D-brane disformal coupling and thermal dark matter
Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne
2017-11-01
Conformal and disformal couplings between a scalar field and matter occur naturally in general scalar-tensor theories. In D-brane models of cosmology and particle physics, these couplings originate from the D-brane action describing the dynamics of its transverse (the scalar) and longitudinal (matter) fluctuations, which are thus coupled. During the post-inflationary regime and before the onset of big bang nucleosynthesis (BBN), these couplings can modify the expansion rate felt by matter, changing the predictions for the thermal relic abundance of dark matter particles and thus the annihilation rate required to satisfy the dark matter content today. We study the D-brane-like conformal and disformal couplings effect on the expansion rate of the Universe prior to BBN and its impact on the dark matter relic abundance and annihilation rate. For a purely disformal coupling, the expansion rate is always enhanced with respect to the standard one. This gives rise to larger cross sections when compared to the standard thermal prediction for a range of dark matter masses, which will be probed by future experiments. In a D-brane-like scenario, the scale at which the expansion rate enhancement occurs depends on the string coupling and the string scale.
Energy Technology Data Exchange (ETDEWEB)
Nardi, R [Centro Brasileiro de Pesquisas Fisicas (CBPF), R. Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Santos, M A [Departamento de Fisica e QImica, Universidade Federal do EspIrito Santo (UFES), Av. Fernando Ferarri S/N-Goiabeiras, 29060-900 Vitoria-ES (Brazil); Vancea, I V, E-mail: rnardi@cbpf.br, E-mail: masantos@cce.ufes.br, E-mail: ionvancea@ufrrj.br [Grupo de Fisica Teorica e Matematica Fisica, Departamento de Fisica, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropedica, RJ (Brazil)
2011-06-10
We construct the D-brane states at finite temperature in thermal equilibrium in the R{sup 1,p} x T{sup d-p-1} spacetime in the presence of cold (unthermalized) Kalb-Ramond (KR) and U(1) gauge potential background. To this end, we first generalize the thermo-field dynamics to wrapped closed strings. This generalization is consistent with the spatial translation invariance on the string world-sheet. Next, we determine the thermal string vacuum and define the entropy operator. From these data we calculate the entropy of the closed string and the free energy. Finally, we define the thermal D-brane states in R{sup 1,p} x T{sup d-p-1} in the presence of a cold constant KR field and U(1) gauge potential as the boundary states of the thermal closed string and compute their entropy.
D-branes in little string theory
International Nuclear Information System (INIS)
Israel, Dan; Pakman, Ari; Troost, Jan
2005-01-01
We analyze in detail the D-branes in the near-horizon limit of NS5-branes on a circle, the holographic dual of little string theory in a double scaling limit. We emphasize their geometry in the background of the NS5-branes and show the relation with D-branes in coset models. The exact one-point functions giving the coupling of the closed string states with the D-branes and the spectrum of open strings are computed. Using these results, we analyze several aspects of Hanany-Witten setups, using exact CFT analysis. In particular we identify the open string spectrum on the D-branes stretched between NS5-branes which confirms the low-energy analysis in brane constructions, and that allows to go to higher energy scales. As an application we show the emergence of the beta-function of the N=2 gauge theory on D4-branes stretching between NS5-branes from the boundary states describing the D4-branes. We also speculate on the possibility of getting a matrix model description of little string theory from the effective theory on the D1-branes. By considering D3-branes orthogonal to the NS5-branes we find a CFT incarnation of the Hanany-Witten effect of anomalous creation of D-branes. Finally we give an brief description of some non-BPS D-branes
String Thermodynamics in D-Brane Backgrounds
Abel, S A; Kogan, I I; Rabinovici, Eliezer
1999-01-01
We discuss the thermal properties of string gases propagating in various D-brane backgrounds in the weak-coupling limit, and at temperatures close to the Hagedorn temperature. We determine, in the canonical ensemble, whether the Hagedorn temperature is limiting or non-limiting. This depends on the dimensionality of the D-brane, and the size of the compact dimensions. We find that in many cases the non-limiting behaviour manifest in the canonical ensemble is modified to a limiting behaviour in the microcanonical ensemble and show that, when there are different systems in thermal contact, the energy flows into open strings on the `limiting' D-branes of largest dimensionality. Such energy densities may eventually exceed the D-brane intrinsic tension. We discuss possible implications of this for the survival of Dp-branes with large values of p in an early cosmological Hagedorn regime. We also discuss the general phase diagram of the interacting theory, as implied by the holographic and black-hole/string correspon...
Energy Technology Data Exchange (ETDEWEB)
McGreevy, John Austen; /Stanford U., Phys. Dept.
2005-07-06
This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry, both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe
Highly symmetric D-brane-anti-D-brane effective actions
Hatefi, Ehsan
2017-09-01
The entire S-matrix elements of four, five and six point functions of D-brane-anti D-brane system are explored. To deal with symmetries of string amplitudes as well as their all order α ' corrections we first address a four point function of one closed string Ramond-Ramond (RR) and two real tachyons on the world volume of brane-anti brane system. We then focus on symmetries of string theory as well as universal tachyon expansion to achieve both string and effective field theory of an RR and three tachyons where the complete algebraic analysis for the whole S-matrix was also revealed. Lastly, we employ all the conformal field theory techniques to , working out with symmetries of theory and find out the expansion for the amplitude to be able to precisely discover all order singularity structures of D-brane-anti-D-brane effective actions of string theory. Various remarks about the so called generalized Veneziano amplitude and new string couplings are elaborated as well.
D-branes from Liouville strings
Ellis, Jonathan Richard; Nanopoulos, Dimitri V
1997-01-01
We develop quantization aspects of our Liouville approach to non-critical strings, proposing a path-integral formulation of a second quantization of string theory, that incorporates naturally the couplings of string sources to background fields. Such couplings are characteristic of macroscopic string solutions and/or D-brane theories. Resummation over world-sheet genera in the presence of stringy (\\sigma-model) soliton backgrounds, and recoil effects associated with logarithmic operators on the world sheet, play a crucial r\\^ole in inducing such sources as well-defined renormalization-group counterterms. Using our Liouville renormalization group approach, we derive the appropriate second-order equation of motion for the D brane. We discuss within this approach the appearance of open strings, whose ends carry non-trivial Chan-Paton-like quantum numbers related to the W_\\infty charges of two-dimensional string black holes.
Orientifolds and D-branes in N=2 gauged linear sigma models
Brunner, Ilka
We study parity symmetries and boundary conditions in the framework of gauged linear sigma models. This allows us to investigate the Kaehler moduli dependence of the physics of D-branes as well as orientifolds in a Calabi-Yau compactification. We first determine the parity action on D-branes and define the set of orientifold-invariant D-branes in the linear sigma model. Using probe branes on top of orientifold planes, we derive a general formula for the type (SO vs Sp) of orientifold planes. As applications, we show how compactifications with and without vector structure arise naturally at different real slices of the Kaehler moduli space of a Calabi-Yau compactification. We observe that orientifold planes located at certain components of the fixed point locus can change type when navigating through the stringy regime.
Canonical formulation of IIB D-branes
International Nuclear Information System (INIS)
Kamimura, K.
1998-01-01
We find Wess-Zumino actions for kappa invariant type IIB D-branes in explicit forms. A simple and compact expression is obtained by the use of spinor variables which are defined as power series of differential forms. Using the Wess-Zumino actions we develop the canonical formulation and find the complete set of the constraint equations for generic type IIB Dp-branes. The conserved global supersymmetry charges are determined and the algebra containing the central charges can be obtained explicitly. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Horowitz, Gary; /UC, Santa Barbara; Lawrence, Albion; /Brandeis U. /Santa Barbara, KITP; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP
2010-08-26
We study a simple model of a black hole in AdS and obtain a holographic description of the region inside the horizon. A key role is played by the dynamics of the scalar fields in the dual gauge theory. This leads to a proposal for a dual description of D-branes falling through the horizon of any AdS black hole. The proposal uses a field-dependent time reparameterization in the field theory. We relate this reparametrization to various gauge invariances of the theory. Finally, we speculate on information loss and the black hole singularity in this context.
D-brane anti-D-brane system in string theory
Hyakutake, Y
2003-01-01
In this paper, we review a system of D-brane and anti-D-brane in type II superstring theories. [A. Sen, hep-th/9904207 and references there in; Y.Hyakutake, Master-Th., Doctor-Th. (in Japanese)] This system is unstable an tachyonic modes, which have negative mass squared, appear from open strings between D-brane and anti-D-brane. The effective field theory on the world-volume is described by U(1) x U(1) gauge theory with a complex tachyon field. Since the mass squared of the techyon field is negative, a tachyon potential would be like a wine bottle. In order to make the system stable, the tachyon rolls down the potential and gets some vacuum expectation value. This is called the tachyon condensation mechanism. During this mechanism, Dp-brane and anti-Dp-brane annihilate completely, if we admit Sen's conjecture. The suspicions between tachyon condensation and Hawking radiation are also discussed. (author)
Rolling down the throat in NS5-brane background: the case of electrified D-brane
International Nuclear Information System (INIS)
Nakayama, Yu; Takayanagi, Hiromitsu; Panigrahi, Kamal L.; Rey, Soo-Jong
2005-01-01
We study rolling radion dynamics of electrified D-brane in NS5-brane background, both in effective field theory and in full open string theory. We construct exact boundary states and, from them, extract conserved Noether currents. We argue that T-duality and Lorentz boost offer an intuitive approach. In the limit of large number of NS5-branes, both boundary wave functions and conserved currents are sharply peaked and agree with those deduced from the effective field theory. As the number of NS5-branes is reduced, width around the peak becomes wider by string corrections. We also study radiative decay process. By applying Lorentz covariance, we show how the decay of electrified D-brane is related to that of bare D-brane. We compute spectral moments of final state energy and winding quantum number. Using Lorentz covariance argument, we explain in elementary way why winding quantum number should be included and derive rules how to do so. We conclude that Kutasov's 'geometric realization' between radion rolling dynamics and tachyon rolling dynamics holds universally, both for bare and electrified D-branes. (author)
Non-perturbative Vacuum Destabilization and D-brane Dynamics
Camara, Pablo G; Dudas, E; Lennek, M
2010-01-01
We analyze the process of string vacuum destabilization due to instanton induced superpotential couplings which depend linearly on charged fields. These non-perturbative instabilities result in potentials for the D-brane moduli and lead to processes of D-brane recombination, motion and partial moduli stabilization at the non-perturbative vacuum. By using techniques of D-brane instanton calculus, we explicitly compute this scalar potential in toroidal orbifold compactifications with magnetized D-branes by summing over the possible discrete instanton configurations. We illustrate explicitly the resulting dynamics in globally consistent models. These instabilities can have phenomenological applications to breaking hidden sector gauge groups, open string moduli stabilization and supersymmetry breaking. Our results suggest that breaking supersymmetry by Polonyi-like models in string theory is more difficult than expected.
The bosonic mother of fermionic D-branes
Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne
2002-01-01
We extend the search for fermionic subspaces of the bosonic string compactified on E8 X SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bos...
Charged superstring attached two different D-branes
International Nuclear Information System (INIS)
Sadeghi, J.; Pourhassan, B.; Banijamali, A.
2008-01-01
In this paper we generalized the charged open string attached both ends to the same branes to the case where charged open superstring is stretched between two different D-branes. These branes involve constant background two-dimensions magnetic field. We focus our attention to type II superstring and consider the interaction between branes. We obtain relation between string charge and the separation of two D-branes. Further more we find the modified normal ordering constant and mode expansions of superstring
String creation, D-branes and effective field theory
International Nuclear Information System (INIS)
Hung Lingyan
2008-01-01
This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries
The D-instanton and other supersymmetric D-branes in IIB plane-wave string theory
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Green, Michael B.
2003-01-01
A class of D-branes for the type IIB plane-wave background is considered that preserve half the dynamical supersymmetries of the light-cone gauge. The D-branes of this type are the Euclidean (or instantonic) (0,0), (0,4), and (4,0) branes (where (r,s) denotes a brane oriented with r axes in the first four directions transverse to the +, - light-cone, and s axes in the second four directions). Corresponding Lorentzian D-branes are (+,-;0,0), (+,-;0,4), and (+,-;4,0). These are constructed in two ways. The first uses a boundary state formalism which implements appropriate fermionic gluing conditions and the second is based on a direct quantization of the open strings ending on the branes. In distinction to the D-branes considered earlier these have massless world-volume fermions but do not possess kinematical supersymmetries. Cylinder diagrams describing the overlap between a pair of boundary states displaced by some distance are evaluated. The open-string description of this system involves mode frequencies that are, in general, given by irrational solutions to transcendental equations. The closed-string and open-string descriptions are shown to be equivalent by a nontrivial implementation of the S modular transformation. A classical description of the D-instanton (the (0,0) case) in light-cone gauge is also given
U-duality and D-brane combinatorics
Pioline, B
1998-01-01
We investigate D-brane instanton contributions to R^4 couplings in any toroidal compactification of type II theories. Starting from the 11D supergravity one-loop four-graviton amplitude computed by Green, Gutperle and Vanhove, we derive the non-perturbative O(e^{-1/\\lambda}) corrections to R^4 couplings by a sequence of T-dualities, and interpret them as precise configurations of bound states of D-branes wrapping cycles of the compactification torus. Dp-branes explicitely appear as fluxes on D(p+2)-branes, and as gauge instantons on D(p+4)-branes. Specific rules for weighting these contributions are obtained, which should carry over to more general situations. Furthermore, it is shown that U-duality in D<=6 relates these D-brane configurations to O(e^{-1/\\lambda^2}) instantons for which a geometric interpretation is still lacking.
Probing near extremal black holes with D-branes
International Nuclear Information System (INIS)
Maldacena, J.
1998-01-01
We calculate the one loop effective action for D-brane probes moving in the presence of near Bogomol close-quote nyi-Prasad-Sommerfield D-branes. The v 2 term agrees with supergravity in all cases and the static force agrees for a five-dimensional black hole with two large charges. It also agrees qualitatively in all the other cases. We make some comments on the M(atrix) theory interpretation of these results. copyright 1998 The American Physical Society
Non-Abelian phenomena on D-branes
Myers, R
2003-01-01
A remarkable feature of D-branes is the appearance of a non-Abelian gauge theory in the description of several (nearly) coincident branes. This non-Abelian structure plays an important role in realizing various geometric effects with D-branes. In particular, the branes' transverse displacements are described by matrix-valued scalar fields and so noncommutative geometry naturally appears in this framework. I review the action governing this non-Abelian theory, as well as various related physical phenomena such as the dielectric effect, giant gravitons and fuzzy funnels.
Intersecting D-branes and black hole entropy
Behrndt, Klaus; Bergshoeff, Eric
1996-01-01
In four dimensions there are 4 different types of extremal Maxwell/scalar black holes characterized by a scalar coupling parameter a with a = 0, 1/âˆš3, 1, âˆš3. These black holes can be described as intersections of ten-dimensional non-singular Ramond-Ramond objects, i.e, D-branes, waves and
q-deformed oscillators and D-branes on conifold
International Nuclear Information System (INIS)
Okuyama, Kazumi
2009-01-01
We study the q-deformed oscillator algebra acting on the wavefunctions of non-compact D-branes in the topological string on conifold. We find that the mirror B-model curve of conifold appears from the commutation relation of the q-deformed oscillators
D-Brane superstrings and new perspective of our world
Hashimoto, Koji
2012-01-01
Superstring theory is a promising theory which can potentially unify all the forces and the matters in particle physics. A new multi-dimensional object which is called "D-brane" was found. It drastically changed our perspective of a unified world. We may live on membrane-like hypersurfaces in higher dimensions ("braneworld scenario"), or we can create blackholes at particle accelarators, or the dynamics of quarks is shown to be equivalent to the higher dimensional gravity theory. All these scenarios are explained in this book with plain words but with little use of equations and with many figures. The book starts with a summary of long-standing problems in elementary particle physics and explains the D-branes and many applications of them. It ends with future roads for a unified ultimate theory of our world.
Dilaton tadpoles and D-brane interactions in compact spaces
Rabadan, Raul; Rabadan, Raul; Zamora, Frederic
2002-01-01
We analyse some physical consequences when supersymmetry is broken by a set of D-branes and/or orientifold planes in Type II string theories. Generically, there are global dilaton tadpoles at the disk level when the transverse space is compact. By taking the toy model of a set of electric charges in a compact space, we discuss two different effects appearing when global tadpoles are not cancelled. On the compact directions a constant term appears that allows to solve the equations of motion. On the non-compact directions Poincar\\'e invariance is broken. We analyse some examples where the Poincar\\'e invariance is broken along the time direction (cosmological models).After that, we discuss how to obtain a finite interaction between D-branes and orientifold planes in the compact space at the supergravity level.
Linear Sigma Model Toolshed for D-brane Physics
Energy Technology Data Exchange (ETDEWEB)
Hellerman, Simeon
2001-08-23
Building on earlier work, we construct linear sigma models for strings on curved spaces in the presence of branes. Our models include an extremely general class of brane-worldvolume gauge field configurations. We explain in an accessible manner the mathematical ideas which suggest appropriate worldsheet interactions for generating a given open string background. This construction provides an explanation for the appearance of the derived category in D-brane physic complementary to that of recent work of Douglas.
Extensive numerical study of a D-brane, anti-D-brane system in AdS5/CFT4
International Nuclear Information System (INIS)
Hegedűs, Árpád
2015-01-01
In this paper the hybrid-NLIE approach of http://dx.doi.org/10.1007/JHEP08(2012)022 is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L=1 case is also commented in the paper.
On D-brane dynamics and moduli stabilization
Kitazawa, Noriaki
2017-09-01
We discuss the effect of the dynamics of D-branes on moduli stabilization in type IIB string theory compactifications, with reference to a concrete toy model of T6/Z 3 orientifold compactification with fractional D3-branes and anti-D3-branes at orbifold fixed points. The resulting attractive forces between anti-D3-branes and D3-branes, together with the repulsive forces between anti-D3-branes and O3-planes, can affect the stability of the compact space. There are no complex structure moduli in T6/Z 3 orientifold, which should thus capture some generic features of more general settings where all complex structure moduli are stabilized by three-form fluxes. The simultaneous presence of branes and anti-branes brings along the breaking of supersymmetry. Non-BPS combinations of this type are typical of “brane supersymmetry breaking” and are a necessary ingredient in the KKLT scenario for stabilizing the remaining Kähler moduli. The conclusion of our analysis is that, while mutual D-brane interactions sometimes help Kähler moduli stabilization, this is not always the case.
Supergravity solutions for D-branes in Hpp-wave backgrounds
International Nuclear Information System (INIS)
Bain, P; Meessen, P; Zamaklar, M
2003-01-01
We derive two families of supergravity solutions describing D-branes in the maximally supersymmetric Hpp-wave background. The first family of solutions corresponds to quarter-BPS D-branes. These solutions are delocalized along certain directions transverse to the pp-wave. The second family corresponds to the non-supersymmetric D-branes. These solutions are fully localized. A peculiar feature of the non-supersymmetric solutions is that gravity becomes repulsive close to the core of the D-brane. Both families preserve the amount of supersymmetry predicted by the D-brane probe/CFT analysis. All solutions are written in Brinkman coordinates. To construct these kinds of solutions it is crucial to identify the coordinates in which the ansatz looks the simplest. We argue that the natural coordinates to get the supergravity description of the half-BPS branes are the Rosen coordinates
Classifying bions in Grassmann sigma models and non-Abelian gauge theories by D-branes
Misumi, Tatsuhiro; Nitta, Muneto; Sakai, Norisuke
2015-03-01
We classify bions in the Grassmann Gr_{N_F,N_C} sigma model (including the {C}P^{N_F-1} model) on {R}1× S1 with twisted boundary conditions. We formulate these models as U(N_C) gauge theories with N_F flavors in the fundamental representations. These theories can be promoted to supersymmetric gauge theories and, further, can be embedded into D-brane configurations in type-II superstring theories. We focus on specific configurations composed of multiple fractional instantons, termed neutral bions and charged bions, which are identified as perturbative infrared renormalons by Ünsal and his collaborators [G. V. Dunne and M. Ünsal, J. High Energy Phys. 1211, 170 (2012); G. V. Dunne and M. Ünsal, Phys. Rev. D 87, 025015 (2013)]. We show that D-brane configurations, as well as the moduli matrix, offer a very useful tool to classify all possible bion configurations in these models. In contrast to the {C}P^{N_F-1} model, there exist Bogomol'nyi-Prasad-Sommerfield (BPS) fractional instantons with topological charges greater than unity (of order N_C) that cannot be reduced to a composite of an instanton and fractional instantons. As a consequence, we find that the Grassmann sigma model admits neutral bions made of BPS and anti-BPS fractional instantons, each of which has a topological charge greater (less) than one (minus one), that are not decomposable into an instanton-anti-instanton pair and the rest. The {C}P^{N_F-1} model is found to have no charged bions. In contrast, we find that the Grassmann sigma model admits charged bions, for which we construct exact non-BPS solutions of the field equations.
Aspects of string theory compactifications. D-brane statistics and generalised geometry
International Nuclear Information System (INIS)
Gmeiner, F.
2006-01-01
In this thesis we investigate two different aspects of string theory compactifications. The first part deals with the issue of the huge amount of possible string vacua, known as the landscape. Concretely we investigate a specific well defined subset of type II orientifold compactifications. We develop the necessary tools to construct a very large set of consistent models and investigate their gauge sector on a statistical basis. In particular we analyse the frequency distributions of gauge groups and the possible amount of chiral matter for compactifications to six and four dimensions. In the phenomenologically relevant case of four-dimensional compactifications, special attention is paid to solutions with gauge groups that include those of the standard model, as well as Pati-Salam, SU(5) and flipped SU(5) models. Additionally we investigate the frequency distribution of coupling constants and correlations between the observables in the gauge sector. These results are compared with a recent study of Gepner models. Moreover, we elaborate on questions concerning the finiteness of the number of solutions and the computational complexity of the algorithm. In the second part of this thesis we consider a new mathematical framework, called generalised geometry, to describe the six-manifolds used in string theory compactifications. In particular, the formulation of T-duality and mirror symmetry for nonlinear topological sigma models is investigated. Therefore we provide a reformulation and extension of the known topological A- and B-models to the generalised framework. The action of mirror symmetry on topological D-branes in this setup is presented and the transformation of the boundary conditions is analysed. To extend the considerations to D-branes in type II string theory, we introduce the notion of generalised calibrations. We show that the known calibration conditions of supersymmetric branes in type IIA and IIB can be obtained as special cases. Finally we investigate
Aspects of string theory compactifications. D-brane statistics and generalised geometry
Energy Technology Data Exchange (ETDEWEB)
Gmeiner, F.
2006-05-26
In this thesis we investigate two different aspects of string theory compactifications. The first part deals with the issue of the huge amount of possible string vacua, known as the landscape. Concretely we investigate a specific well defined subset of type II orientifold compactifications. We develop the necessary tools to construct a very large set of consistent models and investigate their gauge sector on a statistical basis. In particular we analyse the frequency distributions of gauge groups and the possible amount of chiral matter for compactifications to six and four dimensions. In the phenomenologically relevant case of four-dimensional compactifications, special attention is paid to solutions with gauge groups that include those of the standard model, as well as Pati-Salam, SU(5) and flipped SU(5) models. Additionally we investigate the frequency distribution of coupling constants and correlations between the observables in the gauge sector. These results are compared with a recent study of Gepner models. Moreover, we elaborate on questions concerning the finiteness of the number of solutions and the computational complexity of the algorithm. In the second part of this thesis we consider a new mathematical framework, called generalised geometry, to describe the six-manifolds used in string theory compactifications. In particular, the formulation of T-duality and mirror symmetry for nonlinear topological sigma models is investigated. Therefore we provide a reformulation and extension of the known topological A- and B-models to the generalised framework. The action of mirror symmetry on topological D-branes in this setup is presented and the transformation of the boundary conditions is analysed. To extend the considerations to D-branes in type II string theory, we introduce the notion of generalised calibrations. We show that the known calibration conditions of supersymmetric branes in type IIA and IIB can be obtained as special cases. Finally we investigate
Heterotic / type-I duality and D-brane instantons
Bachas, C P; Kiritsis, Elias B; Obers, N A; Vanhove, P
1998-01-01
We study heterotic/type-I duality in d=8,9 uncompactified dimensions. We consider the special (``BPS saturated'') F^4 and R^4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be recognized easily as arising from a D-brane instanton calculation on the type-I side.
Cyclicity of non-associative products on D-branes
Herbst, Manfred; Kreuzer, M
2004-01-01
The non-commutative geometry of deformation quantization appears in string theory through the effect of a B-field background on the dynamics of D-branes in the topological limit. For arbitrary backgrounds, associativity of the star product is lost, but only cyclicity is necessary for a description of the effective action in terms of a generalized product. In previous work we showed that this property indeed emerges for a non-associative product that we extracted from open string amplitudes in curved background fields. In the present note we extend our investigation through second order in a complete derivative expansion. We establish cyclicity with respect to the Born--Infeld measure and find a logarithmic correction that modifies the Kontsevich formula in an arbitrary background satisfying the generalized Maxwell equation. This equation is the physical equivalent of a divergence-free non-commutative parameter, which is required for cyclicity already in the associative case.
Towards an explicit model of D-brane inflation
Baumann, Daniel; Dymarsky, Anatoly; Klebanov, Igor R.; McAllister, Liam
2008-01-01
We present a detailed analysis of an explicit model of warped D-brane inflation, incorporating the effects of moduli stabilization. We consider the potential for D3-brane motion in a warped conifold background that includes fluxes and holomorphically embedded D7-branes involved in moduli stabilization. Although the D7-branes significantly modify the inflaton potential, they do not correct the quadratic term in the potential, and hence do not cause a uniform change in the slow roll parameter eta. Nevertheless, we present a simple example based on the Kuperstein embedding of D7-branes, z1 = constant, in which the potential can be fine-tuned to be sufficiently flat for inflation. To derive this result, it is essential to incorporate the fact that the compactification volume changes slightly as the D3-brane moves. We stress that the compactification geometry dictates certain relationships among the parameters in the inflaton Lagrangian, and these microscopic constraints impose severe restrictions on the space of possible models. We note that the shape of the final inflaton potential differs from projections given in earlier studies: in configurations where inflation occurs, it does so near an inflection point. Finally, we comment on the difficulty of making precise cosmological predictions in this scenario. This is the companion paper to Baumann et al (2007 Phys. Rev. Lett. 99 141601).
Monopoles and instantons on partially compactified D-branes
International Nuclear Information System (INIS)
Lee, K.; Yi, P.
1997-01-01
Motivated by the recent D-brane constructions of world-volume monopoles and instantons, we study the supersymmetric SU(N) Yang-Mills theory on S 1 xR 3+1 , spontaneously broken by a Wilson loop. In addition to the usual N-1 fundamental monopoles, the Nth Bogomol close-quote nyi-Prasad-Sommerfield monopole appears from the Kaluza-Klein sector. When all N monopoles are present, net magnetic charge vanishes and the solution can be reinterpreted as a Wilson-loop instanton of unit Pontryagin number. The instanton-multimonopole moduli space is explicitly constructed, and seen to be identical to a Coulomb phase moduli space of a U(1) N gauge theory in 2+1 dimensions related to Kronheimer close-quote s gauge theory of SU(N)-type. This extends the results by Intriligator and Seiberg to the finite couplings that, in the infrared limit of Kronheimer close-quote s theory, the Coulomb phase parametrizes a centered SU(N) instanton. We also elaborate on the case of restored SU(N) symmetry. copyright 1997 The American Physical Society
D-branes in a big bang/big crunch universe: Nappi-Witten gauged WZW model
Energy Technology Data Exchange (ETDEWEB)
Hikida, Yasuaki [School of Physics and BK-21 Physics Division, Seoul National University, Seoul 151-747 (Korea, Republic of); Nayak, Rashmi R. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' ' , Rome 00133 (Italy); Panigrahi, Kamal L. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy)
2005-05-01
We study D-branes in the Nappi-Witten model, which is a gauged WZW model based on (SL(2,R) x SU(2))/(U(1) x U(1)). The model describes a four dimensional space-time consisting of cosmological regions with big bang/big crunch singularities and static regions with closed time-like curves. The aim of this paper is to investigate by D-brane probes whether there are pathologies associated with the cosmological singularities and the closed time-like curves. We first classify D-branes in a group theoretical way, and then examine DBI actions for effective theories on the D-branes. In particular, we show that D-brane metric from the DBI action does not include singularities, and wave functions on the D-branes are well behaved even in the presence of closed time-like curves.
D-brane physics. From weak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Vieira Lopes, Daniel Ordine
2013-01-10
In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.
U duality, D-branes, and black hole emission rates: Agreements and disagreements
International Nuclear Information System (INIS)
Dowker, F.; Kastor, D.; Traschen, J.
1998-01-01
An expression for the spacetime absorption coefficient of a scalar field in a five-dimensional, near-extremal black hole background is derived, which has the same form as that presented by Maldacena and Strominger, but is valid over a larger, U-duality invariant region of parameter space and in general disagrees with the corresponding D-brane result. We develop an argument, based on D-brane thermodynamics, which specifies the range of parameters over which agreement should be expected. For neutral emission, the spacetime and D-brane results agree over this range. However, for charged emission, we find disagreement in the 'fat black hole' regime, in which charge is quantized in smaller units on the brane than in the bulk of spacetime. We indicate a possible problem with the D-brane model in this regime. We also use the Born approximation to study the high frequency limit of the absorption coefficient and find that it approaches unity, for large black hole backgrounds, at frequencies still below the string scale, again in disagreement with D-brane results. copyright 1998 The American Physical Society
Observer-dependent D-brane for strings propagating in pp-wave time-dependent background
International Nuclear Information System (INIS)
Marchioro, D.Z.; Nedel, D.L.
2008-01-01
We study the type IIB superstring in a pp-wave time-dependent background, which has a singularity at t=0. We show that this background can provide a toy model to study some ideas related to the stretched horizon paradigm and the complementary principle of black holes. To this end, we construct a unitary Bogolyubov generator that relates the asymptotically flat string Hilbert space, defined at t=±∞, to the finite time Hilbert space. For asymptotically flat observers, the closed string vacuum close to the singularity appears as a boundary state, which is in fact a D-brane described in the closed string channel. However, observers who go with the string towards the singularity see the original vacuum. (orig.)
Observer-dependent D-brane for strings propagating in pp-wave time-dependent background
Energy Technology Data Exchange (ETDEWEB)
Marchioro, D.Z.; Nedel, D.L. [Universidade Federal do Pampa - UNIPAMPA, Bage, RS (Brazil)
2008-05-15
We study the type IIB superstring in a pp-wave time-dependent background, which has a singularity at t=0. We show that this background can provide a toy model to study some ideas related to the stretched horizon paradigm and the complementary principle of black holes. To this end, we construct a unitary Bogolyubov generator that relates the asymptotically flat string Hilbert space, defined at t={+-}{infinity}, to the finite time Hilbert space. For asymptotically flat observers, the closed string vacuum close to the singularity appears as a boundary state, which is in fact a D-brane described in the closed string channel. However, observers who go with the string towards the singularity see the original vacuum. (orig.)
Line bundle twisted chiral de Rham complex and bound states of D-branes on toric manifolds
International Nuclear Information System (INIS)
Parkhomenko, S.E.
2014-01-01
In this note we calculate elliptic genus in various examples of twisted chiral de Rham complex on two-dimensional toric compact manifolds and Calabi–Yau hypersurfaces in toric manifolds. At first the elliptic genus is calculated for the line bundle twisted chiral de Rham complex on a compact smooth toric manifold and K3 hypersurface in P 3 . Then we twist chiral de Rham complex by sheaves localized on positive codimension submanifolds in P 2 and calculate in each case the elliptic genus. In the last example the elliptic genus of chiral de Rham complex on P 2 twisted by SL(N) vector bundle with instanton number k is calculated. In all the cases considered we find the infinite tower of open string oscillator contributions and identify directly the open string boundary conditions of the corresponding bound state of D-branes
Stringy Instanton Effects in Models with Rigid Magnetised D-branes
Angelantonj, C; Dudas, E; Lennek, M
2009-01-01
We compute instantonic effects in globally consistent T^6/Z2xZ2 orientifold models with discrete torsion and magnetised D-branes. We consider fractional branes and instantons wrapping the same rigid cycles. We clarify and analyse in detail the low-energy effective action on D-branes in these models. We provide explicit examples where instantons induce linear terms in the charged fields, or non-perturbative mass terms are generated. We also find examples where the gauge theory on fractional branes has conformal symmetry at one-loop, broken by instantonic mass terms at a hierarchically small energy scale.
D-brane description of new open string solutions in AdS5
International Nuclear Information System (INIS)
Kluson, J.
2008-01-01
In this Letter we find D-brane descriptions of some of new open string solutions that were found in (0804.3438 [hep-th]). These D5-brane and D3-brane configurations give gravitational dual descriptions of Wilson loops in some particular representations
Electromagnetic dipole radiation of oscillating D-branes
International Nuclear Information System (INIS)
Savvidy, G.K.
2000-01-01
I emphasize analogy between Dp-branes in string theories and solitons in gauge theories comparing their common properties and showing differences. In string theory we do not have the full set of equations which define the theory in all orders of coupling constant as it was in gauge theories, nevertheless such solutions have been found as solutions of low energy superstring effective action carrying the RR charges. The existence of dynamical RR charged extended objects in string theory has been deduced also by considering string theory with mixed boundary conditions, when type II closed superstring theory is enriched by open strings with Neumann boundary conditions on p + 1 directions and Dirichlet conditions on the remaining 9-p transverse directions. We will show that for certain excitations of the string/D3-brane system Neumann boundary conditions emerge from the Born-Infeld dynamics. Here the excitations which are coming down the string with a polarization along a direction parallel to the brane are almost completely reflected just as in the case of all-normal Dirichlet excitations considered by Callan and Maldacena, but now the end of the string moves freely on the 3-brane realizing Polchinski's open string Neumann boundary condition dynamically. In the low energy limit ω → 0, i.e. for wavelengths much larger than the string scale only a small fraction ∼ ω 4 of the energy escapes in the form of dipole radiation. The physical interpretation is that a string attached to the 3-brane manifests itself as an electric charge, and waves on the string cause the end point of the string to freely oscillate and produce e.m. dipole radiation in the asymptotic outer region. The magnitude of emitted power is in fact exactly equal to the one given by Thomson formula in electrodynamics
On the 3-form formulation of axion potentials from D-brane instantons
Energy Technology Data Exchange (ETDEWEB)
García-Valdecasas, Eduardo [Instituto de Física Teórica UAM-CSIC,C/Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain); Departamento de Física Teórica, Universidad Autónoma de Madrid,Campus de Cantoblanco, 28049 Madrid (Spain); Uranga, Angel [Instituto de Física Teórica UAM-CSIC,C/Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain)
2017-02-16
The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a 3-form description of the axion potentials from non-gauge D-brane instantons. Interestingly, the required 3-form field does not arise in the underlying geometry, but rather shows up in the KK compactification in the generalized geometry obtained when the backreaction of the D-brane instanton is taken into account.
Comparing D-branes and black holes with 0- and 6-brane charges
International Nuclear Information System (INIS)
Pierre, J.M.
1997-01-01
We consider configurations of D6-branes with a D0-brane charge given by recent work of Taylor and compute interaction potentials with various D-brane probes using a 1-loop open string calculation. These results are compared to a supergravity calculation using the solution given by Sheinblatt of an extremal black hole carrying 0-brane and 6-brane charges. copyright 1997 The American Physical Society
High energy effects on D-brane and black hole emission rates
International Nuclear Information System (INIS)
Das, S.; Dasgupta, A.; Sarkar, T.
1997-01-01
We study the emission of scalar particles from a class of near-extremal five-dimensional black holes and the corresponding D-brane configuration at high energies. We show that the distribution functions and the black hole greybody factors are modified in the high energy tail of the Hawking spectrum in such a way that the emission rates exactly match. We extend the results to charged scalar emission and to four dimensions. copyright 1997 The American Physical Society
Operator product expansion of higher rank Wilson loops from D-branes and matrix models
International Nuclear Information System (INIS)
Giombi, Simone; Ricci, Riccardo; Trancanelli, Diego
2006-01-01
In this paper we study correlation functions of circular Wilson loops in higher dimensional representations with chiral primary operators of N = 4 super Yang-Mills theory. This is done using the recently established relation between higher rank Wilson loops in gauge theory and D-branes with electric fluxes in supergravity. We verify our results with a matrix model computation, finding perfect agreement in both the symmetric and the antisymmetric case
Nonthreshold D-brane bound states and black holes with nonzero entropy
International Nuclear Information System (INIS)
Costa, M.S.; Cvetic, M.
1997-01-01
We start with Bogomol close-quote nyi-Prasad-Sommerfield- (BPS) saturated configurations of two (orthogonally) intersecting M-branes and use the electromagnetic duality or dimensional reduction along a boost, in order to obtain new p-brane bound states. In the first case the resulting configurations are interpreted as BPS-saturated nonthreshold bound states of intersecting p-branes, and in the second case as p-branes intersecting at angles and their duals. As a by-product we deduce the enhancement of supersymmetry as the angle approaches zero. We also comment on the D-brane theory describing these new bound states, and a connection between the angle and the world-volume gauge fields of the D-brane system. We use these configurations to find new embeddings of the four- and five-dimensional black holes with nonzero entropy, whose entropy now also depends on the angle and world-volume gauge fields. The corresponding D-brane configuration sheds light on the microscopic entropy of such black holes. copyright 1997 The American Physical Society
Mirror Symmetry, D-brane Superpotential and Ooguri-Vafa Invariants of Compact Calabi-Yau Manifolds
Zhang, Shan-Shan; Yang, Fu-Zhong
2015-01-01
The D-brane superpotential is very important in the low energy effective theory. As the generating function of all disk instantons from the worldsheet point of view, it plays a crucial role in deriving some important properties of the compact Calabi–Yau manifolds. By using the generalized GKZ hypergeometric system, we will calculate the D-brane superpotentials of two non-Fermat type compact Calabi–Yau hypersurfaces in toric varieties, respectively. Then according to the mirror symmetry, we ob...
Closed string emission from unstable D-brane with background electric field
International Nuclear Information System (INIS)
Nagami, Kenji
2004-01-01
We study the closed string emission from an unstable Dp-brane with constant background electric field in bosonic string theory. The average total number density and the average total energy density of emitted closed strings are explicitly calculated in the presence of electric field. It is explicitly shown that the energy density in the UV region becomes finite whenever the background electric field is switched on. The energy density converted into closed strings in the presence of electric field is negligibly small compared with the D-brane tension in the weak string coupling limit. (author)
Thermal Simulations, Open Boundary Conditions and Switches
Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas
2018-03-01
SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.
Mirror symmetry in three-dimensional gauge theories, quivers and D-branes
International Nuclear Information System (INIS)
De Boer, J.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Hori, K.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Ooguri, H.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Oz, Y.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA
1997-01-01
We construct and analyze dual N=4 supersymmetric gauge theories in three dimensions with unitary and symplectic gauge groups. The gauge groups and the field content of the theories are encoded in quiver diagrams. The duality exchanges the Coulomb and Higgs branches and the Fayet-Iliopoulos and mass parameters. We analyze the classical and the quantum moduli spaces of the theories and construct an explicit mirror map between the mass parameters and the Fayet-Iliopoulos parameters of the dual. The results generalize the relation between ALE spaces and moduli spaces of SU(n) and SO(2n) instantons. We interpret some of these results from the string theory viewpoint, for SU(n) by analyzing T-duality and extremal transitions in type II string compactifications, for SO(2n) by using D-branes as probes. Finally, we make a proposal for the moduli space of vacua of these theories in the absence of matter. (orig.)
Actions and fermionic symmetries for D-branes in bosonic backgrounds
International Nuclear Information System (INIS)
Marolf, Donald; Martucci, Luca; Silva, Pedro J.
2003-01-01
In this article we derive the full interacting effective actions for supersymmetric D-branes in arbitrary bosonic type II supergravity backgrounds. The actions are presented in terms of component fields up to second order in fermions. As one expects, the actions are built from the supercovariant derivative operator and the κ -symmetry projector. The results take a compact and elegant form exhibiting κ-symmetry, as well as supersymmetry in a background with Killing spinors. We give the explicit transformation rules for these symmetries in all cases, including the M2-brane. As an example, we analyze the N = 2 super-worldvolume field theory defined by a test D4-brane in the supergravity background produced by a large number of D0-branes. This example displays rigid supersymmetry in a curved spacetime. (author)
D-branes and the Non-commutative Structure of Quantum Spacetime
Mavromatos, Nikolaos E; Mavromatos, Nick E; Szabo, Richard J
1999-01-01
A worldsheet approach to the study of non-abelian D-particle dynamics is presented based on viewing matrix-valued D-brane coordinate fields as coupling constants of a deformed sigma-model which defines a logarithmic conformal field theory. The short-distance structure of spacetime is shown to be naturally captured by the Zamolodchikov metric on the corresponding moduli space which encodes the geometry of the string interactions between D-particles. Spacetime quantization is induced directly by the string genus expansion and leads to new forms of uncertainty relations which imply that general relativity at very short-distance scales is intrinsically described by a non-commutative geometry. The indeterminancies exhibit decoherence effects suggesting the natural incorporation of quantum gravity by short-distance D-particle probes. Some potential experimental tests are briefly described.
D-branes at toric singularities: model building, Yukawa couplings and flavour physics
International Nuclear Information System (INIS)
Krippendorf, Sven; Dolan, Matthew J.; Maharana, Anshuman; Quevedo, Fernando
2010-02-01
We discuss general properties of D-brane model building at toric singularities. Using dimer techniques to obtain the gauge theory from the structure of the singularity, we extract results on the matter sector and superpotential of the corresponding gauge theory. We show that the number of families in toric phases is always less than or equal to three, with a unique exception being the zeroth Hirzebruch surface. With the physical input of three generations we find that the lightest family of quarks is massless and the masses of the other two can be hierarchically separated. We compute the CKM matrix for explicit models in this setting and find the singularities possess sufficient structure to allow for realistic mixing between generations and CP violation. (author)
Non-linear Yang-Mills instantons from strings are π-stable D-branes
International Nuclear Information System (INIS)
Enger, H.; Luetken, C.A.
2004-01-01
We show that B-type Π-stable D-branes do not in general reduce to the (Gieseker-) stable holomorphic vector bundles used in mathematics to construct moduli spaces. We show that solutions of the almost Hermitian Yang-Mills equations for the non-linear deformations of Yang-Mills instantons that appear in the low-energy geometric limit of strings exist iff they are π-stable, a geometric large volume version of Π-stability. This shows that π-stability is the correct physical stability concept. We speculate that this string-canonical choice of stable objects, which is encoded in and derived from the central charge of the string-algebra, should find applications to algebraic geometry where there is no canonical choice of stable geometrical objects
D-branes in a big bang/big crunch universe: Misner space
International Nuclear Information System (INIS)
Hikida, Yasuaki; Nayak, Rashmi R.; Panigrahi, Kamal L.
2005-01-01
We study D-branes in a two-dimensional lorentzian orbifold R 1,1 /Γ with a discrete boost Γ. This space is known as Misner or Milne space, and includes big crunch/big bang singularity. In this space, there are D0-branes in spiral orbits and D1-branes with or without flux on them. In particular, we observe imaginary parts of partition functions, and interpret them as the rates of open string pair creation for D0-branes and emission of winding closed strings for D1-branes. These phenomena occur due to the time-dependence of the background. Open string 2→2 scattering amplitude on a D1-brane is also computed and found to be less singular than closed string case
D-branes in a big bang/big crunch universe: Misner space
Energy Technology Data Exchange (ETDEWEB)
Hikida, Yasuaki [Theory Group, High Energy Accelerator Research Organization (KEK), Tukuba, Ibaraki 305-0801 (Japan); Nayak, Rashmi R. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy); Panigrahi, Kamal L. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy)
2005-09-01
We study D-branes in a two-dimensional lorentzian orbifold R{sup 1,1}/{gamma} with a discrete boost {gamma}. This space is known as Misner or Milne space, and includes big crunch/big bang singularity. In this space, there are D0-branes in spiral orbits and D1-branes with or without flux on them. In particular, we observe imaginary parts of partition functions, and interpret them as the rates of open string pair creation for D0-branes and emission of winding closed strings for D1-branes. These phenomena occur due to the time-dependence of the background. Open string 2{yields}2 scattering amplitude on a D1-brane is also computed and found to be less singular than closed string case.
4D GUT (and SM) Model Building from Intersecting D-Branes
Kokorelis, C E
2003-01-01
We provide a general overview of the current state of the art in three generation model building proposals - using intersecting D-brane toroidal compactifications of IIA string theories - which have, only, the SM at low energy. In this context, we focus on these model building directions, where natural non-supersymmetric constructions based on $SU(4)_C \\times SU(2)_L \\times SU(2)_R$, SU(5) and flipped SU(5) GUT groups, have at low energy only the Standard Model. In the flipped SU(5) GUTS, the special build up structure of the models accommodates naturally a see-saw mechanism and a new solution to the doublet-triplet splitting problem.
D-brane propagation in two-dimensional black hole geometries
International Nuclear Information System (INIS)
Nakayama, Yu; Rey, Soo-Jong; Sugawara, Yuji
2005-01-01
We study propagation of D0-brane in two-dimensional lorentzian black hole backgrounds by the method of boundary conformal field theory of SL(2,R)/U(1) supercoset at level k. Typically, such backgrounds arise as near-horizon geometries of k coincident non-extremal NS5-branes, where 1/k measures curvature of the backgrounds in string unit and hence size of string worldsheet effects. At classical level, string worldsheet effects are suppressed and D0-brane propagation in the lorentzian black hole geometry is simply given by the Wick rotation of D1-brane contour in the euclidean black hole geometry. Taking account of string worldsheet effects, boundary state of the lorentzian D0-brane is formally constructible via Wick rotation from that of the euclidean D1-brane. However, the construction is subject to ambiguities in boundary conditions. We propose exact boundary states describing the D0-brane, and clarify physical interpretations of various boundary states constructed from different boundary conditions. As it falls into the black hole, the D0-brane radiates off to the horizon and to the infinity. From the boundary states constructed, we compute physical observables of such radiative process. We find that part of the radiation to infinity is in effective thermal distribution at the Hawking temperature. We also find that part of the radiation to horizon is in the Hagedorn distribution, dominated by massive, highly non-relativistic closed string states, much like the tachyon matter. Remarkably, such distribution emerges only after string worldsheet effects are taken exactly into account. From these results, we observe that nature of the radiation distribution changes dramatically across the conifold geometry k = 1 (k = 3 for the bosonic case), exposing the 'string - black hole transition' therein
LHC Phenomenology and Cosmology of String-Inspired Intersecting D-Brane Models
Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian
2012-01-01
We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions. The energy scale associated with string physics is assumed to be near the Planck mass. To develop our program in the simplest way, we work within the construct of a minimal model with gauge-extended sector U (3)_B \\times Sp (1)_L \\times U (1)_{I_R} \\times U (1)_L. The resulting U (1) content gauges the baryon number B, the lepton number L, and a third additional abelian charge I_R which acts as the third isospin component of an SU(2)_R. All mixing angles and gauge couplings are fixed by rotation of the U(1) gauge fields to a basis diagonal in hypercharge Y and in an anomaly free linear combination of I_R and B-L. The anomalous $Z'$ gauge boson obtains a string scale St\\"uckelberg mass via a 4D version of the Green-Schwarz mechanism. To keep the realizatio...
Motion of particles in a thermal boundary layer
Energy Technology Data Exchange (ETDEWEB)
Schefer, R.W.; Agrawal, Y.; Cheng, R.K.; Robben, F.; Talbot, L.
1978-06-15
In the course of using laser Doppler velocimetry to study combustion in a thermal boundary layer, the particle count rate was found to decrease abruptly to zero inside the boundary layer. Experimental and theoretical investigation of this phenomenon was carried out. The motion of the particles may be due to the combined effects of thermophoresis and radiative heating.
Variable Thermal Conductivity on Compressible Boundary Layer ...
African Journals Online (AJOL)
In this paper, variable thermal conductivity on heat transfer over a circular cylinder is presented. The concept of assuming constant thermal conductivity on materials is however not efficient. Hence, the governing partial differential equation is reduced using non-dimensionless variables into a system of coupled non-linear ...
Boundary conditions of normal and anomalous diffusion from thermal equilibrium.
Korabel, Nickolay; Barkai, Eli
2011-05-01
Infiltration of diffusing particles from one material to another, where the diffusion mechanism is either normal or anomalous, is a widely observed phenomenon. Starting with an underlying continuous-time random-walk model, we derive the boundary conditions for the diffusion equations describing this problem. We discuss a simple method showing how the boundary conditions can be determined from equilibrium experiments. When the diffusion processes are close to thermal equilibrium, the boundary conditions are determined by a thermal Boltzmann factor, which in turn controls the solution of the problem.
Type IIB orientifolds, D-brane instantons and the large volume scenario
Energy Technology Data Exchange (ETDEWEB)
Plauschinn, Erik
2009-07-28
This thesis is concerned with a branch of research in String Theory called String Phenomenology which aims for a better understanding of the connection between String Theory and Particle Physics. In particular, in this work we cover three topics which are important in order to establish this connection. The first topic is about String Theory model building in the context of so-called type IIB orientifolds with orientifold three- and seven-planes. After giving a brief overview, we work out in detail an important consistency condition for String Theory constructions, the so-called tadpole cancellation condition, and we verify explicitly that chiral anomalies are cancelled via the generalised Green-Schwarz mechanism. The second topic is concerned with so-called D-brane instantons which are nonperturbative effects in type II String Theory constructions. We recall the instanton calculus for such configurations, we derive the so-called A eck-Dine-Seiberg superpotential in String Theory and we develop an important constraint, a chiral zero-mode constraint, for instanton contributions in the presence of a realistic Particle Physics sector. The third topic is about moduli stabilisation in type IIB string compactifications. More concretely, we review the so-called KKLT as well as Large Volume Scenario, and we construct and study a model for the latter scenario where the constraint mentioned above has been taken into account explicitly. Although the three topics studied in this thesis are slightly different in nature, there is nevertheless a complex interplay between them with many interrelations. In order to uncover these connections, a detailed study of each individual subject has been performed which has led to new results such as the chiral zero-mode constraint. (orig.)
Giri, Ashutosh; Hopkins, Patrick E
2016-02-28
We develop an analytical model for the thermal boundary conductance between a solid and a gas. By considering the thermal fluxes in the solid and the gas, we describe the transmission of energy across the solid/gas interface with diffuse mismatch theory. From the predicted thermal boundary conductances across solid/gas interfaces, the equilibrium thermal accommodation coefficient is determined and compared to predictions from molecular dynamics simulations on the model solid-gas systems. We show that our model is applicable for modeling the thermal accommodation of gases on solid surfaces at non-cryogenic temperatures and relatively strong solid-gas interactions (ε(sf) ≳ k(B)T).
Grain boundary engineering to enhance thermal stability of electrodeposited nickel
DEFF Research Database (Denmark)
Alimadadi, Hossein
by miniaturization of the grains down to nano-meter scale. However, this augments the total grain boundary energy stored in the material, hence, making the material less thermally stable. Coherent twin boundaries are of very low energy and mobility compared to all other boundaries in a FCC material. Accordingly...... interest. The evolution of microstructure in as-deposited and annealed condition was investigated with a combination of complementary microscopic techniques, electron backscatter diffraction (EBSD), electron channelling contrast imaging (ECCI), ion channelling contrast imaging (ICCI), and, for the as...
The gauge invariance of the non-Abelian Chern-Simons action for D-branes revisited
International Nuclear Information System (INIS)
Adam, J.; Gheerardyn, J.; Janssen, B.; Lozano, Y.
2004-01-01
We present an elegant method to prove the invariance of the Chern-Simons part of the non-Abelian action for N coinciding D-branes under the R-R and NS-NS gauge transformations, by carefully defining what is meant by a background gauge transformation in the non-Abelian world volume action. We study as well the invariance under massive gauge transformations of the massive Type IIA supergravity and show that no massive dielectric couplings are necessary to achieve this invariance. We show that this result is consistent with (massive) T-duality from the non-Abelian action for N D9-branes
Grain boundary engineering to enhance thermal stability of electrodeposited nickel
DEFF Research Database (Denmark)
Alimadadi, Hossein
Manufacturing technologies such as injection molding and micro electromechanical systems demand materials with improved mechanical properties (e.g. hardness, ductility) and high durability at elevated temperatures. Significant improvement in some of the mechanical properties is obtained by miniat......Manufacturing technologies such as injection molding and micro electromechanical systems demand materials with improved mechanical properties (e.g. hardness, ductility) and high durability at elevated temperatures. Significant improvement in some of the mechanical properties is obtained...... by miniaturization of the grains down to nano-meter scale. However, this augments the total grain boundary energy stored in the material, hence, making the material less thermally stable. Coherent twin boundaries are of very low energy and mobility compared to all other boundaries in a FCC material. Accordingly......, grain boundary engineering of electrodeposited nickel to achieve high population of coherent twin boundaries and, hence, higher thermal stability is a promising method to achieve simultaneous improvement in mechanical properties and thermal stability. This is of particular scientific and practical...
Construction of a Non-Equilibrium Thermal Boundary Layer Facility
Biles, Drummond; Ebadi, Alireza; Ma, Allen; White, Christopher
2015-11-01
A thermally conductive, electrically heated wall-plate forming the bottom wall of a wind tunnel has been constructed and validation tests have been performed. The wall-plate is a sectioned wall design, where each section is independently heated and controlled. Each section consists of an aluminum 6061 plate, an array of resistive heaters affixed to the bottom of the aluminum plate, and a calcium silicate holder used for thermal isolation. Embedded thermocouples in the aluminum plates are used to monitor the wall temperature and for feedback control of wall heating. The wall-plate is used to investigate thermal transport in both equilibrium and non-equilibrium boundary layers. The non-equilibrium boundary layer flow investigated is oscillatory flow produced by a rotor-stator mechanism placed downstream of the test section of the wind tunnel.
Thermal conductivity and thermal boundary resistance of nanostructures
Directory of Open Access Journals (Sweden)
Merabia Samy
2011-01-01
Full Text Available Abstract We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results. PACS 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv
IMPSOR, 3-D Boundary Problems Solution for Thermal Conductivity Calculation
International Nuclear Information System (INIS)
Wilson, D.G.; Williams, M.A.
1994-01-01
1 - Description of program or function: IMPSOR implements finite difference methods for multidimensional moving boundary problems with Dirichlet or Neumann boundary conditions. The geometry of the spatial domain is a rectangular parallelepiped with dimensions specified by the user. Dirichlet or Neumann boundary conditions may be specified on each face of the box independently. The user defines the initial and boundary conditions as well as the thermal and physical properties of the problem and several parameters for the numerical method, e.g. degree of implicitness, time-step size. 2 - Method of solution: The spatial domain is partitioned and the governing equation discretized, which yields a nonlinear system of equations at each time-step. This nonlinear system is solved using a successive over-relaxation (SOR) algorithm. For a given node, the previous iteration's temperature and thermal conductivity values are used for advanced points with current values at previous points. This constitutes a Gauss-Seidel iteration. Most of the computing time used by the numerical method is spent in the iterative solution of the nonlinear system. The SOR scheme employed is designed to accommodate vectorization on a Cray X-MP. 3 - Restrictions on the complexity of the problem: Maximum of 70,000 nodes
Thermal properties of nuclear matter under the periodic boundary condition
International Nuclear Information System (INIS)
Otuka, Naohiko; Ohnishi, Akira
1999-01-01
We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)
D-Branes on ALE Spaces and the ADE Classification of Conformal Field Theories
Lerche, Wolfgang; Schweigert, C
2002-01-01
The spectrum of D2-branes wrapped on an ALE space of general ADE type is determined, by representing them as boundary states of N=2 superconformal minimal models. The stable quantum states have RR charges which precisely represent the gauge fields of the corresponding Lie algebra. This provides a simple and direct physical link between the ADE classification of N=2 superconformal field theories, and the corresponding root systems. An affine extension of this structure is also considered, whose boundary states represent the D2-branes plus additional D0-branes.
Turbulent heat flux measurements in thermally stable boundary layers
Williams, Owen J.; van Buren, Tyler; Smits, Alexander J.
2014-11-01
Thermally stable turbulent boundary layers are prevalent in the polar regions and nocturnal atmospheric surface layer but heat and momentum flux measurements in such flow are often difficult. Here, a new method is employed using a nanoscale cold-wire (T-NSTAP) adjacent to a 2D PIV light sheet to measure these fluxes within rough-wall turbulent boundary layer. This method combines the advantages of fast thermal frequency response with measurement of the spatial variation of the velocity field. Resolution is limited solely by the separation of the probe and the light sheet. The new technique is used to examine the applicability of Monin-Obukhov similarity over a range of Richardson numbers from weak to strongly stable. In addition, the velocity fields are conditionally averaged subject to strong deviations of temperature above and below the local average in an effort to determine the relationship between the coherent turbulent motions and the fluctuating temperature field. This work was supported by the Princeton University Cooperative Institute for Climate Science.
Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir
2014-06-28
Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that
Effect of thermal radiation on boundary layer flow and heat transfer ...
African Journals Online (AJOL)
The aim of this paper is to study the boundary layer flow and heat transfer analysis of an unsteady viscous dusty fluid over a porous stretching surface. Momentum Boundary layer equation considers the effect of transverse magnetic field whereas thermal Boundary layer equation considers the effect of thermal radiation.
Turbulent thermal boundary layers with temperature-dependent viscosity
International Nuclear Information System (INIS)
Lee, Jin; Jung, Seo Yoon; Sung, Hyung Jin; Zaki, Tamer A.
2014-01-01
Highlights: • Turbulent thermal boundary layers with temperature-dependent viscosity are simulated. • Effect of temperature-dependent viscosity on the statistics of the scalar field. • An identity for the Stanton number is derived and analyzed. • Effect of temperature-dependent viscosity on the statistics of scalar transfer rate. • Modification of turbulent flow field leads to an enhanced scalar transfer rate. - Abstract: Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls were performed, and the influence of the wall-heating on the thermal boundary layers was investigated. The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl number therefore changes with temperature, while the Péclet number is constant. Two wall temperatures (T w = 70 °C and 99 °C) were considered relative to T ∞ = 30 °C, and a reference simulation of TBL with constant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant viscosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed. Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respectively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient. Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux, which contributes favorably to the enhanced heat transfer at the wall
Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge
Lee, Taejin
2017-12-01
We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.
D-Branes at Singularities A Bottom-Up Approach to the String Embedding of the Standard Model
Aldazabal, G.; Quevedo, F.; Uranga, A.M.
2000-01-01
We propose a bottom-up approach to the building of particle physics models from string theory. Our building blocks are Type II D-branes which we combine appropriately to reproduce desirable features of a particle theory model: 1) Chirality ; 2) Standard Model group ; 3) N=1 or N=0 supersymmetry ; 4) Three quark-lepton generations. We start such a program by studying configurations of D=10, Type IIB D3-branes located at singularities. We study in detail the case of Z_N, N=1,0 supersymmetric orbifold singularities leading to the SM group or some left-right symmetricextension. In general, tadpole cancellation conditions require the presence of additional branes, e.g. D7-branes. For the N=1 supersymmetric case the unique twist leading to three quark-lepton generations is Z_3, predicting $\\sin^2\\theta_W=3/14=0.21$. The models obtained are the simplest semirealistic string models ever built. In the non-supersymmetric case there is a three-generation model for each Z_N, N>4, but the Weinberg angle is in general too ...
The Kapitza thermal boundary resistance between two solids
International Nuclear Information System (INIS)
Andersen, A.C.
1981-01-01
In this article, the author develops a model of the Kapitza resistance between two solids in which this resistance is seen to be related to the refraction of thermal phonons at the interface, which is a function of the accoustic properties of the two solids. By calculating a kapitza boundary resistance for the two solids in an ideal case (with ideal temperature, ideal interface, and phonon scattering produced only by the interface) and then producing a summation of the three phonon modes, the angles of incidence, and the phonon frequencies, the author produces an equation which expresses the resistance; this equation is known as the accoustic-mis-match model. By then removing the conditions of ideality and adjusting the equation accordingly, the author finds that the acoustic mismatch model is successful in describing the resistance behavior
Interactions between the thermal internal boundary layer and sea breezes
Energy Technology Data Exchange (ETDEWEB)
Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)
1997-10-01
In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)
Boundary string field theory and an open string one-loop
International Nuclear Information System (INIS)
Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi
2003-01-01
We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2018-01-01
Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...
Phonon thermal transport through tilt grain boundaries in strontium titanate
Energy Technology Data Exchange (ETDEWEB)
Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Deng, Bowen; Chernatynskiy, Aleksandr [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2014-08-21
In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.
Phonon thermal transport through tilt grain boundaries in strontium titanate
International Nuclear Information System (INIS)
Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr
2014-01-01
In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO 3 . Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO 3 contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies
International Nuclear Information System (INIS)
Mohr, Markus; Daccache, Layal; Horvat, Sebastian; Brühne, Kai; Jacob, Timo; Fecht, Hans-Jörg
2017-01-01
Diamond combines several outstanding material properties such as the highest thermal conductivity and highest elastic moduli of all materials. This makes diamond an interesting candidate for a multitude of applications. Nonetheless, nanocrystalline diamond films, layers and coatings, usually show properties different to those of single crystalline diamond. This is usually attributed to the larger volume fraction of the grain boundaries with atomic structure different from the single crystal. In this work we measured Young's modulus and thermal conductivity of nanocrystalline diamond films with average grain sizes ranging from 6 to 15 nm. The measured thermal conductivities are modeled considering the thermal boundary conductance between grains as well as a grain size effect on the phonon mean free path. We make a comparison between elastic modulus and thermal boundary conductance of the grain boundaries G k for different nanocrystalline diamond films. We conclude that the grain boundaries thermal boundary conductance G k is a measure of the cohesive energy of the grain boundaries and therefore also of the elastic modulus of the nanocrystalline diamond films.
International Nuclear Information System (INIS)
Choi, Kyoung Joon; Kim, Taeho; Yoo, Seung Chang; Kim, Seunghyun; Lee, Jae Hyuk; Kim, Ji Hyun
2016-01-01
In this study, microstructural and mechanical characterizations were performed to investigate the effect of long-term thermal aging on the fusion boundary region between low-alloy steel and Nickel-based weld metal in dissimilar metal welds used in operating power plant systems. The effects of thermal aging treatment on the low-alloy steel side near the fusion boundary were an increase in the ratio of Cr constituents and Cr-rich precipitates and the formation and growth of Cr 23 C 6 . Cr concentrations were calculated using atom probe tomography. The accuracy of simulations of thermal aging effects of heat treatment was verified, and the activation energy for Cr diffusion in the fusion boundary region was calculated. The mechanical properties of fusion boundary region changed based on the distribution of Cr-rich precipitates, where the material initially hardened with the formation of Cr-rich precipitates and then softened because of the reduction of residual strain or coarsening of Cr-rich precipitates. - Highlights: • Effects of long-term thermal aging was investigated in fusion boundary. • Mechanical and microstructural change by long-term thermal aging was investigated. • Thermal aging and chemical gradient cause Cr diffusion and Cr rich precipitation. • In early stage of thermal aging, increased number of precipitates induces hardening. • In later stage of thermal aging, coarsened size of precipitates causes softening.
International Nuclear Information System (INIS)
Seki, Yohji; Kawamura, Hiroshi
2005-01-01
Direct numerical simulation (DNS) have been performed for the turbulent heat transfer in a channel flow. In the present study, effect of thermal boundary condition is examined. DNS has been carried out for streamwisely thermal boundary conditions (Re τ =180) with Pγ=0.71 to obtain statistical mean temperatures, temperature variances, budget terms and time scale ratios etc. The obtained results have indicated that the time scale ratio varies along a streamwise. (author)
Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation
International Nuclear Information System (INIS)
Brillant, G.; Husson, S.; Bataille, F.; Ducros, F.
2008-01-01
We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations
Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation
Energy Technology Data Exchange (ETDEWEB)
Brillant, G. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France); INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Husson, S. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Bataille, F. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France)], E-mail: Francoise.Daumas-Bataille@univ-perp.fr; Ducros, F. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France)
2008-12-15
We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations.
Thermal Internal Boundary Layer characteristics at a tropical coastal ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
mail: rv@igcar.ernet.in. 3Boundary Layer Meteorology Division, Institut fuer Meteorologie und ..... result of maritime air coming over the land due to the sea breeze. The radiosonde temperature profile. (not shown here) shows the presence of a ...
Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.
2012-01-01
A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.
General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2016-01-01
Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....
Thermal activated grain boundary creep in polycrystalline copper ...
African Journals Online (AJOL)
Creep deformation in metals and alloys at intermediate temperatures and low stresses are attributed to power-law and diffusion mechanisms. Thermal activation parameters of steady state creep correlate with the macroscopic and microscopic variables, leading to inter-relationships between the apparent and true ...
Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir
2012-01-01
It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2013-01-01
The formulation presented in this paper is based on the Boundary Element Method (BEM) and implements Kirchhoff’s decomposition into viscous, thermal and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses ar...... as is the case with the existing Finite Element Method (FEM) implementations with losses. The suitability of this approach is demonstrated using an axisymmetrical BEM and two test cases where the numerical results are compared with analytical solutions.......The formulation presented in this paper is based on the Boundary Element Method (BEM) and implements Kirchhoff’s decomposition into viscous, thermal and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses...
Thermal Conductivity of Lower Mantle Minerals and Heat Flux Across the Core-Mantle Boundary
Bennett, C.; Rainey, E.; Kavner, A.
2014-12-01
The thermal conductivity properties of the minerals comprising the Earth's lowermost mantle control the core-mantle boundary heat flux, and are therefore critical properties for determining the thermal state and evolution of the Earth's interior. Here we present measurements of the thermal conductivity of lower mantle oxides and silicates as a function of pressure, temperature, and iron content determined in the laser-heated diamond anvil cell using a combination of measurements and 3-D modeling. Our models and measurements demonstrate that the measured steady-state temperature and its increase with increasing laser power depend on the sample thermal conductivity as well as the experimental geometry, enabling measurements of the pressure- and temperature- dependence of lattice thermal conductivity in the laser-heated diamond anvil cell. We applied this technique to iron-bearing silicate perovskites and MgO at lower mantle pressure and temperature conditions. For MgO, we determine the increase in thermal conductivity k with density ρ to be ∂lnk/∂lnρ=4.7±0.6, which is in agreement with results obtained using other experimental and computational techniques. For (Mg0.8,Fe0.2)SiO3 perovskite, we find ∂lnk/∂lnρ=2.9±0.6. We use these values in combination with independent computational and experimental results to determine thermal conductivity of lower mantle minerals up to core-mantle boundary conditions. We combine the mineralogical thermal conductivity estimates in a composite model and include an estimate for the radiative contribution to thermal conductivity. Our new value of the thermal conductivity of the lowermost mantle is ~5-6 W/m/K and is sensitive to the details of the lower mantle assemblage, but is relatively insensitive to pressure and temperature. We combine our mantle thermal conductivity with models for the lower mantle boundary layer to generate a series of two-dimensional maps of core-mantle boundary heat flux, which emphasize the
International Nuclear Information System (INIS)
Lu Jianming; Ouyang Guangyao; Zhang Ping; Rong Bojun
2012-01-01
Combining the advantages of the finite element software in temperature field analyzing with the multivariate function optimization arithmetic, a feasibility method based on the exterior temperature was proposed to get the thermal boundary conditions, which was required in temperature field analyzing. The thermal boundary conditions can be obtained only by some temperature measurement values. Taking the identification of the convection heat transfer coefficient of a high power density diesel engine cylinder head as an example, the calculation result shows that when the temperature measurement error was less than 0.5℃, the maximum relative error was less than 2%. It is shown that the new method was feasible (authors)
An extension of diffusion theory for thermal neutrons near boundaries
International Nuclear Information System (INIS)
Alvarez Rivas, J. L.
1963-01-01
The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PIGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs
Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions
International Nuclear Information System (INIS)
Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G.
1990-01-01
The effect of thermally activated phase slippage (TAPS) in YBa 2 Cu 3 O 7 grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-T c Josephson junctions are outlined
Thermally activated phase slippage in high- T sub c grain-boundary Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))
1990-01-08
The effect of thermally activated phase slippage (TAPS) in YBa{sub 2}Cu{sub 3}O{sub 7} grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-{ital T}{sub {ital c}} Josephson junctions are outlined.
Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method
Directory of Open Access Journals (Sweden)
J. Wu
2012-01-01
Full Text Available A hybrid immersed boundary-lattice Boltzmann method (IB-LBM is presented in this work to simulate the thermal flow problems. In current approach, the flow field is resolved by using our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009. The nonslip boundary condition on the solid boundary is enforced in simulation. At the same time, to capture the temperature development, the conventional energy equation is resolved. To model the effect of immersed boundary on temperature field, the heat source term is introduced. Different from previous studies, the heat source term is set as unknown rather than predetermined. Inspired by the idea in (Wu and Shu, (2009, the unknown is calculated in such a way that the temperature at the boundary interpolated from the corrected temperature field accurately satisfies the thermal boundary condition. In addition, based on the resolved temperature correction, an efficient way to compute the local and average Nusselt numbers is also proposed in this work. As compared with traditional implementation, no approximation for temperature gradients is required. To validate the present method, the numerical simulations of forced convection are carried out. The obtained results show good agreement with data in the literature.
Effects of flow and colony morphology on the thermal boundary layer of corals
DEFF Research Database (Denmark)
Jimenez, Isabel M; Kühl, Michael; Larkum, Anthony W D
2011-01-01
measurements at the surface of illuminated stony corals with uneven surface topography (Leptastrea purpurea and Platygyra sinensis) revealed millimetre-scale variations in surface temperature and thermal boundary layer (TBL) that may help understand the patchy nature of coral bleaching within single colonies...
Effects of various thermal boundary conditions on natural convection in porous cavities
Cheong, H. T.; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Z.
2015-10-01
The present work analyzes numerically the effects of various thermal boundary conditions and the geometry of the cavity on natural convection in cavities with fluid-saturated porous medium. Cavity of square, right-angled trapezium and right-angled triangle shapes are considered. The different temperature profiles are imposed on the left wall of the cavity and the right wall is maintained at a lower constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for the porous medium. The finite difference method is used to solve the governing equations and boundary conditions over a range of Darcy-Rayleigh numbers. Streamlines, isotherms and Nusselt numbers are used for presenting the results. The heat transfer of the square cavity is more enhanced at high Darcy-Rayleigh number for all the thermal boundary conditions considered.
International Nuclear Information System (INIS)
Hensinger, D.M.; Gritzo, L.A.; Koski, J.A.
1996-01-01
A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account the coupling between a structure and the fire is an improvement over the σT 4 approximation frequently used as a boundary condition for engineered system response and is the preliminary step in the development of a fire model with a predictive capability. This paper describes the implementation of the fire model as a P3/THERMAL boundary condition and presents the results of a verification calculation carried out using the model
See-saw motion of thermal boundary layer under vibrations: An implication of forced piston effect
Sharma, D.; Erriguible, A.; Amiroudine, S.
2017-12-01
The phenomenon of piston effect is well known in supercritical fluids wherein the thermal homogenization of the bulk occurs on a very short time scale due to pressure change caused by expansion or contraction of the fluid in the thermal boundary layer. In this article, we highlight an interesting phenomenon wherein by the application of external forces (vibration) normal to the temperature gradient, see-saw motion of the thermal boundary layer is observed in weightlessness conditions. This is attributed to the thermomechanical coupling caused by the temperature change due to external forces. We term this change in the temperature field due to external forces as forced piston effect (FPE). A detailed investigation of this intriguing behavior shows that the see-saw motion is attributed to the variation of the relative thickness of the thermal boundary layer, defined on the basis of relative local bulk temperature, along the direction of vibration. This change in the temperature field, which is observed to be caused by FPE in vibration, is shown to depend on the compressibility (and thus proximity to the critical point), the imposed acceleration and the cell size. It is also found that see-saw motion persists in the presence of gravity and thus is described ubiquitous in nature for all conditions. A plot illustrating the maximum change in the temperature as a function of these parameters is further proposed.
International Nuclear Information System (INIS)
Ozgener, B.; Ozgener, H.A.
2005-01-01
A multiregion, multigroup collision probability method with white boundary condition is developed for thermalization calculations of light water moderated reactors. Hydrogen scatterings are treated by Nelkin's kernel while scatterings from other nuclei are assumed to obey the free-gas scattering kernel. The isotropic return (white) boundary condition is applied directly by using the appropriate collision probabilities. Comparisons with alternate numerical methods show the validity of the present formulation. Comparisons with some experimental results indicate that the present formulation is capable of calculating disadvantage factors which are closer to the experimental results than alternative methods
Thermal - hydraulic analysis of pressurizer water reactors using the model of open lateral boundary
International Nuclear Information System (INIS)
Borges, R.C.
1980-10-01
A computational method is developed for thermal-hydraulic analysis, where the channel may be analysed by more than one independent steps of calculation. This is made possible by the incorporation of the model of open lateral boundary in the code COBRA-IIIP, which permits the determination of the subchannel of an open lattice PWR core in a multi-step calculation. The thermal-hydraulic code COBRA-IIIP, developed at the Massachusetts Institute of Technology, is used as the basic model for this study. (Author) [pt
Holographic Thermalization in Gauss-Bonnet Gravity with de Sitter Boundary
Zhang, Shao-Jun; Abdalla, Elcio; Papantonopoulos, Eleftherios
2015-01-01
We introduce higher-derivative Gauss-Bonnet correction terms in the gravity sector and we relate the modified gravity theory in the bulk to the strongly coupled quantum field theory on a de Sitter boundary. We study the process of holographic thermalization by examining three non-local observables, the two-point function, the Wilson loop and the holographic entanglement entropy. We study the time evolution of these three observables and we find that the modification of the gravity side with the Gauss-Bonnet correction terms influences the saturation time to reach thermal equilibrium with the dominant effect given by the holographic entanglement entropy since it contains more bulk information.
Elo, Teemu; Lähteenmäki, Pasi; Golubev, Dmitri; Savin, Alexander; Arutyunov, Konstantin; Hakonen, Pertti
2017-11-01
We have employed noise thermometry for investigations of thermal relaxation between the electrons and the substrate in nanowires patterned from 40-nm-thick titanium film on top of silicon wafers covered by a native oxide. By controlling the electronic temperature T_e by Joule heating at the base temperature of a dilution refrigerator, we probe the electron-phonon coupling and the thermal boundary resistance at temperatures T_e= 0.5-3 K. Using a regular T^5-dependent electron-phonon coupling of clean metals and a T^4-dependent interfacial heat flow, we deduce a small contribution for the direct energy transfer from the titanium electrons to the substrate phonons due to inelastic electron-boundary scattering.
Directory of Open Access Journals (Sweden)
Boričić Aleksandar Z.
2016-01-01
Full Text Available The unsteady 2-D dynamic, thermal, and diffusion magnetohydrodynamic laminar boundary layer flow over a horizontal cylinder of incompressible and electrical conductivity fluid, in mixed convection in the presence of heat source or sink and chemical reactions. The present magnetic field is homogenous and perpendicular to the body surface. It is assumed that induction of outer magnetic field is a function of longitudinal co-ordinate outer electric field is neglected and magnetic Reynolds number is significantly lower than one, i. e. considered the problem is in approximation without induction. Fluid electrical conductivity is constant. Free stream velocity, temperature, and concentration on the body are functions of longitudinal co-ordinate. The developed governing boundary layer equations and associated boundary conditions are made dimensionless using a suitable similarity transformation and similarity parameters. System of non-dimensionless equations is solved using the implicit finite difference three-diagonal and iteration method. Numerical results are obtained and presented for different Prandtl, Eckart, and Schmidt numbers, and values: magnetic parameter, temperature, and diffusion parameters, buoyancy temperature parameters, thermal parameter, and chemical reaction parameter. Variation of velocity profiles, temperature and diffusion distributions, and many integral and differential characteristics, boundary layer, are evaluated numerically for different values of the magnetic field. Transient effects of velocity, temperature and diffusion are analyzed. A part of obtained results is given in the form of figures and corresponding conclusions.
Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering
Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.
2018-04-01
We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.
Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J
2017-07-01
Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CT max ). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO 2 (simulated ocean acidification) on the hypoxia sensitivity of CT max We found that CT max was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CT max declined sharply with water oxygen tension ( P w O 2 ). Furthermore, the hypoxia sensitivity of CT max was unaffected by elevated CO 2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).
Qu, Zhechao; Werhahn, Olav; Ebert, Volker
2018-01-01
The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.
Directory of Open Access Journals (Sweden)
Petar Glišović
2015-01-01
Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique
Directory of Open Access Journals (Sweden)
Ibukun Sarah Oyelakin
2016-06-01
Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.
International Nuclear Information System (INIS)
Favre, F.; Colomer, G.; Lehmkuhl, O.; Oliva, A.
2016-01-01
Dynamic and thermal interaction problems involving fluids and solids were studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary techniques and the net radiation method. Source terms were included in the momentum and energy equations to enforce the non-slip condition and the conjugate boundary condition including the radiative heat exchange. Code validation was performed through the simulation of two cases from the literature: conjugate natural convection in a square cavity with a conducting side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of the methodology and the validation of the inclusion of moving bodies into the simulation was performed via a theoretical case (paper)
Euclidean pseudoduality and boundary conditions in sigma models
Energy Technology Data Exchange (ETDEWEB)
Sar Latin-Small-Letter-Dotless-I saman, Mustafa, E-mail: msarisaman@ku.edu.tr [Department of Mathematics, Koc University, 34450 Sar Latin-Small-Letter-Dotless-I yer, Istanbul (Turkey)
2013-03-01
We discuss pseudoduality transformations in two-dimensional conformally invariant classical sigma models, and extend our analysis to a given boundaries of world-sheet, which gives rise to an appropriate framework for the discussion of the pseudoduality between D-branes. We perform analysis using the Euclidean spacetime and show that structures on the target space can be transformed into pseudodual manifold identically. This map requires that torsions and curvatures related to individual spaces are the same when connections are Riemannian. Boundary pseudoduality imposes locality condition.
Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.
Energy Technology Data Exchange (ETDEWEB)
Burbery, N.J. [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Das, R., E-mail: r.das@auckland.ac.nz [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Ferguson, W.G. [Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010 (New Zealand)
2016-08-15
Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper
Grain boundary phosphorus segregation under thermal aging in low alloy steels
International Nuclear Information System (INIS)
Nakata, Hayato; Fujii, Katsuhiko; Fukuya, Koji; Shibata, Masaaki; Kasada, Ryuta; Kimura, Akihiko
2002-01-01
Intergranular embrittlement due to grain boundary segregation of phosphorus is recognized as one of the potential degradation factors in irradiated reactor pressure vessel steels at high neutron fluences. In this study, investigations on low alloy steels thermally aged at 400-500degC were conducted to evaluate the correlation between phosphorus segregation and intergranular embrittlement. Phosphorus segregation determined using Auger electron spectroscopy increased after aging above 450degC and was in good agreement with the calculated value based on McLean model. No influence of thermal aging was observed in tensile properties. The ductile brittle transition temperature determined using 1/3 size charpy impact tests increased of 12degC after aging at 450degC for 3000 hours. These results indicated that there is a threshold level of phosphorus segregation for non-hardening embrittlement and that the level is around 0.14 for P/Fe peak ratio. (author)
Grain boundary phosphorus segregation under thermal aging in low alloy steels
International Nuclear Information System (INIS)
Nakata, Hayato; Fujii, Katsuhiko; Fukuya, Koji; Kasada, Ryuta; Kimura, Akihiko
2007-01-01
Intergranular embrittlement due to grain boundary segregation of phosphorus is recognized as one of the potential degradation factors in irradiated reactor low alloy steels at high neutron fluence. In this study, low alloy steels thermally aged at 400-500degC were investigated to evaluate the correlation between phosphorus segregation and intergranular embrittlement. Phosphorus segregation determined using Auger electron spectroscopy increased after thermal aging above 450degC and was in good agreement with the calculated value based on McLean's model. No influence of thermal aging on tensile properties or hardness was observed. The ductile brittle transition temperature determined using a one-third size Charpy impact test increased at a P/Fe peak ratio of 0.14. These results indicated that there is a threshold level of phosphorus segregation for non-hardening embrittlement. DBTT increased with the proportion of intergranular fracture, so this result shows that there is a relationship between DBTT and the properties of intergranular fracture. The fracture stress decreases due to non-hardening embrittlement on the thermally aged material with high proportion of intergranular fracture. (author)
Antoniadis, Ignatios; Tomaras, T N
2001-01-01
The minimal embedding of the Standard Model in type I string theory is described. The SU(3) color and SU(2) weak interactions arise from two different collections of branes. The correct prediction of the weak angle is obtained for a string scale of 6-8 TeV. Two Higgs doublets are necessary and proton stability is guaranteed. It predicts two massive vector bosons with masses at the TeV scale, as well as a new superweak interaction.
Bergshoeff, E.; Townsend, P.K.
1998-01-01
A version of the Îº-symmetric super Dp-brane action is presented in which the tension is a dynamical variable, equal to the flux of a p-form world-volume gauge field. The Lagrangian is shown to be invariant under all (super)isometries of the background for appropriate transformations of the
Directory of Open Access Journals (Sweden)
Mohammed J Uddin
Full Text Available Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
Simulation of the effects of grain boundary fission gas during thermal transients
International Nuclear Information System (INIS)
Fenske, G.R.; Emerson, J.E.; Beiersdorf, B.A.
1984-11-01
This report presents the results of an initial set of out-of-cell transient heating experiments performed on unirradiated UO 2 pellets fabricated to simulate the effect of grain boundary fission gas on fuel swelling and cladding failure. The fabrication involved trapping high-pressure argon on internal pores by sintering annular UO 2 pellets in a hot isostatic press (HIP). The pellet stack was subjected to two separate transients (DGF83-03A and -03B). Figures show photomicrographs of HIPped and non-HIPped UO 2 , respectively, and the adjacent cladding after DGF83-03B. Fuel melting occurred at the center of both the HIPped and non-HIPped pellets; however, a dark ring is present near the center in the HIPped fuel but not in the non-HIPped fuel. This dark band is a high-porosity region due to increased grain boundary/edge swelling in that pellet. In contrast, grain boundary/edge swelling did not occur in the non-HIPped pellets. Thus, the presence of the high-pressure argon trapped on internal pores during sintering in the HIP altered the microstructural behavior. Results of these preliminary tests indicate that the microstructural behavior of HIPped fuel during thermal transients is different from the behavior of conventionally fabricated fuel
Debska, Aleksandra; Balandraud, Xavier; Destrebecq, Jean-François; Gwozdziewicz, Piotr; Seruga, Andrzej
2017-07-01
The study deals with the influence of thermal boundary effects on the process of creating recovery stresses in a SMA wire activated by Joule heating, during a thermal cycle (up to the return to ambient temperature). First, a thermal characterization is performed using infrared thermography for temperature profile measurements along the wire in a steady-state regime. Second, recovery stress tests are performed using a uniaxial testing machine. Finally, tests are analyzed using a thermomechanical model, taking the inhomogeneous temperature distribution along the wire into account. The influence of the initial distribution of martensite (before thermal activation of the memory effect) is discussed, as well as the influence of the wire length. It is shown that the thermal boundary effects at the contact with the grips of the testing machine significantly influence the response of the wire. For instance, during the heating of the wire, an austenite-to-martensite transformation may occur in the zones near the wire ends (where the temperature remains close to ambient) due to the increased stress. A length of influence of the thermal boundary effects on the overall wire response is defined, and a condition to neglect this influence is proposed. The study highlights the importance of taking thermal boundary effects into account for practical applications of SMAs based on Joule heating.
A universal nonlinear relation among boundary states in closed string field theory
International Nuclear Information System (INIS)
Kishimoto, Isao; Matsuo, Yutaka; Watanabe, Eitoku
2004-01-01
We show that the boundary states satisfy a nonlinear relation (the idempotency equation) with respect to the star product of closed string field theory. This relation is universal in the sense that various D-branes, including the infinitesimally deformed ones, satisfy the same equation, including the coefficient. This paper generalizes our analysis [hep-th/0306189] in the following senses. (1) We present a background-independent formulation based on conformal field theory. It illuminates the geometric nature of the relation and allows us to more systematically analyze the variations around the D-brane background. (2) We show that the Witten-type star product satisfies a similar relation but with a more divergent coefficient. (3) We determine the coefficient of the relation analytically. The result shows that the α parameter can be formally factored out, and the relation becomes universal. We present a conjecture on vacuum theory based on this computation. (author)
Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints
Yoo, Seung Chang; Choi, Kyoung Joon; Bahn, Chi Bum; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun
2015-04-01
In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2013-09-01
Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Andersen, Peter Risby
2018-01-01
then be modeled with numerical methods that include losses. In recent years, versions of both the Finite Element Method (FEM) and the Boundary Element Method (BEM) including viscous and thermal losses have been developed. This paper deals with an improved formulation in three dimensions of the BEM with losses...... which avoids the calculation of tangential derivatives on the surface by finite differences used in a previous BEM implementation. Instead, the tangential derivatives are obtained from the element shape functions. The improved implementation is demonstrated using an oscillating sphere, where......Sound waves in fluids are subject to viscous and thermal losses, which are particularly relevant in the so-called viscous and thermal boundary layers at the boundaries, with thicknesses in the micrometer range at audible frequencies. Small devices such as acoustic transducers or hearing aids must...
International Nuclear Information System (INIS)
Mendes, C.M.
1999-01-01
The segregation of free phosphorus atoms to grain boundaries in C-Mn steels has been identified as an embrittlement mechanism. A change in the brittle fracture mechanism from transgranular to intergranular has been observed for materials with higher phosphorus grain boundary coverage. The grain boundary segregation of phosphorus in various steels used in the nuclear power industry has been thermodynamically and kinetically modelled mostly with the Langmuir-McLean model. Recent publications have also suggested that neutron irradiation can affect segregation and various attempts at modelling this are currently under way. The present paper describes a data base assembled on phosphorus grain boundary coverage measured by Auger electron spectroscopy on thermally aged and irradiated C-Mn submerged-arc weld specimens. Software tools were developed to evaluate the changes in phosphorus grain boundary coverage associated with instantaneous temperature changes and temperature gradients. The phosphorus free energy change associated with grain boundary segregation was modelled from the thermally aged data and used with the software to determine the phosphorus segregation in submerged-arc weld metals following the post weld stress relief heat treatments received prior to plant operation. The phosphorus grain boundary coverage changes arising from the thermal history of submerged-arc weld materials during irradiation were also modelled and found to compare well with data obtained on irradiated materials. It was concluded that under the irradiation conditions sampled, phosphorus grain boundary segregation in submerged-arc weld materials can be modelled successfully using only the thermal term without appealing to an irradiation induced segregation process. (author)
Implementation aspects of the Boundary Element Method including viscous and thermal losses
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2014-01-01
The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and comparison with measurements. Numerical methods that can simulate sound fields in fluids in...... with mesh definition, geometrical singularities and treatment of closed cavities. These issues are specific of the BEM with losses. Using examples, some strategies are presented that can alleviate shortcomings and improve performance....... including losses are particularly interesting whenever small cavities and narrow passages are present, as is the case with many acoustic devices such as transducers and small audio appliances. The present paper describes current work aimed at improving the method by addressing some specific issues related...
Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors
Directory of Open Access Journals (Sweden)
Peter Busche
2012-10-01
Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.
Directory of Open Access Journals (Sweden)
Yinhuan Ao
2017-01-01
Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.
Belt, Carol L.; Fuelberg, Henry E.
1984-01-01
The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.
Sever, G.; Collis, S. M.; Ghate, V. P.
2017-12-01
Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.
Salaway, R. N.; Hopkins, P. E.; Norris, P. M.; Stevens, R. J.
2008-12-01
The phonon contribution to the thermal boundary conductance (TBC) at metal-metal interfaces is difficult to study experimentally, and it is typically considered negligible. In this study, molecular dynamics simulations (MDS), employing an embedded atom method (EAM) potential, are performed to study the phonon contribution to thermal transport across an Al-Cu interface. The embedded atom method provides a realistic model of atomic behavior in metals, while suppressing the effect on conduction electrons. In this way, measurements on the phonon system may be observed that would otherwise be dominated by the electron contribution in experimental methods. The relative phonon contribution to the TBC is calculated by comparing EAM results to previous experimental results which include both electron and phonon contributions. It is seen from the data that the relative phonon contribution increases with decreasing temperature, possibly accounting for more than half the overall TBC at temperatures below 100 K. These results suggest that neglect of interfacial phonon transport may not be a valid assumption at low temperatures, and may have implications in the future development of TBC models for metal interfaces.
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Andersen, Peter Risby; Jensen, Jakob Søndergaard
2016-01-01
In recent years, boundary element method (BEM) and finite element method (FEM) implementations of acoustics in fluids with viscous and thermal losses have been developed. They are based on the linearized Navier–Stokes equations with no flow. In this paper, such models with acoustic losses are app...
Directory of Open Access Journals (Sweden)
M.A. Mansour
2015-11-01
Full Text Available Numerical investigation for heat transfer with natural convection and nanofluid flow subjected to changeable thermal boundary conditions and inclined magnetic field has been performed. Effect of problem’s parameters on each other has been monitored. It has been reached to that inclination angle can justify the quasi-symmetric boundary conditions to be symmetric. In addition to that as inclination angle increases, the magnetic force pointed to horizontal trend; so the convection regime dominates the cavity. In a related context, nanoparticles provide conduction regime, increase and maintenance the rate of heat transfer all over the cavity. However thermal emission at ends of heat source–sink has been found to be constant when boundary conditions change in the pure case.
Energy Technology Data Exchange (ETDEWEB)
Huang, Haoxiang; Kumar, Satish, E-mail: satish.kumar@me.gatech.edu [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Chen, Liang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi (China); Varshney, Vikas [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Universal Technology Corporation, Dayton, Ohio 45432 (United States); Roy, Ajit K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)
2016-09-07
Carbon nanostructures such as carbon nanotube (CNT), graphene, and carbon fibers can be used as fillers in amorphous polymers to improve their thermal properties. In this study, the effect of covalent bonding of CNT with poly(ether ketone) (PEK) on interfacial thermal interactions is investigated using non-equilibrium molecular dynamics simulations. The number of covalent bonds between (20, 20) CNT and PEK is varied in the range of 0–80 (0%–6.25%), and the thermal boundary conductance is computed. The analysis reveals that covalent functionalization of CNT atoms can enhance the thermal boundary conductance by an order of magnitude compared to the non-functionalized CNT-PEK interface at a high degree of CNT functionalization. Besides strengthening the thermal coupling, covalent functionalization is also shown to modify the phonon spectra of CNT. The transient spectral energy analysis shows that the crosslinks cause faster energy exchange from CNT to PEK in different frequency bands. The oxygen atom of hydroxyl group of PEK contributes energy transfer in the low frequency band, while aromatic and carbonyl carbon atoms play a more significant role in high frequency bands. In addition, by analyzing the relaxation time of the spectral temperature of different frequency bands of CNT, it is revealed that with increasing number of bonds, both lower frequency vibrational modes and higher frequency modes efficiently couple across the CNT-PEK interface and contribute in thermal energy transfer from CNT to the matrix.
International Nuclear Information System (INIS)
Flageul, Cédric; Benhamadouche, Sofiane; Lamballais, Éric; Laurence, Dominique
2015-01-01
Highlights: • DNS of a turbulent channel flow with a Robin boundary condition on the scalar. • Budgets of second-order moments for conjugate and non-conjugate heat-transfer. • Original theoretical analysis for compatibility conditions at the wall. - Abstract: Budgets of turbulent heat fluxes and temperature variance obtained from the Direct Numerical Simulation of an incompressible periodic channel flow with a Reynolds number of 150 (based on friction velocity) and a Prandtl number of 0.71 are presented and analysed for four cases: locally imposed temperature at the wall (constant Dirichlet), locally imposed heat flux (constant Neumann), heat exchange coefficient (Robin) and 3D conjugate heat transfer. The dissipation rate associated with the temperature variance is strongly impacted by the thermal boundary condition. For non-conjugate cases, a straightforward analytical analysis establishes the connection between the boundary condition, the temperature variance and the wall-normal part of the thermal dissipation rate at the wall. For the conjugate case, the two-point correlations of the thermal field in the solid domain confirms the existence of very large scale thermal structures.
Martín-Martín, A.; Iñiguez, P.; Jiménez, J.; Oudart, M.; Nagle, J.
2011-08-01
The influence of the quantum well (QW) interfaces with the barrier layers on the rapid degradation of AlGaAs based high power laser bars (808 nm) is investigated. Thermal stresses induced in the device by the local heating produced by nonradiative recombination areas at the facet mirror are calculated by means of a thermomechanical model. Results show that the laser power density threshold necessary to achieve the plastic deformation, leading to the generation of dislocations and to the failure of these devices, is reduced as the quality of the QW interfaces worsens in terms of thermal boundary resistance.
International Nuclear Information System (INIS)
Paul, O.P.K.
1978-01-01
An approach to simulate the flux vanishing boundary condition in solving the two group coupled neutron diffusion equations in three dimensions (x, y, z) employed to calculate the flux distribution and keff of the reactor is summarised. This is of particular interest when the flux vanishing boundary in x, y, z directions is not an integral multiple of the mesh spacings in these directions. The method assumes the flux to be negative, hypothetically at the mesh points lying outside the boundary and thus the finite difference formalism for Laplacian operator, taking into account six neighbours of a mesh point in a square mesh arrangement, is expressed in a general form so as to account for the boundary mesh points of the system. This approach has been incorporated in a three dimensional diffusion code similar to TAPPS23 and has been used for IRT-2000 reactor and the results are quite satisfactory. (author)
National Research Council Canada - National Science Library
Turnick, Arnold
2001-01-01
A one-dimensional, time-dependent computer model of the atmospheric boundary layer was developed to simulate intermittent turbulence and the near-ground microclimate under nighttime stable conditions...
Bresme, F; Armstrong, J
2014-01-07
We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the "local" thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation.
Directory of Open Access Journals (Sweden)
Muhammad Tamoor
Full Text Available This article presents a numerical method of solution to laminar axisymmetric hydro magnetic flow of incompressible, electrically conducting and viscous fluid moving over the circular cylinder embedded in a thermally stratified medium. Fluid over the cylinder moves due to the stretching of cylindrical surface. Different physical conditions at the boundary are also considered. With the help of suitable similarity transformation the boundary layer equations are transformed into ordinary differential equations. The resulting nonlinear ordinary differential equations were solved by Runge-Kutta technique with shooting method. Obtained numerical results for different pertinent parameters are graphically shown for velocity distribution and temperature distribution. Due to the industrial applications point of view, it is evaluated that local Nusselt number at the surfaces increases due to the influence of thermal stratification. The skin-friction and heat transfer coefficients have presented in the form of table. Comparison of heat transfer coefficient is also illustrated. Keywords: Shooting method, Thermal stratification, Suction/blowing, Magneto hydrodynamic
Xu, Yao; Leitner, David M
2014-07-17
We calculate communication maps for green fluorescent protein (GFP) to elucidate energy transfer pathways between the chromophore and other parts of the protein in the ground and excited state. The approach locates energy transport channels from the chromophore to remote regions of the protein via residues and water molecules that hydrogen bond to the chromophore. We calculate the thermal boundary conductance between GFP and water over a wide range of temperature and find that the interface between the protein and the cluster of water molecules in the β-barrel poses negligible resistance to thermal flow, consistent with facile vibrational energy transfer from the chromophore to the β-barrel waters observed in the communication maps.
International Nuclear Information System (INIS)
Bresme, F.; Armstrong, J.
2014-01-01
We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation
Impact of boundary conditions on the development of the thermal plume above a sitting human body
DEFF Research Database (Denmark)
Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor
2010-01-01
a sitting occupant. CFD predictions were performed to explain the reason for a skewness in the thermal plume above a sitting thermal manikin with realistic body shape, size, and surface temperature distribution, measured in a climate chamber with mean radiant temperature equal to the room air temperature......, no radiant temperature asymmetry, and air velocity lower than 0.05 m/s. The results of the CFD predictions showed that even a small non-uniformity in the temperature field (±0.01ºC) or in the velocity field (±0.005 m/s) of the surrounding environment affects the development of the thermal plume above...
The Thermal And Hydrodynamic Behavior of Thick, Rough-Wall, Turbulent Boundary Layers,
1979-08-01
34match point") and then extrap - olating to x = 0, the virtual origin of the hydrodynamic flow field. The values of L for the artificially thickened...boundary layers developing over rough sur- faces is important for the design of many engineering components, including reentry vehicles, nuclear reactors
Baba, Tetsuya; Taketoshi, Naoyuki; Yagi, Takashi
2011-11-01
Reliable thermophysical property values of thin films are important to develop advanced industrial technologies such as highly integrated electronic devices, phase-change memories, magneto-optical disks, light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), semiconductor lasers (LDs), flat-panel displays, and power electronic devices. In order to meet these requirements, the National Metrology Institute of Japan of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has developed ultrafast laser flash methods heated by picosecond pulse or nanosecond pulse with the same geometrical configuration as the laser flash method, which is the standard method to measure the thermal diffusivity of bulk materials. Since these pulsed light heating methods induce one-dimensional heat diffusion across a well-defined length of the specimen thickness, the absolute value of thermal diffusivity across thin films can be measured reliably. Using these ultrafast laser flash methods, the thermal diffusivity of each layer of multilayered thin films and the boundary thermal resistance between the layers can be determined from the observed transient temperature curves based on the response function method. The thermophysical properties of various thin films important for modern industries such as the transparent conductive films used for flat-panel displays, hard coating films, and multilayered films of next-generation phase-change optical disks have been measured by these methods.
Garg, Hemanshul; Soti, Atul K.; Bhardwaj, Rajneesh
2018-02-01
We report the development of an in-house fluid-structure interaction solver and its application to vortex-induced vibration (VIV) of an elastically mounted cylinder in the presence of thermal buoyancy. The flow solver utilizes a sharp interface immersed boundary method, and in the present work, we extend it to account for the thermal buoyancy using Boussinesq approximation and couple it with a spring-mass system of the VIV. The one-way coupling utilizes an explicit time integration scheme and is computationally efficient. We present benchmark code verifications of the solver for natural convection, mixed convection, and VIV. In addition, we verify a coupled VIV-thermal buoyancy problem at a Reynolds number, Re = 150. We numerically demonstrate the onset of the VIV in the presence of the thermal buoyancy for an insulated cylinder at low Re. The buoyancy is induced by two parallel plates, kept in the direction of flow and symmetrically placed around the cylinder. The plates are maintained at the hot and cold temperature to the same degree relative to the ambient. In the absence of the thermal buoyancy (i.e., the plates are at ambient temperature), the VIV does not occur for Re ≤ 20 due to stable shear layers. By contrast, the thermal buoyancy induces flow instability and the vortex shedding helps us to achieve the VIV at Re ≤ 20, lower than the critical value of Re (≈21.7), reported in the literature, for a self-sustained VIV in the absence of the thermal buoyancy. The present simulations show that the lowest Re to achieve VIV in the presence of the thermal buoyancy is around Re ≈ 3, at Richardson number, Ri = 1. We examine the effect of the reduced velocity (UR), mass ratio (m), Prandtl number (Pr), Richardson number (Ri) on the displacement of the cylinder, lift coefficient, oscillation frequency, the phase difference between displacement and lift force, and wake structures. We obtain a significantly larger vibration amplitude of the cylinder over a wide
Mcnider, Richard T.; Song, Aaron; Casey, Dan; Crosson, William; Wetzel, Peter
1993-01-01
The current NWS ground based network is not sufficient to capture the dynamic or thermodynamic structure leading to the initiation and organization of air mass moist convective events. Under this investigation we intend to use boundary layer mesoscale models (McNider and Pielke, 1981) to examine the dynamic triggering of convection due to topography and surface thermal contrasts. VAS and MAN's estimates of moisture will be coupled with the dynamic solution to provide an estimate of the total convective potential. Visible GOES images will be used to specify incoming insolation which may lead to surface thermal contrasts and JR skin temperatures will be used to estimate surface moisture (via the surface thermal inertia) (Weizel and Chang, 1988) which can also induce surface thermal contrasts. We will use the SPACE-COHMEX data base to evaluate the ability of the joint mesoscale model satellite products to show skill in predicting the development of air mass convection. We will develop images of model vertical velocity and satellite thermodynamic measures to derive images of predicted convective potential. We will then after suitable geographic registration carry out a pixel by pixel correlation between the model/satellite convective potential and the 'truth' which are the visible images. During the first half of the first year of this investigation we have concentrated on two aspects of the project. The first has been in generating vertical velocity fields from the model for COHMEX case days. We have taken June 19 as the first case and have run the mesoscale model at several different grid resolutions. We are currently developing the composite model/satellite convective image. The second aspect has been the attempted calibration of the surface energy budget to provide the proper horizontal thermal contrasts for convective initiation. We have made extensive progress on this aspect using the FIFE data as a test data set. The calibration technique looks very promising.
Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.
2018-02-01
Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.
IMPROVEMENT OF THERMAL ESTIMATION AT LAND COVER BOUNDARY BY USING QUANTILE
Directory of Open Access Journals (Sweden)
T. Hosomura
2012-07-01
Full Text Available Land cover classification was conducted for Landsat ETM image of Urmqi. Maximum likelihood classification algorism was used for this purpose. Classification classes were urban, water body, forest, soil, bare ground1, bare ground2, vegetation1, vegetation2 and vegetation3. Mask image of each land cover was created from the obtained classification image. Thermal band image of each land cover was extracted by using the mask image. In general, mean value and standard deviation are calculated for the thermal band image. However, these values were affected by the difference of ground resolution. In this study, we introduced quantiles to avoid this problem. Quantiles are points taken at regular intervals from the cumulative distribution function. Quantiles showed the effectiveness of decreasing the error caused from the difference of ground resolution.
On the dynamics of ferroelastic domain boundaries under thermal and elastic forcing
Salje, E. K. H.
2010-09-01
Experimental observations and some theoretical models for the propagation of ferroelastic domain boundaries and phase fronts are reviewed. While the static configurations of domains and domain walls are reasonably well understood in ferroelastics (and specifically in shape memory alloys), one finds that the dynamic features have been less thoroughly investigated. In most cases, a smooth movement of domain walls in the ballistic limit is observed, accelerated propagation seems not to exist in the time and space limits of most experiments. Pattern formation occurs when the local order parameter is conserved over a length scale which is different from the ferroelastic correlation length. Currently, only few spiky elastic measurements and domain wall jamming in ferroelastics have been reported. Emphasis is given to disordered systems in which the occurrence of 'jerky elasticity' can be expected.
Temperature-Dependent Thermal Boundary Conductance at Al/Al2O3 and Pt/Al2O3 interfaces
Hopkins, Patrick E.; Salaway, R. N.; Stevens, R. J.; Norris, P. M.
2007-06-01
With the ever-decreasing size of microelectronic devices, growing applications of superlattices, and development of nanotechnology, thermal resistances of interfaces are becoming increasingly central to thermal management. Although there has been much success in understanding thermal boundary conductance at low temperatures, the current models applied at temperatures more common in device operation are not adequate due to our current limited understanding of phonon transport channels. In this study, the scattering processes in Al and Pt films on Al2O3 substrates are examined by transient thermoreflectance testing at high temperatures. At high temperatures, traditional models predict the thermal boundary conductance to be relatively constant in these systems due to assumptions about phonon elastic scattering. Experiments, however, show an increase in the conductance indicating potential inelastic phonon processes.
Kokmanian, Katherine; Duvvuri, Subrahmanyam; Hultmark, Marcus
2017-11-01
Nano-Scale Thermal Anemometry Probes (NSTAP) have been designed, tested and used in a wide variety of incompressible flows. These sensors are capable of measuring streamwise velocity fluctuations with an order of magnitude better resolution, both temporal and spatial, compared to conventional hot-wires, due to their miniature size and minute thermal mass (the heating element is only 60 microns long, 2 microns wide and 100 nm thick). Here we report recent efforts to redesign the NSTAP to withstand supersonic flow conditions. Work has been performed in Princeton's micro-nano fabrication laboratory in order to modify both the 2D layout and the 3D shapes of these sensors. The supersonic version of the NSTAP is evaluated in collaboration with Bundeswehr University. The ultimate objective of this work is to measure both fluctuating mass flow rate and total temperature in compressible turbulent boundary layers, by combining two supersonic sensors which operate at different overheat ratios. AFOSR FA9550-16-1-0170 (Program manager: Ivett Leyva).
Numerical analysis of energy piles under different boundary conditions and thermal loading cycles
Directory of Open Access Journals (Sweden)
Khosravi Ali
2016-01-01
Full Text Available The thermo- mechanical behavior of energy piles has been studied extensively in recent years. In the present study, a numerical model was adapted to study the effect of various parameters (e.g. heating/cooling temperature, head loading condition and soil stiffness on the thermo-mechanical behavior of an energy pile installed in unsaturated sandstone. The results from the simulations were compared with measurements from a thermal response test on a prototype energy pile installed beneath a 1-story building at the US Air Force Academy (USAFA in Colorado Springs, CO. A good agreement was achieved between the results obtained from the prototype and the numerical models. A parametric evaluation were also carried out which indicated the significance of the stiffness of the unsaturated sandstone and pile’s head loading condition on stress-strain response of the energy pile during heating/cooling cycles.
Experimental Investigation of Zinc Antimonide Thin Films under Different Thermal Boundary Conditions
DEFF Research Database (Denmark)
Mir Hosseini, Seyed Mojtaba; Rosendahl, Lasse Aistrup; Rezaniakolaei, Alireza
Zinc antimonide compound ZnxSby is one of the most efficient thermoelectric (TE) materials known at high temperatures regarding to its exceptional low thermal conductivity. For this reason, it continues to be the focus of active research. However, before practical use in actual conditions......, it is imperative to analyze the thermo electrical behavior of these materials. In this study, the results are considered for different hot side temperature of the film in steady state condition. Six temperatures at hot side of the specimen are provided; 150, 200, 250, 300, 350, and 400 ᵒC. At the beginning of each...... for all cases, showing that the electrical potential difference is increasing by temperature for all cases with the same slope. Also the value of Seebeck coefficient (α) is almost constant for all cases. The obtained value of α can compete with developed bulk TEG materials in literature. The thin film...
Indian Academy of Sciences (India)
1985). [2] D Bailin, G Kraniotis and A Love, Proc. Cairo International Conference on High Energy. Physics, 9–14 January, 2001 edited by S Khalil, Q Shafi and H Tallat, Rinton Press Inc. (2001) p29, hep-th/0108127. Pramana – J. Phys., Vol.
Spiked instantons from intersecting D-branes
Directory of Open Access Journals (Sweden)
Nikita Nekrasov
2017-01-01
Full Text Available The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence [22] is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.
Indian Academy of Sciences (India)
which was done in collaboration with George Kraniotis and Alex Love, and I thank them too for innumerable enjoyable discussions. References. [1] P Candelas, G T Horowitz, A Strominger and E Witten, Nucl. Phys. B258, 46 (1985). [2] D Bailin, G Kraniotis and A Love, Proc. Cairo International Conference on High Energy.
D-brane scattering and annihilation
International Nuclear Information System (INIS)
D’Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie
2015-01-01
We study the dynamics of parallel brane-brane and brane-antibrane scattering in string theory in flat spacetime, focusing on the pair production of open strings that stretch between the branes. We are particularly interested in the case of scattering at small impact parameter b
Fucugauchi, J. U.; Perez-Cruz, L. L.
2015-12-01
Chicxulub formed 66 Ma ago by an asteroid impact on the Yucatan carbonate platform, southern Gulf of Mexico. Impact produced a 200 km diameter crater, platform fracturing, deformation and ejecta emplacement. Carbonate sedimentation restarted and crater was covered by up to 1 km of sediments. Drilling programs have sampled the Paleogene sediments, which record the changing sedimentation processes in the impact basin and platform. Here, results of a study of the Paleocene-Eocene sediments cored in the Santa Elena borehole are used to characterize the K/Pg and PETM. The borehole reached a depth of 504 m and was continuously cored, sampling the post-impact sediments and impact breccias, with contact at 332 m. For this study, we analyzed the section from ~230 to ~340 m, corresponding to the upper breccias and Paleocene-Eocene sediments. The lithological column, constructed from macroscopic and thin-section petrographic analyses, is composed of limestones and dolomitized limestones with several thin clay layers. Breccias are melt and basement clast rich, described as a suevitic unit. Section is further investigated using paleomagnetic, rock magnetic, X-ray fluorescence geochemical and stable isotope analyses. Magnetic polarities define a sequence of reverse to normal, which correlate to the geomagnetic polarity time scale from chrons 29r to 26r. The d13 C values in the first 20 m interval range from 1.2 to 3.5 %0 and d18 O values range from -1.4 to -4.8 %0. Isotope values show variation trends that correlate with the marine carbon and oxygen isotope patterns for the K-Pg boundary and early Paleocene. Positive carbon isotopes suggest relatively high productivity, with apparent recovery following the K-Pg extinction event. Geochemical data define characteristic trends, with Si decreasing gradually from high values in the suevites, low contents in Paleocene sediments with intervals of higher variability and then increased values likely marking the PETM. Variation trends are
Directory of Open Access Journals (Sweden)
V. K. Bityukov
2016-01-01
Full Text Available Analytical study of the processes of heat conduction is one of the main topics of modern engineering research in engineering, energy, nuclear industry, process chemical, construction, textile, food, geological and other industries. Suffice to say that almost all processes in one degree or another are related to change in the temperature condition and the transfer of warmth. It should also be noted that engineering studies of the kinetics of a range of physical and chemical processes are similar to the problems of stationary and nonstationary heat transfer. These include the processes of diffusions, sedimentation, viscous flow, slowing down the neutrons, flow of fluids through a porous medium, electric fluctuations, adsorption, drying, burning, etc. There are various methods for solving the classical boundary value problems of nonstationary heat conduction and problems of the generalized type: the method of separation of variables (Fourier method method; the continuation method; the works solutions; the Duhamel's method; the integral transformations method; the operating method; the method of green's functions (stationary and non-stationary thermal conductivity; the reflection method (method source. In this paper, based on the consistent application of the Laplace transform on the dimensionless time θ and finite sine integral transformation in the spatial coordinates X and Y solves the problem of unsteady temperature distribution on the mechanism of heat conduction in a parallelepiped with boundary conditions of first kind. As a result we have the analytical solution of the temperature distribution in the parallelepiped to a conductive mode free convection, when one of the side faces of the parallelepiped is maintained at a constant temperature, and the others with the another same constant temperature.
International Nuclear Information System (INIS)
Heggs, P.J.; Dare, J.
2007-01-01
The generation of heat due to chemical reaction will have a significant effect on the temperature profile and heat transfer within a porous body. Most forms of analysis only consider the symmetric situation or else make use of various assumptions that greatly simplify the analysis, for example: the Semenov or the Frak-kamenetskii models. The objective of this paper is to develop an improved understanding of the thermal behaviour of a porous body with uniform internal heat generation, which is in contact with two fluids at different temperatures and with different heat transfer coefficients. The mathematical representation is a one dimensional Poisson equation with asymmetric boundary conditions. The analytical solution reveals four regimes for heat flow: (a) purely conduction at zero heat generation, (b) a combination of heat flow by conduction through the body between the hot and cold fluids and all heat generated passing to the colder fluid, (c) no heat flow by conduction between the two fluids and all heat generated passing the cold flow - the so-called critical heat generation, and (d) the heat generated passes to both the cold and hot fluids and there is a maximum temperature within the body greater than that of the hot fluid, the so-called supercritical region. Expressions are developed to allow predictions of the conditions pertaining to each regime. This new representation covers the Semenov and Frank-Kamenetskii models and all possible solutions intermediate of the them. (authors)
International Nuclear Information System (INIS)
Tao, Y.B.; He, Y.L.
2011-01-01
Highlights: → Based on the unstable solar radiation, a model was established for phase change process under unsteady boundary. → The PCM melting time decreases with the initial inlet temperature increase under the same average inlet temperature. → The melting time reduces about 51.9% with the initial inlet temperature increase from 30 o C to 90 o C. → The melting time decreases with the initial inlet mass flow rate increase under the same average inlet mass flow rate. → The melting time reduces about 36.5% with the initial inlet mass flow rate increase from 2.0 x 10 -4 kg/s to 8.0 x 10 -4 kg/s. -- Abstract: Due to the solar radiation intensity variation over time, the outlet temperature or mass flow rate of heat transfer fluid (HTF) presents non-steady-state characteristics for solar collector. So, in the phase change thermal energy storage (PCTES) unit which is connected to solar collector, the phase change process occurs under the non-steady-state inlet boundary condition. In present paper, regarding the non-steady-state boundary, based on enthalpy method, a two dimensional physical and mathematical model for a shell-and-tube PCTES unit was established and the simulation code was self-developed. The effects of the non-steady-state inlet condition of HTF on the thermal performance of the PCTES unit were numerically analyzed. The results show that when the average HTF inlet temperature in an hour is fixed at a constant value, the melting time (time required for PCM completely melting) decreases with the increase of initial inlet temperature. When the initial inlet temperature increases from 30 o C to 90 o C, the melting time will decrease from 42.75 min to 20.58 min. However, the total TES capacity in an hour reduces from 338.9 kJ/kg to 211.5 kJ/kg. When the average inlet mass flow rate in an hour is fixed at a constant value, with the initial HTF inlet mass flow rate increasing, the melting time of PCM decreases. The initial inlet mass flow rate
Khanday, M. A.; Hussain, Fida
2015-07-01
To predict the behaviour of thermal physiology of a finite biological tissue in severe cold climatic conditions, a mathematical model has been established based on Pennes' bio-heat transfer equation with oscillatory boundary condition and time dependent heat source term. Crank-Nicholson scheme has been employed to obtain the solution of the boundary value problem to understand the change in stable temperature profiles at the peripheral tissues of human body subjected to forced convection due to cold. Thermal stress at these regions with respect to different input parameters has been computed under extreme environmental conditions using MATLAB Software. The results have shown a relative significance and provide a reasonable outcome in terms of variable metabolic heat generation and oscillatory heat source. The oscillations of the temperature profiles from the mean temperatures were computed in relation with tissue medium and other physiological parameters.
Effects of B2/B19′ phase boundary on thermally induced phase transition in NiTi: An atomistic study
Energy Technology Data Exchange (ETDEWEB)
Qin, Sheng-Jian [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Shang, Jia-Xiang, E-mail: shangjx@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Xu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Fu-He [Department of Physics, Capital Normal University, Beijing 100048 (China)
2015-10-30
Highlights: • A new order parameter is created to characterize the local atom structure. • Heterogeneous nucleation of B2 phase occurs at high temperatures in B2/B19′ phase boundary system. • B2/B19′ phase boundary provides the sites for heterogeneous B2 nucleation at high temperatures. • Homogeneous nucleation of B19′ phase occurs at low temperatures in B2/B19′ phase boundary system. • B2 and B19′ phases coexist at medium temperatures. - Abstract: Molecular dynamics simulations are performed to study the thermally induced phase transition in NiTi B19′ single crystal at high temperatures (400, 500, 600 and 700 K), B2 single crystal at low temperatures (50, 100, 150 and 200 K) and the system containing a B2/B19′ phase boundary at high, medium (300, 320 and 340 K) and low temperatures. Homogeneous nucleation and growth of the B2 and the B19′ phases are observed in B19′ and B2 single crystal systems, respectively. In B2/B19′ system, heterogeneous nucleation and growth of the B2 phase are observed at high temperatures, which results in forming a B2/B2 grain boundary and a new B2/B19′ phase boundary; the B2 phase transforms homogeneously to B19′ phase at low temperatures; the B2 and B19′ phases coexist without heterogeneous nucleation of any phase at medium temperatures. Compared with the single crystal, the B2/B19′ phase boundary provides the sites for heterogeneous B2 nucleation at high temperatures and has little effect on the phase transition at low temperatures.
Energy Technology Data Exchange (ETDEWEB)
Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-09-30
Radiation-induced segregation (RIS) has been frequently reported in structural materials such as austenitic, ferritic, and ferritic-martensitic stainless steels (SS) that have been widely used in light water reactors (LWRs). RIS has been linked to secondary degradation effects in SS including irradiation-induced stress corrosion cracking (IASCC). Earlier studies on thermal segregation in Fe-based alloys found that metalloids elements such as P, S, Si, Ge, Sn, etc., embrittle the materials when enrichment was observed at grain boundaries (GBs). RIS of Fe-Cr-Ni-based austenitic steels has been modeled in the U.S. 2015 fiscal year (FY2015), which identified the pre-enrichment due to thermal segregation can have an important role on the subsequent RIS. The goal of this work is to develop thermal segregation models for alloying elements in steels for future integration with RIS modeling.
Suryantini; Rachmawati, C.; Abdurrahman, M.
2017-12-01
Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is
Ogasawara, Haruka; Koga, Nobuyoshi
2014-04-03
In this study, ferrous oxalate dihydrate polymorph particles, α- and β-phases, with square bipyramidal and quadratic prismatic shapes, respectively, were synthesized. Thermal dehydration of the samples was subjected to kinetic study as a typical reaction that indicates a significant induction period and a sigmoidal mass-loss behavior. On the basis of the formal kinetic analysis of the mass-loss traces recorded under isothermal, nonisothermal, and constant transformation rate conditions and the morphological observations of the surface textures of the partially reacted sample particles, a combined kinetic model for the induction period-surface reaction-phase boundary reaction was developed. The sigmoidal mass-loss behavior after the significant induction period under isothermal conditions was satisfactorily simulated by the combined kinetic model. The kinetic parameters for the component processes of induction period, surface reaction, and phase boundary reaction were separately determined from the kinetic simulation. The differences in the kinetic behaviors of the induction period and the phase boundary reaction between α- and β-phase samples were well described by the kinetic parameters. The applicability of the combined kinetic model to practical systems was demonstrated through characterizing the physicogeometrical kinetics of the thermal dehydration of ferrous oxalate dihydrate polymorphs.
Boundary state from Ellwood invariants
Czech Academy of Sciences Publication Activity Database
Kudrna, Matěj; Maccaferri, Carlo; Schnabl, Martin
2013-01-01
Roč. 2013, č. 7 (2013), s. 1-54 ISSN 1126-6708 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional support: RVO:68378271 Keywords : string field theory * D-brane * conformal field models in string theory * tachyon condensation Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012
Henry, Donald P., Jr.
1991-01-01
The focus of this dissertation is on advanced development of the boundary element method for elastic and inelastic thermal stress analysis. New formulations for the treatment of body forces and nonlinear effects are derived. These formulations, which are based on particular integral theory, eliminate the need for volume integrals or extra surface integrals to account for these effects. The formulations are presented for axisymmetric, two and three dimensional analysis. Also in this dissertation, two dimensional and axisymmetric formulations for elastic and inelastic, inhomogeneous stress analysis are introduced. The derivatives account for inhomogeneities due to spatially dependent material parameters, and thermally induced inhomogeneities. The nonlinear formulation of the present work are based on an incremental initial stress approach. Two inelastic solutions algorithms are implemented: an iterative; and a variable stiffness type approach. The Von Mises yield criterion with variable hardening and the associated flow rules are adopted in these algorithms. All formulations are implemented in a general purpose, multi-region computer code with the capability of local definition of boundary conditions. Quadratic, isoparametric shape functions are used to model the geometry and field variables of the boundary (and domain) of the problem. The multi-region implementation permits a body to be modeled in substructured parts, thus dramatically reducing the cost of analysis. Furthermore, it allows a body consisting of regions of different (homogeneous) material to be studied. To test the program, results obtained for simple test cases are checked against their analytic solutions. Thereafter, a range of problems of practical interest are analyzed. In addition to displacement and traction loads, problems with body forces due to self-weight, centrifugal, and thermal loads are considered.
Cheruy, F.; Ait Mesbah, S.; Dufresne, J.
2016-12-01
of the soil thermal properties together with a right parameterization of the stable boundary layers in climate models. It suggests that the impact of the moisture on the temperature through its impact on the thermal inertia can be as important as its direct impact on the evaporation.
Directory of Open Access Journals (Sweden)
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
Directory of Open Access Journals (Sweden)
Rania Fathy
2010-01-01
Full Text Available The analysis of laminar boundary layer flow and heat transfer of non-Newtonian fluids over a continuous stretched surface with suction or injection has been presented.The velocity and temperature of the sheet were assumed to vary in a power-law form, that is u = U0xm, and Tw(x = T+ Cxb. The viscosity of the fluid is assumed to be inverse linear function of temperature. The resulting governing boundary-layer equations are highly non-linear and coupled form of partial differential equations and they have been solved numerically by using the Runge-Kutta method and Shooting technique. Velocity and temperature distributions as well as the Nusselt number where studied for two thermal boundary conditions: uniform surface temperature (b = 0 and cooled surface temperature (b = -1, for different parameters: variable viscosity parameter qr, temperature exponent b, blowing parameter d and Prandtl number. The obtained results show that the flow and heat transfer characteristics are significantly influenced by these parameters.
Directory of Open Access Journals (Sweden)
Ashraf Muhammad
2018-01-01
Full Text Available The characteristics of radiative mixed convection boundary-layer flow generated close to the inner walls of tightly coiled curved pipe for full range of Richardson number is investigated. In order to find numerical solutions the governing coupled, non-linear PDE are transformed into convenient form for integration by using primitive variable formulation. From this transformation the terms highest powers of Dean number are retained into boundary-layer form and then solved numerically by using finite difference method. Expressions for the axial and trans-verse components of skin friction, heat transfer coefficient, and flux thicknesses for various values of Richardson number, , angle, α, curvature of the pipe, Planck number, Rd, and Prandtl number are obtained and given graphically.
Thermal Aging Effect on Corrosion Resistance in Fusion Boundary of A533 Gr. B and Alloy 152
Energy Technology Data Exchange (ETDEWEB)
Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Taeho; Ham, Junhyuk; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)
2016-10-15
Dissimilar metal weldment (DMW) is frequently used for joining low-alloy steel pressure vessel nozzles and steam generator nozzles to nickel-based wrought alloy or austenitic stainless steel components in high energy systems. This feature also significantly hinders C diffusion from the ferrite base metal to the weld metal. Until now, stress corrosion cracking has not occurred in DMWs where a High-Cr weld metal (such as Alloy 152 or Alloy 690), which is Ni-base weld metal including relative high Cr, is used as the weld metal in the weld between the nickel-based alloy and low-alloy steel. To understand the microstructure and corrosion evolution on fusion boundary between low-alloy steel and Ni-base weld metal, microstructural analysis and polarization test were performed with A533 Gr. B/Alloy 152/Alloy 690. Remarkable changes were observed in corrosion resistance and hardness at fusion boundary between low-alloy steel and Ni-base weld metal. The precipitate, which has different potential with peripheral region, can cause galvanic corrosion or pitting corrosion and is the one of hardening methods by disturbing movement of the dislocation. At initial step of heat treatment, the number of precipitates was increased. In fusion boundary between A533 Gr. B and Alloy 152, the corrosion resistance was decreased, and the hardness was increased. Next, at further step, the number of precipitates.
Nayak, M. K.; Shaw, Sachin; Pandey, V. S.; Chamkha, Ali J.
2018-02-01
In the present study, the main concern is to investigate the magnetohydrodynamic nanofluid flow subject to porous matrix and convective heating past a permeable linear stretching sheet. In addition, the influence of velocity slip, viscous dissipation, Joule heating and non-linear thermal radiation are considered. A new micro-convection model known as the Patel model is implemented for considerable enhancement of the thermal conductivity and hence, the heat transfer capability of nanofluids. Moreover, a convective heat transfer model is introduced where the bottom surface of the sheet gets heated due to a convection mechanism from a hot fluid of particular temperature. The numerical results of the transformed governing differential equations have been obtained by using fourth-order Runge-Kutta method along with shooting approach and secant method is used for better approximation. In the present analysis, base fluids such as water and Ethylene glycol and Copper, Silver and Aluminum oxide nanoparticles are considered. Results of the present investigation show that inclusion of porous matrix contributes to slow down the fluid velocity and diminution of wall shear stress (axial as well as transverse). Drag force due to magnetic field strength, velocity slip and imposed fluid suction impede the fluid motion and upsurge the heat transfer rate from the surface. In addition, rise in viscous dissipation widens the thermal boundary layer.
Aslett, Zan; Taranik, James V.; Riley, Dean N.
2018-02-01
Aerial spatially enhanced broadband array spectrograph system (SEBASS) long-wave infrared (LWIR) hyperspectral image data were used to map the distribution of rock-forming minerals indicative of sedimentary and meta-sedimentary lithologies around Boundary Canyon, Death Valley, California, USA. Collection of data over the Boundary Canyon detachment fault (BCDF) facilitated measurement of numerous lithologies representing a contact between the relatively unmetamorphosed Grapevine Mountains allochthon and the metamorphosed core complex of the Funeral Mountains autochthon. These included quartz-rich sandstone, quartzite, conglomerate, and alluvium; muscovite-rich schist, siltstone, and slate; and carbonate-rich dolomite, limestone, and marble, ranging in age from late Precambrian to Quaternary. Hyperspectral data were reduced in dimensionality and processed to statistically identify and map unique emissivity spectra endmembers. Some minerals (e.g., quartz and muscovite) dominate multiple lithologies, resulting in a limited ability to differentiate them. Abrupt variations in image data emissivity amongst pelitic schists corresponded to amphibolite; these rocks represent gradation from greenschist- to amphibolite-metamorphic facies lithologies. Although the full potential of LWIR hyperspectral image data may not be fully utilized within this study area due to lack of measurable spectral distinction between rocks of similar bulk mineralogy, the high spectral resolution of the image data was useful in characterizing silicate- and carbonate-based sedimentary and meta-sedimentary rocks in proximity to fault contacts, as well as for interpreting some mineral mixtures.
International Nuclear Information System (INIS)
Nunes, Carlos Eduardo de Araujo
2011-01-01
As neutron fission events do not take place in the non-multiplying regions of nuclear reactors, e.g., moderator, reflector, and structural core, these regions do not generate power and the computational efficiency of nuclear reactor global calculations can hence be improved by eliminating the explicit numerical calculations within the non-multiplying regions around the active domain. Discussed here is the computational efficiency of approximate discrete ordinates (SN) albedo boundary conditions for two-energy group eigenvalue problems in X, Y geometry. Albedo, the Latin word for w hiteness , was originally defined as the fraction of incident light reflected diffusely by a surface. This Latin word has remained the usual scientific term in astronomy and in this dissertation this concept is extended for the reflection of neutrons. The non-standard SN albedo substitutes approximately the reflector region around the active domain, as we neglect the transverse leakage terms within the non-multiplying reflector. Should the problem have no transverse leakage terms, i.e., one dimensional slab geometry, then the offered albedo boundary conditions are exact. By computational efficiency we mean analyzing the accuracy of the numerical results versus the CPU execution time of each run for a given model problem. Numerical results to two 1/4 symmetric test problems are shown to illustrate this efficiency analysis. (author)
Adding a brane to the brane-anti-brane action in BSFT
International Nuclear Information System (INIS)
Jones, Nicholas T.; Henry Tye, S.-H.; Leblond, Louis
2003-01-01
We attempt to generalize the effective action for the D-brane-anti-D-brane system obtained from boundary superstring field theory (BSFT) by adding an extra D-brane to it to obtain a co-variantized action for 2 D-branes and 1 anti-D-brane. We discuss the approximations made to obtain the effective action in closed form. Among other properties, this effective action admits solitonic solutions of co-dimension 2 (vortices) when one of the D-brane is far separated from the brane-anti-brane pair. (author)
Daba, Mitiku; Devaraj, P.
2016-05-01
In this paper, we investigated numerically an unsteady boundary layer flow of a nanofluid over a stretching sheet in the presence of thermal radiation with variable fluid properties. Using a set of suitable similarity transformations, the governing partial differential equations are reduced into a set of nonlinear ordinary differential equations. System of the nonlinear ordinary differential equations are then solved by the Keller-box method. The physical parameters taken into consideration for the present study are: Prandtl number Pr, Lewis number Le, Brownian motion parameter N b, thermophoresis parameter N t, radiation parameter N r, unsteady parameter M. In addition to these parameters, two more new parameters namely variable thermophoretic diffusion coefficient parameter e and variable Brownian motion diffusion coefficient parameter β have been introduced in the present study. Effects of these parameters on temperature, volume fraction of the nanoparticles, surface heat and mass transfer rates are presented graphically and discussed briefly. To validate our method, we have compared the present results with some previously reported results in the literature. The results are found to be in a very good agreement.
Energy Technology Data Exchange (ETDEWEB)
Orlandi, M.O. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, P.O. Box 31, CEP 15385-000, Ilha Solteira-SP (Brazil); Bueno, P.R.; Longo, E. [Universidade Estadual Paulista, Instituto de Quimica, Departamento de Fisico-Quimica, C. Postal 355, 14800-900, Araraquara-SP (Brazil)
2008-02-15
The present work studied the influence of thermal treatment in oxygen rich atmosphere on heterogeneous junctions in Mn-doped SnO{sub 2} polycrystalline system presenting varistor behavior. The samples were prepared by conventional oxide mixture methodology, and were submitted to heat treatment in oxygen rich atmosphere at 900 C for 2 h. The samples were characterized by X-ray diffraction, scanning electron microscopy, dc and ac electrical measurements. The results showed that there is an evident relationship between the microstructure heterogeneity and non-ohmic electrical properties. It was found that for this SnO{sub 2}.MnO-based varistor system the heat treatment in oxygen rich atmosphere does not necessarily increase the varistors' properties, which was related to the decrease in the grain boundary resistance. The results are compared with Co-doped SnO{sub 2} varistors and ZnO based varistors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-08-01
This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys in the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a dominant
Phase of N=2 theories in 1+1 dimensions with boundary
Energy Technology Data Exchange (ETDEWEB)
Herbst, M. [CERN, Geneva (Switzerland). Theory Division, Dept. of Physics; Hori, K.; Page, D. [Toronto Univ., ON (Canada). Dept. of Physics
2008-03-15
We study B-type D-branes in linear sigma models with Abelian gauge groups. The most important finding is the grade restriction rule. It classifies representations of the gauge group on the Chan-Paton factor, which can be used to define a family of D-branes over a region of the Kahler moduli space that connects special points of different character. As an application, we find a precise, transparent relation between D-branes in various geometric phases as well as free orbifold and Landau-Ginzburg points. The result reproduces and unifies many of the earlier mathematical results on equivalences of D-brane categories, including the McKay correspondence and Orlov's construction. (orig.)
Proton decay in intersecting D-brane models
Energy Technology Data Exchange (ETDEWEB)
Klebanov, Igor R. E-mail: klebanov@feynman.princeton.edu; Witten, Edward E-mail: witten@ias.edu
2003-08-04
We analyze proton decay via dimension-six operators in certain GUT-like models derived from Type IIA orientifolds with D6-branes. The amplitude is parametrically enhanced by a factor of {alpha}{sub GUT}{sup -1/3} relative to the corresponding result in four-dimensional GUTs. Nonetheless, even assuming a plausible enhancement from the threshold corrections, we find little overall enhancement of the proton decay rate from dimension-six operators, so that the predicted lifetime from this mechanism remains close to 10{sup 36} years.
D branes in background fluxes and Nielsen-Olesen instabilities
Energy Technology Data Exchange (ETDEWEB)
Russo, Jorge G. [Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys, 23, 08010 Barcelona (Spain); Department de Fisica Cuantica i Astrofisica and Institut de Ciències del Cosmos,Universitat de Barcelona, Martí Franquès, 1, 08028 Barcelona (Spain)
2016-06-06
In quantum field theory, charged particles with spin ≥1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F{sub p+2}, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are Dp branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic Dp brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin Dp quantum states which become very light at critical fields.
D branes in background fluxes and Nielsen-Olesen instabilities
Russo, Jorge G.
2016-06-01
In quantum field theory, charged particles with spin ≥ 1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F p+2, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are D p branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic D p brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin D p quantum states which become very light at critical fields.
Tachyon tube on non BPS D-branes
International Nuclear Information System (INIS)
Huang Wunghong
2004-01-01
We report our searches for a single tubular tachyonic solution of regular profile on unstable non BPS D3-branes. We first show that some extended Dirac-Born-Infeld tachyon actions in which new contributions are added to avoid the Derrick's no-go theorem still could not have a single regular tube solution. Next we use the Minahan-Zwiebach tachyon action to find the regular tube solutions with circular or elliptic cross section. With a critical electric field, the energy of the tube comes entirely from the D0 and strings, while the energy associated to the tubular D2-brane tension is vanishing. We also show that fluctuation spectrum around the tube solution does not contain tachyonic mode. The results are consistent with the identification of the tubular configuration as a BPS D2-brane. (author)
On D-brane anti D-brane effective actions and their corrections to all orders in alpha-prime
Hatefi, Ehsan
2013-09-09
Based on a four point function, the S-matrix elements at disk level of the scattering amplitude of one closed string Ramond-Ramond field ($C$) and two tachyons and one scalar field, we find out new couplings in brane anti brane effective actions for $p=n,p+2=n$ cases. Using the infinite corrections of the vertex of one RR, one gauge and one scalar field and applying the correct expansion, it is investigated in details how we produce the infinite gauge poles of the amplitude for $p = n$ case. By discovering new higher derivative corrections of two tachyon-two scalar couplings in brane anti brane systems to all orders in $\\alpha'$, we also obtain the infinite scalar poles in $t'+s'+u$-channel in field theory. Working with the complete form of the amplitude with the closed form of the expansion and comparing all the infinite contact terms of this amplitude, we derive several new Wess-Zumino couplings with all their infinite higher derivative corrections in the world volume of brane anti brane systems. In particu...
Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.
2018-03-01
A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.
DEFF Research Database (Denmark)
Aarhus, Rikke; Ballegaard, Stinne Aaløkke
2010-01-01
to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home....
DEFF Research Database (Denmark)
Zølner, Mette
The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors...... in the period of post-acquisition when their organization is being integrated into the acquiring MNC. The paper contributes to the literature on boundary spanning in three ways: First, by illustrating that boundary spanning is performed by numerous organizational actors in a variety of positions in MNCs......, inclusively by locals in subsidiaries. Second, by showing that boundary spanning is ‘situated’ in the sense that its result depends on the kind of knowledge to be transmitted and the attitude of the receivers. A third contribution is methodological. The study illustrates that combining bottom-up grounded...
DEFF Research Database (Denmark)
Zølner, Mette
The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....
Xie, Jiajun; Yuan, Chao; Luo, Yang; Yang, Yuanfei; Hu, Bin; Yu, Dunbo; Yan, Wenlong
2018-01-01
Rapidly quenched NdFeB ribbons with high coercivity were obtained by Nd70Cu30 diffusion process. Samples with a high coercivity of 22.02 kOe at room temperature were obtained after grain boundary diffusion with 20 wt% Nd70Cu30 alloys. The NdCu diffusion process promoted grain growth in the ribbons, and grain boundary phases were formed with Cu segregation among NdFeB grains. Coercivity above 10 kOe at 150 °C was achieved in the bonded magnets with NdCu content over 10 wt%. The flux loss of bonded magnets was reduced by ∼32% at 120 °C after diffusion treatment with only a small amount (2 wt%) of NdCu.
Energy Technology Data Exchange (ETDEWEB)
Prokopov, V.G.; Sherenkovskii, Yu.V.; Stelyuk, Yu.I.
1977-01-01
Results are given for an approximate analytical two-dimensional solution of the problem on the distribution of temperatures in the cross-section of a linear fin. Relationships are suggested which make it possible to evaluate the effectiveness of finning in comparison to a smooth wall. Single-dimensional relationships are shown to be unacceptable for determining the boundaries for the rational use of finning.
DEFF Research Database (Denmark)
Neergaard, Ulla; Nielsen, Ruth
2010-01-01
of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....
International Nuclear Information System (INIS)
Cox, B.; Ling, V.C.
1980-05-01
A piece of CW Zr-2.5 wt% Nb alloy pressure tube was hydrided at one end in 40 g/L LiOH solution at 573 K (after nickel-plating that end). The result was a solid hydride layer 0.6 mm thick plus approximately 130 ppm hydrogen in the core under the nickel plate. Thermal cycling under conditions similar to those likely to be experienced during a reactor trip did not cause any significant movement of the α+hydride/α phase boundary along the tube for up to 2688 cycles from 573 to 523 K. Supercharging of the core was observed in the nickel-plated area. Some conclusions have been drawn concerning the origin of the hydrogen in the nickel-plated area, and the factors controlling the supercharging process. (auth)
Energy Technology Data Exchange (ETDEWEB)
Alvarez Rivas, J. L.
1963-07-01
The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PUGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs.
Ferdows, M.
2017-03-10
A steady two-dimensional free convective flow of a viscous incompressible fluid along a vertical stretching sheet with the effect of magnetic field, radiation and variable thermal conductivity in porous media is analyzed. The nonlinear partial differential equations, governing the flow field under consideration, have been transformed by a similarity transformation into a systemof nonlinear ordinary differential equations and then solved numerically. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters. Finally, the effects of the pertinent parameters, which are of physical and engineering interest, are examined both in graphical and tabular form.
Energy Technology Data Exchange (ETDEWEB)
Aly, Emad H., E-mail: efarag@uj.edu.sa [Department of Mathematics, Faculty of Science, University of Jeddah, Jeddah 21589 (Saudi Arabia); Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757 (Egypt); Sayed, Hamed M. [Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757 (Egypt); Department of Mathematics, Faculty of Sciences, Taibah University, Yanbu (Saudi Arabia)
2017-01-15
In the current work, we investigated effects of the velocity slip for the flow and heat transfer of four nanofluids over a non-linear stretching sheet taking into account the thermal radiation and magnetic field in presence of the effective electrical conductivity. The governing partial differential equations were transformed into a set of nonlinear ordinary differential equation using similarity transformations before being solved numerically by the Chebyshev pseudospectral differentiation matrix (ChPDM). It was found that the investigated parameters affect remarkably on the nanofluid stream function for the whole investigated nanoparticles. In addition, velocity and skin friction profiles of the four investigated nanofluids decreases and increases, respectively, with the increase of the magnetic parameter, first-order and second-order velocity slips. Further, the flow velocity, surface shear stress and temperature are strongly influenced on applying the velocity slip model, where lower values of the second-order imply higher surface heat flux and thereby making the fluid warmer. - Highlights: • A comparative study for four nanoparticles with MHD and thermal radiation effects was studied. • The effective electrical conductivity is mandatory; otherwise a spurious physical sight will be gained. • The investigated parameters affect remarkably on the nanofluids' flow. • The flow velocity, surface shear stress and temperature are strongly influenced by the slip model. • Lower values of the second-order imply higher surface heat flux and thereby making the fluid warmer.
International Nuclear Information System (INIS)
Rosa, Cinara Ewerling da; Knackfuss, Rosenei Felippe
2013-01-01
In this work is presented a series of numerical results and graphical comparisons of the physical quantities of interest such as: the velocity profile and the heat on profile. This formulation is developed for the problem of Thermal Creep, where the gas is moving between two parallel plates with different chemical constitutions (heterogeneous plates) due to a temperature gradient. The flow of a rarefied gas, is investigated with special attention to the gas-surface interaction, modeled by the Cercignani-Lampis kernel, that unlike Maxwell's scattering kernel, is defined in terms of two accommodation coefficients (normal and tangential) to represent the physical properties of the gas. The kinetic theory for rarefied gas dynamics, derived from the linearized Boltzmann equation, is developed in an unified approach, to the BGK model, S model, GJ model and MRS model. In the search for solutions to solve the problem of Thermal Creep with kernel of the Cercignani-Lampis, we used a analytical version of the discrete ordinates method (ADO) based on an arbitrary quadrature scheme, under which is determined a problem of eigenvalues and their respective separation constants. Numerical results are developed by the computer program FORTRAN. (author)
Tripati, Aradhna K.; Elderfield, Henry
2004-02-01
The Paleocene-Eocene Boundary (PEB) was marked by an extraordinary climatic event, hypothesized to originate from a large perturbation to the carbon cycle which fueled global warming, the rapid dissociation of oceanic methane hydrates. The pattern of surface warming interpreted from existing sea surface temperature records is not consistent with a greenhouse origin for this event, which would have fueled sea surface warming globally. Although oxygen isotope (δ18O)-based reconstructions indicate polar warming, results for the tropics and subtropics are ambiguous because of uncertainties associated with interpreting planktonic foraminiferal δ18O. To remedy this, we have constructed high-resolution temperature records based on Mg/Ca of multiple species of both surface and thermocline-dwelling planktonic foraminifera across the PEB in the equatorial Pacific and subtropical Atlantic. During the carbon isotope excursion (CIE), surface temperatures increased by 3.5°-4°C and thermocline temperatures warmed by 3°C. Estimates of surface water and thermocline salinity based on paired Mg/Ca and δ18O data indicate a pattern of hydrographic changes in the equatorial and subtropical oceans that is different from previously proposed, with a more vigorous hydrologic cycle during warming. The pattern of warming and salinity changes are consistent with this being a greenhouse-induced global warming event, and the timing of hydrographic changes relative to the CIE supports the hypothesis that gradual warming of intermediate/deep waters triggered methane hydrate dissociation.
DEFF Research Database (Denmark)
Jørgensen, Kristian Møller; Petersen, Michael Nebeling
2018-01-01
Hook-up apps such as Grindr and Scruff have become important sites for the negotiation of sex between men, in that they shape the ways intimacy cultures are practised and become visible (Mowlabocus, 2010; Race, 2014; Duguay et al., 2016). While such apps enable different intimacy cultures......, they also come paired with anxieties. In the epigraph the interview participant James1 expresses concerns about the how the hook-up app Scruff might restructure the boundaries of privacy and make him vulnerable to exposure. Such technological ambivalence is central to domestication theory, which focuses...
DEFF Research Database (Denmark)
. As a fundamental human experience, liminality transmits cultural practices, codes, rituals, and meanings in-between aggregate structures and uncertain outcomes. As a methodological tool it is well placed to overcome disciplinary boundaries, which often direct attention to specific structures or sectors of society....... Its capacity to provide explanatory accounts of seemingly unstructured situations provides an opportunity to link experience-based and culture-oriented approaches not only to contemporary problems but also to undertake comparisons across historical periods. From a perspective of liminality...
Townsend, Alan R.; Porder, Stephen
2011-03-01
What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine
Energy Technology Data Exchange (ETDEWEB)
Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)
2017-02-08
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Periodic Boundary Motion in Thermal Turbulence
International Nuclear Information System (INIS)
Zhang, Jun; Libchaber, Albert
2000-01-01
A free-floating plate is introduced in a Benard convection cell with an open surface. It partially covers the cell and distorts the local heat flux, inducing a coherent flow that in turn moves the plate. Remarkably, the plate can be driven to a periodic motion even under the action of a turbulent fluid. The period of the oscillation depends on the coverage ratio, and on the Rayleigh number of the convective system. The plate oscillatory behavior observed in this experiment may be related to a geological model, in which continents drift in a quasiperiodic fashion. (c) 2000 The American Physical Society
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
Rigid supersymmetry with boundaries
International Nuclear Information System (INIS)
Belyaev, D.V.; Van Nieuwenhuizen, P.
2008-01-01
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2012-01-01
Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...
Allegheny County Municipal Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...
Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...
State Agency Administrative Boundaries
Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...
Political State Boundary (National)
Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...
Environmentalists without Boundaries
African Journals Online (AJOL)
GREGORY
2009-03-16
Mar 16, 2009 ... Environmentalists without Boundaries. Setting Boundaries is a popular strategy in child development programs. But as children mature into young adults, it dawns on many that certain boundaries must be crossed to explore rich opportunities outside the safe closet of their teachers or parents' watchful eyes.
DEFF Research Database (Denmark)
Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina
2003-01-01
This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... between competencies within the organisation; and boundaries between various physical locations of work, in particular between what is done in the office and what is done on site. Maintaining and changing boundaries are the processes through which a particular community sustains its identity and practice...... on the one hand, and where it is confronted with the identity and practices on the other.The organisation being studied employs a multitude of IT systems that support and maintain these boundaries in a particular manner that are in many ways inappropriate to the current needs of the organisation...
DEFF Research Database (Denmark)
Grignani, Gianluca; Orselli, Marta; Obers, Niels Anne Jacob
2011-01-01
We propose a new method to consider D-brane probes in thermal backgrounds. The method builds on the recently developed blackfold approach to higher-dimensional black holes. While D-brane probes in zero-temperature backgrounds are well-described by the Dirac-Born-Infeld (DBI) action, this method a...
Characterizations of boundary pluripolar hulls
Djire, I.K.; Wiegerinck, J.
2016-01-01
We present some basic properties of the so-called boundary relative extremal function and discuss boundary pluripolar sets and boundary pluripolar hulls. We show that for B-regular domains the boundary pluripolar hull is always trivial on the boundary of the domain and present a “boundary version”
Model of thermal conductivity of anisotropic nanodiamond
International Nuclear Information System (INIS)
Dudnik, S.F.; Kalinichenko, A.I.; Strel'nitskij, V.E.
2014-01-01
Dependence of thermal conductivity of nanocrystalline diamond on grain size and shape is theoretically investigated. Nanodiamond is considered as two-phase material composed of diamond grains characterizing by three main dimensions and segregated by thin graphite layers with electron, phonon or hybrid thermal conductivity. Influence of type of thermal conductance and thickness of boundary layer on thermal conductivity of nanodiamond is analyzed. Derived dependences of thermal conductivity on grain dimensions are compared with experimental data
A moving boundary solution for solidification of lava lake and ...
Indian Academy of Sciences (India)
Similarly, solidification of magma intrusion within the crust is also non-uniform due to the presence of thermal gradient in the crust. Available analytical solution for solidification of a melt layer assumes only symmetric cooling about the centre of the layer. In the present work a moving boundary solution for thermal evolution.
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The
Development of boundary layers
International Nuclear Information System (INIS)
Herbst, R.
1980-01-01
Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de
Possible extensions of the 4D Schwarzschild horizon in the 5D brane world
Giannakis, Ioannis; Ren, Hai-Cang
2001-06-01
We show that, in the absence of matter in the bulk, the Einstein equations and the Gauss-normal form of the metric place stringent restrictions on the form of the event horizon in a brane world. As a consequence, the off-brane extension of the standard four-dimensional (4D) Schwarzschild horizon in the Randall-Sundrum AdS5 spacetime, as it is viewed from the brane can only be of a tubular shape, instead of a pancake shape. When it is viewed from the AdS5 horizon, such a tubular horizon is absent.
Ramond and Neveu-Schwarz paraspinning strings in presence of D-branes
Hamam, D.; Belaloui, N.
2018-03-01
We investigate the theory of an open parafermionic string between two parallel Dp-, Dq-branes in Ramond and Neveu-Schwarz sectors. Trilinear commutation relations between the string variables are postulated and the corresponding ones in terms of modes are derived. The analysis of the spectrum shows that one can again have a free tachyon Neveu-Schwarz model for some values of the order of the paraquantization associated to some values of p and q. The consistency of this model requires the calculation of the partition function and its confrontation with the results of the degeneracies. A perfect agreement between the two results is obtained and the closure of the Virasoro superalgebra is confirmed.
The web of D-branes at singularities in compact Calabi-Yau manifolds
Cicoli, Michele; Krippendorf, Sven; Mayrhofer, Christoph; Quevedo, Fernando; Valandro, Roberto
2013-05-01
We present novel continuous supersymmetric transitions which take place among different chiral configurations of D3/D7 branes at singularities in the context of type IIB Calabi-Yau compactifications. We find that distinct local models which admit a consistent global embedding can actually be connected to each other along flat directions by means of transitions of bulk-to-flavour branes. This has interesting interpretations in terms of brane recombination/splitting and brane/anti-brane creation/annihilation. These transitions give rise to a large web of quiver gauge theories parametrised by splitting/recombination modes of bulk branes which are not present in the non-compact case. We illustrate our results in concrete global embeddings of chiral models at a dP0 singularity.
Finite temperature corrections to tachyon mass in intersecting D-branes
Energy Technology Data Exchange (ETDEWEB)
Sethi, Varun [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India); Chowdhury, Sudipto Paul [Institute of Physics, Sachivalaya Marg,Bhubaneswar 751005 (India); Sarkar, Swarnendu [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India)
2017-04-19
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
Realistic D-brane models on warped throats: Fluxes, hierarchies and moduli stabilization
International Nuclear Information System (INIS)
Cascales, J.F.G.; Garcia del Moral, M.P.; Quevedo, F.; Uranga, A.
2004-01-01
We describe the construction of string theory models with semirealistic spectrum in a sector of (anti) D3-branes located at an orbifold singularity at the bottom of a highly warped throat geometry, which is a generalisation of the Klebanov-Strassler deformed conifold. These models realise the Randall-Sundrum proposal to naturally generate the Planck/electroweak hierarchy in a concrete string theory embedding, and yielding interesting chiral open string spectra. We describe examples with Standard Model gauge group (or left-right symmetric extensions) and three families of SM fermions, with correct quantum numbers including hypercharge. The dilaton and complex structure moduli of the geometry are stabilised by the 3-form fluxes required to build the throat. We describe diverse issues concerning the stabilisation of geometric Kahler moduli, like blow-up modes of the orbifold singularities, via D term potentials and gauge theory non-perturbative effects, like gaugino condensation. This local geometry, once embedded in a full compactification, could give rise to models with all moduli stabilised, and with the potential to lead to de Sitter vacua. Issues of gauge unification, proton stability, supersymmetry breaking and Yukawa couplings are also discussed. (author)
Aspects of NT ≥ 2 topological gauge theories and D-branes
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1996-12-01
Recently, topological field theories with extended N T > 1 topological symmetries have appeared in various contexts, e.g. in the discussion of S-duality in supersymmetry gauge theories, as world volume theories of Dirichlet p-branes in string theory, and in a general discussion of 'balanced' or critical topological theories. Here we will comment on, explain, or expand on various aspects of these theories, thus complementing the already existing discussions of such models in the literature. We comment on various aspects of topological gauge theories possessing N T ≥ 2 topological symmetry: 1. We show that the construction of Vafa-Witten and Dijkgraaf-Moore of 'balanced' topological field theories is equivalent to an earlier construction in terms of N T = 2 superfields inspired by supersymmetric quantum mechanics. 2. We explain the relation between topological field theories calculating signed and unsigned sums of Euler numbers of moduli spaces. 3. We show that the topological twist of N = 4 d = 4 Yang-Mills theory recently constructed by Marcus is formally a deformation of four-dimensional super-BF theory. 4. We construct a novel N T = 2 topological twist of N = 4 d = 3 Yang-Mills theory, a 'mirror' of the Casson invariant model, with certain unusual features (e.g. no bosonic scalar field and hence no underlying equivariant cohomology). 5. We give a complete classification of the topological twists of N = 8 d = 3 Yang-Mills theory and show that they are realized as world-volume theories of Dirichlet two-brane instantons wrapping supersymmetric three-cycles of Calabi-Yau three-folds and G 2 -holonomy Joyce manifolds. 6. We describe the topological gauge theories associated to D-string instantons on holomorphic curves in K3s and Calabi-Yau 3-folds. 48 refs
Non-linear Schrödinger Dynamics of Matrix D-branes
Mavromatos, Nikolaos E; Mavromatos, Nick E.; Szabo, Richard J.
2001-01-01
We formulate an effective Schroedinger wave equation describing the quantum dynamics of a system of D0-branes by applying the Wilson renormalization group equation to the worldsheet partition function of a deformed sigma-model describing the system, which includes the quantum recoil due to the exchange of string states between the individual D-particles. We arrive at an effective Fokker-Planck equation for the probability density with diffusion coefficient determined by the total kinetic energy of the recoiling system. We use Galilean invariance of the system to show that there are three possible solutions of the associated non-linear Schroedinger equation depending on the strength of the open string interactions among the D-particles. When the open string energies are small compared to the total kinetic energy of the system, the solutions are governed by freely-propagating solitary waves. When the string coupling constant reaches a dynamically determined critical value, the system is described by minimal unc...
Finite temperature corrections to tachyon mass in intersecting D-branes
International Nuclear Information System (INIS)
Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu
2017-01-01
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
Energy Technology Data Exchange (ETDEWEB)
St. John, C.M.; Sanjeevan, K. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)
1991-12-01
The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs.
Administrative Area Boundaries 2 (State Boundaries), Region 9, 2010, NAVTEQ
U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 2 (State Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...
Administrative Area Boundaries 4 (City Boundaries), Region 9, 2010, NAVTEQ
U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 4 (City Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...
DEFF Research Database (Denmark)
Gorm Hansen, Birgitte
2011-01-01
Whether celebratory or critical, STS research on science-industry relations has focused on the blurring of boundaries and hybridization of codes and practices. However, the vocabulary of boundary and hybrid tends to reify science and industry as separate in the attempt to map their relation...... as the negotiation of a preexisting science-industry boundary. Rather, viability is obtained through a strategy of "circumventing" the science-industry food chain and "sequestering" biotech components within the research center. Symbiosis allows academic scientists to do biology while at the same time demonstrating...
Calculating lattice thermal conductivity: a synopsis
Fugallo, Giorgia; Colombo, Luciano
2018-04-01
We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.
Allegheny County Parcel Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the Allegheny County boundary. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...
Boundary representation modelling techniques
2006-01-01
Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.
Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...
U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...
Relationships, not boundaries.
Combs, Gene; Freedman, Jill
2002-01-01
The authors find it more useful to pay attention to relationships than to boundaries. By focusing attention on bounded, individual psychological issues, the metaphor of boundaries can distract helping professionals from thinking about inequities of power. It oversimplifies a complex issue, inviting us to ignore discourses around gender, race, class, culture, and the like that support injustice, abuse, and exploitation. Making boundaries a central metaphor for ethical practice can keep us from critically examining the effects of distance, withdrawal, and non-participation. The authors describe how it is possible to examine the practical, moral, and ethical effects of our participation in relationships by focusing on just relationships rather than on boundaries. They give illustrations and clinical examples of relationally-focused ethical practices that derive from a narrative approach to therapy.
Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...
Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...
U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...
State Park Statutory Boundaries
Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...
Chakraborty, Avik; Krishnan, Chethan
2012-01-01
We study the basin of attraction of static extremal black holes, in the concrete setting of the STU model. By finding a connection to a decoupled Toda-like system and solving it exactly, we find a simple way to characterize the attraction basin via competing behaviors of certain parameters. The boundaries of attraction arise in the various limits where these parameters degenerate to zero. We find that these boundaries are generalizations of the recently introduced (extremal) subtracted geomet...
2014-05-01
complexion transitions occur often in doped titanates, such as BaTiO3 and SrTiO3, and have been utilized to tailor microstructural develop- ment [275,276...Cantwell et al. / Acta Materialia 62 (2014) 1–48 Despite decades of research, efforts to identify grain boundary complexion transitions in pure metals via...evidence suggesting grain boundary complexion transitions in pure metals has existed for decades. For example, researchers have reported anomalies and
Energy Technology Data Exchange (ETDEWEB)
Gilliss, S.R.; Ravishankar, N.; Farrer, J.K.; Carter, C.B.
2003-08-01
TiO{sub 2} is a vital material in several technologies including, photocatalysis, gas sensing, biomaterials and optical coatings. Among the several crystal structures of this oxide, rutile has the highest density and microhardness, the highest index of refraction and the highest temperature stability. The processing of dense polycrystalline materials often includes the addition of a liquid-forming phase at higher temperatures. This technique is known as liquid-phase sintering and has been studied extensively. Rutile boundaries containing an amorphous phase have been used to study boundary migration and grain-boundary grooving. Visible-light (VLM), scanning electron (SEM) and transmission electron microscopy (TEM) in addition to electron-backscatter diffraction (EBSD) and a focused-ion beam (FIB) tool were used to characterize boundary migration in rutile. EBSD analysis was carried out on a Philips XL30 FEG SEM equipped with a DigiView 1612 high-resolution, high-speed CCD camera. A 2.5 cm sample-to-camera distance was used and {approx}70{sup o} sample tilt. A Philips CM30 operated at 300 kV was used for TEM characterization and an FEI DB235 was used for FIB work. Pulsed-laser deposition (PLD) has been used to deposit thin films ({approx}100 nm thick) of silica glass on single-crystals of rutile. The film/substrate assembly is then fabricated into bicrystals of known boundary-plane orientation by hot pressing. Bicrystals were fabricated with boundary planes of nominal surface orientation of (001) and (110). After diffusion bonding a surface perpendicular to the interface is cut and polished. Bicrystals are then heat treated in air at 1650 C for varying lengths of time. Figure 1 is a VLM image of a rutile bicrystal which as been heat treated for 4 hours. During this heat treatment migration of the boundary initiates at parallel grooves contained in the crystal on the right-hand side. EBSD analysis shows that this parallel set of grooves is due to the presence of 3{sup
Accretion disk boundary layers in cataclysmic variables. 1: Optically thick boundary layers
Popham, Robert; Narayan, Ramesh
1995-01-01
We develop numerical models of accretions disks in cataclysmic variables (CVs), including and emphasizing the boundary layer region where the accretion disk meets the accreting white dwarf. We confine ourselves to solutions where the boundary layer region is vertically optically thick, and find that these solutions share several common features. The angular and radial velocities of the accreting material drop rapidly in a dynamical boundary layer, which has a radial width approximately 1%-3% of the white dwarf radius. The energy dissipated in this region diffuses through the inner part of the disk and is radiated from the disk surface in a thermal boundary layer, which has a radial width comparable to the disk thickness, approximately 5%-15% of the white dwarf radius. We examine the dependence of the boundary layer structure on the mass accretion rate, the white dwarf mass and rotation rate, and the viscosity parameter alpha. We delineate the boundary between optically thick and optically thin boundary layer solutions as a function of these parameters and suggest that by means of a careful comparison with observations it may be possible to estimate alpha in CVs. We derive an expression for the total boundary layer luminosities as a function of the parameters and show that it agrees well with the luminosites of our numerical solutions. Finally, we calcuate simple blackbody continuum spectra of the boundary layer and disk emission for our solutions and compare these to soft X-ray, EUV, and He II emission-line observations of CVs. We show that, through such comparisons, it may be possible to determine the rotation rates of the accreting stars in CVs, and perhaps also the white dwarf masses and the accretion rates. The spectra are quite insensitive to alpha, so the uncertainty in this parameter does not affect such comparisons.
Trowbridge, John H.; Lentz, Steven J.
2018-01-01
The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.
DEFF Research Database (Denmark)
Gorm Hansen, Birgitte
2012-01-01
as the negotiation of a preexisting science-industry boundary. Rather, viability is obtained through a strategy of circumventing the science-industry food chain and sequestering biotech components within the research center. Symbiosis allows academic scientists to do biology while at the same time demonstrating......Whether celebratory or critical, STS research on science-industry relations has focused on the blurring of boundaries and hybridization of codes and practices. However, the vocabulary of boundary and hybrid tends to reify science and industry as separate in the attempt to map their relation....... Drawing on interviews with the head of a research center in plant biology, this article argues that biology and biotech are symbionts. In order to be viable and productive, symbiosis needs to be carefully managed and given room for divergence within mutual dependence. This process does not take place...
Kinetics of thermal grooving during low temperature recrystallization of pure aluminum
DEFF Research Database (Denmark)
Zhang, Yubin; Godfrey, Andy; Juul Jensen, Dorte
2013-01-01
. Thermal grooving associated with boundary migration on the inspected free surface was characterized after the in-situ experiment using atomic force microscopy. The results show that new thermal grooves develop at places where the recrystallization boundary segments remain stationary for a relatively long...... time. The kinetics of thermal grooving are determined. Effects of the surface oxidation layer on the formation of thermal grooving as well as the overall influence of grooves on boundary migration are discussed. © (2013) Trans Tech Publications, Switzerland....
Bianchi, Eugenio; Haggard, Hal M.; Rovelli, Carlo
2017-08-01
We show that in Oeckl's boundary formalism the boundary vectors that do not have a tensor form represent, in a precise sense, statistical states. Therefore the formalism incorporates quantum statistical mechanics naturally. We formulate general-covariant quantum statistical mechanics in this language. We illustrate the formalism by showing how it accounts for the Unruh effect. We observe that the distinction between pure and mixed states weakens in the general covariant context, suggesting that local gravitational processes are naturally statistical without a sharp quantal versus probabilistic distinction.
Thermally assisted deformation of structural superplastics and ...
Indian Academy of Sciences (India)
Optimal structural superplasticity and the deformation of nanostructured materials in the thermally activated region are regarded as being caused by the same physical process. In this analysis, grain/interphase boundary sliding controls the rate of deformation at the level of atomistics. Boundary sliding develops to a ...
Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....
DEFF Research Database (Denmark)
Li-Ying, Jason
2016-01-01
The extant literature runs short in understanding openness of innovation regarding and the different pathways along which internal and external knowledge resources can be combined. This study proposes a unique typology for outside-in innovations based on two distinct ways of boundary spanning: wh...
Glasby, John S
2013-01-01
The boundaries of space exploration are being pushed back constantly, but the realm of the partially understood and the totally unknown is as great as ever. Among other things this book deals with astronomical instruments and their application, recent discoveries in the solar system, stellar evolution, the exploding starts, the galaxies, quasars, pulsars, the possibilities of extraterrestrial life and relativity.
Minnesota County Boundaries - lines
Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....
International Nuclear Information System (INIS)
Romanelli, F.
2001-01-01
In this paper the contributions presented at the 18 th IAEA Fusion Energy Conference in the field of transport and boundary physics will be summarised with reference to the following distinct issues: H-mode physics, Internal Transport Barrier formation, transport studies, Radiative Improved modes and impurity seeding, divertor and He exhaust, new configurations. (author)
RETRACTED ARTICLE: The Effect of Solute Atoms on Grain Boundary Migration: A Solute Pinning Approach
Hersent, Emmanuel; Marthinsen, Knut; Nes, Erik
2012-12-01
The effect of solute atoms on grain boundary migration has been modeled on the basis of the idea that solute atoms will locally perturb the collective rearrangements of solvent atoms associated with boundary migration. The consequence of such perturbations is the cusping of the boundary and corresponding stress concentrations on the solute atoms which will promote thermal activation of these atoms out of the boundary. This thermal activation is considered to be the rate-controlling mechanism in boundary migration. It is demonstrated that the present statistical approach is capable of explaining, in phenomenological terms, the known effects of solute atoms on boundary migration. The experimental results on the effect of copper on boundary migration in aluminum, due to Gordon and Vandermeer, have been well accounted for.
Studying alumina boundary migration using combined microscopy techniques
International Nuclear Information System (INIS)
Riesterer, J L; Farrer, J K; Munoz, N E; Gilliss, S R; Ravishankar, N; Carter, C B
2006-01-01
Thermal grooving and migration of grain boundaries in alumina have been investigated using a variety of microscopy techniques. Using two different methods, polycrystalline alumina was used to investigate wet (implying the presence of a glassy phase), and dry grain boundaries. In the first, single-crystal Al 2 O 3 was hot-pressed via liquid phase sintering (LPS) to polycrystalline alumina with an anorthite glass film at the interface. Pulsed laser deposition was used to deposit approximately 100-nm thick glass films. Specimens were annealed in air at 1650 deg. C for 20 h to induce boundary migration. Boundary characterization was carried out using visible light (VLM) and scanning electron (SEM) microscopies. Effects on migration due to surface orientation of grains were investigated using electron backscatter diffraction (EBSD). The second method dealt with heat treating dry boundaries in polycrystalline alumina to monitor boundary migration behavior via remnant thermal grooves. Heat treatments were conducted at 1650 deg. C for 30 min. The same region of the sample was mapped using VLM and atomic force microscopy (AFM) and followed over a series of 30 min heat treatments. Boundary migration through a pore trapped inside the grain matrix was of particular interest
Studying alumina boundary migration using combined microscopy techniques
Energy Technology Data Exchange (ETDEWEB)
Riesterer, J L [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States); Farrer, J K [Now at Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Munoz, N E [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States); Gilliss, S R [Now at Robins, Kaplan, Miller and Ciresi, L.L.P., Minneapolis, MN 55402 (United States); Ravishankar, N [Now at Materials Research Centre, Indian Institute of Science, Bangalore, 560 012 (India); Carter, C B [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States)
2006-02-22
Thermal grooving and migration of grain boundaries in alumina have been investigated using a variety of microscopy techniques. Using two different methods, polycrystalline alumina was used to investigate wet (implying the presence of a glassy phase), and dry grain boundaries. In the first, single-crystal Al{sub 2}O{sub 3} was hot-pressed via liquid phase sintering (LPS) to polycrystalline alumina with an anorthite glass film at the interface. Pulsed laser deposition was used to deposit approximately 100-nm thick glass films. Specimens were annealed in air at 1650 deg. C for 20 h to induce boundary migration. Boundary characterization was carried out using visible light (VLM) and scanning electron (SEM) microscopies. Effects on migration due to surface orientation of grains were investigated using electron backscatter diffraction (EBSD). The second method dealt with heat treating dry boundaries in polycrystalline alumina to monitor boundary migration behavior via remnant thermal grooves. Heat treatments were conducted at 1650 deg. C for 30 min. The same region of the sample was mapped using VLM and atomic force microscopy (AFM) and followed over a series of 30 min heat treatments. Boundary migration through a pore trapped inside the grain matrix was of particular interest.
Directory of Open Access Journals (Sweden)
Imran Ullah
Full Text Available Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.
Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas
2016-01-01
Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.
Low temperature phonon boundary scattering in slightly rough Silicon nanowires
Ghossoub, Marc; Valavala, Krishna; Seong, Myunghoon; Azeredo, Bruno; Sadhu, Jyothi S.; Sinha, Sanjiv
2013-03-01
Nanostructured materials have lower thermal conductivities than the bulk and are promising candidates for thermoelectric applications. In particular, measurements on single silicon nanowires show a reduction in thermal conductivity below the Casimir limit. This reduction increases with surface roughness but the trend and its connection to phonon boundary scattering are still elusive. Here, we measure the thermal conductivity of single silicon nanowires fabricated using metal-assisted chemical etching. High resolution TEM imaging shows crystalline wires with slightly rough surfaces. Their statistical correlation lengths (5-15 nm) and RMS heights (0.8-1.5 nm) are in a range where perturbation-based wave scattering theory is still applicable. We use the thermal conductivity data to extract the frequency dependence of phonon boundary scattering at low temperatures (10-40 K) and show agreement with multiple scattering theory. This work provides insight into enhancing the thermoelectric performance of nanostructures.
Grain Boundary Segregation in Metals
Lejcek, Pavel
2010-01-01
Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.
Boundary layer control of rotating convection systems.
King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M
2009-01-15
Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.
Adaptive Sentence Boundary Disambiguation
Palmer, David D.; Hearst, Marti A.
1994-01-01
Labeling of sentence boundaries is a necessary prerequisite for many natural language processing tasks, including part-of-speech tagging and sentence alignment. End-of-sentence punctuation marks are ambiguous; to disambiguate them most systems use brittle, special-purpose regular expression grammars and exception rules. As an alternative, we have developed an efficient, trainable algorithm that uses a lexicon with part-of-speech probabilities and a feed-forward neural network. After training ...
Schlichting (Deceased), Hermann
2017-01-01
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Thermal Creep Force: Analysis And Application
2016-06-01
The boundary condition was inflow and outflow so particles whose trajectory took them outside the simulation space would no longer be simulated and...Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-06 Thermal creep force: analysis and...CALIFORNIA DISSERTATION Approved for public release; distribution is unlimited THERMAL CREEP FORCE: ANALYSIS AND APPLICATION by David
Cell boundary fault detection system
Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN
2009-05-05
A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.
A model of anelastic relaxation associated with polygonization boundary
International Nuclear Information System (INIS)
Yan, S.C.
1990-01-01
A model of anelastic relaxation associated with polygonization boundary is proposed in order to explain internal friction peaks and other experimental phenomena observed recently. The model, which is referred to as vacancy-thermal jog model, shows that under conditions of high temperature and low applied stress with lower frequencies of vibration, thermal jog pairs are generated on dislocation segments of the boundaries. These jogs are in saturation with vacancies in the vicinity of them, and the vacancy current due to the concentration gradient of vacancy drifts among the boundaries. As a result, a diffusional creep is produced and a part of energy is dissipated. For vacancy drift, it is required that the thermal jogs emit (absorb) vacancies, which brings climbing bow of segments into operation, and another part of energy is dissipated so that there are two parts of energy dissipated in the strain process connected with polygonization boundary. Based on this point of view, the mathematical expressions of internal friction and modulus defect associated with polygonization boundary were subsequently derived and found to be in satisfactory agreement with experiments. (author). 13 refs, 6 figs
Temperature boundary layer profiles in turbulent Rayleigh-Benard convection
Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga
2017-11-01
Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.
Modelling near subsurface temperature with mixed type boundary ...
Indian Academy of Sciences (India)
available. We have developed such a thermal model of near subsurface region which includes both heat .... Such a boundary condition has been used in hydrother- mal studies (Heasler et al. 1990). In case, the heat transfer coefficient H tends to infinity, soil temper- ..... Davis M G, Harris R N and Chapman D H 2010 Repeat.
Characterization of the atmospheric boundary layer from radiosonde ...
Indian Academy of Sciences (India)
on a sunny day creates thermals of warmer air that rise over colder air causing vertical mixing and tur- bulence. ... ture, humidity, wind, and pollutants such as aerosol particles. These profiles can be derived from differ- ... use high-resolution upper air meteorological data. Keywords. Boundary layer; GPS sonde; mixed layer ...
Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa
2018-02-01
In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.
Boundaries and Boundary Marks - Substantive Cultural Heritage of Extensive Importance
Waldhaeusl, P.; Koenig, H.; Mansberger, R.
2015-08-01
The Austrian Society for surveying and Geoinformation (ASG) has proposed to submit "Boundaries and Boundary Marks" for the UNESCO World Heritage title. It was time that boundaries, borders and limits of all types as well as ownership rights would find the proper attention in the global public. Landmarks symbolize the real property and the associated rights and obligations, in a figurative sense, the property generally and all legal limits. A democratic state of law is impossible at today's population density without a functioning land administration system with surveying and jurisdiction. As monumental World Heritage representatives of the geodetic artwork "Boundaries and Boundary Marks" are specifically proposed: remaining monuments of the original cadastral geodetic network, the first pan-Austrian surveying headquarters in Vienna, and a specific selection of outstanding boundary monuments. Landmarks are monuments to the boundaries which separate rights and obligations, but also connect the neighbors peacefully after written agreement. "And cursed be he who does not respect the boundaries" you wrote already 3000 years ago. Boundaries and Boundary Marks are a real thing; they all belong to the tangible or material heritage of human history. In this context also the intangible heritage is discussed. This refers to oral tradition and expressions, performing arts; social practices, rituals and festive events; as well as to knowledge and practices handling nature and the universe. "Boundaries and Boundary Marks" do not belong to it, but clearly to the material cultural world heritage. "Boundary and Boundary Marks" is proposed to be listed according to the criteria (ii),(iv),(vi).
Anisotropy across Superplume Boundaries
Cottaar, S.; Romanowicz, B. A.
2011-12-01
Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an
DEFF Research Database (Denmark)
Fuchs, Sven; Balling, Niels
2016-01-01
The subsurface temperature field and the geothermal conditions in sedimentary basins are frequently examined by using numerical thermal models. For those models, detailed knowledge of rock thermal properties are paramount for a reliable parameterization of layer properties and boundary conditions...
DEFF Research Database (Denmark)
Winthereik, Brit Ross
2008-01-01
Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science and techno......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...... and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary...... of responsibilities entailed in shared care projects. Rather than seeking to connect all actors in an unbounded space, shared care might instead suggest a space for patients and professionals to experiment with new roles and responsibilities. Practical implications – When designing coordination tools for health care...
Left-right entanglement entropy of boundary states
International Nuclear Information System (INIS)
Zayas, Leopoldo A. Pando; Quiroz, Norma
2015-01-01
We study entanglement entropy of boundary states in a free bosonic conformal field theory. A boundary state can be thought of as composed of a particular combination of left and right-moving modes of the two-dimensional conformal field theory. We investigate the reduced density matrix obtained by tracing over the right-moving modes in various boundary states. We consider Dirichlet and Neumann boundary states of a free noncompact as well as a compact boson. The results for the entanglement entropy indicate that the reduced system can be viewed as a thermal CFT gas. Our findings are in agreement and generalize results in quantum mechanics and quantum field theory where coherent states can also be considered. In the compact case we verify that the entanglement entropy expressions are consistent with T-duality.
Left-right entanglement entropy of boundary states
Energy Technology Data Exchange (ETDEWEB)
Zayas, Leopoldo A. Pando [Michigan Center for Theoretical Physics,Randall Laboratory of Physics, The University of Michigan,Ann Arbor, MI 48109-1120 (United States); Quiroz, Norma [Facultad de Ciencias, Universidad de Colima,Bernal Díaz del Castillo 340, Col. Villas San Sebastián,Colima 28045 (Mexico)
2015-01-21
We study entanglement entropy of boundary states in a free bosonic conformal field theory. A boundary state can be thought of as composed of a particular combination of left and right-moving modes of the two-dimensional conformal field theory. We investigate the reduced density matrix obtained by tracing over the right-moving modes in various boundary states. We consider Dirichlet and Neumann boundary states of a free noncompact as well as a compact boson. The results for the entanglement entropy indicate that the reduced system can be viewed as a thermal CFT gas. Our findings are in agreement and generalize results in quantum mechanics and quantum field theory where coherent states can also be considered. In the compact case we verify that the entanglement entropy expressions are consistent with T-duality.
An approximate method for solving a melting problem with periodic boundary conditions
Directory of Open Access Journals (Sweden)
Qu Liang-Hui
2014-01-01
Full Text Available An effective thermal diffusivity method is used to solve one-dimensional melting problem with periodic boundary conditions in a semi-infinite domain. An approximate analytic solution showing the functional relation between the location of the moving boundary and time is obtained by using Laplace transform. The evolution of the moving boundary and the temperature field in the phase change domain are simulated numerically, and the numerical results are compared with previous results in open literature.
DEFF Research Database (Denmark)
Borthwick, V. E.; Schmidt, Søren; Piazolo, S.
2012-01-01
been questioned. Our study shows that, although the nature of recovery processes are the same, the area swept by subgrain boundaries is up to 5 times larger in the volume than observed on the surface. We suggest this discrepancy is due to enhanced drag force on subgrain boundaries by thermal surface...
Temperature and stress distribution in pressure vessel by the boundary element method
International Nuclear Information System (INIS)
Alujevic, A.; Apostolovic, D.
1990-01-01
The aim of this paper is to demonstrate the applicability of boundary element method for the solution of temperatures and thermal stresses in the body of reactor pressure vessel of the NPP Krsko . In addition to the theory of boundary elements for thermo-elastic continua (2D, 3D) results are given of a numerically evaluated meridional cross-section. (author)
CSIR Research Space (South Africa)
Osburn, L
2010-01-01
Full Text Available wider range of temperature limits, saving energy while still satisfying the majority of building occupants. It is also noted that thermal comfort varies significantly between individuals and it is generally not possible to provide a thermal environment...
Collaboration in Healthcare Through Boundary Work and Boundary Objects
DEFF Research Database (Denmark)
Meier, Ninna
2015-01-01
. In highly specialized, knowledge-intensive organizations such as healthcare organizations, organizational, professional, and disciplinary boundaries mark the formal structure and division of work. Collaboration and coordination across these boundaries are essential to minimizing gaps in patient care......, but also may be challenging to achieve in practice. By drawing on data from an ethnographic study of two hospital wards, this article investigates practices of cross-disciplinary and professional collaboration and adds to our knowledge of how this kind of boundary work is produced in context. Moreover......, it adds to existing boundary literature by exploring the fast-paced, situational, micro-interactions in which boundaries are drawn, maintained, and dissolved. These mundane, brief exchanges are essential to the practice of collaboration through boundary work. I consider the implications of these findings...
International Nuclear Information System (INIS)
Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P.E.
2017-01-01
This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet.
DEFF Research Database (Denmark)
Nørgaard, Nina
2004-01-01
to explore in the study and teaching of foreign languages. Not only may linguistics and literature be employed to shed light on each other, the insights gained may furthermore prove useful in a broader context in our foreign language studies. The article begins with a brief introduction to literary...... linguistics in general and to Hallidayan linguistics in particular. The theoretical framework thus laid out, it is exemplified how Halliday's theory of language may be employed in the analysis of literature. The article concludes by considering the possible status of literary linguistics in a broader......To many people, challenging the boundaries between the traditional disciplines in foreign language studies means doing cultural studies. The aim of this article is to pull in a different direction by suggesting how the interface between linguistics and literature may be another fertile field...
Negotiating Cluster Boundaries
DEFF Research Database (Denmark)
Giacomin, Valeria
2017-01-01
Palm oil was introduced to Malay(si)a as an alternative to natural rubber, inheriting its cluster organizational structure. In the late 1960s, Malaysia became the world’s largest palm oil exporter. Based on archival material from British colonial institutions and agency houses, this paper focuses...... on the governance dynamics that drove institutional change within this cluster during decolonization. The analysis presents three main findings: (i) cluster boundaries are defined by continuous tug-of-war style negotiations between public and private actors; (ii) this interaction produces institutional change...... within the cluster, in the form of cumulative ‘institutional rounds’ – the correction or disruption of existing institutions or the creation of new ones; and (iii) this process leads to a broader inclusion of local actors in the original cluster configuration. The paper challenges the prevalent argument...
Thomson, E. S.; Hansen-Goos, Hendrik; Wilen, L. A.; Wettlaufer, J. S.
2012-01-01
We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentr...
Conformal boundaries of warped products
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2006-01-01
In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....
Properties of grain boundaries in BCC iron and iron-based alloys
Energy Technology Data Exchange (ETDEWEB)
Terentyev, D.; He, Xinfu
2010-08-15
The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.
Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces
2014-08-31
transmissivity in the N = 4 structure is calculated for the low-frequency case, ω = 4.59 Trad s−1. From these data we drew several conclusions. 1 2 3 4...0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Normalized Mass, M2 / M1 To ta l T ra ns m is si vi ty , T ω = 4.59 Trad s-1 ω = 27.58 Trad s-1 ω = 43.73 Trad s...Proceedings of 14th International Heat Transfer Conference, Vol. 6 (ASME, 2010), pp. 443–448. 2T. S. English, J. C. Duda, J. L. Smoyer, D. A. Jordan
Thermal Internal Boundary Layer characteristics at a tropical coastal ...
Indian Academy of Sciences (India)
shore and a weakly in uenced on-shore synoptic wind are examined with the help of measurements carried out with a mini-SODAR (SOund Detection And Ranging), tethered balloon, and tower-based micrometeorological measurements. In uence ...
Thermal Internal Boundary Layer characteristics at a tropical coastal ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
10th Symposium on Acoustic Remote Sensing, Auckland,. NZ, 26th Nov–1st Dec. Mursch-Radlgruber E, Neff W D, Rengarajan G, Russel. C 1997 Shallow mixed layer during drainage condition along the front range; 12th AMS Symposium on Bound- ary Layer and Turbulence, July 28 – August 1, Vancou- ver, Canada.
Thermal effects of metamorphic reactions in a three-component slab
DEFF Research Database (Denmark)
Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd
2010-01-01
Thermal evolution of a subducting crust is of primary importance for understanding physical properties, phase transformations, fluid migration and melting regimes at convergent plate boundaries. Various factors influencing the thermal structure of a subduction zone have been considered previously...
Boundary Spanners in Global Partnerships
DEFF Research Database (Denmark)
Søderberg, Anne-Marie; Romani, Laurence
2017-01-01
managers’ boundary-spanning activities and a context-sensitive understanding of their boundary work. The study applies Bourdieu’s concept of capital (economic, cultural, social, and symbolic) not only in its analysis of the two powerful partners but also in its discussion of the boundary......-spanning activities that are reported. The analysis demonstrates the coexistence of transactive and transformative modes of collaboration in the studied case. It reveals both the importance of partner status and the impact of that status on the forms of boundary-spanning activities in which the partners engage...
Analysis of turbulent boundary layers
Cebeci, Tuncer
1974-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate
Investigation of thermal effects in through-silicon vias using scanning thermal microscopy.
Wielgoszewski, Grzegorz; Jóźwiak, Grzegorz; Babij, Michał; Baraniecki, Tomasz; Geer, Robert; Gotszalk, Teodor
2014-11-01
Results of quantitative investigations of copper through-silicon vias (TSVs) are presented. The experiments were performed using scanning thermal microscopy (SThM), enabling highly localized imaging of thermal contrast between the copper TSVs and the surrounding material. Both dc and ac active-mode SThM was used and differences between these variants are shown. SThM investigations of TSVs may provide information on copper quality in TSV, as well as may lead to quantitative investigation of thermal boundaries in micro- and nanoelectronic structures. A proposal for heat flow analysis in a TSV, which includes the influence of the boundary region between the TSV and the silicon substrate, is presented; estimation of contact resistance and boundary thermal conductance is also given. Copyright © 2014 Elsevier Ltd. All rights reserved.
2011-01-01
and Science in Sports and Exercise 37: 1328--1334. Coris EE, Ramirez AM, and Van Durme DJ (2004) Heat illness in athletes : The dangerous combination...of heat, humidity and exercise. Sports Medicine 34: 9--16. Gordon CJ and Leon LR (2005) Thermal stress and the physiological response to environmental...code) 2011 Book Chapter-Enc. of Environmental Health Thermal Stress L.R. Leon, C.J. Gordon Thermal and Mountain Medicine Division U.S. Research
Thermal Properties of Metallic Nanowires: Modeling & Experiment
Stojanovic, Nenad; Berg, Jordan; Maithripala, Sanjeeva; Holtz, Mark
2009-10-01
Effects such as surface and grain boundary scattering significantly influence electrical and thermal properties of nanoscale materials with important practical implications for current and future electronics and photonics. Conventional wisdom for metals holds that thermal transport is predominantly by electrons and transport by phonons is negligible. This assumption is used to justify the use of the Wiedemann-Franz law to infer thermal conductivity based on measurements of electrical resistivity. Recently experiments suggest a breakdown of the Wiedemann-Franz law at the nanoscale. This talk will examine the assumption that thermal transport by phonons can be neglected. The electrical resistivities and thermal conductivities of aluminum nanowires of various sizes are directly measured. These values are used in conjunction with the Boltzmann transport equation to conclude that the Wiedemann-Franz law describes the electronic component of thermal conductivity, but that the phonon term must also be considered. A novel experimental device is described for the direct thermal conductivity measurements.
Seismic link at plate boundary
Indian Academy of Sciences (India)
transfer between two major faults, and parallel to the geothermal area extension. 1. Introduction. Plate boundaries are the zones where most earth dynamics are focussed. The complexity of tectonic boundaries draws attention to them as the largest earthquakes are felt in these areas and they elicit the natural hazard of ...
Nucleation of small angle boundaries
CSIR Research Space (South Africa)
Nabarro, FRN
1996-12-01
Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...
Seismic link at plate boundary
Indian Academy of Sciences (India)
time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension. 1. Introduction. Plate boundaries ...
Boundary dynamics in dilaton gravity
International Nuclear Information System (INIS)
Das, S.R.; Mukherji, S.
1994-06-01
We study the dynamics of the boundary in two dimensional dilaton gravity coupled to N massless scalars. We rederive the boundary conditions of [1] and [3] in a way which makes the requirement of reparametrization invariance and the role of conformal anomaly explicit. We then study the semiclassical behaviour of the boundary in the N=24 theory in the presence of an incoming matter wave with a constant energy flux spread over a finite interval. There is a critical value of the matter energy density below which the boundary is stable and all the matter is reflected back. For energy densities greater than this critical value there is a similar behaviour for small values of the total energy thrown in. However, when the total energy exceeds another critical value the boundary exhibits a runaway behaviour and the spacetime develops in singularities and horizons. (author). 10 refs, 3 figs
Boundary Drawing in Clinical Work
DEFF Research Database (Denmark)
Meier, Ninna
The aim of this paper is to show how health care professionals temporarily dissolve and redraw boundaries in their everyday work, in order to coordinate clinical work and facilitate collaboration in patient pathways. Boundaries are social constructions that help us make sense of our complex, social...... world. In health care, formal boundaries are important distinctions that separate health care practitioners into medical specialties, professions and organizational departments. But clinical work also relies on the ability of health care practitioners to collaborate around patients in formal...... arrangements or emergent, temporary teams. Focusing on the cognitive and social boundaries we draw to establish identity and connection (to a profession, team or person) the paper shows how health care professionals can use inter-personal relationships to temporarily dismiss formal boundaries. By redrawing...
International Nuclear Information System (INIS)
Bai, Qin; Zhao, Qing; Xia, Shuang; Wang, Baoshun; Zhou, Bangxin; Su, Cheng
2017-01-01
Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3 n coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75% by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.
Segregation to grain boundaries in nimonic PE16 superalloy
International Nuclear Information System (INIS)
Nettleship, D.J.; Wild, R.K.
1990-01-01
Nimonic PE16 alloy is a nickel-based superalloy containing 34 wt.% iron and 16wt.% chromium with additions of molybdenum, titanium and aluminium. It is used in the fuel assembly of the UK advanced gas-cooled reactors (AGR). This component supports significant loads in service and its mechanical integrity is therefore of paramount importance. Mechanical properties may be influenced by the grain size and grain boundary composition, both of which can themselves alter during service. Scanning Auger microscopy is a well-established method for investigating grain boundaries, and has now been applied to the study of PE16. In order to expose PE16 grain boundary surfaces it is necessary to hydrogen charge samples and fracture by pulling in tension at a slow strain rate within the ultra-high vacuum chamber of the Auger microprobe. A series of casts of nimonic PE16 alloy that have received a range of thermal ageing treatments have been fractured in an intergranular manner and the grain boundary composition determined. Segregation of trace and minority elements, particularly Mo and P, has been detected at grain boundaries. Significant variations between different as-manufactured casts were observed, whilst ageing brought about the growth of chromium-rich particles on the grain boundaries. Ductile fracture in PE16 followed a path through Ti(C, N) particles. Many of these particles incorporated large amounts of sulphur. (author)
Directory of Open Access Journals (Sweden)
Alduhov Oleg Aleksandrovich
2012-10-01
Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.
Thermal conductivity and thermal diffusivity
International Nuclear Information System (INIS)
Hust, J.G.
1983-01-01
This chapter examines the heat transfer properties of solids, with emphasis on the behavior of pure metals and alloys. Topics considered include electronic conduction, magnetic field effects, lattice conduction, measuring methods, specimen size, uncertainty, thermal anchoring, radial heat loss, thermal conductivity apparatus, thermal diffusivity apparatus, empirical correlations, the Wiedemann-Franz-Lorenz law, Matthiessen's rule, low-temperature correlation, predictive techniques, crystalline dielectrics, and disordered dielectrics. The materials examined include copper, aluminium, binary alloys, structural alloys, and structural composites
International Nuclear Information System (INIS)
Pinsky, G.P.
1977-01-01
Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures
INTEGRAL RADIATORS FOR NEXT GENERATION THERMAL CONTROL SYSTEMS, Phase I
National Aeronautics and Space Administration — The main goal of spacecraft thermal control systems is to maintain internal and external temperature within acceptable boundaries while minimizing impact on vehicle...
Final Project Report for "Interfacial Thermal Resistance of Carbon Nanotubes”
Energy Technology Data Exchange (ETDEWEB)
Cumings, John [Univ. of Maryland, College Park, MD (United States)
2016-04-15
This report describes an ongoing project to comprehensively study the interfacial thermal boundary resistance (Kapitza resistance) of carbon nanotubes. It includes a list of publications, personnel supported, the overall approach, accomplishments and future plans.
Physics of a fusion plasma boundary layer
Energy Technology Data Exchange (ETDEWEB)
Jensen, B.K.
1977-03-01
A theoretical and computational study has been made of plasma phenomena occurring when a hot, dense plasma containing a transverse magnetic field is brought into sudden contact with a cold metal wall; thermal and magnetic boundary layers develop. The time evolution of the plasma temperature, pressure, the charged and neutral particle concentration, magnetic and electric field strengths, and the plasma current density in the neighborhood of the solid surface are investigated. The rate of energy transfer from the plasma to the wall is calculated, and the conditions under which wall surface melting occurs are estimated. The physical conditions previously studied experimentally by Feinberg, are calculated, and the predicted rate of energy transfer from the plasma to the wall is found to be in good agreement.
Definition of Turbulent Boundary-Layer with Entropy Concept
Directory of Open Access Journals (Sweden)
Zhao Rui
2016-01-01
Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.
Calculation of Phase-Change Boundary Position in Continuous Casting
Directory of Open Access Journals (Sweden)
Ivanova A.A.
2013-12-01
Full Text Available The problem of determination of the phase-change boundary position at the mathematical modeling of continuous ingot temperature field is considered. The description of the heat transfer process takes into account the dependence of the thermal physical characteristics on the temperature, so that the mathematical model is based on the nonlinear partial differential equations. The boundary position between liquid and solid phase is given by the temperatures equality condition and the Stefan condition for the two-dimensional case. The new method of calculation of the phase-change boundary position is proposed. This method based on the finite-differences with using explicit schemes and on the iteration method of solving of non-linear system equations. The proposed method of calculation is many times faster than the real time. So that it amenable to be used for model predictive control of continuous semifinished product solidification.
Thermal Conductivity in Nanocrystalline Ceria Thin Films
Energy Technology Data Exchange (ETDEWEB)
Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley
2014-02-01
The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.
Effects of Brinkman number on thermal-driven convective spherical ...
African Journals Online (AJOL)
Brinkman number effects on the thermal-driven convective spherical dynamos are studied analytically. The high temperature of the Earth's inner core boundary is usually conducted by the viscous, electrically conducting fluid of the outer core to the core mantle boundary as the Earth cools. The problem considers conducting ...
A formulation with boundary integrals and solution optimization for a heat transfer inverse problem
International Nuclear Information System (INIS)
Honorio, Mario C.F.; Bezerra, Luciano M.
1997-01-01
This paper presents a boundary integral formulation in conjunction with optimization techniques for the solution of inverse thermal design problems. In this type of problems, sometimes it is necessary to determine the appropriate position and shape of an internal cooling/heating channel inside an object so that reference thermal boundary values could be obtained on the outer surface. An initial feasible position of the channel is first guessed by the user. The channel is defined in terms of design variables. The formulation tries to minimize an objective function which measures the difference between model and reference data. The program attempts to minimize the objective function in order to meet the over specified thermal boundary conditions on the outer surface. This minimization or optimization problem is a constrained problem since the cooling/heating channel must be inside the object. In the optimization process, the holes position is iteratively changed. Although more complex in terms of mathematical formulation. the boundary element method is particularly suited for this type of problem involving constant mesh updates. The Boundary Element Method formulation calculates the thermal response which is compared with reference data. The quasi-Newton search algorithm used for objective function optimization needs the response sensitivities with respect to the design variables. The sensitivities are calculated by finite differences and by implicit differentiation of the boundary element equations. Some numerical results are presented and discussed. (author). 10 refs., 8 figs., 2 tabs
Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions
Ruggeri, Fabrizio
2016-01-06
In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.
Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions
Ruggeri, Fabrizio
2015-01-07
In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.
Thomson, E. S.; Hansen-Goos, Hendrik; Wettlaufer, J. S.; Wilen, L. A.
2013-03-01
We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentration. Although we understand that the interfacial surface charge densities qs and solute concentrations can potentially dominate the film thickness, we cannot directly measure them within a given grain boundary. Therefore, as a framework for interpreting the data we consider two appropriate qs dependent limits; one is dominated by the colligative effect and other is dominated by electrostatic interactions.
Allegheny County School District Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the school district boundaries within Allegheny County If viewing this description on the Western Pennsylvania Regional Data Center’s open...
County Boundaries with Shorelines (National)
Department of Transportation — County boundaries with shorelines cut in (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and...
State Highway District Boundaries - 2004
Earth Data Analysis Center, University of New Mexico — This data represents the NM Department of Transportation District boundaries as legislatively defined (i.e. these are not maintenance defined districts).
Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...
Analytic invariants of boundary links
Garoufalidis, Stavros; Levine, Jerome
2001-01-01
Using basic topology and linear algebra, we define a plethora of invariants of boundary links whose values are power series with noncommuting variables. These turn out to be useful and elementary reformulations of an invariant originally defined by M. Farber.
The laminar boundary layer equations
Curle, N
2017-01-01
Thorough introduction to boundary layer problems offers an ordered, logical presentation accessible to undergraduates. The text's careful expositions of the limitations and accuracy of various methods will also benefit professionals. 1962 edition.
Allegheny County Zip Code Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the zip code boundaries that lie within Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open...
Recognition of boundary feedback systems
DEFF Research Database (Denmark)
Pedersen, Michael
1989-01-01
A system that has been the object of intense research is outlined. In view of that and recent progress of the theory of pseudodifferential boundary operator calculus, the author describes some features that could prove to be interesting in connection with the problems of boundary feedback...... stabilizability. It is shown that it is possible to use the calculus to consider more general feedback systems in a variational setup....
Fuzzy Boundary and Fuzzy Semiboundary
M. Athar; B. Ahmad
2008-01-01
We present several properties of fuzzy boundary and fuzzy semiboundary which have been supported by examples. Properties of fuzzy semi-interior, fuzzy semiclosure, fuzzy boundary, and fuzzy semiboundary have been obtained in product-related spaces. We give necessary conditions for fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions. Moreover, fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions have been characterized via fuzzy-derived (resp., fuzz...
Thermal explosion in oscillating ambient conditions
Novozhilov, Vasily
2016-07-01
Thermal explosion problem for a medium with oscillating ambient temperature at its boundaries is considered. This is a new problem in thermal explosion theory, not previously considered in a distributed system formulation, but important for combustion and fire science. It describes autoignition of wide range of fires (such as but not limited to piles of biosolids and other organic matter; storages of munitions, explosives, propellants) subjected to temperature variations, such as seasonal or day/night variation. The problem is considered in formulation adopted in classical studies of thermal explosion. Critical conditions are determined by frequency and amplitude of ambient temperature oscillations, as well as by a number of other parameters. Effects of all the parameters on critical conditions are quantified. Results are presented for the case of planar symmetry. Development of thermal explosion in time is also considered, and a new type of unsteady thermal explosion development is discovered where thermal runaway occurs after several periods of temperature oscillations within the medium.
On the elastic stiffness of grain boundaries
International Nuclear Information System (INIS)
Zhang Tongyi; Hack, J.E.
1992-01-01
The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)
International Nuclear Information System (INIS)
Hassan, S.F.; Wadia, S.R.
1998-02-01
We study the hypermultiplet moduli space of an N=4, U(Q 1 ) x U(Q 5 ) gauge theory in 1 + 1 dimensions to extract the effective SCFT description of near extremal 5-dimensional black holes modelled by a collection D1- and D5-branes. On the moduli space, excitations with fractional momenta arise due to a residual discrete gauge invariance. It is argued that, in the infra-red, the lowest energy excitations are described by an effective c = 6, N = 4 SCFT on T 4 , also valid in the large black hole regime. The ''effective string tension'' is obtained using T-duality covariance. While at the microscopic level, minimal scalars do not couple to (1,5) strings, in the effective theory a coupling is induced by (1,1) and (5,5) strings, leading to Hawking radiation. These considerations imply that, at least for such black holes, the calculation of the Hawking decay rate for minimal scalars has a sound foundation in string theory and statistical mechanics and, hence, there is no information loss. (author)
Sherrer, Adam Thomas
A thermal boundary developed during the morning to early afternoon hours on 27 April as a result of rainfall evaporation and shading from reoccurring deep convection. This boundary propagated to the north during the late afternoon to evening hours. The presence of the boundary produced an area more conducive for the formation of strong violent tornadoes through several processes. These processes included the production of horizontally generated baroclinic vorticity, increased values in storm-relative helicity, and decreasing lifting condensation level heights. Five supercell storms formed near and/or propagated alongside this boundary. Supercells that interacted with this boundary typically produced significant tornadic damage over long distances. Two of these supercells formed to the south (warm) side of the boundary and produced a tornado prior to crossing to the north (cool) side of the boundary. These two storms exhibited changes in appearance, intensity, and structure. Two other supercells formed well south of the boundary. These two storms remained relatively weak until they interacted with the boundary. These storms then rapidly intensified and produced tornadoes. Supercells that formed well into the cool side of the boundary either did not produce tornadoes or the tornadoes were determined to be weak in nature.
Solution of moving boundary problems with implicit boundary condition
International Nuclear Information System (INIS)
Moyano, E.A.
1990-01-01
An algorithm that solves numerically a model for studying one dimensional moving boundary problems, with implicit boundary condition, is described. Landau's transformation is used, in order to work with a fixed number of nodes at each instant. Then, it is necessary to deal with a parabolic partial differential equation, whose diffusive and convective terms have variable coefficients. The partial differential equation is implicitly discretized, using Laasonen's scheme, always stable, instead of employing Crank-Nicholson sheme, as it has been done by Ferris and Hill. Fixed time and space steps (Δt, Δξ) are used, and the iteration is made with variable positions of the interface, i.e. varying δs until a boundary condition is satisfied. The model has the same features of the oxygen diffusion in absorbing tissue. It would be capable of estimating time variant radiation treatments of cancerous tumors. (Author) [es
Parker, Kenneth P
2016-01-01
Aimed at electronics industry professionals, this 4th edition of the Boundary Scan Handbook describes recent changes to the IEEE1149.1 Standard Test Access Port and Boundary-Scan Architecture. This updated edition features new chapters on the possible effects of the changes on the work of the practicing test engineers and the new 1149.8.1 standard. Anyone needing to understand the basics of boundary scan and its practical industrial implementation will need this book. Provides an overview of the recent changes to the 1149.1 standard and the effect of the changes on the work of test engineers; Explains the new IEEE 1149.8.1 subsidiary standard and applications; Describes the latest updates on the supplementary IEEE testing standards. In particular, addresses: IEEE Std 1149.1 Digital Boundary-Scan IEEE Std 1149.4 Analog Boundary-Scan IEEE Std 1149.6 Advanced I/O Testing IEEE Std 1149.8.1 �...
Thermal simulation of storage in TSS-Galleries
International Nuclear Information System (INIS)
Lain Huerta, R.; Martinez Santiago, T.; Ramirez Oyangueren, P.
1993-01-01
This report describes the experiment ''thermal simulation of storage in TSS-galleries'' what is been developed in salt mine of Asse, Germany. The report has 3 part: 1) Analysis of objectives and general description of boundary layers. 2) Geomechanics parameters of salt mine. 3) Thermal modelization, thermomechanics modelization and data acquisition
Thermal infrared remote sensing sensors, methods, applications
Kuenzer, Claudia
2013-01-01
This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni
Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid
Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.
DEFF Research Database (Denmark)
d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor
2014-01-01
Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... and operators to navigate the complex and varied world of standards in the field of thermal environment for improving indoor environmental quality and energy saving. The examples discussed in the paper will also be useful for the standardization, leading to harmonized documents more readable for all users....... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...
Distributed Tuning of Boundary Resources
DEFF Research Database (Denmark)
Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten
2015-01-01
The digital age has seen the rise of service systems involving highly distributed, heterogeneous, and resource-integrating actors whose relationships are governed by shared institutional logics, standards, and digital technology. The cocreation of service within these service systems takes place...... in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Physics of magnetospheric boundary layers
Cairns, Iver H.
1995-01-01
This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.
International Nuclear Information System (INIS)
Sarler, B.
1987-01-01
The basic principles of the boundary element method numerical treatment of the radial flow heat diffusion equation are presented. The algorithm copes the time dependent Dirichlet and Neumann boundary conditions, temperature dependent material properties and regions from different materials in thermal contact. It is verified on the several analytically obtained test cases. The developed method is used for the modelling of unsteady radial heat flow in pressurized water reactor fuel rod. (author)
Boundary Spanners as supports of social capital
DEFF Research Database (Denmark)
Vincenti, Gordon
2016-01-01
Boundary Spanners are important agenets of supporting the capacity building of local neighbourhoods and of sustainable social captial the article focuses on the skills and competnces adn role of Boundary Spanners.......Boundary Spanners are important agenets of supporting the capacity building of local neighbourhoods and of sustainable social captial the article focuses on the skills and competnces adn role of Boundary Spanners....
Boundary Value Problems and Approximate Solutions ...
African Journals Online (AJOL)
In this paper, we discuss about some basic things of boundary value problems. Secondly, we study boundary conditions involving derivatives and obtain finite difference approximations of partial derivatives of boundary value problems. The last section is devoted to determine an approximate solution for boundary value ...
Boundary Transgressions: An Issue In Psychotherapeutic Encounter ...
African Journals Online (AJOL)
Boundary transgressions tend to be conceptualized on a continuum ranging from boundary crossings to boundary violations. Boundary crossings (e.g. accepting an inexpensive holiday gift from a client, unintentionally encountering a client in public, or attending a client's special event) are described in the literature as ...
Second-Order Boundary Value Problem with Integral Boundary Conditions
Directory of Open Access Journals (Sweden)
Nieto JuanJ
2011-01-01
Full Text Available The nonlinear alternative of the Leray Schauder type and the Banach contraction principle are used to investigate the existence of solutions for second-order differential equations with integral boundary conditions. The compactness of solutions set is also investigated.
Boundary effect in electrorheological fluids.
Gong, X L; Yang, F; Xuan, S H; Zong, L H; Zhu, W; Jiang, W Q
2011-12-01
The effect of the boundary friction coefficient on the rheological properties of the electrorheological (ER) fluids in quasistatic and dynamic states is investigated by computer simulation. The relation between the shear stress and the boundary friction coefficient in quasistatic and dynamic states is discussed qualitatively and quantitatively, and the trend matches the previously reported experimental results well. The flow curves of ER fluids, under different friction coefficients, are calculated, and it is found that the friction coefficient affects the flow curves. In two dimensions, the transitions in structure corresponding to the shear stress variations are presented to understand the mechanism of ER fluids.
DEFF Research Database (Denmark)
Bødker, Susanne
summarize ways of doing that. From an understanding of the groups and communities involved, rather than from an understanding of the “places” of home and work, or from pre-perceived qualities of the two, can we understand the boundary drawing and how it is supported through collaborative technologies......This position paper takes its starting point in the definitions of work, and of boundaries often found in CSCW and HCI literature. By looking back at the case of parental leave planning and on my writings from the past 10 years, I discuss how these definitions need to be reconsidered, and I...
Prediction of dislocation boundary characteristics
DEFF Research Database (Denmark)
Winther, Grethe
orientation of the grain [1]. For selected boundaries it has been experimentally verified that the boundaries consist of fairly regular networks of dislocations, which come from the active slip systems [2]. The networks have been analyzed within the framework of Low-Energy-Dislocation-Structures (LEDS......, such as the dislocation content and misorientation. The prediction is based on the expected active slip systems and assumptions of mutual stress screening. In general, networks of dislocations with three linearly independent Burgers vectors fulfilling the criterion of mutual stress screening may form on any plane...
Directory of Open Access Journals (Sweden)
Asif Mahmood
Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity
Light beam dynamics in materials with radially-inhomogeneous thermal conductivity
Kartashov, Yaroslav V.; Vysloukh, Victor A.; Torner, Lluis
2013-01-01
We study the properties of bright and vortex solitons in thermal media with nonuniform thermal conductivity and homogeneous refractive index, whereby the local modulation of the thermal conductivity strongly affects the entire refractive index distribution. While regions where the thermal conductivity is increased effectively expel light, selftrapping may occur in the regions with reduced thermal conductivity, even if such regions are located close to the material boundary. As a r...
An improved thermal model for the computer code NAIAD
International Nuclear Information System (INIS)
Rainbow, M.T.
1982-12-01
An improved thermal model, based on the concept of heat slabs, has been incorporated as an option into the thermal hydraulic computer code NAIAD. The heat slabs are one-dimensional thermal conduction models with temperature independent thermal properties which may be internal and/or external to the fluid. Thermal energy may be added to or removed from the fluid via heat slabs and passed across the external boundary of external heat slabs at a rate which is a linear function of the external surface temperatures. The code input for the new option has been restructured to simplify data preparation. A full description of current input requirements is presented
Ramzan, M.; Bilal, M.; Kanwal, Shamsa; Chung, Jae Dong
2017-06-01
Present analysis discusses the boundary layer flow of Eyring Powell nanofluid past a constantly moving surface under the influence of nonlinear thermal radiation. Heat and mass transfer mechanisms are examined under the physically suitable convective boundary condition. Effects of variable thermal conductivity and chemical reaction are also considered. Series solutions of all involved distributions using Homotopy Analysis method (HAM) are obtained. Impacts of dominating embedded flow parameters are discussed through graphical illustrations. It is observed that thermal radiation parameter shows increasing tendency in relation to temperature profile. However, chemical reaction parameter exhibits decreasing behavior versus concentration distribution. Supported by the World Class 300 Project (No. S2367878) of the SMBA (Korea)
Kertész line of thermally activated breakdown phenomena
Yoshioka, Naoki
2010-11-12
Based on a fiber bundle model we substantially extend the phase-transition analogy of thermally activated breakdown of homogeneous materials. We show that the competition of breaking due to stress enhancement and due to thermal fluctuations leads to an astonishing complexity of the phase space of the system: varying the load and the temperature a phase boundary emerges, separating a Griffith-type regime of abrupt failure analogous to first-order phase transitions from disorder dominated fracture where a spanning cluster of cracks emerges. We demonstrate that the phase boundary is the Kertész line of the system along which thermally activated fracture appears as a continuous phase transition analogous to percolation. The Kertész line has technological relevance setting the boundary of safe operation for construction components under high thermal loads. © 2010 The American Physical Society.
Comparing thermal and photovoltaic solar power plants
International Nuclear Information System (INIS)
Casal, F.G.
1993-01-01
A large number of solar thermal power plants of the ''central receiver'' type using air as the heat transfer medium are modeled and their economics are compared with those of their solar photovoltaic counterparts. Those parameters which most significantly affect the production costs of the solar thermal plants are identified and their possible significance for the evaluation of non-electric uses of concentrated solar radiation is discussed. For solar thermal applications the solar multiple has much less impact on the production costs than the costs of the heliostats and of the thermal storage. Areas identifying the superior economic performance of solar thermal power plants versus photovoltaic systems were identified and are presented as graphs of boundaries of equal performance under identical conditions. (Author) 11 refs
Dynamics of Coronal Hole Boundaries
International Nuclear Information System (INIS)
Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.; DeVore, C. R.; Wyper, P. F.
2017-01-01
Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.
Humor styles and symbolic boundaries
Kuipers, G.
2009-01-01
Humor is strongly related to group boundaries. Jokes and other humorous utterances often draw on implicit references and inside knowledge; they tend to refer to sensitive topics which may offend people; and they ideally incite laughter, one of the strongest markers of social solidarity and emotional
Current Sinkhole Boundaries in Iowa
Iowa State University GIS Support and Research Facility — This dataset is a polygon coverage of the sinkhole boundaries as determined by using LiDAR data. The polygons relate to the point coverage using the KPolyID field in...
BRIDGES ACROSS AFRICA'S INTERNATIONAL BOUNDARIES ...
African Journals Online (AJOL)
The empirical data for this paper is drawn from the ethnic minorities divided along and astride the Cross River borderlands with southern Cameroon. Scholars who have studied the Nigeria Cameroon Boundary tend to lay more emphasis on the state centric perspective that continues to operate largely within the framework ...
Editorial: Environmentalists without Boundaries | Ogunseitan ...
African Journals Online (AJOL)
African Journal of Environmental Science and Technology. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Editorial: Environmentalists without Boundaries.
Seismic link at plate boundary
Indian Academy of Sciences (India)
... tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.
Blurred Boundaries or Conflicting Epistemologies
DEFF Research Database (Denmark)
Mollerup, Nina Grønlykke
2017-01-01
of departure in anthropological fieldwork with information activists and journalists in Egypt, I show that information activists and journalists often had very similar practices and goals, which at times made the boundaries very blurry. Yet I argue that there was a significant distinction between...
Thermal dynamics of bomb calorimeters
Lyon, Richard E.
2015-12-01
The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter.
Thermal dynamics of bomb calorimeters.
Lyon, Richard E
2015-12-01
The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter.
Polarity of translation boundaries in antiferroelectric PbZrO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Wei, Xian-Kui, E-mail: xiankui.wei@epfl.ch [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); Jia, Chun-Lin [Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); International Centre of Dielectric Research, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Roleder, Krystian [Institute of Physics, University of Silesia, Katowice 40007 (Poland); Setter, Nava [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland)
2015-02-15
Graphical abstract: Strain-free rigid model and aberration-corrected transmission electron microscopes are used to investigate the polarity of translation boundaries in antiferroelectric PbZrO{sub 3}. - Highlights: • Domain boundaries in antiferroelectric PbZrO{sub 3} show polar and antipolar property. • The antiphase boundary can split into “sub-domains”. • Polarization reversal possibly exists inside the translation boundaries. • Thermal treatment can alter morphology and density of the translation boundaries. - Abstract: The polarity of translation boundaries (TBs) in antiferroelectric PbZrO{sub 3} is investigated. We show that previous experimentally reported polar property of R{sub III-1} type TB can be well approximated by a strain-free rigid model. Based on this, the modeling investigation suggests that there are two additional polar TBs, three antipolar-like TBs and one antipolar antiphase boundary. High-resolution scanning-transmission-electron-microscopy study reveals that the straight R{sub III-1} type TB can split into “sub-domains” with possible polarization reversal, suggesting the occurrence of ferroic orders at the TBs. In addition, dependence of morphology and density of the TBs on thermal treatments is discussed according to our results.
Supo Thermal Model Development II
Energy Technology Data Exchange (ETDEWEB)
Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-14
This report describes the continuation of the Computational Fluid Dynamics (CFD) model of the Supo cooling system described in the report, Supo Thermal Model Development1, by Cynthia Buechler. The goal for this report is to estimate the natural convection heat transfer coefficient (HTC) of the system using the CFD results and to compare those results to remaining past operational data. Also, the correlation for determining radiolytic gas bubble size is reevaluated using the larger simulation sample size. The background, solution vessel geometry, mesh, material properties, and boundary conditions are developed in the same manner as the previous report. Although, the material properties and boundary conditions are determined using the appropriate experiment results for each individual power level.
Grain Boundary Engineering of Electrodeposited Thin Films
DEFF Research Database (Denmark)
Alimadadi, Hossein
Grain boundary engineering aims for a deliberate manipulation of the grain boundary characteristics to improve the properties of polycrystalline materials. Despite the emergence of some successful industrial applications, the mechanism(s) by which the boundary specific properties can be improved...... to engineer new materials. In this study, one of the most widely used electrolytes for electrodeposition is chosen for the synthesis of nickel films and based on thorough characterization of the boundaries the potentials in grain boundary engineering are outlined. The internal structure of the nickel films...... of the favorable boundaries that break the network of general grain boundaries. Successful dedicated synthesis of a textured nickel film fulfilling the requirements of grain boundary engineered materials, suggests improved boundary specific properties. However, the textured nickel film shows fairly low...
Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain
Directory of Open Access Journals (Sweden)
Stefano Serafin
2018-03-01
Full Text Available The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scale exchange, and the development of stochastic perturbation schemes.
Microstructural analysis of the type-II boundary region in Alloy 152 weld
International Nuclear Information System (INIS)
Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Ji Hyun
2014-01-01
The weld metals are more susceptible to SCC growth and that most cracks are blunted by the fusion boundary. However, they also found that some cracking occurs along the fusion boundary, often in an area with high hardness. Nelson et al. investigated a DMW of Monel 409 stainless steel and American Iron and Steel Institute (AISI) 1080 alloy and found a type-II boundary, which exists parallel to the fusion boundary in the dilution zone. They conclude that the type-II boundary is a potential path for crack growth. While there are several theories for the mechanisms of the type-II boundary formation, they conclude that the type-II boundary forms from the allotropic δ-γ transformation at the base metal in the elevated austenitic temperature range. As the operation time of nuclear power plants using DMWs of Alloy 152 and A533 Gr. B increases, these DMWs must be evaluated for their resistance to SCC for long-term operations. However, only few studies have investigated the thermal aging effects induced by long-term operations at high temperature. Type-II boundary is known as a potential crack path from the results of crack growth test at DMW without any heat treatment. So the analysis about type-II boundary with applying heat treatment could be helpful to evaluate the susceptibility to SCC of structural materials. The objective of this study is to analyze the detailed microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B, after applying heat treatment simulating thermal aging effect of a nuclear power plant operation condition to evaluate the susceptibility of this region to SCC. The microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B were analyzed with an energy dispersive x-ray spectroscope attached to a scanning electron microscope (SEM-EDS), electron backscatter diffraction (EBSD), and a nanoindentation test. Microstructural, grain boundary orientation, nanohardness analysis were conducted in the type
1997-01-01
Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.
International Nuclear Information System (INIS)
Jones, J.
2006-01-01
While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as
Pressure effect on grain boundary diffusion
International Nuclear Information System (INIS)
Smirnova, E.S.; Chuvil'deev, V.N.
1997-01-01
The influence of hydrostatic pressure on grain boundary diffusion and grain boundary migration in metallic materials is theoretically investigated. The model is suggested that permits describing changes in activation energy of grain boundary self-diffusion and diffusion permeability of grain boundaries under hydrostatic pressure. The model is based on the ideas about island-type structure of grain boundaries as well as linear relationship of variations in grain boundary free volume to hydrostatic pressure value. Comparison of theoretical data with experimental ones for a number of metals and alloys (α-Zr, Sn-Ge, Cu-In with Co, In, Al as diffusing elements) shows a qualitative agreement
Decision boundary feature extraction for neural networks
Lee, Chulhee; Landgrebe, David A.
1992-01-01
We propose a new feature extraction method for neural networks. The method is based on the recently published decision boundary feature extraction algorithm. It has been shown that all the necessary features for classification can be extracted from the decision boundary. To apply the decision boundary feature extraction method, we first define the decision boundary in neural networks. Next, we propose a procedure for extracting all the necessary features for classification from the decision boundary. The proposed algorithm preserves the characteristics of neural networks, which can define arbitrary decision boundary. Experiments show promising results.
Green's function and boundary elements of multifield materials
Qin, Qing-Hua
2007-01-01
Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions.
Physics of the atmospheric boundary layer. Fizika pogranichnogo sloia atmosfery
Energy Technology Data Exchange (ETDEWEB)
Orlenko, L.R.; Malevskii-Malevich, S.P.
1987-01-01
Papers are presented on such topics as the determination of wind velocity and direction in the lower part of the atmospheric boundary layer on the basis of ground data; the evaluation of wind velocity and shears at low altitudes on the basis of ground data; calculation of the evolution of the nocturnal boundary with allowance for radiative heat transfer; universal functions of Monin-Obukhov similarity theory for stable stratification; and the variability of mean-monthly values of ocean-atmosphere energy transfer characteristics in the North Atlantic region. Consideration is also given to the effect of water pollution on spray generation, the calculation of turbulent fluxes above the thermally inhomogeneous and nonstationary sea surface, and wind-profile characteristics in the lower air layer above the ocean.
Thermal conductivity model for nanoporous thin films
Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui
2018-03-01
Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.
Plasma boundary phenomena in tokamaks
International Nuclear Information System (INIS)
Stangeby, P.C.
1989-06-01
The focus of this review is on processes occurring at the edge, and on the connection between boundary plasma - the scrape-off layer (SOL) and the radiating layer - and central plasma processes. Techniques used for edge diagnosis are reviewed and basic experimental information (n e and T e ) is summarized. Simple models of the SOL are summarized, and the most important effects of the boundary plasma - the influence on the fuel particles, impurities, and energy - on tokamak operation dealt with. Methods of manipulating and controlling edge conditions in tokamaks and the experimental data base for the edge during auxiliary heating of tokamaks are reviewed. Fluctuations and asymmetries at the edge are also covered. (9 tabs., 134 figs., 879 refs.)
Helmholtz bright and boundary solitons
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2007-01-01
We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts
Information dynamics of boundary perception
DEFF Research Database (Denmark)
Kragness, Haley; Hansen, Niels Christian; Vuust, Peter
-paced listening to chord sequences in a lab setting (the musical dwell-time effect). However, the origin of the musical dwell-time effect is still unknown. Recent work has demonstrated that musicians and non-musicians are sensitive to entropy in musical sequences, experiencing high-entropy contexts as more...... entropy (as estimated by the Information Dynamics of Music Model, IDyOM, trained on a large corpus of hymns and folksongs). Data collection is ongoing. The main analysis will examine whether longer dwelling is associated with boundary status or entropy. Results from this study will extend recent work...... on predictive uncertainty to the timing domain, as well as potentially answer key questions relating to boundary perception in musical listening....
Social Entrepreneurship: Definition and Boundaries
Directory of Open Access Journals (Sweden)
Samer Abu-Saifan
2012-02-01
Full Text Available While individuals may be publicly recognized as social entrepreneurs for their contributions to improve the welfare of communities, the field of social entrepreneurship continues to struggle to gain academic legitimacy. Social entrepreneurship is a term in search of a good definition. The current use of the term seems vague and limitless; it needs boundaries to demarcate its function. The lack of a common definition hinders research and raises questions about which social or profit-making activities fall within the spectrum of social entrepreneurship. To become an important stream in the entrepreneurship literature, social entrepreneurship needs to be properly defined and it requires a theoretical framework that links it to the theory of entrepreneurship. This article builds on the literature to define social entrepreneurship, discusses the boundaries of socially-oriented entrepreneurial activities, and positions the social entrepreneur in the spectrum of entrepreneurship.
Phase Transitions and Free Boundaries
1991-10-31
V PHASE TRANSITIONS AND FREE BOUNDARIES FINAL REPORT AD -A243 412 DECO 3 1991 WILLARD MILLER, JR. U October 31, 1991 OFFICE OF NAVAL RESEARCH N0014-91...Einstein- University of Michigan Yang/Mills equations Abstract: The only static solution to the vacuum Einstein equations is the celebrated Schwarzschild ...equations to Maxwell’s equations, the only static solution is the Reissner- Nordstr6m metric which is again singular at the origin. Finally, for any gauge
Sensitivity to volcanic field boundary
Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed
2016-04-01
Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and
Applied thermodynamics: Grain boundary segregation
Czech Academy of Sciences Publication Activity Database
Lejček, Pavel; Zheng, L.; Hofmann, S.; Šob, Mojmír
2014-01-01
Roč. 16, č. 3 (2014), s. 1462-1484 ISSN 1099-4300 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GAP108/12/0144; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : interfacial segregation * Gibbs energy of segregation * enthalpy * entropy * volume * grain boundaries * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.502, year: 2014
Working across Boundaries in Design
DEFF Research Database (Denmark)
Clausen, Christian; Yoshinaka, Yutaka
The paper addresses how insights from the social shaping tradition and political process theory may contribute to an understanding of design as staging of sociotechnical relations and processes cutting across boundaries of diverse organisational, political and knowledge domains. This idea is purs...... organisational practices. One implication of this approach includes an attention towards what (and how) ar-eas may be rendered open to negotiation and transformation in technological design, implementation, and change processes....
Borders, boundaries and desirable wishes
Directory of Open Access Journals (Sweden)
Luca Pinciaroli
2015-05-01
Full Text Available “Borders, boundaries and desirable wishes” is the title of the residential workshop offered to a group of young adults (aged 18-25 of the Centro di Salute Mentale (Mental Health Center of the DSM Basaglia of ASL TO2 in Turin. The idea of the workshop, the definition of the objectives and the topics, which are clearly expressed in the title, come from the work of the team dedicated to group psychotherapies, which has been offering group psychodrama sessions to young adults of this age since 2008. In the delicate move to the adult age, these young adults are lost and stuck in static realities where it is not possible to open up to the dimension of desire nor to the transforming encounter with the Other, since they didn’t have the experience of boundaries and lack. These two elements are necessary to acquire the ability to make projects for oneself. During the workshop the following instruments were used: group, psychodrama and art therapy. The group, as a paternal function, ensured the presence of safe boundaries enabling individuals to experiment; psychodrama and art therapy enabled the bodies to experience encounters and transformations, using doing as a metaphor for the movement against the inhibition of doing and as a way to show oneself to the Other and be able to see the Other.
Event boundaries and memory improvement.
Pettijohn, Kyle A; Thompson, Alexis N; Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A
2016-03-01
The structure of events can influence later memory for information that is embedded in them, with evidence indicating that event boundaries can both impair and enhance memory. The current study explored whether the presence of event boundaries during encoding can structure information to improve memory. In Experiment 1, memory for a list of words was tested in which event structure was manipulated by having participants walk through a doorway, or not, halfway through the word list. In Experiment 2, memory for lists of words was tested in which event structure was manipulated using computer windows. Finally, in Experiments 3 and 4, event structure was manipulated by having event shifts described in narrative texts. The consistent finding across all of these methods and materials was that memory was better when the information was distributed across two events rather than combined into a single event. Moreover, Experiment 4 demonstrated that increasing the number of event boundaries from one to two increased the memory benefit. These results are interpreted in the context of the Event Horizon Model of event cognition. Copyright © 2015 Elsevier B.V. All rights reserved.
Integrability and boundary conditions of supersymmetric systems
International Nuclear Information System (INIS)
Yue Ruihong; Liang Hong
1996-01-01
By studying the solutions of the reflection equations, we find out a series of integrable supersymmetric systems with different boundary conditions. The Hamiltonian contains four free parameters which describe the contribution of the boundary terms
Cal State Park Boundaries 2011/2012
California Natural Resource Agency — This is a GIS version of California State Park (CSP) operational boundaries and does not represent official property boundary determinations. This GIS version is...
International Nuclear Information System (INIS)
Kung, H.; Sass, S.L.
1992-01-01
This paper discusses the dislocation structure of small angle tilt and twist boundaries in ordered Ni 3 Al, with and without boron, investigated using transmission electron microscopy. Dislocation with Burgers vectors that correspond to anti-phase boundary (APB)-coupled superpartials were found in small angle twist boundaries in both boron-free and boron-doped Ni 3 Al, and a small angle tilt boundary in boron-doped Ni 3 Al. The boundary structures are in agreement with theoretical models proposed by Marcinkowski and co-workers. The APB energy determined from the dissociation of the grain boundary dislocations was lower than values reported for isolated APBs in Ni 3 Al. For small angle twist boundaries the presence of boron reduced the APB energy at the interface until it approached zero. This is consistent with the structure of these boundaries containing small regions of increased compositional disorder in the first atomic plane next to the interface
Practical boundary surveying legal and technical principles
Gay, Paul
2015-01-01
This guide to boundary surveying provides landowners, land surveyors, students and others with the necessary foundation to understand boundary surveying techniques and the common legal issues that govern boundary establishment. Boundary surveying is sometimes mistakenly considered a strictly technical discipline with simple and straightforward technical solutions. In reality, boundary establishment is often a difficult and complex matter, requiring years of experience and a thorough understanding of boundary law. This book helps readers to understand the challenges often encountered by boundary surveyors and some of the available solutions. Using only simple and logically explained mathematics, the principles and practice of boundary surveying are demystified for those without prior experience, and the focused coverage of pivotal issues such as easements and setting lot corners will aid even licensed practitioners in untangling thorny cases. Practical advice on using both basic and advanced instruments ...
Cal State Park Boundaries 2011/2012
California Department of Resources — This is a GIS version of California State Park (CSP) operational boundaries and does not represent official property boundary determinations. This GIS version is...
Fluid Mechanics and Heat Transfer in Transitional Boundary Layers
Wang, Ting
2007-01-01
Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.
Advances in boundary elements. Vol. 1-3
International Nuclear Information System (INIS)
Brebbia, C.A.; Connor, J.J.
1989-01-01
This book contains some of the edited papers presented at the 11th Boundary Element Conference, held in Cambridge, Massachusetts, during August 1989. The papers are arranged in three different books comprising the following topics: Vol. 1: Computations and Fundamentals - comprises sections on fundamentals, adaptive techniques, error and convergence, numerical methods and computational aspects. (283 p.). Vol. 2: Field and fluid flow solutions - includes the following topics: potential problems, thermal studies, electrical and electromagnetic problems, wave propagation, acoustics and fluid flow. (484 p.). Vol. 3: Stress analysis - deals with advances in linear problems, nonlinear problems, fracture mechanics, contact mechanics, optimization, geomechanics, plates and shells, vibrations and industrial applications. (450 p). (orig./HP)
Exact phi (cursive,open) Greek1,3 boundary flows in the tricritical Ising model
International Nuclear Information System (INIS)
We consider the tricritical Ising model on a strip or cylinder under the integrable perturbation by the thermal phi (cursive,open) Greek 1,3 boundary field. This perturbation induces five distinct renormalization group (RG) flows between Cardy type boundary conditions labelled by the Kac labels (r,s). We study these boundary RG flows in detail for all excitations. Exact thermodynamic Bethe ansatz (TBA) equations are derived using the lattice approach by considering the continuum scaling limit of the A 4 lattice model with integrable boundary conditions. Fixing the bulk weights to their critical values, the integrable boundary weights admit a thermodynamic boundary field ξ which induces the flow and, in the continuum scaling limit, plays the role of the perturbing boundary field phi Greek 1,3 . The excitations are completely classified, in terms of string content, by (m,n) systems and quantum numbers but the string content changes by either two or three well-defined mechanisms along the flow. We identify these mechanisms and obtain the induced maps between the relevant finitized Virasoro characters. We also solve the TBA equations numerically to determine the boundary flows for the leading excitations
Roger M. Rowell
2005-01-01
The traditional question at the start of a class on thermal properties of wood is, âDoes wood burn?â The students have all been warmed in front of a wood-burning fire before, so they are sure the answer is yesâbut since the professor asked the question, there must be some hidden trick to the obvious answer. Going with their experience, their answer is âyes, wood burns...
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.
1985-07-16
A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.
Quantum cavities with alternating boundary conditions
Facchi, Paolo; Garnero, Giancarlo; Ligabò, Marilena
2018-03-01
We consider the quantum dynamics of a free nonrelativistic particle moving in a cavity and we analyze the effect of a rapid switching between two different boundary conditions. We show that this procedure induces, in the limit of infinitely frequent switchings, a new effective dynamics in the cavity related to a novel boundary condition. We obtain a dynamical composition law for boundary conditions which gives the emerging boundary condition in terms of the two initial ones.
Heat transfer in the inner and boundary region of pebble beds
International Nuclear Information System (INIS)
Robold, K.
1982-07-01
The effective thermal conductivity in the inner and boundary region of pebble beds have been measured. The experiments were carried out in evacuated pebble beds and beds with stagnant Helium (p = 700...850 mbar). The temperature range was 300 to 1900 K. The experimental results are described by new models. (orig.) [de
Boundary controllability of integrodifferential systems in Banach ...
Indian Academy of Sciences (India)
[6] discussed the general theory of boundary control systems. Barbu and Precupanu [4] studied a class of convex control problems governed by linear evolution systems covering the principal boundary control systems of parabolic type. In [5] Barbu investigated a class of boundary-distributed linear control systems in ...
Transient Solute Drag in Migrating Grain Boundaries
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Fischer, F. D.; Liendl, M.
2011-01-01
Roč. 59, č. 17 (2011), s. 6556-6562 ISSN 1359-6454 R&D Projects: GA MŠk(CZ) OC10029 Institutional research plan: CEZ:AV0Z20410507 Keywords : Grain boundary diffusion * Grain boundary migration * Grain boundary segregation Subject RIV: BJ - Thermodynamic s Impact factor: 3.755, year: 2011
Acoustic reflection from the boundary of anisotropic ...
Indian Academy of Sciences (India)
Vertical slownesses of waves at a boundary of an anisotropic thermoviscoelastic medium are calculated as roots of a polynomial equation of degree eight. Out of the corresponding eight waves, the four, which travel towards the boundary are identiﬁed as upgoing waves. Remaining four waves travel away from the boundary ...
Slip patterns and preferred dislocation boundary planes
DEFF Research Database (Denmark)
Winther, G.
2003-01-01
and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co...
Determination of grain boundary geometry using TEM
Jang, H.; Farkas, D.; Hosson, J.T.M. De
An experimental method to obtain the grain boundary geometry using the transmission electron microscope is presented. The method allows Σ determination including grain boundary plane orientation. In order to determine the specialness of the grain boundary, three different criteria for maximum
Free-Boundary Resistive Modes in Tokamaks
Huysmans, G. T. A.; Goedbloed, J. P.; Kerner, W.
1993-01-01
There exist a number of observations of magnetohydrodynamic (MHD) activity that can be related to resistive MHD modes localized near the plasma boundary. To study the stability of these modes, a free boundary description of the plasma is essential. The resistive plasma-vacuum boundary conditions
International Nuclear Information System (INIS)
Makhov, Kirill; Iarmonov, Mikhail; Bokova, Tatiana; Beznosov, A.V.
2011-01-01
The wall boundary layer is an inalienable part of the contours with heavy liquid metal coolants (HLMC) that are used in the fourth generation nuclear reactors. The properties of the wall boundary layer determine a reactor's efficiency and influence hydraulic characterises and heat exchange. Characteristics of the wall boundary layer 'HLMC - constructional material' have been studied by various techniques and methods at the Nizhny Novgorod State Technical University (NNSTU). The study included: ultrasonic analysis; determination of the contact thermal resistance; study of the influence of the wall boundary region characteristics on the MHD resistance of the HLMC flow. Due to the results of this research the modern model of the wall boundary layer in the medium of heavy metal coolants was built. The following characteristics were experimentally found in the wide range of parameters: the magnitude of the contact thermal resistance of the wall boundary layer in the Peclet number range from Pe=260 to Pe=1430 with the oxygen concentration varied in the range from 10 -7 to 10 0 ; the dependences of the hydraulic loss coefficients on the Stuart criterion in the magnetic field. (author)
Thermal and thermoelectric properties of graphene.
Xu, Yong; Li, Zuanyi; Duan, Wenhui
2014-06-12
The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model
Directory of Open Access Journals (Sweden)
Ophir Navea
2011-06-01
Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.
Thermal disadvantage factor calculation by the multiregion collision probability method
International Nuclear Information System (INIS)
Ozgener, B.; Ozgener, H.A.
2004-01-01
A multi-region collision probability formulation that is capable of applying white boundary condition directly is presented and applied to thermal neutron transport problems. The disadvantage factors computed are compared with their counterparts calculated by S N methods with both direct and indirect application of white boundary condition. The results of the ABH and collision probability method with indirect application of white boundary condition are also considered and comparisons with benchmark Monte Carlo results are carried out. The studies show that the proposed formulation is capable of calculating thermal disadvantage factor with sufficient accuracy without resorting to the fictitious scattering outer shell approximation associated with the indirect application of the white boundary condition in collision probability solutions
Effects of thermal fluctuations on thermal inflation
Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun'ichi
2014-01-01
The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these ...
Persistent Identifiers as Boundary Objects
Parsons, M. A.; Fox, P. A.
2017-12-01
In 1989, Leigh Star and Jim Griesemer defined the seminal concept of `boundary objects'. These `objects' are what Latour calls `immutable mobiles' that enable communication and collaboration across difference by helping meaning to be understood in different contexts. As Star notes, they are a sort of arrangement that allow different groups to work together without (a priori) consensus. Part of the idea is to recognize and allow for the `interpretive flexibility' that is central to much of the `constructivist' approach in the sociology of science. Persistent Identifiers (PIDs) can clearly act as boundary objects, but people do not usually assume that they enable interpretive flexibility. After all, they are meant to be unambiguous, machine-interpretable identifiers of defined artifacts. In this paper, we argue that PIDs can fill at least two roles: 1) That of the standardized form, where there is strong agreement on what is being represented and how and 2) that of the idealized type, a more conceptual concept that allows many different representations. We further argue that these seemingly abstract conceptions actually help us implement PIDs more effectively to link data, publications, various other artifacts, and especially people. Considering PIDs as boundary objects can help us address issues such as what level of granularity is necessary for PIDs, what metadata should be directly associated with PIDs, and what purpose is the PID serving (reference, provenance, credit, etc.). In short, sociological theory can improve data sharing standards and their implementation in a way that enables broad interdisciplinary data sharing and reuse. We will illustrate this with several specific examples of Earth science data.
Applied Thermodynamics: Grain Boundary Segregation
Directory of Open Access Journals (Sweden)
Pavel Lejček
2014-03-01
Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.
Voltage tunability of thermal conductivity in ferroelectric materials
Ihlefeld, Jon; Hopkins, Patrick Edward
2016-02-09
A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
Viscous and thermal modelling of thermoplastic composites forming process
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
T-Duality Group for Open String Theory
Kajiura, Hiroshige
2001-01-01
We study T-duality for open strings on tori $\\T^d$. The general boundary conditions for the open strings are constructed, and it is shown that T-duality group, which preserves the mass spectrum of closed strings, preserves also the mass spectrum of the open strings. The open strings are transformed to those with different boundary conditions by T-duality. We also discuss the T-duality for D-brane mass spectrum, and show that the D-branes and the open strings with both ends on them are transfo...
Surface/state correspondence and bulk local operators in pp-wave holography
Directory of Open Access Journals (Sweden)
Nakwoo Kim
2015-12-01
Full Text Available We apply the surface/state correspondence proposal of Miyaji et al. to IIB pp-waves and propose that the bulk local operators should be instantonic D-branes. In line with ordinary AdS/CFT correspondence, the bulk local operators in pp-waves also create a hole, or a boundary, in the dual gauge theory as pointed out by H. Verlinde, and by Y. Nakayama and H. Ooguri. We also present simple calculations which illustrate how to extract the spacetime metric of pp-waves from instantonic D-branes in boundary state formalism.
Ultrahigh thermal conductivity of isotopically enriched silicon
Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter
2018-03-01
Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.
On SLE Martingales in Boundary WZW Models
Alekseev, Anton; Bytsko, Andrei; Izyurov, Konstantin
2011-09-01
Following Bettelheim et al. (Phys Rev Lett 95:251601, 2005), we consider the boundary WZW model on a half-plane with a cut growing according to the Schramm-Loewner stochastic evolution and the boundary fields inserted at the tip of the cut and at infinity. We study necessary and sufficient conditions for boundary correlation functions to be SLE martingales. Necessary conditions come from the requirement for the boundary field at the tip of the cut to have a depth two null vector. Sufficient conditions are established using Knizhnik-Zamolodchikov equations for boundary correlators. Combining these two approaches, we show that in the case of G = SU(2) the boundary correlator is an SLE martingale if and only if the boundary field carries spin 1/2. In the case of G = SU( n) and the level k = 1, there are several situations when boundary one-point correlators are SLE κ -martingales. If the boundary field is labelled by the defining n-dimensional representation of SU( n), we obtain {\\varkappa=2} . For n even, by choosing the boundary field labelled by the (unique) self-adjoint fundamental representation, we get {\\varkappa=8/(n {+} 2)} . We also study the situation when the distance between the two boundary fields is finite, and we show that in this case the {SLE_\\varkappa} evolution is replaced by {SLE_{\\varkappa,ρ}} with {ρ=\\varkappa -6}.
Isochoric thermal conductivity of solid nitrogen
Konstantinov, V. A.; Manzhelii, V. G.; Revyakin, V. P.; Sagan, V. V.
2004-01-01
The isochoric thermal conductivity of solid nitrogen has been investigated on four samples of different densities in the temperature interval from 20 K to the onset of melting. In alfa-N2 the isochoric thermal conductivity exhibits a dependence weaker than 1/T; in beta-N2 it increases slightly with temperature. The experimental results are discussed within a model in which the heat is transported by low-frequency phonons or by "diffusive" modes above the mobility boundary. The growth of the t...
The thermal conductivity of semitransparent materials
International Nuclear Information System (INIS)
Fine, H.A.; Jury, S.H.; McElroy, D.L.; Yarbrough, D.W.
1983-01-01
This chapter uses the three-region approximate solution for coupled conductive and radiative heat transfer an exact solution for uncoupled conductive and radiative heat transfer in a grey semitransparent medium bounded by infinite parallel isothermal plates to establish the dependence of the apparent thermal conductivity of semitransparent materials on other material properties and boundary conditions. Demonstrates an application of the analyses, which uses apparent thermal conductivity on temperature. Finds that the predictions for seven sets of R-11 fiberglass and rock wool insulations agree with published measured values to within the limits of experimental error (+ or - 3%). Points out that agreement for three sets of R-19 fiberglass insulations was not good
Temperature distribution in graphene doped with nitrogen and graphene with grain boundary.
Lotfi, Erfan; Neek-Amal, M
2017-06-01
Graphene doped with nitrogen exhibits unique properties different than perfect graphene. The temperature distribution in nitrogen-doped graphene (N-graphene) and in the graphene with grain boundary is investigated using molecular dynamics simulations. The temperature distribution in nitrogen-doped graphene nanoribbon, containing two types of grain boundaries, was found to be sensitive to the number of dopants and grain boundary. We also found that there is a remarkable temperature gap in the temperature profile of N-graphene nanoribbon-containing a grain boundary. For any doping ratio N/C we found that the nitrogen atoms enhance roughness of N-graphene and decrease thermal conductivity. Copyright © 2017 Elsevier Inc. All rights reserved.
Leidenfrost gas ratchets driven by thermal creep.
Würger, Alois
2011-10-14
We show that thermal creep is at the origin of the recently discovered Leidenfrost ratchet, where liquid droplets float on a vapor layer along a heated sawtooth surface and accelerate to velocities of up to 40 cm/s. As the active element, the asymmetric temperature profile at each ratchet summit rectifies the vapor flow in the boundary layer. This mechanism works at low Reynolds number and provides a novel tool for controlling gas flow at nanostructured surfaces.
The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core
Davies, C. J.; Mound, J. E.
2017-12-01
Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.
The new boundaries of the "boundaryless" company.
Hirschhorn, L; Gilmore, T
1992-01-01
In an economy founded on innovation and change, one of the premier challenges of management is to design more flexible organizations. For many executives, a single metaphor has come to embody this managerial challenge and to capture the kind of organization they want to create: the "corporation without boundaries." According to Larry Hirschhorn and Thomas Gilmore of the Wharton Center for Applied Research, managers are right to break down the boundaries that make organizations rigid and unresponsive. But they are wrong if they think that doing so eliminates the need for boundaries altogether. Once the traditional boundaries of hierarchy, function, and geography disappear, a new set of boundaries becomes important. These new boundaries are more psychological than organizational. They aren't drawn on a company's organizational chart but in the minds of its managers and employees. And instead of being reflected in a company's structure, they must be "enacted" over and over again in a manager's relationships with bosses, subordinates, and peers. In this article, Hirschhorn and Gilmore provide a guide to the boundaries that matter in the "boundaryless" company. They explain how these new boundaries are essential for both managers and employees in coping with the demands of flexible work. They describe the typical mistakes that managers make in their boundary relationships. And they show how executives can become effective boundary managers by paying attention to a source of data they have often overlooked in the past: their own gut feelings about work and the people with whom they do it.
Mixed basin boundary structures of chaotic systems
International Nuclear Information System (INIS)
Rosa, E. Jr.; Ott, E.
1999-01-01
Motivated by recent numerical observations on a four-dimensional continuous-time dynamical system, we consider different types of basin boundary structures for chaotic systems. These general structures are essentially mixtures of the previously known types of basin boundaries where the character of the boundary assumes features of the previously known boundary types at different points arbitrarily finely interspersed in the boundary. For example, we discuss situations where an everywhere continuous boundary that is otherwise smooth and differentiable at almost every point has an embedded uncountable, zero Lebesgue measure set of points at which the boundary curve is nondifferentiable. Although the nondifferentiable set is only of zero Lebesgue measure, the curve close-quote s fractal dimension may (depending on parameters) still be greater than one. In addition, we discuss bifurcations from such a mixed boundary to a 'pure' boundary that is a fractal nowhere differentiable curve or surface and to a pure nonfractal boundary that is everywhere smooth. copyright 1999 The American Physical Society
Working with boundaries in systems psychodynamic consulting
Directory of Open Access Journals (Sweden)
Henk Struwig
2012-03-01
Research purpose: The purpose of the research was to produce a set of theoretical assumptions about organisational boundaries and boundary management in organisations and, from these, to develop a set of hypotheses as a thinking framework for practising consulting psychologists when they work with boundaries from a systems psychodynamic stance. Motivation for the study: The researcher used the belief that organisational boundaries reflect the essence of organisations. Consulting to boundary managers could facilitate a deep understanding of organisational dynamics. Research design, approach and method: The researcher followed a case study design. He used systems psychodynamic discourse analysis. It led to six working hypotheses. Main findings: The primary task of boundary management is to hold the polarities of integration and differentiation and not allow the system to become fragmented or overly integrated. Boundary management is a primary task and an ongoing activity of entire organisations. Practical/managerial implications: Organisations should work actively at effective boundary management and at balancing integration and differentiation. Leaders should become aware of how effective boundary management leads to good holding environments that, in turn, lead to containing difficult emotions in organisations. Contribution/value-add: The researcher provided a boundary-consulting framework in order to assist consultants to balance the conceptual with the practical when they consult.
The evolution of disorientations for several types of boundaries
DEFF Research Database (Denmark)
Pantleon, W.
2001-01-01
During plastic deformation dislocation boundaries appear separating regions of different orientation. A model for the occurrence of disorientations across these boundaries is proposed and discussed with emphasis on several types of boundaries. For incidental dislocation boundaries a statistical...
Directory of Open Access Journals (Sweden)
Syahira Mansur
2014-01-01
Full Text Available The magnetohydrodynamic (MHD boundary layer flow of a nanofluid past a stretching/shrinking sheet with velocity, thermal, and solutal slip boundary conditions is studied. Numerical solutions to the governing equations were obtained using a shooting method. The skin friction coefficient and the local Sherwood number increase as the stretching/shrinking parameter increases. However, the local Nusselt number decreases with increasing the stretching/shrinking parameter. The range of the stretching/shrinking parameter for which the solution exists increases as the velocity slip parameter and the magnetic parameter increase. For the shrinking sheet, the skin friction coefficient increases as the velocity slip parameter and the magnetic parameter increase. For the stretching sheet, it decreases when the velocity slip parameter and the magnetic parameter increase. The local Nusselt number diminishes as the thermal slip parameter increases while the local Sherwood number decreases with increasing the solutal slip parameter. The local Nusselt number is lower for higher values of Lewis number, Brownian motion parameter, and thermophoresis parameter.
Riley, Zachary Bryce
The use of thin-gauge, light-weight structures in combination with the severe aero-thermodynamic loading makes reusable hypersonic cruise vehicles prone to fluid-thermal-structural interactions. These interactions result in surface perturbations in the form of temperature changes and deformations that alter the stability and eventual transition of the boundary layer. The state of the boundary layer has a significant effect on the aerothermodynamic loads acting on a hypersonic vehicle. The inherent relationship between boundary-layer stability, aerothermodynamic loading, and surface conditions make the interaction between the structural response and boundary-layer transition an important area of study in high-speed flows. The goal of this dissertation is to examine the interaction between boundary layer transition and the response of aerothermally compliant structures. This is carried out by first examining the uncoupled problems of: (1) structural deformation and temperature changes altering boundary-layer stability and (2) the boundary layer state affecting structural response. For the former, the stability of boundary layers developing over geometries that typify the response of surface panels subject to combined aerodynamic and thermal loading is numerically assessed using linear stability theory and the linear parabolized stability equations. Numerous parameters are examined including: deformation direction, deformation location, multiple deformations in series, structural boundary condition, surface temperature, the combined effect of Mach number and altitude, and deformation mode shape. The deformation-induced pressure gradient alters the boundary-layer thickness, which changes the frequency of the most-unstable disturbance. In regions of small boundary-layer growth, the disturbance frequency modulation resulting from a single or multiple panels deformed into the flowfield is found to improve boundary-layer stability and potentially delay transition. For the
Outer Magnetospheric Boundaries Cluster Results
Paschmann, Goetz; Schwartz, S J
2006-01-01
When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning ...
Plasma transport near material boundaries
International Nuclear Information System (INIS)
Singer, C.E.
1985-06-01
The fluid theory of two-dimensional (2-d) plasma transport in axisymmetric devices is reviewed. The forces which produce flow across the magnetic field in a collisional plasma are described. These flows may lead to up-down asymmetries in the poloidal rotation and radial fluxes. Emphasis is placed on understanding the conditions under which the known 2-d plasma fluid equations provide a valid description of these processes. Attempts to extend the fluid treatment to less collisional, turbulent plasmas are discussed. A reduction to the 1-d fluid equations used in many computer simulations is possible when sources or boundary conditions provide a large enough radial scale length. The complete 1-d fluid equations are given in the text, and 2-d fluid equations are given in the Appendix
Separation control on curved boundaries
Kamal Kumar, R.; Mathur, Manikandan
2017-11-01
Flow separation and its characteristics are an important consideration in the field of bluff body aerodynamics. Specifically, the location and slope of the separation, and the size of the re-circulation bubble that forms downstream of the bluff body significantly affect the resulting aerodynamic forces. Recent theories based on dynamical systems (Haller, 2004) have established criteria based on wall-based quantities that identify the location and slope of separation in unsteady flows. In this work, we adapt the closed-loop separation control algorithm proposed by Alam, Liu & Haller (2006) to curved boundaries, and demonstrate the effectiveness of the same via numerical simulations on the flow past a cylinder in the vortex-shedding regime. Using appropriately placed wall-based actuators that use inputs from shear stress sensors placed between the actuators, we demonstrate that the separation characteristics including the re-circulation bubble length, can be desirably modified.
the Martian atmospheric boundary layer
DEFF Research Database (Denmark)
Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling
2011-01-01
The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...... atmosphere. To date, this region of the atmosphere has been studied directly, by instrumented lander spacecraft, and from orbital remote sensing, though not to the extent that is necessary to fully constrain its character and behavior. Current data strongly suggest that as for the Earth's PBL, classical...... of the modeling techniques used for the PBL on Earth are also being applied to the Martian PBL, including novel uses of very high resolution large eddy simulation methods. We conclude with those aspects of the PBL that require new measurements in order to constrain models and discuss the extent to which...
Ludu, Andrei
2016-01-01
The central theme of this book is the extent to which the structure of the free dynamical boundaries of a system controls the evolution of the system as a whole. Applying three orthogonal types of thinking - mathematical, constructivist and morphological, it illustrates these concepts using applications to selected problems from the social and life sciences, as well as economics. In a broader context, it introduces and reviews some modern mathematical approaches to the science of complex systems. Standard modeling approaches (based on non-linear differential equations, dynamic systems, graph theory, cellular automata, stochastic processes, or information theory) are suitable for studying local problems. However they cannot simultaneously take into account all the different facets and phenomena of a complex system, and new approaches are required to solve the challenging problem of correlations between phenomena at different levels and hierarchies, their self-organization and memory-evolutive aspects, the grow...
Exploring the magnetospheric boundary layer
International Nuclear Information System (INIS)
Hapgood, M.A.; Bryant, D.A.
1992-01-01
We show how, for most crossings of the boundary layer, one can construct a 'transition parameter', based on electron density and temperature, which orders independent plasma measurements into well-defined patterns which are consistent from case to case. We conclude that there is a gradual change in the balance of processes which determine the structure of the layer and suggest that there is no advantage in dividing the layer into different regions. We further conclude that the mixing processes in layer act in an organised way to give the consistent patterns revealed by the transition parameter. More active processes must sometimes take to give the extreme values (e.g. in velocity) which are seen in some crossings
Conel, J. E.
1975-01-01
A computer program (Program SPHERE) solving the inhomogeneous equation of heat conduction with radiation boundary condition on a thermally homogeneous sphere is described. The source terms are taken to be exponential functions of the time. Thermal properties are independent of temperature. The solutions are appropriate to studying certain classes of planetary thermal history. Special application to the moon is discussed.
Seasonal thermal energy storage
Energy Technology Data Exchange (ETDEWEB)
Allen, R.D.; Kannberg, L.D.; Raymond, J.R.
1984-05-01
This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.
Boundary layers of the earth's outer magnetosphere
Eastman, T. E.; Frank, L. A.
1984-01-01
The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.
Quantitative Characterization of Boundary Roughness in Metals
DEFF Research Database (Denmark)
Sun, Jun
variable to obtain information of local structural variations such as protrusions and retrusions formed on recrystallization boundaries. The AII value is directionindependent allowing unbiased characterization of morphological irregularities with both closed and non-closed boundary profiles. The length...... structural aspects into account, a detailed characterization is essential of partly recrystallized microstructures focusing on the local shapes of the boundaries, in particular on whether protrusions and retrusions are formed or not. Quantification of the “amount” of boundary roughness in the form...... scale at which the rough features are characterized is determined by a parameter termed sampling radius used to measure the AII values. A number of roughness parameters are developed based on the AII dataset for a boundary or boundary segment, whose local morphological characteristics are represented...
Hamiltonian boundary term and quasilocal energy flux
International Nuclear Information System (INIS)
Chen, C.-M.; Nester, James M.; Tung, R.-S.
2005-01-01
The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasilocal values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasilocal energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasilocal energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasilocal expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant
Absorption boundary conditions for geomertical acoustics
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2012-01-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... on which boundary condition produces the best results. In this study, various boundary conditions in terms of normal and random incidence absorption coefficients, and normal incidence surface impedances are used in a phased beam tracing model, and simulated results are validated with boundary element...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....
Quantum walk with one variable absorbing boundary
Energy Technology Data Exchange (ETDEWEB)
Wang, Feiran [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Pei, E-mail: zhangpei@mail.ustc.edu.cn [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli [Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China)
2017-01-15
Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.
Grain boundary segregation and intergranular failure
International Nuclear Information System (INIS)
White, C.L.
1980-01-01
Trace elements and impurities often segregate strongly to grain boundaries in metals and alloys. Concentrations of these elements at grain boundaries are often 10 3 to 10 5 times as great as their overall concentration in the alloy. Because of such segregation, certain trace elements can exert a disproportionate influence on material properties. One frequently observed consequence of trace element segregation to grain boundaries is the occurrence of grain boundary failure and low ductility. Less well known are incidences of improved ductility and inhibition of grain boundary fracture resulting from trace element segregation to grain boundaries in certain systems. An overview of trace element segregation and intergranular failure in a variety of alloy systems as well as preliminary results from studies on Al 3% Li will be presented
Kot, V. A.
2017-11-01
The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.
The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes.
Jellinek, A Mark; Manga, Michael
2002-08-15
Seismological observations provide evidence that the lowermost mantle contains superposed thermal and compositional boundary layers that are laterally heterogeneous. Whereas the thermal boundary layer forms as a consequence of the heat flux from the Earth's outer core, the origin of an (intrinsically dense) chemical boundary layer remains uncertain. Observed zones of 'ultra-low' seismic velocity suggest that this dense layer may contain metals or partial melt, and thus it is reasonable to expect the dense layer to have a relatively low viscosity. Also, it is thought that instabilities in the thermal boundary layer could lead to the intermittent formation and rise of mantle plumes. Flow into ascending plumes can deform the dense layer, leading, in turn, to its gradual entrainment. Here we use analogue experiments to show that the presence of a dense layer at the bottom of the mantle induces lateral variations in temperature and viscosity that, in turn, determine the location and dynamics of mantle plumes. A dense layer causes mantle plumes to become spatially fixed, and the entrainment of low-viscosity fluid enables plumes to persist within the Earth for hundreds of millions of years.
Boundary and initial conditions in protostar calculations
International Nuclear Information System (INIS)
Disney, M.J.
1976-01-01
On first fragmentation protostars probably form part of a larger protocluster cloud already in a state of dynamic collapse. In that case it is argued that the protostar boundary is initially collapsing at supersonic speed relative to the core. This prevents information from the boundary reaching the core and calls into question models like Larson's, which start homogeneously but become centrally condensed due to the propagation of a rarefaction wave from the boundary. (author)
Reaction diffusion equations with boundary degeneracy
Directory of Open Access Journals (Sweden)
Huashui Zhan
2016-03-01
Full Text Available In this article, we consider the reaction diffusion equation $$ \\frac{\\partial u}{\\partial t} = \\Delta A(u,\\quad (x,t\\in \\Omega \\times (0,T, $$ with the homogeneous boundary condition. Inspired by the Fichera-Oleinik theory, if the equation is not only strongly degenerate in the interior of $\\Omega$, but also degenerate on the boundary, we show that the solution of the equation is free from any limitation of the boundary condition.
Lu, Zexi; Wang, Yan; Ruan, Xiulin
2018-02-01
Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.
Boundary denoising for open surface meshes
Lee, Wei Zhe; Lim, Wee Keong; Soo, Wooi King
2013-04-01
Recently, applications of open surfaces in 3D have emerged to be an interesting research topic due to the popularity of range cameras such as the Microsoft Kinect. However, surface meshes representing such open surfaces are often corrupted with noises especially at the boundary. Such deformity needs to be treated to facilitate further applications such as texture mapping and zippering of multiple open surface meshes. Conventional methods perform denoising by removing components with high frequencies, thus smoothing the boundaries. However, this may result in loss of information, as not all high frequency transitions at the boundaries correspond to noises. To overcome such shortcoming, we propose a combination of local information and geometric features to single out the noises or unusual vertices at the mesh boundaries. The local shape of the selected mesh boundaries regions, characterized by the mean curvature value, is compared with that of the neighbouring interior region. The neighbouring interior region is chosen such that it is the closest to the corresponding boundary region, while curvature evaluation is independent of the boundary. The smoothing processing is done via Laplacian smoothing with our modified weights to reduce boundary shrinkage. The evaluation of the algorithm is done by noisy meshes generated from controlled model clean meshes. The Hausdorff distance is used as the measurement between the meshes. We show that our method produces better results than conventional smoothing of the whole boundary loop.
Detonation Shock Dynamics Modelling with Arbitrary Boundaries
Hodgson, Alexander
2017-06-01
The Detonation Shock Dynamics (DSD) model can be used to predict detonation wave propagation in a high explosive (HE). The detonation wave is prescribed a velocity that depends on its curvature. Additionally, the angle between the wave and the HE boundary may not exceed a specified ``boundary angle'', the value of which depends on the HE and its confining material(s). The level-set method is commonly used to drive DSD computation. Boundary conditions are applied to the level-set field at the charge edges to maintain the explosive boundary angle criteria. The position of the boundary must be accurate and continuous across adjacent cells to achieve accurate and robust results. This is mainly an issue for mixed material meshes where the boundary does not coincide with the cell boundaries. For such meshes, a set of volume fractions defines the amount of material in each cell. The boundary is defined implicitly by the volume fractions, and must be reconstructed to an explicit form for use in DSD. This work describes a novel synthesis of the level-set method and simulated annealing, an optimisation method used to reconstruct the boundary. The accuracy and robustness of the resulting DSD calculation are evaluated with a range of test problems.
Gauge Fields as Composite Boundary Excitations
Ferrara, Sergio; Ferrara, Sergio; Fronsdal, Christian
1998-01-01
We investigate representations of the conformal group that describe "massless" particles in the interior and at the boundary of anti-de Sitter space. It turns out that massless gauge excitations in anti-de Sitter are gauge "current" operators at the boundary. Conversely, massless excitations at the boundary are topological singletons in the interior. These representations lie at the threshold of two "unitary bounds" that apply to any conformally invariant field theory. Gravity and Yang-Mills gauge symmetry in anti-De Sitter is translated to global translational symmetry and continuous R-symmetry of the boundary superconformal field theory.
Boundary conditions in random sequential adsorption
Cieśla, Michał; Ziff, Robert M.
2018-04-01
The influence of different boundary conditions on the density of random packings of disks is studied. Packings are generated using the random sequential adsorption algorithm with three different types of boundary conditions: periodic, open, and wall. It is found that the finite size effects are smallest for periodic boundary conditions, as expected. On the other hand, in the case of open and wall boundaries it is possible to introduce an effective packing size and a constant correction term to significantly improve the packing densities.
Experimental investigation of wave boundary layer
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2003-01-01
A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...
Diffusion mechanisms in grain boundaries in solids
International Nuclear Information System (INIS)
Peterson, N.L.
1982-01-01
A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures
Comparing Evaluation Metrics for Sentence Boundary Detection
National Research Council Canada - National Science Library
Liu, Yang; Shriberg, Elizabeth
2007-01-01
.... This paper compares alternative evaluation metrics including the NIST error rate, classification error rate per word boundary, precision and recall, ROC curves, DET curves, precision-recall curves...
From boundaries to boundary work: middle managers creating inter-organizational change.
Oldenhof, Lieke; Stoopendaal, Annemiek; Putters, Kim
2016-11-21
Purpose In healthcare, organizational boundaries are often viewed as barriers to change. The purpose of this paper is to show how middle managers create inter-organizational change by doing boundary work: the dual act of redrawing boundaries and coordinating work in new ways. Design/methodology/approach Theoretically, the paper draws on the concept of boundary work from Science and Technology Studies. Empirically, the paper is based on an ethnographic investigation of middle managers that participate in a Dutch reform program across health, social care, and housing. Findings The findings show how middle managers create a sense of urgency for inter-organizational change by emphasizing "fragmented" service provision due to professional, sectoral, financial, and geographical boundaries. Rather than eradicating these boundaries, middle managers change the status quo gradually by redrawing composite boundaries. They use boundary objects and a boundary-transcending vocabulary emphasizing the need for societal gains that go beyond production targets of individual organizations. As a result, work is coordinated in new ways in neighborhood teams and professional expertise is being reconfigured. Research limitations/implications Since boundary workers create incremental change, it is necessary to follow their work for a longer period to assess whether boundary work contributes to paradigm change. Practical implications Organizations should pay attention to conditions for boundary work, such as legitimacy of boundary workers and the availability of boundary spaces that function as communities of practice. Originality/value By shifting the focus from boundaries to boundary work, this paper gives valuable insights into "how" boundaries are redrawn and embodied in objects and language.
Thermal conductivity of zirconia thermal barrier coatings
Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.
1995-01-01
Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C
Multiscale Modeling of UHTC: Thermal Conductivity
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Directory of Open Access Journals (Sweden)
Jawad Ahmed
Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions
Model of subgrain boundaries formation in matrix of M-MeC eutedtic alloys
International Nuclear Information System (INIS)
Bokshtejn, S.Z.; Vasilenok, L.B.; Kishkin, S.T.; Razumovskij, I.M.
1982-01-01
A model of subgrain boundary formation and, therefore, formation of substructure in matrix of M-MeC alloy prepared by the method of directed crystallization where M-nickel-base or cobalt-base solid solution, MeC-carbide of tantalum, niobium and hafnium is suggested. The model is based on the concept of dislocation replacement from interfaces into the matrix volume. It is stated that an essential difference of thermal expansion coefficients, a definite ratio of lattice periods of hardening phase and matrix and the presence of a dislocation network on the interface of ordered phases are the important factors determining a possibility of subgrain boundary formation
Infinite-Dimensional Boundary Observer for Lithium-Ion Battery State Estimation
DEFF Research Database (Denmark)
Hasan, Agus; Jouffroy, Jerome
2017-01-01
This paper presents boundary observer design for state-of-charge (SOC) estimation of lithium-ion batteries. The lithium-ion battery dynamics are governed by thermal-electrochemical principles, which mathematically modeled by partial differential equations (PDEs). In general, the model is a reaction......-diffusion equation with time-dependent coefficients. A Luenberger observer is developed using infinite-dimensional backstepping method and uses only a single measurement at the boundary of the battery. The observer gains are computed by solving the observer kernel equation. A numerical example is performed to show...
Louisiana Territorial Boundary, Geographic NAD83, LDOTD (1999) [state_boundary_la_LDOTD_1999
Louisiana Geographic Information Center — The dataset defines the state 'territorial' boundary of Louisiana. The state boundary extends 3 miles out into the Gulf of Mexico from the coastline. This data set...
Boettcher, Philipp Andreas
Accidental ignition of flammable gases is a critical safety concern in many industrial applications. Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more accurate test methods and standards as a means of designing safer air vehicles. The focus of this work is thermal ignition, particularly auto-ignition with emphasis on the effect of heating rate, hot surface ignition and flame propagation, and puffing flames. Combustion of hydrocarbon fuels is traditionally separated into slow reaction, cool flame, and ignition regimes based on pressure and temperature. Standard tests, such as the ASTM E659, are used to determine the lowest temperature required to ignite a specific fuel mixed with air at atmospheric pressure. It is expected that the initial pressure and the rate at which the mixture is heated also influences the limiting temperature and the type of combustion. This study investigates the effect of heating rate, between 4 and 15 K/min, and initial pressure, in the range of 25 to 100 kPa, on ignition of n-hexane air mixtures. Mixtures with equivalence ratio ranging from 0.6 to 1.2 were investigated. The problem is also modeled computationally using an extension of Semenov's classical auto-ignition theory with a detailed chemical mechanism. Experiments and simulations both show that in the same reactor either a slow reaction or an ignition event can take place depending on the heating rate. Analysis of the detailed chemistry demonstrates that a mixture which approaches the ignition region slowly undergoes a significant modification of its composition. This change in composition induces a progressive shift of the explosion limit until the mixture is no longer flammable. A mixture that approaches the ignition region
Boundary Conditions of Methamphetamine Craving
Lopez, Richard B.; Onyemekwu, Chukwudi; Hart, Carl L.; Ochsner, Kevin N.; Kober, Hedy
2015-01-01
Methamphetamine use has increased significantly and become a global health concern. Craving is known to predict methamphetamine use and relapse following abstinence. Some have suggested that cravings are automatic, generalized, and uncontrollable, but experimental work addressing these claims is lacking. In two exploratory studies we tested the boundary conditions of methamphetamine craving by asking: (1) is craving specific to users’ preferred route of administration? and (2) can craving be regulated by cognitive strategies? Two groups of methamphetamine users were recruited. In Study 1, participants were grouped by their preferred route of administration (intranasal vs. smoking), and rated their craving in response to photographs and movies depicting methamphetamine use (via the intranasal vs. smoking route). In Study 2, methamphetamine smokers implemented cognitive regulation strategies while viewing photographs depicting methamphetamine smoking. Strategies involved either focusing on the positive aspects of smoking methamphetamine or the negative consequences of doing so – the latter strategy based on treatment protocols for addiction. In Study 1, we found a significant interaction between group and route of administration, such that participants who preferred to smoke methamphetamine reported significantly stronger craving for smoking stimuli, whereas those who preferred the intranasal route reported stronger craving for intranasal stimuli. In Study 2, participants reported significantly lower craving when focusing on the negative consequences associated with methamphetamine use. Taken together, these findings suggest that strength of craving for methamphetamine is moderated by users’ route of administration and can be reduced by cognitive strategies. This has important theoretical, methodological, and clinical implications. PMID:26302338
A note on Weak Stability Boundaries
García González, Fernando; Gómez Muntané, Gerard
2006-01-01
This paper is devoted to clarify the algorithmic definition of the weak stability boundary in the framework of the planar Restricted Three Body Problem. The role of the invariant hyperbolic manifolds associated to the central manifolds of the libration points L1 and L2, as boundary of the weak stability region, is shown Peer Reviewed
Millennial Values and Boundaries in the Classroom
Espinoza, Chip
2012-01-01
Students' relationships with authority and information are changing rapidly, and this presents a new set of interpersonal boundary challenges for faculty. The topic of setting boundaries often conjures up thoughts of how to protect oneself. The intent of this chapter is to explore how good rapport between teacher and student can be developed and…
Population models with nonlinear boundary conditions
Directory of Open Access Journals (Sweden)
Jerome Goddard
2010-09-01
Full Text Available We study a two point boundary-value problem describing the steady states of a Logistic growth population model with diffusion and constant yield harvesting. In particular, we focus on a model when a certain nonlinear boundary condition is satisfied.
Transgressions and Transcendence: Surpassing Disciplinary Boundaries.
Wughalter, Emily H.
2002-01-01
Discusses how women such as Amy Morris Homans, Susan B. Anthony, Elizabeth Cady Stanton, and Mary Wollstonecraft transgressed boundaries, allowing others to transcend old boundary limitations in physical education, examining the Boston Normal School of Gymnastics established for training women as directors of physical education over 100 years ago…
Crossing Boundaries in Global Software Development
DEFF Research Database (Denmark)
Søderberg, Anne-Marie; Romani, Laurence
across cultures, languages, organizational boundaries, time zones and geographical distances. The paper revises a framework of boundary spanning leadership practices developed for MNCs and adapts it to an offshore outsourcing context. It also contributes with reflections on how imbalances of resources...
The transactional approach in company boundaries
Directory of Open Access Journals (Sweden)
Bruno Chaihuaque Dueñas
2009-12-01
Full Text Available This article shows the relationship between market and firms through the theory of transactional cost and the relationsthat determine the structure and boundaries of the firm. Using the assumptions from the transactional cost approach,this article proposes some variables that determine optimal organizational structures and their boundaries.
Modelling stable atmospheric boundary layers over snow
Sterk, H.A.M.
2015-01-01
Thesis entitled:
Modelling Stable Atmospheric Boundary Layers over Snow
H.A.M. Sterk
Wageningen, 29th of April, 2015
Summary
The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs
Boundary Management for Cognitive Behavioral Therapies
Gottlieb, Michael C.; Younggren, Jeffrey N.; Murch, Kevin B.
2009-01-01
In recent years, the scholarship regarding professional boundaries has increased significantly in a variety of areas. Despite many advances in this line of research, less attention has been devoted to the question of boundary maintenance and its relationship to theoretical orientation. In this article we examine these issues for…
Soliton equations solved by the boundary CFT
Saito, Satoru; Sato, Ryuichi
2003-01-01
Soliton equations are derived which characterize the boundary CFT a la Callan et al. Soliton fields of classical soliton equations are shown to appear as a neutral bound state of a pair of soliton fields of BCFT. One soliton amplitude under the influence of the boundary is calculated explicitly and is shown that it is frozen at the Dirichlet limit.
Boundary migration during recrystallization: experimental observations
DEFF Research Database (Denmark)
Zhang, Yubin; Juul Jensen, Dorte
2015-01-01
Quantitative analysis of boundary migration during recrystallization is a key task to understand the recrystallization process and to improve recrystallization models. In the last 25-30 years, quantification of boundary migration has mostly been conducted in term of average growth rates in many m...
2010-01-01
... cutting across the heads of Nitnat, Juan de Fuca and Quinault Canyons. The coastal boundary of the Sanctuary is the mean higher high water line when adjacent to Federally managed lands cutting across the... from the Sanctuary boundary shoreward of the International Collision at Sea regulation (Colreg...
Modelling stable atmospheric boundary layers over snow
Sterk, H.A.M.
2015-01-01
Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar
Hierarchies of DIFFdifference boundary value problems II ...
African Journals Online (AJOL)
Hierarchies of DIFFdifference boundary value problems II - applications. ... In particular, we studied the effect of applying a Crum-type transformation to a weighted second order difference equation with general -dependent boundary conditions at the end points, for eigenparameter λ. In this paper we demonstrate by means ...
Professional boundary violations: a literature review.
Manfrin-Ledet, Linda; Porche, Demetrius J; Eymard, Amanda S
2015-06-01
The purpose of this article is to review the nursing literature related to professional boundary violations in nursing. A search was conducted using CINAHL, MEDLINE, Ebscohost, and NCSBN. The key words searched were professional boundaries, boundary violation, boundary crossings, nurse, home health nurses, and home nursing. The search returned over 40 publications related specifically to boundary violations and nursing although only four of them are published research studies and one as a dissertation. Seven common characteristics emerged from the nonresearch nursing articles on professional boundaries: (1) Dual relations/role reversal, (2) Gifts and money, (3) Excessive self-disclosure, (4) Secretive behavior, (5) Excessive attention/overinvolvement, (6) Sexual behavior, and (7) Social media. Additional nursing research is greatly needed in the area of professional boundaries. The nurse-patient relationship should always be maintained for the benefit of the patient and not the personal gain of the nurse. Ongoing education in nursing practice regarding professional boundaries is needed. Nurses need to be mindful of state practice acts, codes of conduct, and employer policies.
Prior Information in Inverse Boundary Problems
DEFF Research Database (Denmark)
Garde, Henrik
the change in distinguishability of inclusions (support of an inhomogeneity) as they are placed closer towards the measurement boundary. This is done by determining eigenvalue bounds for differences of pseudodifferential operators on the boundary of the domain. Ultimately, the bounds serves as insight...
Theraputic relationship versus boundary transgressions: Lessons for ...
African Journals Online (AJOL)
No therapy exists in a vacuum. It involves striking relationship between the therapists and clients. Such relationships are relationships of trust and are therefore meant to be maintained religiously by adhering strictly to ethnical codes of conduct. However, most times, boundary transgression are inevitable. While boundary ...
Western boundary currents and climate change
Seager, Richard; Simpson, Isla R.
2016-09-01
A recent paper in Journal of Geophysical Research-Oceans connects recent changes in atmospheric circulation to poleward movement and intensification of western boundary currents. Causes and characteristics of past and future trends in surface wind stress and western boundary currents are discussed here.
Recent advances in boundary element methods
Manolis, GD
2009-01-01
Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).
Classical BV theories on manifolds with boundary
Cattaneo, A.S.; Mnev, P.; Reshetikhin, N.
2014-01-01
In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with
Assessing housing growth when census boundaries change
Alexandra D. Syphard; Susan I. Stewart; Jason McKeefry; Roger B. Hammer; Jeremy S. Fried; Sherry Holcomb; Volker C. Radeloff
2009-01-01
The US Census provides the primary source of spatially explicit social data, but changing block boundaries complicate analyses of housing growth over time. We compared procedures for reconciling housing density data between 1990 and 2000 census block boundaries in order to assess the sensitivity of analytical methods to estimates of housing growth in Oregon. Estimates...
Flexibility of Event Boundaries in Autobiographical Memory
Hohman, Timothy J.; Peynircioğlu, Zehra F.; Beason-Held, Lori L.
2014-01-01
Events have clear and consistent boundaries that are defined during perception in a manner that influences memory performance. The natural process of event segmentation shapes event definitions during perception, and appears to play a critical role in defining distinct episodic memories at encoding. However, the role of retrieval processes in modifying event definitions is not clear. We explored how such processes changed event boundary definitions at recall. In Experiment 1 we showed that distance from encoding is related to boundary flexibility. Participants were more likely to move self-reported event boundaries to include information reported beyond those boundaries when recalling more distant events compared to more recent events. In Experiment 2, we showed that age also influenced boundary flexibility. Older Age adults were more likely to move event boundaries than College Age adults, and the relationship between distance from encoding and boundary flexibility seen in Experiment 1 was present only in College Age and Middle Age adults. These results suggest that factors at retrieval have a direct impact on event definitions in memory and that, although episodic memories may be initially defined at encoding, these definitions are not necessarily maintained in long-term memory. PMID:22989194
The boundary characteristics of lucid dreamers.
Galvin, F
1990-06-01
Based on the previously established personality correlates of frequent lucid dreaming and frequent nightmare dreaming, several hypotheses were generated regarding the boundary characteristics of these dreamers relative to each other and to a control group of non-lucid and comparatively nightmare-free dreamers. The data from Hartmann's Boundary Questionnaire obtained from 40 subjects in each dreamer group (who were individually matched for sex, age, and background as far as possible) were analyzed. The results of the study give evidence that lucid dreamers have "thin" boundaries in many of the same senses that nightmare sufferers do, but can be differentiated from nightmare dreamers by the greater degree of coherence of their psychological sense of self as measured on the Self-Coherence Subscale of the Boundary Questionnaire. The suggestion is made that, given the similarity of "thin" boundaries, perhaps nightmare sufferers could become lucid dreamers and possibly resolve their nightmare condition while in the dream state.
Boundary conditions for the gravitational field
International Nuclear Information System (INIS)
Winicour, Jeffrey
2012-01-01
A review of the treatment of boundaries in general relativity is presented with the emphasis on application to the formulations of Einstein's equations used in numerical relativity. At present, it is known how to treat boundaries in the harmonic formulation of Einstein's equations and a tetrad formulation of the Einstein-Bianchi system. However, a universal approach valid for other formulations is not in hand. In particular, there is no satisfactory boundary theory for the 3+1 formulations which have been highly successful in binary black hole simulation. I discuss the underlying problems that make the initial-boundary-value problem much more complicated than the Cauchy problem. I review the progress that has been made and the important open questions that remain. Science is a differential equation. Religion is a boundary condition. (Alan Turing, quoted in J D Barrow, 'Theories of Everything') (topical review)
BSLIC: SLIC Superpixels Based on Boundary Term
Directory of Open Access Journals (Sweden)
Hai Wang
2017-02-01
Full Text Available A modified method for better superpixel generation based on simple linear iterative clustering (SLIC is presented and named BSLIC in this paper. By initializing cluster centers in hexagon distribution and performing k-means clustering in a limited region, the generated superpixels are shaped into regular and compact hexagons. The additional cluster centers are initialized as edge pixels to improve boundary adherence, which is further promoted by incorporating the boundary term into the distance calculation of the k-means clustering. Berkeley Segmentation Dataset BSDS500 is used to qualitatively and quantitatively evaluate the proposed BSLIC method. Experimental results show that BSLIC achieves an excellent compromise between boundary adherence and regularity of size and shape. In comparison with SLIC, the boundary adherence of BSLIC is increased by at most 12.43% for boundary recall and 3.51% for under segmentation error.
Boundary Hamiltonian Theory for Gapped Topological Orders
Hu, Yuting; Wan, Yidun; Wu, Yong-Shi
2017-06-01
We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.