that TGO has more than 50% from the bond coat layer for rare-earth LZ system compared to the typical YSZ system, which was less than 10 % from the bond coat layer. This leads to the lower adhesion strength of rare-earth LZ coating system compared to typical YSZ system. Failure mechanism during the pull-off test also was found to be different for both TBC systems. The typical YSZ system experienced cohesive failure whereas the rare-earth LZ system experienced the combination of cohesive and adhesive failure.

  8. Thermal-Infrared Surveys of Near-Earth Object Diameters and Albedos with Spitzer and IRTF/MIRSI

    NARCIS (Netherlands)

    Mommert, Michael; Trilling, David; Hora, Joseph L.; Chesley, Steven; Emery, Josh; Fazio, Giovanni; Harris, Alan W.; Moskovitz, Nick; Mueller, Michael; Smith, Howard

    2015-01-01

    More than 12000 Near-Earth Objects (NEOs) have been discovered over the past few decades and current discovery surveys find on average 4 new NEOs every night. In comparison to asteroid discovery, the physical characterization of NEOs lags far behind: measured diameters and albedos exist only for

  9. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  10. Evaluation of Attenuation of Solar Radiation by Space System for Regulate the Thermal Conditions of Earth's Atmosphere

    Directory of Open Access Journals (Sweden)

    E. I. Starovoitov

    2014-01-01

    Full Text Available Global warming in the future is an existential threat to human civilization. To prevent further changes in the Earth's climate is intended of space system for regulate the temperature of Earth's atmosphere, proposed of G.A. Sizentsev. In this system, the main role is played by the solar-sailing ship (SSS arranged in a Lagrange point L1 of the Earth-Sun system. Due to the large area of sails SSS, drifting in the plane normal to the flow of sunlight, reduces the amount of solar radiation incident on the Earth. For practical implementation of space system for regulate the temperature of Earth's atmosphere is necessary to solve complex problems related primarily to the efficiency of attenuation of solar radiation flux. In this paper we study the solar limb darkening on the reduce of the outgoing radiation flux from sun with using the SSS. On the basis of well-known law of solar limb darkening, expressions are obtained for attenuation of the radiation flux when the SSS is at the center of the solar disk, and with deviation the SSS from center of the solar disk at a certain angle. Evaluation is made for the total stream and separate sections the spectral range (from average UV- to the near IR-range. Found that attenuation will decrease at the displacement of SSS to solar disk center, because from there comes the most intense radiation flux. For constant attenuation values of the radiation flux is necessary to ensure a stable position of the SSS with respect to the center of the solar disk, or design should allow the SSS to regulate the transmission amount of the radiation flux. Is shown, that the greatest attenuation occurs in the spectral range of 260 ... 300 nm, corresponding to middle UV-range. Currently, there are published data on the significant effect of fluctuations in the UV radiation on the Earth's climate. Conclusion, that more research is needed of possible effects of reduce UV-radiation on the Earth's climate when regulating of the solar

  11. Thermal History of Planetary Objects: From Asteroids to super-Earths, from plate-tectonics to life (Runcorn-Florensky Medal Lecture)

    Science.gov (United States)

    Spohn, Tilman

    2013-04-01

    Convection in the interiors of planetesimals (asteroids), planets, and satellites is driving the thermal and chemical evolution of these bodies including the generation of possible magnetic fields. The wide size range induces a wide of range of time scales from hundreds of thousands of years for small planetesimals to a few tens of Gigayears for massive super-Earths. Evolution calculations are often based on energy (and entropy) balances parameterizing the transport properties of the interior in suitable ways. These thereby allow incorporating (in parameterized forms) interesting physical processes that depend in one way or another on the transport properties of the interior. The interior will usually be chemically layered in mantles and cores and include ice layers if icy satellites are considered. In addition to magnetic field generation calculated via energy balances of the core and using semi-empirical dynamo strength relations, processes that can be considered include sintering and compaction for small bodies and mantle (or ice) melting, differentiation and even continental growth for full-scaled terrestrial planets. The rheology of the interior is considered temperature and pressure dependent and the concentration of volatiles can be important. For super-Earths, probably the most critical consideration is how the mantle rheology would vary with pressure and thus with depth. It is possible that the increasing pressure will frustrate deep mantle convection thereby reducing the vigor of mantle convection. Possibly, the generation of a magnetic field in a putative iron-rich core will be impossible, if super-Earths at all have earth-like cores. On a much smaller scale, the decay of short-lived radioactives suffices to heat and melt planetesimals, the melting being helped by the low thermal conductivity of the initially porous body. This allows planets to form from pre-differentiated planetesimals thus helping to differentiate and form cores rapidly. On active

  12. Infra-red and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems

    Science.gov (United States)

    Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.

    2017-05-01

    A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.

  13. Novel Hybrid Ablative/Ceramic Layered Composite for Earth Re-entry Thermal Protection: Microstructural and Mechanical Performance

    OpenAIRE

    Triantou, K.; Mergia, K.; Marinou, A.; Vekinis, G.; Bárcena, Jorge; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.M.; Fischer, W.P.P.

    2015-01-01

    In view of spacecraft re-entry applications into planetary atmospheres, hybrid thermal protection systems based on layered composites of ablative materials and ceramic matrix composites are investigated. Joints of ASTERM (TM) lightweight ablative material with C-f/SiC (SICARBON (TM)) were fabricated using commercial high temperature inorganic adhesives. Sound joints without defects are produced and very good bonding of the adhesive with both base materials is observed. Mechanical shear tests ...

  14. Coldest Place on Earth: New MODIS and Landsat 8 Thermal Data and Detailed Time Series of Cold Events

    Science.gov (United States)

    Haran, T. M.; Campbell, G. G.; Scambos, T. A.; Pope, A.

    2016-12-01

    Using new thermal time-series data from MODIS Collection 6, and with detailed thermal mapping in Antarctic winter using a revised processing algorithm for Landsat 8's Band 10 data, we have regenerated our analysis of ultra-cold sites in the East Antarctic Plateau. More than 18 MODIS observations are available each day, supporting a detailed analysis of the progression of surface skin temperature toward the coldest values and the break-up of the cold pattern afterward. The close match between Aqua and Terra temperature observations provide corroboration that the record low temperatures are real and consistently mapped. Multi-day trends for a series of ultra-cold events over the MODIS record, and concurrent climate reanalysis data, provide insight into the meteorology of the cold events. These events reach temperatures lower than -93°C (-135°F or 180K), and always occur under prolonged (tropospheric) cloud-free conditions. Winter acquisitions of Landsat 8 thermal images in 2013, 2014 and 2016 provide 100-meter resolution of the cold sites, showing in greater detail the spatial extent of the cold site areas seen in the MODIS 1 km data and their correlation with topography.

  15. Survival and behaviour of juvenile unionid mussels exposed to thermal stress and dewatering in the presence of a sediment temperature gradient

    Science.gov (United States)

    Archambault, L.; Cope, W. Gregory; Kwak, Thomas J.

    2014-01-01

    Freshwater mussels (Unionidae) are a highly imperilled faunal group. One critical threat is thermal sensitivity, because global climate change and other anthropogenic activities contribute to increasing stream temperature and altered hydrologic flow that may be detrimental to freshwater mussels.

  16. First-principles investigations on structural, elastic, dynamical, and thermal properties of earth-abundant nitride semiconductor CaZn{sub 2}N{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying-Qin; Liu, Lei; Cheng, Yan [Sichuan Univ. (China). College of Physical Science and Technology; Hu, Cui E. [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Cai, Ling-Cang [CAEP, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research

    2017-04-01

    We presented a detailed first-principal calculation to study the structural, elastic, dynamical, and thermal properties of a new synthetic ternary zinc nitride semiconductors CaZn{sub 2}N{sub 2} using the generalised gradient approximation (GGA) method. The obtained lattice parameters of CaZn{sub 2}N{sub 2} at 0 K and 0 GPa are in good agreement with the experimental data and other theoretical findings. The pressure dependences of the elastic constants C{sub ij} together with other derived mechanical properties of CaZn{sub 2}N{sub 2} compound have also been systematically investigated. The results reveal that CaZn{sub 2}N{sub 2} is mechanically stable up to 20 GPa. The calculated the phonon curves and phonon density of states under different pressures indicate that the CaZn{sub 2}N{sub 2} compound maintains its dynamical stability up to 20 GPa. An analysis in terms of the irreducible representations of group theory obtained the optical vibration modes of this system, and we obtained the frequencies of the optical vibrational modes at Γ points together with the atoms that contributed to these vibrations of CaZn{sub 2}N{sub 2}. Meanwhile, the pressure dependencies of the frequencies Raman-active and IR-active modes at 0-20 GPa have been studied. The quasi-harmonic approximation (QHA) was applied to calculate the thermal properties of CaZn{sub 2}N{sub 2} as functions of pressures and temperatures such as the heat capacity, thermal expansions, the entropy, and Grueneisen parameter γ.

  17. The Earth's mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources

    Science.gov (United States)

    Fourel, Loïc; Limare, Angela; Jaupart, Claude; Surducan, Emanoil; Farnetani, Cinzia G.; Kaminski, Edouard C.; Neamtu, Camelia; Surducan, Vasile

    2017-08-01

    Convective motions in silicate planets are largely driven by internal heat sources and secular cooling. The exact amount and distribution of heat sources in the Earth are poorly constrained and the latter is likely to change with time due to mixing and to the deformation of boundaries that separate different reservoirs. To improve our understanding of planetary-scale convection in these conditions, we have designed a new laboratory setup allowing a large range of heat source distributions. We illustrate the potential of our new technique with a study of an initially stratified fluid involving two layers with different physical properties and internal heat production rates. A modified microwave oven is used to generate a uniform radiation propagating through the fluids. Experimental fluids are solutions of hydroxyethyl cellulose and salt in water, such that salt increases both the density and the volumetric heating rate. We determine temperature and composition fields in 3D with non-invasive techniques. Two fluorescent dyes are used to determine temperature. A Nd:YAG planar laser beam excites fluorescence, and an optical system, involving a beam splitter and a set of colour filters, captures the fluorescence intensity distribution on two separate spectral bands. The ratio between the two intensities provides an instantaneous determination of temperature with an uncertainty of 5% (typically 1K). We quantify mixing processes by precisely tracking the interfaces separating the two fluids. These novel techniques allow new insights on the generation, morphology and evolution of large-scale heterogeneities in the Earth's lower mantle.

  18. Radiative heating of carbonaceous near-Earth objects as a cause of thermal metamorphism for CK chondrites

    Science.gov (United States)

    Chaumard, Noël; Devouard, Bertrand; Delbo, Marco; Provost, Ariel; Zanda, Brigitte

    2012-07-01

    Metamorphic CK carbonaceous chondrites display matrix textures that are best explained by a transient thermal event with temperatures in the 550-950 K range and durations in the order of days to years, longer than what is commonly admitted for shock events but shorter than what is required for nuclide decay. We propose that radiative heating of small carbonaceous meteoroids with perihelia close to the Sun could account for the petrological features observed in CK chondrites. Numerical thermal modeling, using favorable known NEOs orbital parameters (perihelion distances between 0.07 and 0.15 AU) and physical properties of CV and CK chondrites (albedo in the range 0.01-0.1, 25% porosity, thermal diffusivity of 0.5-1.5 W m-1 K-1), shows that radiative heating can heat carbonaceous meteoroids in the meter size range to core temperatures up to 1050 K, consistent with the metamorphic temperatures estimated for CK chondrites. Sizes of known CV and CK chondrites indicate that all these objects were small meteoroids (radii from a few cm to 2.5 m) prior to their atmospheric entry. Simulations of dynamic orbits for NEO objects suggest that there are numerous such bodies with suitable orbits and properties, even if they are only a small percentage of all NEOs. Radiative heating would be a secondary process (superimposed on parent-body processes) affecting meteoroids formed by the disruption of an initially homogeneous CV3-type parent body. Different petrologic types can be accounted for depending on the sizes and heliocentric distances of the objects in such a swarm.

  19. Computer calculations of the thermally-induced magnetic and electronic properties of the rare earth compounds RERu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, R. [Inst. of Physics, Pedagocial Univ., Cracow (Poland); Radwanski, R.J. [Center for Solid State Physics, Cracow (Poland)

    2005-07-01

    The aim of this paper is to demonstrate the effectiveness of the calculation method, which takes into consideration the electrostatic ligands field as well as the the magnetic interactions. Our calculations method based on crystal field (CEF) together with the Zeeman effect in one Hamiltonian and allows calculating many of the temperature dependencies of the magnetic and electronic properties of the rare earth compounds. The result of the calculations shows the accuracy of the approach even for the intermetallic compounds. The obtained results for calculations of the compounds of the family in RERu{sub 2}Si{sub 2} (RE - rare-earth element) are fully confirmed the experimental data such as: the easy magnetic direction of all the analyzed compounds, the thermal dependencies of magnetic properties; in particular the giant magnetocrystalline anisotropy of PrRu{sub 2}S{sub 2} with the calculated anisotropy field B{sub A}>400T, in-plain anisotropy of ErRu{sub 2}Si{sub 2}, the cause of difficulty in magnetic ordering of compounds TmRu{sub 2}Si{sub 2} and YbRu{sub 2}Si{sub 2} as well as effects and dependencies not foreseen before. In this paper we have put together the elementary calculated magnetic properties for the chosen compounds of RERu{sub 2}Si{sub 2} in the paramagnetic region. All Calculations are on the basis of the calculating computer package BIREC 1.5{sup 1}. (orig.)

  20. Effect of rare earth Ce on the microstructure, physical properties and thermal stability of a new lead-free solder

    Directory of Open Access Journals (Sweden)

    Chen W.

    2011-01-01

    Full Text Available In this paper, in order to develop a low silver content lead-free solder with good overall properties, a newly designed solder alloys of Sn-0.3Ag-0.7Cu-20Bi-xCe type, with addition of varying amounts of rare earth Ce (0.05 mass%, 0.1 mass% and 0.2 mass% were studied. The melting temperature of Sn-0.3Ag- 0.7Cu can be decreased substantially through addition of 20 mass% Bi; while the segregation of Bi element in the microstructure of the as-cast alloys can be relieved by micro-alloying with trace amount of rare earth Ce. Besides, aging treatments (160°C held for 6 h of these solder alloys imply that appropriate amount of Ce addition can not only depress the diffusion induced aggregation of Bi in the microstructure but promote the homogenization during annealing. Compared with Bi-free Sn-0.3Ag-0.7Cu solder, Sn-0.3Ag-0.7Cu- 20Bi exhibits better wettability. More excitingly, the wetting property of Sn-0.3Ag-0.7Cu-20Bi can be further improved by doping little amounts of Ce, especially 0.5 mass%, in which case the spreading area of the solder can be increased to the largest extent. On the whole, the present study reveals that Sn-0.3Ag-0.7Cu- 20Bi-xCe (x=0.05-0.1 is a promising lead-free solder candidate considering the microstructure, melting temperature and wetting properties.

  1. Novel Hybrid Ablative/Ceramic Layered Composite for Earth Re-entry Thermal Protection: Microstructural and Mechanical Performance

    Science.gov (United States)

    Triantou, K.; Mergia, K.; Marinou, A.; Vekinis, G.; Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.

    2015-04-01

    In view of spacecraft re-entry applications into planetary atmospheres, hybrid thermal protection systems based on layered composites of ablative materials and ceramic matrix composites are investigated. Joints of ASTERM™ lightweight ablative material with Cf/SiC (SICARBON™) were fabricated using commercial high temperature inorganic adhesives. Sound joints without defects are produced and very good bonding of the adhesive with both base materials is observed. Mechanical shear tests under ambient conditions and in liquid nitrogen show that mechanical failure always takes place inside the ablative material with no decohesion of the interface of the adhesive layer with the bonded materials. Surface treatment of the ablative surface prior to bonding enhances both the shear strength and the ultimate shear strain by up to about 60%.

  2. Thermal and force loads on the vehicle surface in high-velocity motion in the earth's atmosphere

    Science.gov (United States)

    Tarnavskii, G. A.

    2008-03-01

    Consideration has been given to a number of aspects of mathematical modeling of a high-velocity flight in the earth’s atmosphere in a wide range of variation of the determining parameters. Super-and hypersonic gas flow past flying vehicles has been investigated based on computer-aided calculations with allowance for its actual properties. Data on the distribution of gasdynamic parameters in the flow field, including thermal and force loads on the surface, have been obtained and analyzed. The issues of applying today’s information technologies to archiving scientific knowledge obtained in electronic databases of a specialized Internet center and their dissemination via the Global Network have been discussed.

  3. GOCE gravity gradient data for lithospheric modeling

    NARCIS (Netherlands)

    Bouman, J.; Ebbing, J.; Meekes, S.; Fattah, R.A.; Fuchs, M.; Gradmann, S.; Haagmans, R.; Lieb, V.; Schmidt, M.; Dettmering, D.; Bosch, W.

    2015-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is the European Space Agency's (ESA)satellite gravity mission to determine the Earth's mean gravity field. GOCE delivers gravity gradients, anew type of satellite data. We study how these data can improve modeling of the Earth's

  4. Techniques for Mitigating Thermal Fatigue Degradation, Controlling Efficiency, and Extending Lifetime in a ZnO Thermoelectric Using Grain Size Gradient FGMs

    Science.gov (United States)

    Cramer, Corson L.; Li, Wenjie; Jin, Zhi-He; Wang, Jue; Ma, Kaka; Holland, Troy B.

    2018-01-01

    A functionally graded material (FGM) in terms of grain size gradation is fabricated using zinc oxide (ZnO) with spark plasma sintering and an additive manufacturing technique by diffusion bonding layers of material sintered at different temperatures to achieve a thermoelectric generator (TEG) material that can dissipate heat well and retain high energy conversion efficiency for longer-lasting and comparably efficient TEGs. This FGM is compared to a previously made FGM with continuous grain size gradation. Uniform and graded grain size conditions are modeled for thermoelectric output by using thermoelectric properties of the uniform grain size as well as the varying properties seen in the FGMs. The actual thermoelectric output of the samples is measured and compared to the simulations. The grain size has a large effect on the efficiency and efficiency range. The samples are thermally cycled with a fast heating rate to test the thermal stress robustness and degradation, and the resistance at the highest temperature is measured to indicate degradation from thermal stress. The measured efficiency after cycling shows that the FGMs survive longer lifetime than that with uniform small grains.

  5. Fish production and diversity in the Paleocene-Eocene Thermal Maximum—Increased production but no novel faunas during a "Future Earth" analog

    Science.gov (United States)

    Tomczik, D. W.; Norris, R. D.; Gaskell, D. E.

    2014-12-01

    A partial analog for future global change is the Paleocene-Eocene Thermal Maximum—a transient episode of warming, acidification, and biogeographic change at ~55.5 Ma. The PETM is known to have triggered extinction in some deep sea biotas, extensive biogeographic range shifts, and the common occurrence of 'excursion biotas'—non-analog occurrences of species that are typically rare in the open ocean before or after the PETM. Here we report on the impact of the PETM on fish production and biodiversity. Our data include the mass accumulation rate of fish teeth and denticles as well as an analysis of tooth morphotypes for three PETM sites: ODP 1220 and 1209 in the Pacific, and ODP 1260 in the equatorial Atlantic. Tooth morphotypes hardly change through the PETM and consist of abundant midwater species (angler fish and flashlight fish) in addition to sharks and epipelagic fish. There is no evidence for a non-analog 'excursion biota' during the PETM, suggesting that fish experienced fewer geographic range shifts than the calcareous and organic-walled plankton where excursion biotas are commonplace. Fish mass accumulation rates are also relatively stable before and after the PETM although all sites show a transient rise in fish production at the onset of the PETM or within the later part of the "PETM Core". These results broadly match published estimates of PETM export production from biogenic barium fluxes. Our findings run counter to "Future Earth" models that use climate forecasts for the next century to predict the impact of global change on fish stocks. These models suggest that future warming and ocean stratification will decrease most tropical and subtropical ocean fish production, accentuate fish production in the boundary currents and generally shift production toward higher latitudes. A resolution of "Future Earth" models and PETM data may reflect the different timescales of observation and stages of ecological response to severe global change.

  6. Numeral analysis for Prandtl number dependency on natural convection in an enclosure having a vertical thermal gradient with a square insulator inside

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Il Seouk [School of Mechanical Engineering, Kyungpook National University, Daegu (Korea, Republic of)

    2012-04-15

    The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body in the center is studied. Three different Prandtl numbers (0.01, 0.7 and 7) are considered for the investigation of the effect of the Prandtl number on natural convection. Adiabatic boundary conditions are employed for the side walls. A two dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral methodology for different Rayleigh numbers varying over the range of 103 to 106. It had been experimentally reported that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. It was found that when Ra=106, only the case for intermediate Pr (=0.7) reached a non-changing steady state and the low and high Pr number cases (Pr=0.01 and 7) showed a periodically oscillatory fashion hydro dynamically and thermally. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers are presented to show the overall heat transfer characteristics in the system. Further, the isotherms and streamline distributions are presented in detail to compare the physics related to their thermal behavior.

  7. The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2007-01-01

    Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.

  8. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    Science.gov (United States)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  9. Thermal Ablation Modeling for Silicate Materials

    Science.gov (United States)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  10. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    Science.gov (United States)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  11. Luminescence and photo-thermally stimulated defects creation processes in PbWO{sub 4} crystals doped with trivalent rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Fabeni, P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Krasnikov, A.; Kärner, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Laguta, V.V.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Pazzi, G.P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Zazubovich, S., E-mail: svet@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-04-15

    In PbWO{sub 4} crystals, doped with various trivalent rare-earth A{sup 3+} ions (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, Gd{sup 3+}), electron (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers can be created under UV irradiation not only in the host absorption region but also in the energy range around 3.85 eV (Böhm et al., 1999; Krasnikov et al., 2010). Under excitation in the same energy range, the UV emission peak at 3.05–3.20 eV is observed. In the present work, the origin of this emission is investigated in detail by low-temperature time-resolved luminescence methods. Photo-thermally stimulated creation of (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers is studied also in PbWO{sub 4}:Mo,A{sup 3+} crystals. Various processes, which could explain both the appearance of the UV emission and the creation of the {(WO_4)"3"−–A"3"+}-type centers under irradiation of PbWO{sub 4}: A{sup 3+} crystals in the 3.85±0.35 eV energy range, are discussed. The radiative and non-radiative decay of the excitons localized near A{sup 3+} ions is considered as the most probable mechanism to explain the observed features. -- Highlights: ► UV emission of PbWO{sub 4}: A{sup 3+} (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, and Gd{sup 3+}) crystals is studied. ► The emission is ascribed to the radiative decay of excitons localized near A{sup 3+} ions. ► The excitons are created at 3.85 eV excitation by a two-step process. ► Non-radiative decay of the excitons leads to the creation of (WO{sub 4}){sup 3−}–A{sup 3+} centers.

  12. Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data

    DEFF Research Database (Denmark)

    Khan, Amir; Connolly, J.A.D.; Olsen, Nils

    2006-01-01

    We reexamine the problem of inverting C responses, covering periods between 1 month and 1 year collected from 42 European observatories, to constrain the internal structure of the Earth. Earlier studies used the C responses, which connect the magnetic vertical component and the horizontal gradient...... of the horizontal components of electromagnetic variations, to obtain the conductivity profile of the Earth's mantle. Here, we go beyond this approach by inverting directly for chemical composition and thermal state of the Earth, rather than subsurface electrical conductivity structure. The primary inversion...

  13. Thermal Gradient Data Acquisition System Documentation

    National Research Council Canada - National Science Library

    Walker, Larry D; Robinson, Scott B; Leon, Lisa

    2004-01-01

    ... that can be recorded in mice. Since acceptable commercial systems are not available, this system was custom-built to acquire data using National Instruments' versatile hardware components and LabVIEW...

  14. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    Science.gov (United States)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  15. Constraints on the thermal and compositional nature of the Earth's mantle inferred from joint inversion of compressional and shear seismic waves and mineral physics data

    DEFF Research Database (Denmark)

    Tesoniero, Andrea

    Research: Solid Earth on October 2015. The second manuscript “S − to − P heterogeneity ratio in the lower mantle and thermo-chemical implications” has been submitted to Earth and Planetary Science Letters and it is currently under review process. This thesis represents the culmination of my Ph.D. project......Seismology is by far the most powerful tool to explore the inner structure of our planet. However, the ability to retrieve the physical properties, i.e. density, temperature and composition, of the Earth’s constituent materials is limited by the inherent difficulty of separating each contribution...... and by uncertainties in the sensitivity of seismic velocities to these parameters. The combination of seismic observations and information from mineral physics can help overcoming the limited resolution of the seismic data and obtaining an insight into the physical state of the Earth. This Ph.D. project summarizes...

  16. Mechanical behavior of flexible pavements undergoing thermal gradients - doi: 10.4025/actascitechnol.v33i3.10848 Comportamento mecânico de pavimentos flexíveis submetidos a gradientes térmicos - doi: 10.4025/actascitechnol.v33i3.10848

    Directory of Open Access Journals (Sweden)

    Luciano Pivoto Specht

    2011-07-01

    Full Text Available The proper structural understanding of a pavement should consider, according to the pavement mechanics, the aspects related to the traffic load, the environment and material properties. When asphaltic materials are used, the stress/strain relationships and the dependencies of load-time and temperature are key parameters for understanding flexible pavement performance. In this study, we employed the finite elements method to calculate stress/strain in flexible pavements structures considering temperature variation. The input data includes material stiffness, which is function of temperature and changes with position and time. The pavement temperature is obtained through the heat transfer differential equation, applying the Laplace transform and its numerical inversion. The finite elements grid was generated by the software ANSYS® and imported by the software MATLAB®. In order to determine the stiffness of the first layer (asphalt concrete we used the average of four nodes, depending on the each node temperature. The result evidences the importance of thermal gradients for the pavement analysis, both for the fatigue cracking and the accumulation of plastic deformations. The use of unique modulus for asphalt concrete layer generates results far from reality.O adequado entendimento estrutural de um pavimento deve considerar, segundo a mecânica dos pavimentos, os aspectos relacionados aos carregamentos, ao meio físico e às propriedades dos materiais constituintes. No caso de materiais asfálticos, as relações entre tensão e deformação e as dependências do tempo de carregamento e da temperatura são fundamentais para o avanço no entendimento do desempenho de pavimentos flexíveis. Neste trabalho foi utilizando o método de elementos finitos para o cálculo das tensões e deformações em pavimentos flexíveis considerando variações de temperatura. Os dados de entrada incluem a rigidez dos materiais, que é função da temperatura, a qual

  17. Superconductors in a temperature gradient

    CERN Document Server

    Huebener, Rudolf Peter

    1995-01-01

    In the mixed state of a type II superconductor quasiparticles and magnetic flux quanta respond to a temperature gradient by thermal diffusion, in this way generating the Seebeck and Nernst effects, respectively. Our understanding of the Seebeck effect originates from an extension of the two-fluid counterflow concept, originally introduced by Ginzburg, to the situation where vortices (with a normal core) are imbedded in the superconducting phase. This mechanism results in an intimate connection between the Seebeck coefficient and the electric resistivity due to vortex motion. In all thermal diffusion processes it is the transport entropy of the diffusing species that determines the driving force, and the physics of this quantity is illustrated. Our discussion of the experimental side concentrates on the recent work performed with the cuprate superconductors. The characteristic broadening of the resistive transition in the mixed state, found in these materials due to their high anisotropy and the peculiar vorte...

  18. Universal gradient descent

    OpenAIRE

    Gasnikov, Alexander

    2017-01-01

    In this small book we collect many different and useful facts around gradient descent method. First of all we consider gradient descent with inexact oracle. We build a general model of optimized function that include composite optimization approach, level's methods, proximal methods etc. Then we investigate primal-dual properties of the gradient descent in general model set-up. At the end we generalize method to universal one.

  19. Personal Exposure in a Ventilated Room with Concentration Gradients

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.

    This paper deals with personal exposure in rooms with concentration gradients and persons present. Results from case studies including a breathing thermal manikin in a displacement ventilated room and in a wind channel are presented.......This paper deals with personal exposure in rooms with concentration gradients and persons present. Results from case studies including a breathing thermal manikin in a displacement ventilated room and in a wind channel are presented....

  20. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  1. Gradient and vorticity banding

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, Willem J.

    2008-01-01

    "Banded structures" of macroscopic dimensions can be induced by simple shear flow in many different types of soft matter systems. Depending on whether these bands extend along the gradient or vorticity direction, the banding transition is referred to as "gradient banding" or "vorticity banding,"

  2. Conjugate gradient optimization programs for shuttle reentry

    Science.gov (United States)

    Powers, W. F.; Jacobson, R. A.; Leonard, D. A.

    1972-01-01

    Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.

  3. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  4. Second gradient poromechanics

    CERN Document Server

    Sciarra, Giulio; Coussy, Olivier

    2010-01-01

    Second gradient theories have been developed in mechanics for treating different phenomena as capillarity in fluids, plasticity and friction in granular materials or shear band deformations. Here, there is an attempt of formulating a second gradient Biot like model for porous materials. In particular the interest is focused in describing the local dilatant behaviour of a porous material induced by pore opening elastic and capillary interaction phenomena among neighbouring pores and related micro-filtration phenomena by means of a continuum microstructured model. The main idea is to extend the classical macroscopic Biot model by including in the description second gradient effects. This is done by assuming that the surface contribution to the external work rate functional depends on the normal derivative of the velocity or equivalently assuming that the strain work rate functional depends on the porosity and strain gradients. According to classical thermodynamics suitable restrictions for stresses and second g...

  5. Microbial Paleontology, Mineralogy and Geochemistry of Modern and Ancient Thermal Spring Deposits and Their Recognition on the Early Earth and Mars"

    Science.gov (United States)

    Farmer, Jack D.

    2004-01-01

    The vision of this project was to improve our understanding of the processes by which microbiological information is captured and preserved in rapidly mineralizing sedimentary environments. Specifically, the research focused on the ways in which microbial mats and biofilms influence the sedimentology, geochemistry and paleontology of modem hydrothermal spring deposits in Yellowstone national Park and their ancient analogs. Toward that goal, we sought to understand how the preservation of fossil biosignatures is affected by 1) taphonomy- the natural degradation processes that affect an organism from the time of its death, until its discovery as a fossil and 2) diagenesis- longer-term, post-depositional processes, including cementation and matrix recrystallization, which collectively affect the mineral matrix that contains fossil biosignature information. Early objectives of this project included the development of observational frameworks (facies models) and methods (highly-integrated, interdisciplinary approaches) that could be used to explore for hydrothermal deposits in ancient terranes on Earth, and eventually on Mars.

  6. Optical Diagnostics for High-Temperature Thermal Barrier Coatings

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2009-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments, such as in jet turbine engines. Taking advantage of the translucent nature of TBCs, optical diagnostics have been developed that can provide an informed assessment of TBC health that will allow mitigating action to be taken before TBC degradation threatens performance or safety. In particular, rare-earth-doped luminescent sublayers have been integrated into the TBC structure to produce luminescence that monitors TBC erosion, delamination, and temperature gradients. Erosion monitoring of TBC-coated specimens is demonstrated by utilizing visible luminescence that is excited from a sublayer that is exposed by erosion. TBC delamination monitoring is achieved in TBCs with a base rare-earth-doped luminescent sublayer by the reflectance-enhanced increase in luminescence produced in regions containing buried delamination cracks. TBC temperature monitoring is demonstrated using the temperature-dependent decay time for luminescence originating from the specific coating depth associated with a rare-earth-doped luminescent sublayer. The design and implementation of these TBCs with integrated luminescent sublayers is discussed, including co-doping strategies to produce more penetrating near-infrared luminescence. It is demonstrated that integration of the rare-earth-doped sublayers is achieved with no reduction in TBC life. In addition, results for multilayer TBCs designed to also perform as radiation barriers are also presented.

  7. Rare Earth Optical Temperature Sensor

    Science.gov (United States)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  8. Titanium isotopes and rare earth patterns in CAIs: Evidence for thermal processing and gas-dust decoupling in the protoplanetary disk

    Science.gov (United States)

    Davis, Andrew M.; Zhang, Junjun; Greber, Nicolas D.; Hu, Jingya; Tissot, François L. H.; Dauphas, Nicolas

    2018-01-01

    Titanium isotopic compositions (mass-dependent fractionation and isotopic anomalies) were measured in 46 calcium-, aluminum-rich inclusions (CAIs) from the Allende CV chondrite. After internal normalization to 49Ti/47Ti, we found that ε50Ti values are somewhat variable among CAIs, and that ε46Ti is highly correlated with ε50Ti, with a best-fit slope of 0.162 ± 0.030 (95% confidence interval). The linear correlation between ε46Ti and ε50Ti extends the same correlation seen among bulk solar objects (slope 0.184 ± 0.007). This observation provides constraints on dynamic mixing of the solar disk and has implications for the nucleosynthetic origin of titanium isotopes, specifically on the possible contributions from various types of supernovae to the solar system. Titanium isotopic mass fractionation, expressed as δ‧49Ti, was measured by both sample-standard bracketing and double-spiking. Most CAIs are isotopically unfractionated, within a 95% confidence interval of normal, but a few are significantly fractionated and the range δ‧49Ti is from ∼-4 to ∼+4. Rare earth element patterns were measured in 37 of the CAIs. All CAIs with significant titanium mass fractionation effects have group II and related REE patterns, implying kinetically controlled volatility fractionation during the formation of these CAIs.

  9. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Science.gov (United States)

    Novák, Pavel; Šprlák, Michal

    2017-12-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  10. High Gradient Accelerator Research

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  11. Preconditioned Stochastic Gradient Descent.

    Science.gov (United States)

    Li, Xi-Lin

    2017-03-09

    Stochastic gradient descent (SGD) still is the workhorse for many practical problems. However, it converges slow, and can be difficult to tune. It is possible to precondition SGD to accelerate its convergence remarkably. But many attempts in this direction either aim at solving specialized problems, or result in significantly more complicated methods than SGD. This paper proposes a new method to adaptively estimate a preconditioner, such that the amplitudes of perturbations of preconditioned stochastic gradient match that of the perturbations of parameters to be optimized in a way comparable to Newton method for deterministic optimization. Unlike the preconditioners based on secant equation fitting as done in deterministic quasi-Newton methods, which assume positive definite Hessian and approximate its inverse, the new preconditioner works equally well for both convex and nonconvex optimizations with exact or noisy gradients. When stochastic gradient is used, it can naturally damp the gradient noise to stabilize SGD. Efficient preconditioner estimation methods are developed, and with reasonable simplifications, they are applicable to large-scale problems. Experimental results demonstrate that equipped with the new preconditioner, without any tuning effort, preconditioned SGD can efficiently solve many challenging problems like the training of a deep neural network or a recurrent neural network requiring extremely long-term memories.

  12. Characterization and Synthesis of Silver Nanostructures in Rare Earth Activated GeO2-PbO Glass Matrix Using Matrix Adjustment Thermal Reduction Method

    Directory of Open Access Journals (Sweden)

    Hj. A. A. Sidek

    2013-04-01

    Full Text Available This paper reports matrix adjustment thermal reduction method to synthesize silver nanostructures in Er3+/Yb3+ activated GeO2-PbO glass matrix. The GeO2-PbO glass, the medium of nanoparticle formation, doped with Er2O3, Yb2O3 and AgNO3 was prepared by a melt quenching method. Annealing of the glass for different times was utilized, not only due to thermally reduce Ag+ ions to Ag nanostructures, but also to influence the glassy network. This is because, the glass structural transformation temperature is near to 435 °C and heating at more than this temperature can cause some structural changes in the glass matrix. According to TEM images, samples that tolerate 450 °C annealing temperature for one hour show the formation of basil-like silver nanostructures with a mean length of 54 nm and mean diameter of 13 nm embedded in the glass matrix, whereas with annealing at 450 °C for 5 to 20 h, silver nanoparticles of about 3–4 nm mean diameter size are formed. Annealing for 30 h causes silver nanoparticles to aggregate to form larger particles due to an Oswald ripening process. Observation of the characteristic Ag-NP SPR band at 400–500 nm in the UV-visible absorption spectra confirms the existence of silver nanoparticles. The SPR band widens to longer wavelengths in one hour annealed samples, which relates to the existence of nanostructures with different size or fractal shapes. In addition, an increment in the peak of the SPR band by increasing the duration of annealing indicates the formation of more nanoparticles. Furthermore, the existence of a peak at 470 cm–1 in the FTIR spectra of annealed samples and its absence in the samples not exposed to an annealing process suggests that the glass matrix is polymerized by Pb-O chains during the 450 °C annealing process. This is the main source of different nanostructures because of the dissimilar stabilizing media. The tighter media cap the particles to form small and dense nanoparticles but a

  13. Uniform gradient expansions

    Directory of Open Access Journals (Sweden)

    Massimo Giovannini

    2015-06-01

    Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  14. GRADIENTES TÉRMICOS NATURAIS NA ESTIMATIVA DO FLUXO DE SEIVA PELO MÉTODO GRANIER

    Directory of Open Access Journals (Sweden)

    LUCAS MELO VELLAME

    2011-01-01

    Full Text Available The effects of thermal gradients on stem add one methodological constraint for estimating sap flow through the Granier method (thermal dissipation probe. The present work studied the effect of natural thermal gradients on estimates of sap flow by using thermal dissipation probe in mango plants. The study was carried by using mango plants of the cultivar Tommy Atkins during two development stages: (a during the initial development phase of plants with leaf area of 0.66, 0.73, 1.78 m2 , planted in 15 and 50 liters pots. The study was carried in a greenhouse environment and in the field. Different thermal shields were used around the stem of plants in pots in order to minimize the effects of thermal natural gradients. The measurements of thermal differences were obtained from an adult plant with high leaf density and small exposition of branches to solar radiation. Sensors placed in stems of adult plant with high leaf density provided smaller thermal gradients compared to those inserted in young plant stems. It is necessary to cover the whole branch with neoprene and a shield (skirt type of aluminum paper above and below the location of probe insertion for exposed branches. The air temperature at 2 m height may be used efficiently to correct thermal gradients. It is indispensable the correction of natural thermal gradients in the stem for adequate estimating sap flow density by the Granier method.

  15. Probabilistic Multileave Gradient Descent

    NARCIS (Netherlands)

    Oosterhuis, H.; Schuth, A.; de Rijke, M.; Ferro, N.; Crestani, F.; Moens, M.-F.; Mothe, J.; Silvestri, F.; Di Nunzio, G.M.; Hauff, C.; Silvello, G.

    2016-01-01

    Online learning to rank methods aim to optimize ranking models based on user interactions. The dueling bandit gradient descent (DBGD) algorithm is able to effectively optimize linear ranking models solely from user interactions. We propose an extension of DBGD, called probabilistic multileave

  16. Phaethon Near Earth

    Science.gov (United States)

    Jewitt, David

    2017-08-01

    Planet-crossing asteroid (3200) Phaethon, source of the Geminid meteoroid stream, will pass close to Earth in December 2017. Observations with HST are proposed to image debris ejected from this object at 1 AU heliocentric distance, to estimate the ejection velocities as the Earth passes through the orbit plane, and to estimate the dust production rate for comparison with the rates needed to sustain the Geminid stream in steady-state. These measurements will help determine the mechanism behind the ejection of the Geminids, a long-standing puzzle. While the release of micron-sized particles (probably by thermal fracture) has been recorded at Phaethon's perihelion (0.14 AU), mass loss has never been detected otherwise, raising the puzzle of the ejection mechanism and duration. The close approach (0.07 AU) on December 17 gives a once-in-a-lifetime opportunity to observe Phaethon at high sensitivity with a resolution of a few kilometers.

  17. Use of Ground Penetrating Radar to Study Gradient Media

    Science.gov (United States)

    Titov, A.

    2016-12-01

    Nowadays Ground Penetrating Radar (GPR) is often used to solve different problems of applied geophysics including the hydrological ones. This work was motivated by detection of weak reflections in the body of water observed during the surveys on the freshwater lakes using GPR. The same reflections were first analyzed by John Bradford in 2007. These reflections can arise from the thermal gradient layer or thermocline due to different dielectric permittivity of cold and warm water. We employed physical and mathematical modeling to identify the properties of such thermoclines. We have constructed a special GPR stand to study the gradient media in our laboratory. The stand consists of a water-filled plastic tank and plastic tubes, which gather the cold water under the warm water. Our stand allows for changing parameters of the gradient layer, such as limits of dielectric permittivity and the thickness of the gradient layer. GPR antenna was placed slightly under the water surface to remove the parasitic reflections. To visualize the thermal distribution, an infrared camera and thermal sensors were used. Analysis of the GPR traces after physical modeling, performed in the MATLAB environment, allows us to locate the weak reflection from the gradient layer. We observed that (i) the change of the gradient boundary values alters the amplitude of the signal, (ii) the arrival time of the impulse reflected from the gradient layer corresponds to the arrival time of the impulse reflected from the top boundary of this layer, and (iii) the shape of the signal reflected from the gradient layer coincides with the shape of the signal reflected from the non-gradient boundary between two bodies. The quantitative properties of thermocline can be determined using amplitude analysis of GPR signals. Finally, the developed methods were successfully applied to real field data.

  18. Construcción sustentable, análisis de retraso térmico a bloques de tierra comprimidos / Sustainable building, thermal analysis of delay to earth blocks tablets

    Directory of Open Access Journals (Sweden)

    Roux Gutiérrez, Rubén Salvador

    2015-09-01

    Full Text Available Este artículo es el resultado de la investigación que aborda el tema las propiedades térmicas de los Bloques de Tierra Comprimida (BTC, para corroborar las ventajas de este material de construcción alternativo, sobre los materiales convencionales, para comprobar que estos materiales pueden satisfacer las necesidades de la población en la construcción de sus viviendas digna, mejorando la calidad de vida del usuario y produciendo un menor impacto ambiental. Se plantea el uso de BTC como unidad de análisis, elaborado con material de la zona del sur de Tamaulipas, probando sus ventajas como regulador natural de temperatura contra el bloque de concreto y el ladrillo recocido de la región, que son empleados en el ámbito de la construcción de viviendas. Las pruebas térmicas realizadas fueron simulando el efecto del sol sobre un muro, registrándose la temperatura durante las pruebas determinándose el retraso térmico en los muros dependiendo del material. Es así como con el resultado de las pruebas se determinó cual es el material óptimo para emplear como envolvente de la vivienda. This article is the result of research that addresses the issue the thermal properties of the Compressed Earth Blocks (CEB, to corroborate the benefits of this alternative building material, on the conventional materials, to verify that these materials can meet the needs of the population in the construction of their homes worthy, improving the quality of life of the user and producing a lower environmental impact. Considering the use of CEB as a unit of analysis, developed with materials from the area of southern Tamaulipas, proving its advantages as natural regulator of temperature against the concrete block and brick annealing of the region, who are employed in the field of housing construction. Thermal testing carried out were simulating the effect of the sun on a wall, the temperature recorded during the tests determined the delay in the thermal walls

  19. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  20. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... to be the only possible approach to obtain the volume flow in: thermal plumes in ventilated rooms....

  1. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the Swarm science objectives, the mission concept, the scientific instrumentation, and the expected contribution to the ILWS programme will be summarized. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR....

  2. Increasing SLEDed Linac Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Zoltan D

    2001-11-08

    This note will show how to increase the SLED [1] gradient by varying Q{sub e}, the external Q of the SLED cavity, by increasing its Q{sub 0} and by increasing the compression ratio. If varying the external Q is to be effective, then the copper losses should be small so that Q{sub 0} >> Q{sub e}. Methods of varying Q{sub e} will be indicated but no experimental data will be presented. If we increase the klystron pulse width from 3.5 to 5 {micro}S and increase Q{sub 0} from the present 100000 to 300000, then the gradient increases by 19% and the beam energy increases from 50 to 60 GeV. This note will also discuss SLED operation at 11424 MHz, the NLC frequency. Without Q{sub e} switching, using SLED at 11424 MHz increases the SLAC gradient from 21 MV/m to 34 MV/m, and at the same repetition rate, uses about 1/5 of rf average power. If we also double the compression ratio, we reach 47 MV/m and over 100 GeV beam energy.

  3. Geothermal gradient of Campos Basin, Rio de Janeiro State; Gradiente geotermico da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Jahnert, Ricardo J. [PETROBRAS, Campos, RJ (Brazil). Dept. de Exploracao

    1987-08-01

    Study of thermal gradient in subsurface, using drilling wells as measurer to the temperature variation, its implications at oil classification and microorganisms actuation,on the sedimentary basin of Campos (Rio de Janeiro State, Brazil) are presented. Results obtained, main factors who control temperature distribution within wells, on the basin, temperature anomalies found and the relationship between temperature and oil pattern are also discussed. 10 figs., 9 refs

  4. 3-D Modeling of Thermal Structure in Active Regions on the Solar Surface

    Science.gov (United States)

    Mok, Y.; Lionello, R.; Mikic, Z.; Linker, J.

    2001-05-01

    The thermal structure of a magnetically active region depends on a complicated balance between plasma heating, radiative cooling and the highly anisotropic thermal conduction guided by the magnetic field. It is also affected by plasma convection if siphon flows exist as a result of dynamic imbalance of pressure gradient, gravity and magnetic force. The difficulty of the numerical simulation lies in the wide ranges of density and temperature, separated by a narrow transition region with enormous gradients. Early studies of 1-D models (Mok et. al. 1991) provide a guidance on the thermal structure along individual field lines. A slightly more advanced 2-D model (Mok and Van Hoven 1993) produces a differential emission measure that is remarkably consistent with observations on the quiet sun. Active regions, however, require a 3-D model. We have implemented the necessary thermodynamics into our 3-D MHD code for this study. By starting with a magnetogram of an active region, we first establish an overlying magnetic structure. We then compute the thermal structure in the atmosphere. One of the most poorly understood physical processes in the energy balance is the plasma heating. We have computed the thermal structure based on various heating models and will compare their resulting emission measures. Mok, Schnack, and Van Hoven, 1991, Solar Phys. 132, 95. Mok and Van Hoven, 1993, Solar Phys. 146, 5. Work supported by the Sun Earth Connection Theory Program of NASA.

  5. Temperature gradients assist carbohydrate allocation within trees.

    Science.gov (United States)

    Sperling, Or; Silva, Lucas C R; Tixier, Aude; Théroux-Rancourt, Guillaume; Zwieniecki, Maciej A

    2017-06-12

    Trees experience two distinct environments: thermally-variable air and thermally-buffered soil. This generates intra-tree temperature gradients, which can affect carbon metabolism and water transport. In this study, we investigated whether carbohydrate allocation within trees is assisted by temperature gradients. We studied pistachio (Pistacia integerrima) to determine: (1) temperature-induced variation in xylem sugar concentration in excised branches; (2) changes in carbon allocation in young trees under simulated spring and fall conditions; and (3) seasonal variability of starch levels in mature orchard trees under field conditions. We found that warm branches had less sugar in perfused sap than cold branches due to increasing parenchyma storage. Simulated spring conditions promoted allocation of carbohydrates from cold roots to warm canopy and explained why starch levels surged in canopies of orchard trees during early spring. This driving force of sugar transport is interrupted in fall when canopies are colder than roots and carbohydrate redistribution is compartmentalized. On the basis of these findings, we propose a new mechanistic model of temperature-assisted carbohydrate allocation that links environmental cues and tree phenology. This data-enabled model provides insights into thermal "fine-tuning" of carbohydrate metabolism and a warning that the physiological performance of trees might be impaired by climatic changes.

  6. Thermal Examination of an Orbiting Cryogenic Fuel Depot

    Science.gov (United States)

    Hull, Patrick V.; Canfield, Steven L.; Carrington, Connie; Fikes, John

    2002-01-01

    For many years NASA has been interested in the storage and transfer of cryogenic fuels in space. Lunar, L2 and other chemical propulsive space vehicle missions now have staged refueling needs that a fuel depot would satisfy. The depot considered is located in lower earth orbit. Many considerations must go into designing and building such a station. Multi-layer insulation systems, thermal shielding and low conductive structural supports are the principal means of protecting the system from excessive heat loss due to boiloff. This study focuses on the thermal losses associated with storing LH2 in a passively cooled fuel depot in a lower earth equatorial orbit. The corresponding examination looks at several configurations of the fuel depot. An analytical model has been developed to determine the thermal advantages and disadvantages of three different fuel depot configurations. Each of the systems consists of three Boeing rocket bodies arranged in various configurations. The first two configurations are gravity gradient stabilized while the third one is a spin-stabilized concept. Each concept was chosen for self-righting capabilities as well as the fuel settling capabilities, however the purpose of this paper is to prove which of the three concepts is the most efficient passively cooled system. The specific areas to be discussed are the heating time from the fusion temperature to the vaporization temperature and the amount of boiloff for a specific number of orbits. Each of the previous points is compared using various sun exposed surface areas of the tanks.

  7. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development

    DEFF Research Database (Denmark)

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik

    2009-01-01

    is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple...... microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More...

  8. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  9. Crystal structures and thermal decomposition of permanganates AE[MnO{sub 4}]{sub 2} . n H{sub 2}O with the heavy alkaline earth elements (AE=Ca, Sr and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2017-10-01

    Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O and Ba[MnO{sub 4}]{sub 2} are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO{sub 4}]{sub 2} a long time ago, we employed a cation-exchange column loaded with Ba{sup 2+} cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O exhibiting [CaO{sub 8}] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O with [SrO{sub 10}] polyhedra adopts the cubic space group P2{sub 1}3 with a=964.19(7) pm and Z=4. So the harder the AE{sup 2+} cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO{sub 4}]{sub 2} in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO{sub 12}] polyhedra. During the thermal decomposition of Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H{sub 2}O molecule at 157 C. The crystal structure of Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn{sub 2}O{sub 3} and the oxomanganates(III,IV) AEMn{sub 3}O{sub 6} (AE=Ca and Sr) remain as final decomposition products at 800 C

  10. Polarity reversals and tilt of the Earth's magnetic dipole

    Science.gov (United States)

    Dolginov, A. Z.

    1993-01-01

    There is evidence that the terrestrial magnetic field is connected with the Earth's mantle: (1) there are magnetic anomalies that do not take part in the westward drift of the main field, but are fixed with respect to the mantle; (2) the geomagnetic pole position flips in a particular way by preferred meridional paths during a reversal; and (3) magnetic polarity reversals are correlated with the activations of geological processes. These facts may be explained if we take into account that a significant horizontal temperature gradient can exist in the top levels of the liquid core because of the different thermoconductivity of the different areas of the core-mantle boundary. These temperature inhomogeneities can penetrate the core because fluxes along the core boundary (the thermal wind) can be strongly suppressed by a small redistribution of the chemical composition in the top of the core. The nonparallel gradients of the temperature, density, and composition on the top of the core create a curled electric field that produces a current and a magnetic field. This seed-field can be amplified by motions in the core. The resulting field does not forget the seed-field distribution and in this way the field on the Earth surface (that can be created only in regions with high conductivity, i.e. in the core) is connected with the core-mantle boundary. Contrary to the usual approach to the dynamo problem, we will take into account that the seed field of thermoelectric origin is acting not only at some initial moment of time but permanently.

  11. Synthetic inversions for density in the Earth's interior from seismic waveform and geodetic data

    Science.gov (United States)

    Blom, N.; Boehm, C.; Fichtner, A.

    2015-12-01

    Density plays an important role in the Earth's interior. On one hand, it is the driving force behind convection; on the other, in imaging efforts, it serves to discriminate between thermal and compositional heterogeneities. Despite its importance, the Earth's 3D density structure remains difficult to infer from surface observations. Gravity measurements, for instance, are sensitive to density but suffer from inherent and strong non-uniqueness. The travel times of seismic body and surface waves are only weakly sensitive to density, and trade-offs with velocity structure are often large. New opportunities for the recovery of density in the Earth may arise from recently developed full-waveform inversion methods that go beyond traditional traveltime tomography. In this study, we assess to which extent, and in which way, full-waveform inversion can be combined with gravity and other geodetic measurements to better constrain global-scale density structure. To this end, we perform synthetic tests in 2D in which we systematically assess the effect on density recovery of different (joint) inversion schemes, types of data used and constraints applied. Our synthetic inversions are based on numerical wave propagation and adjoint techniques to compute seismic Fréchet sensitivity kernels, which are combined with synthetic gravity data to drive gradient-based optimisation schemes. Additional constraints such as a predefined velocity structure, or Earth's mass and inertia tensor, may be imposed using a projected descent scheme.

  12. Surprising evolution of the parsec-scale Faraday Rotation gradients in the jet of the BL Lac object B1803+784

    Science.gov (United States)

    Mahmud, M.; Gabuzda, D. C.; Bezrukovs, V.

    2009-11-01

    Several multifrequency polarization studies have shown the presence of systematic Faraday Rotation gradients across the parsec-scale jets of active galactic nuclei, taken to be due to the systematic variation of the line-of-sight component of a helical magnetic (B) field across the jet. Other studies have confirmed the presence and sense of these gradients in several sources, thus providing evidence that these gradients persist over time and over large distances from the core. However, we find surprising new evidence for a reversal in the direction of the Faraday Rotation gradient across the jet of B1803+784, for which multifrequency polarization observations are available at four epochs. At our three epochs and the epoch of Zavala & Taylor, we observe transverse rotation measure (RM) gradients across the jet, consistent with the presence of a helical magnetic field wrapped around the jet. However, we also observe a `flip' in the direction of the gradient between 2000 June and 2002 August. Although the origins of this phenomenon are not entirely clear, possibly explanations include (i) the sense of rotation of the central supermassive black hole and accretion disc has remained the same, but the dominant magnetic pole facing the Earth has changed from north to south, (ii) a change in the direction of the azimuthal B field component as a result of torsional oscillations of the jet and (iii) a change in the relative contributions to the observed RMs of the `inner' and `outer' helical fields in a magnetic-tower model. Although we cannot entirely rule out the possibility that the observed changes in the RM distribution are associated instead with changes in the thermal-electron distribution in the vicinity of the jet, we argue that this explanation is unlikely.

  13. Generalized conjugate gradient squared

    Energy Technology Data Exchange (ETDEWEB)

    Fokkema, D.R.; Sleijpen, G.L.G. [Utrecht Univ. (Netherlands)

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  14. Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires

    Science.gov (United States)

    Michel, Ann-Kathrin; Corinna Niemann, Anna; Boehnert, Tim; Martens, Stephan; Montero Moreno, Josep M.; Goerlitz, Detlef; Zierold, Robert; Reith, Heiko; Vega, Victor; Prida, Victor M.; Thomas, Andy; Gooth, Johannes; Nielsch, Kornelius

    2017-12-01

    In this study, we investigate the temperature- and temperature gradient-dependent magnetization reversal process of individual, single-domain Co39Ni61 and Fe15Ni85 ferromagnetic nanowires via the magneto-optical Kerr effect and magnetoresistance measurements. While the coercive fields (H C) and therefore the magnetic switching fields (H SW) generally decrease under isothermal conditions at elevated base temperatures (T base), temperature gradients (ΔT) along the nanowires lead to an increased switching field of up to 15% for ΔT  = 300 K in Co39Ni61 nanowires. This enhancement is attributed to a stress-induced, magneto-elastic anisotropy term due to an applied temperature gradient along the nanowire that counteracts the thermally assisted magnetization reversal process. Our results demonstrate that a careful distinction between locally elevated temperatures and temperature gradients has to be made in future heat-assisted magnetic recording devices.

  15. Geothermal gradient and heat flow in the state of Rio de Janeiro

    OpenAIRE

    Gomes, Antonio Jorge de Lima; Hamza,Valiya Mannathal

    2005-01-01

    Results of geothermal studies carried out at 72 localities have been used in evaluation of temperature gradient and heat flow values of the upper crust in the state of Rio de Janeiro. The investigations included temperature logs in boreholes and wells, calculation of geothermal gradients, measurements of thermal conductivity and determination of heat flow density. In addition, estimates of temperature gradients and heat flow were also made for areas of thermo-mineral springs, based on the so-...

  16. The change of temperature gradient in solidification of hypereutectic chromium cast iron casting

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-01-01

    Full Text Available In article the analysis of temperature gradient of solidification in section of hypereutectic chromium cast iron model casting was introduced. On this example was presented the method (DTGA – derivative and thermal gradient analysis, which was worked out in Department of Foundry Silesian University of Technology enabling the record of indispensable data to execution of analysis the temperature gradient and its derivative after time on section of model casting. It multichanneled apparatus to registration of data was used Crystaldigraph - PC.

  17. Gradient hydrogel coatings for medical applications

    Science.gov (United States)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    Mussel byssus is a typical example for gradient material that demonstrates a continues variation in mechanical property (or modulus), i . e . , soft (proximal) part is connected to mussel, while the stiffer (distal) part facilitates the attachment of mussel to a stone. Mimicking such materials is highly demanding especially in the areas of artificial implants. We developed a simple synthetic route to produce gradient hydrogels that are covalently anchored to the substrate. N-isopropylacrylamide has been copolymerized with 5 mole% of photo-active (methacrylyloxybenzophenone) and/or 5% of thermally-active (styrenesulfonylazide) crosslinkers. The incorporation of photo and/or thermal crosslinkers allows us for a complete control over the network properties in orthogonal directions. A systematic investigation towards the gel kinetics, swelling, crosslink density, elasticity and protein adsorption was performed. Our results instigate that weakly crosslinked (low modulus) gels swell strong in aqueous medium than the densely crosslinked (high modulus) gels. The results of protein adsorption are discussed based on the previously developed model entropic shielding and size exclusion effect.

  18. Gradient Boosting Machines, A Tutorial

    Directory of Open Access Journals (Sweden)

    Alexey eNatekin

    2013-12-01

    Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.

  19. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  20. Carbon Nanotubes as Thermally Induced Water Pumps

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Megaridis, Constantine M

    2017-01-01

    Thermal Brownian motors (TBMs) are nanoscale machines that exploit thermal fluctuations to provide useful work. We introduce a TBM-based nanopump which enables continuous water flow through a carbon nanotube (CNT) by imposing an axial thermal gradient along its surface. We impose spatial asymmetry...... along the CNT by immobilizing certain points on its surface. We study the performance of this molecular motor using molecular dynamics (MD) simulations. From the MD trajectories, we compute the net water flow and the induced velocity profiles for various imposed thermal gradients. We find that spatial...

  1. Thermal cloak-concentrator

    Science.gov (United States)

    Shen, Xiangying; Li, Ying; Jiang, Chaoran; Ni, Yushan; Huang, Jiping

    2016-07-01

    For macroscopically manipulating heat flow at will, thermal metamaterials have opened a practical way, which possesses a single function, such as either cloaking or concentrating the flow of heat even though environmental temperature varies. By developing a theory of transformation heat transfer for multiple functions, here we introduce the concept of intelligent thermal metamaterials with a dual function, which is in contrast to the existing thermal metamaterials with single functions. By assembling homogeneous isotropic materials and shape-memory alloys, we experimentally fabricate a kind of intelligent thermal metamaterials, which can automatically change from a cloak (or concentrator) to a concentrator (or cloak) when the environmental temperature changes. This work paves an efficient way for a controllable gradient of heat, and also provides guidance both for arbitrarily manipulating the flow of heat and for efficiently designing similar intelligent metamaterials in other fields.

  2. Strain gradients in epitaxial ferroelectrics

    NARCIS (Netherlands)

    Catalan, G; Noheda, Beatriz; McAneney, J; Sinnamon, LJ; Gregg, JM

    2005-01-01

    X-ray analysis of ferroelectric thin layers of Ba1/2Sr1/2TiO3 with different thicknesses reveals the presence of strain gradients across the films and allows us to propose a functional form for the internal strain profile. We use this to calculate the influence of strain gradient, through

  3. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...

  4. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, J W

    2010-01-01

    A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...

  5. Thermal regime of permafrost at Prudhoe Bay, Alaska

    Science.gov (United States)

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cuttings permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperature gradient at ~600 m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady-state conditions. Interpretation of the gradient contrast in terms of a simple model for the conductivity of an aggregate yields the mean ice content and thermal conductivities for the frozen and thawed sections (8.1 and 4.7 mcal/cm sec ?C, respectively). These results yield a heat flow of ~1.3 HFU which is similar to other values on the Alaskan Arctic Coast; the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. Curvature in the upper 160 m of the temperature profiles represents a warming of ~1.8?C of the mean surface temperature, and a net accumulation of 5-6 kcal/cm 2 by the solid earth surface during the last 100 years or so. Rising sea level and thawing sea cliffs probably caused the shoreline to advance tens of kilometers in the last 20,000 years, inundating a portion of the continental shelf that is presently the target of intensive oil exploration. A simple conduction model suggests that this recently inundated region is underlain by near-melting ice-rich permafrost to depths of 300-500 m; its presence is important to seismic interpretations in oil exploration and to engineering considerations in oil production. With confirmation of the permafrost configuration by offshore drilling, heat-conduction models can yield reliable new information on the chronology of arctic shorelines.

  6. Modeling and control of a gravity gradient stabilised satellite

    Directory of Open Access Journals (Sweden)

    Aage Skullestad

    1999-01-01

    Full Text Available This paper describes attitude control, i.e., 3-axes stabilisation and pointing, of a proposed Norwegian small gravity gradient stabilized satellite to be launched into low earth orbit. Generally, a gravity gradient stabilised system has limited stability and pointing capabilities, and wheels and/or magnetic coils are added in order to improve the attitude control. The best attitude accuracy is achieved using wheels, which can give accuracies down to less than one degree, but wheels increase the complexity and cost of the satellite. Magnetic coils allow cheaper satellites, and are an attractive solution to small, inexpensive satellites in low earth orbits and may provide an attitude control accuracy of a few degrees. Scientific measurements often require accurate attitude control in one or two axes only. Combining wheel and coil control may, in these cases, provide the best solutions. The simulation results are based on a linearised mathematical model of the satellite.

  7. Gradient elution in capillary electrochromatography

    Energy Technology Data Exchange (ETDEWEB)

    Anex, D.; Rakestraw, D.J. [Sandia National Labs., Livermore, CA (United States); Yan, Chao; Dadoo, R.; Zare, R.N. [Stanford Univ., CA (United States). Dept. of Chemistry

    1997-08-01

    In analogy to pressure-driven gradient techniques in high-performance liquid chromatography, a system has been developed for delivering electroosmotically-driven solvent gradients for capillary electrochromatography (CEC). Dynamic gradients with sub-mL/min flow rates are generated by merging two electroosmotic flows that are regulated by computer-controlled voltages. These flows are delivered by two fused-silica capillary arms attached to a T-connector, where they mix and then flow into a capillary column that has been electrokinetically packed with 3-mm reversed-phase particles. The inlet of one capillary arm is placed in a solution reservoir containing one mobile phase and the inlet of the other is placed in a second reservoir containing a second mobile phase. Two independent computer-controlled programmable high-voltage power supplies (0-50 kV)--one providing an increasing ramp and the other providing a decreasing ramp--are used to apply variable high-voltage potentials to the mobile phase reservoirs to regulate the electroosmotic flow in each arm. The ratio of the electroosmotic flow rates between the two arms is changed with time according to the computer-controlled voltages to deliver the required gradient profile to the separation column. Experiments were performed to confirm the composition of the mobile phase during a gradient run and to determine the change of the composition in response to the programmed voltage profile. To demonstrate the performance of electroosmotically-driven gradient elution in CEC, a mixture of 16 polycyclic aromatic hydrocarbons (PAHs) was separated in less than 90 minutes. This gradient technique is expected to be well-suited for generating not only solvent gradients in CEC, but also other types of gradients such as pH- and ionic-strength gradients in capillary electrokinetic separations and analyses.

  8. Gradient zone boundary control in salt gradient solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  9. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes

    Science.gov (United States)

    Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng

    2017-09-01

    To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.

  10. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...... in the zone above the occupied zone. A model to calculate the two air temperatures has been developed and implemented in Suncode- PC, a thermal analysis programme for residential and small commercial buildings. The dimensionless temperature profile based on measurements in a laboratory test room is presented...

  11. Effect of Crustal Density Structures on GOCE Gravity Gradient Observables

    Directory of Open Access Journals (Sweden)

    Robert Tenzer Pavel Novák

    2013-01-01

    Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the Earth¡¦s crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The Earth¡¦s gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.

  12. MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT

    Directory of Open Access Journals (Sweden)

    ZURAIDAH FITRIAH

    2017-10-01

    Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient  (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.

  13. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination......We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...

  14. Volcano-ice interaction as a microbial habitat on Earth and Mars.

    Science.gov (United States)

    Cousins, Claire R; Crawford, Ian A

    2011-09-01

    Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.

  15. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, John William

    1997-01-01

    A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.

  16. Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock

    Science.gov (United States)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.; hide

    2017-01-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  17. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  18. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  19. The relation between temperature and concentration gradients in superfluid sup 3 He- sup 4 He solutions

    CERN Document Server

    Zadorozhko, A A; Rudavskij, E Y; Chagovets, V K; Sheshin, G A

    2003-01-01

    The temperature and concentration gradients nabla T and nabla x in a superfluid sup 3 He- sup 4 He mixture with an initial concentration 9,8 % of sup 3 He are measured in a temperature range 70-500 mK. The gradients are produced by a steady thermal flow with heating from below. It is shown that the value of nabla x/nabla T observed in the experiment is in good agreement with the theoretical model derived from the temperature and concentration dependences of osmotic pressure. The experimental data permitted us to obtain a thermal diffusion ratio of the solution responsible for the thermal diffusion coefficient.

  20. Multiple Disk Gaps and Rings Generated by a Single Super-Earth

    Science.gov (United States)

    Dong, Ruobing; Li, Shengtai; Chiang, Eugene; Li, Hui

    2017-07-01

    We investigate the observational signatures of super-Earths (I.e., planets with Earth-to-Neptune mass), which are the most common type of exoplanet discovered to date, in their natal disks of gas and dust. Combining two-fluid global hydrodynamics simulations with a radiative transfer code, we calculate the distributions of gas and of submillimeter-sized dust in a disk perturbed by a super-Earth, synthesizing images in near-infrared scattered light and the millimeter-wave thermal continuum for direct comparison with observations. In low-viscosity gas (α ≲ {10}-4), a super-Earth opens two annular gaps to either side of its orbit by the action of Lindblad torques. This double gap and its associated gas pressure gradients cause dust particles to be dragged by gas into three rings: one ring sandwiched between the two gaps, and two rings located at the gap edges farthest from the planet. Depending on the system parameters, additional rings may manifest for a single planet. A double gap located at tens of au from a host star in Taurus can be detected in the dust continuum by the Atacama Large Millimeter Array (ALMA) at an angular resolution of ˜0\\buildrel{\\prime\\prime}\\over{.} 03 after two hours of integration. Ring and gap features persist in a variety of background disk profiles, last for thousands of orbits, and change their relative positions and dimensions depending on the speed and direction of planet migration. Candidate double gaps have been observed by ALMA in systems such as HL Tau (D5 and D6) and TW Hya (at 37 and 43 au); we submit that each double gap is carved by one super-Earth in nearly inviscid gas.

  1. Fiber amplifiers under thermal loads leading to transverse mode instability

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard

    2014-01-01

    Transverse mode instability (TMI) in rare-earth doped fiber amplifiers operating above an average power threshold is caused by intermodal stimulated thermal Rayleigh scattering due to quantum defect heating. We investigate thermally induced longitudinal waveguide perturbations causing power trans...

  2. Non-uniform temperature gradients and thermal stresses produced ...

    Indian Academy of Sciences (India)

    By varying the values of geometric parameters in the provided solutions, they get the solution for various cases like unique or multiple: strip, rectangular, square, elliptic and circular MHSs. Sunar et al (2006) considered a cantilever assembly subjected to heating at its fixed end, which resembles the welding of a sheet metal.

  3. Thermal Forces in Simple and Complex Fluids

    Science.gov (United States)

    Piazza, Roberto; Giglio, Marzio

    2004-11-01

    This topical issue of The European Physical Journal E deals with mass transport effects driven by thermal gradients, or, as we shall call them, with “thermal forces”. In simple fluid mixtures, coupling of heat and mass diffusion is due to the Ludwig-Soret effect, also known as thermal diffusion. The Soret effect dramatically lowers the thermal convection threshold, since concentration gradients relax much more slowly than temperature gradients, due to the disparate values of the mass diffusion coefficient and of the thermal diffusivity. Therefore, thermal diffusion plays an important role in naturally occurring processes like thermohaline convection (“salt fingering”) in oceans, crystal growth, component segregation in metallic alloys, volcanic lava and the Earth crust. More recently, its has been shown that thermal diffusion is a very convenient process in the generation of giant non-equilibrium fluctuations in fluid mixtures. Thermophoresis is a closely akin process that takes place both in aerosols and in liquid suspensions, consisting in the drift of dispersed particles induced by thermal inhomogeneities. Thermophoresis of airborne particles has an important role in atmospheric physics and ambient pollution, and can seriously affect semiconductor manufacturing. In macromolecular solutions and colloidal suspensions, these “thermal forces” are generally much stronger than in simple mixtures or in gases: for instance, recent experiments on DNA solutions have shown that thermophoresis may concur with thermal convection in leading to patterns where the local macromolecular concentration is amplified up to a thousandfold. Although known since a long time and clearly framed in terms of non-equilibrium thermodynamics concepts, both the Soret effect and particle thermophoresis in liquids still lack a general microscopic picture. For instance, in most cases the denser component of a binary mixture drifts to the cold, but examples of reverse behaviour are

  4. Gradient descent learning in and out of equilibrium.

    Science.gov (United States)

    Caticha, N; Araújo de Oliveira, E

    2001-06-01

    Relations between the off thermal equilibrium dynamical process of on-line learning and the thermally equilibrated off-line learning are studied for potential gradient descent learning. The approach of Opper to study on-line Bayesian algorithms is used for potential based or maximum likelihood learning. We look at the on-line learning algorithm that best approximates the off-line algorithm in the sense of least Kullback-Leibler information loss. The closest on-line algorithm works by updating the weights along the gradient of an effective potential, which is different from the parent off-line potential. A few examples are analyzed and the origin of the potential annealing is discussed.

  5. Relationships between geology and geothermal gradients in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Stavnes, S.A.; Steeples, D.W.; Ruscetta, C.A. (ed.)

    1982-07-01

    Bottom hole temperature values from existing oil and gas wells and thermal logging data from geothermal wells are used to determine the factors responsible for geographic variation in the subsurface temperature distribution in Kansas. Geothermal gradient data range from 25/sup 0/C/km to 55/sup 0/C/km in the upper 300 m. The geologic factors proposed to explain this variation are: (1) topography of the crystalline basement surface; (2) variation in rates of heat production in the crystalline basement; (3) variation in thermal conductivity in the sedimentary section; and (4) possible convection upward and eastward from the Denver-Julesberg Basin. (MJF)

  6. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  7. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...

  8. Thermal conductivity of mass-graded graphene flakes

    OpenAIRE

    Cheh, Jigger; Zhao, Hong

    2011-01-01

    In this letter we study thermal conduction in mass-graded graphene flakes by nonequilibrium molecular dynamics simulations. It is found that mass-graded graphene flakes reveal no thermal rectification effect in thermal conduction process. The dependence of thermal conductivity upon the heat flux and the mass gradient are studied to confirm the generality of the result.The mechanism leading to the absence of thermal rectification effect is also discussed.

  9. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M shock. Here we report observations of electrons energized by foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  10. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M electrons energized by foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  11. Pattern formation in snow during temperature gradient metamorphism

    Science.gov (United States)

    Pinzer, B.; Schneebeli, M.

    2008-12-01

    Temperature gradient metamorphism causes sublimation and growth of crystals. This process causes a dramatic change in thermal and geometrical properties. Using a time-series of snow evolution, we simulated the evolution of the thermal conductivity parallel and perpendicular to the temperature gradient direction. Thermal conductivity changed within a few days from an isotropic property to a strongly anisotropic property. Surprisingly, these changes are only marginally reflected in the geometrical anisotropy of the full snow microstructure. We also observed that the heat flux in the microstructure is concentrated in a small part of the ice matrix, which causes a high tortuosity. The percentage of the ice matrix involved in high heat fluxes was almost constant over time. However, the connectivity of these heat-conducting ice structures increased. The formation of an anisotropic temperature conductivity could have important consequences in terrain where temperature gradients are not perpendicular to the surface, as in shallow snowpacks over hummocky terrain or in boulder areas, or where the snowpack has a strong surface topography, e.g. due to sastrugi formation.

  12. Observations of Near Earth Objects with Spitzer

    NARCIS (Netherlands)

    Trilling, David E.; Mommert, Michael; Hora, Joseph L.; Chesley, Steven R.; Emery, Joshua P.; Fazio, Giovanni G.; Harris, Alan; Mueller, Michael; Smith, Howard Alan

    2016-01-01

    We are carrying out an Exploration Science Warm Spitzer program entitled NEOSurvey in which we are observing 550 Near Earth Objects in 710 hours of Spitzer time. For each object we use a thermal model to derive diameter and albedo. For each object we also derive a (partial) lightcurve; total elapsed

  13. TERRA Battery Thermal Control Anomaly - Simulation and Corrective Actions

    Science.gov (United States)

    Grob, Eric W.

    2010-01-01

    The TERRA spacecraft was launched in December 1999 from Vandenberg Air Force Base, becoming the flagship of NASA's Earth Observing System program to gather data on how the planet's processes create climate. Originally planned as a 5 year mission, it still provides valuable science data after nearly 10 years on orbit. On October 13th, 2009 at 16:23z following a routine inclination maneuver, TERRA experienced a battery cell failure and a simultaneous failure of several battery heater control circuits used to maintain cell temperatures and gradients within the battery. With several cells nearing the minimum survival temperature, preventing the electrolyte from freezing was the first priority. After several reset attempts and power cycling of the control electronics failed to reestablish control authority on the primary side of the controller, it was switched to the redundant side, but anomalous performance again prevented full heater control of the battery cells. As the investigation into the cause of the anomaly and corrective action continued, a battery thermal model was developed to be used in determining the control ability remaining and to simulate and assess corrective actions. Although no thermal model or detailed reference data of the battery was available, sufficient information was found to allow a simplified model to be constructed, correlated against pre-anomaly telemetry, and used to simulate the thermal behavior at several points after the anomaly. It was then used to simulate subsequent corrective actions to assess their impact on cell temperatures. This paper describes the rapid development of this thermal model, including correlation to flight data before and after the anomaly., along with a comparative assessment of the analysis results used to interpret the telemetry to determine the extent of damage to the thermal control hardware, with near-term corrective actions and long-term operations plan to overcome the anomaly.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Nassir Al Arifi. Articles written in Journal of Earth System Science. Volume 124 Issue 2 March 2015 pp 419-430. Physico-chemical characteristics of Jharkhand and West Bengal thermal springs along SONATA mega lineament, India · Hemant K Singh D Chandrasekharam ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D B Shah. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya D B ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V B Sumithranand. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 507-517. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south ...

  17. Seismic Velocity Gradients Across the Transition Zone

    Science.gov (United States)

    Escalante, C.; Cammarano, F.; de Koker, N.; Piazzoni, A.; Wang, Y.; Marone, F.; Dalton, C.; Romanowicz, B.

    2006-12-01

    One-D elastic velocity models derived from mineral physics do a notoriously poor job at predicting the velocity gradients in the upper mantle transition zone, as well as some other features of models derived from seismological data. During the 2006 CIDER summer program, we computed Vs and Vp velocity profiles in the upper mantle based on three different mineral physics approaches: two approaches based on the minimization of Gibbs Free Energy (Stixrude and Lithgow-Bertelloni, 2005; Piazzoni et al., 2006) and one obtained by using experimentally determined phase diagrams (Weidner and Wang, 1998). The profiles were compared by assuming a vertical temperature profile and two end-member compositional models, the pyrolite model of Ringwood (1979) and the piclogite model of Anderson and Bass (1984). The predicted seismic profiles, which are significantly different from each other, primarily due to different choices of properties of single minerals and their extrapolation with temperature, are tested against a global dataset of P and S travel times and spheroidal and toroidal normal mode eigenfrequencies. All the models derived using a potential temperature of 1600K predict seismic velocities that are too slow in the upper mantle, suggesting the need to use a colder geotherm. The velocity gradient in the transition zone is somewhat better for piclogite than for pyrolite, possibly indicating the need to increase Ca content. The presence of stagnant slabs in the transition zone is a possible explanation for the need for 1) colder temperature and 2) increased Ca content. Future improvements in seismic profiles obtained from mineral physics will arise from better knowledge of elastic properties of upper mantle constituents and aggregates at high temperature and pressure, a better understanding of differences between thermodynamic models, and possibly the effect of water through and on Q. High resolution seismic constraints on velocity jumps at 400 and 660 km also need to be

  18. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  19. Thermal Management and Thermal Protection Systems

    Science.gov (United States)

    Hasnain, Aqib

    2016-01-01

    's rays directly impinging on the system. Heating rate of the lamps were calculated by knowing fraction of emitted energy in a wavelength interval and the filament temperature. This version of the model can be used to predict performance of the system under vacuum with extreme cold or hot conditions. Initial testing of the PTMS showed promise, and the thermal math model predicts even better performance in thermal vacuum testing. ii) Thermal Protection Systems (TPS) are required for vehicles which enter earth's atmosphere to protect from aerodynamic heating caused by the friction between the vehicle and atmospheric gases. Orion's heat shield design has two aspects which needed to be analyzed thermally: i) a small excess of adhesive used to bond the outer AVCOAT layer to the inner composite structure tends to seep from under the AVCOAT and form a small bead in between two bricks of AVCOAT, ii) a silicone rubber with different thermophysical properties than AVCOAT fills the gap between two bricks of AVCOAT. I created a thermal model using TD to determine temperature differences that are caused by these two features. To prevent false results, all TD models must be verified against something known. In this case, the TD model was correlated to CHAR, an ablation modelling software used to analyze TPS. Analyzing a node far from the concerning features, we saw that the TD model data match CHAR data, verifying the TD model. Next, the temperature of the silicone rubber as well as the bead of adhesive were analyzed to determine if they exceeded allowable temperatures. It was determined that these two features do not have a significant effect on the max temperature of the heat shield. This model can be modified to check temperatures at various locations of the heat shield where the composite thickness varies.

  20. A theory of gradient analysis

    NARCIS (Netherlands)

    Braak, ter C.J.F.

    1988-01-01

    The theory of gradient analysis is presented in this chapter, in which the heuristic techniques are integrated with regression, calibration, ordination and constrained ordination as distinct, well-defined statistical problems. The various techniques used for each type of problem are classified into

  1. Orderings for conjugate gradient preconditionings

    Science.gov (United States)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  2. Compositional gradients in Gramineae genes

    DEFF Research Database (Denmark)

    Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin

    2002-01-01

    In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...

  3. Ant functional responses along environmental gradients.

    Science.gov (United States)

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2014-11-01

    Understanding species distributions and diversity gradients is a central challenge in ecology and requires prior knowledge of the functional traits mediating species' survival under particular environmental conditions. While the functional ecology of plants has been reasonably well explored, much less is known about that of animals. Ants are among the most diverse, abundant and ecologically significant organisms on earth, and they perform a great variety of ecological functions. In this study, we analyse how the functional species traits present in ant communities vary along broad gradients in climate, productivity and vegetation type in the south-western Mediterranean. To this end, we compiled one of the largest animal databases to date: it contains information on 211 local ant communities (including eight climate variables, productivity, and vegetation type) and 124 ant species, for which 10 functional traits are described. We used traits that characterize different dimensions of the ant functional niche with respect to morphology, life history and behaviour at both individual and colony level. We calculated two complementary functional trait community indices ('trait average' and 'trait dissimilarity') for each trait, and we analysed how they varied along the three different gradients using generalized least squares models that accounted for spatial autocorrelation. Our results show that productivity, vegetation type and, to a lesser extent, each climate variable per se might play an important role in shaping the occurrence of functional species traits in ant communities. Among the climate variables, temperature and precipitation seasonality had a much higher influence on functional responses than their mean values, whose effects were almost lacking. Our results suggest that strong relationships might exist between the abiotic environment and the distribution of functional traits among south-western Mediterranean ant communities. This finding indicates that

  4. Spatial wavefield gradient-based seismic wavefield separation

    Science.gov (United States)

    Van Renterghem, C.; Schmelzbach, C.; Sollberger, D.; Robertsson, J. OA

    2018-03-01

    Measurements of the horizontal and vertical components of particle motion combined with estimates of the spatial gradients of the seismic wavefield enable seismic data to be acquired and processed using single dedicated multicomponent stations (e.g. rotational sensors) and/or small receiver groups instead of large receiver arrays. Here, we present seismic wavefield decomposition techniques that use spatial wavefield gradient data to separate land and ocean bottom data into their upgoing/downgoing and P/S constituents. Our method is based on the elastodynamic representation theorem with the derived filters requiring local measurements of the wavefield and its spatial gradients only. We demonstrate with synthetic data and a land seismic field data example that combining translational measurements with spatial wavefield gradient estimates allows separating seismic data recorded either at the Earth's free-surface or at the sea bottom into upgoing/downgoing and P/S wavefield constituents for typical incidence angle ranges of body waves. A key finding is that the filter application only requires knowledge of the elastic properties exactly at the recording locations and is valid for a wide elastic property range.

  5. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  6. EarthKAM

    Data.gov (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  7. The Cool Surfaces of Binaries Near-Earth Asteroids

    NARCIS (Netherlands)

    Delbo, Marco; Walsh, K.; Mueller, M.

    2008-01-01

    We present results from thermal-infrared observations of binary near-Earth asteroids (NEAs). These objects, in general, have surface temperatures cooler than the average values for non-binary NEAs. We discuss how this may be evidence of higher-than-average surface thermal inertia. The comparison of

  8. Atmospherics: A Look at the Earth's Airy Shell.

    Science.gov (United States)

    Byalko, A. V.

    1991-01-01

    Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)

  9. An assessment of skin temperature gradients in a tropical primate using infrared thermography and subcutaneous implants.

    Science.gov (United States)

    Thompson, Cynthia L; Scheidel, Caleb; Glander, Kenneth E; Williams, Susan H; Vinyard, Christopher J

    2017-01-01

    Infrared thermography has become a useful tool to assess surface temperatures of animals for thermoregulatory research. However, surface temperatures are an endpoint along the body's core-shell temperature gradient. Skin and fur are the peripheral tissues most exposed to ambient thermal conditions and are known to serve as thermosensors that initiate thermoregulatory responses. Yet relatively little is known about how surface temperatures of wild mammals measured by infrared thermography relate to subcutaneous temperatures. Moreover, this relationship may differ with the degree that fur covers the body. To assess the relationship between temperatures and temperature gradients in peripheral tissues between furred and bare areas, we collected data from wild mantled howling monkeys (Alouatta palliata) in Costa Rica. We used infrared thermography to measure surface temperatures of the furred dorsum and bare facial areas of the body, recorded concurrent subcutaneous temperatures in the dorsum, and measured ambient thermal conditions via a weather station. Temperature gradients through cutaneous tissues (subcutaneous-surface temperature) and surface temperature gradients (surface-ambient temperature) were calculated. Our results indicate that there are differences in temperatures and temperature gradients in furred versus bare areas of mantled howlers. Under natural thermal conditions experienced by wild animals, the bare facial areas were warmer than temperatures in the furred dorsum, and cutaneous temperature gradients in the face were more variable than the dorsum, consistent with these bare areas acting as thermal windows. Cutaneous temperature gradients in the dorsum were more closely linked to subcutaneous temperatures, while facial temperature gradients were more heavily influenced by ambient conditions. These findings indicate that despite the insulative properties of fur, for mantled howling monkeys surface temperatures of furred areas still demonstrate a

  10. Energy conservation in the earth's crust and climate change.

    Science.gov (United States)

    Mu, Yao; Mu, Xinzhi

    2013-02-01

    Among various matters which make up the earth's crust, the thermal conductivity of coal, oil, and oil-gas, which are formed over a long period of geological time, is extremely low. This is significant to prevent transferring the internal heat of the earth to the thermal insulation of the surface, cooling the surface of the earth, stimulating biological evolution, and maintaining natural ecological balance as well. Fossil energy is thermal insulating layer in the earth's crust. Just like the function of the thermal isolation of subcutaneous fatty tissue under the dermis of human skin, it keeps the internal heat within the organism so it won't be transferred to the skin's surface and be lost maintaining body temperature at low temperatures. Coal, oil, oil-gas, and fat belong to the same hydrocarbons, and the functions of their thermal insulation are exactly the same. That is to say, coal, oil, and oil-gas are just like the earth's "subcutaneous fatty tissue" and objectively formed the insulation protection on earth's surface. This paper argues that the human large-scale extraction of fossil energy leads to damage of the earth's crust heat-resistant sealing, increasing terrestrial heat flow, or the heat flow as it is called, transferring the internal heat of the earth to Earth's surface excessively, and causing geotemperature and sea temperature to rise, thus giving rise to global warming. The reason for climate warming is not due to the expansion of greenhouse gases but to the wide exploitation of fossil energy, which destroyed the heat insulation of the earth's crust, making more heat from the interior of the earth be released to the atmosphere. Based on the energy conservation principle, the measurement of the increase of the average global temperature that was caused by the increase of terrestrial heat flow since the Industrial Revolution is consistent with practical data. This paper illustrates "pathogenesis" of climate change using medical knowledge. The

  11. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.

    Science.gov (United States)

    Yip, Ngai Yin; Brogioli, Doriano; Hamelers, Hubertus V M; Nijmeijer, Kitty

    2016-11-15

    Combining two solutions of different composition releases the Gibbs free energy of mixing. By using engineered processes to control the mixing, chemical energy stored in salinity gradients can be harnessed for useful work. In this critical review, we present an overview of the current progress in salinity gradient power generation, discuss the prospects and challenges of the foremost technologies - pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix) and provide perspectives on the outlook of salinity gradient power generation. Momentous strides have been made in technical development of salinity gradient technologies and field demonstrations with natural and anthropogenic salinity gradients (for example, seawater-river water and desalination brine-wastewater, respectively), but fouling persists to be a pivotal operational challenge that can significantly ebb away cost-competitiveness. Natural hypersaline sources (e.g., hypersaline lakes and salt domes) can achieve greater concentration difference and, thus, offer opportunities to overcome some of the limitations inherent to seawater-river water. Technological advances needed to fully exploit the larger salinity gradients are identified. While seawater desalination brine is a seemingly attractive high salinity anthropogenic stream that is otherwise wasted, actual feasibility hinges on the appropriate pairing with a suitable low salinity stream. Engineered solutions are foulant-free and can be thermally regenerative for application in low-temperature heat utilization. Alternatively, PRO, RED, and CapMix can be coupled with their analog separation process (reverse osmosis, electrodialysis, and capacitive deionization, respectively) in salinity gradient flow batteries for energy storage in chemical potential of the engineered solutions. Rigorous techno-economic assessments can more clearly identify the prospects of low-grade heat conversion and large-scale energy storage

  12. First-principles calculations of elastic and thermo-physical properties of Al, Mg and rare earth lanthanide elements

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Yifang, E-mail: ouyangyf@gxu.edu.c [Department of Physics, Guangxi University, Nanning 530004 (China); Tao Xiaoma; Zeng Fanjiang; Chen Hongmei [Department of Physics, Guangxi University, Nanning 530004 (China); Du Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Feng Yuanping [Department of Physics, National University of Singapore, 119260 Singapore (Singapore); He Yuehui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-08-01

    The elastic constants of the Al, Mg and rare earth (RE) lanthanide elements have been calculated at T=0 K by using the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA). The bulk moduli, shear moduli, Young's moduli and Poisson's ratio of poly-crystalline solid are estimated from the calculated elastic constants of single crystal. Based on the quasi-harmonic Debye model, the Debye temperature, heat capacity, Grueneisen parameter and linear thermal expansion coefficient are also estimated. The present calculated results are in reasonable agreement with the available experimental data and other theoretical results. The present calculation of elastic constants for Ce also indicates that the PAW potential (named 'Ce{sub 3}'), for which one f electron is kept frozen in the core and hence fix the valency of Ce to three (Ce{sub 3}) does not yield good results for the elastic constants.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 1. Issue front cover thumbnail. Volume 114, Issue 1. February 2005, pages 1-110. pp 1-1. Editorial · More Details Fulltext PDF. pp 3-16. Development and propagation of a pollution gradient in the marine boundary layer during INDOEX (1999).

  14. Thermal Space in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines

    Present research is revolving around the design process and the use of digital applications to support the design process among architects. This work is made in relation to the current discussions about sustainable architecture and the increased focus on energy consumption and the comfort in our...... and understanding of spaces in buildings can change significantly and instead of the creation of frozen geometrical spaces, thermal spaces can be created as it is suggested in meteorological architecture where functions are distributed in relation to temperature gradients. This creates an interesting contrast......-introducing an increased adaptability in the architecture can be a part of re-defining the environmental agenda and re-establish a link between the environment of the site and the environment of the architecture and through that an increased appreciation of the sensuous space here framed in discussions about thermal...

  15. Swarm magnetic and GOCE gravity gradient grids for lithospheric modelling

    DEFF Research Database (Denmark)

    Bouman, Johannes; Ebbing, Jörg; Kotsiaros, Stavros

    contain more signal content than global models do. The patchwork of regional grids is presented as well as the subsequent error reduction through iterative downward and upward continuation using the Poisson integral equation. The promises and pitfalls are discussed of using grids at mean satellite...... mantle in the well-surveyed North-East Atlantic Margin. In particular, we present the computation of magnetic and gravity gradient grids at satellite altitude (roughly 450 km and 250 km above the Earth for Swarm and GOCE respectively). It is shown that regional solutions based on a tesseroid approach may...

  16. Harvesting renewable energy from Earth's mid-infrared emissions

    KAUST Repository

    Byrnes, S. J.

    2014-03-03

    It is possible to harvest energy from Earth\\'s thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

  17. Mapping land cover gradients through analysis of hyper-temporal NDVI imagery

    NARCIS (Netherlands)

    Ali, A.; Bie, de C.A.J.M.; Skidmore, A.K.; Scarrott, R.G.; Hamad, A.; Venus, V.; Lymberakis, P.

    2013-01-01

    The green cover of the earth exhibits various spatial gradients that represent gradual changes in space of vegetation density and/or in species composition. To date, land cover mapping methods differentiate at best, mapping units with different cover densities and/or species compositions, but

  18. Design and installation of earth energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Loggia, S.; Adragna, M.; Coyle, S.; Foley, C.; Hawryn, S.; Martin, A.; McConnell, J. (eds.)

    2002-07-01

    This first edition of the Canadian Standards Association (CSA) Standard C448 Series, replaces CSA Standards CAN/CSA-C445-M92 entitled Design and Installation of Earth Energy Heat Pump Systems for Residential and Other Small Buildings, as well as C447-94 entitled Design and Installation of Earth Energy Heat Pump Systems for Commercial and Institutional Buildings. This standard document consists of three parts: (C448.1) Design and installation of earth energy systems for commercial and institutional buildings; (C448.2) Design and installation of earth energy systems for residential and small buildings; and, (C448.3) Design and installation of underground thermal energy storage systems for commercial and institutional buildings. In C448.1, the requirements applicable to any system falling within the scope of the C448 series were included. Alternative requirements for houses and small buildings were added in C448.2. It was noted that either standard may be implemented. The standards applicable to the intentional storage of energy in the earth for later use were presented in C448.3. This latter section includes a brief introduction on underground thermal energy storage (UTES). tabs.

  19. Vertebrate pressure-gradient receivers

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob

    2011-01-01

    The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...

  20. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.......A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...

  1. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available wider range of temperature limits, saving energy while still satisfying the majority of building occupants. It is also noted that thermal comfort varies significantly between individuals and it is generally not possible to provide a thermal environment...

  2. Thermal-Structural Analysis of PICA Tiles for Solar Tower Test

    Science.gov (United States)

    Agrawal, Parul; Empey, Daniel M.; Squire, Thomas H.

    2009-01-01

    Thermal protection materials used in spacecraft heatshields are subjected to severe thermal and mechanical loading environments during re-entry into earth atmosphere. In order to investigate the reliability of PICA tiles in the presence of high thermal gradients as well as mechanical loads, the authors designed and conducted solar-tower tests. This paper presents the design and analysis work for this tests series. Coupled non-linear thermal-mechanical finite element analyses was conducted to estimate in-depth temperature distribution and stress contours for various cases. The first set of analyses performed on isolated PICA tile showed that stresses generated during the tests were below the PICA allowable limit and should not lead to any catastrophic failure during the test. The tests results were consistent with analytical predictions. The temperature distribution and magnitude of the measured strains were also consistent with predicted values. The second test series is designed to test the arrayed PICA tiles with various gap-filler materials. A nonlinear contact method is used to model the complex geometry with various tiles. The analyses for these coupons predict the stress contours in PICA and inside gap fillers. Suitable mechanical loads for this architecture will be predicted, which can be applied during the test to exceed the allowable limits and demonstrate failure modes. Thermocouple and strain-gauge data obtained from the solar tower tests will be used for subsequent analyses and validation of FEM models.

  3. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  4. Temperature dependent PAC studies with the rare earth '$^{172}$Lu' in ZnO

    CERN Document Server

    Nédélec, R

    2006-01-01

    Wide band-gap semiconductors have become an important base material for applications in optoelectronics and in high power, high temperature electronics. After doping with various rare earths, electroluminescence throughout the whole visible spectrum has been observed. We have studied the implantation behaviour of the rare earth Lu in ZnO. Our samples were implanted at the ISOLDE facility at CERN. In order to recover the sustained implantation damage the samples were treated in a rapid thermal annealing furnace. In a first attempt to measure the temperature dependence of the electric field gradient at the site of 172Lu/172Yb in ZnO a large jump in the quadrupole interaction frequency was observed between measurements at room temperature and 200 °C. Above 200 °C the frequency only changed very little. In order to understand this unusual behaviour we prepared another sample and studied the temperature range between room temperature and 200 °C in more detail. The results obtained previously could be confirmed....

  5. Are thermal barriers "higher" in deep sea turtle nests?

    OpenAIRE

    Santidri?n Tomillo, Pilar; Fonseca, Luis; Paladino, Frank V.; Spotila, James R.; Oro, Daniel

    2017-01-01

    Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his "Why mountain passes are higher in the tropics" that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. W...

  6. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  7. Swarm: A constellation to study the Earth's magnetic field

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Luhr, H.; Hulot, G.

    2006-01-01

    attitude), thereby measuring the East-West gradient of the magnetic field, and the third one flying at higher attitude (530 km). High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric...... and its effect on Geospace, the vast region around the Earth where electrodynamic processes are influenced by the Earth's magnetic field. Scheduled for launch in 2010, the mission will comprise a constellation of three satellites, with two spacecraft flying side-by-side at lower attitude (450 km initial......The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. The mission will provide the best ever survey of the geomagnetic field and its temporal evolution that will lead to new insights into the Earth system by improving our understanding of the Earth's interior...

  8. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    Science.gov (United States)

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  9. Electrical and thermal spin accumulation in germanium

    Science.gov (United States)

    Jain, A.; Vergnaud, C.; Peiro, J.; Le Breton, J. C.; Prestat, E.; Louahadj, L.; Portemont, C.; Ducruet, C.; Baltz, V.; Marty, A.; Barski, A.; Bayle-Guillemaud, P.; Vila, L.; Attané, J.-P.; Augendre, E.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2012-07-01

    In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then, by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any charge current. We show that temperature gradients yield larger spin accumulations than electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation remains surprisingly unchanged under the application of a gate voltage.

  10. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity... fresh or salt water may change existing salinity gradients. For example, partial blocking of the...

  11. Gradient remediability in linear distributed parabolic systems ...

    African Journals Online (AJOL)

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  12. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  13. Surface-attached orthogonal gradient hydrogels

    Science.gov (United States)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    Gradient materials play a significant role in the creation of artificial implants due to their potential to reduce stress concentration when two or more structures with different mechanical properties are joined together, e . g . , tendon, a fibrous protein that connects the soft and hard muscle tissues in our body. We employ free radical polymerization to synthesize random copolymers containing 90% of N-isopropyl acrylamide (NIPAAm), 5% photo-active methacrylyloxybenzophenone (MABP) and 5% thermally-active styrenesulfonylazide (SSAz) crosslinkers. The presence of MABP and SSAz facilitates adjusting gel density on a flat support in two orthogonal directions by spatially and independently controlling UV dosage and temperature. The swelling behavior (α) of the gels in water and methanol is examined using a spectroscopic ellipsometry and the degree of swelling depends on the extent of crosslinking that ranges from α = 1-1.2 (highly crosslinked gels) to α = 4-5 (loosely crosslinked gels). We compare the network properties surface-attached gels and un-attached identical counterparts and confirm that the linear swelling ratio of surface-attached networks is higher than that of the corresponding un-attached gels.

  14. Examining Environmental Gradients with Remotely Sensed Data - the ESA GlobPermafrost project

    Science.gov (United States)

    Bartsch, Annett; Grosse, Guido; Kääb, Andreas; Westermann, Sebastian; Strozzi, Tazio; Wiesmann, Andreas; Duguay, Claude; Seifert, Frank Martin; Obu, Jaroslav; Nitze, Ingmar; Heim, Birgit; Haas, Antoni; Widhalm, Barbara

    2017-04-01

    Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution at various wavelengths. In addition, landscape dynamics associated with permafrost changes and geophysical variables relevant for characterizing the state of permafrost, such as land surface temperature or freeze-thaw state can be observed with space-based Earth Observation. Suitable regions to examine environmental gradients across the Arctic have been defined in a community white paper (Bartsch et al. 2014). These transects have been updated within the ESA DUE GlobPermafrost project. The ESA DUE GlobPermafrost project develops, validates and implements Earth Observation (EO) products to support research communities and international organisations in their work on better understanding permafrost characteristics and dynamics. Prototype product cases will cover different aspects of permafrost by integrating in situ measurements of subsurface properties and surface properties, Earth Observation, and modelling to provide a better understanding of permafrost today. The project will extend local process and permafrost monitoring to broader spatial domains, support permafrost distribution modelling, and help to implement permafrost landscape and feature mapping in a GIS framework. It will also complement active layer and thermal observing networks. Both lowland (latitudinal) and mountain (altitudinal) permafrost issues are addressed. The selected transects and first results will be presented. This includes identified needs from the user requirements survey, a review of existing land surface products available for the Arctic as well as prototypes of GlobPermafrost datasets, and the permafrost information system through which they can be accessed. Bartsch, Annett; Allard, Michel; Biskaborn, Boris Kolumban; Burba, George; Christiansen, Hanne H; Duguay

  15. Sensitivity of GOCE gradients on Greenland mass variation and changes in ice topography

    DEFF Research Database (Denmark)

    Herceg, Matija; Tscherning, Carl Christian; Fredenslund Levinsen, Joanna

    2014-01-01

    The Gravity field and steady state Ocean Circulation Explorer (GOCE) maps variations in the gravity field by observing second order derivatives (gradients) of the Earth gravitational potential. Flying in the low altitude of 255 km and having a spatially dense data distribution of short wavelengths...... of the gravity field, GOCE may be used to enhance the time varying gravity signal coming fromthe GRACE satellites. The GOCE gradients may potentially be used for the determination of residual masses in local regions. This can be done using Least-Squares Collocation (LSC) or the Reduced Point Mass (RPM) method....... In this study, different gravity field solutions are calculated by the use of RPM, LSC and GOCE gradients, respectively. Gravity field time series are created and presented for the six consecutive months of GOCE gradient observations, data being acquired between November 2009 and June 2010. Corresponding...

  16. Oxygen Gradients in the Microcirculation

    Science.gov (United States)

    Pittman, Roland N.

    2010-01-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO2 gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453

  17. Dai-Kou type conjugate gradient methods with a line search only using gradient.

    Science.gov (United States)

    Huang, Yuanyuan; Liu, Changhe

    2017-01-01

    In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.

  18. Stringy bounces and gradient instabilities

    CERN Document Server

    Giovannini, Massimo

    2017-01-01

    Bouncing solutions are obtained from a generally covariant action characterized by a potential which is a nonlocal functional of the dilaton field at two separated space-time points. Gradient instabilities are shown to arise in this context but they are argued to be nongeneric. After performing a gauge-invariant and frame-invariant derivation of the evolution equations of the fluctuations, a heuristic criterium for the avoidance of pathological instabilities is proposed and corroborated by a number of explicit examples that turn out to be compatible with a quasi-flat spectrum of curvature inhomogeneities for typical wavelengths larger than the Hubble radius.

  19. A sensitivity study on the effects of particle chemistry, asphericity and size on the mass extinction efficiency of mineral dust in the earth's atmosphere: from the near to thermal IR

    Directory of Open Access Journals (Sweden)

    R. A. Hansell Jr.

    2011-02-01

    Full Text Available To determine a plausible range of mass extinction efficiencies (MEE of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 m2 g−1, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8–10 μm than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  20. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    Science.gov (United States)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.

    2011-01-01

    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  1. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes

    Science.gov (United States)

    Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.

    1992-01-01

    The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.

  2. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  3. Be-Cu gradient materials through controlled segregation. Basic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Muecklich, F.; Lorinser, M.; Hartmann, S.; Beinstingel, S. [Saarland Univ., Saarbruecken (Germany); Linke, J.; Roedig, M.

    1998-01-01

    The joining of materials has a fundamental problematic nature: Creating a sharp interface between two different materials causes a more or less extreme jump in the properties at this point. This may result in the failure of the component under mechanical or thermal loads. In some cases there are further difficulties caused by using a third component (e.g. the transformation of Ag-lead into Cd by neutron beams). The solution may be the creating of a functionally gradient material (FGM) Be-Cu. We discuss the advantage of such a FGM and the probabilities of an new procedure for manufacturing 1-dimensional FGMs. (author)

  4. Conjugate gradient heat bath for ill-conditioned actions.

    Science.gov (United States)

    Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele

    2007-08-01

    We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.

  5. Conjugate gradient heatbath for ill-conditioned actions

    CERN Document Server

    Ceriotti, Michele; Parrinello, Michele

    2008-01-01

    We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heatbath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heatbath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.

  6. Thermal effects on PLATO point spread function

    Science.gov (United States)

    Gullieuszik, Marco; Magrin, Demetrio; Greggio, Davide; Ragazzoni, Roberto; Nascimbeni, Valerio; Bergomi, Maria; Biondi, Federico; Chinellato, Simonetta; Dima, Marco; Farinato, Jacopo; Marafatto, Luca; Viotto, Valentina; Munari, Matteo; Pagano, Isabella; Sicilia, Daniela; Basso, Stefano; Borsa, Francesco; Ghigo, Mauro; Spiga, Daniele; Bandy, Thimoty; Benz, Willy; Brändli, Mathias; Bruno, Giordano; De Roche, Thierry; Piazza, Daniele; Rieder, Martin; Brandeker, Alexis; Klebor, Maximilian; Mogulsky, Valery; Schweitzer, Mario; Wieser, Matthias; Erikson, Anders; Rauer, Heike

    2016-07-01

    Thermal effects in PLATO are analyzed in terms of uniform temperature variations, longitudinal and lateral temperature gradients. We characterize these effects by evaluating the PSF centroid shifts and the Enclosed Energy variations across the whole FoV. These patterns can then be used to gauge the thermal behavior of each individual telescope in order to improve the local photometric calibration across the PLATO field of view.

  7. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  8. Effect of the brittle-ductile transition on the topography of compressive mountain belts on Earth and Venus

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.A.; Connors, C.; Dahlen, F.A.; Price, E.J.; Suppe, J. [Princeton Univ., NJ (United States)

    1994-10-10

    The Coulomb critical taper model has been very successful in explaining the large-scale topography of a number of terrestrial accretionary wedges; however, this model is limited to cases of purely brittle frictional deformation. In this paper the authors extend the range of applicability of the critical taper model by explicitly including the effects of temperature-dependent ductile deformation. The new model includes temperature-dependent power law flow, an assumed velocity field, and linear thermal gradients in the atmosphere and within the crust. Flexural isostasy is also incorporated so that the decollement geometry is computed as a response to the applied load of the wedge material. They assume that ductile deformation within the decollement zone is controlled by dislocation creep. The topographic profiles predicted by the model are very similar to those of a number of fold-and-thrust belts on both Earth and Venus. A typical wedge and the decollement zone deforms in a brittle-frictional manner; a region of relatively steep slope, where the wedge base deforms ductilely and the decollement zone are deforming by ductile flow. The authors have applied the model to two-fold-and-thrust belts on Venus (Maxwell Montes and Uorsar Rupes) and to the Andes on Earth, and they find good agreement between observed and predicted topography using reasonable parameter values. The model accounts for the observed positive correlation between relief and evaluation of Venusian fold-and-thrust belts on the basis of different thermal environments at different elevations. It is also able to explain the first-order differences between and Venusian fold-and thrust belts; fundamentally, this difference is due to a combination of the lower temperatures and the presence of water on Earth. 54 refs., 20 figs., 3 tabs.

  9. Earth and ocean modeling

    Science.gov (United States)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  10. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  11. Thinking the earth

    NARCIS (Netherlands)

    Blok, Vincent

    2016-01-01

    Quentin Meillassoux's call for realism is a call for a new interest in the Earth as un-correlated being in philosophy. Unlike Meillassoux, Martin Heidegger has not been criticized for being a correlationist. To the contrary, his concept of the Earth has to be understood as un-correlated being, as it

  12. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  13. Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester

    Science.gov (United States)

    Vailhe, Christophe

    2003-01-01

    The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.

  14. Rectified Continuous Flow Loop for Thermal Control of Large Deployable Structures and Distributed Loads Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future instruments and platforms for NASA's Earth Science Enterprises will require increasingly sophisticated thermal control technology, and cryogenic applications...

  15. Critical density gradients for small-scale plasma irregularity generation in the E and F regions

    Science.gov (United States)

    Makarevich, Roman A.

    2017-09-01

    Electron density gradients that can make plasma unstable in the ionospheric E and F regions are analyzed. We focus on critical gradient values required for plasma instability to become operational to produce decameter-scale plasma irregularities observed by the Super Dual Auroral Radar Network (SuperDARN) without any nonlinear wave cascade. Analytic expressions are developed for the critical gradients using a recently developed general formalism for arbitrary geometry and with the ion inertia and stabilizing thermal diffusion effects included. It is demonstrated that the problem can be analyzed using a single equation applicable in both the E and F regions that only differs in the sign of the main term related to convection strength. Analytic expressions are obtained, and results are presented for (1) critical gradient strength for arbitrary gradient and propagation directions, (2) range of propagation directions with unstable primary waves, (3) most favorable configuration and minimum critical gradient, and (4) most favorable propagation direction for arbitrary gradient direction. It is shown that the most favorable configuration is achieved for propagation along the differential drift and gradient perpendicular to it and that an unexpected exception is the F region under strong convection when propagation and gradient are both rotated by a certain angle. It is estimated that in the F region, from which most of the SuperDARN backscatter comes, primary decameter waves can be generated for gradient scales as large as 100 km for favorable orientations and strong plasma convection >500 m/s and that much smaller scales of 200-1000 m are required for unfavorable orientations.

  16. The Educational Gradient in Health in China

    Science.gov (United States)

    Chen, Qiulin; Eggleston, Karen; Zhang, Wei; Zhao, Jiaying; Zhou, Sen

    2017-01-01

    It has been well established that better educated individuals enjoy better health and longevity. In theory, the educational gradients in health could be flattening if diminishing returns to improved average education levels and the influence of earlier population health interventions outweigh the gradient-steepening effects of new medical and health technologies. This paper documents how the gradients are evolving in China, a rapidly developing country, about which little is known on this topic. Based on recent mortality data and nationally representative health surveys, we find large and, in some cases, steepening educational gradients. We also find that the gradients vary by cohort, gender and region. Further, we find that the gradients can only partially be accounted for by economic factors. These patterns highlight the double disadvantage of those with low education, and suggest the importance of policy interventions that foster both aspects of human capital for them. PMID:29056815

  17. Community and ecosystem responses to elevational gradients

    DEFF Research Database (Denmark)

    Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.

    2013-01-01

    Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients. There...... will provide powerful information that can improve predictions of climate change impacts within and across ecosystems.......Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients...... elevational gradients for understanding community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. However, future studies that integrate elevational gradient approaches with experimental manipulations...

  18. Interpretation of CHAMP Magnetic Anomaly Data over the Pannonian Basin Region Using Lower Altitude Horizontal Gradient Data

    Science.gov (United States)

    Taylor, P. T.; Kis, K. I.; Wittmann, G.

    2013-01-01

    The ESA SWARM mission will have three earth orbiting magnetometer bearing satellites one in a high orbit and two side-by-side in lower orbits. These latter satellites will record a horizontal magnetic gradient. In order to determine how we can use these gradient measurements for interpretation of large geologic units we used ten years of CHAMP data to compute a horizontal gradient map over a section of southeastern Europe with our goal to interpret these data over the Pannonian Basin of Hungary.

  19. Thermally induced lensing determination from the coefficient of defocus aberration

    CSIR Research Space (South Africa)

    Bell, Teboho

    2014-07-01

    Full Text Available The effects of a temperature gradient in a laser crystal in an end-pumped configuration in a solid-state laser resonator results in thermally induced aberrations. Of particular interest we measure the thermally induced lens from the coefficient...

  20. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  1. Resonant Optical Gradient Force Interaction for Nano-Imaging and-Spectroscopy

    Science.gov (United States)

    2016-07-19

    gradient force off-resonance is below the thermal cantilever noise limit of a room temperature atomic forcemicroscope (AFM), we assess that in the cases of...the cantilever oscillation amplitude equals that induced by thermal noise given by ( ) w = ⎡ ⎣⎢ ⎤ ⎦⎥F k TkB Q 4 , 4min B 1 2 with Boltzmann’s...force is proportional to the local optical electricfield, while the thermal expansion/ absorption is due to resistive heating associatedwith electric

  2. Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation.

    Science.gov (United States)

    Valles, J M; Lin, K; Denegre, J M; Mowry, K L

    1997-08-01

    We have levitated, for the first time, living biological specimens, embryos of the frog Xenopus laevis, using a large inhomogeneous magnetic field. The magnetic field/field gradient product required for levitation was 1430 kG2/cm, consistent with the embryo's susceptibility being dominated by the diamagnetism of water and protein. We show that unlike any other earth-based technique, magnetic field gradient levitation of embryos reduces the body forces and gravity-induced stresses on them. We discuss the use of large inhomogeneous magnetic fields as a probe for gravitationally sensitive phenomena in biological specimens.

  3. The double-gradient model of flapping instability with oblique wave vector

    Science.gov (United States)

    Korovinskiy, Daniil; Kiehas, Stefan

    2017-04-01

    The double-gradient model of magnetotail flapping oscillations/instability is generalized for the case of oblique propagation in the equatorial plane. The transversal direction Y (in GSM reference system) of the wave vector is found to be preferable, showing the highest growth rates of kink and sausage double-gradient unstable modes. Growth rates decrease with the wave vector rotating toward the X direction. It is found that neither waves nor instability with a wave vector pointing toward the Earth/magnetotail can develop.

  4. Color and population gradients in globular clusters

    Science.gov (United States)

    Djorgovski, S.; Piotto, G.; Mallen-Ornelas, G.

    1991-01-01

    We present preliminary results from a survey for color and population gradients in globular cluster cores. Color gradients, in the sense of becoming bluer inwards, are always found in post-core-collapse clusters. They seem to be caused by the demise of red giants, and possibly an increased number of blue stragglers. This may be a consequence of stellar interactions during and after the core collapse. No gradients are seen in clusters with King-model morphology.

  5. Ant colony optimization and stochastic gradient descent.

    Science.gov (United States)

    Meuleau, Nicolas; Dorigo, Marco

    2002-01-01

    In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques.

  6. Testing the limits of gradient sensing.

    Directory of Open Access Journals (Sweden)

    Vinal Lakhani

    2017-02-01

    Full Text Available The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis or grow (chemotropism towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell's accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.

  7. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  8. Longitudinal gradients along a reservoir cascade

    Science.gov (United States)

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  9. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  10. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  11. The Earth's Magnetic Interior

    CERN Document Server

    Petrovsky, Eduard; Harinarayana, T; Herrero-Bervera, Emilio

    2011-01-01

    This volume combines review and solicited contributions, related to scientific studies of Division I of IAGA presented recently at its Scientific Assembly in Sopron in 2009. The book is aimed at intermediate to advanced readers dealing with the Earth's magnetic field generation, its historical records in rocks and geological formations - including links to geodynamics and magnetic dating, with magnetic carriers in earth materials, electromagnetic induction and conductivity studies of the Earth interior with environmental applications of rock magnetism and electromagnetism. The aim of the book

  12. USSR Report Earth Sciences

    National Research Council Canada - National Science Library

    1987-01-01

    ..., Underwater Thermal, Sea Waters, Shallow Water Waves, Petroleum Hydrocarbons, Indian Ocean Waters, Seasonal Climates, Terrestrial Geophysics, Arctic Ice Mapping, Heat Conductivity, Soil Gas, Thermometric...

  13. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management

    Science.gov (United States)

    Grandjean, Thomas; Barai, Anup; Hosseinzadeh, Elham; Guo, Yue; McGordon, Andrew; Marco, James

    2017-08-01

    It is crucial to maintain temperature homogeneity in lithium ion batteries in order to prevent adverse voltage distributions and differential ageing within the cell. As such, the thermal behaviour of a large-format 20 Ah lithium iron phosphate pouch cell is investigated over a wide range of ambient temperatures and C rates during both charging and discharging. Whilst previous studies have only considered one surface, this article presents experimental results, which characterise both surfaces of the cell exposed to similar thermal media and boundary conditions, allowing for thermal gradients in-plane and perpendicular to the stack to be quantified. Temperature gradients, caused by self-heating, are found to increase with increasing C rate and decreasing temperature to such an extent that 13.4 ± 0.7% capacity can be extracted using a 10C discharge compared to a 0.5C discharge, both at -10 °C ambient temperature. The former condition causes an 18.8 ± 1.1 °C in plane gradient and a 19.7 ± 0.8 °C thermal gradient perpendicular to the stack, which results in large current density distributions and local state of charge differences within the cell. The implications of these thermal and electrical inhomogeneities on ageing and battery pack design for the automotive industry are discussed.

  14. Transport Properties of Earth's Core

    Science.gov (United States)

    Cohen, R. E.; Zhang, P.; Xu, J.

    2016-12-01

    One of the most important parameters governing the original heat that drives all processes in the Earth is the thermal conductivity of Earth's core. Heat is transferred through the core by convection and conduction, and the convective component provides energy to drive the geodynamo. Sha and Cohen (2011) found that the electrical conductivity of solid hcp-iron was much higher than had been assumed by geophysicists, based on electronic structure computations for electron-phonon scattering (e-p) within density functional theory [1]. Thermal conductivity is related to electrical conductivity through the empirical Wiedmann-Franz law of 1853 [2]. Pozzo et al. [3] found that the high electrical conductivity of liquid iron alloys was too high for conventional dynamo models to work—there simply is not enough energy, so O'Rourke and Stevenson proposed a model driven by participation of Mg from the core [4], supported by recent experients [5]. Recent measurements by Ohta et al. show even lower resistivities than predicted by DFT e-p, and invoked a saturation model to account for this, [6] whereas, Konopkova et al. found thermal conductivities consistent with earlier geophysical estimates. [7] We are using first-principles methods, including dynamical mean field theory for electron-electron scattering, and highly converged e-p computations, and find evidence for strong anisotropy in solid hcp-Fe that may help explain some experimental results. The current status of the field will be discussed along with our recent results. This work is supported by the ERC Advanced grant ToMCaT, the NSF, and the Carnegie Institution for Science.[1] X. Sha and R. E. Cohen, J.Phys.: Condens.Matter 23, 075401 (2011).[2] R. Franz and G. Wiedemann, Annalen Physik 165, 497 (1853).[3] M. Pozzo, C. Davies, D. Gubbins, and D. Alfe, Nature 485, 355 (2012).[4] J. G. O'Rourke and D. J. Stevenson, Nature 529, 387 (2016).[5] J. Badro, J. Siebert, and F. Nimmo, Nature (2016).[6] K. Ohta, Y. Kuwayama, K

  15. Reactive dye extraction utilizing regenerated bleaching earth

    Directory of Open Access Journals (Sweden)

    M. Shahi

    2017-09-01

    Full Text Available Bentonite bleaching earth is utilized for purifying used motor oil through a recovery process in order to improve the quality and stability of the final product. Indeed, spent bleaching earth is generated due to adsorbing oil impurities. Polluted spent bleaching earth contains 20-40% (w/w oil and is flammable. Its disposal without pre-treatment leads to loss of oil along with environmental impacts. Accordingly, similar studies have been conducted since 1979 until now. This research was a laboratory study on reactive dye adsorption. Cleaning bleaching clay, thermal remediation and acid washing activation methods were utilized. Response surface methodology was used to design the experiments and determine the optimal parameters in order to run the dye adsorption process. The main experimental parameters have been concluded as temperature (200-800 °C, acid solution concentration (0.1-3 M, dye solution concentration (1-35 ppm, and ratio of activated earth to dye solution (0.1-2 %, w/w. Results revealed that dye adsorption process along with oil removal at a temperature of 650 °C, acid solution concentration of 0.83 M, dye solution concentration of 11.75 ppm and ratio of activated earth to dye solution of 1.52 % (w/w results in an adsorption efficiency of 68.57%. This removal efficiency is a bit higher than activated virgin bleaching earth and much higher than virgin bleaching earth, which has adsorption capacities of 66.75% and 51.56%, respectively. Considering this recycling process, the purified material is quite acceptable technically, environmentally and economically.

  16. Flow regimes in a shallow rotating cylindrical annulus with temperature gradients imposed on the horizontal boundaries

    Science.gov (United States)

    Hathaway, D. H.; Fowlis, W. W.

    1986-01-01

    Experimental flow regime diagrams are determined for a new rotating cylindrical annulus configuration which permits a measure of control over the internal vertical temperature gradient. The new annulus has radial temperature gradients imposed on plane horizontal thermally conducting endwalls (with the cylindrical sidewalls as insulators) and is considered to be more relevant to atmospheric dynamics studies than the classical cylindrical annulus. Observations have revealed that, in addition to the axisymmetric flow and nonaxisymmetric baroclinic wave flow which occur in the classical annulus, two additional nonaxisymmetric flow types occur in the new annulus: boundary-layer thermal convection and deep thermal convection. Flow regime diagrams for three different values of the imposed vertical temperature difference are presented, and explanations for the flow transitions are offered. The new annulus provides scientific backup for the proposed Atmospheric General Circulation Experiment for Spacelab. The apparatus diagram is included.

  17. Thermal Water of Utah Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Goode, Harry D.

    1978-11-01

    Western and central Utah has 16 areas whose wells or springs yield hot water (35 C or higher), warm water (20-34.5 C), and slightly warm water (15.5-19.5 C). These areas and the highest recorded water temperature for each are: Lower Bear River Area, 105 C; Bonneville Salt Flats, 88 C; Cove Fort-Sulphurdale, 77 C; Curlew Valley, 43 C; East Shore Area, 60 C; Escalante Desert, 149 C; Escalante Valley (Roosevelt, 269 C, and Thermo, 85C); Fish Springs, 60.5 C; Grouse Creek Valley, 42 C; Heber Valley (Midway, 45 C); Jordan Valley, 58.5 C; Pavant Valley-Black Rock Desert, 67 C; Sevier Desert ( Abraham-Crater Hot Springs, 82 C); Sevier Valley (Monroe-Red Hill, 76.5 C, and Joseph Hot Spring, 64 C); Utah Valley, 46 C; and Central Virgin River Basin, 42 C. The only hot water in eastern Utah comes from the oil wells of the Ashley Valley Oil Field, which in 1977 yielded 4400 acre-feet of water at 43 C to 55 C. Many other areas yield warm water (20 to 34.5 C) and slightly warm water (15.5 to 19.5 C). With the possible exception of the Roosevelt KGRA, Crater Hot Springs in the Sevier Desert, Escalante Desert, Pavant-Black Rock, Cove Fort-Sulphurdale, and Coyote Spring in Curlew Valley, which may derive their heat from buried igneous bodies, the heat that warms the thermal water is derived from the geothermal gradient. Meteoric water circulates through fractures or permeable rocks deep within the earth, where it is warmed; it then rises by convection or artesian pressure and issues at the surface as springs or is tapped by wells. Most thermal springs thus rise along faults, but some thermal water is trapped in confined aquifers so that it spreads laterally as it mixes with and warms cooler near-surface water. This spreading of thermal waters is evident in Cache Valley, in Jordan Valley, and in southern Utah Valley; likely the spreading occurs in many other artesian basins where it has not yet been recognized. In the East Shore Area thermal water trapped in confined aquifers warms

  18. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  19. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  20. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  1. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  2. EARTH ISLAND PROJECT NEWS

    National Research Council Canada - National Science Library

    2008-01-01

      The section features Earth Island's Dolphin Safe tuna . label (asking readers to look for tuna cans without the Dolphin Safe label and alert us so we can have the cans removed from store shelves...

  3. The Earth's rotation problem

    Science.gov (United States)

    Brumberg, V. A.; Ivanova, T. V.

    2008-09-01

    The aim of the present paper is to find the trigonometric solution of the equations of the Earth's rotation around its centre of mass in the form of polynomial trigonometric series (Poisson series) without secular and mixed therms. For that the techniques of the General Planetary Theory (GPT) ( Brumberg, 1995) and the Poisson Series Processor (PSP) (Ivanova, 1995) are used. The GPT allows to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation in Euler parameters to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  4. Whole-Earth Decompression Dynamics

    OpenAIRE

    Herndon, J. Marvin

    2005-01-01

    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The i...

  5. Perioperative thermal insulation.

    Science.gov (United States)

    Bräuer, Anselm; Perl, Thorsten; English, Michael J M; Quintel, Michael

    2007-01-01

    Perioperative hypothermia remains a common problem during anesthesia and surgery. Unfortunately, the implementation of new minimally invasive surgical procedures has not lead to a reduction of this problem. Heat losses from the skin can be reduced by thermal insulation to avoid perioperative hypothermia. However, only a small amount of information is available regarding the physical properties of insulating materials used in the Operating Room (OR). Therefore, several materials using validated manikins were tested. Heat loss from the surface of the manikin can be described as:"Q = h . DeltaT . A" where Q = heat flux, h = heat exchange coefficient, DeltaT = temperature gradient between the environment and surface, and A = covered area. Heat flux per unit area and surface temperature were measured with calibrated heat flux transducers. Environmental temperature was measured using a thermoanemometer. The temperature gradient between the surface and environment (DeltaT) was varied and "h" was determined by linear regression analysis as the slope of "DeltaT" versus heat flux per unit area. The reciprocal of the heat exchange coefficient defines the insulation. The insulation values of the materials varied between 0.01 Clo (plastic bag) to 2.79 Clo (2 layers of a hospital duvet). Given the range of insulating materials available for outdoor activities, significant improvement in insulation of patients in the OR is both possible and desirable.

  6. Crystallization behavior of rare-earth doped fluorochlorozirconate glasses.

    Science.gov (United States)

    Paßlick, C; Ahrens, B; Henke, B; Johnson, J A; Schweizer, S

    2011-06-01

    A series of fluorochlorozirconate (FCZ) glasses, each doped with a different rare-earth, was prepared and examined to determine thermal stability and activation energy, Ea , of the dopant dependent BaCl2 crystallization. Non-isothermal differential scanning calorimetry (DSC) measurements were done to investigate the endothermic and exothermic reactions upon heat treatment of the glass samples. In comparison to the rare-earth free FCZ glass, significant changes in the Hruby constant, Hr , and Ea were found due to the addition of a rare-earth and also between the individual dopants.

  7. Canonical trivialization of gravitational gradients

    Science.gov (United States)

    Niedermaier, Max

    2017-06-01

    A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein-Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie-Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions.

  8. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    Science.gov (United States)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  9. Surprising Evolution of Faraday Rotation Gradients in the Jet of S5 1803+784

    Science.gov (United States)

    Mahmud, M.; Gabuzda, D.; Bezrukovs, V.

    2008-06-01

    Several multi-frequency polarization studies have shown the presence of systematic Faraday Rotation gradients across the parsec-scale jets of Active Galactic Nuclei (AGN), taken to be due to the systematic variation of the line-of-sight component of a helical magnetic field across the jet. Other studies have confirmed the presence and sense of these gradients in several sources, thus providing evidence that these gradients persist over time and over large distances from the core. However, we find surprising new evidence for a reversal in the direction of the Faraday Rotation gradient across the jet of S5 1803+784, for which multi-wavelength polarization observations are available at four epochs. At all four epochs, we observe transverse Rotation Measure (RM) gradients across the jet, consistent with the presence of a helical magnetic field wrapped around the jet. However, we also observe a ``flip'' in the direction of the gradient between June 2000 and August 2002. Although the origins of this phenomena are not understood, one way to interpret this change is if the sense of rotation of the central supermassive black hole and accretion disc has remained the same, but the dominant magnetic pole facing the Earth has changed from North to South.

  10. Regulation of leaf traits in canopy gradients.

    NARCIS (Netherlands)

    Pons, T.L.|info:eu-repo/dai/nl/069365822

    2016-01-01

    The gradient of leaf traits in a canopy from sunlit upper regions to shaded lower ones is regulated in response to the density of its leaf area. The gradients of environmental factors act as signals for the regulation. The result is improved resource use efficiency for carbon gain at the whole plant

  11. Preconditioning the modified conjugate gradient method ...

    African Journals Online (AJOL)

    In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.

  12. Gradient High Performance Liquid Chromatography Method ...

    African Journals Online (AJOL)

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid dosage form. Methods: HPLC determination was carried out on an Agilent XDB C-18 column (4.6 x 150mm, 5 μ particle size) with a gradient ...

  13. An Inexpensive Digital Gradient Controller for HPLC.

    Science.gov (United States)

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  14. Newton's method in the context of gradients

    Directory of Open Access Journals (Sweden)

    John W. Neuberger

    2007-09-01

    Full Text Available This paper gives a common theoretical treatment for gradient and Newton type methods for general classes of problems. First, for Euler-Lagrange equations Newton's method is characterized as an (asymptotically optimal variable steepest descent method. Second, Sobolev gradient type minimization is developed for general problems using a continuous Newton method which takes into account a "boundary condition" operator.

  15. Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyse

    Science.gov (United States)

    Marko Gómez-Hernández; Guadalupe Williams-Linera; Roger Guevara; D. Jean Lodge

    2012-01-01

    Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500 m altitude represent tropical dry forest, tropical montane cloud...

  16. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  17. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  18. Dual fuel gradients in uranium silicide plates

    Energy Technology Data Exchange (ETDEWEB)

    Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  19. Protein gradient films of fibroin and gelatine.

    Science.gov (United States)

    Claussen, Kai U; Lintz, Eileen S; Giesa, Reiner; Schmidt, Hans-Werner; Scheibel, Thomas

    2013-10-01

    Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  1. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  2. MATHEMATICAL MODEL OF PROCESS OF THERMAL REGENERATION KIESELGUHR

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2012-01-01

    Full Text Available At the present time, still require further refinement of the mechanisms of thermodynamic and mass transfer processes in capillary-porous media. In this paper a mathematical description of the process of thermal regeneration of diatomaceous earth.

  3. Acquisition and Early Losses of Rare Gases from the Deep Earth

    Science.gov (United States)

    Porcelli, D.; Cassen, P.; Woolum, D.; Wasserburg, G. J.

    1998-01-01

    ) yr. It is assumed that equilibration of the atmosphere with a thoroughly molten mantle was rapid, so that initial abundances of gases retained in any mantle layer reflected surface conditions when the layer solidified. For subsequent gas loss of 99.5% and typical solubility coefficients, a total pressure of 100 atm was required for an atmosphere of solar composition. Calculations of the pressure at the base of a primordial atmosphere indicate that this value might be exceeded by an order of magnitude or more for an atmosphere supported by accretional energy. Surface temperatures of about 4000 K would have been produced, probably high enough to melt the deep mantle. Initial distributions of retained rare gases would then be determined by the history of surface pressure and temperature during mantle cooling and solidification, i.e., the coupled cooling of Earth and atmosphere. The Earth's thermal state was determined by its surface temperature and the efficiency of convection in the molten mantle, estimated to be sufficient to maintain an adiabatic gradient. Because the melting curve is steeper than the adiabat, solidification of the mantle proceeded outward from the interior. Incorporation of atmospheric gases in the mantle therefore occurred over a range in surface temperature of a few thousand degrees Kelvin. The thermal state of the atmosphere was controlled by total luminosity of the Earth (energy) released by accreting planetesimals and the cooling Earth), nebular temperature and pressure, and atmospheric opacity. The energy released by accretion declined with time as did nebular pressure. Analytical solutions for an idealized (constant opacity radiative atmosphere show that declining energy sources under constant nebular conditions result in slowly diminishing surface temperature but dramatically increasing surface pressure. For such an atmosphere with declining nebular pressure but constant total luminosity, surface pressure decreases gradually with decreasing

  4. Modelling the thermal behaviour of the low-thermal mass liquid chromatography system.

    Science.gov (United States)

    Verstraeten, Matthias; Pursch, Matthias; Eckerle, Patric; Luong, Jim; Desmet, Gert

    2011-04-22

    We report upon the experimental investigation of the heat transfer in low thermal mass LC (LTMLC) systems, used under temperature gradient conditions. The influence of the temperature ramp, the capillary dimensions, the material selection and the chromatographic conditions on the radial temperature gradients formed when applying a temperature ramp were investigated by a numerical model and verified with experimental temperature measurements. It was found that the radial temperature gradients scale linearly with the heating rate, quadratically with the radius of the capillary and inversely to the thermal diffusivity. Because of the thermal radial gradients in the liquid zone inside the capillary lead to radial viscosity and velocity gradients, they form an additional source of dispersion for the solutes. For a temperature ramp of 1 K/s and a strong temperature dependence of the retention of small molecules, the model predicts that narrow-bore columns (i.d. 2.1 mm) can be used. For a temperature ramp of 10 K/s, the maximal inner diameter is of the order of 1 mm before a substantial increase in dispersion occurs. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Thermal preference predicts animal personality in Nile tilapia Oreochromis niloticus.

    Science.gov (United States)

    Cerqueira, Marco; Rey, Sonia; Silva, Tome; Featherstone, Zoe; Crumlish, Margaret; MacKenzie, Simon

    2016-09-01

    Environmental temperature gradients provide habitat structure in which fish orientate and individual thermal choice may reflect an essential integrated response to the environment. The use of subtle thermal gradients likely impacts upon specific physiological and behavioural processes reflected as a suite of traits described by animal personality. In this study, we examine the relationship between thermal choice, animal personality and the impact of infection upon this interaction. We predicted that thermal choice in Nile tilapia Oreochromis niloticus reflects distinct personality traits and that under a challenge individuals exhibit differential thermal distribution. Nile tilapia were screened following two different protocols: 1) a suite of individual behavioural tests to screen for personality and 2) thermal choice in a custom-built tank with a thermal gradient (TCH tank) ranging from 21 to 33 °C. A first set of fish were screened for behaviour and then thermal preference, and a second set were tested in the opposite fashion: thermal then behaviour. The final thermal distribution of the fish after 48 h was assessed reflecting final thermal preferendum. Additionally, fish were then challenged using a bacterial Streptococcus iniae model infection to assess the behavioural fever response of proactive and reactive fish. Results showed that individuals with preference for higher temperatures were also classified as proactive with behavioural tests and reactive contemporaries chose significantly lower water temperatures. All groups exhibited behavioural fever recovering personality-specific thermal preferences after 5 days. Our results show that thermal preference can be used as a proxy to assess personality traits in Nile tilapia and it is a central factor to understand the adaptive meaning of animal personality within a population. Importantly, response to infection by expressing behavioural fever overrides personality-related thermal choice. © 2016 The Authors

  6. Sensitivity of Goce Gradients on Greenland Mass Variation And Changes in Ice Topography

    Directory of Open Access Journals (Sweden)

    Herceg M.

    2014-04-01

    Full Text Available The Gravity field and steady state Ocean Circulation Explorer (GOCE maps variations in the gravity field by observing second order derivatives (gradients of the Earth gravitational potential. Flying in the low altitude of 255 km and having a spatially dense data distribution of short wavelengths of the gravity field, GOCE may be used to enhance the time varying gravity signal coming fromthe GRACE satellites.

  7. STATISTICS OF THE VELOCITY GRADIENT TENSOR IN SPACE PLASMA TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Consolini, Giuseppe; Marcucci, Maria Federica; Pallocchia, Giuseppe [INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy); Materassi, Massimo, E-mail: giuseppe.consolini@iaps.inaf.it [Istituto dei Sistemi Complessi, CNR, Sesto Fiorentino (Italy)

    2015-10-10

    In the last decade, significant advances have been presented for the theoretical characterization and experimental techniques used to measure and model all of the components of the velocity gradient tensor in the framework of fluid turbulence. Here, we attempt the evaluation of the small-scale velocity gradient tensor for a case study of space plasma turbulence, observed in the Earth's magnetosheath region by the CLUSTER mission. In detail, we investigate the joint statistics P(R, Q) of the velocity gradient geometric invariants R and Q, and find that this P(R, Q) is similar to that of the low end of the inertial range for fluid turbulence, with a pronounced increase in the statistics along the so-called Vieillefosse tail. In the context of hydrodynamics, this result is referred to as the dissipation/dissipation-production due to vortex stretching.

  8. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  9. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  10. Earth - Moon Conjunction

    Science.gov (United States)

    1992-01-01

    On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

  11. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  12. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    NARCIS (Netherlands)

    Herranz, R.; Larkin, O.J.; Dijkstra, C.E.; Hill, R.J.A.; Anthony, P.; Davey, M.R.; Michael, R.; Eaves, L.; van Loon, J.J.W.A.; Medina, F.J.; Marco, R.

    2012-01-01

    Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic

  13. Ceramic gradient materials for components of internal combustion engines. Keramische Gradientenwerkstoffe fuer Komponenten in Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Henning, W.; Mielke, S. (Kolbenschmidt AG, Neckarsulm (Germany)); Melzer, C. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde)

    1992-05-01

    Formed ceramic bodies with density gradients were attached to the pistons of Diesel engines for passenger cars by diecasting under pressure in order to reinforce the piston heads. With this hybrid design, the ceramic content gradually decreases with increasing distance from the piston head. An assessment of the potentials of this design in off-motor tests shows the technical benefits of this development. The termal fatigue strength could be increased, and the high ceramic content features a heat-insulating effect. The gradient design offers a number of advantages in comparison with conventional approaches to approve the thermal fatigue resistance (hard anodizing, spray-coating of ceramic coatings, solid ceramic inserts). (orig.).

  14. Google Earth and Map Projections

    Directory of Open Access Journals (Sweden)

    Nedjeljko Frančula

    2010-06-01

    Full Text Available By starting Google Earth, the screen shows Earth from a great distance, e.g. from a satellite rotating around the Earth (Fig. 1. The graticule is drawn by using the Grid function from the View menu. Google Earth is a virtual globe which can be rotated in all directions using a mouse.

  15. High Energy Advanced Thermal Storage for Spacecraft Solar Thermal Power and Propulsion Systems

    Science.gov (United States)

    2011-10-12

    on the fiberglass dish template failed due to difficulties in controlling extra reactions during chemical spraying . This degraded the clear coat...enough to allow relatively large thermal gradients during the heating process. Pyrolytic BN is favorable material for future crucible designs that

  16. Chemically grafted carbon nanotube surface coverage gradients.

    Science.gov (United States)

    Shearer, Cameron J; Ellis, Amanda V; Shapter, Joseph G; Voelcker, Nicolas H

    2010-12-07

    Two approaches to producing gradients of vertically aligned single-walled carbon nanotubes (SWCNTs) on silicon surfaces by chemical grafting are presented here. The first approach involves the use of a porous silicon (pSi) substrate featuring a pore size gradient, which is functionalized with 3-aminopropyltriethoxysilane (APTES). Carboxylated SWCNTs are then immobilized on the topography gradient via carbodiimide coupling. Our results show that as the pSi pore size and porosity increase across the substrate the SWCNT coverage decreases concurrently. In contrast, the second gradient is an amine-functionality gradient produced by means of vapor-phase diffusion of APTES from a reservoir onto a silicon wafer where APTES attachment changes as a function of distance from the APTES reservoir. Carboxylated SWCNTs are then immobilized via carbodiimide coupling to the amine-terminated silicon gradient. Our observations confirm that with decreasing APTES density on the surface the coverage of the attached SWCNTs also decreases. These gradient platforms pave the way for the time-efficient optimization of SWCNT coverage for applications ranging from field emission to water filtration to drug delivery.

  17. Dagik Earth and IUGONET

    Science.gov (United States)

    Ebisawa, K.; Koyama, Y.; Saito, A.; Sakamoto, S.; Ishii, M.; Kumano, Y.; Hazumi, Y.

    2015-09-01

    In this paper we introduce two independent projects in progress in Japan. Dagik Earth is a visualization project of the Earth and planets on a spherical screen using only a standard PC and a projector. Surface images of the Earth or planets (or whatever having spherical shape) in the equirectangular (plate carre) projection are projected on a spherical screen in the orthographic projection. As a result, the spherical screen becomes a virtual digital globe, which can be rotated using mouse or remote controller. Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a collaboration of five Japanese institutes to build a comprehensive database system for the metadata of the upper-atmospheric data taken by these institutes. We explain the IUGONET metadata database and iUgonet Data Analysis Software (UDAS) for upper atmospheric research.

  18. Better Than Earth

    Science.gov (United States)

    Heller, René

    2015-01-01

    Do we inhabit the best of all possible worlds? German mathematician Gottfried Leibniz thought so, writing in 1710 that our planet, warts and all, must be the most optimal one imaginable. Leibniz's idea was roundly scorned as unscientific wishful thinking, most notably by French author Voltaire in his magnum opus, Candide. Yet Leibniz might find sympathy from at least one group of scientists - the astronomers who have for decades treated Earth as a golden standard as they search for worlds beyond our own solar system. Because earthlings still know of just one living world - our own - it makes some sense to use Earth as a template in the search for life elsewhere, such as in the most Earth-like regions of Mars or Jupiter's watery moon Europa. Now, however, discoveries of potentially habitable planets orbiting stars other than our sun - exoplanets, that is - are challenging that geocentric approach.

  19. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...

  20. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  1. Harvesting renewable energy from Earth's mid-infrared emissions.

    Science.gov (United States)

    Byrnes, Steven J; Blanchard, Romain; Capasso, Federico

    2014-03-18

    It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

  2. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  3. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  4. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  5. Chemical gradients and chemotropism in yeast.

    Science.gov (United States)

    Arkowitz, Robert A

    2009-08-01

    Chemical gradients of peptide mating pheromones are necessary for directional growth, which is critical for yeast mating. These gradients are generated by cell-type specific secretion or export and specific degradation in receiving cells. Spatial information is sensed by dedicated seven-transmembrane G-protein coupled receptors and yeast cells are able to detect extremely small differences in ligand concentration across their approximately 5-microm cell surface. Here, I will discuss our current knowledge of how cells detect and respond to such shallow chemical gradients and in particular what is known about the proteins that are involved in directional growth and the establishment of the polarity axis during yeast mating.

  6. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  7. Speciation gradients and the distribution of biodiversity.

    Science.gov (United States)

    Schluter, Dolph; Pennell, Matthew W

    2017-05-31

    Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

  8. Gradients of cortical hierarchy in Autism

    Directory of Open Access Journals (Sweden)

    Richard Bethlehem

    2017-05-01

    Full Text Available Autism is a developmental condition associated with altered functional connectivity. We propose to re-frame the functional connectivity alterations in terms of gradients that capture the functional hierarchy of cortical processing from sensory to default-mode network regions. We hypothesized that this hierarchy will be altered in ASD. To test that, we compared the scale of gradients in people with autism and healthy controls. The present results do not support our hypothesis. There are two alternative implications: either the processing hierarchies are preserved in autism or the scale of the gradients does not capture them. In the future we will attempt to settle which alternative is more likely.

  9. Discussion of liquid threshold pressure gradient

    OpenAIRE

    Wang, Xiukun; James J. Sheng

    2017-01-01

    Some authors believe that a minimum pressure gradient (called threshold pressure gradient (TPG)) is required before a liquid starts to flow in a porous medium. In a tight or shale oil formation, this TPG phenomenon becomes more important, as it is more difficult for a fluid to flow. In this paper, experimental data on TPG published in the literature are carefully reviewed. What we found is that a very low flow velocity corresponding to a very low pressure gradient cannot be measured in the ex...

  10. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  11. SIRIO small earth station operation in Beijing

    Science.gov (United States)

    Berardi, V.; Fabiano, L.; Jing, Y.; Kuang, Z.; Wang, J.

    The main characteristics are described for the small earth station installed at Beijing to permit joint experimentation through the SIRIO satellite. The experimental facilities and data acquisition system are illustrated, including the transmitter/receiver, digitally controlled SCPC communication and thermal control sybsystem, from both the electrical and mechanical viewpoints. The measurement layout of the system includes a 1200 bps modem, two controllers (HP9845B and HP 85F), a DVM, relay actuator, chart recorder, and two counters. RS-232C and IEEE-488 links are used. Station environmental conditions, EIRP, G/T and other specifics are noted.

  12. Scaling thermal effects in radial flow

    Science.gov (United States)

    Hudspeth, R. T.; Guenther, R. B.; Roley, K. L.; McDougal, W. G.

    To adequately evaluate the environmental impact of siting nuclear waste repositories in basalt aquicludes, it is essential to know the effects on parameter identification algorithms of thermal gradients that exist in these basaltic aquicludes. Temperatures of approximately 60°C and pressures of approximately 150 atm can be expected at potential repository sites located at depths of approximately 1000 m. The phenomenon of over-recovery has been observed in some pumping tests conducted at the Hanford Nuclear Reservation located in the Pasco Basin adjacent to the Columbia River in the state of Washington, USA. This over-recovery phenomenon may possibly be due to variations in the fluid density caused by thermal gradients. To assess the potential effects of these thermal gradients on indirect parameter identification algorithms, a systematic scaling of the governing field equations is required in order to obtain dimensionless equations based on the principle of similarity. The constitutive relationships for the specific weight of the fluid and for the porosity of the aquiclude are shown to be exponentially dependent on the pressure gradient. The dynamic pressure is converted to the piezometric head and the flow equation for the piezometric head is then scaled in radial coordinates. Order-of-magnitude estimates are made for all variables in unsteady flow for a typical well test in a basaltic aquiclude. Retaining all nonlinear terms, the parametric dependency of the flow equation on the classical dimensionless thermal and hydraulic parameters is demonstrated. These classical parameters include the Batchelor, Fourier, Froude, Grashof, and Reynolds Numbers associated with thermal flows. The flow equation is linearized from order-of-magnitude estimates based on these classical parameters for application in parameter identification algorithms.

  13. Thermal transpiration: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    T, Joe Francis [Computational Nanotechnology Laboratory, School of Nano Science and Technology, National Institute of Technology Calicut, Kozhikode (India); Sathian, Sarith P. [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai (India)

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  14. Thermal defoliation

    Science.gov (United States)

    The negative perception some consumers hold regarding agricultural chemicals has resulted in an increased demand for organic foods and fibers, and in increasing political pressure for the regulation of agricultural production practices. This has revived interest in thermal defoliation of cotton and ...

  15. Holographic thermalization

    NARCIS (Netherlands)

    Balasubramanian, V.; Bernamonti, A.; de Boer, J.; Copland, N.; Craps, B.; Keski-Vakkuri, E.; Müller, B.; Schäfer, A.; Shigemori, M.; Staessens, W.

    2011-01-01

    Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint approximation these probes are computed in AdS space

  16. DIORAMA Earth Terrain Model

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-10

    When simulating near-surface nuclear detonations, the terrain of the Earth can have an effect on the observed outputs. The critical parameter is called the “height of burst”. In order to model the effect of terrain on the simulations we have incorporated data from multiple sources to give 9 km resolution data with global coverage.

  17. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  18. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  19. Earth's City Lights

    Science.gov (United States)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  20. The Earth's Changing Climate

    Indian Academy of Sciences (India)

    wavelength range between 0.2 and 4.0 microns (p,m). ... from the earth is in the long wavelength range from 4.0 to 80/-Lm. .... turing industry. But, it is removed from the atmosphere by the photosynthesis of plants. The largest reservoirs of carbon are in the deep oceans. Some of this reaches the atmosphere when waters.

  1. Modeling Earth's Climate

    Science.gov (United States)

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  2. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  3. How life shaped Earth.

    Science.gov (United States)

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  4. Earth's Reflection: Albedo

    Science.gov (United States)

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  5. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  6. Between Earth and Sky

    DEFF Research Database (Denmark)

    Carter, Adrian

    2009-01-01

    to rescue architecture from the sterile impasse of late-modernism. In his works the basic elements of lived space become present: the earth, the sky and the `between` of human existence." Jørn Utzon's architecture ranges from the modest to the monumental; from the Kingo courtyard houses, the finest...

  7. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  8. Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients

    Science.gov (United States)

    Sánchez, S. F.; Sánchez-Menguiano, L.

    2017-07-01

    We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.

  9. Optimizing sampling approaches along ecological gradients

    DEFF Research Database (Denmark)

    Schweiger, Andreas; Irl, Severin D. H.; Steinbauer, Manuel

    2016-01-01

    1. Natural scientists and especially ecologists use manipulative experiments or field observations along gradients to differentiate patterns driven by processes from those caused by random noise. A well-conceived sampling design is essential for identifying, analysing and reporting underlying...

  10. Program predicts two-phase pressure gradients

    Energy Technology Data Exchange (ETDEWEB)

    Jacks, D.C.; Hill, A.D.

    1983-11-18

    The calculator program discussed, ORK, was designed for the HP-41CV hand-held calculator and uses the Orkiszewski correlation for predicting 2-phase pressure gradients in vertical tubulars. Accurate predictions of pressure gradients in flowing and gas lift wells over a wide range of well conditions can be obtained with this method, which was developed based on data from 148 wells. The correlation is one of the best generalized 2-phase pressure gradient prediction methods developed to date for vertical flow. It is unique in that hold-up is derived from observed physical phenomena, and the pressure gradient is related to the geometrical distribution of the liquid and gas phase (flow regime).

  11. Full Gradient Solution to Adaptive Hybrid Control

    Science.gov (United States)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2017-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  12. Vegetation patterns and environmental gradients in Benin

    NARCIS (Netherlands)

    Adomou, A.

    2005-01-01

    Key words: West Africa, Benin, vegetation patterns, floristic areas, phytogeography, chorology, floristic gradients, climatic factors, water availability, Dahomey Gap, threatened plants, biodiversity, conservation.Understanding plant species distribution patterns and the underlying factors is a

  13. Estimation of tropical forest canopy temperatures, thermal response numbers, and evapotranspiration using an aircraft-based thermal sensor

    Science.gov (United States)

    Luvall, Jeffrey C.; Lieberman, Diana; Lieberman, Milton; Hartshorn, Gary S.; Peralta, Rodolfo

    1990-01-01

    Thermal infrared Multispectral Scanner (TIMS) data were collected at a resolution of 5 to 10 m from a tropical rain forest over an elevation gradient from 35 to 2700 m in the Braulio Carrillo National Park in Costa Rica. Flight lines were repeated with a 15 to 30 minute time difference for measurement of forest canopy thermal response over time. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture provided inputs to LOWTRAN6 for atmospheric radiance corrections of the TIMS data. Techniques for using calibrated aircraft-based thermal scanner data to examine tropical forest canopy thermal properties are described. Forest canopy temperature changes over time assessed between repeated, duplicated flight lines were combined with estimates of surface radiative energy measurements from towers above the forest canopy to determine temperature spatial variability, calculate Thermal Response Numbers (TRN), and estimate evapotranspiration along the elevation gradient from selected one hectare forest inventory plots.

  14. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor.

    Science.gov (United States)

    Shrestha, R; Lee, K M; Chang, W S; Kim, D S; Rhee, G H; Choi, T Y

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m(-1) K(-1) at room temperature.

  15. Ultimate gradient in solid-state accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.

  16. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  17. Microinstabilities in weak density gradient tokamak systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  18. Minimizing hallucination in Histogram of Oriented Gradients

    OpenAIRE

    Ortiz, Javier; Bak, Slawomir; Koperski, Michał; Brémond, François

    2015-01-01

    International audience; Histogram of Oriented Gradients is one of the most extensively used image descriptors in computer vision. It has successfully been applied to various vision tasks such as localization, classification and recognition. As it mainly captures gradient strengths in an image, it is sensitive to local variations in illumination and contrast. In the result, a normalization of this descriptor turns out to be essential for good performance [3, 4]. Although different normal-izati...

  19. Thermal Hardware for the Thermal Analyst

    Science.gov (United States)

    Steinfeld, David

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Space Flight Center (GSFC) Thermal Engineering Branch (Code 545). NCTS 21070-1. Most Thermal analysts do not have a good background into the hardware which thermally controls the spacecraft they design. SINDA and Thermal Desktop models are nice, but knowing how this applies to the actual thermal hardware (heaters, thermostats, thermistors, MLI blanketing, optical coatings, etc...) is just as important. The course will delve into the thermal hardware and their application techniques on actual spacecraft. Knowledge of how thermal hardware is used and applied will make a thermal analyst a better engineer.

  20. Earth's energy imbalance and implications

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2011-12-01

    Full Text Available Improving observations of ocean heat content show that Earth is absorbing more energy from the Sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.58 ± 0.15 W m−2 during the 6-yr period 2005–2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be −1.6 ± 0.3 W m−2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade.

  1. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  2. Computational analysis of frp composite under different temperature gradient

    Science.gov (United States)

    Gunasekar, P.; Manigandan, S.

    2017-05-01

    Composite material strength depends on the stiffness of fiber and the resin which is used for reinforcement. The strength of the laminate can be increased by applying good manufacturing practices. The strength is directly depending on the property of resin. The property of the any compound subjected to changed when they exposed to the temperature. This paper investigates the strength of laminate when they subjected to different temperature gradient of resin while manufacturing. The resin is preheated before adding hardener with them. These types of laminate reinforced with resin at different levels of temperature 20c, 40c, and 60c. These different temperature resin are used for reinforcement and the specimen tested. The comparative results are made to find how the stiffness of laminate changes with respect to the thermal property of resin. The results are helpful to obtain high strength laminate.

  3. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  4. Estimation of gradients in quantum metrology

    Science.gov (United States)

    Altenburg, Sanah; Oszmaniec, Michał; Wölk, Sabine; Gühne, Otfried

    2017-10-01

    We develop a general theory to estimate magnetic field gradients in quantum metrology. We consider a system of N particles distributed on a line whose internal degrees of freedom interact with a magnetic field. Usually gradient estimation is based on precise measurements of the magnetic field at two different locations, performed with two independent groups of particles. This approach, however, is sensitive to fluctuations of the offset field determining the level splitting of the particles and results in collective dephasing. In this work, we use the framework of quantum metrology to assess the maximal accuracy for gradient estimation. For arbitrary positioning of particles, we identify optimal entangled and separable states, allowing the estimation of gradients with maximal accuracy, quantified by the quantum Fisher information. We also analyze the performance of states from the decoherence-free subspace (DFS), which are insensitive to the fluctuations of the magnetic offset field. We find that these states allow us to measure a gradient directly, without the necessity of estimating the magnetic offset field. Moreover, we show that DFS states attain a precision for gradient estimation comparable to the optimal entangled states. Finally, for the above classes of states, we find simple and feasible measurements saturating the quantum Cramér-Rao bound.

  5. 3D Gradient coil design - Toroidal surfaces

    Science.gov (United States)

    While, Peter T.; Forbes, Larry K.; Crozier, Stuart

    2009-05-01

    Gradient coil design typically involves optimisation of current densities or coil windings on familiar cylindrical, planar, spherical or conical surfaces. In this paper, an analytic inverse method is presented for the theoretical design of toroidal transverse gradient coils. This novel geometry is based on previous work involving a 3D current density solution, in which the precise geometry of the gradient coils was obtained as part of the optimisation process. Regularisation is used to solve for the toroidal current densities, whereby the field error is minimised in conjunction with the total power of the coil. The method is applied to the design of unshielded and shielded, whole-body and head coil gradient systems. Preliminary coil windings displaying high gradient homogeneity, low inductance, high efficiency and good force balancing are displayed and discussed. Potential benefits associated with this morphology include self-shielding gradient sets, greater access to cooling mechanisms, a reduction in acoustic noise due to force-balancing, a lessening of patient claustrophobia and greater patient access for clinicians.

  6. Aerodynamic state diagnosing method of aircraft with thermal field usage

    Directory of Open Access Journals (Sweden)

    Vasyl Kazak

    2014-11-01

    Full Text Available The method of aerodynamic condition of the aircraft on the thermal fields was developed as a research result. Based on the mathematical and natural experiments, there are identified the regularities of formation of temperature gradients in the boundary layer of air that occurs after damage of external contours; there are detected parameters that affect the behavior of the temperature gradient arising from damage.

  7. Gradient effects on the fracture of inhomogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Terrence Lee [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    Functionally Graded Materials (FGMs) have a spatial variation in physical properties that can be tailored to meet the needs of a specific application and/or to minimize internal stresses arising from thermal and elastic mismatch. Modeling these materials as inhomogeneous continua allows assessment of the role of the gradient without requiring detailed knowledge of the microstructure. Motivated by the relative difficulty of obtaining analytical solutions to boundary value problems for FGMs, an accurate finite-element code is developed for obtaining numerical planar and axisymmetric linear thermoelastic solutions. In addition an approximate analytical technique for mapping homogeneous-modulus solutions to those for FGMs is assessed and classes of problems to which it applies accurately are identified. The fracture mechanics analysis of FGMs can be characterized by the classic stress intensities, KI and KII, but there has been scarce progress in understanding the role of the modulus gradient in determining fracture initiation and propagation. To address this question, a statistical fracture model is used to correlate near-tip stresses with brittle fracture initiation behavior. This describes the behavior of a material experiencing fracture initiation away from the crack tip. Widely dispersed zones of fracture initiation sites are expected. Finite-length kinks are analyzed to describe the crack path for continuous crack growth. For kink lengths much shorter than the gradient dimension, a parallel stress term describes the deviation of the kinking angle from that for homogeneous materials. For longer kinks there is a divergence of the kink angle predicted by the maximum energy release rate and the pure opening mode criteria.

  8. Gradient augmented level set method for phase change simulations

    Science.gov (United States)

    Anumolu, Lakshman; Trujillo, Mario F.

    2018-01-01

    A numerical method for the simulation of two-phase flow with phase change based on the Gradient-Augmented-Level-set (GALS) strategy is presented. Sharp capturing of the vaporization process is enabled by: i) identification of the vapor-liquid interface, Γ (t), at the subgrid level, ii) discontinuous treatment of thermal physical properties (except for μ), and iii) enforcement of mass, momentum, and energy jump conditions, where the gradients of the dependent variables are obtained at Γ (t) and are consistent with their analytical expression, i.e. no local averaging is applied. Treatment of the jump in velocity and pressure at Γ (t) is achieved using the Ghost Fluid Method. The solution of the energy equation employs the sub-grid knowledge of Γ (t) to discretize the temperature Laplacian using second-order one-sided differences, i.e. the numerical stencil completely resides within each respective phase. To carefully evaluate the benefits or disadvantages of the GALS approach, the standard level set method is implemented and compared against the GALS predictions. The results show the expected trend that interface identification and transport are predicted noticeably better with GALS over the standard level set. This benefit carries over to the prediction of the Laplacian and temperature gradients in the neighborhood of the interface, which are directly linked to the calculation of the vaporization rate. However, when combining the calculation of interface transport and reinitialization with two-phase momentum and energy, the benefits of GALS are to some extent neutralized, and the causes for this behavior are identified and analyzed. Overall the additional computational costs associated with GALS are almost the same as those using the standard level set technique.

  9. Rotationally driven 'zebra stripes' in Earth's inner radiation belt.

    Science.gov (United States)

    Ukhorskiy, A Y; Sitnov, M I; Mitchell, D G; Takahashi, K; Lanzerotti, L J; Mauk, B H

    2014-03-20

    Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn, the electric field produced in the inner magnetosphere by Earth's rotation can change the velocity of trapped particles by only about 1-2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth's inner radiation belt are organized in regular, highly structured and unexpected 'zebra stripes', even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth's rotation. Radiation-belt electrons are trapped in Earth's dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth's rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt.

  10. Regional positioning using a low Earth orbit satellite constellation

    Science.gov (United States)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  11. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient

    Science.gov (United States)

    Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.

    2015-10-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.

  12. Prediction of Pressure and Temperature Gradients in the Tokamak Plasma Edge

    Science.gov (United States)

    Stacey, W. M.

    2017-10-01

    An extended plasma fluid theory that takes into account kinetic ion orbit loss and electromagnetic forces in the continuity, momentum and energy balances, as well as atomic physics and radiation, has been used to reveal the explicit dependence of the temperature and pressure gradients in the tokamak edge plasma on these various factors. Combining the ion radial momentum balance and the Ohm's Law expression for Er reveals the dependence of the radial ion pressure gradient on VxB forces driven by radial particle fluxes, which depend on ion orbit loss, and other factors. The strong temperature gradients measured in the H-mode edge pedestal could certainly be associated with radiative and atomic physics edge cooling effects and the strong reduction in ion and energy fluxes due to ion orbit loss, as well as to the possible reductions in thermal diffusivities that is usually assumed to be the cause. Work supported by USDOE under DE-FC02-04ER54698.

  13. Theoretical investigation of some thermal effects in turbulence modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mathelin, Lionel [LIMSI-CNRS, Orsay (France); Bataille, Francoise [PROMES-CNRS, Perpignan (France); Ye, Zhou [Lawrence Livermore National Lab., Livermore, CA (United States)

    2008-11-15

    Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance.

  14. Laboratory technique for quantitative thermal emissivity ...

    Indian Academy of Sciences (India)

    of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral parti- culates (<65μm), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future. Indian Moon mission programme ...

  15. Laboratory technique for quantitative thermal emissivity ...

    Indian Academy of Sciences (India)

    This laboratory at the Department of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral particulates (> 65 m), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future ...

  16. Thermal Resistances in the Everest Area derived from Satellite Imagery using a Nonlinear Energy Balance Model

    Science.gov (United States)

    Rounce, D.; McKinney, D. C.

    2013-12-01

    Debris cover has a large impact on sub-debris ablation rates and glacier evolution. A thin debris layer may enhance ablation by reducing albedo increasing radiation absorption, while thicker debris insulates the glacier causing ablation to decrease. Debris thickness, thermal conductivity, and meteorological conditions may be measured in the field, but they require extensive fieldwork (Brock et al., 2010; Nicholson and Benn, 2012). This has forced many simplifications and assumptions in models. Satellite imagery combined with an energy balance model has been used with to extract information about debris cover remotely (Nakawo and Rana, 1999; Zhang et al., 2011). The spatial distribution of thermal resistances derived from these studies have agreed well with field values; however, the values were considerably lower than the field values. The difference has been attributed to the mixed pixel effect. Foster et al. (2012) developed an energy balance model that agrees well with debris thickness measured in the field. The model requires knowledge of the thermal conductivity and utilizes a relationship between air and surface temperature to lower sensible heat fluxes. We derive thermal resistances of debris-covered glaciers from satellite imagery in the Everest area. Previous satellite studies have assumed a linear debris temperature gradient, which is valid for time periods of 24 hours or greater (Nicholson and Benn, 2006); however, gradients during the day are nonlinear (Nicholson and Benn, 2006; Reid and Brock, 2010). Landsat 7 imagery is used to account for the non-linear gradient, using the ratio of temperature gradient in the upper 10cm versus the entire debris thickness. These values are derived from temperature profiles on Ngozumpa Glacier (Nicholson, 2004). Meteorological data are obtained from the Pyramid Station. The derived thermal resistances agree well with those found on debris-covered glaciers in the Everest region. Brock, B., Mihalcea, C., Kirkbride, M

  17. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  18. Earth Science Multimedia Theater

    Science.gov (United States)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  19. The Influence Of Temperature Gradient On Stereological Parameters Of Carbide Phase On Cross-Section Of Abrasive Wear Resistant Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-09-01

    Full Text Available In the paper analysis of temperature gradient and parameters of structure on casting cross-section of abrasive wear resistant chromium cast iron at carbon content of 2,5%wt. and chromium 17%wt. with nickel and molybdenum additives are presented. The castings were made with use of special tester ϕ100mm (method of temperature gradient and derivative analysis with temperature recording in many points from thermal centre to surface (to mould of casting. Registered cooling curves were used to describe the temperature gradient on cross-section of analyzed casting. On the basis of determined curves of temperature gradient measurement fields were selected to make the quantitative studies of structure. The results of studies show significant influence of temperature gradient on quantitative parameters of chromium cast iron structure. Moreover was affirmed that exists a critical temperature gradient for which is present rapid change of quantitative parameters of chromium cast iron structure.

  20. Thermal Clothing

    Science.gov (United States)

    1997-01-01

    Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.