WorldWideScience

Sample records for thermal diffusion apparatus

  1. Apparatus for diffusion-gap thermal desalination

    Science.gov (United States)

    Lowenstein, Andrew

    2017-09-26

    A thermal distillation apparatus including evaporation surfaces that are wetted with a solution, and from which at least some of the volatile solvent contained in the solution evaporates, condensers having an external surface in close proximity to, but not touching, a corresponding one of the one or more evaporation surfaces, and on which vapors of the solvent condense, releasing thermal energy that heats a flow of the solution moving upward within the condensers, spacers that prevent contact between the evaporating surfaces and the condensers, wherein spaces between the evaporating surfaces and the condensers are filled with a gaseous mixture composed of solvent vapor and one or more non-condensable gases, and except for diffusion of the solvent vapor relative to the non-condensable gases, the gaseous mixture is stationary.

  2. Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect

    International Nuclear Information System (INIS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    A method and apparatus for measuring thermal diffusivity and molecular relaxation processes in a sample material utilizing two light beams, one being a pulsed laser light beam for forming a thermal lens in the sample material, and the other being a relatively low power probe light beam for measuring changes in the refractive index of the sample material during formation and dissipation of the thermal lens. More specifically, a sample material is irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses is absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate is chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (Cw) laser beam, irradiates the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated. A plot of the changes in refractive index as a function of time during formation of the thermal lens as reflected by changes in intensity of the probe beam, provides a curve related to molecular relaxation characteristics of the material, and a plot during dissipation of the thermal lens provides a curve related to the thermal diffusivity of the sample material

  3. Measurement setup for the simultaneous determination of diffusivity and Seebeck coefficient in a multi-anvil apparatus.

    Science.gov (United States)

    Jacobsen, M K; Liu, W; Li, B

    2012-09-01

    In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce(0.8)Fe(3)CoSb(12,) up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.

  4. Measurements of thermal diffusivity, specific heat capacity and thermal conductivity with LFA 447 apparatus

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    The LFA 447 can be successfully used for measurements of thermal diffusivity, specific heat and thermal conductivity of various samples. It is especially useful when determining the properties of materials on a very small scale. The matrix measurement mode allows for determining the local...... that the heat losses from both samples during the measurement are similar. Finally, the leveling of the samples is very important. Very small discrepancies can cause a massive error in the derivation of specific heat capacity and, as a result, thermal conductivity....

  5. Thermal diffusivity measurements between 0 0C and 2000 0C: application to UO2

    International Nuclear Information System (INIS)

    Van Craeynest, J.C.; Weilbacher, J.C.; Lallement, R.

    1969-01-01

    We have built two types of apparatus to measure the thermal diffusivity of ceramic fuels. The first apparatus, based on Angstrom's method, operates between 0 deg. C and 1000 deg. C. Satisfactory results have been obtained for iron, nickel and molybdenum. The other apparatus, based on Cowan's method, operates between 1000 deg. C and 2000 deg. C on thin slabs. The thermal conductivity of UO 2 has been measured from 0 deg. C to 2000 deg. C. There is a good agreement between our results and the well known values for UO 2 . (authors) [fr

  6. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  7. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  8. UJI KONDUKTIVITAS TERMAL PADA DAUN BAYAM DENGAN MENGGUNAKAN THERMAL CONDUCTIVITY APPARATUS

    OpenAIRE

    Firmansyah, Firmansyah; Syafutra, Heriyanto; Sidikrubadi, Sidikrubadi; Irzaman, Irzaman

    2017-01-01

    Abstract Has successfully tested thermal conductivity on spinach leaves by using Thermal Conductivity Apparatus. Thermal conductivity Apparatus assisted with Steam generator, Caliper, Micrometer, and iron. The thermal conductivity value of spinach leaves is 0.5208 watts / (m.K). This thermal conductivity test on foliage, fruits using Thermal Conductivity Apparatus are very easy to do in Basic Physics Laboratory by physics study program students in Indonesia. Keywords: Thermal Conductivi...

  9. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  10. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Science.gov (United States)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  11. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse-Helmreich, Carissa J., E-mail: carissahelmreich@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States); Corbin, Rob, E-mail: rcorbin@terrapower.com [TerraPower, LLC, 330 120th Ave NE, Suite 100, Bellevue, WA 98005 (United States); McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States)

    2014-03-15

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  12. Measurement of thermal diffusivity of depleted uranium metal microspheres

    International Nuclear Information System (INIS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-01-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal

  13. Thermal diffusivity effect in opto-thermal skin measurements

    International Nuclear Information System (INIS)

    Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P

    2010-01-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  14. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  15. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1981-01-01

    Preliminary data on the thermal propertes of a course-grained rock salt from Avery Island, Louisiana, indicate that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7 W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573 K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 /K at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  16. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1980-01-01

    Preliminary data on the thermal properties of a coarse-grained rock salt from Avery Island, Louisiana, indicates that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  17. Simultaneous Absorptance and Thermal-Diffusivity Determination of Optical Components with Laser Calorimetry Technique

    Science.gov (United States)

    Wang, Yanru; Li, Bincheng

    2012-11-01

    The laser calorimetry (LCA) technique is used to determine simultaneously the absorptances and thermal diffusivities of optical components. An accurate temperature model, in which both the finite thermal conductivity and the finite sample size are taken into account, is employed to fit the experimental temperature data measured with an LCA apparatus for a precise determination of the absorptance and thermal diffusivity via a multiparameter fitting procedure. The uniqueness issue of the multiparameter fitting is discussed in detail. Experimentally, highly reflective (HR) samples prepared with electron-beam evaporation on different substrates (BK7, fused silica, and Ge) are measured with LCA. For the HR-coated sample on a fused silica substrate, the absorptance is determined to be 15.4 ppm, which is close to the value of 17.6 ppm, determined with a simplified temperature model recommended in the international standard ISO11551. The thermal diffusivity is simultaneously determined via multiparameter fitting to be approximately 6.63 × 10-7 m2 · s-1 with a corresponding square variance of 4.8 × 10-4. The fitted thermal diffusivity is in reasonably good agreement with the literature value (7.5 × 10-7 m2 · s -1). Good agreement is also obtained for samples with BK7 and Ge substrates.

  18. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.

    1976-01-01

    A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area

  19. Thermal power measurement apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Thermal power measurements are important in nuclear power plants, fossil-fuel plants and other closed loop systems such as heat exchangers and chemical reactors. The main object of this invention is to determine the enthalpy of a fluid using only acoustically determined sound speed and correlating the speed with enthalpy. An enthalpy change is measured between two points in the fluid flow: the apparatus is described in detail. (U.K.)

  20. Thermal diffusion (1963)

    International Nuclear Information System (INIS)

    Lemarechal, A.

    1963-01-01

    This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [fr

  1. Thermal fluid characteristics in diffusion flame formed by coaxial flow configuration

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S. [Kumamoto Univ., Kumamoto (Japan). Dept. of Mechanical Engineering and Materials Science

    2005-07-01

    A numerical and experimental study was performed on the thermal transport phenomena of turbulent jet diffusion flames formed by coaxial flow configuration. Consideration was given to the effect of the flow rates of air and fuel on the flame morphology. It was noted that as the air flow rate increases, the augmentation of flow shear effect exerted on the shear layer form between the flame jet and the air flow induced the fuel-to-air mixture. Thermal diffusion was amplified with an increase in the Reynolds number. As the velocity ratio was increased, the streamwise velocity gradient along the radial axis was intensified, resulting in an amplification of thermal diffusion. Details of the experimental apparatus and method were provided, along with governing equations and numerical methods. It was concluded that the suppression of the flame length and an extension of flame blowoff limit caused an annular jet diffusion flame. An increase in the velocity ratio of air to fuel showed the blue flame. When cold and hot gases are injected along the same direction from the annular channel, the flow pattern and isotherms are affected by the velocity ratio. The streamwise velocity gradient along the r axis was intensified with an increase in N. The trend became larger in the vicinity of the injection nozzle. 15 refs., 9 figs.

  2. Discrimination of thermal diffusivity

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.

    2009-01-01

    Materials such as wood or metal which are at equal temperatures are perceived to be of different ‘coldness’ due to differences in thermal properties, such as the thermal diffusivity. The thermal diffusivity of a material is a parameter that controls the rate with which heat is extracted from the

  3. Thermal diffusion (1963); Diffusion thermique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lemarechal, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [French] Ce rapport rassemble les principes essentiels de la diffusion thermique en phase liquide et en phase gazeuse. Les aspects macroscopique et moleculaire de la constante de diffusion thermique sont passes en revue ainsi que ses differentes methodes de mesure; mais les developpements les plus importants concernent le fonctionnement de ls colonne thermogravitationnelle de CLUSIUS et DICKEL et ses applications. (auteur)

  4. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523 0 K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473 0 K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313 0 K to 2.15 +- 0.25 W/mK at 473 0 K. Thermal diffusivity at 300 0 K was found to be 1.2 +- 0.4 X 10 -6 m 2 /s and shows approximately the same pressure and temperature dependencies as the thermal conductivity

  5. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  6. Stable isotope separation by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2001-01-01

    Thermal diffusion in both gaseous and liquid phase has been subject of extensive experimental and theoretical investigations, especially after the invention of K. Clusius and G. Dickel of the thermal diffusion column, sixty three years ago. This paper gives a brief overview of the most important research and developments performed during the time at the National Institute for Research and Development for Isotopic and Molecular Technology (ITIM) at Cluj - Napoca, Romania in the field of separation of stable isotopes by thermal diffusion. An retrospective analysis of the research and results concerning isotope separation by thermal diffusion entails the following conclusions: - thermal diffusion is an adequate method for hydrogen isotope separation (deuterium and tritium) and for noble gas isotope separation (He, Ne, Ar, Kr, Xe); - thermal diffusion is attractive also for 13 C enrichment using methane as raw material for separation, when annual yields of up to 100 g are envisaged; - lately, the thermal diffusion appears to be chosen as a final enrichment step for 17 O. An obvious advantage of this method is its non-specificity, i.e. the implied equipment can be utilized for isotope separation of other chemical elements too. Having in view the low investment costs for thermal diffusion cascades the method appears economically attractive for obtaining low-scale, laboratory isotope production. The paper has the following content: 1. The principle of method; 2. The method's application; 3. Research in the field of thermal diffusion at ITIM; 4. Thermal diffusion cascades for N, C, Ne, Ar and Kr isotope separation; 5. Conclusion

  7. The design of high-temperature thermal conductivity measurements apparatus for thin sample size

    Directory of Open Access Journals (Sweden)

    Hadi Syamsul

    2017-01-01

    Full Text Available This study presents the designing, constructing and validating processes of thermal conductivity apparatus using steady-state heat-transfer techniques with the capability of testing a material at high temperatures. This design is an improvement from ASTM D5470 standard where meter-bars with the equal cross-sectional area were used to extrapolate surface temperature and measure heat transfer across a sample. There were two meter-bars in apparatus where each was placed three thermocouples. This Apparatus using a heater with a power of 1,000 watts, and cooling water to stable condition. The pressure applied was 3.4 MPa at the cross-sectional area of 113.09 mm2 meter-bar and thermal grease to minimized interfacial thermal contact resistance. To determine the performance, the validating process proceeded by comparing the results with thermal conductivity obtained by THB 500 made by LINSEIS. The tests showed the thermal conductivity of the stainless steel and bronze are 15.28 Wm-1K-1 and 38.01 Wm-1K-1 with a difference of test apparatus THB 500 are −2.55% and 2.49%. Furthermore, this apparatus has the capability to measure the thermal conductivity of the material to a temperature of 400°C where the results for the thermal conductivity of stainless steel is 19.21 Wm-1K-1 and the difference was 7.93%.

  8. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.

  9. Accuracy analysis of the thermal diffusivity measurement of molten salts by stepwise heating method

    International Nuclear Information System (INIS)

    Kato, Yoshio; Furukawa, Kazuo

    1976-11-01

    The stepwise heating method for measuring thermal diffusivity of molten salts is based on the electrical heating of a thin metal plate as a plane heat source in the molten salt. In this method, the following estimations on error are of importance: (1) thickness effect of the metal plate, (2) effective length between the plate and a temperature measuring point and (3) effect of the noise on the temperature rise signal. In this report, a measuring apparatus is proposed and measuring conditions are suggested on the basis of error estimations. The measurements for distilled water and glycerine were made first to test the performance; the results agreed well with standard values. The thermal diffusivities of molten NaNO 3 at 320-380 0 C and of molten Li 2 BeF 4 at 470-700 0 C were measured. (auth.)

  10. Apparatus for studying the diffusion of rare gases in stainless steel

    International Nuclear Information System (INIS)

    Stohr, J.A.; Alfille, L.

    1959-01-01

    This apparatus enables measurements to be carried out on the diffusion of gaseous fission products and of gases in general across thin metallic walls at high temperatures. This work was initially intended to solve the problems involved in systems for detecting the rupture of a fuel element can (D.R.G.) by the diffusion of fission products through the cans at high temperatures. The extension of the work to other fields is envisaged. (author) [fr

  11. Thermal diffusion and separation of isotopes

    International Nuclear Information System (INIS)

    Fournier, Andre

    1944-01-01

    After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)

  12. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    Science.gov (United States)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  13. New acrylic resin composite with improved thermal diffusivity.

    Science.gov (United States)

    Messersmith, P B; Obrez, A; Lindberg, S

    1998-03-01

    Studies have shown that physical characteristics of denture base materials may affect patient acceptance of denture prostheses by altering sensory experience of food during mastication. Thermal diffusivity is one material property that has been cited as being important in determining gustatory response, with denture base acrylic resins having low thermal diffusivity compared with denture base metal alloys. This study prepared and characterized experimental acrylic resin composite material with increased thermal diffusivity. Sapphire (Al2O3) whiskers were added to conventional denture base acrylic resin during processing to achieve loadings of 9.35% and 15% by volume. Cylindrical test specimens containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 degree to 70 degrees C). Thermal diffusivities of the sapphire containing composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the volume percentage of sapphire filler, which suggested that the high aspect ratio ceramic particles formed a pathway for heat conduction through the insulating polymer matrix. The thermal diffusivity of denture base acrylic resin was increased by the addition of thermally conducting sapphire whiskers.

  14. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data

    Science.gov (United States)

    Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.

    2006-01-01

    Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.

  15. Thermal diffusion and separation of isotopes; Diffusion thermique et separation d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Andre

    1944-03-30

    After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)

  16. Thermal Diffusivity and Thermal Conductivity of Dispersed Glass Sphere Composites Over a Range of Volume Fractions

    Science.gov (United States)

    Carson, James K.

    2018-06-01

    Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.

  17. Thermal Diffusivity Measurement for Thermal Spray Coating Attached to Substrate Using Laser Flash Method

    Science.gov (United States)

    Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio

    2011-11-01

    Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.

  18. Thermal treatment of starch slurry in Couette-Taylor flow apparatus

    Directory of Open Access Journals (Sweden)

    Hubacz Robert

    2017-09-01

    Full Text Available In this paper, thermal processing of starch slurry in a Couette-Taylor flow (CTF apparatus was investigated. Gelatinized starch dispersion, after treatment in the CTF apparatus, was characterized using such parameters like starch granule diameters (or average diameter, starch granule swelling degree (quantifying the amount of water absorbed by starch granules and concentration of dissolved starch. These parameters were affected mostly by the process temperature, although the impact of the axial flow or rotor rotation on them was also observed. Moreover, the analysis of results showed a relatively good correlation between these parameters, as well as, between those parameter and apparent viscosity of gelatinized starch dispersion. Meanwhile, the increase in the value of the apparent viscosity and in shear-tinning behaviour of dispersion was associated with the progress of starch processing in the CTF apparatus. Finally, the CTF apparatuses of different geometries were compared using numerical simulation of the process. The results of the simulation indicated that the apparatus scaling-up without increasing the width of the gap between cylinders results in higher mechanical energy consumption per unit of processed starch slurry.

  19. Apparatus and method for transient thermal infrared spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  20. Thermal Diffusivity in Bone and Hydroxyapatite

    Science.gov (United States)

    Calderón, A.; Peña Rodríguez, G.; Muñoz Hernández, R. A.; Díaz Gongora, J. A. I.; Mejia Barradas, C. M.

    2004-09-01

    We report thermal diffusivity measurements in bull bone and commercial hydroxyapatite (HA), both in powder form, in order to determinate the thermal compatibility between these materials. Besides this, we report a comparison between these measured values and those of metallic samples frequently used in implants, as high purity titanium and stainless steel. Our results show a good thermal compatibility (74%) between HA and bone, both in powder form. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications.

  1. Thermal diffusion in dilute nanofluids investigated by photothermal interferometry

    International Nuclear Information System (INIS)

    Philip, J; Nisha, M R

    2010-01-01

    We have carried out a theoretical analysis of the dependence of the particle mass fraction on the thermal diffusivity of dilute suspensions of nanoparticles in liquids (dilute nanofluids). The analysis takes in to account adsorption of an ordered layer of solvent molecules around the nanoparticles. It is found that thermal diffusivity decreases with mass fraction for sufficiently small particle sizes. Beyond a critical particle size thermal diffusivity begins to increase with mass fraction for the same system. The results have been verified experimentally by measuring the thermal diffusivity of dilute suspensions of TiO 2 nanoparticles dispersed in polyvinyl alcohol (PVA) medium. The effect is attributed to Kapitza resistance of thermal waves in the medium.

  2. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Albin, S.; Winfree, W.P.; Crews, B.S.

    1990-01-01

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  3. Thermal diffusion of chlorine in uranium dioxide

    International Nuclear Information System (INIS)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Jaffrezic, H.; Gavarini, S.; Martin, P.; Raimbault, L.; Scheidegger, A.M.

    2006-01-01

    In a nuclear reactor, isotopes such as 35 Cl present as impurities in the nuclear fuel are activated by thermal neutron capture. During interim storage or geological disposal of nuclear fuel, the activation products such as 36 Cl may be released from the fuel to the geo/biosphere and contribute to the ''instant release fraction'' as they are likely to migrate in defects and grain boundaries. In order to differentiate diffusion mechanisms due to ''athermal'' processes during irradiation from thermally activated diffusion, both irradiation and thermal effects must be assessed. This work concerns the measurement of the thermal diffusion coefficient of chlorine in UO 2 . 37 Cl was implanted at a 10 13 at/cm 2 fluence in depleted UO 2 samples which were then annealed in the 900-1200 C temperature range and finally analyzed by secondary ion mass spectrometry (SIMS) to obtain 37 Cl depth profiles. The migration process appears to be rather complex, involving mechanisms such as atomic, grain boundary, directed diffusion along preferential patterns as well as trapping into sinks before successive effusion. However, using a diffusion model based on general equation of transport, apparent diffusion coefficients could be calculated for 1000 and 1100 C and a mean activation energy of 4.3 eV is proposed. This value is one of the lowest values compared to those found in literature for other radionuclides pointing out a great ability of chlorine to migrate in UO 2 at relatively low temperatures. In order to unequivocally determine the diffusion behaviour of both implanted and pristine chlorine before and after thermal annealing, the structural environment of chlorine in UO 2 was examined using micro X-ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS). (orig.)

  4. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    Science.gov (United States)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  5. Gas phase thermal diffusion of stable isotopes

    International Nuclear Information System (INIS)

    Eck, C.F.

    1979-01-01

    The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes

  6. Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method

    Science.gov (United States)

    Singh, R.; Mellinger, A.

    2015-04-01

    Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values.

  7. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  8. Thermal diffusivity of felsic to mafic granulites at elevated temperatures

    Science.gov (United States)

    Ray, Labani; Förster, H.-J.; Schilling, F. R.; Förster, A.

    2006-11-01

    The thermal diffusivity of felsic and intermediate granulites (charnockites, enderbites), mafic granulites, and amphibolite-facies gneisses has been measured up to temperatures of 550 °C using a transient technique. The rock samples are from the Archean and Pan-African terranes of the Southern Indian Granulite Province. Thermal diffusivity at room temperature ( DRT) for different rock types ranges between 1.2 and 2.2 mm 2 s - 1 . For most of the rocks, the effect of radiative heat transfer is observed at temperatures above 450 °C. However, for few enderbites and mafic granulites, radiative heat transfer is negligible up to 550 °C. In the temperature range of conductive heat transfer, i.e., between 20 ° and 450 °C, thermal diffusivity decreases between 35% and 45% with increasing temperature. The temperature dependence of the thermal diffusivity is directly correlated with the thermal diffusivity at room temperature, i.e., the higher the thermal diffusivity at room temperature, DRT, the greater is its temperature dependence. In this temperature range i.e., between 20 and 450 °C, thermal diffusivity can be expressed as D = 0.7 mm 2 s -1 + 144 K ( DRT - 0.7 mm 2 s -1 ) / ( T - 150 K), where T is the absolute temperature in Kelvin. At higher temperatures, an additional radiative contribution is observed according to CT3, where C varies from 10 - 9 to 10 - 10 depending on intrinsic rock properties (opacity, absorption behavior, grain size, grain boundary, etc). An equation is presented that describes the temperature and pressure dependence thermal diffusivity of rocks based only on the room-temperature thermal diffusivity. Room-temperature thermal diffusivity and its temperature dependence are mainly dependent on the major mineralogy of the rock. Because granulites are important components of the middle and lower continental crust, the results of this study provide important constraints in quantifying more accurately the thermal state of the deeper continental

  9. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  10. Thermal diffusion of water vapour in porous materials: fact or fiction?

    DEFF Research Database (Denmark)

    Janssen, Hans

    2011-01-01

    diffusion. Thermal diffusion opponents, on the other hand, assert that these thermal transports are negligibly small. This paper resolves that contradiction. A critical analysis of the investigations supporting the occurrence of thermal diffusion reveals that all are flawed. A correct reinterpretation...... its negligible magnitude. It can in conclusion be stated that thermal diffusion is of no importance for building science applications, leaving vapour pressure as the sole significant transport potential for the diffusion of water vapour in porous materials. (C) 2010 Elsevier Ltd. All rights reserved....

  11. Apparatus and method for transient thermal infrared emission spectrometry

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  12. Ballistic and Diffusive Thermal Conductivity of Graphene

    Science.gov (United States)

    Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.

  13. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  14. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  15. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    Science.gov (United States)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple

  16. The Measurement of Thermal Diffusivity in Conductor and Insulator by Photodeflection Technique

    Science.gov (United States)

    Achathongsuk, U.; Rittidach, T.; Tipmonta, P.; Kijamnajsuk, P.; Chotikaprakhan, S.

    2017-09-01

    The purpose of this study is to estimate thermal diffusivities of high thermal diffusivity bulk material as well as low thermal diffusivity bulk material by using many types of fluid such as Ethyl alcohol and water. This method is studied by measuring amplitude and phase of photodeflection signal in various frequency modulations. The experimental setup consists of two laser lines: 1) a pump laser beams through a modulator, varied frequency, controlled by lock-in amplifier and focused on sample surface by lens. 2) a probe laser which parallels with the sample surface and is perpendicular to the pump laser beam. The probe laser deflection signal is obtained by a position sensor which controlled by lock-in amplifier. Thermal diffusivity is calculated by measuring the amplitude and phase of the photodeflection signal and compared with the thermal diffusivity of a standard value. The thermal diffusivity of SGG agrees well with the literature but the thermal diffusivity of Cu is less than the literature value by a factor of ten. The experiment requires further improvement to measure the thermal diffusivity of Cu. However, we succeed in using ethyl alcohol as the coupling medium instead of CCl4 which is highly toxic.

  17. Thermal diffusivity and thermal conductivity of (Th,U)O2 fuels

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Jarvis, T.; Nair, M.R.; Ramachandran, R.; Mujumdar, S.; Purushotham, D.S.C.

    2000-05-01

    India has vast reserves of thorium (> 460,000 tons) and sustained work on all aspects of thorium utilization has been initiated. In this context work on fabrication of sintered thoria and mixed (Th,U)O 2 pellets and evaluation of their thermophysical properties have been taken up in Radiometallurgy Division. Thermal conductivity, being the most important thermal properties, has been calculated using the experimentally measured thermal diffusivity, density and literature values of specific heats for ThO 2 and thoria containing 2,4,6,10 and 20% UO 2 . Thermal diffusivity was measured experimentally by the laser flash method from 600 to 1600 deg C in vacuum. It was observed that thermal conductivity of ThO 2 and mixed (Th,U)O 2 decrease with increase in temperature. It was also observed that the conductivity decreases with increase in UO 2 content, the decrease being more at lower temperature than that at higher temperatures. Empirical relations correlating thermal conductivity to temperatures have been generated by the least square fit method and reported. (author)

  18. Thermal neutron diffusion parameters in homogeneous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowicz, K.; Krynicka, E. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs.

  19. Thermal neutron diffusion parameters in homogeneous mixtures

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Krynicka, E.

    1995-01-01

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs

  20. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  1. Thermal diffusivity imaging with the thermal lens microscope.

    Science.gov (United States)

    Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J

    2011-12-01

    A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America

  2. Periodic heat wave determination of thermal diffusivity of clays ...

    African Journals Online (AJOL)

    The responses of Ankaful, Tetegu (# 1 & 2) and Mamfe clays to periodic heat waves were analyzed to deter-mine the thermal diffusivity values. The temperature amplitude attenuated with depth of penetration, while the phase shift increased. The thermal diffusivity values ranged from 3.0 - 9.5 x 10P-7P mP2P/s by amplitude ...

  3. Manipulation of heat-diffusion channel in laser thermal lithography.

    Science.gov (United States)

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.

  4. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.

    Directory of Open Access Journals (Sweden)

    Michael J Cruse

    Full Text Available Plant canopy interception of photosynthetically active radiation (PAR drives carbon dioxide (CO2, water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the

  5. Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation

    International Nuclear Information System (INIS)

    Agresti, Filippo; Barison, Simona; Battiston, Simone; Pagura, Cesare; Fabrizio, Monica; Colla, Laura; Fedele, Laura

    2013-01-01

    With the aim of preparing stable nanofluids for heat exchange applications and to study the effect of surfactant on the aggregation of nanoparticles and thermal diffusivity, stable silver colloids were synthesized in water by a green method, reducing AgNO 3 with fructose in the presence of poly-vinylpyrollidone (PVP) of various molecular weights. A silver nanopowder was precipitated from the colloids and re-dispersed at 4 vol% in deionized water. The Ag colloids were characterized by UV–visible spectroscopy, combined dynamic light scattering and ζ-potential measurements, and laser flash thermal diffusivity. The Ag nanopowders were characterized by scanning electron microscopy and thermal gravimetric analysis. It was found that the molecular weight of PVP strongly affects the ζ-potential and the aggregation of nanoparticles, thereby affecting the thermal diffusivity of the obtained colloids. In particular, it was observed that on increasing the molecular weight of PVP the absolute value of the ζ-potential is reduced, leading to increased aggregation of nanoparticles. A clear relation was identified between thermal diffusivity and aggregation, showing higher thermal diffusivity for nanofluids having higher aggregation. A maximum improvement of thermal diffusivity by about 12% was found for nanofluids prepared with PVP having higher molecular weight. (paper)

  6. Electron diffraction patterns with thermal diffuse scattering maxima around Kikuchi lines

    International Nuclear Information System (INIS)

    Karakhanyan, R. K.; Karakhanyan, K. R.

    2011-01-01

    Transmission electron diffraction patterns of silicon with thermal diffuse maxima around Kikuchi lines, which are analogs of the maxima of thermal diffuse electron scattering around point reflections, have been recorded. Diffuse maxima are observed only around Kikuchi lines with indices that are forbidden for the silicon structure. The diffraction conditions for forming these maxima are discussed.

  7. Instrumentation for thermal diffusivity determination of sintered materials

    International Nuclear Information System (INIS)

    Turquetti Filho, R.

    1990-01-01

    A new procedure to measure the sinterized materials thermal diffusivity, using the heat pulse method was developed in this work. The experimental data were performed at room temperature with UO sub(2), ThO sub(2), and Al sub(2)O sub(3) samples with 94%, 95%, and 96% of theoretical densities, respectively. Nondimensional root mean square deviation for theoretical function fitting was found to be on the order, of 10 sup(-3). The total error associated with the measurements for thermal diffusivity was ± 5%. (author)

  8. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  9. Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames

    Science.gov (United States)

    Schlup, Jason; Blanquart, Guillaume

    2018-03-01

    The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.

  10. Radial thermal diffusivity of toroidal plasma affected by resonant magnetic perturbations

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Takamaru, Hisanori; Okamoto, Masao

    2012-04-01

    We investigate how the radial thermal diffusivity of an axisymmetric toroidal plasma is modified by effect of resonant magnetic perturbations (RMPs), using a drift kinetic simulation code for calculating the thermal diffusivity in the perturbed region. The perturbed region is assumed to be generated on and around the resonance surfaces, and is wedged in between the regular closed magnetic surfaces. It has been found that the radial thermal diffusivity χ r in the perturbed region is represented as χ r = χ r (0) {1 + c r parallel 2 >}. Here r parallel 2 > 1/2 is the strength of the RMPs in the radial directions, means the flux surface average defined by the unperturbed (i.e., original) magnetic field, χ r (0) is the neoclassical thermal diffusivity, and c is a positive coefficient. In this paper, dependence of the coefficient c on parameters of the toroidal plasma is studied in results given by the δ f simulation code solving the drift kinetic equation under an assumption of zero electric field. We find that the dependence of c is given as c ∝ ω b /ν eff m in the low collisionality regime ν eff b , where ν eff is the effective collision frequency, ω b is the bounce frequency and m is the particle mass. In case of ν eff > ω b , the thermal diffusivity χ r evaluated by the simulations becomes close to the neoclassical thermal diffusivity χ r (0) . (author)

  11. Thermal diffusivity measurement by lock-in photothermal shadowgraph method

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, A. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico); Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao (Spain); Alvarado, S. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico); Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Heverlee B-3001 (Belgium); Cabrera, H. [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Científicas, IVIC, Mérida 5101, Venezuela and SPIE-ICTP Anchor Research in Optics Program Lab, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste (Italy); Calderón, A.; Marín, E., E-mail: emarinm@ipn.mx [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México 11500 (Mexico)

    2016-04-28

    Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.

  12. Thermal diffusivity measurement for p-Si and Ag/p-Si by photoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi, E-mail: mohammed55865@yahoo.com [Department of Physics, Faculty of Science, Universiti PutraMalaysia (UPM), Serdang (Malaysia)

    2015-10-15

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f{sub c.} In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm{sup 2}/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon. (author)

  13. Thermal Diffusivity Measurement for p-Si and Ag/p-Si by Photoacoustic Technique

    Science.gov (United States)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi

    2015-10-01

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f c . In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm2/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon.

  14. Contribution to the study of thermal diffusivity of solids; Contribution a l'etude de la diffusivite thermique des solides

    Energy Technology Data Exchange (ETDEWEB)

    Zankel, K [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    Angstroem method has been reviewed for its application to measurements of thermal diffusivity and conductivity on short specimens. An apparatus and a technique have been developed for rapid and precise measurements of a large variety of materials, which might also contain heat sources. This technique allows measurements at both high and low temperatures. Stainless steel, nickel and uranium monocarbide specimens were tested and the results of the thermal diffusivity measurements between 50 deg. C and 700 deg. C are presented. (author) [French] L'application de la methode d'Angstroem pour la mesure de la diffusivite et de la conductivite thermique sur des echantillons courts est examinee. Un appareillage est decrit, qui permet non seulement des mesures sur une grande variete de materiaux, mais qui est aussi concu pour des mesures rapides, precises et ou des sources thermiques peuvent etre introduites au sein de l'echantillon. La methode s'adapte egalement aux mesures a basses et hautes temperatures. Des resultats de mesure sur un echantillon en acier inoxydable, en nickel et en carbure d'uranium pour des temperatures comprises entre 50 et 700 deg. C sont reportes. (auteur)

  15. Directed Thermal Diffusions through Metamaterial Source Illusion with Homogeneous Natural Media

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    2018-04-01

    Full Text Available Owing to the utilization of transformation optics, many significant research and development achievements have expanded the applications of illusion devices into thermal fields. However, most of the current studies on relevant thermal illusions used to reshape the thermal fields are dependent of certain pre-designed geometric profiles with complicated conductivity configurations. In this paper, we propose a methodology for designing a new class of thermal source illusion devices for achieving directed thermal diffusions with natural homogeneous media. The employments of the space rotations in the linear transformation processes allow the directed thermal diffusions to be independent of the geometric profiles, and the utilization of natural homogeneous media improve the feasibility. Four schemes, with fewer types of homogeneous media filling the functional regions, are demonstrated in transient states. The expected performances are observed in each scheme. The related performance are analyzed by comparing the thermal distribution characteristics and the illusion effectiveness on the measured lines. The findings obtained in this paper see applications in the development of directed diffusions with minimal thermal loss, used in novel “multi-beam” thermal generation, thermal lenses, solar receivers, and waveguide.

  16. Stress in film/substrate system due to diffusion and thermal misfit effects

    International Nuclear Information System (INIS)

    Shao Shanshan; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2009-01-01

    The stress in film/substrate systems has been analysed taking into consideration the coupling effects of diffusion and thermal misfit within the framework of Fick's second law. The solution of diffusion-induced stress in a film/substrate system involving the thermal misfit stress feedback is developed. The effects of modulus ratios, diffusivity ratios, thickness ratios of the substrate and the film and the partial molar volume of the diffusing component on the stress distribution in the film/substrate system are then discussed with the help of the finite difference method. Results indicate that the stresses in the film/substrate system vary with diffusion time. Diffusion enhances the magnitudes of film stress when the thermal misfit stress is compressive in the film. Furthermore, the absolute values of stress in the film increase with the increasing modulus ratios of the substrate and film, while they reduce with the increasing partial molar volume of the diffusing component and the diffusivity ratio of the substrate and the film.

  17. A transient divided-bar method for simultaneous measurements of thermal conductivity and thermal diffusivity

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Nielsen, Søren Bom; Balling, Niels

    2016-01-01

    and volumetric heat capacity, and thereby also thermal diffusivity, are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity may also be determined. Finite element formulation provides a flexible forward solution for heat transfer across the bar...... and thermal properties are estimated by inverse Monte Carlo modelling. This methodology enables a proper quantification of experimental uncertainties on measured thermal properties. The developed methodology was applied to laboratory measurements of various materials, including a standard ceramic material......-3 %, and for diffusivity uncertainty may be reduced to about 3-5 %. The main uncertainty originates from the presence of thermal contact resistance associated with the internal interfaces of the bar. They are not resolved during inversion, and it is highly important that they are minimized by careful sample preparation....

  18. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    International Nuclear Information System (INIS)

    Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S.; Connolly, J.R.

    1996-06-01

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m 3 at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m 2 /s to 6.6 x 10-7 m 2 /s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed

  19. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  20. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  1. Thermal diffusivity of alumina-zirconia sintered with niobium additions

    International Nuclear Information System (INIS)

    Santos, W.N. dos; Paulin Filho, P.I.; Taylor, R.

    1994-01-01

    The effect of niobium oxide addition on the alumina-zirconia thermal diffusivity was investigated from 100 0 C to 1000 0 C by the laser flash method. It was observed that 4 to 6% addition of niobium oxide increases the thermal diffusivity when samples were sintered at 1450 0 C. This effect was due to elimination of porosity by formation of liquid please above 1420 0 C in the Al 2 O 3 - Nb 2 O 5 system. (author). 7 refs., 3 figs

  2. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    Science.gov (United States)

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  3. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    Science.gov (United States)

    Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.

    2012-09-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  4. Apparatus for studying the diffusion of rare gases in stainless steel; Appareil pour etude de la diffusion des gaz rares dans l'acier inoxydable

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Alfille, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    This apparatus enables measurements to be carried out on the diffusion of gaseous fission products and of gases in general across thin metallic walls at high temperatures. This work was initially intended to solve the problems involved in systems for detecting the rupture of a fuel element can (D.R.G.) by the diffusion of fission products through the cans at high temperatures. The extension of the work to other fields is envisaged. (author) [French] Cet appareil permet d'effectuer des mesures sur la diffusion des produits de fission gazeux, et des gaz en general, au travers de parois metalliques minces a haute temperature. Au depart, ce procede devait contribuer a resoudre les problemes poses aux systemes detecteurs de rupture de gaine (D.R.G.), par la diffusion des produits de fission au travers des gaines de cartouches a haute temperature. Son extension a d'autres etudes est envisagee. (auteur)

  5. Self-thermophoresis and thermal self-diffusion in liquids and gases.

    Science.gov (United States)

    Brenner, Howard

    2010-09-01

    This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.

  6. Contribution to the study of thermal diffusivity of solids; Contribution a l'etude de la diffusivite thermique des solides

    Energy Technology Data Exchange (ETDEWEB)

    Zankel, K. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    Angstroem method has been reviewed for its application to measurements of thermal diffusivity and conductivity on short specimens. An apparatus and a technique have been developed for rapid and precise measurements of a large variety of materials, which might also contain heat sources. This technique allows measurements at both high and low temperatures. Stainless steel, nickel and uranium monocarbide specimens were tested and the results of the thermal diffusivity measurements between 50 deg. C and 700 deg. C are presented. (author) [French] L'application de la methode d'Angstroem pour la mesure de la diffusivite et de la conductivite thermique sur des echantillons courts est examinee. Un appareillage est decrit, qui permet non seulement des mesures sur une grande variete de materiaux, mais qui est aussi concu pour des mesures rapides, precises et ou des sources thermiques peuvent etre introduites au sein de l'echantillon. La methode s'adapte egalement aux mesures a basses et hautes temperatures. Des resultats de mesure sur un echantillon en acier inoxydable, en nickel et en carbure d'uranium pour des temperatures comprises entre 50 et 700 deg. C sont reportes. (auteur)

  7. Apparatus for determining the thermal history of equipment using solid state track recorders

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Lippincott, E.P.; Fero, A.H.; Schreiber, R.B.; Seidel, J.G.

    1991-01-01

    This patent describes a nuclear power plant having equipment subject to thermal aging, the rate of the thermal aging being capable of characterization by at least one equipment Arrhenius function of temperature, the equipment being subjected to a temperature environment having a predetermined range of temperatures, apparatus for determining the thermal aging which has occurred in the equipment. It comprises passive sensors, each of the sensors being formed from a selected material and subject to a thermal aging process within the range of temperatures, the extent of the thermal aging in each respective sensor being quantifiable, the rate at which the thermal aging process progresses in each of the sensors being characterized by a respective Arrhenius function of temperature; and the selected material not being the same for each of the sensors, whereby the range of activation energy values characterizing the respective Arrhenius functions encompasses the activation energy value characterizing the equipment Arrhenius function

  8. Liquid Thermal Diffusion during the Manhattan Project

    Science.gov (United States)

    Cameron Reed, B.

    2011-06-01

    On the basis of Manhattan Engineer District documents, a little known Naval Research Laboratory report of 1946, and other sources, I construct a more complete history of the liquid-thermal-diffusion method of uranium enrichment during World War II than is presented in official histories of the Manhattan Project. This method was developed by Philip Abelson (1913-2004) and put into operation at the rapidly-constructed S-50 plant at Oak Ridge, Tennessee, which was responsible for the first stage of uranium enrichment, from 0.72% to 0.85% U-235, producing nearly 45,000 pounds of enriched U-235 by July 1945 at a cost of just under 20 million. I review the history, design, politics, construction, and operation of the S-50 liquid-thermal-diffusion plant.

  9. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    International Nuclear Information System (INIS)

    Adib, M A H M; Ismail, A R; Kardigama, K; Salaam, H A; Ahmad, Z; Johari, N H; Anuar, Z; Azmi, N S N; Adnan, F

    2012-01-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ∼ 60%) acceptable compared to diffuser with 6mm ∼ 40% and 12mm ∼ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  10. Thermal diffusivity of fuel clad materials: study on D9 alloy

    International Nuclear Information System (INIS)

    Seenivasan, G.; Balasubramanian, R.; Krishnaiah, M.V.

    2003-01-01

    Thermal diffusivity of D9 alloy has been measured using a laser flash method in the temperature range of 673 to 1273 K. The samples were taken in the form of 2 mm thick polished discs and some of the discs were annealed at 1073 K in high vacuum. A Nd-YAG laser of pulse width 1 msec and energy 20 J was used for heating. Lead sulphide (PbS) was used as detector. The result indicates that the thermal diffusivity increases with increasing temperature. It has been observed that the thermal diffusivity of 503 and 505 alloys are very similar and their values are very close to that of SS-304. (author)

  11. Fractional Heat Conduction Models and Thermal Diffusivity Determination

    Directory of Open Access Journals (Sweden)

    Monika Žecová

    2015-01-01

    Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.

  12. Calculation of thermal-diffusion coefficients from plane-wave fluctuations in the heat energy density

    International Nuclear Information System (INIS)

    Palmer, B.J.

    1994-01-01

    A method to calculate the thermal diffusivity D T from spontaneous fluctuations in the local heat energy density is presented. Calculations of the thermal diffusivity are performed for the Lennard-Jones fluid, carbon dioxide, and water. The results for the Lennard-Jones fluid are in agreement with calculations of the thermal conductivity using Green-Kubo relations and nonequilibrium molecular-dynamics techniques. The results for carbon dioxide and water give thermal diffusivities within a factor of 2 of the experimental values

  13. Accurate photopyroelectric measurements of thermal diffusivity of (semi)liquids

    NARCIS (Netherlands)

    Dadarlat, D.; Neamtu, C.; Surducan, E.; Sahraoui, A.H.; Longuemart, S.; Bicanic, D.

    2002-01-01

    The back photopyroelectric (PPE) configuration, with opaque sample and thermally thick sample and sensor, was applied in order to obtain room temperature values of the thermal diffusivity of some (semi)liquid materials. The methodology is based on a sample's thickness scan, and not on a frequency

  14. Influence of moisture content and temperature on thermal conductivity and thermal diffusivity of rice flours

    Science.gov (United States)

    The thermal conductivity and thermal diffusivity of four types of rice flours and one type of rice protein were determine at temperatures ranging from 4.8 to 36.8 C, bulk densities 535 to 875.8 kg/m3, and moisture contents 2.6 to 16.7 percent (w.b.), using a KD2 Thermal Properties Analyzer. It was ...

  15. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    Science.gov (United States)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav; Kim, Kwang-Je

    2018-05-08

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.

  16. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors

    Science.gov (United States)

    Valvano, J. W.; Cochran, J. R.; Diller, K. R.

    1985-05-01

    This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.

  17. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.; Pontius, R.B.

    1976-01-01

    The method of testing the separation efficiency of porous permeable membranes is described which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane

  18. Method and Apparatus for Measuring Thermal Conductivity of Small, Highly Insulating Specimens

    Science.gov (United States)

    Miller, Robert A (Inventor); Kuczmarski, Maria A (Inventor)

    2013-01-01

    A method and apparatus for the measurement of thermal conductivity combines the following capabilities: 1) measurements of very small specimens; 2) measurements of specimens with thermal conductivity on the same order of that as air; and, 3) the ability to use air as a reference material. Care is taken to ensure that the heat flow through the test specimen is essentially one-dimensional. No attempt is made to use heated guards to minimize the flow of heat from the hot plate to the surroundings. Results indicate that since large correction factors must be applied to account for guard imperfections when specimen dimensions are small, simply measuring and correcting for heat from the heater disc that does not flow into the specimen is preferable.

  19. Microstructure and thermal diffusivity in hydroxyapatite, dense bone and metals for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, M.; Diaz G, J.A.I.; Calderon, A. [CICATA-IPN, 11500 Mexico D.F. (Mexico)

    2007-07-01

    Full text: We report X-Ray diffraction and SEM analysis in hydroxyapatite obtained in powder form, as well as a SEM analysis in titanium, 316l stainless steel and dense bone in longitudinal and transversal cutting. Moreover, we realized a thermal diffusivity measurement in these materials in order to obtain the thermal compatibility between them. We use the photoacoustic technique in heat transmission configuration in order to obtain the thermal diffusivity values in the samples. Our results show a good thermal compatibility (74%) between hydroxyapatite and bone. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications. (Author)

  20. Microstructure and thermal diffusivity in hydroxyapatite, dense bone and metals for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, M.; Diaz G, J.A.I.; Calderon, A. [CICATA-IPN, Legaria 694, 11500 Mexico D.F. (Mexico)

    2006-07-01

    We report X-Ray diffraction and SEM analysis in hydroxyapatite obtained in powder form, as well as a SEM analysis in titanium, 316l stainless steel and dense bone in longitudinal and transversal cutting. Moreover, we realized a thermal diffusivity measurement in these materials in order to obtain the thermal compatibility between them. We use the photoacoustic technique in heat transmission configuration in order to obtain the thermal diffusivity values in the samples. Our results show a good thermal compatibility (74%) between hydroxyapatite and bone. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications. (Author)

  1. Microstructure and thermal diffusivity in hydroxyapatite, dense bone and metals for biomedical applications

    International Nuclear Information System (INIS)

    Mendez, M.; Diaz G, J.A.I.; Calderon, A.

    2006-01-01

    We report X-Ray diffraction and SEM analysis in hydroxyapatite obtained in powder form, as well as a SEM analysis in titanium, 316l stainless steel and dense bone in longitudinal and transversal cutting. Moreover, we realized a thermal diffusivity measurement in these materials in order to obtain the thermal compatibility between them. We use the photoacoustic technique in heat transmission configuration in order to obtain the thermal diffusivity values in the samples. Our results show a good thermal compatibility (74%) between hydroxyapatite and bone. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications. (Author)

  2. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Science.gov (United States)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  3. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing...... transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated......Detailed characterization of partially saturated porous media is important for understanding and predicting vadose zone transport processes. While basic properties (e.g., particle- and pore-size distributions and soil-water retention) are, in general, essential prerequisites for characterizing most...

  4. Energetics of melts from thermal diffusion studies. FY 1995 progress report

    International Nuclear Information System (INIS)

    Lesher, C.E.

    1996-01-01

    This research program characterizes mass transport by diffusion in geological fluids in response to thermal, solubility, and/or chemical gradients to obtain quantitative information on the thermodynamic and kinetic properties of multicomponent systems. Silicate liquids undergo substantial thermal diffusion (Soret) differentiation, while the response in sulfide, carbonate, and aqueous fluids to an imposed temperature gradient is varied. The experimental observations of this differentiation are used to evaluate the form and quantitative values of solution parameters, and to quantify ordinary diffusion coefficients, heats of transport, and activation energies of multicomponent liquids. The diffusion, solution, and element partition coefficients determined for these geological fluids form a data base for understanding magmatic crystallization behavior and for evaluating geothermal, ore deposit, and nuclear waste isolation potentials

  5. Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account

    International Nuclear Information System (INIS)

    Van Berkel, M; Hogeweij, G M D; Van den Brand, H; De Baar, M R; Zwart, H J; Vandersteen, G

    2014-01-01

    In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be shown that formulas found in the literature often result in a thermal diffusivity that has a bias (a difference between the estimated value and the actual value that remains even if more measurements are added) or have an unnecessarily large uncertainty. This will be shown by modeling a plasma using only diffusion as heat transport mechanism and measurement noise based on ASDEX Upgrade measurements. The Fourier coefficients of a temperature perturbation will exhibit noise from the circular complex normal distribution (CCND). Based on Fourier coefficients distributed according to a CCND, it is shown that the resulting probability density function of the thermal diffusivity is an inverse non-central chi-squared distribution. The thermal diffusivity that is found by sampling this distribution will always be biased, and averaging of multiple estimated diffusivities will not necessarily improve the estimation. Confidence bounds are constructed to illustrate the uncertainty in the diffusivity using several formulas that are equivalent in the noiseless case. Finally, a different method of averaging, that reduces the uncertainty significantly, is suggested. The methodology is also extended to the case where damping is included, and it is explained how to include the cylindrical geometry. (paper)

  6. Measurement of the Thermal Conductivity of Unfrozen and Frozen Food Materials by a Steady State Method with Coaxial Dual-cylinder Apparatus.

    Science.gov (United States)

    Pongsawatmanit, R; Miyawaki, O; Yano, T

    1993-01-01

    Coaxial dual-cylinder apparatus was used to measure the effective thermal conductivity of aqueous solutions of glucose, sucrose, gelatin and egg albumin over a temperature range from -20° to 20°C by the steady state method. The accuracy of the apparatus was confirmed by testing with water and ice. The effective thermal conductivity decreased with an increase in the total solid content in both the frozen and unfrozen states. In the unfrozen state, the effective thermal conductivity was slightly dependent on temperature. In the frozen state, however, the effective thermal conductivity was strongly dependent on temperature; lower temperatures gave higher effective thermal conductivity, reflecting the increase in the ice fration. For the unfrozen samples, the intrinsic thermal conductivity of each solid component was calculated by heat transfer models. All the models tested, series, parallel and Maxwell-Eucken, were equally applicable to describe the heat conduction in the unfrozen state. In the frozen state, however, the strong temperature dependency of the effective thermal conductivity suggests that the effect of the temperature dependency of the ice fraction should be incorporated into theoretical models.

  7. Thermal diffusivity of diamond nanowires studied by laser assisted atom probe tomography

    Science.gov (United States)

    Arnoldi, L.; Spies, M.; Houard, J.; Blum, I.; Etienne, A.; Ismagilov, R.; Obraztsov, A.; Vella, A.

    2018-04-01

    The thermal properties of single-crystal diamond nanowires (NWs) have been calculated from first principles but have never been measured experimentally. Taking advantage of the sharp geometry of samples analyzed in a laser assisted atom probe, this technique is used to measure the thermal diffusivity of a single NW at low temperature (ab-initio calculations and confirms that thermal diffusivity in nanoscale samples is lower than in bulk samples. The results impact the design and integration of diamond NWs and nanoneedles in nanoscale devices for heat dissipation.

  8. The effect of a realistic thermal diffusivity on numerical model of a subducting slab

    Science.gov (United States)

    Maierova, P.; Steinle-Neumann, G.; Cadek, O.

    2010-12-01

    A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the

  9. Mathematical modelling of pasta dough dynamic viscosity, thermal conductivity and diffusivity

    Directory of Open Access Journals (Sweden)

    Andrei Ionuţ SIMION

    2015-08-01

    Full Text Available This work aimed to study the mathematical variation of three main thermodynamic properties (dynamic viscosity, thermal conductivity and thermal diffusivity of pasta dough obtained by mixing wheat semolina and water with dough humidity and deformation speed (for dynamic viscosity, respectively with dough humidity and temperature (for thermal diffusivity and conductivity. The realized regression analysis of existing graphical data led to the development of mathematical models with a high degree of accuracy. The employed statistical tests (least squares, relative error and analysis of variance revealed that the obtained equations are able to describe and predict the tendency of the dough thermodynamic properties.

  10. In-Situ Testing of the Thermal Diffusivity of Polysilicon Thin Films

    Directory of Open Access Journals (Sweden)

    Yi-Fan Gu

    2016-10-01

    Full Text Available This paper presents an intuitive yet effective in-situ thermal diffusivity testing structure and testing method. The structure consists of two doubly clamped beams with the same width and thickness but different lengths. When the electric current is applied through two terminals of one beam, the beam serves as thermal resistor and the resistance R(t varies as temperature rises. A delicate thermodynamic model considering thermal convection, thermal radiation, and film-to-substrate heat conduction was established for the testing structure. The presented in-situ thermal diffusivity testing structure can be fabricated by various commonly used micro electro mechanical systems (MEMS fabrication methods, i.e., it requires no extra customized processes yet provides electrical input and output interfaces for in-situ testing. Meanwhile, the testing environment and equipment had no stringent restriction, measurements were carried out at normal temperatures and pressures, and the results are relatively accurate.

  11. Synthesis, Characterization and Thermal Diffusivity of Holmium and Praseodymium Zirconates

    Directory of Open Access Journals (Sweden)

    Stopyra M.

    2016-06-01

    Full Text Available A2B2O7 oxides with pyrochlore or defected fluorite structure are among the most promising candidates for insulation layer material in thermal barrier coatings. The present paper presents the procedure of synthesis of holmium zirconate Ho2Zr2O7 and praseodymium zirconate Pr2Zr2O7 via Polymerized-Complex Method (PCM. Thermal analysis of precursor revealed that after calcination at relatively low temperature (700°C fine-crystalline, single-phase material is obtained. Thermal diffusivity was measured in temperature range 25-200°C, Ho2Zr2O7 exhibits lower thermal diffusivity than Pr2Zr2O7. Additionally, PrHoZr2O7 was synthesized. The powder in as-calcined condition is single-phase, but during the sintering decomposition of solid solution took place and Ho-rich phase precipitated. This material exhibited the best insulating properties among the tested ones.

  12. Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspensions

    Institute of Scientific and Technical Information of China (English)

    WANG Buxuan; ZHOU Leping; PENG Xiaofeng

    2004-01-01

    Using our reported experimental data of effective thermal conductivity, specific heat capacity and viscosity for CuO nanoparticle suspensions, the corresponding thermal diffusivity and Prandtl number are calculated. With the hard sphere model and considering effects of particle clustering and surface adsorption, the increase of viscosity for nanoparticle suspension observed is explained. It is shown that the effective thermal conductivity will be strongly affected by the formation and correlated spatial distribution of nanoparticle clusters when compared to viscosity in hosting liquid.

  13. Identification of temperature-dependent thermal conductivity and experimental verification

    International Nuclear Information System (INIS)

    Pan, Weizhen; Yi, Fajun; Zhu, Yanwei; Meng, Songhe

    2016-01-01

    A modified Levenberg–Marquardt method (LMM) for the identification of temperature-dependent thermal conductivity is proposed; the experiment and structure of the specimen for identification are also designed. The temperature-dependent thermal conductivities of copper C10200 and brass C28000 are identified to verify the effectiveness of the proposed identification method. The comparison between identified results and the measured data of laser flash diffusivity apparatus indicates the fine consistency and potential usage of the proposed method. (paper)

  14. Fourier diffraction theorem for diffusion-based thermal tomography

    International Nuclear Information System (INIS)

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  15. Thermal diffusion of hydrogen in zircaloy-2 containing hydrogen beyond terminal solid solubility

    International Nuclear Information System (INIS)

    Maki, Hideo; Sato, Masao.

    1975-01-01

    The thermal diffusion of hydrogen is one of causes of uneven hydride precipitation in zircaloy fuel cladding tubes that are used in water reactors. In the diffusion model of hydrogen in zircaloy, the effects of the hydride on the diffusibility of hydrogen has been regarded as negligibly small in comparison with that of hydrogen dissolved in the matrix. Contrary to the indications given by this model, phenomena are often encountered that cannot be explained unless hydride platelets have considerable ostensible diffusibility in zircaloy. In order to determine quantitatively the diffusion characteristics of hydrogen in zircaloy, a thermal diffusion experiment was performed with zircaloy-2 fuel cladding tubes containing hydrogen beyond the terminal solid solubility. In this experiment, a temperature difference of 20 0 --30 0 C was applied between the inside and outside surfaces of the specimen in a thermal simulator. To explain the experimental results, a modified diffusion model is presented, in which the effects of stress are introduced into Markowitz's model with the diffusion of hydrogen in the hydride taken into account. The diffusion equation derived from this model can be written in a form that ostensibly represents direct diffusion of hydride in zircaloy. The apparent diffusion characteristics of the hydride at around 300 0 C are Dsub(p)=2.3x10 5 exp(-32,000/RT), (where R:gas constant, T:temperature) and the apparent heat of transport Qsub(p) =-60,000 cal/mol. The modified diffusion model well explains the experimental results in such respects as reaches a steady state after several hours. (auth.)

  16. Apparatus and process for continuous measurement of moisture in moving coal by neutron thermalization

    International Nuclear Information System (INIS)

    Stewart, R.F.

    1967-01-01

    The invention relates to an apparatus and process for the measurement of moisture contents in solid materials. More particularly, the invention makes available a continuous moisture analysis of a moving mass of material, such as coal, by penetrating such material with neutrons emitted from a source of fast neutrons and detecting, counting, and recording slowed or thermalized neutrons reflected from the internal structure of the material. (U.S.)

  17. Self-consistent photothermal techniques: Application for measuring thermal diffusivity in vegetable oils

    Science.gov (United States)

    Balderas-López, J. A.; Mandelis, Andreas

    2003-01-01

    The thermal wave resonator cavity (TWRC) was used to measure the thermal properties of vegetable oils. The thermal diffusivity of six commercial vegetable oils (olive, corn, soybean, canola, peanut, and sunflower) was measured by means of this device. A linear relation between both the amplitude and phase as functions of the cavity length for the TWRC was observed and used for the measurements. Three significant figure precisions were obtained. A clear distinction between extra virgin olive oil and other oils in terms of thermal diffusivity was shown. The high measurement precision of the TWRC highlights the potential of this relatively new technique for assessing the quality of this kind of fluids in terms of their thermophysical properties.

  18. A high-resolution, nanomembrane-based, thermal diffusivity biosensor for living cells

    KAUST Repository

    Elafandy, Rami T.; Ooi, Boon S.

    2017-01-01

    A method for measuring thermal diffusivity/conductivity of a microscale sample includes placing a metallic disk atop the sample, and disposing a nanomembrane over the sample and over the metallic disk so that the nanomembrane, so that the metallic disk, the nanomembrane and the sample are in thermal equilibrium with one another. A laser beam is directed to fall onto the nanomembrane over the sample, while a radiation sensor is operated to detect photoluminescent radiation emitted by the nanomembrane in response to the laser beam. A spectral shift in the detected photoluminescent radiation emitted by the nanomembrane is determined, and thermal diffusivity/conductivity is calculated from the determined spectral shift of the photoluminescence.

  19. A high-resolution, nanomembrane-based, thermal diffusivity biosensor for living cells

    KAUST Repository

    El Afandy, Rami Tarek

    2017-07-27

    A method for measuring thermal diffusivity/conductivity of a microscale sample includes placing a metallic disk atop the sample, and disposing a nanomembrane over the sample and over the metallic disk so that the nanomembrane, so that the metallic disk, the nanomembrane and the sample are in thermal equilibrium with one another. A laser beam is directed to fall onto the nanomembrane over the sample, while a radiation sensor is operated to detect photoluminescent radiation emitted by the nanomembrane in response to the laser beam. A spectral shift in the detected photoluminescent radiation emitted by the nanomembrane is determined, and thermal diffusivity/conductivity is calculated from the determined spectral shift of the photoluminescence.

  20. Photoacoustic spectroscopy, FTIR spectra and thermal diffusivity investigation of emeraldine pellet

    International Nuclear Information System (INIS)

    Phing, T.E.; Fanny, C.Y.J.; Wan Mahmood Mat Yunus

    2001-01-01

    Photoacoustic spectra for both emeraldine base and emeraldine salt in bulk form were measured in the wavelength range of 350 nm to 700 nm. The Fourier transform Infrared spectroscopy (FTIR) have also been studied to determine the structure changes due to the protonation process. For the thermal diffusivity measurement, the open photoacoustic cell (OPC) technique has been used. It was found that the emeraldine salt exhibit higher thermal diffusivity compare to emeraldine base and this is similar to the higher conductivity characteristics of emeraldine salt. (Author)

  1. Development of an apparatus for measuring the thermal conductivity of irradiated or non-irradiated graphite

    International Nuclear Information System (INIS)

    Bocquet, M.; Micaud, G.

    1962-01-01

    An apparatus was developed for measuring the thermal conductivity coefficient K of irradiated or non-irradiated graphite. The measurement of K at around room temperature with an accuracy of about 6% is possible. The study specimen is placed in a vacuum between a hot and a cold source which create a temperature gradient ΔΘ/ Δx in the steady state. The amount of heat transferred, Q, is deduced from the electrical power dissipated at the hot source, after allowing for heat losses. The thermal conductivity coefficient is defined as: K = Q/S. Δx/ΔΘ, S being the cross section of the sample. Systematic studies have made it possible to determine the mean values of the thermal conductivity. (authors) [fr

  2. Thermal-Diffusivity-Based Frequency References in Standard CMOS

    NARCIS (Netherlands)

    Kashmiri, S.M.

    2012-01-01

    In recent years, a lot of research has been devoted to the realization of accurate integrated frequency references. A thermal-diffusivity-based (TD) frequency reference provides an alternative method of on-chip frequency generation in standard CMOS technology. A frequency-locked loop locks the

  3. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    Science.gov (United States)

    Maqsood, Asghari; Anis-ur-Rehman, M.

    2013-12-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.

  4. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    International Nuclear Information System (INIS)

    Maqsood, Asghari; Anis-ur-Rehman, M

    2013-01-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes 1 . The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported 2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids 3 and high-T C superconductors 4 . The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations 2,5 . The tps-sensor has been used to measure thermal conductivities from 0.001 Wm −1 K −1 to 600 Wm −1 K −1 and temperature ranges covered from 77K– 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials

  5. Evaluation of Specimen Geometric Effect for Laser Flash Thermal Diffusivity Test

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Kim, Hee Moon; Song, Woong Sub; Baik, Seung Je; Ryu, Woo Seok; Ahn, Sang Bok; Joo, Young Sun

    2012-01-01

    KAERI(Korea Atomic Energy Research Institute) is developing a new type of nuclear reactor, the so called 'SMART' (System Integrated Modular Advanced Reactor) reactor. Alloy 690 was selected as the candidate material for the heat exchanger tube of of SMART's steam generator. The SMART R and D is now facing the stage of engineering verification and standard design approval for application of DEMO reactors. Therefore, the material performance under the relevant environment needs to be evaluated. The one of the important material performance issues is thermal conductivity, which the engineering database is necessary for the steam generator design. However, the neutron post irradiation characteristics of alloy 690 are little known. As a result, a PIE (Post Irradiation Examination) of the thermal properties have been plan for a 4 times, so called base line test, 1 st irradiation test, 2 nd and 3 rd irradiation test. But there is some constraint to perform thermal diffusivity test owing to test specimen. Originally thermal diffusivity test are planed using disk shape with 9 mm diameter and 1 mm thick specimen. Due to mismatch of neutron irradiation schedule, thermal diffusivity will be tested by different shape and size specimens at 1 st irradiation test. Therefore, verification of geometric and size effect are necessary for test specimen in order to achieve accurate test results

  6. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic

    Science.gov (United States)

    Correia, A.; Vieira, G.; Ramos, M.

    2012-06-01

    During the month of January of 2008 a borehole (Permamodel-Gulbenkian 1 — PG1) 26 m deep was drilled on the top of Mount Reina Sofia (275 m a.s.l.) near the Spanish Antarctic Station of Livingston Island, South Shetland Islands. Cores from 1.5 m to about 26 m deep were collected for measuring several physical properties. The objective of the present work is to report the values of the thermal conductivity and the thermal diffusivity that were measured in the cores from the borehole and the heat production that was estimated for the geological formations intercepted by it. Seven cores were selected to measure the thermal conductivity and the thermal diffusivity. The measured values for the thermal conductivity vary from 2.6 W/mK to 3.3 W/mK while the measured values for the thermal diffusivity vary from 1.1 × 10- 6 m2/s to 1.6 × 10- 6 m2/s. Both thermal conductivity and thermal diffusivity, on average, show a slight increase with depth. Average heat production was also estimated for two portions of the borehole: one from 2 to 12 m and the other from 12 to 25 m. A gamma-ray spectrometer was used to estimate the concentrations of uranium, thorium, and potassium of the cores, from which the heat production per unit volume was calculated. The estimated heat production for the first half of the borehole is 2.218 μW/m3 while for the second half it is 2.173 μW/m3; these heat production values are compatible with acidic rock types. Porosity and density were also estimated for the same cores.

  7. Thermal conductivity thermal diffusivity of UO{sub 2}-BeO nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Fábio A.; Camarano, Denise M.; Santos, Ana M. M.; Ferraz, Wilmar B.; Silva, Mayra A.; Ferreira, Ricardo A.N., E-mail: fam@cdtn.br, E-mail: dmc@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: mayra.silva@cdtn.br, E-mail: ricardoanf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The temperature distribution in nuclear fuel pellets is of vital importance for the performance of the reactor, as it affects the heat transfer, the mechanical behavior and the release of fission gas during irradiation, reducing safety margins in possible accident scenarios. One of the main limitation for the current uranium dioxide nuclear fuel (UO{sub 2}) is its low thermal conductivity, responsible for the higher temperature of the pellet center and, consequently, for a higher radial temperature gradient. Thus, the addition of another material to increase the UO{sub 2} fuel thermal conductivity has been considered. Among the additives that are being investigated, beryllium oxide (BeO) has been chosen due to its high thermal conductivity, with potential to optimize power generation in pressurized light water reactors (PWR). In this work, UO{sub 2}-BeO pellets were obtained by the physical mixing of the powders with additions of 2wt% and 3wt% of BeO. The thermal diffusivity and conductivity of the pellets were determined from room temperature up to 500 °C. The results were normalized to 95% of the theoretical density (TD) of the pellets and varied according to the BeO content. The range of the values of thermal diffusivity and conductivity were 1.22 mm{sup 2}∙s{sup -1} to 3.69 mm{sup 2}∙s{sup -1} and 3.80 W∙m{sup -}'1∙K{sup -1} to 9.36 W∙m{sup -1}∙K{sup -1}, respectively. (author)

  8. Thermal diffusion baro-effect in cluster gases

    International Nuclear Information System (INIS)

    Kurlapov, L.M.; Segeda, T.A.

    2003-01-01

    Thermal diffusion baro-effect as a difference of pressure under which action in the established process in the close device the particles flow of an irreversible nature is counterbalanced by current of gas is considered. For not ideal gases the settlement formula is received, in which no ideality is taken into account through the compressibility factor and also for cluster mixture. (author)

  9. Diffusion Mechanisms and Lattice Locations of Thermal-Equilibrium Defects in Si-Ge Alloys

    CERN Multimedia

    Lyutovich, K; Touboltsev, V; Laitinen, P O; Strohm, A

    2002-01-01

    It is generally accepted that Ge and Si differ considerably with respect to intrinsic-point-defect-mediated diffusion. In Ge, the native point defects dominating under thermal-equilibium conditions at all solid-state temperatures accessible in diffusion experiments are vacancies, and therefore Ge self-diffusion is vacancy-controlled. In Si, by contrast, self-interstitials and vacancies co-exist in thermal equilibrium. Whereas in the most thoroughly investigated temperature regime above about 1000$^\\circ$C Si self-diffusion is self-interstitial-controlled, it is vacancy-controlled at lower temperatures. According to the scenario displayed above, self-diffusion in Si-Ge alloys is expected to change from an interstitialcy mechanism on the Si side to a vacancy mechanism on the Ge side. Therefore, $^{71}$Ge self-diffusion experiments in Si$_{1- \\it y}$Ge$_{\\it y}$ as a function of composition Y are highly interesting. In a first series of experiments the diffusion of Ge in 0.4 to 10 $\\mu$m thick, relaxed, low-disl...

  10. Parallel diffusion length on thermal neutrons in rod type lattices

    International Nuclear Information System (INIS)

    Ahmed, T.; Siddiqui, S.A.M.M.; Khan, A.M.

    1981-11-01

    Calculation of diffusion lengths of thermal neutrons in lead-water and aluminum water lattices in direction parallel to the rods are performed using one group diffusion equation together with Shevelev transport correction. The formalism is then applied to two practical cases, the Kawasaki (Hitachi) and the Douglas point (Candu) reactor lattices. Our results are in good agreement with the observed values. (author)

  11. Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions

    Science.gov (United States)

    Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng

    One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.

  12. Thermal diffusivity of solids; Diffusivite thermique des solides

    Energy Technology Data Exchange (ETDEWEB)

    Kleimann, H; Fetiveau, Y; Richard, M; Eyraud, L; Eyraud, C; Elston, J [Institut National des Sciences Appliquees, Lyon (France); Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The authors recall the different methods of thermal diffusivity measurements and point out the possible causes of errors. They study in particular the sinusoidal methods of thermal attack using the measurement of either an amplitude or a phase, in which the controlled energy in-put is obtained either by Joule effect or by radiation. By the use of controlled systems, it is possible to apply those methods to the measurement of thermal diffusivity of their samples in a large scale of temperature. The authors describe their experimental achievements and give several results dealing especially with Al{sub 2}O{sub 3}, BeO, MgO. (author) [French] Les auteurs rappellent les diverses methodes de mesure de la diffusivite thermique et indiquent les sources d'erreurs possibles. Ils etudient particulierement les methodes d'attaque thermique sinusoidales utilisant soit une mesure d'amplitude, soit une mesure de phase dans lesquelles l'apport energetique controle est effectue soit par effet Joule, soit par rayonnement. La mise en oeuvre de systemes asservis permet l'utilisation de ces methodes pour la mesure de la diffusivite thermique d'echantillons minces dans une gamme etendue de temperature. Les auteurs decrivent les realisations experimentales et fournissent divers resultats concernant notamment Al{sub 2}O{sub 3}, BeO, MgO. (auteur)

  13. Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor

    DEFF Research Database (Denmark)

    Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan

    2003-01-01

    Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...... corrections for the determination of the partial molar volumes have been implemented; the Peneloux correction and the correction based on the principle of corresponding states....

  14. Measurement of the thermal diffusivity on ceramics and metals using the laser flash method

    International Nuclear Information System (INIS)

    Blumm, J.; Sauseng, B.

    2001-01-01

    Full Text: In the past few decades measurement of the thermophysical properties such as thermal expansion, specific heat, thermal diffusivity or thermal conductivity has become increasingly important for industrial applications. One example is the optimization of the heat transfer in industrial assemblies used for automotive or space applications. The thermal diffusivity and thermal conductivity of all components exposed to high and/or sub-ambient temperatures or large temperature gradients should be accurately known. Another well known example is the characterization of materials such as graphite used in nuclear reactors. Furthermore, analysis of solid and liquid metals is of paramount importance for the simulation of casting processes using finite element software programs. Thermal barrier coatings (zirconia) are used more and more often for high-temperature turbine blades. Reducing the thermal conductivity and the heat transfer through such coatings usually allows higher working temperatures and therefore higher efficiency of the gas turbine. These examples clearly demonstrate the need of instrumentation for the accurate measurement of the required thermophysical properties. The laser flash method has been developed to become one of the most commonly used techniques for the measurement of the thermal diffusivity of various kinds of solids and liquids. Easy sample preparation, small sample dimensions, fast measurement times and high accuracy are only some of the advantages of this non-destructive measurement technique. In addition, temperature dependent measurements can easily be realized. Since the development of the method by Parker et al. new routines for processing of the raw data have been established. Analytical mathematical descriptions were found to compensate for heat loss and finite pulse effects. Using modern personal computers and non-linear regression routines, mathematical models can be used to fit the raw data, yielding improved results for thermal

  15. On thermal vibration effects in diffusion model calculations of blocking dips

    International Nuclear Information System (INIS)

    Fuschini, E.; Ugozzoni, A.

    1983-01-01

    In the framework of the diffusion model, a method for calculating blocking dips is suggested that takes into account thermal vibrations of the crystal lattice. Results of calculations of the diffusion factor and the transverse energy distribution taking into accoUnt scattering of the channeled particles at thermal vibrations of lattice nuclei, are presented. Calculations are performed for α-particles with the energy of 2.12 MeV at 300 K scattered by Al crystal. It is shown that calculations performed according to the above method prove the necessity of taking into account effects of multiple scattering under blocking conditions

  16. Discrete Diffusion Monte Carlo for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory

    2014-10-01

    The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

  17. Characteristics of Laser Flash Technique for Thermal Diffusivity Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M.; Hong, G. P

    2008-08-15

    In relation to selection of thermal conductivity measurement technology, various thermal conductivity measurement technique are investigated for characteristics of each technique and it's measurable range. For the related laser flash techniques, various technical characteristics are reviewed and discussed. Especially, Parker adiabatic model are reviewed because of importance for basic theory of the thermal diffusivity determination. Finite pulse time effect, heat loss effect and non-uniform heating effect, which are main technical factors for laser flash technique, are considered. Finally, characteristics of constituent elements for laser flash measurement system are reviewed and investigated in detail.

  18. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    International Nuclear Information System (INIS)

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas; Jaffrezic, Henri; Toulhoat, Nelly; Barthe, Marie France; Desgardin, Pierre; Raimbault, Louis; Scheidegger, Andre M.; Carlot, Gaelle

    2007-01-01

    Chlorine is present as an impurity in the UO 2 nuclear fuel. 35 Cl is activated into 36 Cl by thermal neutron capture. In case of interim storage or deep geological disposal of the spent fuel, this isotope is known to be able to contribute significantly to the instant release fraction because of its mobile behavior and its long half life (around 300000 years). It is therefore important to understand its migration behavior within the fuel rod. During reactor operation, chlorine diffusion can be due to thermally activated processes or can be favoured by irradiation defects induced by fission fragments or alpha decay. In order to decouple both phenomena, we performed two distinct experiments to study the effects of thermal annealing on the behaviour of chlorine on one hand and the effects of the irradiation with fission products on the other hand. During in reactor processes, part of the 36 Cl may be displaced from its original position, due to recoil or to collisions with fission products. In order to study the behavior of the displaced chlorine, 37 Cl has been implanted into sintered depleted UO 2 pellets (mean grain size around 18 μm). The spatial distribution of the implanted and pristine chlorine has been analyzed by SIMS before and after treatment. Thermal annealing of 37 Cl implanted UO 2 pellets (implantation fluence of 10 13 ions.cm -2 ) show that it is mobile from temperatures as low as 1273 K (E a =4.3 eV). The irradiation with fission products (Iodine, E=63.5 MeV) performed at 300 and 510 K, shows that the diffusion of chlorine is enhanced and that a thermally activated contribution is preserved (E a =0.1 eV). The diffusion coefficients measured at 1473 K and under fission product irradiation at 510 K are similar (D = 3.10 -14 cm 2 .s -1 ). Considering in first approximation that the diffusion length L can be expressed as a function of the diffusion coefficient D and time t by : L=(Dt)1/2, the diffusion distance after 3 years is L=17 μm. It results that

  19. The User-friendly On-Line Diffusion Chamber

    CERN Document Server

    Aviles Acosta, Jaime

    2015-01-01

    The On-Line Diffusion Chamber is a stand-alone apparatus built to carry out short-live radiotracer diffusion studies. The availability of the on-demand production of isotopes in the ISOLDE facility, and the design of the apparatus to streamline the implantation process, annealing treatment, ion gun ablation with a tape transport system, and radiation intensity measurement with a Ge gamma detector all in the same apparatus, gives the On-Line Diffusion Chamber a unique ability to studies with short-lived radioisotopes or isomer states that are not possible in any other facility in the world.

  20. Thermal conductivity of a wide range of alternative refrigerants measured with an improved guarded hot-plate apparatus

    International Nuclear Information System (INIS)

    Hammerschmidt, U.

    1995-01-01

    The thermal conductivity of the refrigerants R22, R123, R134a, R142b, R143a, and R152a has been determined as a function of temperature in the range from 300 to 460 K. Measurements were carried out at atmospheric pressure with an improved guarded hot-plate apparatus. The width of the instrument's gas layer and the temperature difference across the metering section were varied to detect any stray heat transfer. Radiation correction factors were derived from IR absorption spectra. The uncertainty of the measurements is estimated to be 2% at a standard deviation of less than 0.1%. Our data sets are compared with corresponding hot wire results. In contrast to the generally preferred hot wire technique, with its possible electrical and chemical interactions between the wire and the polar refrigerant, there are no such difficulties using a guarded hot-plate apparatus. Our data sets may thus contribute to the discussions on discrepancies in thermal conductivity values from various authors using hot wire as one particular method

  1. 'Thermal ghosts': apparent decay of fixed surfaces caused by heat diffusion

    International Nuclear Information System (INIS)

    Livadiotis, George

    2007-01-01

    The behaviour concerning classical heat diffusion on fixed thermal surfaces, studied by observations, still holds surprises. As soon as convective and radiative processes are negligible within the medium, this is considered to be free from energy sources and sinks. Then, the heat diffusion equation is conveniently solved using standard Fourier methods. Some considerations about the contrast effect suggest that the surface boundary would rather be observed to follow specific area decay dynamics than remaining fixed and static. Here it is shown that the apparent boundary lies on a specific isothermal spatiotemporal curve, which depends on the observing device. This is characterized by a slight, though determinative, difference between its radiance and that of the ambient background. Thereafter, the heat diffusion yields apparent boundary shrinkage with the passing of time. This phenomenon is particularly notable for two reasons: its lifetime and final decay rate depend only on the medium thermal properties, while being independent of the apparent boundary spatiotemporal curve. Thus, the former provides a suitable method for measuring the medium thermal properties via the observational data. The latter strongly reveal a kind of universality of some characteristic properties of the phenomenon, common to all observers

  2. Thermal diffusion boron doping of single-crystal natural diamond

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  3. Thermal diffusion boron doping of single-crystal natural diamond

    International Nuclear Information System (INIS)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  4. Synthesis, Characterization and Thermal Diffusivity of Holmium and Praseodymium Zirconates

    OpenAIRE

    Stopyra M.; Niemiec D.; Moskal G.

    2016-01-01

    A2B2O7 oxides with pyrochlore or defected fluorite structure are among the most promising candidates for insulation layer material in thermal barrier coatings. The present paper presents the procedure of synthesis of holmium zirconate Ho2Zr2O7 and praseodymium zirconate Pr2Zr2O7 via Polymerized-Complex Method (PCM). Thermal analysis of precursor revealed that after calcination at relatively low temperature (700°C) fine-crystalline, single-phase material is obtained. Thermal diffusivity was me...

  5. Separation of Kr-Xe system by thermal diffusion method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Numata, Kazuyoshi; Matsuda, Yuji; Ouchi, Misao; Naruse, Yuji

    1979-11-01

    Separation experiments of Kr-Xe system were carried out to study the possibility of adapting thermal diffusion method for concentration of krypton in a fuel reprocessing off-gas treatment process. The results are as follows. (1) A batchwise thermal diffusion column of hot tube diameter 21 mm, cold tube diameter 32 mm, effective hight 1000 mm and volume -- 500 CC is the best in separation characteristics and in ease of operation under the different conditions. (2) The overall separation factor increases with increase of the operating temperature in the column with and without reservoir. (3) The optimum operating pressure (about 400 Torr) is independent of the operating conditions such as temperature, reservoir volume and feed gas content. (4) A preliminary design of the Kr-Xe separating plant for a reprocessing plant (1500 ton-U/yr) shows the required number of columns and the total electric power. (author)

  6. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  7. An anisotropic diffusion approximation to thermal radiative transfer

    International Nuclear Information System (INIS)

    Johnson, Seth R.; Larsen, Edward W.

    2011-01-01

    This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)

  8. Measurement of time series variation of thermal diffusivity of magnetic fluid under magnetic field by forced Rayleigh scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)

    2017-04-15

    It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.

  9. Theory of thermal and charge transport in diffusive normal metal / superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.

    2005-01-01

    Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor junctions are studied based on the Usadel equation with the Nazarov's generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting

  10. Photothermal radiometric determination of thermal diffusivity depth profiles in a dental resin

    International Nuclear Information System (INIS)

    MartInez-Torres, P; Alvarado-Gil, J J; Mandelis, A

    2010-01-01

    The depth of curing due to photopolymerization in a commercial dental resin is studied using photothermal radiometry. The sample consists of a thick layer of resin on which a thin metallic layer is deposited guaranteeing full opacity of the sample. In this case, purely thermal-wave inverse problem techniques without the interference of optical profiles can be used. Thermal profiles are obtained by heating the coating with a modulated laser beam and performing a modulation frequency scan. Before each frequency scan, photopolymerization was induced using a high power blue LED. However due to the fact that dental resins are highly light dispersive materials, the polymerization process depends strongly on the optical absorption coefficient inducing a depth dependent thermal diffusion in the sample. It is shown that using a robust depth profilometric inverse method one can reconstruct the thermal diffusivity profile of the photopolymerized resin.

  11. Analytical and numerical investigation of double diffusion in thermally anisotropy multilayer porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bennacer, R. [Neuville sur Oise, LEEVAM 5 mail Gay Lussac, Cergy-Pontoise Cedex (France); Mohamad, A.A. [CEERE University of Calgary, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta (Canada); Ganaoui, M.El [Faculte des Sciences et Techniques de Limoges, Limoges (France)

    2005-02-01

    Double-diffusive natural convection within a multilayer anisotropic porous medium is studied numerically and analytically. The domain composed of two horizontal porous layers is subjected to a uniform horizontal heat flux and a vertical mass flux, where only the lower one is thermally anisotropic. Darcy model with classical Boussinesq approximation is used in formulating the mathematical model. The effect of thermal anisotropy and the relative width of the two layers on the flow and transfers is illustrated with characterising the transitions from the diffusive to the convective solution. Results were well compared with respect to a developed analytical approach, based on a parallel flow approximation for thermally anisotropic multilayer media. (orig.)

  12. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    Science.gov (United States)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  13. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    International Nuclear Information System (INIS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants

  14. Measuring the temperature dependent thermal diffusivity of geomaterials using high-speed differential scanning calorimetry

    Science.gov (United States)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan

    2016-04-01

    Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model

  15. The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin.

    Science.gov (United States)

    Atla, Jyothi; Manne, Prakash; Gopinadh, A; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika

    2013-08-01

    This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat-polymerized acrylic resin. Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. RESULTS were analysed by using one-way analysis of variance (ANOVA). Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm(2)/sec, followed by D (9.09mm(2)/sec), C (8.49mm(2)/sec), B(8.28mm(2)/sec) and A(6.48mm(2)/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction.

  16. Measurement of Three-Dimensional Anisotropic Thermal Diffusivities for Carbon Fiber-Reinforced Plastics Using Lock-In Thermography

    Science.gov (United States)

    Ishizaki, Takuya; Nagano, Hosei

    2015-11-01

    A new measurement technique to measure the in-plane thermal diffusivity, the distribution of in-plane anisotropy, and the out-of-plane thermal diffusivity has been developed to evaluate the thermal conductivity of anisotropic materials such as carbon fiber-reinforced plastics (CFRPs). The measurements were conducted by using a laser-spot-periodic-heating method. The temperature of the sample is detected by using lock-in thermography. Thermography can analyze the phase difference between the periodic heat input and the temperature response of the sample. Two kinds of samples, unidirectional (UD) and cross-ply (CP) pitch-based CFRPs, were fabricated and tested in an atmospheric condition. All carbon fibers of the UD sample run in one direction [90°]. The carbon fibers of the CP sample run in two directions [0°/90°]. It is found that, by using lock-in thermography, it is able to visualize the thermal anisotropy and calculate the angular dependence of the in-plane thermal diffusivity of the CFRPs. The out-of-plane thermal diffusivity of CFRPs was also measured by analyzing the frequency dependence of the phase difference.

  17. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    Science.gov (United States)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  18. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  19. An extension of diffusion theory for thermal neutrons near boundaries

    International Nuclear Information System (INIS)

    Alvarez Rivas, J. L.

    1963-01-01

    The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PIGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs

  20. Thermal diffusivity of Swedish meatballs, pork meat pate and tomato puree during high pressure processing

    Science.gov (United States)

    Landfeld, Ales; Strohalm, Jan; Stancl, Jaromir; Houska, Milan

    2011-06-01

    Our study is directed at the effects of high pressure on the thermal diffusivity of selected food samples - a fresh meat formulation for Swedish meatballs, pork meat pate and tomato puree. Preheated food samples were placed in a copper cell and tested at nominal pressures of 400 and 500 MPa in a high pressure chamber. The thermal diffusivity was estimated from the recorded time course of temperatures (at the center of the food sample, at the wall of the copper cell, and 7.5 mm from the wall) during the high pressure holding time. Measured time-temperature profiles were compared with predictions using the finite-element model to solve the problem of uneven heat conduction in an infinite, solid, linear cylinder using the linear temperature dependence of apparent thermal conductivity. Optimal parameters of the linear temperature dependence of apparent thermal conductivity were evaluated by comparing measured temperatures and temperatures calculated from the model. To minimize differences between measured and calculated temperatures, at the center of the sample, the Marquardt-Levenberg optimization method was used. The thermal diffusivity values of all food samples were linearly correlated with temperature for two levels of pressure. Thermal diffusivity values increased with increased pressure and temperature. † This paper was presented at the XLVIIIth European High Pressure Research Group (EHPRG 48) Meeting at Uppsala (Sweden), 25-29 July 2010.

  1. Thermophysical Properties of Te-based II-VI Semiconductors: Reduced Algorithms for Thermal Diffusivity Determination

    Science.gov (United States)

    Banish, R. Michael; Brantschen, Segolene; Pourpoint, Timothee L.; Wessling, Francis; Sekerka, Robert F.

    2003-01-01

    This paper presents methodologies for measuring the thermal diffusivity using the difference between temperatures measured at two, essentially independent, locations. A heat pulse is applied for an arbitrary time to one region of the sample; either the inner core or the outer wall. Temperature changes are then monitored versus time. The thermal diffusivity is calculated from the temperature difference versus time. No initial conditions are used directly in the final results.

  2. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  3. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  4. Phase and thickness dependence of thermal diffusivity in a-SiCxNy and a-BCxNy

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Chen, L.C.; Chien, S.C.; Lin, S.T.; Wu, C.T.; Chen, K.H.

    2002-01-01

    Thermal diffusivity (α) and bonding configuration of amorphous silicon carbon nitride (a-SiC x N y ) and boron carbon nitride (a-BC x N y ) films on silicon substrates were studied. Measurement of α by the traveling wave technique and bonding characterisation through X-ray photoelectron spectroscopy in a-SiC x N y and a-BC x N y films having different carbon concentrations revealed that lower coordinated bonds were detrimental to the thermal diffusivity of these films. Furthermore, α was found to depend on the thickness of these films deposited on silicon. This was attributed to the interface thermal resistance between two thermally different materials, the film and the substrate, although other factors such as film microstructure could also play a role. An empirical relation for the variation of thermal diffusivity with thickness is proposed

  5. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method

    Science.gov (United States)

    Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...

  6. Emanation-thermal characteristics of Ba-salts of some aromatic acids in the temperature range between 298 and 373 K

    Energy Technology Data Exchange (ETDEWEB)

    Balek, V; Prachar, M [Ustav Jaderneho Vyzkumu, Rez (Czechoslovakia); Kroupa, J [Vyzkumny Ustav Syntetickych Pryskyric a Laku, Pardubice (Czechoslovakia)

    1977-01-01

    The paper presents the emanation-thermal characteristics of Ba salts of some monocarboxylic acids (phtalic, isophtalic and terephtalic) and dicarboxylic acids (benzoic, salicylic, 1,4-aminobenzoic, 1,2-Cl-benzoic and 1,2-I-benzoic). It is shown that the emanation thermal characteristics measured in the temperature range between 298 and 373 K are suitable for estimating diffusion properties of studied organic solids. An apparatus for determining emanation-thermal characteristics is proposed.

  7. Energetics of silicate melts from thermal diffusion studies. Final report

    International Nuclear Information System (INIS)

    Walker, D.

    1997-01-01

    Initially this project was directed towards exploiting Soret diffusion of silicate liquids to learn about the internal energetics of the constituents of the liquids. During the course of this project this goal was realized at the same time a series of intellectual and technical developments expanded the scope of the undertaking. Briefly recapping some of the highlights, the project was initiated after the discovery that silicate liquids were strongly Soret-active. It was possible to observe the development of strong diffusive gradients in silicate liquid composition in response to laboratory-imposed thermal gradients. The character of the chemical separations was a direct window into the internal speciation of the liquids; the rise time of the separation was a useful entree to quantitatively measuring chemical diffusivity; and the steady state magnitude of the separation proved to be an excellent determinant of the constituents' mixing energies. A comprehensive program was initiated to measure the separations, rise times, and mixing energies of a range of geologically and technically interesting silicate liquids. An additional track of activities in the DOE project has run in parallel to the Soret investigation of single-phase liquids in a thermal gradient. This additional track is the study of liquid-plus-crystal systems in a thermal gradient. In these studies solubility-driven diffusion introduced many useful effects, some quite surprising. In partially molten silicate liquids the authors applied their experiments to understanding magmatic cumulate rocks. They have also applied their understanding of these systems to aspects of evaporite deposits in the geological record. They also undertook studies of this sort in systems with retrograde solubility in order to form the basis for understanding remediation for brine migration problems in evaporite-hosted nuclear waste repositories such as the WIPP

  8. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.; Attenberger, S.E.

    1988-01-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor plasma (Tokamak Ignition/Burn Experimental Reactor) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-dimensional transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alpha concentration significantly influence the ignition and steady-state burn capability

  9. Thermally-enhanced oil recovery method and apparatus

    Science.gov (United States)

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  10. Laser scattering in a hanging drop vapor diffusion apparatus for protein crystal growth in a microgravity environment

    Science.gov (United States)

    Casay, G. A.; Wilson, W. W.

    1992-01-01

    One type of hardware used to grow protein crystals in the microgravity environment aboard the U.S. Space Shuttle is a hanging drop vapor diffusion apparatus (HDVDA). In order to optimize crystal growth conditions, dynamic control of the HDVDA is desirable. A critical component in the dynamically controlled system is a detector for protein nucleation. We have constructed a laser scattering detector for the HDVDA capable of detecting the nucleation stage. The detector was successfully tested for several scatterers differing in size using dynamic light scattering techniques. In addition, the ability to detect protein nucleation using the HDVDA was demonstrated for lysozyme.

  11. Effects on nuclear fusion reaction on diffusion and thermal conduction in a magnetoplasma

    International Nuclear Information System (INIS)

    Sakai, Kazuo; Aono, Osamu.

    1976-12-01

    In spite of the well spread belief in the field of irreversible thermodynamics, vectorial phenomena couple thermodynamically with the scalar phenomena. Transport coefficients concerning the diffusion and the thermal conduction across a strong magnetic field are calculated in the presence of the deuteron-triton fusion reaction on the basis of the gas kinetic theory. When the reaction takes place, the diffusion increases and the thermal conduction decreases. Effects of the reaction exceed those of the Coulomb collision as the temperature is high enough. (auth.)

  12. Transport and calorimetric properties of AISI 321 by pulse thermal diffusivity and calorimetric techniques

    International Nuclear Information System (INIS)

    Perovic, N.L.; Maglic, K.D.; Stanimirovic, A.M.; Vukovic, G.S.

    1995-01-01

    The study of the thermophysical properties of AISI 321 stainless steel was the last part of work within the IAEA-coordinated Research Programme for the Establishment of a Database of Thermophysical Properties of LW and HW Reactor Materials (IAEA CRP) effected at the Institute of Nuclear Sciences Vinca (NIV). The AISI 321 stainless steel belongs to the group of construction materials whose thermophysical and calorimetric properties have significance for the IAEA CRP. Because there have been few investigations of the thermal properties of this material, the CRP foresaw the need for new measurements, which are reported in this paper. Experimental research performed at NIV consisted of the investigation of thermal diffusivity, electric resistivity, and specific heat capacity of this austenitic stainless steel. The thermal diffusivity was measured by the laser pulse technique, and the elastic resistivity and specific heat capacity were determined by use of millisecond-resolution pulse calorimetry. All measurements were performed from ambient temperature to above 1000 o C, within which temperature range the material maintains its structure and stable thermophysical properties. Values for the thermal conductivity were computed from data on the thermal diffusivity, specific heat capacity, and the room-temperature density. (author)

  13. Laboratory Characterization of Chemico-osmotic, Hydraulic and Diffusion Properties of Rocks: Apparatus Development

    International Nuclear Information System (INIS)

    Takeda, M.; Hiratsuka, T.; Ito, K.

    2009-01-01

    Excess fluid pressures induced by chemical osmosis in natural formations may have a significant influence on groundwater systems in a geological time scale. Examinations of the possibility and duration times require characterization of the chemico-osmotic, hydraulic and diffusion properties of representative formation media under field conditions. To develop a laboratory apparatus for chemical osmosis experiments that simulates in-situ conditions, typical litho-static and background pore pressures, a fundamental concept of the chemical osmosis experiment using a closed fluid circuit system (referred to as a closed system hereafter) was revisited. Coupled processes in the experiment were examined numerically. In preliminary experiments at atmospheric pressure a chemical osmosis experiment using the closed system was demonstrated. An approximation method for determining the chemico-osmotic property was attempted. Based on preliminary examinations, an experimental system capable of loading the confining and pore pressures on the sample was thus developed. (authors)

  14. LDPE and PP thermal diffusivity in molten state

    OpenAIRE

    Yánez, G.; Rodríguez - Pérez, M. A; Almanza, O. A.

    2013-01-01

    Experimental results are reported for measuring the thermal diffusivity of two polymer species: low density polyethylene (LDPE) and polypropylene (PP). Measurements were taken in unsteady state heat flow conditions around the materials' melting temperature, using a device specially constructed for this purpose. The experimental results for the sample's temperature profile (temperature gradient product) were adjusted with the theoretical results obtained by solving the heat conduction equation...

  15. A technique to measure the thermal diffusivity of high-Tc superconductors

    International Nuclear Information System (INIS)

    Powers, C.E.

    1991-01-01

    High T(sub c) superconducting electrical current leads and ground straps will be used in cryogenic coolers in future NASA Goddard Space Flight Center missions. These superconducting samples are long, thin leads with a typical diameter of two millimeters. A longitudinal method is developed to measure the thermal diffusivity of candidate materials for this application. This technique uses a peltier junction to supply an oscillatory heat wave into one end of a sample and will use low mass thermocouples to follow the heat wave along the sample. The thermal diffusivity is calculated using both the exponential decay of the heat wave and the phase shift to the wave. Measurements are performed in a cryostat between 10 K and room temperature

  16. Effective thermal conductivity and diffusivity of containment wall for nuclear power plant OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun; Park, Hyun Sun [Div. of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Mechanical Engineering Div., Kunsan National University (KNU), Gunsan (Korea, Republic of)

    2017-04-15

    The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  17. FORTRAN program for calculating liquid-phase and gas-phase thermal diffusion column coefficients

    International Nuclear Information System (INIS)

    Rutherford, W.M.

    1980-01-01

    A computer program (COLCO) was developed for calculating thermal diffusion column coefficients from theory. The program, which is written in FORTRAN IV, can be used for both liquid-phase and gas-phase thermal diffusion columns. Column coefficients for the gas phase can be based on gas properties calculated from kinetic theory using tables of omega integrals or on tables of compiled physical properties as functions of temperature. Column coefficients for the liquid phase can be based on compiled physical property tables. Program listings, test data, sample output, and users manual are supplied for appendices

  18. The measuring technique developed to evaluate the thermal diffusivity of the multi-layered thin film specimens

    Directory of Open Access Journals (Sweden)

    Li Tse-Chang

    2017-01-01

    Full Text Available In the present study, the thermal diffusivities of the Al, Si and ITO films deposited on the SUS304 steel substrate are evaluated via the present technique. Before applying this technique, the temperature for the thin film of the multi-layered specimen is developed theoretically for the one- dimensional steady heat conduction in response to amplitude and frequency of the periodically oscillating temperature imposed by a peltier placed beneath the specimen's substrate. By the thermal-electrical data processing system excluding the lock-in amplifier, the temperature frequency a3 has been proved first to be independent of the electrical voltage applied to the peltier and the contact position of the thermocouples. The experimental data of phase difference for three kinds of specimen are regressed well by a straight line with a slope. Then, the thermal diffusivity of the thin film is thus determined if the slope value and the film- thickness are available. In the present arrangements for the thermocouples, two thermal diffusivity values are quite close each other and valid for every kind of specimen. This technique can provide an efficient, low-cost method for the thermal diffusivity measurements of thin films.

  19. Measurement of the diffusion length of thermal neutrons in the beryllium oxide

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Martelly, J.; Duggal, V.P.

    1955-01-01

    The diffusion length of thermal neutrons in the beryllium oxide has been obtained while studying the spatial distribution of the neutrons in a massive parallelepiped of this matter placed before the thermal column of the reactor core of Saclay. The mean density of the beryllium oxide (BeO) is 2,95 gr/cm 3 , the mean density of the massif is 2,92 gr/cm 3 . The value of the diffusion length, deducted of the done measures, is: L = 32,7 ± 0,5 cm (likely gap). Some remarks are formulated about the influence of the spectral distribution of the neutrons flux used. (authors) [fr

  20. Development and application of PIE apparatuses for high-burnup LWR fuels

    International Nuclear Information System (INIS)

    Harada, Katsuya; Mita, Naoaki; Nishino, Yasuharu; Amano, Hidetoshi

    1999-01-01

    The Reactor Fuel Examination Facility (RFEF) is developing the following post irradiation examination apparatuses: Ion Microprobe mass analyzer (IMA), Pellet Thermal Capacity measuring apparatus (PTC), Micro Density Measuring apparatus MDM, Shield-type Field Emission Scanning Electron Microscope (FE-SEM). The present paper mainly describes several technical topics of these apparatuses. (author)

  1. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    Science.gov (United States)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the

  2. An accurate method for the determination of unlike potential parameters from thermal diffusion data

    International Nuclear Information System (INIS)

    El-Geubeily, S.

    1997-01-01

    A new method is introduced by means of which the unlike intermolecular potential parameters can be determined from the experimental measurements of the thermal diffusion factor as a function of temperature. The method proved to be easy, accurate, and applicable two-, three-, and four-parameter potential functions whose collision integrals are available. The potential parameters computed by this method are found to provide a faith full representation of the thermal diffusion data under consideration. 3 figs., 4 tabs

  3. Neutron logging reliability techniques and apparatus

    International Nuclear Information System (INIS)

    Johnstone, C.W.

    1975-01-01

    Apparatus and methods for verifying the validity of data derived at least in part by neutron logging of earth formations, and, where indicated, for affording neutron diffusion-corrected values of such data, are disclosed. (WHK)

  4. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    International Nuclear Information System (INIS)

    Savic, S.M.; Aleksic, O.S.; Nikolic, M.V.; Lukovic, D.T.; Pejovic, V.Z.; Nikolic, P.M.

    2006-01-01

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe 2 O 3 were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed

  5. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Aleksic, O.S. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Lukovic, D.T. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Pejovic, V.Z. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, P.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu

    2006-07-15

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe{sub 2}O{sub 3} were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed.

  6. Plasma nitriding process by direct current glow discharge at low temperature increasing the thermal diffusivity of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Prandel, L. V.; Somer, A.; Assmann, A.; Camelotti, F.; Costa, G.; Bonardi, C.; Jurelo, A. R.; Rodrigues, J. B.; Cruz, G. K. [Universidade Estadual de Ponta Grossa, Grupo de Espectroscopia Optica e Fotoacustica de Materiais, Departamento de Fisica, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, PR (Brazil)

    2013-02-14

    This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 {+-} 0.3) Multiplication-Sign 10{sup -6} m{sup 2}/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 {+-} 0.5) Multiplication-Sign 10{sup -6} m{sup 2}/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 Degree-Sign C, the thermal diffusivity increases up to (12.0 {+-} 2) Multiplication-Sign 10{sup -6} m{sup 2}/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.

  7. Fusion product measurements of the local ion thermal diffusivity in the PLT tokamak

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Lovberg, J.; Strachan, J.D.; Bell, R.E.

    1986-03-01

    Measurement of the gradient of the d-d fusion rate profile in an ohmic PLT plasma is used to deduce the gradient of the ion temperature and, thus, the local ion thermal diffusivity through an energy balance analysis. The inferred ion diffusivity is consistent with neoclassical theory

  8. Measurement of the diffusion length of thermal neutrons inside graphite

    International Nuclear Information System (INIS)

    Ertaud, A.; Beauge, R.; Fauquez, H.; De Laboulay, H.; Mercier, C.; Vautrey, L.

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra α → Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm ± 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  9. Stable isotope enrichment by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2003-01-01

    Thermal diffusion (TD) in both gaseous and liquid phase has been the subject of extensive experimental and theoretical investigations, especially after the invention by K. Clusius and G. Dickel of the thermal diffusion column, sixty years ago. This paper gives a brief overview of the most important applications and developments of this transport phenomenon for enrichment of 13 C and of some noble gases isotopes in our institute. The results of calculations of the transport coefficients H and K for a concentric tube type TD column, operated with methane as process gas, are presented. Static separation factor at equilibrium vs gas pressure has been calculated for various molecular models. The experimental separation factors for different gas pressure were found to be consistent with those calculated for the inverse power repulsion model and the Lennard-Jones model. The most important characteristics of a seven-stage cascade consisting of 19 TD columns of concentric tube type are given. This system has been constructed and successfully operated at a temperature of 673 K and produces an enrichment of methane of natural isotopic 13 C abundance, up to the concentration of 25% 13 CH 4 . Enrichment of the noble gases isotopes implies: - a . Enrichment of 20 Ne and 22 Ne in a eight-stage cascade consisting of 8 TD columns; - b. enrichment of 46 Ar in a seven-stage cascade consisting of TD columns and finally; - c. enrichment of 78 Kr and 86 Kr in a fifteen-stage cascade, consisting of 35 TD columns. For all these installations we have adopted TD columns of hot wire type (4 m in length), operated at a temperature of 1073 K. (author)

  10. Temperature mapping, thermal diffusivity and subsoil heat flux at ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    vide an understanding of the gain or loss of heat by the soil from the atmosphere. Many studies made earlier have been related to sim- ilar issues such as prediction of soil tempera- tures; heat storage variations; thermal diffusivity of the soil, etc. (Kelkar et al 1980; Chowdhury et al 1991; Lamba and Khambete 1991; Retnaku ...

  11. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    Science.gov (United States)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  12. Determination of thermal diffusivity of dental enamel and dentin as a function of temperature, using infrared thermography

    International Nuclear Information System (INIS)

    Pereira, Thiago Martini

    2009-01-01

    In this work it was developed a software that calculates automatically, the thermal diffusivity value as a function of temperature in materials. The infrared thermography technique was used for data acquisition of temperature distribution as a function of time. These data were used to adjust a temperature function obtained from the homogeneous heat equation with specific boundary conditions. For that, an infrared camera (detecting from 8 μm to 9 μm) was calibrated to detect temperature ranging from 185 degree C up to 1300 degree C at an acquisition rate of 300 Hz. It was used, 10 samples of dental enamel and 10 samples of dentin, with 4 mm x 4 mm x 2 mm, which were obtained from bovine lower incisor teeth. These samples were irradiated with an Er:Cr:YSGG pulsed laser (λ = 2,78 μm). The resulting temperature was recorded 2 s prior, 10 s during irradiation and continuing for 2 more seconds after it. After each irradiation, all obtained thermal images were processed in the software, creating a file with the data of thermal diffusivity as a function of temperature. Another file with the thermal diffusivity values was also calculated after each laser pulse. The mean result of thermal diffusivity obtained for dental enamel was 0,0084 ± 0,001 cm2/s for the temperature interval of 220-550 degree C. The mean value for thermal diffusivity obtained for dentin was 0,0015 0,0004 cm2/s in temperatures up to 360 degree C; however, this value increases for higher temperatures. According to these results, it was possible to conclude that the use of infrared thermography, associated with the software developed in this work, is an efficient method to determine the thermal diffusivity values as a function of temperature in different materials. (author)

  13. Physical mechanisms of thermal-diffusivity depth-profile generation in a hardened low-alloy Mn, Si, Cr, Mo steel reconstructed by photothermal radiometry

    International Nuclear Information System (INIS)

    Nicolaides, Lena; Mandelis, Andreas; Beingessner, Clare J.

    2001-01-01

    It is well established that in hardened steels thermal-diffusivity broadly anticorrelates with microhardness, allowing thermal-wave depth profilometry to be used as a tool to measure microhardness profiles. Nevertheless, the physical mechanisms for this anticorrelation have not been well understood. In this work, the thermal-diffusivity profiles of rough, hardened industrial steels were reconstructed after the elimination of roughness effects from the experimental data. Carburizing and quenching are widely used for the heat treatment of steel components, and it is important to understand their effects on thermal-diffusivity profiles. A thorough examination of the actual mechanism by which thermal-diffusivity depth profiles are affected by first carburizing and then quenching AISI-8620 steels was performed. It was concluded that the variation of thermal diffusivity with depth is dominated by the carbon concentration profile, whereas the absolute value of the thermal diffusivity is a function of microstructure. [copyright] 2001 American Institute of Physics

  14. An optimised instrument to measure thermal diffusivities of gases with opto-acoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soldner, J.; Stephan, K. [Institute of Technical Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70550, Stuttgart (Germany)

    2004-11-01

    The paper describes the theory and application of opto-acoustics to determine thermal diffusivities of gases. An experimental device, already described in previous papers of the authors [Internat. J. Thermophys. 19 (1998) 1099; Proc. 2. European Thermal Science and 14. UIT National Heat Transfer Conf., 1996, pp. 1071-1078] permitted the detection of thermal diffusivities of gases at moderate pressures with an experimental uncertainty of about {+-}1.25%.Based on the experience gained with this device, a comprehensive error analysis is presented in this paper. It shows how the experimental uncertainties can be considerably reduced to about -0.45 to +0.35%. The parameters for optical cell design are dealt with, as well as the appropriate characteristics, such as frequencies of the modulated laser beam, and the microphone used in the experiment. (authors)

  15. Determination of thermal neutrons diffusion length in graphite

    International Nuclear Information System (INIS)

    Garcia Fite, J.

    1959-01-01

    The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs

  16. On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.

  17. Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

    Directory of Open Access Journals (Sweden)

    Hyung Gyun Noh

    2017-04-01

    Full Text Available The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  18. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  19. A simple theoretical extension to the analysis of photothermal deflection signal for low thermal diffusivity evaluation

    International Nuclear Information System (INIS)

    Ravi, Jyotsna; Lekshmi, S.; Nair, K.P.R.; Rasheed, T.M.A

    2004-01-01

    A modified amplitude method to analyze the photothermal probe beam deflection signal for the determination of low thermal diffusivity values of materials is proposed. This simple theoretical model, which is an extension of the amplitude method proposed by Quelin et al., takes into account the dependence of the photothermal signal on the height of the probe beam above the sample surface which affects mirage measurements when the thermal diffusivity of the coupling medium is greater than that of the sample. The present work is similar to the modification to the phase method proposed by Bertolotti et al. for determination of low thermal diffusivity. The method can be applied irrespective of whether the sample is optically transparent or optically opaque and is independent of thickness

  20. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    Science.gov (United States)

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  1. Preparation by thermal evaporation under vacuum of thin nickel films without support

    International Nuclear Information System (INIS)

    Prugne, P.; Garin, P.; Lechauguette, G.

    1959-01-01

    This note deals with the preparation of nickel films without support by means of the technique described but using a new evaporation apparatus. In effect it was necessary, in order to obtain these nickel films, to modify the thermal evaporation conditions. An attempt to obtain a film without support after evaporation in a conventional apparatus led almost invariably to defeat. This appeared to be due to the high concentration of oxygen and of various vapors (diffusion pumps, degassing, etc.) present in the residual atmosphere of the conventional evaporation system. Reprint of a paper published in 'Le Vide, N. 74, March-April 1958, p. 82-83

  2. Simultaneous measurement of thermal conductivity, thermal diffusivity and prediction of effective thermal conductivity of porous consolidated igneous rocks at room temperature

    International Nuclear Information System (INIS)

    Aurangzeb; Ali, Zulqurnain; Gurmani, Samia Faiz; Maqsood, Asghari

    2006-01-01

    Thermal conductivity, thermal diffusivity and heat capacity per unit volume of porous consolidated igneous rocks have been measured, simultaneously by Gustafsson's probe at room temperature and normal pressure using air as saturant. Data are presented for eleven samples of dunite, ranging in porosity from 0.130 to 0.665% by volume, taken from Chillas near Gilgit, Pakistan. The porosity and density parameters have been measured using American Society of Testing and Materials (ASTM) standards at ambient conditions. The mineral composition of samples has been analysed from their thin sections (petrography). An empirical model to predict the thermal conductivity of porous consolidated igneous rocks is also proposed. The thermal conductivities are predicted by some of the existing models along with the proposed one. It is observed that the values of effective thermal conductivity predicted by the proposed model are in agreement with the experimental thermal conductivity data within 6%

  3. The use of diffusion theory to compute invasion effects for the pulsed neutron thermal decay time log

    International Nuclear Information System (INIS)

    Tittle, C.W.

    1992-01-01

    Diffusion theory has been successfully used to model the effect of fluid invasion into the formation for neutron porosity logs and for the gamma-gamma density log. The purpose of this paper is to present results of computations using a five-group time-dependent diffusion code on invasion effects for the pulsed neutron thermal decay time log. Previous invasion studies by the author involved the use of a three-dimensional three-group steady-state diffusion theory to model the dual-detector thermal neutron porosity log and the gamma-gamma density log. The five-group time-dependent code MGNDE (Multi-Group Neutron Diffusion Equation) used in this work was written by Ferguson. It has been successfully used to compute the intrinsic formation life-time correction for pulsed neutron thermal decay time logs. This application involves the effect of fluid invasion into the formation

  4. Power dependence of ion thermal diffusivity at the internal transport barrier in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshiteru; Suzuki, Takahiro; Ide, Shunsuke [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2002-09-01

    The formation properties of an internal transport barrier (ITB) were investigated in a weak positive magnetic shear plasma by changing the neutral beam heating power. The ion thermal diffusivity in the core region shows L-mode state, weak ITB, and strong ITB, depending upon the heating power. Two features of ITB formation were experimentally confirmed. Weak ITB was formed in spite of the absence of an apparent transition in an ion temperature profile. On the other hand, strong ITB appeared after an apparent transition from the weak ITB. In addition, the ion thermal diffusivity at the ITB is correlated to the radial electric field shear. In the case of the weak ITB, ion thermal diffusivity decreased gradually with increases in the radial electric field shear. There exists a threshold in the radial electric field shear, which allows for a change in state from that of weak to strong ITBs. (author)

  5. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER relevant conditions

    International Nuclear Information System (INIS)

    Youchison, D.L.; Guiniiatouline, R.; Watson, R.D.

    1994-01-01

    Thermal response and thermal fatigue tests of four 5 mm thick beryllium tiles on a Russian divertor mock-up were completed on the Electron Beam Test System at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an OFHC copper saddleblock and a DSCu (MAGT) tube containing a porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m 2 and surface temperatures near 300 degrees C using 1.4 MPa water at 5.0 m/s flow velocity and an inlet temperature of 8-15 degrees C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m 2 and surface temperatures up to 690 degrees C before debonding at 10 MW/m 2 . A third tile debonded after 9200 thermal fatigue cycles at 5 MW/m 2 , while another debonded after 6800 cycles. In all cases, fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. During thermal cycling, a gradual loss of porous coating produced increasing sample temperatures. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER relevant conditions without failure. However, the reliability of the diffusion bonded Joint remains a serious issue

  6. Determination of thermal-diffusive properties of lyophilized food products

    International Nuclear Information System (INIS)

    Kaplon, J.; Kramkowski, R.; Berdzik, M.

    1998-01-01

    Experimental results of vacuum freeze drying were presented. Water solutions of skim milk were dried under various pressures and distribution of temperature and moisture as a function of drying time were determined. Unilateral radiant heating of the material was applied. On the basis of experiment results and URIF model of vacuum freeze drying the thermal conductivity and vapour diffusion coefficients in dry layer were determined

  7. Lattice dynamics and thermal diffuse scattering for molecular crystals

    International Nuclear Information System (INIS)

    Kroon, P.A.

    1977-01-01

    Thermal diffuse scattering (TDS) corrections on the observed reflection intensities in the accurate determination of crystal structures by X-ray diffraction are emphasized. A lattice-dynamical model and procedure for lattice-dynamical calculations are set up. Expression for first- and second-order TDS intensity distributions are derived. A comparison with other models is made. First-order TDS corrections for naphtalene at 100 K are presented

  8. Consistency in thermophysical properties: enthalpy, heat capacity, thermal conductivity and thermal diffusivity of solid UO2

    International Nuclear Information System (INIS)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    Equations have been derived for the enthalpy, heat capacity, thermal conductivity, and thermal diffusivity of UO 2 . In selection of these equations, we considered the traditional criterion of lowest relative standard deviation between experimental data and the function chosen to fit these data as well as consistency between the thermophysical properties. In the latter case, we considered consistency in (1) thermodynamic relations among properties, (2) the choice of physical phenomena on which to base the theoretical formulation of the equations, and (3) the existence and temperature of phase transitions

  9. An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

    Directory of Open Access Journals (Sweden)

    Dong Huilong

    2016-03-01

    Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

  10. Determination of thermal diffusivity at low temperature using the two-beam phase-lag photoacoustic method with observation of phase-transitions

    International Nuclear Information System (INIS)

    Jorge, M.P.P.

    1992-01-01

    This study consists of the determination of thermal diffusivity int he temperature range from 77 K to 300 K by the two-beam phase-lag photoacoustic method. Room temperature measurements of NTD (neutron transmutation doping) silicon suggest that the doping process does not affect its thermal properties. For the superconductor Y Ba 2 Cu 3 O 7 - x it has been verified that the sample density affects its thermal diffusivity. The validity of the experimental method on the Li K SO 4 crystal has been examined by using the thermal diffusivity of a Li F crystal and an Y 2 O 3 ceramic, at room temperature. The behavior of the thermal diffusivity as a function of the temperature for the Li K SO 4 crystal shows two anomalies which correspond at phase-transitions of this crystal in the studied temperature range. (author)

  11. Remote assessment of permeability/thermal diffusivity of consolidated clay sediments

    International Nuclear Information System (INIS)

    Lovell, M.A.; Ogden, P.

    1984-02-01

    The aim of this project was to examine the feasibility of predicting marine sediment permeability and thermal diffusivity by remote geophysical observations. For this purpose a modified consolidation cell was developed and constructed and tests on deep sea sediment samples carried out. Results and conclusions of a nineteen month programme are presented. (U.K.)

  12. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  13. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  14. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    International Nuclear Information System (INIS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-01-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes

  15. Thermal diffuse scattering in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D.; D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics, Monash University, Victoria 3800 (Australia); Van Dyck, D. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); LeBeau, J.M. [North Carolina State University, Raleigh, NC 27695-7907 (United States); Stemmer, S. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2011-12-15

    In conventional transmission electron microscopy, thermal scattering significantly affects the image contrast. It has been suggested that not accounting for this correctly is the main cause of the Stobbs factor, the ubiquitous, large contrast mismatch found between theory and experiment. In the case where a hard aperture is applied, we show that previous conclusions drawn from work using bright field scanning transmission electron microscopy and invoking the principle of reciprocity are reliable in the presence of thermal scattering. In the aperture-free case it has been suggested that even the most sophisticated mathematical models for thermal diffuse scattering lack in their numerical implementation, specifically that there may be issues in sampling, including that of the contrast transfer function of the objective lens. We show that these concerns can be satisfactorily overcome with modest computing resources; thermal scattering can be modelled accurately enough for the purpose of making quantitative comparison between simulation and experiment. Spatial incoherence of the source is also investigated. Neglect or inadequate handling of thermal scattering in simulation can have an appreciable effect on the predicted contrast and can be a significant contribution to the Stobbs factor problem. -- Highlights: Black-Right-Pointing-Pointer We determine the numerical requirements for accurate simulation of TDS in CTEM. Black-Right-Pointing-Pointer TDS can be simulated to high precision using the Born-Oppenheimer model. Black-Right-Pointing-Pointer Such calculations establish the contribution of TDS to the Stobbs factor problem. Black-Right-Pointing-Pointer Treating spatial incoherence using envelope functions increases image contrast. Black-Right-Pointing-Pointer Rigorous treatment of spatial incoherence significantly reduces image contrast.

  16. Formation of protocell-like vesicles in a thermal diffusion column.

    Science.gov (United States)

    Budin, Itay; Bruckner, Raphael J; Szostak, Jack W

    2009-07-22

    Many of the properties of bilayer membranes composed of simple single-chain amphiphiles seem to be well-suited for a potential role as primitive cell membranes. However, the spontaneous formation of membranes from such amphiphiles is a concentration-dependent process in which a significant critical aggregate concentration (cac) must be reached. Since most scenarios for the prebiotic synthesis of fatty acids and related amphiphiles would result in dilute solutions well below the cac, the identification of mechanisms that would lead to increased local amphiphile concentrations is an important aspect of defining reasonable conditions for the origin of cellular life. Narrow, vertically oriented channels within the mineral precipitates of hydrothermal vent towers have previously been proposed to act as natural Clusius-Dickel thermal diffusion columns, in which a strong transverse thermal gradient concentrates dilute molecules through the coupling of thermophoresis and convection. Here we experimentally demonstrate that a microcapillary acting as a thermal diffusion column can concentrate a solution of oleic acid. Upon concentration, self-assembly of large vesicles occurs in regions where the cac is exceeded. We detected vesicle formation by fluorescence microscopy of encapsulated dye cargoes, which simultaneously concentrated in our channels. Our findings suggest a novel means by which simple physical processes could have led to the spontaneous formation of cell-like structures from a dilute prebiotic reservoir.

  17. A study on the ocean circulation and thermal diffusion near a nuclear power plant

    International Nuclear Information System (INIS)

    Shu, Kyung Suk; Han, Moon Hee; Kim, Eun Han; Hwang, Won Tae

    1994-08-01

    The thermal discharge used with cooling water at nuclear power plant is released to a neighbour sea and it is influenced on marine environment. The thermal discharge released from power plant is mainly transported and diffused by ocean circulation of neighbour sea. So the evaluation for characteristics of ocean circulation around neighbour sea is firstly performed. The purpose of this research is primarily analyzed the thermal diffusion in sea around Yongkwang nuclear power plant. For this viewpoint, fundamental oceanographic data sets are collected and analyzed in Yellow sea, west sea of Korea, sea around Yongkwang. The ocean circulation and the effects of temperature increase by thermal discharge are evaluated using these data. The characteristics of tide is interpreted by the analysis of observed tidal elevation and tidal currents. The characteristics of temperature and salinity is investigated by the long-term observation of Korea Fisheries Research and Development Agency and the short-term observation around Yongkwang. (Author)

  18. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    Science.gov (United States)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  19. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  20. A diffusive thermal phase shifter; Dephaseur thermique diffusif

    Energy Technology Data Exchange (ETDEWEB)

    Lachal, B; Hollmuller, P; Zgraggen, J -M [Universite de Geneve, Centre universitaire d' etude des problemes de l' energie(CUEPE), Geneva (Switzerland)

    2004-07-01

    The investigations carried out in this project show that dephasing a thermal oscillation carried by an air flow by utilizing the heat exchange with a diffusive heat store made of thin layers, is possible without any significant damping of the oscillation. The practical application of this phenomenon, with a time shift of 8 to 12 hours, looks particularly attractive for space cooling of buildings during summertime or in hot climates. The possibilities of dephasing completely a thermal wave (i.e. by a half period) carried by a stream of air have been investigated both theoretically by model calculations and experimentally by building two prototypes. Promising results have been obtained for the case of a daily phase shift. In the case of a summer-winter shift the required volumes and lengths seem too large to enable such a storage system becoming cost effective.

  1. Thermal neutron diffusion parameters dependent on the flux energy distribution in finite hydrogenous media

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1999-01-01

    Macroscopic parameters for a description of the thermal neutron transport in finite volumes are considered. A very good correspondence between the theoretical and experimental parameters of hydrogenous media is attained. Thermal neutrons in the medium possess an energy distribution, which is dependent on the size (characterized by the geometric buckling) and on the neutron transport properties of the medium. In a hydrogenous material the thermal neutron transport is dominated by the scattering cross section which is strongly dependent on energy. A monoenergetic treatment of the thermal neutron group (admissible for other materials) leads in this case to a discrepancy between theoretical and experimental results. In the present paper the theoretical definitions of the pulsed thermal neutron parameters (the absorption rate, the diffusion coefficient, and the diffusion cooling coefficient) are based on Nelkin's analysis of the decay of a neutron pulse. Problems of the experimental determination of these parameters for a hydrogenous medium are discussed. A theoretical calculation of the pulsed parameters requires knowledge of the scattering kernel. For thermal neutrons it is individual for each hydrogenous material because neutron scattering on hydrogen nuclei bound in a molecule is affected by the molecular dynamics (characterized with internal energy modes which are comparable to the incident neutron energy). Granada's synthetic model for slow-neutron scattering is used. The complete up-dated formalism of calculation of the energy transfer scattering kernel after this model is presented in the paper. An influence of some minor variants within the model on the calculated differential and integral neutron parameters is shown. The theoretical energy-dependent scattering cross section (of Plexiglas) is compared to experimental results. A particular attention is paid to the calculation of the diffusion cooling coefficient. A solution of an equation, which determines the

  2. Enhanced coercivity thermal stability realized in Nd–Fe–B thin films diffusion-processed by Nd–Co alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Hui; Fu, Yanqing [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Li, Guojian; Liu, Tie [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Cui, Weibin, E-mail: cuiweibin@epm.neu.edu.cn [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Liu, Wei; Zhang, Zhidong [Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang 110016 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    A proposed Nd{sub 2}Fe{sub 14}B-core/Nd{sub 2}(Fe, Co){sub 14}B-shell microstructure was realized by diffusion-processing textured Nd{sub 14}Fe{sub 77}B{sub 9} single-layer film with Nd{sub 100−x}Co{sub x} (x=10, 20 and 40) alloys to improve the coercivity thermal stability. The ambient coercivity was increased from around 1 T in single-layer film to nearly 2 T in diffusion-processed films, which was due to the Nd-rich grain boundaries as seen from transmission electron microscopy (TEM) images. The coercivity thermal stability was improved by the core/shell microstructure because Nd-rich grain boundaries provided the high ambient coercivity and Co-rich shell provided the improved coercivity stability. - Highlights: • Core–shell microstructure proposed for enhancing the coercivity thermal stability. • Coercivity enhanced to nearly 2 T by diffusion-processing with Nd–Co alloy. • Good squareness and highly textured microstructure obtained. • Nd-rich phases observed by TEM after diffusion process. • Coercivity thermal stability improved with minor Co addition in grain boundary regions.

  3. Simultaneous measurement of thermal diffusivity and effusivity of solids using the flash technique in the front-face configuration

    International Nuclear Information System (INIS)

    Pech-May, Nelson Wilbur; Cifuentes, Ángel; Mendioroz, Arantza; Oleaga, Alberto; Salazar, Agustín

    2015-01-01

    Both thermal diffusivity and effusivity (or conductivity) are necessary to characterize the thermal transport properties of a material. The flash method is the most recognized procedure to measure the thermal diffusivity of free-standing opaque plates. However, it fails to simultaneously obtain the thermal effusivity (or conductivity). This is due to the difficulty of knowing the total energy absorbed by the sample surface after the light pulse. In this work, we propose using the flash method in the front-face configuration on a two-layer system made of the unknown plate and a fluid of known thermal properties. We demonstrate that the surface temperature is sensitive to the thermal mismatch between the plate and the fluid, which is governed by their thermal effusivity ratio. In order to verify the validity of the method and to establish its application limits we have performed flash measurements, using a pulsed laser and an infrared camera, on a set of calibrated materials (metals, alloys, ceramics and polymers) covering a wide range of thermal transport properties. These results confirm the ability of the flash method to simultaneously retrieve thermal diffusivity and effusivity in a fast manner in samples whose effusivities are lower than three times the effusivity of the liquid used as backing fluid. (paper)

  4. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.

    2011-12-26

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  5. Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-darcy porous media

    KAUST Repository

    Murthy, P.V.S.N.; El-Amin, Mohamed

    2011-01-01

    Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.

  6. Fossil rocks of slow earthquake detected by thermal diffusion length

    Science.gov (United States)

    Hashimoto, Yoshitaka; Morita, Kiyohiko; Okubo, Makoto; Hamada, Yohei; Lin, Weiren; Hirose, Takehiro; Kitamura, Manami

    2016-04-01

    Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area per second (Q (J/m^2/s), the product of friction coefficient, normal stress and slip velocity) and slip duration (t(s)) to fit the diffusion pattern. Thermal diffusivity (0.98*10^8m^2/s) and thermal conductivity (2.0 w/mK) were measured. In the result, 2000-2500J/m^2/s of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~10^4-~10^5s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~10^8-~10^11J, which is consistent with rupture area of 10^5-10^8m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the

  7. Study of heat and hydraulic diffusions in clays under thermal loading

    International Nuclear Information System (INIS)

    Djeran, I.

    1993-01-01

    This study is a cost-sharing research programme on radioactive waste disposal and radioactive waste management. The thermal conductivity of clays is the fundamental parameter which governs the thermal diffusion and the pore pressure of the rock mass under thermal loading. Experiments have been undertaken in a reduced model, respecting representative boundary conditions. They show that the thermal conductivity depends on temperature in an unfavourable sense to the decrease of heat. On the other hand, the outflow of pore water, from the source to the exterior, has a low amplitude. A single model of porous medium allows the observations and illustrates the effects of the variation of conductivity on the behaviour of rock mass. Finally, thanks to the numerical formulations specially developed, we examine the incident of the particularities of proposed models on the thermohydromechanical behaviour of geometrically simple structures subjected to a given thermal loading

  8. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  9. Unsteady magnetohydrodynamic thermal and diffusion boundary layer from a horizontal circular cylinder

    Directory of Open Access Journals (Sweden)

    Boričić Aleksandar Z.

    2016-01-01

    Full Text Available The unsteady 2-D dynamic, thermal, and diffusion magnetohydrodynamic laminar boundary layer flow over a horizontal cylinder of incompressible and electrical conductivity fluid, in mixed convection in the presence of heat source or sink and chemical reactions. The present magnetic field is homogenous and perpendicular to the body surface. It is assumed that induction of outer magnetic field is a function of longitudinal co-ordinate outer electric field is neglected and magnetic Reynolds number is significantly lower than one, i. e. considered the problem is in approximation without induction. Fluid electrical conductivity is constant. Free stream velocity, temperature, and concentration on the body are functions of longitudinal co-ordinate. The developed governing boundary layer equations and associated boundary conditions are made dimensionless using a suitable similarity transformation and similarity parameters. System of non-dimensionless equations is solved using the implicit finite difference three-diagonal and iteration method. Numerical results are obtained and presented for different Prandtl, Eckart, and Schmidt numbers, and values: magnetic parameter, temperature, and diffusion parameters, buoyancy temperature parameters, thermal parameter, and chemical reaction parameter. Variation of velocity profiles, temperature and diffusion distributions, and many integral and differential characteristics, boundary layer, are evaluated numerically for different values of the magnetic field. Transient effects of velocity, temperature and diffusion are analyzed. A part of obtained results is given in the form of figures and corresponding conclusions.

  10. Molding apparatus. [for thermosetting plastic compositions

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  11. PIPER-ONE: an experimental apparatus to evaluate thermal-hydraulic transients in BWRs after small breaks

    International Nuclear Information System (INIS)

    Mazzini, M.; D'Auria, F.; Vigni, P.

    1981-01-01

    This paper deals with the state of art of the research performed at the Instituto di Impianti Nucleari of Pisa University, aiming at construction of PIPER-ONE experimental facility. PIPER-ONE program is devoted to acquire direct experience on some basic phenomena, arising in BWR plants subsequently to small breaks, and on the use of the main thermal-hydraulic codes. The research has been planned taking into consideration recent trends of the studies all over the world of small LOCA thermal-hydraulics and particular needs of nuclear safety in Italy. Cost limitations and availability of some components, already installed at the Institute Laboratory, have influenced the design of the loop. The development steps of PIPER-ONE project are presented. Particularly, the overall flowsheet of the apparatus is reported. Some results of preliminary calculation, executed by RELAP4-Mod 6 code concerning both the experimental loop and the reference BWR are shown, too. A comparison with similar facilities in the world closes the paper

  12. Blackness coefficients, effective diffusion parameters, and control rod worths for thermal reactors - Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M M [Argonne National Laboratory, Argonne, IL 60439 (United States)

    1985-07-01

    Simple diffusion theory cannot be used to evaluate control rod worths in thermal neutron reactors because of the strongly absorbing character of the control material. However, reliable control rod worths can be obtained within the framework of diffusion theory if the control material is characterized by a set of mesh-dependent effective diffusion parameters. For thin slab absorbers the effective diffusion parameters can be expressed as functions of a suitably-defined pair of 'blackness coefficients'. Methods for calculating these blackness coefficients in the P1, P3, and P5 approximations, with and without scattering, are presented. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method, based on reaction rate ratios, is discussed. (author)

  13. Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements.

    Science.gov (United States)

    Tibbetts, V R; Schnell, R J; Swartz, M L; Phillips, R W

    1976-01-01

    Thermal diffusion was measured in vitro and in vivo through amalgam and amalgam underlaid with bases of zinc phosphate, zinc oxide-eugenol, and calcium hydroxide cements. Although the magnitudes differed, there generally was good agreement between in vitro and in vivo data with respect to the relative rates of thermal diffusivity through amalgam restorations underlaid with bases of each of the three materials. In all tests, both in vitro and in vivo, the zinc oxide-eugenol base proved to be the best thermal insulator. Calcium hydroxide was the next best thermal barrier and was followed by zinc phosphate cement. In vitro tests indicated dentin to be a better thermal insulator than zinc phosphate cement but inferior to the zinc oxide-eugenol and calcium hydroxide base materials used here. Although a method has been presented here for the in vivo assessment of the efficacy of thermal insulating bases and a number of in vivo experiments were conducted, much research remains to be done in this area. Additional investigation is needed to better define the parameters of thermal change beneath various types of restoratives and also to establish more exactly the role of base thickness in providing thermal protection beneath clinical metallic restorations.

  14. Thermal diffusivity measurements with a photothermal method of fusion solid breeder materials

    International Nuclear Information System (INIS)

    Bertolotti, M.; Fabri, L.; Ferrari, A.; Sibilia, C.; Alvani, C.; Casadio, S.

    1989-01-01

    The Photothermal Deflection method is employed in thermal diffusivity measurements. A theoretical analysis is performed to reduce the influence of arbitrary parameters. Measurements on gamma-lithium aluminate samples as a function of temperatures are performed. (author). 5 refs.; 4 figs

  15. Thermal diffusivity measurement of erythritol and numerical analysis of heat storage performance on a fin-type heat exchanger

    International Nuclear Information System (INIS)

    Zamengo, Massimiliano; Funada, Tomohiro; Morikawa, Junko

    2017-01-01

    Highlights: • Thermal diffusivity of Erythritol was measured by temperature wave method. • Thermal diffusivity was measured in function of temperature and during phase change. • Database of temperature-dependent thermal properties is used for numerical analysis. • Heat transfer and heat storage were analyzed in a fin-type heat exchanger. • Use of temperature-dependent properties in calculations lead to longer melting time. - Abstract: Temperature dependency of thermal diffusivity of erythritol was measured by temperature wave analysis (TWA) method. This modulating technique allowed measuring thermal diffusivity continuously, even during the phase transition solid-liquid. Together with specific heat capacity and specific enthalpy measured by differential scanning calorimetry, the values of measured properties were utilized in a bi-dimensional numerical model for analysis of heat transfer and heat storage performance. The geometry of the model is representative of a cross section of a fin-type heat exchanger, in which erythritol is filling the interspaces between fins. Time-dependent temperature change and heat storage performance were analyzed by considering the variation of thermophysical properties as a function of temperature. The numerical method can be utilized for a fast parametric analysis of heat transfer and heat storage performance into heat storage systems of phase-change materials and composites.

  16. Improvement in deuterium recovery from water–isotope mixture by thermal diffusion in the device of branch columns

    International Nuclear Information System (INIS)

    Hsu, Ching-Chun; Yeh, Ho-Ming

    2014-01-01

    Highlights: • Recovery of deuterium by thermal diffusion from water–isotope mixture has been investigated. • The undesirable remixing effect can be reduced by employing the device of branch columns. • Deuterium recoveries were compared with that in a single column of the same total column length. • Considerable recovery improvement is obtainable in the device of branch columns, instead of in a single-column device. - Abstract: Deuterium recovery from water–isotopes mixture using thermal diffusion can be improved by employing the branch column device, instead of single column devices, with the same total column length. The remixing effect due to convection currents in a thermal diffusion column for heavy water enrichment is thus reduced and separation improvement increases when the flow rate or the total column length increases. The improvement in separation can reach about 50% for the numerical example given

  17. Advanced diffusion system for low contamination in-line rapid thermal processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Biro, D.; Preu, R.; Schultz, O.; Peters, S.; Huljic, D.M.; Zickermann, D.; Schindler, R.; Luedemann, R.; Willeke, G. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    2002-10-01

    A novel diffusion system for in-line rapid thermal diffusion is presented. The lamp-heated furnace has a low thermal mass and a metal free transport system based on the walking beam principle. The furnace has been used to process first solar cells with lightly and highly doped emitters respectively. Solar cells with shallow lightly doped emitters show that the emitters processed in the new device can be well passivated. Shallow emitters with sheet resistances of up to 40/sq. have been contacted successfully by means of screen printing and firing through a SiN{sub x} antireflection coating. (author)

  18. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    Science.gov (United States)

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.

  19. Thermal diffusivity of electrical insulators at high temperatures: Evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction

    Science.gov (United States)

    Hofmeister, Anne M.; Dong, Jianjun; Branlund, Joy M.

    2014-04-01

    We show that laser-flash analysis measurements of the temperature (T) dependence of thermal diffusivity (D) for diverse non-metallic (e.g., silicates) single-crystals is consistently represented by D(T) = FT-G + HT above 298 K, with G ranging from 0.3 to 2, depending on structure, and H being ˜10-4 K-1 for 51 single-crystals, 3 polycrystals, and two glasses unaffected by disorder or reconstructive phase transitions. Materials exhibiting this behavior include complex silicates with variable amounts of cation disorder, perovskite structured materials, and graphite. The high-temperature term HT becomes important by ˜1300 K, above which temperature its contribution to D(T) exceeds that of the FT-G term. The combination of the FT-G and HT terms produces the nearly temperature independent high-temperature region of D previously interpreted as the minimal phonon mean free path being limited by the finite interatomic spacing. Based on the simplicity of the fit and large number of materials it represents, this finding has repercussions for high-temperature models of heat transport. One explanation is that the two terms describing D(T) are associated with two distinct microscopic mechanisms; here, we explore the possibility that the thermal diffusivity of an electrical insulator could include both a contribution of lattice phonons (the FT-G term) and a contribution of diffusive bulk phonon-polaritons (BPP) at infrared (IR) frequencies (the HT term). The proposed BPP diffusion exists over length scales smaller than the laboratory sample sizes, and transfers mixed light and vibrational energy at a speed significantly smaller than the speed of light. Our diffusive IR-BPP hypothesis is consistent with other experimental observations such as polarization behavior, dependence of D on the number of IR peaks, and H = 0 for Ge and Si, which lack IR fundamentals. A simple quasi-particle thermal diffusion model is presented to begin understanding the contribution from bulk phonon

  20. Retrieving the thermal diffusivity and effusivity of solids from the same frequency scan using the front photopyroelectric technique

    International Nuclear Information System (INIS)

    Salazar, Agustín; Oleaga, Alberto; Mendioroz, Arantza; Apiñaniz, Estibaliz

    2017-01-01

    The photopyroelectric (PPE) technique in the front configuration consists in illuminating one surface of a pyroelectric slab while the other surface is in contact with the test sample. This method has been widely used to measure the thermal effusivity of liquids. Recently, it has been extended to measure the thermal effusivity of solids, by taking into account the influence of the coupling fluid layer used to guarantee the thermal contact. In both cases, the sample (liquid or solid) must be very thick. In this work, we propose a classical frequency scan of a thin sample slab to retrieve the thermal diffusivity and effusivity simultaneously. We use the amplitude and the phase of the front PPE signal, which depend on four parameters: the sample diffusivity and effusivity, the coupling fluid thickness and the coefficient of heat losses. It is demonstrated that the four quantities are not correlated. PPE measurements performed on a set of calibrated solids confirm the ability of the method to obtain the thermal diffusivity and effusivity of solids accurately. (paper)

  1. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    Science.gov (United States)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical

  2. Minijet thermalization and diffusion of transverse momentum correlation in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Pang Longgang; Wang Qun; Wang Xinnian; Xu Rong

    2010-01-01

    Transverse momentum correlations in the azimuthal angle of hadrons produced owing to minijets are first studied within the HIJING Monte Carlo model in high-energy heavy-ion collisions. Quenching of minijets during thermalization is shown to lead to significant diffusion (broadening) of the correlation. Evolution of the transverse momentum density fluctuation that gives rise to this correlation in azimuthal angle in the later stage of heavy-ion collisions is further investigated within a linearized diffusion-like equation and is shown to be determined by the shear viscosity of the evolving dense matter. This diffusion equation for the transverse momentum fluctuation is solved with initial values given by HIJING and together with the hydrodynamic equation for the bulk medium. The final transverse momentum correlation in azimuthal angle is calculated along the freeze-out hypersurface and is found to be further diffused for higher values of the shear viscosity to entropy density ratio, η/s∼0.2-0.4. Therefore the final transverse momentum correlation in azimuthal angle can be used to study the thermalization of minijets in the early stage of heavy-ion collisions and the viscous effect in the hydrodynamic evolution of strongly coupled quark-gluon plasma.

  3. Thermal diffusivity estimation of the olive oil during its high-pressure treatment

    Czech Academy of Sciences Publication Activity Database

    Kubásek, M.; Houška, M.; Landfeld, A.; Strohalm, J.; Kamarád, Jiří; Žitný, R.

    2006-01-01

    Roč. 74, - (2006), s. 286-291 ISSN 0260-8774 R&D Projects: GA MZe QF3287 Institutional research plan: CEZ:AV0Z10100521 Keywords : olive oil * food processing * high pressure * thermal diffusivity Subject RIV: GM - Food Processing Impact factor: 1.696, year: 2006

  4. Correction Effect of Finite Pulse Duration for High Thermal Diffusivity Materials

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Kim, Hee Moon; Baik, Seung Je; Yoo, Byoung Ok; Ahn, Sang Bok; Ryu, Woo Seok

    2010-01-01

    In the laser pulsed flash method, a pulse of energy is incident on one of two parallel faces of a sample. The subsequent temperature history of the opposite face is then related to the thermal diffusivity. When the heat pulse is of infinitesimal duration, the diffusivity is obtained from the transient response of the rear face temperature proposed by Parker et al. The diffusivity αis computed from relation 2222121.37cattαππ≡= (1) Where a is the sample thickness and is the time required for the rear face temperature to reach half-maximum, and t c ≡a 2 / π 2 t 1/2 is the characteristic rise time of the rear face temperature. When the pulse-time 1/2tτis not infinitesimal, but becomes comparable to tc, it is apparent that the rise in temperature of the rear face will be retarded, and will be greater than 1.37 t c . This retardation has been called the ' finite pulse-time effect.' Equation (1) is accurate to 1% for tc > ∼ 501/2tτ. For many substances, this inequality cannot be achieved with conventional optical sources (e.g. τ. 10 -3 sec for a solid state laser) unless the sample thickness is so large that its rise in temperature is too small for accurate measurement. One must therefore make an appropriate correction for the retardation of the temperature wave. Purpose of study are to observe impact of finite pulse time effect in appropriate sample thickness and to verify the effect of pulse correction using Cape and Lehman method for high thermal diffusivity materials

  5. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    Science.gov (United States)

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  6. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    International Nuclear Information System (INIS)

    Logan, B.G.

    1978-01-01

    A method and apparatus are described for cooling a plasma confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell. The cooling is due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma

  7. Analytical developments in the Wong-Fung-Tam-Gao radiation model of thermal diffusivity

    International Nuclear Information System (INIS)

    Lucia, U.; Maino, G.

    2004-01-01

    When the thermal diffusivity, χ, of a thin film on a substrate is measured by means of the mirage method, the photothermal deflection of the probe beam is determined by the heat radiation field contributed by the film and the substrate, heated by the pump beam. A two-dimensional algorithm is here presented in order to deduce the measure of the diffusivities of the film and the substrate in one set of mirage detection from the experimental data

  8. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.

    Science.gov (United States)

    Chen, Xingyuan; Miller, Gretchen R; Rubin, Yoram; Baldocchi, Dennis D

    2012-12-01

    The heat pulse method is widely used to measure water flux through plants; it works by using the speed at which a heat pulse is propagated through the system to infer the velocity of water through a porous medium. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale and subsequently to upscale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for sampling and simultaneously estimating the tree's thermal diffusivity and probe spacing from in situ heat response curves collected by the implanted probes of a heat ratio measurement device. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require knowledge of probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential for obtaining reliable and accurate solutions. When applied to field conditions, these tests can be obtained in different seasons and can be automated using the existing data logging system. Empirical factors are introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and are estimated in this study as well. The proposed methodology may be tested for its applicability to realistic field conditions, with an ultimate goal of calibrating heat ratio sap flow systems in practical applications.

  9. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  10. Thermal diffusivity measurements of molten salts using a three-layered cell by the laser flash method

    Science.gov (United States)

    Ohta, Hiromichi; Ogura, Gaku; Waseda, Yoshio; Suzuki, Mustumi

    1990-10-01

    A simple cell and easy data processing are described for measuring the thermal diffusivity of a liquid sample at high temperatures using the laser flash method. A cell consists of a liquid sample sandwiched by two metallic plates. The front surface of one metallic plate is exposed to a single pulse of beam laser and the resulting temperature rise of the back surface of the other metallic plate is measured. The logarithmic analysis proposed by James using the initial time region of the temperature response curve of a two layered cell system has been extended to apply to the present three layered cell system in order to estimate the thermal diffusivity value of a liquid sample. Measurements of distilled water and methanol were made first and the results were found to be in good agreement with the reference data. Then, the thermal diffusivities of molten NaNO3 at 593-660 K and of molten KNO3 at 621-694 K were determined and the results also appear to agree reasonably well with those reported in the literature.

  11. Thermal diffusivity from heat wave propagation in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Erckmann, V.; Giannone, L.; Maassberg, H.; Tutter, M.

    1991-01-01

    Electron thermal diffusivity studies can be carried out in two ways: static and dynamic. In the static analysis, the transport coefficients are determined from the stationary power balance, in the dynamic analysis from the propagation of a small perturbation of the stationary plasma state which can be caused by either a sawtooth generated heat pulse or modulation of the heating power. Electron thermal diffusivity χ e is deduced from the evolution of the perturbed electron temperature T e at different locations r i in the plasma. χ e values obtained from perturbation analysis are usually greater than those calculated from power balance. It has been pointed out that there is a principal difference between static and perturbative analysis. Whereas the static method yields the transport coefficient χ e = q e /n e ∇T e , the perturbative methods leads to an icnrease of the flux q e as a result of an increase in the temperature gradient ∇T e . The quantity determined is an incremental χ e as defined by χ e inc =δq e /n e δ(∇T e ). By varying the modulation of the heating power at different frequencies and amplitudes one can address the question whether or not this discrepancy is a function of the varied parameters. (orig.)

  12. Reference mean temperature for evaluation of performance of thermal diffusion column for isotope separation

    International Nuclear Information System (INIS)

    Yamamoto, Ichiro; Kanagawa, Akira

    1987-01-01

    In order to evaluate separative performance of a thermal diffusion column, a simplification is usually made in which the temperature dependence of the relevant properties such as thermal diffusion constant is ignored and some proper mean values evaluated at a specific ''mean'' temperature are used. Adoption of weighted average of temperature distribution is common for the ''mean'' temperature, but there exists no definite way of determining mean temperature. The present paper proposes a new reference mean temperature determined by the equation governing the free convection. It is based on the fact that the multiplication effect of free convection is essential to separation by thermal diffusion column. The reference mean temperature is related to pressure difference between top and bottom of column and is higher than a mass-averaged temperature (due to gravitational force) by a contribution of viscous force. The reference mean temperature was calculated, as a reference, for an Ar isotope separating column with an inner hot radius of 0.2 mm and an outer cold radius of 5 mm. The results confirmed the validity of an approximate formula expressing effects of temperature difference and ratio of inner and outer radii of column explicitly for the temperature. The reference mean temperature calculated from pressure difference given by axisymmetric solution of equations of change was in good agreement with the analytical solution. (author)

  13. Evaluation of thermal conductivity for liquid lead lithium alloys at various Li concentrations based on measurement and evaluation of density, thermal diffusivity and specific heat of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Nakajima, Yuu; Tsuji, Mitsuyo [Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Nozawa, Takashi [Japan Atomic Energy Agency, Rokkasyo-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Graphical abstract: Thermal diffusivities and thermal conductivities of liquid Pb–Li alloys (Pb–5Li, Pb–11Li and Pb–17Li). - Highlights: • The densities and specific heats of liquid Pb–Li alloys are evaluated based on the previous studies, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal diffusivities of liquid Pb–Li alloys (i.e., Pb–5Li, Pb–11Li and Pb–17Li) are obtained by laser flash method, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal conductivities of liquid Pb–Li alloys were evaluated and mathematically expressed in the equations with the functions of temperature and Li concentration. - Abstract: The thermophysical properties of lead lithium alloy (Pb–Li) are essential for the design of liquid Pb–Li blanket system. The purpose of the present study is to make clear the density, the thermal diffusivity and the heat conductivity of the alloys as functions of temperature and Li concentration. The densities of the solid alloys were measured by means of the Archimedean method. The densities of the alloys at 300 K as a function of Li concentration (0 at% < χ{sub Li} < 28 at%) were obtained in the equation as ρ{sub (300} {sub K)} [g/cm{sup 3}] = −6.02 × 10{sup −2} × χ{sub Li} + 11.3. The density of the liquid alloys was formulated as functions of temperature and Li concentration (0 at% < χ{sub Li} < 30 at%), and expressed in the equation as ρ [g/cm{sup 3}] = (9.00 × 10{sup −6} × T − 7.01 × 10{sup −2}) × χ{sub Li} + 11.4 − 1.19 × 10{sup −3}T. The thermal diffusivity of Pb, Pb–5Li, Pb–11Li and Pb–17Li were measured by means of laser flash method. The thermal diffusivity of Pb–17Li was obtained in the equation as α{sub Pb–17Li} [cm{sup 2}/s] = 3.46 × 10{sup −4}T + 1.05 × 10{sup −1} for the temperature range between 573 K and 773 K. The thermal conductivity of

  14. Radiation enhanced thermal diffusion of chlorine in uranium dioxide; Diffusion thermique et sous irradiation du chlore dans le dioxyde d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Yves [Ecole doctorale de physique et d' astrophysique, Universite Claude Bernard Lyon-I, Lyon (France)

    2006-12-15

    This work concerns the study of the thermal and radiation enhanced diffusion of {sup 36}Cl in uranium dioxide. It is a contribution to PRECCI programme (research programme on the long-term behaviour of the spent nuclear fuel). {sup 36}Cl is a long lived volatile activation product (T = 300 000 years) able to contribute significantly to the instant release fraction in geological disposal conditions. We simulated the presence of {sup 36}Cl by implanting a quantity of {sup 37}Cl comparable to the impurity content of chlorine in UO{sub 2}. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments: - the influence of the temperature was studied by carrying out thermal annealings in the temperature range 900 - 1300 deg. C; we showed that implanted chlorine was mobile from temperatures as low as 1000 deg. C and determined a thermal diffusion coefficient D{sub 1000} {sub deg.} {sub C} around 10{sup -16} cm{sup 2}s{sup -1} and deduced an activation energy of 4.3 eV. This value is one of lowest compared to that of volatile fission products such as iodine or the xenon. These parameters reflect the very mobile behaviour of chlorine; - the irradiation effects induced by fission products were studied by irradiating the samples with {sup 127}I (energy of 63.5 MeV). We showed that the implanted chlorine diffusion in the temperature range 30 - 250 deg. C is not purely athermal. In these conditions, the diffusion coefficient D{sub 250} {sub deg.} {sub C} for the implanted chlorine is around 10{sup -14} cm{sup 2}s{sup -1} and the activation energy is calculated to be 0.1 eV. Moreover, at 250 deg. C, we observed an important transport of the pristine chlorine from the bulk towards the surface. This chlorine comes from a zone where the defects are mainly produced by the nuclear energy loss process at the end of iodine range. We showed the importance of the

  15. Thermal diffusivity measurements between 0 {sup 0}C and 2000 {sup 0}C: application to UO{sub 2}; Mesure de la diffusivite thermique de 0 {sup 0}C et 2000 {sup 0}C application a UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Van Craeynest, J C; Weilbacher, J C; Lallement, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    We have built two types of apparatus to measure the thermal diffusivity of ceramic fuels. The first apparatus, based on Angstrom's method, operates between 0 deg. C and 1000 deg. C. Satisfactory results have been obtained for iron, nickel and molybdenum. The other apparatus, based on Cowan's method, operates between 1000 deg. C and 2000 deg. C on thin slabs. The thermal conductivity of UO{sub 2} has been measured from 0 deg. C to 2000 deg. C. There is a good agreement between our results and the well known values for UO{sub 2}. (authors) [French] Afin d'etudier la conductibilite thermique des combustibles ceramiques, nous avons mis au point deux types d'appareils nous permettant de mesurer la diffusivite thermique {alpha}, la conductibilite etant egale au produit de la diffusivite par la densite et la chaleur specifique. Un premier type d'appareil base sur la methode d'Angstroem nous permet d'obtenir des resultats de diffusivite sur echantillon de fabrication courante entre 0 deg.C et 1000 deg. C. Une serie de mesures a ete effectuee sur le fer, le nickel et le molybdene afin de controler le bon fonctionnement des appareils. Un deuxieme type d'appareil base sur la methode de Cowan nous permet d'atteindre la diffusivite thermique d'echantillons minces entre 1000 deg. C et 2000 deg. C. Un controle des resultats obtenus sur l'oxyde d'uranium a moyenne et haute temperature nous permet de conclure a un tres bon accord entre nos resultats et ceux de la litterature. (auteurs)

  16. Numerical methods for calculating thermal residual stresses and hydrogen diffusion

    International Nuclear Information System (INIS)

    Leblond, J.B.; Devaux, J.; Dubois, D.

    1983-01-01

    Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)

  17. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  18. Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission

    Science.gov (United States)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella

    2015-04-01

    Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.

  19. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  20. Significantly reduced c-axis thermal diffusivity of graphene-based papers

    Science.gov (United States)

    Han, Meng; Xie, Yangsu; Liu, Jing; Zhang, Jingchao; Wang, Xinwei

    2018-06-01

    Owing to their very high thermal conductivity as well as large surface-to-volume ratio, graphene-based films/papers have been proposed as promising candidates of lightweight thermal interface materials and lateral heat spreaders. In this work, we study the cross-plane (c-axis) thermal conductivity (k c ) and diffusivity (α c ) of two typical graphene-based papers, which are partially reduced graphene paper (PRGP) and graphene oxide paper (GOP), and compare their thermal properties with highly-reduced graphene paper and graphite. The determined α c of PRGP varies from (1.02 ± 0.09) × 10‑7 m2 s‑1 at 295 K to (2.31 ± 0.18) × 10‑7 m2 s‑1 at 12 K. This low α c is mainly attributed to the strong phonon scattering at the grain boundaries and defect centers due to the small grain sizes and high-level defects. For GOP, α c varies from (1.52 ± 0.05) × 10‑7 m2 s‑1 at 295 K to (2.28 ± 0.08) × 10‑7 m2 s‑1 at 12.5 K. The cross-plane thermal transport of GOP is attributed to the high density of functional groups between carbon layers which provide weak thermal transport tunnels across the layers in the absence of direct energy coupling among layers. This work sheds light on the understanding and optimizing of nanostructure of graphene-based paper-like materials for desired thermal performance.

  1. The effect of diffuse ceiling panel on the energy performance of thermally activated building construction

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew

    2016-01-01

    An integrated system combining diffuse ceiling ventilation with thermally activated building construction (TABS) was proposed recently. In this system, TABS is encapsulated by diffuse ceiling panel and cannot have directly heat exchange with the room. The aim of this study is to investigate...... the effect of diffuse ceiling panel on the energy performance of TABS in both heat and cooling mode. Experiments are carried out in a full-scale test facility with the integrated system, and the cases without diffuse ceiling are also measured as references. The results indicate that the diffuse ceiling has...... an opposite effect on the heating and cooling capacity of TABS. In addition, a numerical model is built and validated by the measured data. The validated model is further applied to conduct a paramedical study on the materials of the diffuse ceiling panel....

  2. Methods and apparatus for environmental correction of thermal neutron logs

    International Nuclear Information System (INIS)

    Preeg, W.E.; Scott, H.D.

    1983-01-01

    An on-line environmentally-corrected measurement of the thermal neutron decay time (tau) of an earth formation traversed by a borehole is provided in a two-detector, pulsed neutron logging tool, by measuring tau at each detector and combining the two tau measurements in accordance with a previously established empirical relationship of the general form: tau = tausub(F) +A(tausub(F) + tausub(N)B) + C, where tausub(F) and tausub(N) are the tau measurements at the far-spaced and near-spaced detectors, respectively, A is a correction coefficient for borehole capture cross section effects, B is a correction coefficient for neutron diffusion effects, and C is a constant related to parameters of the logging tool. Preferred numerical values of A, B and C are disclosed, and a relationship for more accurately approximating the A term to specific borehole conditions. (author)

  3. Development of high time-resolution laser flash equipment for thermal diffusivity measurements using miniature-size specimens

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Namba, Chusei; Kosuda, Michinori; Maeda, Yukio.

    1994-01-01

    For measurements of thermal diffusivity of miniature-size specimens heavily irradiated by neutrons, a new Q-switched laser-flash instrument was developed. In the present instrument the time-resolution was improved to 0.1 ms by using a laser-pulse width of 25 ns. The realization of high time-resolution made it possible to measure the thermal diffusivity of thin specimens. It is expected that copper of 0.7 mm thick, and SUS 304 of 0.1 mm could be used for the measurements. In case of ATJ graphite, 0.5 mm thick specimen could be used for the reliable measurement in the temperature range of 300-1300 K. (author)

  4. Theoretical description of the photopyroelectric technique in the slanted detector configuration for thermal diffusivity measurements in fluids

    International Nuclear Information System (INIS)

    Rojas-Trigos, J.B.; Marín, E.; Mansanares, A.M.; Cedeño, E.; Juárez-Gracia, G.; Calderón, A.

    2014-01-01

    Highlights: • A model for photopyroelectric thermal characterization of fluids is presented. • A slanted detector configuration is considered with a finite measurement cell. • The mean temperature distribution in the photopyroelectric detector, as function of the beam spot position, is calculated. • The influence of the excitation beam spot size, the thermal diffusion length and size of the sample is discussed. • The high lateral resolution of the method observed in experiments is explain. - Abstract: This work presents an extended description about the theoretical aspects related to the generation of the photopyroelectric signal in a recently proposed wedge-like heat transmission detection configuration, which recreates the well-known Angstrom method (widely used for solid samples) for accurate thermal diffusivity measurement in gases and liquids. The presented model allows for the calculation of the temperature profile detected by the pyroelectric sensor as a function of the excitation beam position, and the study of the influence on it of several parameters, such as spot size, thermal properties of the absorber layer, and geometrical parameters of the measurement cell. Through computer simulations, it has been demonstrated that a narrow temperature distribution is created at the sensor surface, independently of the lateral diffusion of heat taking place at the sample's surface

  5. Apparatus and process for passivating an SRF cavity

    Science.gov (United States)

    Myneni, Ganapati Rao; Wallace, John P

    2014-12-02

    An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.

  6. Implementation of a conjugate gradient algorithm for thermal diffusivity identification in a moving boundaries system

    International Nuclear Information System (INIS)

    Perez, L; Autrique, L; Gillet, M

    2008-01-01

    The aim of this paper is to investigate the thermal diffusivity identification of a multilayered material dedicated to fire protection. In a military framework, fire protection needs to meet specific requirements, and operational protective systems must be constantly improved in order to keep up with the development of new weapons. In the specific domain of passive fire protections, intumescent coatings can be an effective solution on the battlefield. Intumescent materials have the ability to swell up when they are heated, building a thick multi-layered coating which provides efficient thermal insulation to the underlying material. Due to the heat aggressions (fire or explosion) leading to the intumescent phenomena, high temperatures are considered and prevent from linearization of the mathematical model describing the system state evolution. Previous sensitivity analysis has shown that the thermal diffusivity of the multilayered intumescent coating is a key parameter in order to validate the predictive numerical tool and therefore for thermal protection optimisation. A conjugate gradient method is implemented in order to minimise the quadratic cost function related to the error between predicted temperature and measured temperature. This regularisation algorithm is well adapted for a large number of unknown parameters.

  7. Theoretical investigations of dc and ac heat diffusion for submicroscopies and nanoscopies

    CERN Document Server

    Depasse, F; Gomes, S

    2003-01-01

    Thermal local micro- and nano-probes are currently used in scanning thermal microscopy (SThM) to characterize nano-structured media. In the active mode of SThM, the very small contact between the heated probe and the sample surface defines the region of the sample excitation. In such a case, the depth profiling is limited by the dimension of the contact zone and by the ac frequency of the heat source modulations. This paper furnishes the links between the mean temperature of the probe apex and the heat flow going through this apex. The response of the probe depends on the radius of the probe-sample contact and the heated zone appears, in the case of a mesososcopic source, only weakly sensitive to the thermal characteristics of the sample. The resolution of the scanning apparatus is enhanced in the case of a small buried default analysed in the frame of the first Born approximation of the heat diffusion equation.

  8. Robotic UV-Vis apparatus for long-term characterization of drug release from nanochannels

    International Nuclear Information System (INIS)

    Geninatti, T; Grattoni, A; Small, E

    2014-01-01

    Reliable monitoring of the kinetics of molecular release from drug delivery devices is crucial for their therapeutic success. Commercially available UV-Vis spectrophotometers provide reliable quantification of analyte concentrations directly correlated to the absorbance of fluids. However, they are not suitable for long-term measurements requiring high frequency of sampling from a large number of replicates and continuous fluid mixing, all of which are necessary for evaluation of drug delivery devices. To address this need, we developed a novel robotic apparatus serially connected to a commercial UV-Vis spectrophotometer. The robotic apparatus enables us to automatically and reliably acquire long-term data for up to 48 samples with high frequency of measurements and independent magnetic stirring. We equipped the robotic apparatus with independent connectors that allowed us to apply an electric potential to each sample for electrokinetic studies. The apparatus repeatability and accuracy was demonstrated in comparison to a commercial UV-Vis spectrophotometer. The system was successfully employed to characterize the diffusion kinetics of acetone and doxorubicin through nanochannel membranes (nDS) designed for long-term drug delivery. Dendritic fullerene 1 was used to show that the robotic apparatus routes the electric potential to nanochannel membranes enabling us to investigate the actively controlled release of molecules. Our results demonstrate that the robotic apparatus could widely broaden the range of applications of UV-Vis spectrophotometry, especially in the case of large sample processing and for long-term diffusive and electrokinetic studies in drug delivery. (technical design note)

  9. Measurement of the diffusion length of thermal neutrons inside graphite; Mesure de la longueur de diffusion des neutrons thermiques dans le graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ertaud, A; Beauge, R; Fauquez, H; De Laboulay, H; Mercier, C; Vautrey, L

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra {alpha} {yields} Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm {+-} 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  10. Construction of an apparatus for measuring the low-temperature thermal conductivity before and after neutron irradiation. Application to uranium dioxide (1963); Realisation d'un appareil pour la mesure de la conductibilite thermique a basse temperature avant et apres irradiation neutronique. Application au dioxyde d'uranium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Bethoux, O [Commisariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-09-15

    An apparatus has been studied and built which makes it possible to alternatively irradiate a sample at room temperature in the reactor 'Melusine' at the Grenoble Nuclear Research Centre, and to measure its thermal conductivity between 20 and 100 deg. K in perfect safety. The results obtained on UO{sub 2} have made it possible on the one hand to check experimentally that the spin-phonon diffusion leads to a thermal resistance independent of temperature above 30 deg. K, and on the other hand to propose a simple theory which takes into count the role played by the damage due to U-235 fission products in the decrease of thermal conductivity after irradiation. (author) [French] Un appareil permettant alternativement d'irradier un echantillon a temperature ambiante dans le reacteur ''Melusine'' du C.E.N.G., et de mesurer sa conductibilite thermique entre 20 et 100 deg. K en toute securite, a ete etudie et construit Les resultats obtenus sur UO{sub 2} ont permis, d'une part, de verifier experimentalement que la diffusion spin-phonon conduit a une resistance thermique independante de la temperature au-dessus de 30 deg. K, et, d'autre part, de proposer une theorie simple tenant compte du role joue par les degats dus aux produits de fission de l'uranium 235, dans la deterioration de la conductibilite thermique apres irradiation. (auteur)

  11. Extraction of thermal Green's function using diffuse fields: a passive approach applied to thermography

    Science.gov (United States)

    Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano

    2016-04-01

    In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.

  12. The development of coastal diffusion observation method with a captive balloon

    International Nuclear Information System (INIS)

    Fukuda, Masaaki; Yamada, Masaharu

    1980-03-01

    Apparatus whereby the dye cloud in a coastal area in diffusion experiment can be photographed was developed. It consists of a vinyl balloon two meters in diameter, a photographic device with the camera shutter released by wireless signals from the ground, and a winch to raise or lower the balloon. A maximum height of the balloon for taking photographs is 1000 m. During the single balloon flight, thirty photographs can be taken. With the balloon at a certain height, dye as the tracer in diffusion experiment is released at sea surface or a certain sea depth by dye-throwing means or pump, and then taking the photographs is started. Movement and diffusion of the dye are analyzed by means of the photographs taken. The apparatus is simple in mechanism and easy to transport. Dye experiment is possible in the surfe zone where a boat cannot enter. It is impossible, however, to raise the balloon in strong wind or sea breeze. Typical results of the dye diffusion experiment with the apparatus are given. (author)

  13. Thermal diffusivity from heat wave propagation in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Hartfuss, H J; Erckmann, V; Giannone, L.; Maassberg, H; Tutter, M [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    Electron thermal diffusivity studies can be carried out in two ways: static and dynamic. In the static analysis, the transport coefficients are determined from the stationary power balance, in the dynamic analysis from the propagation of a small perturbation of the stationary plasma state which can be caused by either a sawtooth generated heat pulse or modulation of the heating power. Electron thermal diffusivity [chi][sub e] is deduced from the evolution of the perturbed electron temperature T[sub e] at different locations r[sub i] in the plasma. [chi][sub e] values obtained from perturbation analysis are usually greater than those calculated from power balance. It has been pointed out that there is a principal difference between static and perturbative analysis. Whereas the static method yields the transport coefficient [chi][sub e]=q[sub e]/n[sub e][nabla]T[sub e], the perturbative method leads to an increase of the flux q[sub e] as a result of an increase in the temperature gradient [nabla]T[sub e]. The quantity determined is an incremental [chi][sub e] as defined by [chi][sub e][sup inc]=[partial derivative]q[sub e]/n[sub e][partial derivative]([nabla]T[sub e]). By varying the modulation of the heating power at different frequencies and amplitudes one can address the question whether or not this discrepancy is a function of the varied parameters. (author) 7 refs., 2 figs.

  14. Thermal diffuse scattering in angular-dispersive neutron diffraction

    International Nuclear Information System (INIS)

    Popa, N.C.; Willis, B.T.M.

    1998-01-01

    The theoretical treatment of one-phonon thermal diffuse scattering (TDS) in single-crystal neutron diffraction at fixed incident wavelength is reanalysed in the light of the analysis given by Popa and Willis [Acta Cryst. (1994), (1997)] for the time-of-flight method. Isotropic propagation of sound with different velocities for the longitudinal and transverse modes is assumed. As in time-of-flight diffraction, there exists, for certain scanning variables, a forbidden range in the one-phonon TDS of slower-than-sound neutrons, and this permits the determination of the sound velocity in the crystal. A fast algorithm is given for the TDS correction of neutron diffraction data collected at a fixed wavelength: this algorithm is similar to that reported earlier for the time-of-flight case. (orig.)

  15. Isochoric thermal conductivity of solid carbon oxide: the role of phonons and 'diffusive' modes

    International Nuclear Information System (INIS)

    Konstantinov, V A; Manzhelii, V G; Revyakin, V P; Sagan, V V; Pursky, O I

    2006-01-01

    The isochoric thermal conductivity of solid CO was investigated in three samples of different densities in the interval from 35 K to the onset of melting. In α-CO the temperature dependence of the isochoric thermal conductivity is significantly weaker than Λ∝1/T; in β-CO it increases slightly with temperature. A quantitative description of the experimental results is given within the Debye model of thermal conductivity in the approximation of the corresponding relaxation times and which allows for the fact that the mean-free path of phonons cannot become smaller than half the phonon wavelength. On this consideration the heat is transported by both phonons and 'diffusive' modes

  16. A study of thermal diffusivity of carbon-epoxy and glass-epoxy composites using the modified pulse method

    Directory of Open Access Journals (Sweden)

    Terpiłowski Janusz

    2014-09-01

    Full Text Available Transient heat transfer is studied and compared in two planeparallel composite walls and one EPIDIAN 53 epoxy resin wall acting as a matrix for both composites. The first of the two walls is made of carbonepoxy composite; the other wall is made of glass-epoxy composite, both with comparable thickness of about 1 mm and the same number of carbon and glass fabric layers (four layers. The study was conducted for temperatures in the range of 20-120 °C. The results of the study of thermal diffusivity which characterizes the material as a heat conductor under transient conditions have a preliminary character. Three series of tests were conducted for each wall. Each series took about 24 h. The results from the three series were approximated using linear functions and were found between (0.7-1.35×10−7m2/s. In the whole range of temperature variation, the thermal diffusivity values for carbon-epoxy composite are from 1.2 to 1.5 times higher than those for the other two materials with nearly the same thermal diffusivity characteristics.

  17. Method and apparatus for controlling gas evolution from chemical reactions

    Science.gov (United States)

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  18. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  19. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  20. Quantitative analysis of thermal diffuse X-ray scattering on single crystals. Communication 2. FCC metals

    International Nuclear Information System (INIS)

    Najsh, V.E.; Novoselova, T.V.; Sagaradze, I.V.; Kvyatkovskij, B.E.; Fedorov, V.I.; Chernenkov, Yu.P.

    1994-01-01

    With the use of X-ray diffractometer a study was made into the intensity of diffuse scattering in Ni crystals with FCC lattice. Earlier accomplished quantitative analysis for BCC crystals was extended to FCC lattices. Comparative evaluation was made for cooperative thermal oscillation patterns and corresponding diffuse scattering in crystals of various structures. Measurements on FCC crystals were carried out at room temperature using AgK a lpha-radiation in 96 points of Ni crystal. 8 refs., 4 figs

  1. Determination of the ion thermal diffusivity from neutron emission profiles in decay

    International Nuclear Information System (INIS)

    Sasao, M.; Adams, J.M.; Conroy, S.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van

    1994-01-01

    Spatial profiles of the neutron emission from deuterium plasmas are routinely obtained at the Joint European Torus (JET) using the line-integrated signals measured with a multichannel instrument. It is shown that the manner in which these profiles relax following the termination of strong heating with neutral beam injection (NBI) permits the local thermal diffusivity (χ i ) to be obtained with an accuracy of about 20%. (author)

  2. Superconducting magnetic energy storage apparatus structural support system

    Science.gov (United States)

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  3. Oxygen diffusion in zircon

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.

    1997-05-01

    Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.

  4. Thermal diffusivity of a metallic thin layer using the time-domain thermo reflectance technique

    International Nuclear Information System (INIS)

    Battaglia, J-L; Kusiak, A; Rossignol, C; Chigarev, N

    2007-01-01

    The time domain thermo reflectance (TDTR) is widely used in the field of acoustic and thermal characterization of thin layers at the nano and micro scale. In this paper, we propose to derive a simple analytical expression of the thermal diffusivity of the layer. This relation is based on the analytical solution of one-dimensional heat transfer in the medium using integral transforms. For metals, the two-temperature model shows that the capacitance effect at the short times is essentially governed by the electronic contribution

  5. Self-diffusion and solute diffusion in alloys under irradiation: Influence of ballistic jumps

    International Nuclear Information System (INIS)

    Roussel, Jean-Marc; Bellon, Pascal

    2002-01-01

    We have studied the influence of ballistic jumps on thermal and total diffusion of solvent and solute atoms in dilute fcc alloys under irradiation. For the diffusion components that result from vacancy migration, we introduce generalized five-frequency models, and show that ballistic jumps produce decorrelation effects that have a moderate impact on self-diffusion but that can enhance or suppress solute diffusion by several orders of magnitude. These could lead to new irradiation-induced transformations, especially in the case of subthreshold irradiation conditions. We also show that the mutual influence of thermal and ballistic jumps results in a nonadditivity of partial diffusion coefficients: the total diffusion coefficient under irradiation may be less than the sum of the thermal and ballistic diffusion coefficients. These predictions are confirmed by kinetic Monte Carlo simulations. Finally, it is shown that the method introduced here can be extended to take into account the effect of ballistic jumps on the diffusion of dumbbell interstitials in dilute alloys

  6. Thermal conductivities and diffusivities of rocks in four shallow ONKALO holes and drillholes OL-KR46 and OL-KR56

    International Nuclear Information System (INIS)

    Korpisalo, A.; Suppala, I.; Kukkonen, I.; Koskinen, T.

    2013-11-01

    The thermal drillhole device (76 mm drillholes) used in this study for determining thermal properties of rocks in situ was developed and constructed under TERO projects in Geological Survey of Finland with Posiva in early 2000's. After the renovation of the device in 2010, the new TERO76 device has now been taken into the productive use. In addition to the numerical inversion technique a rapid interpretation tool makes it possible to calculate the first estimates of thermal properties of the measurements already in the field. The thermal properties of the measurements are estimated by using both a numerical optimization and a simple solution of infinite line model. Because of the unique measurement geometry only the thermal conductivities can directly be estimated accurately (5 %) using the late times of heating periods. The methods can't directly give the thermal diffusivities or heat capacities at a necessary accuracy. However, thermal diffusivities can be estimated by using the specific heat capacities and densities of the known rock types or the laboratory results on diffusivity-conductivity relationship of different Olkiluoto rock types. The latter technique is applied in this study. Thermal properties were measured in four shallow ONKALO drillholes (ONK-PP379, ONK-PP380, ONK-PP381, ONK-PP382) in the Demonstration tunnel 2 (ONK-TDT-4399-30) at +420 m level and in deep drillholes OL-KR46 and OL-KR56 from the surface. In the drillholes in tunnel, the average numerical values fall within 3.31 and 4.19 Wm - 1 K- 1 for the conductivities and 1.75-2.26 x 10 -6 m 2 s -1 for the diffusivities. The corresponding analytical values are within 3.19-3.99 Wm -1 K -1 and 1.68-2.15 x 10 -6 m 2 s -1 . In drillholes OL-KR46 and OL-KR56, the average numerical values fall within 3.42-4.06 and 3.30-3.77 Wm -1 K -1 for the conductivities and 1.81-2.18 and 1.75-2.02 x 10 -6 m 2 s -1 for the diffusivities. The corresponding average analytical conductivities fall within 3.22-3.81 and

  7. Modeling of column apparatus processes

    CERN Document Server

    Boyadjiev, Christo; Boyadjiev, Boyan; Popova-Krumova, Petya

    2016-01-01

    This book presents a new approach for the modeling of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. The convection-diffusion type models are used for a qualitative analysis of the processes and to assess the main, small and slight physical effects, and then reject the slight effects. As a result, the process mechanism can be identified. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze different processes (simple and complex chemical reactions, absorption, adsorption and catalytic reactions), and make it possible to model the processes of gas purification with sulfur dioxide, which form the basis of several patents.

  8. Determination of the ion thermal diffusivity from neutron emission profiles in decay

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M. (National Inst. for Fusion Science, Nagoya (Japan)); Adams, J.M. (AEA Industrial Technology, Harwell (United Kingdom)); Conroy, S.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking)

    1994-01-01

    Spatial profiles of the neutron emission from deuterium plasmas are routinely obtained at the Joint European Torus (JET) using the line-integrated signals measured with a multichannel instrument. It is shown that the manner in which these profiles relax following the termination of strong heating with neutral beam injection (NBI) permits the local thermal diffusivity ([chi][sub i]) to be obtained with an accuracy of about 20%. (author).

  9. Analysis of the sensitivity and sample-furnace thermal-lag of a differential thermal analyzer

    International Nuclear Information System (INIS)

    Roura, P.; Farjas, J.

    2005-01-01

    The heat exchange between the horizontal furnace of a differential thermal analyzer (DTA) and the sample is analyzed with the aim of understanding the parameters governing the thermal signal. The resistance due to radiation and conduction through the gas has been calculated and compared to the experimental values of the thermal-lag between the sample and furnace and apparatus sensitivity. The overall evolution of these parameters with the temperature and their relative values are well understood by considering the temperature differences that arise between the sample and holder. Two RC thermal models are used for describing the apparatus performance at different temperature ranges. Finally, the possibility of improving the signal quality through the control of the leak resistances is stressed

  10. Generation of a Kind of Displaced Thermal States in the Diffusion Process and its Statistical Properties

    Science.gov (United States)

    Xiang-Guo, Meng; Hong-Yi, Fan; Ji-Suo, Wang

    2018-04-01

    This paper proposes a kind of displaced thermal states (DTS) and explores how this kind of optical field emerges using the entangled state representation. The results show that the DTS can be generated by a coherent state passing through a diffusion channel with the diffusion coefficient ϰ only when there exists κ t = (e^{\\hbar ν /kBT} - 1 )^{-1}. Also, its statistical properties, such as mean photon number, Wigner function and entropy, are investigated.

  11. Measurement of the diffusion length of thermal neutrons in the beryllium oxide; Mesure de la longueur de diffusion des neutrons thermiques dans l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Koechlin, J C; Martelly, J; Duggal, V P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The diffusion length of thermal neutrons in the beryllium oxide has been obtained while studying the spatial distribution of the neutrons in a massive parallelepiped of this matter placed before the thermal column of the reactor core of Saclay. The mean density of the beryllium oxide (BeO) is 2,95 gr/cm{sup 3}, the mean density of the massif is 2,92 gr/cm{sup 3}. The value of the diffusion length, deducted of the done measures, is: L = 32,7 {+-} 0,5 cm (likely gap). Some remarks are formulated about the influence of the spectral distribution of the neutrons flux used. (authors) [French] La longueur de diffusion des neutrons thermiques dans l'oxyde de beryllium a ete obtenue en etudiant la repartition spatiale des neutrons dans un massif parallelepipedique de cette matiere placee devant la colonne thermique de la Pile de Saclay. La densite moyenne de l'oxyde de beryllium (BeO) est de 2,95 gr/cm{sup 3}, la densite moyenne du massif de 2,92 gr/cm{sup 3}. La valeur de la longueur de diffusion, deduite des mesures effectuees est: L 32,7 {+-} 0,5 cm (ecart probable). Des remarques sont formulees quant a l'influence de la repartition spectrale du flux de neutrons utilise. (auteurs)

  12. A Simple Apparatus to Demonstrate the Peltier Effect

    Science.gov (United States)

    Dougal, R. C.

    1974-01-01

    Discusses the Peltier, or thermoelectric effect, which provides a way of cooling a system by coupling it thermally to the junction of two materials suitably chosen, shaped, and connected to a d.c. current. Describes an apparatus which simply and inexpensively demonstrates this effect. (MLH)

  13. Thermal diffusivity measurements of liquid materials at high temperature with the ''laser flash'' method

    International Nuclear Information System (INIS)

    Otter, Claude; Vandevelde, Jean

    1982-01-01

    Two solutions, one analytical and the other numerical are proposed to solve the thermokinetic problem encountered when measuring the thermal diffusivity of liquid materials at very high temperature (T>3123K). The liquid material is contained in a parallel faced vessel. This liquid is traversed by a short thermal pulse from a relaxed laser. The temperature response of the back face of the measurement cell is analysed. The first model proposed which does not take thermal losses into consideration, is a mathematical model derived from the ''two layer model'' (Larson and Koyama, 1968) extended to ''three layers''. In order to take the possibility of thermal losses to the external environment at high temperature into consideration, a Crank-Nicolson (1947) type numerical model utilizing finite differences is employed. These thermokinetic studies were performed in order to interpret temperature response curves obtained from the back face of a tungsten-liquid UO 2 -tungsten thermal wall, the purpose of the measurements made being to determine the thermal properties of liquid uranium oxide [fr

  14. Simulation of the diffusion of implanted impurities in silicon structures at the rapid thermal annealing

    International Nuclear Information System (INIS)

    Komarov, F.F.; Komarov, A.F.; Mironov, A.M.; Makarevich, Yu.V.; Miskevich, S.A.; Zayats, G.M.

    2011-01-01

    Physical and mathematical models and numerical simulation of the diffusion of implanted impurities during rapid thermal treatment of silicon structures are discussed. The calculation results correspond to the experimental results with a sufficient accuracy. A simulation software system has been developed that is integrated into ATHENA simulation system developed by Silvaco Inc. This program can simulate processes of the low-energy implantation of B, BF 2 , P, As, Sb, C ions into the silicon structures and subsequent rapid thermal annealing. (authors)

  15. An apparatus for differential thermal analysis (1961); Realisation d'un appareil d'analyse thermique differentielle (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Rappeneau, J; Quetier, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    An apparatus for differential thermal analysis has been developed for the study of the energy stored in irradiated graphite. It makes possible the measurement of variations in the differential enthalpy d H / d{theta} of irradiated graphite between room temperature and 800 deg. C. The integration of the results gives values for the total energy H({theta}). The temperature measurements are made with an accuracy of 0,1 deg. C and are reproducible to {+-} 0,2 deg. C. The characteristics of the apparatus are such that it is possible to study, as a function of irradiation conditions (doses, temperatures), the evolution of the energy spectrum of the graphite as well as the modifications of this spectrum brought about by annealing and successive irradiations, by slow annealing, or by annealing under irradiation. The apparatus developed can also be used for the study of metals and alloys (transition temperatures and heats of transformation), in particular uranium and uranium alloys. (authors) [French] Un appareil d'analyse thermique differentielle a ete realise pour etudier l'energie emmagasinee par le graphite irradie. Il permet de determiner la variation de l'enthalpie differentielle dH / d{theta} du graphite irradie entre la temperature ambiante et 800 deg. C. L'integration des resultats obtenus fournit les valeurs de l'energie totale H({theta}). Les mesures de temperature sont effectuees avec une sensibilite de 0,1 deg. C et la reproductibilite des mesures est assuree a {+-} 0,2 deg. C. Les caracteristiques de cet appareil sont suffisantes pour permettre d'etudier en fonction des conditions d'irradiation (doses, temperatures) l'evolution du spectre d'energie du graphite ainsi que les modifications de ce spectre par des recuits et des irradiations successives, par des recuits lents, ou par des recuits sous rayonnement. Par ailleurs, l'appareil mis au point peut etre utilise pour etudier les metaux et alliages (temperatures de transition et chaleurs de transformation), en

  16. Experimental Study of an Integrated System with Diffuse Ceiling Ventilation and Thermally Activated Building Constructions

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per

    . And the thermal comfort is analyzed by draught rate vertical temperature gradient and radiant temperature asymmetry. Finally the effect of plenum and diffuse ceiling is discussed. This report mainly focuses on the experiment results and discussions. Therefore, some details about the measurement are not presented...

  17. Thermal-diffusion and diffusion-thermo effects on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation

    Directory of Open Access Journals (Sweden)

    S. Srinivas

    2016-01-01

    Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.

  18. Lasing and thermal characteristics of Yb:YAG/YAG composite with atomic diffusion bonding

    Czech Academy of Sciences Publication Activity Database

    Nagisetty, Siva S.; Severová, Patricie; Miura, Taisuke; Smrž, Martin; Kon, H.; Uomoto, M.; Shimatsu, T.; Kawasaki, M.; Higashiguchi, T.; Endo, Akira; Mocek, Tomáš

    2017-01-01

    Roč. 14, č. 1 (2017), 1-6, č. článku 015001. ISSN 1612-2011 R&D Projects: GA MŠk LM2015086; GA MŠk LO1602 Institutional support: RVO:68378271 Keywords : composite Yb:YAG ceramic * atomic diffusion bonding * thermal effects Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.537, year: 2016

  19. Integrated Solution in an Office Room with Diffuse Ceiling Ventilation and Thermally Activated Building Constructions

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Pomianowski, Michal Zbigniew

    2015-01-01

    -scale experiments in a climate chamber. The experimental results indicate that diffuse ceiling can significantly improve thermal comfort in the occupied zone, by reducing draught risk and vertical temperature gradient. The linear function between pressure drop and air change rate points out that the air flow...

  20. Diagnostic monitoring of the condition of the amplification-transformer channel of automatic gas protection apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Ye F; Basovskiy, B I; Popov, V V

    1978-01-01

    A method is suggested for verifying the performance capacity of an amplifier-transformer channel of apparatus for automatic gas protection under operating conditions. Processes are examined which occur in the bridge measurement plan of the sensor during shunting of one of the thermal-transformer elements by a resistor. An expression is obtained for determining the coefficient of transfer of the amplification-transformer channel on the outlet signals of the apparatus in a working regime and after shunting of one of the thermal-transformer elements.

  1. Enrichment of heavy water in thermal-diffusion columns connected in series

    International Nuclear Information System (INIS)

    Yeh, Ho-Ming; Chen, Liu Yi

    2009-01-01

    The separation equations for enrichment of heavy water from water isotope mixture by thermal diffusion in multiple columns connected in series, have been derived based on one column design developed in previous work. The improvement in separation is achievable by operating in a double-column device, instead of in a single-column device, with the same total column length. It is also found that further improvement in separation is obtainable if a triple-column device is employed, except for operating under small total column length and low flow rate.

  2. Thermal-Diffusivity Measurements of Mexican Citrus Essential Oils Using Photoacoustic Methodology in the Transmission Configuration

    Science.gov (United States)

    Muñoz, G. A. López; González, R. F. López; López, J. A. Balderas; Martínez-Pérez, L.

    2011-05-01

    Photoacoustic methodology in the transmission configuration (PMTC) was used to study the thermophysical properties and their relation with the composition in Mexican citrus essential oils providing the viability of using photothermal techniques for quality control and for authentication of oils and their adulteration. Linear relations for the amplitude (on a semi-log scale) and phase, as functions of the sample's thickness, for the PMTC was obtained through a theoretical model fit to the experimental data for thermal-diffusivity measurements in Mexican orange, pink grapefruit, mandarin, lime type A, centrifuged essential oils, and Mexican distilled lime essential oil. Gas chromatography for distilled lime essential oil and centrifuged lime essential oil type A is reported to complement the study. Experimental results showed close thermal-diffusivity values between Mexican citrus essential oils obtained by centrifugation, but a significant difference of this physical property for distilled lime oil and the corresponding value obtained by centrifugation, which is due to their different chemical compositions involved with the extraction processes.

  3. Effects of anisotropic turbulent thermal diffusion on spherical magnetoconvection in the Earth's core

    Science.gov (United States)

    Ivers, D. J.; Phillips, C. G.

    2018-03-01

    We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found

  4. Evaluation of ethanol aged PVDF: diffusion, crystallinity and dynamic mechanical thermal properties

    International Nuclear Information System (INIS)

    Silva, Agmar J.J.; Costa, Marysilvia F.

    2015-01-01

    This work discuss firstly the effect of the ethanol fuel absorption by PVDF at 60°C through mass variation tests. A Fickian character was observed for the ethanol absorption kinetics of the aged PVDF at 60°C. In the second step, the dynamic mechanical thermal properties (E’, E’, E” and tan δ) of the PVDF were evaluated through dynamic mechanical thermal analysis (DMTA). The chemical structure of the materials was analyzed by X-ray diffraction analysis (XRD), and significant changes in the degree of crystallinity were verified after the aging. However, DMTA results showed a reduction in the storage modulus (E') of the aged PVDF, which was associated to diffusion of ethanol and swelling of the PVDF, which generated a prevailing plasticizing effect and led to reduction of its structural stiffness. (author)

  5. Apparatus and method for thermal power generation

    International Nuclear Information System (INIS)

    Cohen, P.; Redding, A.H.

    1978-01-01

    An improved thermal power plant and method of power generation is described which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant

  6. A solution of the thermal neutron diffusion equation for a two-region cyclindrical system program for ODRA-1305 computer

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Woznicka, U.

    1982-01-01

    The program in FORTRAN for the ODRA-1305 computer is described. The dependence of the decay constant of the thermal neutron flux upon the dimensions of the two-region concentric cylindrical system is the result of the program. The solution (with a constant neutron flux in the inner medium assumed) is generally obtained in the one-group diffusion approximation by the method of the perturbation calculation. However, the energy distribution of the thermal neutron flux and the diffusion cooling are taken into account. The program is written for the case when the outer medium is hydrogenous. The listing of the program and an example of calculation results are included. (author)

  7. Heat and water mass transfer in unsaturated swelling clay based buffer: discussion on the effect of the thermal gradient and on the diffusion of water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Robinet, J.O. [Euro-Geomat-Consulting (France)]|[Institut National des Sciences Appliquees (INSA), 35 - Rennes (France); Plas, F. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

    2005-07-01

    The modelling of heat, mass transfer and the behaviour coupled thermo-hydro-mechanical in swelling clay require the development of appropriate constitutive laws as well as experimental data. This former approach, allows the quantitative validation of the theoretical models. In general modelling approaches consider dominant mechanisms, (i) Fourier law for diffusion of heat, (ii) generalized Darcy law for convection of liquid water, (iii) Flick law for diffusion of water vapour, and elastic-plastic models wit h hydric hardening and thermal damage/expansion for strain-stress behaviour. Transfer of dry air and water under thermal gradient and capillary (e.g. suction) gradient in unsaturated compacted swelling clays consider evaporation, migration and condensation. These transfers take into account the capillary effect. This effect is an evaporation of liquid water in the hot part for temperature higher than 100 C associated with a, diffusion of water vapor towards cold part then condensation, and convection of liquid water with gradient of suction in the opposite direction of the water vapour diffusion. High values of the diffusion coefficient of the vapour water are considered about 10{sup -7}m{sup 2}/s. Some thermal experiments related (i) low values of the water vapour diffusion coefficient in compacted swelling clays, 2004) and (ii) a significant drying associated with a water transfer even for temperature lower than 100 C. Other enhancement phenomena are used to explain these data and observations: the vaporization is a continuous process. At short term the mechanism of drying at short term is the thermal effect on the capillary pressure (e.g. surface tension depending of temperature); the thermal gradient is a driving force. When a temperature gradient is applied, diffusion occurs in order to reach equilibrium, e.g. to make the chemical potential (m) of each component uniform throughout. This mechanism is called thermal diffusion. This paper proposes a discussion

  8. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2012-01-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons

  9. Induction melter apparatus

    Science.gov (United States)

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  10. Thermal neutron scattering from a hydrogen-metal system in terms of a general multi-sublattice jump diffusion model

    International Nuclear Information System (INIS)

    Kutner, R.; Sosnowska, I.

    1977-01-01

    A Multi-Sublattice Jump Diffusion Model (MSJD) for hydrogen diffusion through interstitial-site lattices is presented. The MSJD approach may, in principle, be considered as an extension of the Rowe et al (J. Phys. Chem. Solids; 32:41 (1971)) model. Jump diffusion to any neighbours with different jump times which may be asymmetric in space is discussed. On the basis of the model a new method of calculating the diffusion tensor is advanced. The quasielastic, double differential cross section for thermal neutron scattering is obtained in terms of the MSJD model. The model can be used for systems in which interstitial jump diffusion of impurity particles occurs. In Part II the theoretical results are compared with those for quasielastic neutron scattering from the αNbHsub(x) system. (author)

  11. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    Science.gov (United States)

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  12. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Jafarian, Mojtaba [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rizi, Mohsen Saboktakin, E-mail: M.saboktakin@Pa.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jafarian, Morteza [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Honarmand, Mehrdad [Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Javadinejad, Hamid Reza; Ghaheri, Ali [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Bahramipour, Mohammad Taghi [Materials Engineering Department, Hakim Sabzevari University, Sabzevar, 397 (Iran, Islamic Republic of); Ebrahimian, Marzieh [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2016-06-01

    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  13. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    International Nuclear Information System (INIS)

    Jafarian, Mojtaba; Rizi, Mohsen Saboktakin; Jafarian, Morteza; Honarmand, Mehrdad; Javadinejad, Hamid Reza; Ghaheri, Ali; Bahramipour, Mohammad Taghi; Ebrahimian, Marzieh

    2016-01-01

    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  14. Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals

    International Nuclear Information System (INIS)

    Prokert, F.; Savenko, B.N.; Balagurov, A.M.

    1994-01-01

    At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)

  15. Purification apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mortenson, C.W.

    1982-04-27

    An apparatus is provided for converting sea or other undrinkable waters to drinkable water without the use of driven or moving parts. Reliance upon gradient effects is made to effect the vaporization of, for example, sea water, followed by the condensation of the vapor to form distilled water. Gradient effects are achieved through the provision of differentials in the thermal conductivity, capillary activity, adsorptive, absorptive and/or pressure characteristics of particulate materials, or combinations of such physicals. For example, a column is packed with material graded as to its conductivity, the least thermally conductive material being nearest the cold or ambient water that is to be purified. In packing the column each successive layer of material has a greater thermal conductivity than the layer beneath it with the most conductive being at the top near the outlet arm of the column. The final outlet arm or tube is unheated or is at a temperature lower than that of the topmost conductive material so that vapor reaching the outlet tube gets condensed. This tube leads to a container kept in a cool place as, for example, buried in the ground, as, for instance, at the seashore deep enough to be cooled or to be surrounded by water, thus keeping the condensate cold. Pure water so collected is removed by such means as is desired. Other impure, volatile liquids may be similarly purified.

  16. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  17. Thermal conductivity of technetium

    International Nuclear Information System (INIS)

    Minato, K.; Serizawa, H.; Fukuda, K.

    1998-01-01

    The thermal diffusivity of technetium was measured on a disk sample of 5 mm in diameter and 1 mm in thickness by the laser flash method from room temperature to 1173 K, and the thermal conductivity was determined by the measured thermal diffusivity and density, and the reported specific heat capacity. The thermal diffusivity of technetium decreases with increasing temperature though it is almost constant above 600 K. The thermal conductivity of technetium shows a minimum around 400 K, above which the thermal conductivity increases with temperature. The electronic and phonon components of the thermal conductivity were evaluated approximately. The increase in the thermal conductivity of technetium with temperature is due to the increase in the electronic component. (orig.)

  18. Effect of Fe Doping by Thermal in-Diffusion on the Defect Structure of Lithium Niobate

    Energy Technology Data Exchange (ETDEWEB)

    Mignoni, S; Zaltron, A; Ciampolillo, M V; Bazzan, M; Argiolas, N; Sada, C; Fontana, M D, E-mail: zaltronam@padova.infm.it

    2010-11-15

    In this work we investigate the iron incorporation in thermally diffused Fe doped LN, by combining two experimental techniques, i.e. micro-Raman spectroscopy and proton induced X rays emission. Our results point out that in substituting for Li, Fe ions induces a decrease of Nb{sub Li} antisite defects and rearrangement of the Nb sublattice.

  19. Method and apparatus for altering material

    Science.gov (United States)

    Stinnett, Regan W.; Greenly, John B.

    2002-02-05

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  20. Iron doping of lithium niobate by thermal diffusion from thin film: study of the treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolillo, Maria Vittoria; Zaltron, Annamaria; Bazzan, Marco; Argiolas, Nicola; Sada, Cinzia [Universita di Padova (Italy); CNISM, Dipartimento di Fisica ' ' G. Galilei' ' , Padova (Italy); Mignoni, Sabrina; Fontana, Marc [Universite de Metz et Supelec, Laboratoire Materiaux Optiques, Photoniques et Systemes, UMR CNRS 7132, Metz (France)

    2011-07-15

    Thermal diffusion from thin film is one of the most widespread approaches to prepare iron doped regions in lithium niobate with limited size for photorefractive applications. In this work, we investigate the doping process with the aim of determining the best process conditions giving a doped region with the characteristics required for photorefractive applications. Six samples were prepared by changing the atmosphere employed in the diffusion treatment in order to obtain different combination of diffusion profiles and reduction degrees and also to check the effect of employing a wet atmosphere. The compositional, optical, and structural properties are then extensively characterized by combining Secondary ion Mass Spectrometry, UV, visible and IR spectrophotometry, High Resolution X-Rays Diffraction, and Micro-Raman Spectroscopy. Moreover, the sample topography was checked by Atomic Force Microscopy. An analysis of all our data shows that the best results are obtained performing a double step process, i.e. diffusion in oxidizing atmosphere and subsequent reduction at lower temperature in an hydrogen-containing atmosphere. (orig.)

  1. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and

  2. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    International Nuclear Information System (INIS)

    Kukkonen, I.; Suppala, I.

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into 'active' drill hole methods, and 'passive' indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial 'leak' of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm -1 , temperature recording with 5-7 sensors placed along the probe, and

  3. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se-Weon [Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 500-480 (Korea, Republic of); Cho, Hoon-Sung [School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757 (Korea, Republic of); Kumai, Shinji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, S8-10, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-12-15

    The effect of precipitation of intermetallics on the mechanical and thermal properties of Al-6.5Si-0.44Mg-0.9Cu-(Ti) alloys (in wt%) during various artificial aging treatments was studied using a universal testing machine and a laser flash apparatus. The solution treatment of the alloy samples was conducted at 535 °C for 6 h, followed by quenching in warm water. The solution-treated samples were artificially aged for 5 h at different temperatures ranging from 170 °C to 220 °C. After the artificial aging treatment, the Al-6.5Si-0.44Mg-0.9Cu alloy (the Ti-free alloy) had a lower ultimate tensile strength (UTS) than the Al-6.5Si-0.44Mg-0.9Cu-0.2Ti alloy. The UTS response of the alloys was enhanced by the addition of Ti, with the maximum UTS showing an increase from 348 MPa for the Ti-free alloy to 363 MPa for that containing 0.2 wt% Ti, aged at 180 °C. The Ti-free alloy had a higher thermal diffusivity than the Ti-containing alloy over all temperature ranges. Upon increasing the temperature from 180 °C to 220 °C, the room temperature thermal diffusivities increased because the solute concentration in the α-Al matrix rapidly decreased. In particular, the thermal diffusivity increased significantly between 200 °C and 400 °C. This temperature range matched the range of intermetallic phase precipitation as confirmed by differential scanning calorimetry and measurement of the coefficient of thermal expansion. During the artificial aging treatment, the intermetallic phases precipitated and grew rapidly. These reactions induced a reduction of the solute atoms in the solid solution, thus producing a more significant reduction in the thermal diffusivity. As the temperature was increased to above 400 °C, the formation of intermetallic phases ceased, and the thermal diffusivity showed a steady value, regardless of the aging temperature.

  4. Thermal properties of bodies in fractal and cantorian physics

    International Nuclear Information System (INIS)

    Zmeskal, Oldrich; Buchnicek, Miroslav; Vala, Martin

    2005-01-01

    factor gains Z = 1 (except for the ideal gas case D = 3) also for the fractal dimension D = 1/φ = 1.618033989, where φ is the golden mean value of the El Naschie's golden mean field theory. To determine the minimum it is also possible to employ the Lambert's W- Function u(A) = A + W[-Aexp(-A)], whereA ∼ 0.6779 and u ∼ -0.7330. The thermal properties of fractal structures (thermal capacity, thermal conductivity, diffusivity) and additional parameters (enthalpy, entropy, etc.) will be defined using the mathematic apparatus in the future. Good agreement of the fractal model with experimental data is documented on the compressibility factor of various gases

  5. Method and Apparatus for the Portable Identification of Material Thickness and Defects Using Spatially Controlled Heat Application

    Science.gov (United States)

    Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)

    1999-01-01

    A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.

  6. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  7. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  8. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  9. Measuring Thermal Conductivity at LH2 Temperatures

    Science.gov (United States)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  10. Excess Entropy and Diffusivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.

  11. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems.

    Science.gov (United States)

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-02-29

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.

  12. Modeling of electromagnetic and thermal diffusion in a large pure aluminum stabilized superconductor under quench

    CERN Document Server

    Gavrilin, A V

    2001-01-01

    Low temperature composite superconductors stabilized with extra large cross-section pure aluminum are currently in use for the Large Helical Device in Japan, modern big detectors such as ATLAS at CERN, and other large magnets. In these types of magnet systems, the rated average current density is not high and the peak field in a region of interest is about 2-4 T. Aluminum stabilized superconductors result in high stability margins and relatively long quench times. Appropriate quench analyses, both for longitudinal and transverse propagation, have to take into account a rather slow diffusion of current from the superconductor into the thick aluminum stabilizer. An exact approach to modeling of the current diffusion would be based on directly solving the Maxwell's equations in parallel with thermal diffusion and conduction relations. However, from a practical point of view, such an approach should be extremely time consuming due to obvious restrictions of computation capacity. At the same time, there exist cert...

  13. Difference in electron thermal diffusivity and profile between interior and exterior of TFTR L-mode plasmas

    International Nuclear Information System (INIS)

    Hiroe, S.; Johnson, D.W.; Goldston, R.J.

    1990-01-01

    The local properties such as scale lengths of the electron density (L n e ), temperature (L T e ), and pressure (L p e ), and the electron thermal diffusivity χ e (r) (m 2 /s) for r/a > 0.3 have been studied for TFTR L-mode discharges under the assumption of χ e = χ i . The scale lengths and the electron thermal diffusivity in the interior 0.3 e can be expressed as (with correlation coefficient R = 0.61), χ e (r) = 1.44 x 10 18 (r/a) 1.0 T e (r) 0.1 q(r) 0.1 /n e 0.9 (r). In the exterior region (0.55 e can be described as (with R = 0.68), χ e (r) = 2.3 x 10 3 (r/a) 1.7 T e (r) 0.7 q(r) 0.8 /n e 0.2 (r). It is interesting to note the negative n e dependence of χ e in the interior and the positive T e dependence of χ e in the exterior

  14. Evaluation of the performance of thermal diffusion column separating binary gas mixtures with continuous draw-off

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Takashima, Yoichi

    1977-01-01

    Advanced transport relations involving three column constants, H sup(σ), K sub(c)sup(σ) and K sub(d)sup(σ), are developed to describe the separation performance of a thermal diffusion column with continuous draw-off. These constants were related to some integral functions of velocity profile, temperature distribution, density of gas mixture and characteristic values of transport coefficients. The separation of binary gas mixture by this technique was so effective that three reasonable factors had to be introduced into the column constants in the theory. They are a circulation constant of natural convection, a definition of characteristic mean temperature and a definition of mean composition over the column. The separation performance and the column constants also varied with the distortion of velocity profile due to continuous draw-off from the top or the bottom of column. However, its effect was not large, compared with the other factors mentioned above. The theory presented here makes possible to estimate the separation performance of hot-wire type thermal diffusion column with high accuracy. (auth.)

  15. An inverse diffusivity problem for the helium production–diffusion equation

    International Nuclear Information System (INIS)

    Bao, Gang; Xu, Xiang

    2012-01-01

    Thermochronology is a technique for the extraction of information about the thermal history of rocks. Such information is crucial for determining the depth below the surface at which rocks were located at a given time (Bao G et al 2011 Commun. Comput. Phys. 9 129). Mathematically, extracting the time–temperature path can be formulated as an inverse diffusivity problem for the helium production–diffusion equation which is the underlying process of thermochronology. In this paper, to reconstruct the diffusivity which depends on space only and accounts for the structural information of rocks, a local Hölder conditional stability is obtained by a Carleman estimate. A uniqueness result is also proven for extracting the thermal history, i.e. identifying the time-dependant part of the diffusion coefficient, provided that it is analytical with respect to time. Numerical examples are presented to illustrate the validity and effectiveness of the proposed regularization scheme. (paper)

  16. A cryostatic setup for the low-temperature measurement of thermal diffusivity with the photothermal method

    International Nuclear Information System (INIS)

    Bertolotti, M.; Liakhou, G.; Li Voti, R.; Paoloni, S.; Sibilia, C.; Sparvieri, N.

    1995-01-01

    A cryostatic setup is described to perform photothermal deflection measurements from room temperature to 77 K. The setup uses gaseous nitrogen as a medium where the photodeflection is produced. The ability of the system to work is demonstrated presenting some measurements of thermal diffusivity of high-temperature superconductor samples and of yttrium-iron garnets with variable aluminum content. copyright 1995 American Institute of Physics

  17. Diffusion in liquids a theoretical and experimental study

    CERN Document Server

    Tyrrell, H J V

    1984-01-01

    Diffusion in Liquids: A Theoretical and Experimental Study aims to discuss the principles, applications, and advances in the field of diffusion, thermal diffusion, and thermal conduction in liquid systems. The book covers topics such as the principles of non-equilibrium thermodynamics; diffusion in binary and multicompetent systems; and experimental methods of studying diffusion processes in liquids. Also covered in the book are topics such as the theoretical interpretations of diffusion coefficients; hydrodynamic and kinetic theories; and diffusion in electrolyte systems. The text is recommen

  18. Six years of ground–air temperature tracking at Malence (Slovenia): thermal diffusivity from subsurface temperature data

    Czech Academy of Sciences Publication Activity Database

    Dědeček, Petr; Rajver, D.; Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2013-01-01

    Roč. 10, č. 2 (2013), 025012/1-025012/9 ISSN 1742-2132 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ground-air temperature coupling * thermal diffusivity * conductive-convective heat transfer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.895, year: 2013

  19. BETA (Bitter Electromagnet Testing Apparatus)

    Science.gov (United States)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.

    2017-10-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  20. Mechanism to synthesize a ‘moving optical mark’ at solid-ambient interface for the estimation of thermal diffusivity of solid

    Directory of Open Access Journals (Sweden)

    Settu Balachandar

    2016-01-01

    Full Text Available A novel mechanism is proposed, involving a novel interaction between solid-sample supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a ‘moving optical-mark’ at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. ‘Product of velocity of optical-mark and distance’ versus ‘non-dimensional velocity’ is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature.

  1. A statistical approach for predicting thermal diffusivity profiles in fusion plasmas as a transport model

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2014-01-01

    A statistical approach is proposed to predict thermal diffusivity profiles as a transport “model” in fusion plasmas. It can provide regression expressions for the ion and electron heat diffusivities (χ i and χ e ), separately, to construct their radial profiles. An approach that this letter is proposing outstrips the conventional scaling laws for the global confinement time (τ E ) since it also deals with profiles (temperature, density, heating depositions etc.). This approach has become possible with the analysis database accumulated by the extensive application of the integrated transport analysis suite to experiment data. In this letter, TASK3D-a analysis database for high-ion-temperature (high-T i ) plasmas in the LHD (Large Helical Device) is used as an example to describe an approach. (author)

  2. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  3. Unfired clay bricks – retention curves and liquid diffusivities

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Peuhkuri, Ruut Hannele; Kristensen, A.

    2002-01-01

    This paper presents retention curves and liquid diffusivities of two different types of unfired clay bricks, both produced in Denmark on commercial basis. The retention curves are determined by use of pressure plate and pressure membrane apparatuses. The liquid diffusivity is calculated on the ba...... on the basis of capillary rise of water measured by use of X-ray equipment. The data from the capillary rise of water is transformed by the Boltzmann transformation....

  4. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    Science.gov (United States)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for

  5. Frequency-dependent photothermal measurement of transverse thermal diffusivity of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Brill, J. W.; Shahi, Maryam; Yao, Y. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Payne, Marcia M.; Anthony, J. E. [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Edberg, Jesper; Crispin, Xavier [Department of Science and Technology, Organic Electronics, Linköping University, SE-601 74 Norrköping (Sweden)

    2015-12-21

    We have used a photothermal technique, in which chopped light heats the front surface of a small (∼1 mm{sup 2}) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.

  6. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  7. Influence of silicon dangling bonds on germanium thermal diffusion within SiO{sub 2} glass

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D.; Martin, F.; Ross, G. G. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Cai, R. S.; Wang, Y. Q. [The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Demarche, J.; Terwagne, G. [LARN, Centre de Recherche en Physique de la Matière et du Rayonnement (PMR), University of Namur (FUNDP), B-5000 Namur (Belgium); Rosei, F. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Center for Self-Assembled Chemical Structures, McGill University, Montreal, Quebec H3A 2K6 (Canada)

    2014-03-17

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO{sub 2}/Si films can be associated with the presence of unsaturated SiO{sub x} chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO{sub 2} glass, which could enable to considerably extend the performance of Ge-based devices above 1300 K.

  8. Apparatus and method for the measurement of neutron moderating or absorbing properties of objects

    International Nuclear Information System (INIS)

    Untermyer, S.I.

    1981-01-01

    An apparatus and method for measuring the neutron moderating or absorbing properties of objects or materials is disclosed in which a fast neutron source cooperates with a neutron absorbing material which reduces the energy of the fast neutrons by inelastic scattering so that they can be readily thermalized by a moderator. A thermal neutron detector is disposed adjacent the material and serves to detect thermal neutrons emitted by a moderator placed to receive and thermalize the reduced energy neutrons. A material whose absorption is to be measured is placed between a moderator and the detector

  9. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  10. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  11. Apparatus and method for detecting explosives

    International Nuclear Information System (INIS)

    Griffith, B.

    1976-01-01

    An apparatus is described for use in situations such as airports to detect explosives hidden in containers (for eg. suitcases). The method involves the evaluation of the quantities of oxygen and nitrogen within the container by neutron activation analysis and the determination of whether these quantities exceed predetermined limits. The equipment includes a small sub-critical lower powered reactor for thermal (0.01 to 0.10 eV) neutron production, a radium beryllium primary source, a deuterium-tritium reactor as a high energy (> 1.06 MeV) neutron source and Geiger counter detector arrays. (UK)

  12. Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Jonsson, Hannes

    1996-01-01

    and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3-5 Angstrom from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip......We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip...

  13. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  14. Determination of frequencies of atomic oscillations along the fourth order symmetry axis in indium arsenide according to thermal diffusion scattering of X-rays

    International Nuclear Information System (INIS)

    Orlova, N.S.

    1978-01-01

    Intensity of diffusion scattering of X-rays from the plane of a monocrystal of indium arsenide has been measured on the monochromatized CuKsub(α)-radiation. The samples are made of Cl indium arsenide monocrystal of the n-type with the 1x10 18 cm -3 concentration of carriers in the form of a plate with the polished parallel cut-off with the +-5' accuracy. The investigations have been carried out on the URS-5 IM X-ray diffractometer at room temperature in vacuum. Intensities of thermal diffusion scattering of the second order have been calculated by the two-atomic chain model with different mass and four interaction paramaters. Based upon the analysis of intensity of single-phonon diffusion scattering the curves of frequencies of atomic oscillations along the direction [100] have been determined. The values of frequencies obtained experimentally on the thermal diffusion scattering of X-rays are in a satisfactory agreement with the calculated data. The frequencies obtained are compared with the results of calculation and the analysis of multiphonon spectra of IR-absorption made elsewhere

  15. The effect of arsenic thermal diffusion on the morphology and photoluminescence properties of sub-micron ZnO rods

    Energy Technology Data Exchange (ETDEWEB)

    Ding Meng [Department of Physics, Jilin University, Changchun 130023 (China); Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China); Yao Bin, E-mail: binyao@jlu.edu.c [Department of Physics, Jilin University, Changchun 130023 (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.c [Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China); Fang Fang; Shen Dezhen; Zhang Zhenzhong [Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China)

    2010-05-31

    As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.

  16. The effect of arsenic thermal diffusion on the morphology and photoluminescence properties of sub-micron ZnO rods

    International Nuclear Information System (INIS)

    Ding Meng; Yao Bin; Zhao Dongxu; Fang Fang; Shen Dezhen; Zhang Zhenzhong

    2010-01-01

    As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.

  17. Thermal conductivity and diffusivity of Permian Basin bedded salt at elevated pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Boro, C.O.; Beiriger, J.M.; Montan, D.N.

    1983-10-01

    Measurements of thermal conductivity and diffusivity were made on five core samples of bedded rock salt from the Permian Basin in Texas to determine its suitability as an underground nuclear waste repository. The sample size was 100 mm in diameter by 250 mm in length. Measurements were conducted under confining pressures ranging from 3.8 to 31.0 MPa and temperatures from room temperature to 473 K. Conductivity showed no dependence on confining pressure but evidenced a monotonic, negative temperature dependence. Four of the five samples showed conductivities clustered in a range of 5.6 +- 0.5 W/m.K at room temperature, falling to 3.6 +- 0.3 W/m.K at 473 K. These values are approximately 20% below those for pure halite, reflecting perhaps the 5 to 20%-nonhalite component of the samples. Diffusivity also showed a monotonic, negative temperature dependence, with four of the five samples clustered in a range of 2.7 +- 0.4 x 10 -6 m 2 /s at room temperature, and 1.5 +- 0.3 x 10 -6 m 2 /s at 473 K, all roughly 33% below the values for pure halite. One sample showed an unusually high conductivity (it also had the highest diffusivity), about 20% higher than the others; and one sample showed an unusually low diffusivity (it also had the lowest conductivity), roughly a factor of 2 lower than the others. 27 references, 8 figures, 4 tables

  18. A method of measuring the thermal conductivity of liquids

    NARCIS (Netherlands)

    Held, E.F.M. van der; Drunen, F.G. van

    1949-01-01

    We described the development of an apparatus for the determination of the thermal conductivity of liquids. The apparatus is suitable for all kinds of liquids, including the strongest acids. From a given time we pass an electric current through a thin straight wire, placed in a homogeneous material

  19. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation

    International Nuclear Information System (INIS)

    Su, Yun; Li, Jun

    2016-01-01

    Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn. (paper)

  20. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite; Etude methodologique de la diffusion de cations interagissants dans les argiles. Application: mise en oeuvre experimentale et modelisation du couplage chimie-diffusion d'alcalins dans une bentonite synthetique

    Energy Technology Data Exchange (ETDEWEB)

    Melkior, Th

    2000-07-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  1. Calculation of period processing solution syrup in vacuum apparatus

    Directory of Open Access Journals (Sweden)

    A. A. Slavyanskii

    2016-01-01

    Full Text Available Important and crucial element in the management of the technological flow of production of sugar product standards is the period of time the enrichment of massecuite, since its neutralization in the process of crystal formation in vacuum apparatus, excess sugar solution. Although currently proposed and implemented in the industry, including as a front-end accompany the process, a number of ways in the real world sugar production in many cases have to resort to the services of an experienced operator. It is obvious that in any case it is necessary to have a surround-dependent glucose solution data on time for the excess sugar solution into the vacuum apparatus. With regard to the period of the enrichment of depleted sucrose solution are entered into this substance excess sucrose solution, it should be noted that this problem is theoretically still insufficiently developed. It is obvious that for practical purposes it is desirable to have a simple and convenient for engineering calculation of sugar processing time dependencies of the specified volume of water from the operating parameters of the process (the required concentration of sucrose, temperature of the solution stirring. The problem is the quantitative analysis of sucrose crystallization in vacuum apparatus, including the timing of enrichment solution to the excess syrup, period of time processing massecuite total this apparatus has been investigated in many works. However, due to its importance to the task of obtaining commercial sugar high standards this issue required further in-depth examination. In the article to support the enrichment process solution sucrose due to neutralize this solvent system in vacuum apparatus, from the standpoint of diffusion theory provides a more reasonable compared to known so far, quantitative analysis of this process. Where as sucrose crystals team are considering a system of balls, uniformly distributed in vacuum apparatus. On the basis of the solution

  2. ROLLER FILTRATION APPARATUS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter and liquid from a m...

  3. System for diffusing light from an optical fiber or light guide

    Science.gov (United States)

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  4. Multipactor discharge apparatus

    International Nuclear Information System (INIS)

    1976-01-01

    The invention deals with a multipactor discharge apparatus which can be used for tuning microwave organs such as magnetron oscillators and other cavity resonators. This apparatus is suitable for delivering an improved tuning effect in a resonation organ wherefrom the working frequency must be set. This apparatus is equipped with two multipactor discharge electrodes set in a configuration such to that a net current flows from one electrode to another. These electrodes are parallel and flat. The apparatus can be used in magnetron devices as well for continuous waves as for impulses

  5. Thermal anchoring of wires in large scale superconducting coil test experiment

    International Nuclear Information System (INIS)

    Patel, Dipak; Sharma, A.N.; Prasad, Upendra; Khristi, Yohan; Varmora, Pankaj; Doshi, Kalpesh; Pradhan, S.

    2013-01-01

    Highlights: • We addressed how thermal anchoring in large scale coil test is different compare to small cryogenic apparatus? • We did precise estimation of thermal anchoring length at 77 K and 4.2 K heat sink in large scale superconducting coil test experiment. • We addressed, the quality of anchoring without covering entire wires using Kapton/Teflon tape. • We obtained excellent results in temperature measurement without using GE Varnish by doubling estimated anchoring length. -- Abstract: Effective and precise thermal anchoring of wires in cryogenic experiment is mandatory to measure temperature in milikelvin accuracy and to avoid unnecessary cooling power due to additional heat conduction from room temperature (RT) to operating temperature (OT) through potential, field, displacement and stress measurement instrumentation wires. Instrumentation wires used in large scale superconducting coil test experiments are different compare to cryogenic apparatus in terms of unique construction and overall diameter/area due to errorless measurement in large time-varying magnetic field compare to small cryogenic apparatus, often shielded wires are used. Hence, along with other variables, anchoring techniques and required thermal anchoring length are entirely different in this experiment compare to cryogenic apparatus. In present paper, estimation of thermal anchoring length of five different types of instrumentation wires used in coils test campaign at Institute for Plasma Research (IPR), India has been discussed and some temperature measurement results of coils test campaign have been presented

  6. Gamma tomography apparatus

    International Nuclear Information System (INIS)

    Span, F.J.

    1988-01-01

    The patent concerns a gamma tomography apparatus for medical diagnosis. The apparatus comprises a gamma scintillation camera head and a suspension system for supporting and positioning the camera head with respect for the patient. Both total body scanning and single photon emission tomography can be carried out with the apparatus. (U.K.)

  7. Development of PIV for Microgravity Diffusion Flames

    Science.gov (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  8. Thermal diffusivity measurement of molten fluoride salt containing ThF4 (improvement of the simple ceramic cell)

    International Nuclear Information System (INIS)

    Kato, Y.; Araki, N.; Kobayashi, K.; Makino, A.

    1985-01-01

    Design conditions of a cylindrical ceramic cell are estimated which can be used to measure the absolute value of thermal diffusivity of molten salts by applying the stepwise heating method. Molten salt is expected to be used in nuclear systems such as the Molten-Salt Reactor, the Accelerator Molten-Salt Breeder, the Fusion Reactor Blanket Coolant, the Fuel Reprocessing System, and so on

  9. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  10. Thermal diffusion of chlorine in uranium dioxide studied by secondary ion mass spectrometry and X-ray absorption spectroscopy

    Science.gov (United States)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Raimbault, L.; Scheidegger, A. M.; Farges, F.; Carlot, G.

    2007-05-01

    In a nuclear reactor, 35Cl present as an impurity in the nuclear fuel is activated by thermal neutron capture. During interim storage or geological disposal of the nuclear fuel, 36Cl may be released from the fuel to the geo/biosphere and contribute significantly to the 'instant release fraction'. In order to elucidate the diffusion mechanisms, both irradiation and thermal effects must be assessed. This paper deals with the thermal diffusion of chlorine in depleted UO2. For this purpose, sintered UO2 pellets were implanted with 37Cl at an ion fluence of 1013 cm-2 and successively annealed in the 1175-1475 K temperature range. The implanted chlorine is used to simulate the behaviour of the displaced one due to recoil and to interactions with the fission fragments during reactor operation. The behaviour of the pristine and the implanted chlorine was investigated during thermal annealing. SIMS and μ-XAS (at the Cl-K edge) analyses show that: the thermal migration of implanted chlorine becomes significant at 1275 K; this temperature and the calculated activation energy of 4.3 eV points out the great ability of chlorine to migrate in UO2 at relatively low temperatures, the behaviour of the implanted chlorine which aggregates into 'hot spots' during annealing before its effusion is clearly different from that of the pristine one which remains homogenously distributed after annealing, the 'hot spot' and the pristine chlorine seem to be in different structural environments. Both types of chlorine are assumed to have a valence state of -I, the comparison between an U2O2Cl5 reference compound and the pristine chlorine environment shows a contribution of the U2O2Cl5 to the pristine chlorine.

  11. Thermal diffusion of chlorine in uranium dioxide studied by secondary ion mass spectrometry and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Raimbault, L.; Scheidegger, A.M.; Farges, F.; Carlot, G.

    2007-01-01

    In a nuclear reactor, 35 Cl present as an impurity in the nuclear fuel is activated by thermal neutron capture. During interim storage or geological disposal of the nuclear fuel, 36 Cl may be released from the fuel to the geo/biosphere and contribute significantly to the 'instant release fraction'. In order to elucidate the diffusion mechanisms, both irradiation and thermal effects must be assessed. This paper deals with the thermal diffusion of chlorine in depleted UO 2 . For this purpose, sintered UO 2 pellets were implanted with 37 Cl at an ion fluence of 10 13 cm -2 and successively annealed in the 1175-1475K temperature range. The implanted chlorine is used to simulate the behaviour of the displaced one due to recoil and to interactions with the fission fragments during reactor operation. The behaviour of the pristine and the implanted chlorine was investigated during thermal annealing. SIMS and μ-XAS (at the Cl-K edge) analyses show that: (1) the thermal migration of implanted chlorine becomes significant at 1275K; this temperature and the calculated activation energy of 4.3eV points out the great ability of chlorine to migrate in UO 2 at relatively low temperatures; (2) the behaviour of the implanted chlorine which aggregates into 'hot spots' during annealing before its effusion is clearly different from that of the pristine one which remains homogenously distributed after annealing; (3) the 'hot spot' and the pristine chlorine seem to be in different structural environments. Both types of chlorine are assumed to have a valence state of -I; (4) the comparison between an U 2 O 2 Cl 5 reference compound and the pristine chlorine environment shows a contribution of the U 2 O 2 Cl 5 to the pristine chlorine

  12. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite

    International Nuclear Information System (INIS)

    Melkior, Th.

    2000-01-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  13. Thermal transfer in multilayer materials

    Energy Technology Data Exchange (ETDEWEB)

    Bouayad, H.; Mokhtari, A.; Martin, C.; Fauchais, P. [Laboratoire de Materiaux Ceramiques et Traitements de Surface, 87 - Limoges (France)

    1993-12-31

    It is easier to measure the thermal diffusivity (a) of material rather than its thermal conductivity (k), a simple relationship (k=a cp) allowing to calculate k provided and cp are measured. However this relationship applies only if the considered material is homogenous. For composite materials, especially for multilayers ones, we have developed an analytical model and a numerical one. The first one allows to determine the thermal diffusivity and conductivity of a two-layer material. The second one allows to determine the thermal diffusivity of one of the layers provided the values of (a) are known for the two other layers (for a two or three-layer material). The use of the two models to calculate the apparent diffusivity of a two layer material results in values in fairly good agreement. (Authors). 4 refs., 3 figs., 3 tabs.

  14. Thermal diffusivity and butterfly velocity in anisotropic Q-lattice models

    Science.gov (United States)

    Jeong, Hyun-Sik; Ahn, Yongjun; Ahn, Dujin; Niu, Chao; Li, Wei-Jia; Kim, Keun-Young

    2018-01-01

    We study a relation between the thermal diffusivity ( D T ) and two quantum chaotic properties, Lyapunov time (τ L ) and butterfly velocity ( v B ) in strongly correlated systems by using a holographic method. Recently, it was shown that E_i:={D}_{T,i}/({v}{^{B,i}}^2{τ}_L)(i=x,y) is universal in the sense that it is determined only by some scaling exponents of the IR metric in the low temperature limit regardless of the matter fields and ultraviolet data. Inspired by this observation, by analyzing the anisotropic IR scaling geometry carefully, we find the concrete expressions for E_i in terms of the critical dynamical exponents z i in each direction, E_i={z}_i/2({z}_i-1) . Furthermore, we find the lower bound of E_i is always 1 /2, which is not affected by anisotropy, contrary to the η/s case. However, there may be an upper bound determined by given fixed anisotropy.

  15. Development of an apparatus to measure thermophysical properties of wind tunnel heat transfer models

    Science.gov (United States)

    Romanowski, R. F.; Steinberg, I. H.

    1974-01-01

    The apparatus and technique for measuring the thermophysical properties of models used with the phase-change paint method for obtaining wind tunnel heat transfer data are described. The method allows rapid measurement of the combined properties in a transient manner similar to an actual wind tunnel test. An effective value of the thermophysical properties can be determined which accounts for changes in thermal properties with temperature or with depth into the model surface. The apparatus was successfully tested at various heating rates between 19,000 and 124,000 watts per square meter.

  16. Diffused zircaloy 2/stainless steel junctions

    International Nuclear Information System (INIS)

    Jacques, F.

    1964-01-01

    The diffusion permits to realize joints between two different materials, in fact of the formation of a liquid phase at the contact face. The study of the tensile properties allowed the determination of the ideal conditions for the diffusion treatment which are, within 2 and 3 minutes for a temperature within 1020 C and 1030 C. The characteristics of the so obtained joints were, studied: mechanical properties, tightness, resistance to thermal cycling. Analysis of the thermal stress, owing to the differential dilatation of the two materials mode the object of a particular study. The investigation on the diffusion zone, includes specially, an analysis of the constituents distribution formed during the diffusion treatment. (author) [fr

  17. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera

    Science.gov (United States)

    Vargas, E.; Cifuentes, A.; Alvarado, S.; Cabrera, H.; Delgado, O.; Calderón, A.; Marín, E.

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  18. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  19. Construction of an apparatus for the magnetic capture of fermionic lithium atoms

    International Nuclear Information System (INIS)

    Jochim, S.

    2000-01-01

    This thesis reports on the construction of an apparatus for the magneto-optical trapping of the fermionic 6 Li-Isotope. This represents a first step towards experiments on the quantum degeneracy of dilute fermionic gases. The magneto-optical trap (MOT) will serve as a cold atom source for loading an optical trap. The apparatus consists of a laser system that excites the two 6 Li-D 2 -lines at 671 nm, an arrangement of coils generating the magnetic fields necessary to operate the MOT and a Zeeman slower, and a UHV-apparatus. The MOT is loaded from a thermal atomic beam. The Zeeman slower decelerates atoms with a velocity smaller than 600 m/s to about 40 m/s, so that they can be captured in the MOT. We expect to trap at least 10 8 atoms at a temperature of about 400 μK. (orig.)

  20. Thermal conductivity at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, M [CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service des Basses Temperatures

    1976-06-01

    The interest of low and very low temperatures in solid physics and especially that of thermal measurements is briefly mentioned. Some notes on the thermal conductivity of dielectrics, the method and apparatus used to measure this property at very low temperatures (T<1.5K) and some recent results of fundamental and applied research are then presented.

  1. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    1981-01-01

    A thermal power plant reheat cycle system is described in which the discharge from a first expansion stage is reheated prior to expansion in a subsequent expansion stage. The primary coolant has a high sheet transfer rate and can accommodate temperature changes in the reheat vapor. (U.K.)

  2. The interaction of thermal radiation on vertical oscillating plate with variable temperature and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .

  3. Si diffusion in compositional disordering of Si-implanted GaAs/AlGaAs superlattices induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    Uematsu, Masashi; Yanagawa, Fumihiko

    1988-01-01

    The Si diffusion in Si-implanted GaAs/Al 0.5 Ga 0.5 As superlattices intermixed in the disrodering process induced by rapid thermal annealing (RTA), is investigated by means of secondary ion mass spectroscopy (SIMS). The SIMS profiles indicate that no fast Si diffusion occurs during the disordering, and the disordering occurs when the Si concentration exceeds 1 x 10 19 cm -3 , which is about three times larger than the threshold value for the disordering by furnace annealing (FA). The number of Si atoms which are allowed to pass through the heterointerface is considered to be essential for disordering. (author)

  4. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  5. Determination of the enthalpy of fusion and thermal diffusivity for ternary Cu_6_0_−_xSn_xSb_4_0 alloys

    International Nuclear Information System (INIS)

    Zhai, W.; Zhou, K.; Hu, L.; Wei, B.

    2016-01-01

    Highlights: • The increasing Sn content reduces the liquidus temperature. • High Sn content results in lower enthalpy of fusion by polynomial functions. • The thermal diffusivity drops from the solid toward the semi-solid state. • Undercoolability of alloys with primary Cu_2Sb phase is stronger than others. - Abstract: The liquidus and solidus temperatures, enthalpy of fusion, and the temperature dependence of thermal diffusivity for ternary Cu_6_0_−_xSn_xSb_4_0 alloys were systematically measured by DSC and laser flash methods. It is found that both the liquidus temperature and the enthalpy of fusion decrease with the rise of Sn content, and their relationships with alloy composition were established by polynomial functions. The thermal diffusivity usually drops from the solid toward the semi-solid state. The undercoolability of those liquid Cu_6_0_−_xSn_xSb_4_0 alloys with primary Cu_2Sb solid phase is stronger than the others with primary β(SnSb) intermetallic compound, and the increase of cooling rate facilitates further undercooling. Microstructural observation indicates that both of the primary Cu_2Sb and β(SnSb) intermetallic compounds in ternary Cu_6_0_−_xSn_xSb_4_0 alloys grow in faceted mode, and develop into coarse flakes and polygonal blocks.

  6. Determination of thermal diffusivity of dental enamel and dentin as a function of temperature, using infrared thermography; Determinacao da difusividade termica do esmalte e dentina em funcao de temperatura, utilizando termografia no infravermelho

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago Martini

    2009-07-01

    In this work it was developed a software that calculates automatically, the thermal diffusivity value as a function of temperature in materials. The infrared thermography technique was used for data acquisition of temperature distribution as a function of time. These data were used to adjust a temperature function obtained from the homogeneous heat equation with specific boundary conditions. For that, an infrared camera (detecting from 8 {mu}m to 9 {mu}m) was calibrated to detect temperature ranging from 185 degree C up to 1300 degree C at an acquisition rate of 300 Hz. It was used, 10 samples of dental enamel and 10 samples of dentin, with 4 mm x 4 mm x 2 mm, which were obtained from bovine lower incisor teeth. These samples were irradiated with an Er:Cr:YSGG pulsed laser ({lambda} = 2,78 {mu}m). The resulting temperature was recorded 2 s prior, 10 s during irradiation and continuing for 2 more seconds after it. After each irradiation, all obtained thermal images were processed in the software, creating a file with the data of thermal diffusivity as a function of temperature. Another file with the thermal diffusivity values was also calculated after each laser pulse. The mean result of thermal diffusivity obtained for dental enamel was 0,0084 {+-} 0,001 cm2/s for the temperature interval of 220-550 degree C. The mean value for thermal diffusivity obtained for dentin was 0,0015 0,0004 cm2/s in temperatures up to 360 degree C; however, this value increases for higher temperatures. According to these results, it was possible to conclude that the use of infrared thermography, associated with the software developed in this work, is an efficient method to determine the thermal diffusivity values as a function of temperature in different materials. (author)

  7. Method and apparatus for measuring thermal neutron characteristics

    International Nuclear Information System (INIS)

    Johnstone, C.W.

    1983-01-01

    The thermal neutron decay characteristics of an earth formation are measured by detecting indications of the thermal neutron concentration in the formation during a selected set of two measurement intervals following irradiation of the formation with a burst of fast neutrons. These measurement intervals may comprise a sequence of time gates following a delay after the neutron burst. The duration of the neutron bursts, of the delay between the burst and the start of the sequence, and of the individual time gates, may all be adjusted by a common, selected one of a finite number of scale factor values. The set of two measurement intervals is selected from among a number of possible sets as a function of a previously measured value of the decay characteristic. Each measurement interval set is used over only a specific range of decay characteristic values for which it has been determined, in accordance with a previously established relationship between the decay characteristic value and a function of the thermal neutron concentration measurements for the set, to afford enhanced statistical accuracy in the measured value of the decay characteristic. (author)

  8. Flowing afterglow: construction of an apparatus, measurement of rate constants, and consideration of the diffusive behavior of charges

    International Nuclear Information System (INIS)

    Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Fujii, Toshihiro.

    1984-01-01

    A flowing afterglow apparatus was constructed and the operation of the afterglow system including data analysis was tested by measuring the rate constants for the reactions N + + NO, N 2 + + NO, He + + N 2 , and SF 6 + e; the results were 5.8 x 10 -10 , 3.9 x 10 -10 , 1.20 x 10 -9 , and 2.1 x 10 -7 cm 3 s -1 respectively. In the measurements an extraction voltage for ion sampling was not applied to the nose cone in order not to introduce an electric field into the reaction region. A ''non-ambipolar'' model developed by us was used for the data analysis of the ion/molecule reactions. For the data analysis of the electron attachment, a typical curve fit mehtod to the product ion signal was used. However, no theoretical curves fit the experimental points. This disagreement is attributed to a change of the ion-sampling efficiency through the nose-cone aperture arising from a change of the electron-dominated plasma to a negative-ion-dominated plasma with an increasing flow rate of SF 6 . Nevertheless, the attachment rate could be determined by fitting the theoretical and experimantal curves in the limited region of the SF 6 flow rate where the negative-ion-dominated plasma is established at the sampling aperture. All the rate constants obtained here agree reasonably well with literature values. Next, errors in the positive ion/molecule reaction rate constants, which would occur if the diffusion coefficients of the ions and neutrals each have a + 10 % error were calculated for the flow model to be -0.4 and +1.2 % respectively, demonstrating that these parameters are not important in the analysis of data. This insensitivity explains why the nose-cone voltage applied in a typical flowing afterglow operation has not caused a significant error in the published rate constants although it disturbs the ion diffusive behavior. (author)

  9. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  10. Borehole sealing method and apparatus

    International Nuclear Information System (INIS)

    Hartley, J.N.; Jansen, G. Jr.

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole. 5 claims, 1 figure

  11. Improvement in performance of a direct solar-thermally driven diffusion-absorption refrigerator; Leistungssteigerung einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Fabian; Bierling, Bernd; Spindler, Klaus [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2012-07-01

    The diffusion-absorption refrigeration process offers the possibility of a wear-free refrigeration system without electricity and noise. At the Institute for Thermodynamics and Thermal Engineering (Stuttgart, Federal Republic of Germany), a decentralized solar refrigeration system is developed based on this process. The expeller and the thermosiphon pump of this process are integrated in the collector, and thus are heated directly. The diffusion-absorption refrigeration process also can be used for domestic water heating by means of a second cycle in the collector. A cooling capacity of 400 W is to be achieved for each solar collector (2.5 m{sup 2}). Several refrigeration systems can be modular interconnected for higher cooling capacities. As part of the DKV Conference 2011, the construction of the plant, the first measurement data and results were presented. Since then, both the cooling capacity and the coefficient of performance of the diffusion-absorption refrigeration system could be increased significantly. For this, solvent heat exchanger, evaporator, absorber and gas heat exchanger have been optimized in terms of system efficiency. In addition, a stable system operation could be achieved by means of a bypass line. About this line, an exaggerated refrigerant already is removed in the solvent heat exchanger. In addition, a condensate pre-cooler was integrated in order to increase the efficiency. For a detailed investigation of the auxiliary gas cycle facilities, the volume flow and the concentration of the auxiliary gas circuit were examined under utilization of an ultrasonic sensor. In order to evaluate the influence factors by means of a parametric study, the mass transfer in the auxiliary gas circuit was simulated using the two-fluid model. The results of these studies, the current system configuration and the current results are presented in the contribution under consideration.

  12. Apparatus for drying sugar cubes

    NARCIS (Netherlands)

    Derckx, H.A.J.; Torringa, H.M.

    1999-01-01

    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the

  13. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1979-01-01

    A method is described for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component

  14. Combination thermal and radiation shield for well logging apparatus

    International Nuclear Information System (INIS)

    Wilson, B.F.

    1984-01-01

    A device for providing both thermal protection and radiation shielding for components such as radiation detectors within a well logging instrument comprises a thermally insulative flask containing a weldment filled with a mass of eutectic material which undergoes a change of state e.g. melting at a temperature which will provide an acceptable thermal environment for such components for extended time periods. The eutectic material which is preferably a bismuth (58%)/tin (42%) alloy has a specific gravity (> 8.5) facilitating its use as a radiation shield and is distributed around the radiation detectors so as to selectively impede the impinging of the detectors by radiation. The device is incorporated in a skid of a well logging instrument for measuring γ backscatter. A γ source is located either above or within the protective shielding. (author)

  15. DWARF, 1-D Few-Group Neutron Diffusion with Thermal Feedback for Burnup and Xe Oscillation

    International Nuclear Information System (INIS)

    Anderson, E.C.; Putnam, G.E.

    1975-01-01

    1 - Description of problem or function: DWARF allows one-dimensional simulation of reactor burnup and xenon oscillation problems in slab, cylindrical, or spherical geometry using a few-group diffusion theory model. 2 - Method of solution: The few-group, neutron diffusion theory equations are reduced to a system of finite-difference equations that are solved for each group by the Gauss method at each time point. Fission neutron source iteration can be accelerated with Chebyshev extrapolation. A thermal feedback iterative loop is used to obtain consistent solutions for the distributions of reactor power, neutron flux, and fuel and coolant properties with the neutron group constants functions of the latter. Solutions for the new nuclide concentrations of a time-point are made with the flux assumed constant in the time interval. 3 - Restrictions on the complexity of the problem - Maxima of: 4 groups; 40 regions; 50 macroscopic materials (Only 10 are functions of the feedback variables); 50 nuclides per region; 250 mesh points

  16. Laboratory measurements of rock thermal properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    The thermal properties of rocks are key elements in understanding and modelling the temperature field of the subsurface. Thermal conductivity and thermal diffusivity can be measured in the laboratory if rock samples can be provided. We have introduced improvements to the divided bar and needle...... probe methods to be able to measure both thermal conductivity and thermal diffusivity. The improvements we implement include, for both methods, a combination of fast numerical finite element forward modelling and a Markov Chain Monte Carlo inversion scheme for estimating rock thermal parameters...

  17. Local diffusion coefficient determination: Mediterranean Sea experiments

    International Nuclear Information System (INIS)

    Bacciola, D.; Borghini, M.; Cannarsa, S.

    1993-10-01

    The Mediterranean is a semi/enclosed basin characterized by the presence of channels and straits influencing the circulation, temperature and salinity fields. The tides generally have amplitudes of the order of 10 cm and velocities of few cm/s. Conversely, the wind forced circulation is very strong and can assume velocity values of 1 m/s at the sea surface. The temperature and salinity fields have a high temporal and spatial variability, because of many mixing processes existing in the sea. For example, the waters coming from the Provencal basin meet those waters coming from the Tyrrhenian Sea in the eastern Ligurian Sea, creating meanders and eddies. Local runoff influences significantly the coastal circulation. This paper describes diffusion experiments carried out in this complex environment. The experimental apparatus for the detection of the fluorescine released at sea was composed by two Turner mod. 450 fluorometres. During the experiments, temperature and salinity vertical profiles were measured by using a CTD; meteorological data were acquired on a dinghy. The positioning was obtained by means of a Motorola system, having a precision of about 1 meter. The experiments were carried out under different stratification and wind conditions. From data analysis it was found that the horizontal diffusion coefficient does not depend on time or boundary conditions. The role of stratification is important with regard to vertical displacement of the dye. However, its role with regard to vertical diffusion cannot be assessed with the actual experimental apparatus

  18. Diffusion Study on Dissolved Hydrogen toward Effective Bioremediation of Chlorinated Ethenes in Aquitards

    Science.gov (United States)

    Yoshikawa, M.; Zhang, M.; Takeuchi, M.; Komai, T.

    2010-12-01

    In Japan, the demand for in-situ remediation of contaminated sediments is expected to increase in the future due to the recent amendment of Soil Contamination Countermeasures Act. The Japanese law requires remediating not only contaminated groundwater but also contaminated sediments including those in aquitards. In-situ remediation of contaminated aquitards has been a challenging issue and bioremediation is considered to be one of the effective techniques. In microbial degradation of chrolinated ethenes such as tetrachloroethene and trichloroethene under anaerobic environments, dissolved hydrogen plays an important role. The dechlorinating microbes utilize hydrogen and chlorinated ethenes as an electron donor and an electron accepter, respectively. The size of hydrogen molecule is extremely small and the diffusion rate of dissolved hydrogen in an aquitard would be the key factor that controls the process of microbial dechlorination. However, the diffusion behavior of dissolved hydrogen in subsurface sediments remains unclear. The purposes of this study are to develop a practically utilizable test apparatus, carry out a series of dissolved hydrogen diffusion tests on representative samples, and illustrate the applicability of bioremediation in aquitards. A completely leak-free apparatus was developed by using aluminum alloy and gas tight rubber. This apparatus is capable of testing specimens with a diameter as large as 100 mm by a length from 5 mm to 10 mm, depending on the maximum grain size within a test specimen. Preliminary tests have been performed with glass beads as an ideal material, commercially available kaolin clay, and core samples taken from a polluted site containing clay minerals. The effective diffusion coefficients of these samples were all on the order of 10E-10 m2/s, though their coefficients of permeability varied between the orders of 10E-2 and 10E-7 cm/s. These results showed that there was no obvious relationship between the effective

  19. Training apparatus

    International Nuclear Information System (INIS)

    Monteith, W.D.

    1983-01-01

    Training apparatus for use in contamination surveillance uses a mathematical model of a hypothetical contamination source (e.g. nuclear, bacteriological or chemical explosion or leak) to determine from input data defining the contamination source, the contamination level at any location within a defined exercise area. The contamination level to be displayed by the apparatus is corrected to real time from a real time clock or may be displayed in response to a time input from a keyboard. In a preferred embodiment the location is defined by entering UTM grid reference coordinates using the keyboard. The mathematical model used by a microprocessor of the apparatus for simulation of contamination levels in the event of a nuclear explosion is described. (author)

  20. Measurement of Solute Diffusion Behavior in Fractured Waste Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

    2008-01-01

    Determination of aqueous phase diffusion coefficients of solutes through fractured media is essential for understanding and modeling contaminants transport at many hazardous waste disposal sites. No methods for earlier measurements are available for the characterization of diffusion in fractured glass blocks. We report here the use of time-lag diffusion experimental method to assess the diffusion behavior of three different solutes (Cs, Sr and Pentafluoro Benzoic Acid or PFBA) in fractured, immobilized low activity waste (ILAW) glass forms. A fractured media time-lag diffusion experimental apparatus that allows the measurement of diffusion coefficients has been designed and built for this purpose. Use of time-lag diffusion method, a considerably easier experimental method than the other available methods, was not previously demonstrated for measuring diffusion in any fractured media. Hydraulic conductivity, porosity and diffusion coefficients of a solute were experimentally measured in fractured glass blocks using this method for the first time. Results agree with the range of properties reported for similar rock media earlier, indicating that the time-lag experimental method can effectively characterize the diffusion coefficients of fractured ILAW glass media

  1. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    International Nuclear Information System (INIS)

    Demarco, R.; Nmira, F.; Consalvi, J.L.

    2013-01-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C 1 –C 3 hydrocarbon–air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated

  2. Pore roller filtration apparatus

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter from a medium, comp...

  3. Procedures and apparatus for measuring diffusion and distribution coefficients in compacted clays

    Energy Technology Data Exchange (ETDEWEB)

    Hume, H B

    1993-12-01

    Diffusion and distribution coefficients are needed to assess the migration of radionuclides through the compacted clay-based buffer and backfill materials proposed for use in a nuclear fuel waste disposal vault. This report describes the techniques used to measure these coefficients. Both steady-state and transient diffusion experiments are discussed. The procedures used to prepare the clay plug, assemble the cell, conduct the experiment and calculate the results are described. In addition, methods for obtaining distribution coefficients for radionuclides on both loose and compacted clays are discussed. (author). 18 refs., 3 tabs., 16 figs.

  4. Procedures and apparatus for measuring diffusion and distribution coefficients in compacted clays

    International Nuclear Information System (INIS)

    Hume, H.B.

    1993-12-01

    Diffusion and distribution coefficients are needed to assess the migration of radionuclides through the compacted clay-based buffer and backfill materials proposed for use in a nuclear fuel waste disposal vault. This report describes the techniques used to measure these coefficients. Both steady-state and transient diffusion experiments are discussed. The procedures used to prepare the clay plug, assemble the cell, conduct the experiment and calculate the results are described. In addition, methods for obtaining distribution coefficients for radionuclides on both loose and compacted clays are discussed. (author). 18 refs., 3 tabs., 16 figs

  5. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  6. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    Science.gov (United States)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  7. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  8. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi

    1979-01-01

    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  9. Mirror plasma apparatus

    International Nuclear Information System (INIS)

    Moir, R.W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma

  10. Space thermal control development

    Science.gov (United States)

    Hoover, M. J.; Grodzka, P. G.; Oneill, M. J.

    1971-01-01

    The results of experimental investigations on a number of various phase change materials (PCMs) and PCMs in combination with metals and other materials are reported. The evaluations include the following PCM system performance characteristics: PCM and PCM/filler thermal diffusivities, the effects of long-term thermal cycling, PCM-container compatibility, and catalyst effectiveness and stability. Three PCMs demonstrated performance acceptable enough to be considered for use in prototype aluminum thermal control devices. These three PCMs are lithium nitrate trihydrate with zinc hydroxy nitrate catalyst, acetamide, and myristic acid. Of the fillers tested, aluminum honeycomb filler was found to offer the most increase in system thermal diffusivity.

  11. Water intake fish diversion apparatus

    International Nuclear Information System (INIS)

    Taft, E.P. III; Cook, T.C.

    1995-01-01

    A fish diversion apparatus uses a plane screen to divert fish for variety of types of water intakes in order to protect fish from injury and death. The apparatus permits selection of a relatively small screen angle, for example ten degrees, to minimize fish injury. The apparatus permits selection of a high water velocity, for example ten feet per second, to maximize power generation efficiency. The apparatus is especially suitable retrofit to existing water intakes. The apparatus is modular to allow use plural modules in parallel to adjust for water flow conditions. The apparatus has a floor, two opposite side walls, and a roof which define a water flow passage and a plane screen within the passage. The screen is oriented to divert fish into a fish bypass which carries fish to a safe discharge location. The dimensions of the floor, walls, and roof are selected to define the dimensions of the passage and to permit selection of the screen angle. The floor is bi-level with a level upstream of the screen and a level beneath screen selected to provide a uniform flow distribution through the screen. The apparatus may include separation walls to provide a water flow channel between the apparatus and the water intake. Lead walls may be used to adjust water flow conditions into the apparatus. The apparatus features stoplog guides near its upstream and downstream ends to permit the water flow passage to be dewatered. 3 figs

  12. Using mineral thermal diffusivities measured with Laser-Flash Analysis to redefine the continental geotherm

    Science.gov (United States)

    Branlund, J. M.; Hofmeister, A.; Merriman, J. D.; Nabelek, P. I.; Whittington, A. G.

    2010-12-01

    We've created a new model for the average continental geotherm by incorporating accurate thermal conductivity values into Fourier's law. Previous geotherm models used thermal conductivities (k) with systematic errors: (1) Pores and microcracks in polycrystalline samples provide artificially low k compared to buried rocks, (2) conventional measurement techniques involve contact losses between thermocouples and samples, especially at high temperature, and/or (3) many techniques inadequately remove ballistic radiative transfer, which does not represent true heat transfer in the earth. To provide k values appropriate for Earth’s interior, we measured thermal diffusivity and its temperature derivatives using laser-flash analysis (LFA) for common rock-forming minerals. To avoid problems of pores and microcracks artificially lowering measured k values, we mathematically mixed mineral data to create synthetic rocks representative of the upper and lower crust and mantle, and checked our values against measurements of rocks least contaminated. Compared to previous models using k of rocks measured with non-LFA methods, our mixture models give higher k of crustal rocks at room temperature, but lower values at higher temperatures. Calculating a geotherm with these revised thermal conductivity values gives a lower temperature throughout the lower crust and mantle lithosphere. Altering the composition of the crust will change the geotherm; crust with more quartz, olivine and/or pyroxene has higher k and a lower geothermal gradient. Adding calcic plagioclase lowers k and steepens the geotherm. The new constraints on k allow us to set bounds on the steady-state geotherm based on ranges of possible mineralogy, chemistry, and radiogenic contents.

  13. Thermal properties of the Cobourg Limestone

    Science.gov (United States)

    Pitts, Michelle

    The underground storage of used nuclear fuel in Deep Geologic Repositories (DGRs) has been a subject of research in Canada for decades. One important technical aspect of repository design is the accommodation of the mechanical impacts of thermal inputs (heating) from the fuel as it goes through the remainder of its life cycle. Placement room spacing, a major factor in project cost, will be determined by the ability of the host rock to dissipate heat. The thermal conductivity and linear thermal expansion will determine the evolution of the temperature and thermally-induced stress fields. Thermal processes must be well understood to design a successful DGR. This thesis examines the thermal properties of rocks, how they are influenced by factors such as temperature, pressure, mineralogy, porosity, and saturation; and common methods for calculating and/or measuring these properties. A brief overview of thermal and thermally-coupled processes in the context of DGRs demonstrates the degree to which they would impact design, construction, and operation of these critical structures. Several case histories of major in situ heating experiments are reviewed to determine how the lessons learned could be applied to a Canadian Underground Demonstration Facility (UDF). A mineralogy investigation using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) examines samples of the Cobourg Limestone from the Bowmanville and Bruce sites, and demonstrates geographical variability within the Cobourg Formation. The thermal properties of samples from the Bowmanville site are determined. A divided bar apparatus was constructed and used to measure thermal conductivity. The temperature measurement component of the divided bar apparatus was used to measure linear thermal expansion. Finally, the past investigations into the thermal impact of a DGR are reviewed, and the implications of the laboratory testing results on similar analyses are discussed.

  14. Light shielding apparatus

    Science.gov (United States)

    Miller, Richard Dean; Thom, Robert Anthony

    2017-10-10

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  15. Thermal diffusion segregation of an impurity in a driven granular fluid

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Francisco Vega; Garzó, Vicente [Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz (Spain)

    2014-12-09

    We study segregation of an impurity in a driven granular fluid under two types of steady states. In the first state, the granular gas is driven by a stochastic volume force field with a Fourier-type profile while in the second state, the granular gas is sheared in such a way that inelastic cooling is balanced by viscous heating. We compare theoretical results derived from a solution of the (inelastic) Boltzmann equation at Navier-Stokes (NS) order with those obtained from the Direct Monte Carlo simulation (DSMC) method and molecular dynamics (MD) simulations. Good agreement is found between theory and simulation, which provides strong evidence of the reliability of NS granular hydrodynamics for these steady states (including the dynamics of the impurity), even at high inelasticity. In addition, preliminary results for thermal diffusion in granular fluids at moderate densities are also presented. As for dilute gases, excellent agreement is also found in this more general case.

  16. Design of neutral particle incident heating apparatus for large scale helical apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Osamu; Oka, Yoshihide; Osakabe, Masaki; Takeiri, Yasuhiko; Tsumori, Katsuyoshi; Akiyama, Ryuichi; Asano, Eiji; Kawamoto, Toshikazu; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the Institute of Nuclear Fusion Science, construction of the large scale helical apparatus has been progressed favorably, and constructions of the heating apparatus as well as of electron resonance apparatus were begun in their orders under predetermined manner since 1994 fiscal year. And, on 1995 fiscal year, construction of neutral particle incident heating apparatus, leading heat apparatus, was begun under 3 years planning. The plasma heating study system adopted the study results developed in this institute through the large scale hydrogen negative ion source and also adopted thereafter development on nuclear fusion study by modifying the original specification set at the beginning of the research plan before 7 years. As a result, system design was changed from initial 125 KeV to 180 KeV in the beam energy and to execute 15 MW incidence using two sets beam lines, to begin its manufacturing. Here is described on its new design with reason of its modifications. (G.K.)

  17. Thermal diffusion in nanostructured porous InP

    International Nuclear Information System (INIS)

    Srinivasan, R.; Ramachandran, K.

    2008-01-01

    Nanostructured porous InP samples were prepared by electrochemical anodic dissolution of InP for various current densities and etching periods. The samples were characterized by SEM and photoluminescence (PL) where a blue shift was observed in PL. Thermal properties studies by photoacoustic (PA) spectroscopy revealed one order decrease in thermal conductivity of porous InP compared to the bulk. Further it is shown that the thermal conductivity of porous InP decreases with decrease in size of the particles. (author)

  18. Manipulation and simulations of thermal field profiles in laser heat-mode lithography

    Science.gov (United States)

    Wei, Tao; Wei, Jingsong; Wang, Yang; Zhang, Long

    2017-12-01

    Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.

  19. Determination of the ion thermal diffusivity from neutron emission profiles in decay

    International Nuclear Information System (INIS)

    Sasao, M.; Adam, J.M.; Conroy, S.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van

    1992-01-01

    Spatial profiles of neutron emission are routinely obtained at the Joint European Torus (JET) from line-integrated emissivities measured with a multi-channel instrument. It is shown that the manner in which the emission profiles relax following termination of strong heating with Neutral Beam Injection (NBI) permits the local thermal diffusivity (χ i ) to be obtained with an accuracy of about 20%. The radial profiles of χ i for small minor radius (r/a 2 /s for H-mode plasmas with plasma current I p = 3.1 MA and toroidal field B T = 2.3T. The experimental value of χ i is smallest for Z eff = 2.2 and increases weakly with increasing Z eff . The experimental results disagree by two orders of magnitude with predictions from an ion temperature gradient driven turbulence model. (author) 6 refs., 3 figs

  20. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  1. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    International Nuclear Information System (INIS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-01-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10 −3 cm 2 /s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s 0.5 /cm 2 K and volume heat capacity (5.2 ± 0.7) J/cm 3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  2. Gamma apparatuses for radiotherapy

    International Nuclear Information System (INIS)

    Sul'kin, A.G.

    1986-01-01

    Scientific and technical achievements in development and application of gamma therapeutic apparatuses for external and intracavity irradiations are generalized. Radiation-physical parameters of apparatuses providing usability of progressive methods in radiotherapy of onclogical patients are given. Optimization of main apparatus elements, ensurance of its operation reliability, reduction of errors of irradiation plan reproduction are considered. Attention is paid to radiation safety

  3. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  4. Heat Diffusion in Gases, Including Effects of Chemical Reaction

    Science.gov (United States)

    Hansen, C. Frederick

    1960-01-01

    The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.

  5. Method and apparatus for measuring neutron characteristics of material surrounding a borehole

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1983-01-01

    This invention relates to methods and apparatus for determining the macroscopic thermal neutron absorption cross section of the formations surrounding a borehole as determined by radiation measurements using optimized measurement intervals. A measurement of the decline of the thermal neutron population in the formation is derived by counting the detected radiation within a first pair of measurement intervals occurring at a fixed time after the neutron burst. A ratio of the two counting rates provides the rate of change over the selected time interval. The counting ratio is converted into a natural logarithm representative of the Sigma calculation

  6. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Kerry, K.

    2008-10-28

    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii

  7. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  8. Continuum Regime Motion of a Growing Droplet in Opposing Thermo-Diffusiophoretic and Gravitational Fields of a Thermal Diffusion Cloud Chamber

    Czech Academy of Sciences Publication Activity Database

    Bakanov, S. P.; Smolík, Jiří; Zaripov, S. K.; Ždímal, Vladimír

    2001-01-01

    Roč. 32, č. 3 (2001), s. 341-350 ISSN 0021-8502 R&D Projects: GA ČR GA104/97/1198 Grant - others:RFBR(RU) 99-01-00-169 Institutional research plan: CEZ:AV0Z4072921 Keywords : thermal diffusion cloud chamber * droplet growth * continuum regime Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.605, year: 2001

  9. High-precision thermal and electrical characterization of thermoelectric modules

    Science.gov (United States)

    Kolodner, Paul

    2014-05-01

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0-10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  10. System and apparatus for neutron radiography

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1991-01-01

    This patent describes a neutron radiography apparatus. It comprises an imaging plane; a neutron moderator having a cavity defining a convergent collimator, the cavity having a base and converging walls of neutron moderating material terminating at an aperture; a divergent collimator coaxially joined to the cavity at the aperture, the divergent collimator having diverging walls of radiation- absorbing material extending from the aperture to an expanded distal opening for irradiating the imaging plane; sources of neutrons disposed symmetrically about the base of the cavity; a neutron moderating material disposed for maximum neutron thermalization between the sources and the base of the cavity; and means for substantially shielding the plane from electromagnetic energy

  11. Diffusion of hydrous species in model basaltic melt

    Science.gov (United States)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  12. Thermal conductivity of spray-on foam insulations for aerospace applications

    Science.gov (United States)

    Barrios, Matt; Vanderlaan, Mark; Van Sciver, Steven

    2012-06-01

    A guarded-hot-plate apparatus [1] has been developed to measure the thermal conductivity of spray-on foam insulations (SOFI) at temperatures ranging from 30 K to 300 K. The foam tested in the present study is NCFI 24-124, a polyisocyanurate foam used on the External Tanks of the Space Shuttle. The foam was tested first in ambient pressure air, then evacuated and tested once more. These thermal conductivities were compared to the thermal conductivity taken from a sample immediately after being subjected to conditions similar to those experienced by the foam while on the launch pad at Kennedy Space Center. To mimic the conditions experienced on the launch pad, an apparatus was built to enclose one side of the foam sample in a warm, humid environment while the other side of the sample contacts a stainless steel surface held at 77 K. The thermal conductivity data obtained is also compared to data found in the literature.

  13. Waste Water Treatment Apparatus and Methods

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  14. Construction of shallow land simulation apparatuses

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Takebe, Shinichi; Ohnuki, Toshihiko; Ogawa, Hiromichi; Harada, Yoshikane; Saitoh, Kazuaki; Wadachi, Yoshiki

    1984-07-01

    Shallow land simulation apparatuses in which natural soil can be used as testing soil have been constructed to investigate the migration characteristics of radionuclides in a disposal site. These apparatuses consist of aerated zone apparatus and aquifer zone one. In the aerated zone apparatus, aerated soil upon ground water level is contained in the soil column (d: 30cm x h: 120cm). In the aquifer zone apparatus, aquifer soil laying ground water level is contained in the soil vessel (b: 90cm x l: 270cm x h: 45cm). This report describes the outline of shallow land simulation apparatuses : function of apparatuses and specification of devices, analysis of obstructions, safety rules, analysis of accidents and operation manual. (author)

  15. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    Science.gov (United States)

    Demarco, R.; Nmira, F.; Consalvi, J. L.

    2013-05-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C1-C3 hydrocarbon-air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated k (FSCK

  16. Ex-reactor determination of thermal gap and contact conductance between uranium dioxide: zircaloy-4 interfaces. Stage I: low gas pressure

    International Nuclear Information System (INIS)

    Garnier, J.E.; Begej, S.

    1979-04-01

    A study of thermal gap and contact conductance between depleted uranium dioxide (UO 2 ) and Zircaloy-4 (Zr4) has been made utilizing two measurement apparatuses developed as part of this program. The Modified Pulse Design (MPD) apparatus is a transient technique employing a heat pulse (laser) and a signal detector to monitor the thermal energy transmitted through a UO 2 /Zr4 sample pair which are either physically separated or in contact. The Modified Longitudinal Design (MLD) apparatus is a steady-state technique based on a modified cylindrical column design with a self-guarding sample geometry. Description of the MPD and MLD apparatus, data acquisition, reduction and error analysis is presented along with information on specimen preparation, thermal property and surface characterization. A technique using an optical height gauge to determine the average mean-plane of separation between the simple pairs is also presented

  17. Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity

    International Nuclear Information System (INIS)

    Singh, G. S.; Kumar, B.

    2001-01-01

    The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial approximation. The expressions for the thermal-conductivity components have been obtained for the first time whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumar and Masters [Mol. Phys. >81, 491 (1994)] through the solution of the Lorentz-Boltzmann equation. All our expressions yield correct results in the hard-sphere limit

  18. A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells

    Science.gov (United States)

    Sadeghi, E.; Djilali, N.; Bahrami, M.

    Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a proton exchange membrane (PEM) fuel cell. The analysis of this process requires determination of the effective thermal conductivity. This transport property differs significantly in the through-plane and in-plane directions due to the anisotropic micro-structure of the GDL. A novel test bed that allows separation of in-plane effective thermal conductivity and thermal contact resistance in GDLs is described in this paper. Measurements are performed using Toray carbon paper TGP-H-120 samples with varying polytetrafluoroethylene (PTFE) content at a mean temperature of 65-70 °C. The measurements are complemented by a compact analytical model that achieves good agreement with experimental data. The in-plane effective thermal conductivity is found to remain approximately constant, k ≈ 17.5 W m -1 K -1, over a wide range of PTFE content, and its value is about 12 times higher than that for through-plane conductivity.

  19. Determination of thermal conductivity of magnesium-alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which the thermal diffusivity can be measured directly. Then thermal conductivity can be obtained with relation to thermal diffusivity. Compared with the recommended data from the literature the fitted values of the thermal diffiusivity correspond with 3%, and the credible probability of the thermal conductivity in the range of 0-450 ℃ is about 95%. The method is applicable in the given temperature range.

  20. Large Rotor Test Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  1. Preisach hysteresis model for non-linear 2D heat diffusion

    International Nuclear Information System (INIS)

    Jancskar, Ildiko; Ivanyi, Amalia

    2006-01-01

    This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

  2. Conduit grinding apparatus

    Science.gov (United States)

    Nachbar, Henry D.; Korytkowski, Alfred S.

    1991-01-01

    A grinding apparatus for grinding the interior portion of a valve stem receiving area of a valve. The apparatus comprises a faceplate, a plurality of cams mounted to an interior face of the faceplate, a locking bolt to lock the faceplate at a predetermined position on the valve, a movable grinder and a guide tube for positioning an optical viewer proximate the area to be grinded. The apparatus can either be rotated about the valve for grinding an area of the inner diameter of a valve stem receiving area or locked at a predetermined position to grind a specific point in the receiving area.

  3. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  4. Determination of diffusion parameters of Thermal neutrons for non-moderator media by a pulsed method and a time independent method

    International Nuclear Information System (INIS)

    Boufraqech, A.

    1991-01-01

    Two methods for determining the diffusion parameters of thermal neutrons for non-moderator and non-multiplicator media have been developped: The first one, which is a pulsed method, is based on thermal neutrons relaxation coefficients measurement in a moderator, with and without the medium of interest that plays the role of reflector. For the experimental results interpretation using the diffusion theory, a corrective factor which takes into account the neutron cooling by diffusion has been introduced. Its dependence on the empirically obtained relaxation coefficients is in a good agreement with the calculations made in P3L2 approximation. The difference between linear extrapolation lengths of the moderator and the reflector has been taken into account, by developping the scalar fluxes in Bessel function series which automatically satisfy the boundary conditions at the extra-polated surfaces of the two media. The obtained results for Iron are in a good agreement with those in the literature. The second method is time independent, based on the 'flux albedo' measurements interpretation (Concept introduced by Amaldi and Fermi) by P3 approximation in the one group trans-port theory. The independent sources are introduced in the Marshak boundary conditions. An angular albedo matrix has been used to deal with multiple reflections and to take into account the distortion of the current vector when entring a medium, after being reflected by this latter. The results obtained by this method are slightly different from those given in the literature. The analysis of the possible sources causing this discrepancy, particulary the radial distribution of flux in cylindrical geometry and the flux depression at medium-black body interface, has shown that the origin of this discrepancy is the neutron heating by diffusion. 47 figs., 20 tabs., 39 refs. (author)

  5. Mechanistic analysis of solute transport in an in vitro physiological two-phase dissolution apparatus.

    Science.gov (United States)

    Mudie, Deanna M; Shi, Yi; Ping, Haili; Gao, Ping; Amidon, Gordon L; Amidon, Gregory E

    2012-10-01

    In vitro dissolution methodologies that adequately capture the oral bioperformance of solid dosage forms are critical tools needed to aid formulation development. Such methodologies must encompass important physiological parameters and be designed with drug properties in mind. Two-phase dissolution apparatuses, which contain an aqueous phase in which the drug dissolves (representing the dissolution/solubility component) and an organic phase into which the drug partitions (representing the absorption component), have the potential to provide meaningful predictions of in vivo oral bioperformance for some BCS II, and possibly some BCS IV drug products. Before such an apparatus can be evaluated properly, it is important to understand the kinetics of drug substance partitioning from the aqueous to the organic medium. A mass transport analysis was performed of the kinetics of partitioning of drug substance solutions from the aqueous to the organic phase of a two-phase dissolution apparatus. Major assumptions include pseudo-steady-state conditions, a dilute aqueous solution and diffusion-controlled transport. Input parameters can be measured or estimated a priori. This paper presents the theory and derivation of our analysis, compares it with a recent kinetic approach, and demonstrates its effectiveness in predicting in vitro partitioning profiles of three BCS II weak acids in four different in vitro two-phase dissolution apparatuses. Very importantly, the paper discusses how a two-phase apparatus can be scaled to reflect in vivo absorption kinetics and for which drug substances the two-phase dissolution systems may be appropriate tools for measuring oral bioperformance. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Pipework inspection apparatus

    International Nuclear Information System (INIS)

    Wrigglesworth, K.J.; Knowles, J.F.

    1987-01-01

    The patent concerns a pipework inspection apparatus, which is capable of negotiating bends in pipework. The apparatus comprises a TV camera system, which contains an optical section and an electronics section, which are connected by a flexible coupling. The system can be pulled or pushed along the bore of the pipework. (U.K.)

  7. THERMAL CONDUCTIVITY ANALYSIS OF GASES

    Science.gov (United States)

    Clark, W.J.

    1949-06-01

    This patent describes apparatus for the quantitative analysis of a gaseous mixture at subatmospheric pressure by measurement of its thermal conductivity. A heated wire forms one leg of a bridge circuit, while the gas under test is passed about the wire at a constant rate. The bridge unbalance will be a measure of the change in composition of the gas, if compensation is made for the effect due to gas pressure change. The apparatus provides a voltage varying with fluctuations of pressure in series with the indicating device placed across the bridge, to counterbalance the voltage change caused by fluctuations in the pressure of the gaseous mixture.

  8. Experimental determination of fuel-cladding thermal contact resistance

    International Nuclear Information System (INIS)

    Maglic, K.; Zivotic, Z.

    1968-01-01

    Thermal resistance of the UO 2 fuel - Zr-2 cladding was measure by the same experimental apparatus which was used for measuring the thermal conductivity of ceramic fuel. Thermal resistance was measure for a series of heat flux values and the dependence of thermal resistance on the flux is given within in the range from 0.66 W/cm 2 to 13.3 W/cm 2 . The temperature drop on the contact surface was between 39 deg C and 181.7 deg C, proportional to the increase of the heat flux [sr

  9. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)

    2015-01-10

    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  10. Designing of an apparatus to measure ionic conductivity

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1978-01-01

    The main technical features of a rig to measure ionic conductivity in alkali halides are shown. The conductivity also can be measured while the temperature of the sample is rised at a constant rate between room temperature and 350 deg C. This is intended to search for correlations between variations in the ionic conductivity and the thermal annealing of radiation induce defects in these materials. The proportional temperature controller and programmer also allows to stabilize the sample temperature within +-0.1 degC during several hours. Some measurements in KCl (Harshaw) were made in order to check the reliability of the apparatus. (author)

  11. Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA)

    Science.gov (United States)

    Bates, E. M.; Birmingham, W. J.; Romero-Talamás, C. A.

    2018-05-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.

  12. Thermal analyses to assess diffusion kinetics in the nano-sized interspaces between the growing crystals of a glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fotheringham, Ulrich, E-mail: ulrich.fotheringham@schott.com [SCHOTT AG, 55014 Mainz (Germany); Wurth, Roman; Ruessel, Christian [Otto-Schott-Institut, Jena University, Jena (Germany)

    2011-08-10

    Highlights: {yields} Macroscopic, routine laboratory methods of the 'Thermal Analysis' type (DSC, DMA) allow a rough description of the kinetics in the nano-sized interstitial spaces of glass ceramics. {yields} These macroscopic measurements support the idea of a rigid zone around the crystals which builds up during ceramization and is part of a negative feedback loop which finally stops crystal growth and Ostwald ripening within the time window of observation. {yields} Ostwald ripening may be provoked by thermally softening said rigid zone. Under certain conditions, this gives rise to a characteristic peak in the DSC. - Abstract: According to a hypothesis by Ruessel and coworkers, the absence of Ostwald ripening during isothermal crystallization of lithium aluminosilicate (LAS) and other glass ceramics indicates the existence of a kinetic hindrance of atomic reorganization in the interstitial spaces between the crystals. Methods of Thermal Analysis (Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA)) which are sensitive to the local atomic rearrangements in the interstitial spaces (including viscous flow) are applied to find support for the idea of kinetic hindrance and the formation of a core shell structure acting as diffusion barrier. Both the DSC-measured calorimetric glass transition and the DMA-measured viscoelastic properties indicate an increase in the time constants of atomic rearrangements and diffusion by at least two orders of magnitude during ceramization. This fits to the above idea. Based on these findings, thermo analytic studies have been performed in order to find out how Ostwald ripening may be provoked.

  13. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  14. Characterization of the thermalness of a fissile system with a two-group diffusion theory parameter

    International Nuclear Information System (INIS)

    Bredehoft, B.B.; Busch, R.D.

    1993-01-01

    In tabulating critical data, the hydrogen-to-fissile atom ratio (H/X) is commonly used to characterize the amount of moderation in a system. Though adequate in many cases, H/X does not account for the moderating contribution of other light nuclei contained in common uranium-moderator mixtures. This ratio also does not account for enrichment of the system, which affects the resonance absorption characteristics and, therefore, the moderating behavior of that system. To alleviate these problems, a two-energy-group diffusion theory analogy to the six-factor formula was applied to define a new parameter p/(η 2 · f 2 ), which describes the moderation characteristics or the 'thermalness' of a fissioning system and includes the effects of enrichment and the presence of moderators other than hydrogen. From an analysis of several low-enriched uranium systems with different moderators, it was found that the values of p/(η 2 · f 2 ) corresponding to minimum critical mass and volume tend to center in a narrower range than do the values of H/X for the same systems. Also, the thermalness parameter does not vary with the addition of a reflector and is applicable to systems with other than hydrogenous moderators. Based on these results, the thermalness parameter p/(η 2 · f 2 ) provides an effective means of characterizing moderated systems relative to optimum conditions

  15. Determination of the ion thermal diffusivity from neutron emission profiles in decay

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M. (National Inst. for Fusion Science, Nagoya (Japan)); Adam, J.M. (AEA Industrial Technology, Harwell (United Kingdom)); Conroy, S.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking)

    1992-01-01

    Spatial profiles of neutron emission are routinely obtained at the Joint European Torus (JET) from line-integrated emissivities measured with a multi-channel instrument. It is shown that the manner in which the emission profiles relax following termination of strong heating with Neutral Beam Injection (NBI) permits the local thermal diffusivity ([chi][sub i]) to be obtained with an accuracy of about 20%. The radial profiles of [chi][sub i] for small minor radius (r/a < 0.6) were found to be flat and to take values between 0.3 and 1.1 m[sup 2]/s for H-mode plasmas with plasma current I[sub p] = 3.1 MA and toroidal field B[sub T] = 2.3T. The experimental value of [chi][sub i] is smallest for Z[sub eff] = 2.2 and increases weakly with increasing Z[sub eff]. The experimental results disagree by two orders of magnitude with predictions from an ion temperature gradient driven turbulence model. (author) 6 refs., 3 figs.

  16. Development of laboratory apparatus dedicated to the study of hydride--dehydride reactions

    International Nuclear Information System (INIS)

    Wemple, R.P.; Kass, W.J.

    1979-07-01

    Hydrogen-compatible laboratory apparatus has been designed and developed to study hydride--dehydride reactions at elevated pressures and temperatures. The system has operated at pressures and temperatures up to 34 MPa and 550 0 C during experiments conducted on LiAlH 4 and NiZr. Instrumentation incorporated into the system also allows differential thermal analysis and acoustic emission data to be collected as the chemical reactions progress. 13 figures

  17. Microclimatic control in the museum environment: Air diffusion performance

    Energy Technology Data Exchange (ETDEWEB)

    Ascione, Fabrizio; Minichiello, Francesco [DETEC, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, NA (Italy)

    2010-06-15

    For the conservation of cultural heritage, museums need appropriate HVAC systems. Besides the time stability of the microclimatic parameters in the exhibition rooms, a high spatial uniformity is necessary and, thus, an optimal performance of the air diffusion systems. Using numerical codes based on Building Energy Performance Simulation (BEPS) and Computational Fluid Dynamics (CFD) techniques, in this paper an analysis has been carried out to compare different suitable air diffusion equipments, as regards uniformity of thermal-hygrometric and kinetic fields in a modelled typical exhibition room. For various part load conditions, the values of thermal-hygrometric parameters in different volumes of the room have been evaluated, as well as an innovative spatial thermal-hygrometric performance index. Globally estimating indoor temperature, relative humidity and their uniformity, for high exhibition rooms (5 m) the swirling diffusers have shown the best average performances, followed by the perimetrical stripes of slot diffusers, while for very high rooms (9 m) nozzles have resulted preferable. (author)

  18. Ex-reactor determination of thermal gap and contact conductance between uranium dioxide: zircaloy-4 interfaces. Stage I: low gas pressure. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J.E.; Begej, S.

    1979-04-01

    A study of thermal gap and contact conductance between depleted uranium dioxide (UO/sub 2/) and Zircaloy-4 (Zr4) has been made utilizing two measurement apparatuses developed as part of this program. The Modified Pulse Design (MPD) apparatus is a transient technique employing a heat pulse (laser) and a signal detector to monitor the thermal energy transmitted through a UO/sub 2//Zr4 sample pair which are either physically separated or in contact. The Modified Longitudinal Design (MLD) apparatus is a steady-state technique based on a modified cylindrical column design with a self-guarding sample geometry. Description of the MPD and MLD apparatus, data acquisition, reduction and error analysis is presented along with information on specimen preparation, thermal property and surface characterization. A technique using an optical height gauge to determine the average mean-plane of separation between the simple pairs is also presented.

  19. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    Science.gov (United States)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  20. CARMEN-SYSTEM, Programs System for Thermal Neutron Diffusion and Burnup with Feedback

    International Nuclear Information System (INIS)

    Ahnert, Carol; Aragones, Jose M.

    1983-01-01

    1 - Description of problem or function: CARMEN is a system of programs developed for the neutronic calculation of PWR cycles. It includes the whole chain of analysis from cell calculations to core calculations with burnup. The core calculations are based on diffusion theory with cross sections depending on the relevant space-dependent feedback effects which are present at each moment along the cycles. The diffusion calculations are in one, two or three dimensions and in two energy groups. The feedback effects which are treated locally are: burnup, water density, power density and fission products. In order to study in detail these parameters the core should be divided into as many zones as different cross section sets are expected to be required in order to reproduce reality correctly. A relevant difference in any feedback parameter between zones produces different cross section sets for the corresponding zones. CARMEN is also capable to perform the following calculations: - Multiplication factor by burnup step with fixed boron concentration - Buckling and control rod insertion - Buckling search by burnup step - Boron search by burnup step - Control rod insertion search by burnup step. 2 - Method of solution: The cell code (LEOPARD-TRACA) generates the fuel assembly cross sections versus burnup. This is the basic library to be used in the CARMEN code proper. With a planar distribution guess for power density, water density and fluxes, the macroscopic cross sections by zone are calculated by CARMEN, and then a diffusion calculation is done in the whole geometry. With the distribution of power density, heat accumulated in the coolant and the thermal and fast fluxes determined in the diffusion calculation, CARMEN calculates the values of the most relevant parameters that influence the macroscopic cross sections by zone: burnup, water density, effective fuel temperature and fission product concentrations. If these parameters by zone are different from the reference

  1. Isotope Fractionation by Diffusion in Liquids (Final Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Frank [Univ. of Chicago, IL (United States)

    2016-11-09

    The overall objective of the DOE-funded research by grant DE-FG02-01ER15254 was document and quantify kinetic isotope fractionations during chemical and thermal (i.e., Soret) diffusion in liquids (silicate melts and water) and in the later years to include alloys and major minerals such as olivine and pyroxene. The research involved both laboratory experiments and applications to natural settings. The key idea is that major element zoning on natural geologic materials is common and can arise for either changes in melt composition during cooling and crystallization or from diffusion. The isotope effects associated with diffusion that we have documented are the key for determining whether or not the zoning observed in a natural system was the result of diffusion. Only in those cases were the zoning is demonstrably due to diffusion can use independently measured rates of diffusion to constrain the thermal evolution of the system.

  2. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description.

    Science.gov (United States)

    Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley

    2014-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.

  3. Radioimmunoassay apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus for performing a quantitative radioimmunoassay comprising: a substantially spherical bead for carrying an antibody and a gripper for gripping said bead, said gripper comprising an integrally formed unit having a single elongate handle portion and a plurality of resilient fingers arranged at the base of the handle so that when said bead is secured within said fingers, said bead may be freely rotated about any diametric axis of the bead. In particular the invention relates to an apparatus for a two site immunoradiometric assay for serum ferritin in human blood samples. (author)

  4. TRANSFORMER APPARATUS

    Science.gov (United States)

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  5. Radiotherapy apparatus

    International Nuclear Information System (INIS)

    Leung, P.M.; Webb, H.P.J.

    1985-01-01

    This invention relates to apparatus for applying intracavitary radiotherapy. In previously-known systems radioactive material is conveyed to a desired location within a patient by transporting a chain of balls pneumatically to and from an appropriately inserted applicator. According to this invention a ball chain for such a purpose comprises several radioactive balls separated by non-radioactive tracer balls of radiographically transparent material of lower density and surface hardness than the radioactive balls. The invention also extends to radiotherapy treatment apparatus comprising a storage, sorting and assembly system

  6. Method and apparatus for enhancing radiometric imaging

    International Nuclear Information System (INIS)

    Logan, R. H.; Paradish, F. J.

    1985-01-01

    Disclosed is a method and apparatus for enhancing target detection, particularly in the millimeter wave frequency range, through the utilization of an imaging radiometer. The radiometer, which is a passive thermal receiver, detects the reflected and emitted thermal radiation of targets within a predetermined antenna/receiver beamwidth. By scanning the radiometer over a target area, a thermal image is created. At millimeter wave frequencies, the received emissions from the target area are highly dependent on the emissivity of the target of interest. Foliage will appear ''hot'' due to its high emissivity and metals will appear cold due to their low emissivities. A noise power illuminator is periodically actuated to illuminate the target of interest. When the illuminator is actuated, the role of emissivity is reversed, namely poorly emissive targets will generally be good reflectors which in the presence of an illuminator will appear ''hot''. The highly emissive targets (such as foliage and dirt) which absorb most of the transmitted energy will appear almost the same as in a nonilluminated, passive image. Using a data processor, the intensity of the passive image is subtracted from the intensity of the illuminated, active image which thereby cancels the background foliage, dirt, etc. and the reflective metallic targets are enhanced

  7. Review on mathematical basis for thermal conduction equation

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M

    2007-10-15

    In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation.

  8. Review on mathematical basis for thermal conduction equation

    International Nuclear Information System (INIS)

    Park, D. G.; Kim, H. M.

    2007-10-01

    In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation

  9. Method and apparatus for preventing overspeed in a gas turbine

    Science.gov (United States)

    Walker, William E.

    1976-01-01

    A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

  10. Apparatus for Teaching Physics.

    Science.gov (United States)

    Gottlieb, Herbert H., Ed.

    1981-01-01

    Describes: (1) a variable inductor suitable for an inductance-capacitance bridge consisting of a fixed cylindrical solenoid and a moveable solenoid; (2) long-range apparatus for demonstrating falling bodies; and (3) an apparatus using two lasers to demonstrate ray optics. (SK)

  11. Thermal dynamics of thermoelectric phenomena from frequency resolved methods

    Directory of Open Access Journals (Sweden)

    J. García-Cañadas

    2016-03-01

    Full Text Available Understanding the dynamics of thermoelectric (TE phenomena is important for the detailed knowledge of the operation of TE materials and devices. By analyzing the impedance response of both a single TE element and a TE device under suspended conditions, we provide new insights into the thermal dynamics of these systems. The analysis is performed employing parameters such as the thermal penetration depth, the characteristic thermal diffusion frequency and the thermal diffusion time. It is shown that in both systems the dynamics of the thermoelectric response is governed by how the Peltier heat production/absorption at the junctions evolves. In a single thermoelement, at high frequencies the thermal waves diffuse semi-infinitely from the junctions towards the half-length. When the frequency is reduced, the thermal waves can penetrate further and eventually reach the half-length where they start to cancel each other and further penetration is blocked. In the case of a TE module, semi-infinite thermal diffusion along the thickness of the ceramic layers occurs at the highest frequencies. As the frequency is decreased, heat storage in the ceramics becomes dominant and starts to compete with the diffusion of the thermal waves towards the half-length of the thermoelements. Finally, the cancellation of the waves occurs at the lowest frequencies. It is demonstrated that the analysis is able to identify and separate the different physical processes and to provide a detailed understanding of the dynamics of different thermoelectric effects.

  12. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    Science.gov (United States)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  13. Radiation imaging apparatus

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to a radiation imaging apparatus. It relates more particularly to apparatus of this general type which employs stationary X-ray source and detector arrays capable of acquiring multiple ultrafast scans per second to facilitate the dynamic study of moving human organs such as the beating heart. While the invention has many applications, it has particular utility in connection with computerized tomographic (CT) scanners. (Auth.)

  14. Evolution of interfacial toughness of a thermal barrier system with a Pt-diffused {gamma}/{gamma}' bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Liu, J. [School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Rickerby, D.S.; Jones, R.J. [Rolls-Royce Plc., PO Box 31, Derby DE24 8BJ (United Kingdom); Xiao, P., E-mail: ping.xiao@manchester.ac.uk [School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)

    2011-09-15

    A strain-to-fail method has been employed to examine the interfacial adhesion of electron beam-physical vapor deposited thermal barrier coatings (TBCs) with a Pt-diffused {gamma}/{gamma}' bond coat. Based on a previously established model, the estimated interfacial toughness decreases with oxidation time of TBCs. Furthermore, the interfacial toughness value varies considerably with the use of different Young's moduli in the model. It is believed that the modulus obtained from beam bending represents the columnar structure of the TBC. In this case, the mode I interfacial toughness was found to vary from 10 J m{sup -2} for as-deposited TBCs to 0.79 J m{sup -2} for the 60 h oxidized TBCs. The degradation of adhesion could be attributed to the defect formation and impurity segregation at the TGO/bond coat interface, which is associated with the diffusion of Pt.

  15. Automatic apparatus for measuring thermophysical quantities controlled by calculator EMG 666

    International Nuclear Information System (INIS)

    Kubicar, L.; Illekova, E.

    1984-01-01

    Automatic system for measuring thermal diffusivity, thermal conductivity and heat capacity of samples is described. Measurements are performed by the pulse method in the temperature range from -150 to 1500 deg C. The measuring CAMAC equipment connected with the EMG 666 computer. Data processing is carried out by 100-400 measurement points (measuring cycle) for the whole temperature range

  16. Impact of thermal conductivity models on the coupling of heat transport, oxygen diffusion, and deformation in (U, Pu)O nuclear fuel elements

    Science.gov (United States)

    Mihaila, Bogdan; Stan, Marius; Crapps, Justin; Yun, Di

    2013-02-01

    We study the coupled thermal transport, oxygen diffusion, and thermal expansion in a generic nuclear fuel rod consisting of a (U) fuel pellet separated by a helium gap from zircaloy cladding. Steady-state and time-dependent finite-element simulations with a variety of initial- and boundary-value conditions are used to study the effect of the Pu content, y, and deviation from stoichiometry, x, on the temperature and deformation profiles in this fuel element. We find that the equilibrium radial temperature and deformation profiles are most sensitive to x at small values of y. For larger values of y, the effects of oxygen and Pu content are equally important. Following a change in the heat-generation rate, the centerline temperature, the radial deformation of the fuel pellet, and the centerline deviation from stoichiometry track each other closely in (U,Pu)O, as the characteristic time scales of the heat transport and oxygen diffusion are similar. This result is different from the situation observed in the case of UO fuels.

  17. Contribution to the study of thermal diffusion in isotopic mixtures of hydrogen; Contribution a l'etude de la diffusion thermique dans les melanges isotopiques de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Lemarechal-Dupuis, A [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-04-01

    Thermal diffusion constants of the mixtures H{sub 2}-HD and H{sub 2}-HT, where HD and HT were at trace concentrations, have been measured between 90 deg. K and 450 deg. K for H{sub 2}-HD and between 190 deg. K and 450 deg. K for H{sub 2}-HT, by using the elementary effect. Furthermore, the ratio of these constants has been measured by using a thermo-gravitational column of Clusius and Dickel, at temperatures of the hot wire between 455 deg. K and 1200 deg. K, the cold wall being at room temperature. Comparison with the predictions of existing theories shows that the Chapman-Enskog theory cannot account for the thermal diffusion of mixtures containing asymmetric molecules; the possible reasons for this disagreement are discussed. Our set of measurements, combined with the results of other authors, yields precise values at well defined conditions of temperature and concentration, useful for the determination of the coefficients of the semi-empirical expansion of Waldmann and Klemm. Furthermore some aspects of the column theory according to Furry and Jones have been tested. (author) [French] Les constantes de diffusion thermique des melanges H{sub 2}-HD et H{sub 2}-HT ou HD et HT figuraient, a l'etat de traces, ont ete mesurees a l'aide de l'effet elementaire entre 90 deg. K et 450 deg. K pour le melange H{sub 2}-HD,et entre 190 deg. K et 450 deg. K pour le melange H{sub 2}-HT. D'autre part, le rapport de ces constantes a ete mesure a l'aide d'une colonne de Clusius et Dickel pour des temperatures du fil chaud variant entre 455 deg. K et 1200 deg. K, la temperature de la paroi froide etant la temperature ambiante. La comparaison avec les predictions des theories existantes montre que la theorie de Chapman- Enskog ne peut rendre compte de la constante de diffusion thermique de melanges de molecules asymetriques; les raisons de ce desaccord sont discutees. L'ensemble de ces mesures, combine aux resultats d'autres auteurs, permet d'obtenir des valeurs precises dans des

  18. What makes a thermal plasma suitable for hazardous waste disposal

    International Nuclear Information System (INIS)

    Benocci, R.; Florio, R.; Galassi, A.; Paolicchio, M.; Sindoni, E.

    1997-01-01

    The basic transport and thermodynamic characteristic of a thermal plasma are analysed in order to emphasize those properties that make a high-temperature source profitable and suitable over the conventional devices for hazardous waste treatment. In addition a survey of the basic reaction sequence and apparatus units is made together with the different approaches to thermal plasma waste treatments

  19. Thermal conductivity and PVT measurements of pentafluoroethane (refrigerant HFC-125)

    International Nuclear Information System (INIS)

    Tsvetkov, O.B.; Kletski, A.V.; Laptev, Yu.A.

    1995-01-01

    By means of the transient and steady-state coaxial cylinder methods, the thermal conductivity of pentfluoroethane was investigated at temperatures from 187 to 419 K and pressures from atmospheric to 6.0 MPa. The estimated uncertainty of the measured results is ± (2-3)%. The operation of the experimental apparatus was validated by measuring the thermal conductivity of R22 and R12. Determinations of the vapor pressure and PVT properties were carried out by a constant-volume apparatus for the temperature range 263 to 443 K, pressures up to 6 MPa, and densities from 36 to 516 kg m -3 . The uncertainties in temperature, pressure, and density are less than ±10 mK, ±0.08%, and ±0.1%, respectively

  20. Numerical investigation of biogas diffusion flames characteristics under several operation conditions in counter-flow configuration with an emphasis on thermal and chemical effects of CO2 in the fuel mixture

    Science.gov (United States)

    Mameri, A.; Tabet, F.; Hadef, A.

    2017-08-01

    This study addresses the influence of several operating conditions (composition and ambient pressure) on biogas diffusion flame structure and NO emissions with particular attention on thermal and chemical effect of CO2. The biogas flame is modeled by a counter flow diffusion flame and analyzed in mixture fraction space using flamelet approach. The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted for the oxidation chemistry. It has been observed that flame properties are very sensitive to biogas composition and pressure. CO2 addition decreases flame temperature by both thermal and chemical effects. Added CO2 may participate in chemical reaction due to thermal dissociation (chemical effect). Excessively supplied CO2 plays the role of pure diluent (thermal effect). The ambient pressure rise increases temperature and reduces flame thickness, radiation losses and dissociation amount. At high pressure, recombination reactions coupled with chain carrier radicals reduction, diminishes NO mass fraction.

  1. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  2. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  3. Informationization nuclear apparatus communication technique

    International Nuclear Information System (INIS)

    Yu Tiqi; Fang Zongliang; Wen Qilin

    2006-01-01

    The paper explains the request of communication ability in nuclear technique application area. Based on the actuality of nuclear apparatus communication ability, and mainly combining with the development of communication technique, the authors analyzes the application trend of communication technique applying in nuclear apparatus, for the apparatus and system needing communication ability, they need selecting suitable communication means to make them accomplish the task immediately and effectively. (authors)

  4. Manufacturing a Long-Period Grating with Periodic Thermal Diffusion Technology on High-NA Fiber and Its Application as a High-Temperature Sensor.

    Science.gov (United States)

    Shen, Xiang; Dai, Bin; Xing, Yingbin; Yang, Luyun; Li, Haiqing; Li, Jinyan; Peng, Jingang

    2018-05-08

    We demonstrated a kind of long-period fiber grating (LPFG), which is manufactured with a thermal diffusion treatment. The LPFG was inscribed on an ultrahigh-numerical-aperture (UHNA) fiber, highly doped with Ge and P, which was able to easily diffuse at high temperatures within a few seconds. We analyzed how the elements diffused at a high temperature over 1300 °C in the UHNA fiber. Then we developed a periodically heated technology with a CO₂ laser, which was able to cause the diffusion of the elements to constitute the modulations of an LPFG. With this technology, there is little damage to the outer structure of the fiber, which is different from the traditional LPFG, as it is periodically tapered. Since the LPFG itself was manufactured under high temperature, it can withstand higher temperatures than traditional LPFGs. Furthermore, the LPFG presents a higher sensitivity to high temperature due to the large amount of Ge doping, which is approximately 100 pm/°C. In addition, the LPFG shows insensitivity to the changing of the environment’s refractive index and strain.

  5. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  6. Comparison of experimentally-inferred ion thermal diffusivities with neoclassical theory for neutral beam-heated discharges in the Doublet III tokamak

    International Nuclear Information System (INIS)

    Groebner, R.J.

    1986-04-01

    The study of ion transport in neutral beam-heated discharges in tokamaks is necessary to determine if neoclassical theory can reliably be used to predict the performance of future machines. Previous studies of ion tranport have generally been difficult due to the lack of information regarding the ion temperature profile. The standard procedure used to study ion transport has been to model the T/sub i/ profile with the assumption that the ion thermal diffusivity profile chi/sub i/(r) was equal to a multiplier times chi/sub i//sup neo/(r), the ion thermal diffusivity calculated from neoclassical theory. The multiplier was varied until the calculated T/sub i/ profile agreed with the available ion temperature data, usually T/sub i/(0) or the measured neutron rate. Values of the multiplier in the range of 1 to 10 have generally been obtained with few estimates of the uncertainties in these values. Furthermore, there have been few, if any, attempts to calculate chi/sub i/ by modeling the ion temperature profiles in other ways. As a result, the issue as to whether or not the ion transport in tokamaks is in agreement with neoclassical theory has not been definitively answered

  7. Mid infrared upconversion spectroscopy using diffuse reflectance

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Kehlet, Louis M.; Dam, Jeppe Seidelin

    2014-01-01

    specifically that upconversion methods can be deployed using a diffuse reflectance setup where the test sample is irradiated by a thermal light source, i.e. a globar. The diffuse reflectance geometry is particularly well suited when a transmission setup cannot be used. This situation may happen for highly...

  8. Integrated Temperature Sensors based on Heat Diffusion

    NARCIS (Netherlands)

    Van Vroonhoven, C.P.L.

    2015-01-01

    This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and

  9. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    International Nuclear Information System (INIS)

    Zhou, Xiafeng; Guo, Jiong; Li, Fu

    2015-01-01

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  10. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  11. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.; AbuElela, Ayman; Mishra, Pawan; Janjua, Bilal; Oubei, Hassan M.; Buttner, Ulrich; Majid, Mohammed Abdul; Ng, Tien Khee; Merzaban, Jasmeen; Ooi, Boon S.

    2016-01-01

    Knowledge of materials' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  12. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.

    2016-11-23

    Knowledge of materials\\' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes\\' emission spectrally shift based on the material\\'s thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  13. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.; Vila-Comamala, Joan; Lai, Barry; Maser, Jorg M.; Roehrig, Christian; Wojcik, Michael J.; Vogt, Franz Stefan

    2017-04-04

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respective zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.

  14. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.; Inayat, Salman Bin; Smith, Casey Eben

    2013-01-01

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  15. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  16. CASTING METHOD AND APPARATUS

    Science.gov (United States)

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  17. Determination of thermal neutrons diffusion length in graphite; Determinacion de la Longitud de Difusion de los Neutrones Termicos en Grafito

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fite, J

    1959-07-01

    The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs.

  18. Methods and apparatus for use with extreme ultraviolet light having contamination protection

    Science.gov (United States)

    Chilese, Francis C.; Torczynski, John R.; Garcia, Rudy; Klebanoff, Leonard E.; Delgado, Gildardo R.; Rader, Daniel J.; Geller, Anthony S.; Gallis, Michail A.

    2016-07-12

    An apparatus for use with extreme ultraviolet (EUV) light comprising A) a duct having a first end opening, a second end opening and an intermediate opening intermediate the first end opening the second end opening, B) an optical component disposed to receive EUV light from the second end opening or to send light through the second end opening, and C) a source of low pressure gas at a first pressure to flow through the duct, the gas having a high transmission of EUV light, fluidly coupled to the intermediate opening. In addition to or rather than gas flow the apparatus may have A) a low pressure gas with a heat control unit thermally coupled to at least one of the duct and the optical component and/or B) a voltage device to generate voltage between a first portion and a second portion of the duet with a grounded insulative portion therebetween.

  19. Thermal properties of lithium ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Baker, D.E.

    1982-03-01

    Specific heat, thermal diffusivity and thermal conductivity were measured on Li 2 O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 . Data on these properties were needed for design of an irradiation experiment to be performed on these materials. In general, the specific heat of a ceramic is primarily enrichment-dependent, but the thermal diffusivity and thermal expansion coefficient may be influenced by microstructure. Hence, it will be necessary to duplicate these measurements on the engineering materials finally selected for a particular design

  20. Bonding of TRIP-Steel/Al2O3-(3Y-TZP Composites and (3Y-TZP Ceramic by a Spark Plasma Sintering (SPS Apparatus

    Directory of Open Access Journals (Sweden)

    Aslan Miriyev

    2016-07-01

    Full Text Available A combination of the high damage tolerance of TRIP-steel and the extremely low thermal conductivity of partially stabilized zirconia (PSZ can provide controlled thermal-mechanical properties to sandwich-shaped composite specimens comprising these materials. Sintering the (TRIP-steel-PSZ/PSZ sandwich in a single step is very difficult due to differences in the sintering temperature and densification kinetics of the composite and the ceramic powders. In the present study, we successfully applied a two-step approach involving separate SPS consolidation of pure (3Y-TZP and composites containing 20 vol % TRIP-steel, 40 vol % Al2O3 and 40 vol % (3Y-TZP ceramic phase, and subsequent diffusion joining of both sintered components in an SPS apparatus. The microstructure and properties of the sintered and bonded specimens were characterized. No defects at the interface between the TZP and the composite after joining in the 1050–1150 °C temperature range were observed. Only limited grain growth occurred during joining, while crystallite size, hardness, shear strength and the fraction of the monoclinic phase in the TZP ceramic virtually did not change. The slight increase of the TZP layer’s fracture toughness with the joining temperature was attributed to the effect of grain size on transformation toughening.