WorldWideScience

Sample records for thermal cross section

  1. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  2. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2003-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te, 124 Te, 125 Te, 126 Te, 128 Te, and 130 Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  3. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  4. Thermal neutron capture cross sections of tellurium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  5. Sensitivity of LWR fuel cycle costs to uncertainties in detailed thermal cross sections

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Becker, M.; Harris, D.R.

    1979-01-01

    Cross sections averaged over the thermal energy (< 1 or 2 eV) group have been shown to have an important economic role for light-water reactors. Cost implications of thermal cross section uncertainties at the few-group level were reported earlier. When it has been determined that costs are sensitive to a specific thermal-group cross section, it becomes desirable to determine how specific energy-dependent cross sections influence fuel cycle costs. Multigroup cross-section sensitivity coefficients vary with fuel exposure. By changing the shape of a cross section displayed on a view-tube through an interactive graphics system, one can compute the change in few-group cross section using the exposure dependent sensitivity coefficients. With the changed exposure dependent few-group cross section, a new fuel cycle cost is computed by a sequence of batch depletion, core analysis, and fuel batch cost code modules. Fuel cycle costs are generally most sensitive to cross section uncertainties near the peak of the hardened Maxwellian flux

  6. Thermal neutron cross section measurements for technetium-99

    International Nuclear Information System (INIS)

    Yates, M.A.; Schroeder, N.C.; Fowler, M.M.

    1993-01-01

    Technetium, because of its long half-like (213,000 years) and ability to migrate in the environment, is a primary contributor to the long-term radioactivity related risk associated with geologic nuclear waste disposal. One proposal for converting technetium to an environmentally benign element investigating transmutation with an accelerator-based system, (i.e., Accelerator Transmutation of Waste, ATW). Planning for efficient processing of technetium through the transmuter will require knowledge of the thermal neutron cross section for the 99 Tc (n,γ) 100 Tc reaction. The authors have recently remeasured this cross section. Weighed aliquots (19-205 μg) of a NIST traceable 99 Tc standard were irradiated for 30-150 sec using the pneumatic open-quotes rabbitclose quotes system of LANL's Omega West Reactor. The two gamma rays from the 15.7-sec half-life product were measured immediately after irradiation on a high-resolution Ge detector. Thermal fluxes were measured using gold foils and Cd wrapped gold foils. The observation cross section is 19 ± 1 b. This agrees well with the 1977 value but has half the uncertainty

  7. Thermal capture cross section for 58Ni (n,γ)59 Ni reaction

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1989-01-01

    The 58 Ni total thermal capture cross section was determined by suming the partial cross sections calculated for the primary transitions of the reaction 58 Ni (n,γ) 59 Ni. The primary transitions energies and intensities were determined from the 58 Ni thermal neutrons prompt gamma capture gamma rays spectrum in the 3.7 to 9.3 MeV region. The obtained value for the total cross section was 4.52 + 0.10b. (author) [pt

  8. Thermal neutron absorption cross section of small samples

    International Nuclear Information System (INIS)

    Nghiep, T.D.; Vinh, T.T.; Son, N.N.; Vuong, T.V.; Hung, N.T.

    1989-01-01

    A modified steady method for determining the macroscopic thermal neutron absorption cross section of small samples 500 cm 3 in volume is described. The method uses a moderating block of paraffin, Pu-Be neutron source emitting 1.1x10 6 n.s. -1 , SNM-14 counter and ordinary counting equipment. The interval of cross section from 2.6 to 1.3x10 4 (10 -3 cm 2 g -1 ) was measured. The experimental data are described by calculation formulae. 7 refs.; 4 figs

  9. INTER, ENDF/B Thermal Cross-Sections, Resonance Integrals, G-Factors Calculation

    International Nuclear Information System (INIS)

    Dunford, Charles L.

    2007-01-01

    1 - Description of program or function: INTER calculates thermal cross sections, g-factors, resonance integrals, fission spectrum averaged cross sections and 14.0 MeV (or other energy) cross sections for major reactions in an ENDF-6 or ENDF-5 format data file. Version 7.01 (Jan 2005): set success flag after return from beginning. 2 - Method of solution: INTER performs integrations by using the trapezoidal rule

  10. Measurement of thermal neutron capture cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong

    2001-01-01

    The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  11. Thermal neutron scattering cross sections of beryllium and magnesium oxides

    International Nuclear Information System (INIS)

    Al-Qasir, Iyad; Jisrawi, Najeh; Gillette, Victor; Qteish, Abdallah

    2016-01-01

    Highlights: • Neutron thermalization in BeO and MgO was studied using Ab initio lattice dynamics. • The BeO phonon density of states used to generate the current ENDF library has issues. • The BeO cross sections can provide a more accurate ENDF library than the current one. • For MgO an ENDF library is lacking: a new accurate one can be built from our results. • BeO is a better filter than MgO, especially when cooled down to 77 K. - Abstract: Alkaline-earth beryllium and magnesium oxides are fundamental materials in nuclear industry and thermal neutron scattering applications. The calculation of the thermal neutron scattering cross sections requires a detailed knowledge of the lattice dynamics of the scattering medium. The vibrational properties of BeO and MgO are studied using first-principles calculations within the frame work of the density functional perturbation theory. Excellent agreement between the calculated phonon dispersion relations and the experimental data have been obtained. The phonon densities of states are utilized to calculate the scattering laws using the incoherent approximation. For BeO, there are concerns about the accuracy of the phonon density of states used to generate the current ENDF/B-VII.1 libraries. These concerns are identified, and their influences on the scattering law and inelastic scattering cross section are analyzed. For MgO, no up to date thermal neutron scattering cross section ENDF library is available, and our results represent a potential one for use in different applications. Moreover, the BeO and MgO efficiencies as neutron filters at different temperatures are investigated. BeO is found to be a better filter than MgO, especially when cooled down, and cooling MgO below 77 K does not significantly improve the filter’s efficiency.

  12. Thermal neutron capture cross section for the K isomer 177Lum

    International Nuclear Information System (INIS)

    Belier, G.; Roig, O.; Daugas, J.-M.; Giarmana, O.; Meot, V.; Letourneau, A.; Marie, F.; Foucher, Y.; Aupiais, J.; Abt, D.; Jutier, Ch.; Le Petit, G.; Bettoni, C.; Gaudry, A.; Veyssiere, Ch.; Barat, E.; Dautremer, T.; Trama, J.-Ch.

    2006-01-01

    The thermal neutron radiative capture cross section for the K isomeric state in 177 Lu has been measured for the first time. Several 177 Lu m targets have been prepared and irradiated in various neutron fluxes at the Lauee Langevin Institute in Grenoble and at the CEA reactors OSIRIS and ORPHEE in Saclay. The method consists of measuring the 178 Lu activity by γ-ray spectroscopy. The values obtained in four different neutron spectra have been used to calculate the resonance integral of the radiative capture cross section for 177 Lu m . In addition, an indirect method leads to the determination of the 177 Lu g neutron radiative capture cross section

  13. Preparation of rock samples for measurement of the thermal neutron macroscopic absorption cross-section

    International Nuclear Information System (INIS)

    Czubek, J.A.; Burda, J.; Drozdowicz, K.; Igielski, A.; Kowalik, W.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1986-03-01

    Preparation of rock samples for the measurement of the thermal neutron macroscopic absorption cross-section in small cylindrical two-region systems by a pulsed technique is presented. Requirements which should be fulfilled during the preparation of the samples due to physical assumptions of the method are given. A cylindrical vessel is filled with crushed rock and saturated with a medium strongly absorbing thermal neutrons. Water solutions of boric acid of well-known macroscopic absorption cross-section are used. Mass contributions of the components in the sample are specified. This is necessary for the calculation of the thermal neutron macroscopic absorption cross-section of the rock matrix. The conditions necessary for assuring the required accuracy of the measurement are given and the detailed procedure of preparation of the rock sample is described. (author)

  14. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  15. Measurement of the thorium absorption cross section shape near thermal energy (LWBR development program)

    International Nuclear Information System (INIS)

    Green, L.

    1976-11-01

    The shape of the thorium absorption cross section near thermal energies was investigated. This shape is dominated by one or more negative energy resonances whose parameters are not directly known, but must be inferred from higher energy data. Since the integral quantity most conveniently describing the thermal cross section shape is the Westcottg-factor, effort was directed toward establishing this quantity to high precision. Three nearly independent g-factor estimates were obtained from measurements on a variety of foils in three different neutron spectra provided by polyethylene-moderated neutrons from a 252 Cf source and from irradiations in the National Bureau of Standards ''Standard Thermal Neutron Density.'' The weighted average of the three measurements was 0.993 +- 0.004. This is in good agreement with two recent evaluations and supports the adequacy of the current cross section descriptions

  16. The determination of thermal neutron cross section of 81Br

    International Nuclear Information System (INIS)

    Kovacs, Luciana; Zamboni, Cibele B.; Dalaqua Junior, Leonardo

    2009-01-01

    In this investigation several standard materials were used to determine the thermal neutron cross section of 81 Br. This nuclear parameter is an important data to perform several quantitative investigations, mainly in medical area. In other to confirm and to reduce the uncertainty, a new measurement was preformed using thermal neutron at IEA-R1 nuclear reactor of IPEN/CNEN-SP. The result obtained is compatible with the tabulated value and present small uncertainly. (author)

  17. Thermal neutron capture cross sections resonance integrals and g-factors

    International Nuclear Information System (INIS)

    Mughabghab, S.F.

    2003-02-01

    The thermal radiative capture cross sections and resonance integrals of elements and isotopes with atomic numbers from 1 to 83 (as well as 232 Th and 238 U) have been re-evaluated by taking into consideration all known pertinent data published since 1979. This work has been undertaken as part of an IAEA co-ordinated research project on 'Prompt capture gamma-ray activation analysis'. Westcott g-factors for radiative capture cross sections at a temperature of 300K were computed by utilizing the INTER code and ENDF-B/VI (Release 8) library files. The temperature dependence of the Westcott g-factor is illustrated for 113 Cd, 124 Xe and 157 Gd at temperatures of 150, 294 and 400K. Comparisons have also been made of the newly evaluated capture cross sections of 6 Li, 7 Li, 12 C and 207 Pb with those determined by the k 0 method. (author)

  18. Thermal neutron capture and resonance integral cross sections of {sup 45}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Thi Hien, Nguyen [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Kwangsoo [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Shin, Sung-Gyun; Cho, Moo-Hyun [Department of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Manwoo [Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of)

    2015-11-01

    The thermal neutron cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been measured relative to that of the {sup 197}Au(n,γ){sup 198}Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (G{sub th}) and resonance (G{sub epi}) neutron self-shielding, the γ-ray attenuation (F{sub g}) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been determined relative to the reference values of the {sup 197}Au(n,γ){sup 198}Au reaction, with σ{sub o,Au} = 98.65 ± 0.09 barn and I{sub o,Au} = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σ{sub o,Sc} = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be I{sub o,Sc} = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.

  19. Filtered thermal neutron captured cross-sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Tan, Vuong Huu

    2014-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R cd ) of 420 and neutron flux (Φ th ) of 1.6x10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross-sections for nuclide of 51 V, 55 Mn, 180 Hf and 186 W by the activation method relative to the standard reaction 197 Au(n,g) 198 Au. In addition to the activities of neutron capture cross-sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U, 238 U, 239 Pu and 232 Th are introduced in this report. (author)

  20. Revisiting the U-238 thermal capture cross section and gamma-raymission probabilities from Np-239 decay

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A.; Molnar, G.L.; Revay, Zs.; Mughabghab, S.F.; Firestone,R.B.; Pronyaev, V.G.; Nichols, A.L.; Moxon, M.C.

    2005-03-03

    The precise value of the thermal capture cross section of238U is uncertain, and evaluated cross sections from various sourcesdiffer by more than their assigned uncertainties. A number of theoriginal publications have been reviewed to assess the discrepant data,corrections were made for more recent standard cross sections andotherconstants, and one new measurement was analyzed. Due to the strongcorrelations in activation measurements, the gamma-ray emissionprobabilities from the beta decay of 239Np were also analyzed. As aresult of the analysis, a value of 2.683 +- 0.012 barns was derived forthe thermal capture cross section of 238U. A new evaluation of thegamma-ray emission probabilities from 239Np decay was alsoundertaken.

  1. Bound coherent and incoherent thermal neutron scattering cross sections of the elements

    International Nuclear Information System (INIS)

    Sears, V.F.

    1982-12-01

    An up-to-date table of bound coherent and incoherent thermal neutron scattering cross sections of the elements is presented. Values from two different data sources are calculated and compared. These sources are: (1) the free-atom cross sections listed in the Σbarn bookΣ and (2) the Julich scattering length tables. We also call attention to, and clarify, the confusion that exists in the literature concerning the sign of the imaginary part of the complex scattering length

  2. Thermal conduction by dark matter with velocity and momentum-dependent cross-sections

    OpenAIRE

    Vincent, Aaron C.; Scott, Pat

    2013-01-01

    We use the formalism of Gould and Raffelt to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients $\\alpha$ and $\\kappa$ for cross-sections that go as $v_{\\rm rel}^2$, $v_{\\rm rel}^4$, $v_{\\rm...

  3. Cross-section of single-crystal materials used as thermal neutron filters

    International Nuclear Information System (INIS)

    Adib, M.

    2005-01-01

    Transmission properties of several single crystal materials important for neutron scattering instrumentation are presented. A computer codes are developed which permit the calculation of thermal diffuse and Bragg-scattering cross-sections of silicon., and sapphire as a function of material's constants, temperature and neutron energy, E, in the range 0.1 MeV .A discussion of the use of their single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons is given

  4. TEMPEST-2, Thermalization Program for Neutron Spectra and Multigroup Cross-Sections

    International Nuclear Information System (INIS)

    Gowins, G.

    1984-01-01

    Description of problem or function: TEMPEST2 is a neutron thermalization program based upon the Wigner-Wilkins approximation for light moderators and the Wilkins approximation for heavy moderators. A Maxwellian distribution may also be used. The model used may be selected as a function of energy. The second-order differential equations are integrated directly rather than transformed to the Riccati equation. The program provides microscopic and macroscopic cross-section averages over the thermal neutron spectrum

  5. Determination of Thermal Neutron Capture Cross Sections Using Cold Neutron Beams at the Budapest PGAA-NIPS Facilities

    International Nuclear Information System (INIS)

    Belgya, T.

    2006-01-01

    A complete elemental gamma-ray library was measured with our guided thermal beam at the Budapest PGAA facility in the period of 1995-2000. Using this data library in an IAEA CRP on PGAA it was managed to re-normalize the ENSDF intensity data with the Budapest intensities. Based on this renormalization thermal neutron cross sections were deduced for several isotopes. Most of these calculations were done by Richard B. Firestone. The Budapest PGAA-NIPS facilities have been used for routine prompt gamma activation analysis with cold neutrons since the year of 2000. The advantage of the cold neutron beam is that the neutron guide has much higher neutron transmission. This resulted in a gain factor about 20 relative to our thermal guide. For the analytical works a precise comparator technique was developed that is routinely used to determine partial gamma-ray production cross sections. An additional development of our methodology was necessary to be worked out to determine thermal neutron capture cross sections based on the partial gamma-ray production cross sections. In this talk our methodology of radiative capture cross section determination will be presented, including our latest results on 129 I, 204,206,207 Pb and 209 Bi. Most of these works were done in cooperation with people from EU-JRC-IRMM, Geel, Belgium and CEA Cadarache, France. Many partial cross sections of short lived nuclei have been re-measured with our new chopper technique. The uncertainty calculations of the radiative capture cross section determination procedures will be also shown. (authors)

  6. Measurements of the effective thermal neutron absorption cross-section in multi-grain models

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Igielski, A.; Krynicka, E.; Schneider, K.; Woznicka, U.

    2005-01-01

    The effective macroscopic absorption cross-section Σ a eff of thermal neutrons in a grained medium differs from the corresponding cross-section Σ a hom in the homogeneous medium consisting of the same components, contributing in the same amounts. The ratio of these cross-sections defines the grain parameter, G, which is a measure of heterogeneity of the system for neutron absorption. Heterogeneous models have been built as two- or three-component systems (Ag, Cu and Co 3 O 4 grains distributed in a regular grid in Plexiglas, in various proportions between them). The effective absorption cross-section has been measured and the experimental grain parameter has been found for each model. The obtained values are in the interval 0.34 < G < 0.58, while G = 1 means the homogeneous material. (author)

  7. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    International Nuclear Information System (INIS)

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A.; Hentati, A.

    2012-01-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of 157 Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of nat Gd which is (49360 ± 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1σ, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 ± 500) b. (authors)

  8. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Hentati, A. [International School in Nuclear Engineering, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  9. Measurement of the effective thermal cross section of {sup 134}Cs by triple neutron capture reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro; Kobayashi, Katsutoshi; Motoishi, Shoji; Tanase, Masakazu

    1998-03-01

    The effective thermal cross section ({sigma}{sub eff}) of the {sup 134}Cs(n,{gamma}){sup 135}Cs reaction was measured by the activation method and the {gamma}-ray spectroscopic method in order to obtain fundamental data for research on the transmutation of nuclear wastes. The effective thermal cross section of the reaction {sup 134}Cs(n,{gamma}){sup 135}Cs was found to be 140.6{+-}8.5 barns. (author)

  10. Assessment of the ''thermal normalization technique'' for measurement of neutron cross sections vs energy

    International Nuclear Information System (INIS)

    Peelle, R.W.; de Sassure, G.

    1977-01-01

    Refined knowledge of the thermal neutron cross sections of the fissile nuclides and of the (n,α) reaction standards, together with the reasonably well known energy dependence of the latter, have permitted resonance-region and low-keV fissile nuclide cross sections to be based on these standards together with count-rate ratios observed as a function of energy using a pulsed ''white'' source. As one evaluates cross sections for energies above 20 keV, optimum results require combination of cross section shape measurements with all available absolute measurements. The assumptions of the ''thermal normalization method'' are reviewed, and an opinion is given of the status of some of the standards required for its use. The complications which may limit the accuracy of results using the method are listed and examples are given. For the 235 U(n,f) cross section, the option is discussed of defining resonance-region fission integrals as standards. The area of the approximately 9 eV resonances in this nuclide may be known to one percent accuracy, but at present the fission integral from 0.1 to 1.0 keV is known to no better than about two percent. This uncertainty is based on the scatter among independent results, and has not been reduced by the most recent measurements. This uncertainty now limits the accuracy attainable for the 235 U(n,f) cross section below about 50 keV. Suggestions are given to indicate how future detailed work might overcome past sources of error

  11. Thermal neutron capture cross section of chromium, vanadium, titanium and nickel isotopes

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-04-01

    The thermal neutron cross section of chromium, vanadium, titanium and nickel can be determined by measuring the pair spectrum of prompt gamma-rays emitted targets of these elements are irradiated by a thermal neutron beam. Such measurements were carried out by irradiating the natural element mixed with a nitrogen standard (melamine) in the tangential beam hole of the IEA-R1 research reactor. The pair spectrometer efficiency calibration curve in the 1.5 to 11 MeV energy range was performed with a melamine plus ammonium chloride mixed target. The cross section was calculated for the most prominent gamma transitions of each isotope, using nitrogen as standard and averaged over the obtained values. The resulting mean cross sections are as follows: (13.4 ± 0.7)b for 50 Cr, (0.79 ± 0,02)b for 52 Cr, (18.1 ± 0,7)b for 53 Cr, (4.9 ± 0.2)b for 51 V, (8.4 ± 0.1)b for 48 Ti, (4.41 ± 0.08)b 58 Ni, (2.54 ± 0.07)b for 60 Ni, (15.2 ± 0.5)b for 62 Ni and (1.6 ± 0.1) for 64 Ni. (author) [pt

  12. Thermal-neutron fission cross section of 26. 1-min /sup 235/U/sup m/

    Energy Technology Data Exchange (ETDEWEB)

    Talbert W.L. Jr.; Starner, J.W.; Estep, R.J.; Balestrini, S.J.; Attrep M. Jr.; Efurd, D.W.; Roensch, F.R.

    1987-11-01

    The thermal-neutron fission cross section of /sup 235/U/sup m/ has been measured relative to the ground-state cross section. A rapid radiochemical separation procedure was developed to provide sizeable (10/sup 10/ to 10/sup 11/ atom) samples that were reasonably free of the parent /sup 239/Pu. From a series of eight measurements, the value of 1.42 +- 0.04 was obtained for the ratio sigma/sub m//sigma/sub g/.

  13. Thermal-neutron fission cross section of 26.1-min /sup 235/U/sup m/

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Starner, J.W.; Estep, R.J.; Balestrini, S.J.; Attrep, M. Jr.; Efurd, D.W.; Roensch, F.R.

    1987-01-01

    The thermal-neutron fission cross section of /sup 235/U/sup m/ has been measured relative to the ground-state cross section. A rapid radiochemical separation procedure was developed to provide sizeable (10/sup 10/ to 10/sup 11/ atom) samples that were reasonably free of the parent /sup 239/Pu. From a series of eight measurements, the value of 1.42 +- 0.04 was obtained for the ratio σ/sub m//σ/sub g/

  14. Evaluation of thermal neutron cross-sections and resonance integrals of protactinium, americium, curium, and berkelium isotopes

    International Nuclear Information System (INIS)

    Belanova, T.S.

    1994-12-01

    Data on the thermal neutron fission and capture cross-sections as well as their corresponding resonance integrals are reviewed and analysed. The data are classified according to the form of neutron spectra under investigation. The weighted mean values of the cross-sections and resonance integrals for every type of neutron spectra were adopted as evaluated data. (author). 87 refs, 2 tabs

  15. The thermal neutron absorption cross-sections, resonance integrals and resonance parameters of silicon and its stable isotopes

    International Nuclear Information System (INIS)

    Story, J.S.

    1969-09-01

    The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si 2 8, at E n = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si 3 0 has not yet been located. The thermal neutron absorption cross-section of Si 2 8 appears to result mainly from a negative energy resonance, possibly the resonance at E n = - 59 ± 5 keV detected by the Si 2 8 (d,p) reaction. (author)

  16. {sup 41}K(n, {gamma}){sup 42}K thermal and resonance integral cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.A. Jr.; Maidana, N.L.; Vanin, V.R. [Sao Paulo Univ., SP (Brazil). Lab. do Acelerador Linear; Dias, M.S.; Koskinas, M.F. [IPEN-CNEN, Sao Paulo, SP (Brazil). Lab. de Metrolgia Nuclear; Lopez-Pino, N. [Instituto Superior de Tecnolgias y Ciencias Aplicadas (InSTEC), Habana (Cuba)

    2012-07-01

    We measured the {sup 41}K thermal neutron absorption and resonance integral cross sections after the irradiation of KNO{sub 3} samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the {sup 42}K decay {beta}{sup -} emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) b and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.

  17. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    International Nuclear Information System (INIS)

    Tan, V H; Son, P N

    2016-01-01

    The thermal neutron radiative capture cross section for 186 W(n, γ) 187 W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of R cd = 420 and peak energy E n = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197 Au(n, γ) 198 Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations. (paper)

  18. Neutron-capture-activation cross sections of 9496Zr and 98100Mo at thermal and 30 keV energy

    International Nuclear Information System (INIS)

    Wyrick, J.M.; Poenitz, W.P.

    1982-01-01

    Neutron-capture cross sections of 94 96 Zr and 98 100 Mo were measured relative to the standard-capture cross section of gold at thermal and 30 keV neutron energies using the activation technique. The reported values are based upon available decay-scheme information

  19. The correlations between natural elements (K, U, Th) concentrations and thermal neutron absorption cross-section value (Σa) for rock samples of Carpatia area

    International Nuclear Information System (INIS)

    Swakon, J.; Cywicka-Jakiel, T.; Drozdowicz, E.; Gabanska, B.; Loskiewicz, J.; Woznicka, U.

    1991-01-01

    The paper presents a study of correlations between concentrations of potassium, uranium and thorium and thermal neutron absorption cross section in rock samples. This knowledge of correlation should help in recognizing the expansion ways and accumulation places of the elements responsible of high thermal neutron absorption cross section in some geological environments. The correlations show the existence of connections between the thermal neutron absorption cross section value and natural radioactivity elements concentration in rocks. The results confirm the existence of correlations between natural radioactive elements concentrations (particularly thorium) and thermal neutron absorption cross - section value in some rocks. (author). 12 refs, 23 figs, 6 tabs

  20. The Cross-Section for the Radiative Capture of Thermal Neutrons by Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1942-07-01

    This report is based on an experiment performed at the Cavendish Laboratory (Cambridge) by E. Broda, J. Guéron and L. Kowarski in July 1942 where the intensity of the beta-activity induced in uranium by thermal neutrons has been compared with that induced in manganese or iodine. Care was taken to avoid losses due to a Szilard-Chalmers effect. The capture cross section of uranium for thermal neutrons is found to amount to (2.78 ±0.1)*10{sup -24} cm{sup 2}, assuming the value 581*10{sup -24} cm{sup 2} for σ{sub B}. (nowak)

  1. Evaluation of the neutron cross sections of 235U in the thermal energy region. Final report

    International Nuclear Information System (INIS)

    Leonard, B.R. Jr.; Kottwitz, D.A.; Thompson, J.K.

    1976-02-01

    The objective of this work has been to improve the knowledge of the thermal cross sections of the fissile nuclei as a step toward providing a standard data base for the nuclear industry. The methodology uses a form of the Adler-Adler multilevel-fission theory and Breit-Wigner multilevel-scattering theory. It incorporates these theories in a general nonlinear least-squares (LSQ) fitting program SIGLEARNThe analysis methodology in this work was applied to the thermal data on 235 U. A reference data file has been developed which includes most of the known data of interest. The first important result of this work is the assessment of the shape uncertainties of the partial cross sections. The results of our studies lead to the following values and error estimates for 235 U g factors in a thermal (20.44 0 C) energy spectrum: g/sub f/ = 0.97751 (+-0.11%); g/sub γ/ = 0.98230 (+-0.14%). A second important result of this study is the development of a recommended set of 2200 m/s (0.0253 eV) values of the parameters and the probable range of further adjustment which might be made. The analysis also provides the result of a common interpretation of energy-dependent absolute cross-section data of different measurements to yield a consistent set of experimental 0.0253 eV values with rigorous error estimates. It also provides normalization factors for relative fission and capture cross sections on a common basis with rigorous error estimates. The results of these analyses provide a basis for deciding what new measurements would be most beneficial. The most important of these would be improved direct capture data in the thermal region

  2. Effective thermal neutron absorption cross section for heterogeneous mixture

    International Nuclear Information System (INIS)

    Gabanska, B.; Igielski, A.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1989-01-01

    The first estimations (basing on Umiastowski's theory) of the influence of the sample heterogeneity of the effective thermal neutron absorption cross section were compared with the results obtained for the homogeneous mixture which components and concentration were the same as those of the heterogeneous sample. An experiment was prepared to determine how good this estimate is. Three artificial heterogeneous cylindrical samples (2R = H = 9 cm) were manufactured from pure silver cylinders embedded in plexiglass, keeping the Ag content and varying the size of cylinders (2R = H = 1.0 cm, 0.6 cm and 0.4 cm). Calculations performed show that the experimental effect of the sample heterogeneity can be significant. 5 figs., 5 tabs, 11 refs. (author)

  3. Measurement of the thermal cross section of the reaction 64Zn(n,γ)65Zn in a mixed neutron flux

    International Nuclear Information System (INIS)

    Dorval, E. L; Arribere, M. A; Ribeiro Guevara, S

    2006-01-01

    Zinc is an element that is present in a great variety of biological and geological samples.For its determination by Instrumental Neutron Activation Analysis, the reaction 64 Z n(n,γ) 6 5Zn is used, due to the long half life of the reaction product, the target's bigger isotopic abundance, and an easily measurable 1115 keV main gamma line.In a recent evaluation of thermal cross sections and resonance integrals, a thermal cross section value that is 44.7% bigger than the previous evaluation has been published by the same reference.This difference is not within reported uncertainties.Besides, the relative uncertainty of the new evaluation is much bigger than the one corresponding to the previous evaluation.The adoption of the thermal cross section corresponding to different evaluations may imply, in the case of an irradiation in the peripheral I 6 position at the R A-6 reactor, discrepancies of about 43% in the calculated concentrations.These inconsistencies were evident during the irradiation of certified standard materials.This motivated the measurement of the thermal cross section for the reaction 64 Z n(n,γ) 6 5Zn in the I 6 position at the R A-6 reactor.For the analysis of results, a code was written in order to calculate correction factors from an accurate characterization of the neutron spectrum.The thermal cross section value of the reaction 64 Z n(n,γ) 6 5Zn measured is (0.76± 0.03) b [es

  4. Thermal neutron absorption cross-section for small samples (experiments in cylindrical geometry)

    International Nuclear Information System (INIS)

    Czubek, J.A.; Drozdowicz, K.; Igielski, A.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1982-01-01

    Measurement results for thermal neutron macroscopic absorption cross-sections Σsub(a)1 when applying the cylindrical sample-moderator system are presented. Experiments for liquid (water solutions of H 3 BO 3 ) and solid (crushed basalts) samples are reported. Solid samples have been saturated with the H 3 BO 3 ''poisoning'' solution. The accuracy obtained for the determination of the absorption cross-section of the solid material was σ(Σsub(ma))=(1.2+2.2) c.u. in the case when porosity was measured with the accuracy of σ(phi)=0.001+0.002. The dispersion of the Σsub(ma) data obtained for basalts (taken from different quarries) was higher than the accuracy of the measurement. All experimental data for the fundamental decay constants lambda 0 together with the whole information about the samples are given. (author)

  5. ENDF/B-5 fission product cross section evaluations

    International Nuclear Information System (INIS)

    Schenter, R.E.; England, T.R.

    1979-12-01

    Cross section evaluations were made for the 196 fission product nuclides on the ENDF/B-5 data files. Most of the evaluations involve updating the capture cross sections of the important absorbers for fast and thermal reactor systems. This included updating thermal values, resonance integrals, resonance parameter sets, and fast capture cross sections. For the fast capture results generalized least-squares calculations were made with the computer code FERRET. Input for these cross section adjustments included nuclear models calculations and both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, 4000. Comparisons of these evaluations with recent capture measurements are shown. 15 figures, 10 tables

  6. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    Science.gov (United States)

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  7. Neutron Cross Sections for Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Leif

    1963-08-15

    Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.

  8. Total neutron cross section of lead

    International Nuclear Information System (INIS)

    Kanda, K.; Aizawa, O.

    1976-01-01

    The total thermal-neutron cross section of natural lead under various physical conditions was measured by the transmission method. It became clear that the total cross section at room temperature previously reported is lower than the present data. The total cross section at 400, 500, and 600 0 C, above the melting point of lead, 327 0 C, was also measured, and the changes in the cross section as a function of temperature were examined, especially near and below the melting point. The data obtained for the randomly oriented polycrystalline state at room temperature were in reasonable agreement with the theoretical values calculated by the THRUSH and UNCLE-TOM codes

  9. Averaged electron collision cross sections for thermal mixtures of β-alanine conformers in the gas phase

    Science.gov (United States)

    Fujimoto, Milton M.; de Lima, Erik V. R.; Tennyson, Jonathan

    2017-10-01

    A theoretical study of elastic electron scattering by gas-phase amino acid molecule β-alanine (NH2-CH2-CH2-COOH) is presented. R-matrix calculations are performed for each of the ten lowest-lying, thermally-accessible conformers of β-alanine. Eigenphase sums, resonance features, differential and integral cross sections are computed for each conformer. The positions of the low-energy shape resonance associated with the unoccupied {π }* orbital of the -COOH group are found to vary from 2.5 to 3.3 eV and the resonance widths from 0.2 to 0.5 eV depending on the conformation. The temperature-dependent population ratios are derived, based on temperature-corrected Gibbs free energies. Averaged cross sections for thermal mixtures of the 10 conformers are presented. A comparison with previous results for the α-alanine isomer is also presented.

  10. Thermal response test data of five quadratic cross section precast pile heat exchangers

    Directory of Open Access Journals (Sweden)

    Maria Alberdi-Pagola

    2018-06-01

    Full Text Available This data article comprises records from five Thermal Response Tests (TRT of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled “Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests” (Alberdi-Pagola et al., 2018 [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  11. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  12. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F

    2009-01-01

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es

  13. Measurement of {sup 238}Np fission cross-section by neutrons near thermal point (preliminary results)

    Energy Technology Data Exchange (ETDEWEB)

    Abramo; vich, S.N.; Andreev, M.F.; Bol`shakov, Y.M. [Institute of Experimental Physics, Arzamas (Russian Federation)] [and others

    1995-10-01

    Measurements have been carried out of {sup 238}Np fission cross-section by thermal neutrons. The isotope {sup 238}Np was built up through the reaction {sup 238}U(p,n) on an electrostatic accelerator. Extraction and cleaning of the sample were done by ion-exchange chromatography. Fast neutrons were generated on the electrostatic accelerator through the reaction {sup 9}Be(d,n); a polyethylene block was used to slow down neutrons. Registration of fission fragments was performed with dielectric track detectors. Suggesting that the behavior of {sup 238}Np and {sup 238}U. Westscott`s factors are indentical the fission cross-section of {sup 238}Np was obtained: {sigma}{sub fo}=2110 {plus_minus} 75 barn.

  14. Thermal neutron cross sections and resonance integrals for the 1994 handbook of chemistry and physics

    International Nuclear Information System (INIS)

    Holden, N.E.

    1994-01-01

    A re-evaluation of all thermal neutron cross sections and neutron resonance integrals has been performed, utilizing the previous database of the ''Barn Book'' and all of the more recently published experiments. Only significant changes or previously undetermined values are recorded in this report. The source for each value is also recorded in the accompanying table

  15. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    Science.gov (United States)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  16. Nuclear characteristics of Pu fueled LWR and cross section sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ., Suita (Japan). Faculty of Engineering

    1998-03-01

    The present status of Pu utilization to thermal reactors in Japan, nuclear characteristics and topics and cross section sensitivities for analysis of Pu fueled thermal reactors are described. As topics we will discuss the spatial self-shielding effect on the Doppler reactivity effect and the cross section sensitivities with the JENDL-3.1 and 3.2 libraries. (author)

  17. Covariance Evaluation Methodology for Neutron Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  18. Thermal-hydraulic feedback model to calculate the neutronic cross-section in PWR reactions

    International Nuclear Information System (INIS)

    Santiago, Daniela Maiolino Norberto

    2011-01-01

    In neutronic codes,it is important to have a thermal-hydraulic feedback module. This module calculates the thermal-hydraulic feedback of the fuel, that feeds the neutronic cross sections. In the neutronic co de developed at PEN / COPPE / UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. We used the finite volume technique of discretized the equation of temperature distribution, while calculation the moderator coefficient of heat transfer, was carried out using the ASME table, and using some of their routines to our program. The model allows one to calculate an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the neutronic code. The results were compared with to the empirical model. Our results show that for the fuel elements near periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. The proposed model was validated by the neutronic simulator developed in the PEN / COPPE / UFRJ for analysis of PWR reactors. (author)

  19. Fission cross section measurements of actinides at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  20. Fission cross section measurements at the LLL 100-MeV linac

    International Nuclear Information System (INIS)

    Browne, J.C.

    1975-01-01

    The fission cross section for 235 U was measured from thermal energy to 20 MeV in several steps. First, the cross section was measured from 8 MeV to 20 MeV relative to the n,p scattering cross section and then from thermal to one MeV relative to 6 Li(n,α). In addition, a measurement of the ratio of the fission cross sections of 235 U and 238 U relative to 235 U has been completed in the range 1 keV to 30 MeV for 233 U and 100 keV to 30 MeV for 238 U. Statistical uncertainties are less than 4 percent. (U.S.)

  1. ZZ TEMPEST/MUFT, Thermal Neutron and Fast Neutron Multigroup Cross-Section Library for Program LEOPARD

    International Nuclear Information System (INIS)

    Kim, Jung-Do; Lee, Jong Tai

    1986-01-01

    Description of problem or function: Format: TEMPEST and MUFT; Number of groups: 246 thermal groups in TEMPEST Format and 54 fast groups in MUFT Format. From this library, the program SPOTS4 generates a 172-54 group library as input to the code LEOPARD. Nuclides: H, O, Zr, C, Fe, Ni, Al, Cr, Mn, U, Pu, Th, Pa, Xe, Sm, B and D. Origin: ENDF/B-4; Weighting spectrum: 1/E + U 235 fission spectrum. Data library of thermal and fast neutron group Cross sections to generate input to the program LEOPARD. The data is based on ENDF/B-4 and consists of two parts: (1) 246 thermal groups in TEMPEST Format. (2) 54 fast groups in MUFT Format. From this library, the program SPOTS4 generates a 172-54 group library as input to the code LEOPARD (NESC0279)

  2. Criticality benchmark comparisons leading to cross-section upgrades

    International Nuclear Information System (INIS)

    Alesso, H.P.; Annese, C.E.; Heinrichs, D.P.; Lloyd, W.R.; Lent, E.M.

    1993-01-01

    For several years criticality benchmark calculations with COG. COG is a point-wise Monte Carlo code developed at Lawrence Livermore National Laboratory (LLNL). It solves the Boltzmann equation for the transport of neutrons and photons. The principle consideration in developing COG was that the resulting calculation would be as accurate as the point-wise cross-sectional data, since no physics computational approximations were used. The objective of this paper is to report on COG results for criticality benchmark experiments in concert with MCNP comparisons which are resulting in corrections an upgrades to the point-wise ENDL cross-section data libraries. Benchmarking discrepancies reported here indicated difficulties in the Evaluated Nuclear Data Livermore (ENDL) cross-sections for U-238 at thermal neutron energy levels. This led to a re-evaluation and selection of the appropriate cross-section values from several cross-section sets available (ENDL, ENDF/B-V). Further cross-section upgrades anticipated

  3. Neutron capture cross section standards for BNL-325

    International Nuclear Information System (INIS)

    Holden, N.E.

    1980-01-01

    The most common cross section standards for capture reactions in the thermal neutron energy region are gold, cobalt, and manganese. In preparation for the fourth edition of BNL-325, data on the thermal cross section and resonance integral were evaluated for these three standards. For gold, only measurements below the Bragg scattering cutoff were used and extrapolated to a neutron velocity of 2200 meters/second. A non 1/v correction due to the 4.9 eV resonance was made. The resonance integral is based on Jirlow's integral measurement and Tellier's parameters. The resonance integrals for cobalt and manganese are based solely on integral measurements because the capture widths of the first major resonance either vary by 20% in various measurements (cobalt), or have never been measured (manganese). Recommended thermal cross sections and resonance integrals are respectively gold: 98.65/plus or minus/0.9 barns, 1550/plus or minus/28 barns; cobalt: 37.18/plus or minus/0.06 barns, 74.2/plus or minus/2.0 barns and manganese: 13.3/plus or minus/0.2 barns, and 14.0/plus or minus/0.3 barns. 72 refs

  4. Neutron capture cross section standards for BNL 325, Fourth Edition

    International Nuclear Information System (INIS)

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: 55 Mn(n,γ), 59 Co(n,γ) and 197 Au(n,γ). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed

  5. Precise measurements of neutron capture cross sections for FP

    International Nuclear Information System (INIS)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio

    2000-01-01

    The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some fission products (FP), such as 137 Cs, 90 Sr, 99 Tc, 129 I and 135 Cs, were measured by the activation and γ-ray spectroscopic methods. Moreover, the cross section measurements were done for other FP elements, such as 127 I, 133 Cs and 134 Cs. This paper provides the summary of the FP cross section measurements, which have been performed by authors. (author)

  6. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    Science.gov (United States)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  7. Thermal Neutron Capture and Thermal Neutron Burn-up of K isomeric state of 177mLu: a way to the Neutron Super-Elastic Scattering cross section

    International Nuclear Information System (INIS)

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.; Romain, P.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Letourneau, A.; Marie, F.; Veyssiere, Ch.

    2006-01-01

    Thermal neutron radiative capture and burn-up measurements of the K isomeric state in 177Lu form part of an original method to indirectly obtain the neutron super-elastic scattering cross section at thermal energy. Neutron super-elastic scattering, also called neutron inelastic acceleration, occurs during the neutron collisions with an excited nuclear level. In this reaction, the nucleus could partly transfer its excitation energy to the scattered neutron

  8. Low energy total cross section of 36Ar

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Magurno, B.A.

    1975-01-01

    To compare the predictions of the valence model with measured partial radiative widths of 36 Ar an accurate knowledge of the bound-level parameters is required. This is achieved by carrying out a Breit-Wigner parameter fit to the total cross section of 36 Ar measured by Chrien et al and renormalized to the recommended values of the thermal capture and scattering cross sections. (1 figure, 1 table) (U.S.)

  9. Measurements of the thermal neutron cross-section and resonance integral for the 108Pd(n,γ)109Pd reaction

    Science.gov (United States)

    Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Do, Nguyen Van; Khue, Pham Duc; Thanh, Kim Tien; Shin, Sung-Gyun; Cho, Moo-Hyun

    2018-06-01

    The thermal neutron capture cross-section (σ0) and resonance integral (I0) of the 108Pd(n,γ)109Pd reaction have been measured relative to that of the monitor reaction 197Au(n,γ)198Au. The measurements were carried out using the neutron activation with the cadmium ratio method. Both the samples and monitors were irradiated with and without cadmium cover of 0.5 mm thickness. The induced activities of the reaction products were measured with a well calibrated HPGe γ-ray detector. In order to improve the accuracy of the results, the necessary corrections for the counting losses were made. The thermal neutron capture cross-section and resonance integral of the 108Pd(n,γ)109Pd reaction were determined to be σ0,Pd = 8.68 ± 0.41 barn and I0,Pd = 245.6 ± 24.8 barn, respectively. The obtained results are compared with literature values and discussed.

  10. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  11. Thermal neutron capture cross-section measurements of 243Am and 242Pu using the new mini-INCA α- and γ-spectroscopy station

    International Nuclear Information System (INIS)

    Marie, F.; Letourneau, A.; Fioni, G.; Deruelle, O.; Veyssiere, Ch.; Faust, H.; Mutti, P.; AlMahamid, I.; Muhammad, B.

    2006-01-01

    In the framework of the Mini-INCA project, dedicated to the study of Minor Actinide transmutation process in high neutron fluxes, an α- and γ-spectroscopy station has been developed and installed at the High Flux Reactor of the Laue-Langevin Institut. This set-up allows short irradiations as well as long irradiations in a high quasi-thermal neutron flux and post-irradiation spectroscopy analysis. It is well suited to measure precisely, in reference to 59 Co cross-section, neutron capture cross-sections, for all the actinides, in the thermal energy region. The first measurements using this set-up were done on 243 Am and 242 Pu isotopes. Cross-section values, at E n =0.025eV, were found to be (81.8+/-3.6)b for 243 Am and (22.5+/-1.1)b for 242 Pu. These values differ from evaluated data libraries by a factor of 9% and 17%, respectively, but are compatible with the most recent measurements, validating by the way the experimental apparatus

  12. Average cross sections calculated in various neutron fields

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2002-01-01

    Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)

  13. Correction of multigroup cross sections for resolved resonance interference in mixed absorbers

    International Nuclear Information System (INIS)

    Williams, M.L.

    1982-07-01

    The effect that interference between resolved resonances has on averaging multigroup cross sections is examined for thermal reactor-type problems. A simple and efficient numerical scheme is presented to correct a preprocessed multigroup library for interference effects. The procedure is implemented in a design oriented lattice physics computer code and compared with rigorous numerical calculations. The approximate method for computing resonance interference correction factors is applied to obtaining fine-group cross sections for a homogeneous uranium-plutonium mixture and a uranium oxide lattice. It was found that some fine group cross sections are changed by more than 40% due to resonance interference. The change in resonance interference correction factors due to burnup of a PWR fuel pin is examined and found to be small. The effect of resolved resonance interference on collapsed broad-group cross sections for thermal reactor calculations is discussed

  14. Determination of the neutron resonance parameters for 206Pb and of the thermal neutron capture cross section for 206Pb and 209Bi

    International Nuclear Information System (INIS)

    Borella, A.

    2005-01-01

    response of the C6D6 detector. The analysis of the capture data allows the determination of the capture area of the resonances. In Chapter 4 we determine the thermal capture cross section for 206 Pb(n, γ) and 209 Bi(n, γ) from measurements at the cold neutron beam of the Budapest Neutron Centre. The thermal cross sections for neutron capture to the ground state 210g Bi(n, γ) and to the isomeric state 210m Bi(n, γ) have also been measured. These values complement the resonance parameters and produce a consistent description of the total and capture cross section at thermal energy and in the resolved resonance region. Chapter 5 contains the discussion of the results of this work. The statistical properties of the 206 Pb resonance parameters are described. The consistency of the resonance parameters and the thermal neutron capture cross section for 206 Pb and 209 Bi is discussed. The resulting MAC for 206 Pb is given and the impact on the termination of the s-process is described. Finally, general conclusions are presented

  15. Porosity effects in the neutron total cross section of graphite

    International Nuclear Information System (INIS)

    Santisteban, J. R; Dawidowski, J; Petriw, S. N

    2009-01-01

    Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes. [es

  16. Effect of U-238 and U-235 cross sections on nuclear characteristics of fast and thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1997-03-01

    Benchmark calculation has been made for fast and thermal reactors by using ENDF/B-VI release 2(ENDF/B-VI.2) and JENDL-3.2 nuclear data. Effective multiplication factors (k{sub eff}s) calculated for fast reactors calculated with ENDF/B-VI.2 becomes about 1% larger than the results with JENDL-3.2. The difference in k{sub eff} is caused mainly from the difference in inelastic scattering cross section of U-238. In all thermal benchmark cores, ENDF/B-VI.2 gives smaller multiplication factors than JENDL-3.2. In U-235 cores, the difference is about 0.3%dk and it becomes about 0.6% in TCA U cores. The difference in U-238 data is also important in thermal reactors, while there are found 0.1-0.3% different v values of U isotopes in thermal energy between ENDF/B-VI.2 and JENDL-3.2. (author)

  17. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  18. Self-scattering cross-section of molecules in a beam

    International Nuclear Information System (INIS)

    Lou, Y.S.

    1974-01-01

    Molecular collision cross-section has always been measured by the beam scattering method, or by the measurements of thermal conductivity and/or viscosity coefficient, etc. The cross-section thus obtained has been found to be different, qualitatively, from that of the self-scattering of the molecules moving within a molecular beam. By perturbing the zeroth order solution of the Boltzmann equation with a B-G-K kinetic model for the gas upstream to the orifice, and performing particle scattering calculation for molecules within the beam downstream to the orifice, such self-scattering collision cross-section can be determined from the experimental data of velocity distribution functions of molecules in the beam

  19. Actinide neutron-induced fission cross section measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  20. Experimental determination of resonance absorption cross sections for Zircaloy-2 and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A; Markovic, V [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1968-05-15

    The integral absorption cross section for the neutron spectrum and the thermal absorption cross section for zircaloy-2 have been determined using the pile oscillator technique. Using both values and a measured ratio of the epithermal to the thermal flux, the effective resonance integrals were obtained. After subtraction of the contributions for alloy and impurity elements, the effective resonance integrals for zirconium were evaluated. An extrapolated value of 0.91{+-}0.10 was obtained for the dilute integral. (author)

  1. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  2. Electron capture cross-section of Au-Fe complex in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Shafi, M; Majid, Abdul

    2006-01-01

    A deep level transient spectroscopy technique is applied to study the capture cross-section of an iron-gold complex. The thermal ionization energy obtained from emission rate data is found to be E c -0.36 eV. The Au-Fe complex is a single defect having a capture cross-section of 2.48x10 -16 cm 2 for electrons which is independent of temperature

  3. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  4. Fission neutron spectrum averaged cross sections for threshold reactions on arsenic

    International Nuclear Information System (INIS)

    Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires

    2006-01-01

    We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)

  5. Impact of newly-measured gadolinium cross sections on BWR fuel rod reaction rate distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Perret, G.; Murphy, M.; Grimm, P.; Seiler, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Recent measurements of capture and total cross sections performed at the Rensselaer Polytechnic Institute in the USA confirmed many of the gadolinium thermal and resonant neutron cross section parameters within uncertainties, but they also showed up important discrepancies well out of uncertainties, such as an approx11% overestimation of the {sup 157}Gd thermal capture cross section in ENDF/B-VI and -VII with respect to the newly measured data. In this work, the impact of the newly measured gadolinium cross sections on BWR reactor physics parameters has been preliminarily evaluated. The comparisons of rod-by-rod fission rate and modified conversion ratio predictions with selected cold critical experiments at the PROTEUS reactor in Switzerland show the potential to resolve long-term unexplained discrepancies. (authors)

  6. CSRL-V ENDF/B-V 227-group neutron cross-section library and its application to thermal-reactor and criticality safety benchmarks

    International Nuclear Information System (INIS)

    Ford, W.E. III; Diggs, B.R.; Knight, J.R.; Greene, N.M.; Petrie, L.M.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.; Williams, M.L.

    1982-01-01

    Characteristics and contents of the CSRL-V (Criticality Safety Reference Library based on ENDF/B-V data) 227-neutron-group AMPX master and pointwise cross-section libraries are described. Results obtained in using CSRL-V to calculate performance parameters of selected thermal reactor and criticality safety benchmarks are discussed

  7. Re/Os cosmochronometer: measurement of neutron cross sections

    International Nuclear Information System (INIS)

    Mosconi, M.

    2007-01-01

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of 187 Re (t 1/2 =41.2 Gyr) into 187 Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the 187 Re/ 187 Os pair, provide the possibility to identify the radiogenic fraction of 187 Os exclusively by nuclear physics considerations. Apart from its radiogenic component, 187 Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, 187 Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of 187 Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of 187 Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of 186 Os, 187 Os and 188 Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for 186 Os, 187 Os, and 188 Os, respectively. Since, the first excited state in 187 Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, γ) experiments and by an improved measurements of the inelastic scattering cross section for

  8. Electron capture cross-section of Au-Fe complex in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Akbar; Shafi, M; Majid, Abdul [Advance Materials Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan)

    2006-10-15

    A deep level transient spectroscopy technique is applied to study the capture cross-section of an iron-gold complex. The thermal ionization energy obtained from emission rate data is found to be E{sub c} -0.36 eV. The Au-Fe complex is a single defect having a capture cross-section of 2.48x10{sup -16} cm{sup 2} for electrons which is independent of temperature.

  9. Cross section for inelastic neutron acceleration by 178Hfm2

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2009-01-01

    The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called Inelastic Neutron Acceleration (INNA) and occurs when the final nucleus after emission of the neutron is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomeric population to the ground state. A cascade of several gammas must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases and the associated cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was σ INNA = (258 ± 58) b for neutron scattering by 177 Lu m . In the present work, an INNA cross section of σ INNA = 152 -36 +51 b was deduced from measurements of the total burn-up of the high-spin, four-quasiparticle isomer 178 Hf m2 during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced σ INNA is compared to the theoretically predicted cross section

  10. New techniques for multi-level cross section calculation and fitting

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-09-01

    A number of recent developments in multi-level cross section work are described. A new iteration scheme for the conversion of Reich-Moore resonance parameters to Kapur-Peierls parameters allows application of Turing's method for Gaussian broadening of meromorphic functions directly to multi-level cross section expressions, without recourse to the Voigt profiles psi and chi. This makes calculation of Doppler-broadened Reich-Moore and MLBW cross sections practically as fast as SLBW and Adler-Adler cross section calculations involving the Voigt profiles. A convenient distant-level treatment utilizing average resonance parameters is presented. Apart from effectively dealing with edge effects in resonance fitting work it also leads to a simple prescription for the determination of bound levels which reproduce the thermal cross sections correctly. A brief discussion of improved resonance shape fitting techniques is included, with empahsis on the importance of correlated errors and proper use of prior information by application of Bayes' theorem. (orig.) [de

  11. New techniques for multi-level cross section calculation and fitting

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1981-01-01

    A number of recent developments in multi-level cross section work are described. A new iteration scheme for the conversion of Reich-Moore resonance parameters to Kapur-Peierls parameters allows application of Turing's method for Gaussian broadening of meromorphic functions directly to multi-level cross section expressions, without recourse to the Voigt profiles psi and chi. This makes calculation of Doppler-broadened Reich-Moore and MLBW cross sections practically as fast as SLBW and Adler-Adler cross section calculations involving the Voigt profiles. A convenient distant-level treatment utilizing average resonance parameters is presented. Apart from effectively dealing with edge effects in resonance fitting work it also leads to a simple prescription for the determination of bound levels which reproduce the thermal cross sections correctly. A brief discussion of improved resonance shape fitting techniques is included, with emphasis on the importance of correlated errors and proper use of prior information by application of Bayes' theorem

  12. Total cross section measurement of radioactive isotopes with a thin beam neutron spectrometer

    International Nuclear Information System (INIS)

    Razbudej, V.F.; Vertebnyj, V.P.; Padun, G.S.; Muravitskij, A.V.

    1975-01-01

    The method for measuring the neutron total cross sections of radioactive isotopes by a time-of-flight spectrometer with a narrow (0.17 mm in diameter) beam of thermal neutrons is described. The distinguishing feature of this method is the use of capillary samples with a small amount of substance (0.05-1.0 mg). The energy range is 0.01-0.3 eV. The total cross sections of irradiated samples of sub(153)Eu and sub(151)Eu are measured. From them are obtained the cross sections of sub(152)Eu (Tsub(1/2)=12.4 g) and of sub(154)E (Tsub(1/2)=8.6 yr); they equal 11400+-1400 and 1530+-190 barn at E=0.0253 eV. The cross section of the sub(152)Eu absorption for the thermal spectrum (T=333 K) is determined by the activation method; it is 8900+-1200 barn

  13. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo [ed.

    1992-06-15

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.

  14. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo

    1992-06-01

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10 -5 eV to 20 MeV. Almost all the cross section data are reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in other tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum. (author)

  15. Sensitivity analysis of U238 cross section in thermal nuclear systems

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Oliveira, E.C. de; Moura Neto, C. de.

    1980-01-01

    A sensitivity analysis system is developed for assessing the implication of uncertainties in nuclear data and related computational methods for light water power reactor. Sensitivies, at equilibrium cycle condition, are carried out for the few group macroscopic cross section of the U 238 with respect to their 35 group microscopic absorption cross section using the batch depletion code SENTEAV similar to those calculation methods used in the industry. This investigation indicates that improvements are requested on specific range of energy. These results point out the direction for worth while experimental measurements based on an analysis of costs and economic benefits. (Author) [pt

  16. Development of modern CANDU PHWR cross-section libraries for SCALE

    International Nuclear Information System (INIS)

    Shoman, Nathan T.; Skutnik, Steven E.

    2016-01-01

    Highlights: • New ORIGEN libraries for CANDU 28 and 37-element fuel assemblies have been created. • These new reactor data libraries are based on modern ENDF/B-VII.0 cross-section data. • The updated CANDU data libraries show good agreement with radiochemical assay data. • Eu-154 overestimated when using ENDF-VII.0 due to a lower thermal capture cross-section. - Abstract: A new set of SCALE fuel lattice models have been developed for the 28-element and 37-element CANDU fuel assembly designs using modern cross-section data from ENDF-B/VII.0 in order to produce new reactor data libraries for SCALE/ORIGEN depletion analyses. These new libraries are intended to provide users with a convenient means of evaluating depletion of CANDU fuel assemblies using ORIGEN through pre-generated cross sections based on SCALE lattice physics calculations. The performance of the new CANDU ORIGEN libraries in depletion analysis benchmarks to radiochemical assay data were compared to the previous version of the CANDU libraries provided with SCALE (based on WIMS-AECL models). Benchmark comparisons with available radiochemical assay data indicate that the new cross-section libraries perform well at matching major actinide species (U/Pu), which are generally within 1–4% of experimental values. The library also showed similar or better results over the WIMS-AECL library regarding fission product species and minor actinoids (Np, Am, and Cm). However, a notable exception was in calculated inventories of "1"5"4Eu and "1"5"5Eu, where the new library employing modern nuclear data (ENDF/B-VII.0) performed substantially poorer than the previous WIMS-AECL library (which used ENDF-B/VI.8 cross-sections for these species). The cause for this discrepancy appears to be due to differences in the "1"5"4Eu thermal capture cross-section between ENDF/B-VI.8 and ENDF/B-VII.0, an effect which is exacerbated by the highly thermalized flux of a CANDU heavy water reactor compared to that of a typical

  17. Re/Os cosmochronometer: measurement of neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, M.

    2007-12-21

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of {sup 187}Re (t{sub 1/2}=41.2 Gyr) into {sup 187}Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the {sup 187}Re/{sup 187}Os pair, provide the possibility to identify the radiogenic fraction of {sup 187}Os exclusively by nuclear physics considerations. Apart from its radiogenic component, {sup 187}Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, {sup 187}Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of {sup 187}Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of {sup 187}Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of {sup 186}Os, {sup 187}Os and {sup 188}Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively. Since, the first excited state in {sup 187}Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, {gamma

  18. Estimation of thermal neutron cross sections from K, U, Th concentrations for rock samples using neural network algorithms

    International Nuclear Information System (INIS)

    Loskiewicz, J.; Swakon, J.

    1992-01-01

    In the paper present the results of the use of the neural network algorithms to find a function Σ a =f(K, U, Th,...). The easily measurable parameters (K, U, Th concentrations, lithology) were used to estimate the thermal neutron absorption cross-section Σ a , which is difficult to measure in the borehole conditions. This paper is suggesting a possible solution to the problem. This method may have an important application in the well-logging data treatment. (author). 6 refs, 9 tabs

  19. Monte Carlo cross section testing for thermal and intermediate 235U/238U critical assemblies, ENDF/B-V vs ENDF/B-VI

    International Nuclear Information System (INIS)

    Weinman, J.P.

    1997-06-01

    The purpose of this study is to investigate the eigenvalue sensitivity to changes in ENDF/B-V and ENDF/B-VI cross section data sets by comparing RACER vectorized Monte Carlo calculations for several thermal and intermediate spectrum critical experiments. Nineteen Oak Ridge and Rocky Flats thermal solution benchmark critical assemblies that span a range of hydrogen-to- 235 U (H/U) concentrations (2052 to 27.1) and above-thermal neutron leakage fractions (0.555 to 0.011) were analyzed. In addition, three intermediate spectrum critical assemblies (UH3-UR, UH3-NI, and HISS-HUG) were studied

  20. Effective cross sections of U-235 and Au in a TRIGA-type reactor core

    International Nuclear Information System (INIS)

    Harasawa, S.; Auu, G.A.

    1992-01-01

    The dependence of effective cross sections of gold and uranium for neutron spectrum in Rikkyo University Reactor (TRIGA Mark- II, RUR) fuel cell was studied using computer calculations. The dependence of thermal neutron spectrum with temperature was also investigated. The effective cross section of gold in water of the fuel cell at 32degC was 90.3 barn and the fission cross section of U-235, 483 barn. These two values are similar to the cross sections for neutron energy of 0.034 eV. (author)

  1. Measurement of thermal neutron cross section for {sup 241}Am(n,f) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Miyoshi, Mitsuharu; Kimura, Itsuro; Kanno, Ikuo; Shinohara, Nobuo

    1997-03-01

    Making use of a standard neutron spectrum field with a pure Maxwellian distribution, the thermal neutron cross section for the {sup 241}Am(n,f) reaction has been measured relative to the reference value of 586.2b for the {sup 235U}(n,f) reaction. For the present measurement, electrodeposited layers of {sup 241}Am and {sup 235}U have been employed as back-to-back type double fission chambers. The present result at neutron energy of 0.0253 eV is 3.15 {+-} 0.097b. The ENDF/B-VI data is in good agreement with the present value, while the JENDL-3.2 data is lower by 4.2%. The evaluated data in JEF-2.2 and by Mughabghab are higher by 0.9% and 1.6%, respectively than the present result. The ratios of the earlier experimental data to the present value are distributed between 0.89 and 1.02. (author)

  2. [Absolute fission cross sections in the 14 MeV energy region]. Progress report, July 1982-June 1983

    International Nuclear Information System (INIS)

    1983-01-01

    Progress is reported on the following studies: thermal neutron absorption cross section of sulfur and the 252 Cf nu bar dilemma, the sigma (H)/sigma (Mn) cross section ratio, the sigma (H)/sigma (B) cross section ratio, 14 MeV neutron cross section measurements, beryllium-based pulsed neutron detector, and testing charged particle transport and Monte Carlo codes

  3. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  4. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis

    Science.gov (United States)

    Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2013-01-01

    The Ni63(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of Cu63, Ni64, and Zn64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  5. Scattering of thermal He beams by crossed atomic and molecular beams. I. Sensitivity of the elastic differential cross section to the interatomic potential

    International Nuclear Information System (INIS)

    Keil, M.; Kuppermann, A.

    1978-01-01

    The ability of diffraction oscillations in atomic beam scattering experiments to uniquely determine interatomic potentials for highly quantal systems is examined. Assumed but realistic potentials are used to generate, by scattering calculations and incorporation of random errors, differential cross sections which are then treated as if they were ''experimental'' data. From these, attempts are made to recover the initial potential by varying the parameters of assumed mathematical forms different from the original one, until a best fit to the ''experimental'' results is obtained. It is found that the region of the interaction potential around the van der Waals minimum is accurately determined by the ''measured'' differential cross sections over a range of interatomic separations significantly wider than would be expected classically. It is also found, for collision energies at which the weakly repulsive wall is appreciably sampled, that the SPF--Dunham and double Morse--van der Waals types of potentials lead to accurate determinations of the interatomic potential, whereas many other mathematical forms do not. Analytical parameterizations most appropriate for obtaining accurate interatomic potentials from thermal DCS experiments, for a given highly quantal system, may depend on the collision energy used

  6. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wang, J.G. [Department of Physics and Astronomy, University of Georgia, Athens (United States)

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C{sub x}H{sub y} charge exchange reactions from thermal energies up to several hundreds keV for all C{sub x}H{sub y} molecules with x=1, 2, 3 and 1 {<=} y {<=} 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  7. Penning ionization cross sections of excited rare gas atoms

    International Nuclear Information System (INIS)

    Ukai, Masatoshi; Hatano, Yoshihiko.

    1988-01-01

    Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(2 3 S) and radiative He(2 1 P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(2 3 S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(2 3 S) per collision increases with the excess electronic energy of He(2 3 S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(2 1 P), suggests that the deexcitation cross section for He(2 1 P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(2 1 P) by the target molecules examined. (N.K.)

  8. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal dission neutron spectrum and in the MOLΣΣ Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  9. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  10. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  11. Thermal neutron capture cross section for Fe-56(n,gamma)

    Czech Academy of Sciences Publication Activity Database

    Firestone, R. B.; Belgya, T.; Krtička, M.; Bečvář, F.; Szentmiklosi, L.; Tomandl, Ivo

    2017-01-01

    Roč. 95, č. 1 (2017), č. článku 014328. ISSN 2469-9985 R&D Projects: GA ČR GA13-07117S; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : neutron cross section * gamma gamma-coincidence data Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 3.820, year: 2016

  12. Status of standard cross section library and future plan

    International Nuclear Information System (INIS)

    Zukeran, Atsushi

    2001-01-01

    JSSTDL-300 multi-group cross section library with 300 neutron energy groups coupled with 104 group γ-ray cross sections was developed for general users in nuclear reactor physics and/or design, whose source data is the evaluated nuclear data library JENDL-3.2. For the purpose of a standard or common use, several famous cross section libraries worldwide used, i.e., ABBN-25, GAM-123, VITAMIN-C/J(E+C), MGCL-137, BERMUDA-12 and FNS-125 for neutron, and LANL-12, -24-, -48, and CSEWG-94 for γ-ray, are consulted about setting the common energy group structure. Furthermore, in order to expand the applicability, the top energy is set on 20 MeV and the lowest energy is 10 -5 eV. In the thermal neutron energy region, the JSSTDL-300 has about 20 energy groups. Besides, many utility codes for group collapsing and for data format transformation are provided for general users. (author)

  13. Measurements of neutron cross section of the {sup 243}Am(n,{gamma}){sup 244}Am reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The effective thermal neutron cross section of {sup 243}Am(n,{gamma}){sup 244}Am reaction was measured by the activation method. Highly-purified {sup 243}Am target was irradiated in an aluminum capsule by using a research reactor JRR-3M. The tentative effective thermal neutron cross sections are 3.92 b, and 84.44 b for the production of {sup 244g}Am and {sup 244m}Am, respectively. (author)

  14. Measurements of thermal fission and capture cross sections of minor actinides within the Mini-INCA project

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Oriol, L. [CEA Cadarache, Dept. d' Etudes des Reacteurs, 13 - Saint Paul lez Durance (France); Chartier, F. [CEA Saclay, Dept. de Physico-Chimie, 91 - Gif sur Yvette (France); Mutti, P. [Institut Laue Langevin, 38 - Grenoble, (France); AlMahamid, I. [Wadsworth Center, New York State Dept. of Health, Albany, NY (United States)

    2008-07-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The {sup 232}Th, {sup 237}Np, {sup 241}Am, and {sup 244}Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)

  15. Measurements of thermal fission and capture cross sections of minor actinides within the Mini-INCA project

    International Nuclear Information System (INIS)

    Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch.; Oriol, L.; Chartier, F.; Mutti, P.; AlMahamid, I.

    2008-01-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The 232 Th, 237 Np, 241 Am, and 244 Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)

  16. Solid-state effects on thermal-neutron cross sections and on low-energy resonances

    International Nuclear Information System (INIS)

    Harvey, J.A.; Mook, H.A.; Hill, N.W.; Shahal, O.

    1982-01-01

    The neutron total cross sections of several single crystals (Si, Cu, sapphire), several polycrystalline samples (Cu, Fe, Be, C, Bi, Ta), and a fine-powder copper sample have been measured from 0.002 to 5 eV. The Cu powder and polycrystalline Fe, Be and C data exhibit the expected abrupt changes in cross section. The cross section of the single crystal of Si is smooth with only small broad fluctuations. The data on two single Cu crystals, the sapphire crystal, cast Bi, and rolled samples of Ta and Cu have many narrow peaks approx. 10 -3 eV wide. High resolution (0.3%) transmission measurements were made on the 1.057-eV resonance in 240 Pu and the 0.433-eV resonance in 180 Ta, both at room and low temperatures to study the effects of crystal binding. Although the changes in Doppler broadening with temperature were apparent, no asymmetries due to a recoilless contribution were observed

  17. Fission cross-section normalization problems

    International Nuclear Information System (INIS)

    Wagemans, C.; Ghent Rijksuniversiteit; Deruytter, A.J.

    1983-01-01

    The present measurements yield σsub(f)-data in the neutron energy from 20 MeV to 30 keV directly normalized in the thermal region. In the keV-region these data are consistent with the absolute σsub(f)-measurements of Szabo and Marquette. For the secondary normalization integral I 2 values have been obtained in agreement with those of Gwin et al. and Czirr et al. which were also directly normalized in the thermal region. For the I 1 integral, however, puzzling low values have been obtained. This was also the case for σsub(f)-bar in neutron energy intervals containing strong resonances. Three additional measurements are planned to further investigate these observations: (i) maintaining the actual approx.2π-geometry but using a 10 B-foil for the neutron flux detection (ii) using a low detection geometry with a 10 B- as well as a 6 Li-flux monitor. Only after these measurements definite conclusions on the I 1 and I 2 integrals can be formulated and final σsub(f)-bar-values can be released. The present study also gives some evidence for a correlation between the integral I 2 and the neutron flux monitor used. The influence of a normalization via I 1 or I 2 on the final cross-section has been shown. The magnitude of possible normalization errors is illustrated. Finally, since 235 U is expected to be an ''easy'' nucleus (low α-activity high σsub(f)-values), there are some indications that the important discrepancies still present in 235 U(n,f) cross-section measurements might partially be due to errors in the neutron flux determination

  18. ZZ DLC-11 RITTS, 121-Group Coupled Cross-Section for ANISN, DOT, MORSE

    International Nuclear Information System (INIS)

    1970-01-01

    A - Nature of physical problem solved: Format: ANISN, DTF-4, DOT and MORSE. Number of groups: 100 neutron energy groups (14.92 MeV to thermal) 21 gamma-ray energy groups (14.0 to 0.01 MeV) Nuclides: H, C, O, N, Na, Mg, P, S, Cl, K, and Ca, (microscopic cross sections) and 9 organic materials including 11-element standard man, 4-element standard man, skin, bone, tissue, brain, lung, red marrow, and muscle (macroscopic cross sections). Origin: ENDF/B for H, C, N, O, Na, and Mg; O5R library for Ca, S, and K; GAM-2 library for Cl; Evaluation by J.J. Ritts for P. Weighting spectrum: 1/E for the top 99 groups and Maxwellian for the thermal group values. DLC-11 data is suitable for neutron, gamma-ray, or coupled neutron and gamma-ray transport calculations. It is intended for use in multigroup discrete ordinates or Monte Carlo transport codes which treat anisotropic scattering by Legendre expansion up to order P3. DLC-11 is a collection of multigroup cross section data which were compiled by J. J. Ritts for use in depth-dose calculations in anthropomorphic phantoms. For convenience the data are grouped as follows - 1. A coupled 121-group (100 neutron, 21 gamma-ray) set of data for the 11 elements H, C, O, N. Na, Mg, P, S, Cl, K, and Ca. This set includes P3 coupled 121-group microscopic cross sections plus 121-group kerma factors for the 11 elements. 2. A 100-group set of neutron cross sections for the 11 elements. 3. A coupled 121-group set of macroscopic cross sections for 9 organic materials including 11-element standard man, 4-element standard man, skin, bone, tissue, brain, lung, red marrow, and muscle. B - Method of solution: The basic data sources were ENDF/B for H, C, N, O, Na, and Mg, the O5R library for Ca, S, and K, the GAM-2 library for Cl and an evaluation by Ritts for P. A 1/E spectrum was assumed for averaging the top 99 groups and a Maxwellian for averaging the thermal group values. The gamma-ray cross sections were computed from DLC-3/HPIC using MUG. The

  19. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  20. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A. [CEN-SCK, Mol (Belgium); Czock, K. H. [International Atomic Energy Agency, Vienna (Austria)

    1974-12-15

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m}In cross section in the {sup 235}U thermal dission neutron spectrum and in the MOL{Sigma}{Sigma} Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  1. Cross Section Measurements for Some Elements Suited as Thermal Spectrum indicators: Cd, Sm, Gd and Lu

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, E.; Pekarek, H.; Jonsson, E.

    1964-05-15

    The effective cross sections of Cd, Sm, Gd and Lu have been measured by the oscillator technique in the spectrum of the central channel of the Swedish reactor R1. For Cd, Sm and Gd the 2200 m/s cross sections were deduced on the basis of Westcott's g and s factors. The values obtained were generally in agreement with other recent values obtained by integral methods, although a systematic trend indicated that the value T{sub n} - T{sub m} = 29 {+-} 10 deg C for the neutron spectrum, measured with a fast chopper, was slightly too high. A new value of T{sub n} - T{sub m} = 22.5 {+-} 3.5 deg C was deduced and new 2200 m/s cross sections were obtained by iteration. For natural Lu, the energy dependence of the cross section is not well known. Certain assumptions about the cross section function led to unreasonably high values for the 2200 m/s cross section. Complementary differential measurements of the cross sections of Cd, Sm and Gd were made with the Rl fast chopper. For Cd and Sm the 2200 m/s cross section thus obtained agreed within experimental error with those obtained from the integral measurements. For Gd, the chopper measured value was higher, confirming earlier findings and indicating that the Westcott g factor for Gd is too high. Cd: Integral meas. : {sigma}(2200) = 2,390 {+-} 45 b; Differential meas. : {sigma}(2200) = 2,445 {+-} 25 b; Sm: Integral meas. : {sigma}(2200) = 5,880 {+-} 90 b; Differential meas. : {sigma}(2200) = 5,740 {+-} 150 b; Gd: Integral meas. : {sigma}(2200) = 46,470 {+-} 550 b; Differential meas. : {sigma}(2200) = 47,900 {+-} 700 b.

  2. Cross Section Measurements for Some Elements Suited as Thermal Spectrum indicators: Cd, Sm, Gd and Lu

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, E; Pekarek, H; Jonsson, E

    1964-05-15

    The effective cross sections of Cd, Sm, Gd and Lu have been measured by the oscillator technique in the spectrum of the central channel of the Swedish reactor R1. For Cd, Sm and Gd the 2200 m/s cross sections were deduced on the basis of Westcott's g and s factors. The values obtained were generally in agreement with other recent values obtained by integral methods, although a systematic trend indicated that the value T{sub n} - T{sub m} = 29 {+-} 10 deg C for the neutron spectrum, measured with a fast chopper, was slightly too high. A new value of T{sub n} - T{sub m} = 22.5 {+-} 3.5 deg C was deduced and new 2200 m/s cross sections were obtained by iteration. For natural Lu, the energy dependence of the cross section is not well known. Certain assumptions about the cross section function led to unreasonably high values for the 2200 m/s cross section. Complementary differential measurements of the cross sections of Cd, Sm and Gd were made with the Rl fast chopper. For Cd and Sm the 2200 m/s cross section thus obtained agreed within experimental error with those obtained from the integral measurements. For Gd, the chopper measured value was higher, confirming earlier findings and indicating that the Westcott g factor for Gd is too high. Cd: Integral meas. : {sigma}(2200) = 2,390 {+-} 45 b; Differential meas. : {sigma}(2200) = 2,445 {+-} 25 b; Sm: Integral meas. : {sigma}(2200) = 5,880 {+-} 90 b; Differential meas. : {sigma}(2200) = 5,740 {+-} 150 b; Gd: Integral meas. : {sigma}(2200) = 46,470 {+-} 550 b; Differential meas. : {sigma}(2200) = 47,900 {+-} 700 b.

  3. Neutron cross sections for uranium-235 (ENDF/B-IV Release 3)

    International Nuclear Information System (INIS)

    Lubitz, C.R.

    1996-09-01

    The resonance parameters in ENDF6 (Release 2) U235 were adjusted to make the average capture and fission cross sections below 900 eV agree with selected differential capture and fission measurements. The measurements chosen were the higher of the credible capture measurements and the lower of the fission results, yielding a higher epithermal alpha. In addition, the 2200 m/s cross sections were adjusted to obtain agreement with the integral value of K1. As a result, criticality calculations for thermal benchmarks, and agreement with a variety of integral parameters, are improved

  4. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  5. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  6. The total collision cross section of Ar-Ar as a function of velocity in the thermal range

    International Nuclear Information System (INIS)

    Linse, C.A.; Biesen, J.J.H. van den; Meijdenberg, C.J.N. van den

    1977-01-01

    To describe the Ar-Ar interaction several potentials have been proposed. These potentials have been derived starting from different bulk property data as well as spectroscopic and differential cross section data. The measurements of the glory structure in the total cross section as performed by Bredewout (1976) provided in principle an essential test for the existing potentials. However, the overall energy dependence of the measured cross sections was not in agreement with the theoretically predicted C 6 and C 8 values. Therefore new measurements were performed with improved angular and velocity resolution. There are still differences between the results of the measured and calculated cross sections. However, the energy dependence of the cross section remains within the limits to be expected from the theoretical predictions. (Auth.)

  7. Thermal neutron capture cross-section and resonance integral measurements of {sup 139}La(n, γ){sup 140}La and {sup 140}Ce(n, γ){sup 141}Ce using a Am-Be neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Panikkath, Priyada; Mohanakrishnan, P. [Manipal University, Manipal Centre for Natural Sciences, Karnataka (India)

    2017-03-15

    Thermal neutron capture cross-sections and resonance integrals of {sup 139}La(n, γ){sup 140}La and {sup 140}Ce (n, γ){sup 141}Ce are measured with respect to reference reactions {sup 197}Au(n, γ){sup 198}Au and {sup 55}Mn(n, γ){sup 56}Mn using the neutron activation technique. Measurements are carried out using neutrons from an Am-Be source located inside a concrete bunker. Two different methods are used for determining self-shielding factors of activation foils as well as for finding the epithermal neutron spectrum shape factor. For {sup 139}La with reference to {sup 197}Au and {sup 55}Mn the measured thermal cross sections are 9.24 ± 0.25 b and 9.28 ± 0.37 b, respectively, while the measured resonance integrals are 12.18 ± 0.67 b and 11.81 ± 0.94 b, respectively. For {sup 140}Ce with reference to {sup 197}Au and {sup 55}Mn the measured thermal cross sections are 0.44 ± 0.01 b and 0.44 ± 0.02 b, respectively, while the measured resonance integrals are 0.55 ± 0.03 b and 0.54 ± 0.04 b, respectively. The present measurements are compared with earlier measurements and evaluations. Presently estimated values confirm the established {sup 139}La(n, γ){sup 140}La cross-sections. The presently measured thermal capture cross-section {sup 140}Ce(n, γ){sup 141}Ce, though lower than the evaluated data, is having higher accuracy compared to previous measurements with large uncertainties. The resonance integral measured is higher (like most previous measurements) than most evaluations requiring a revision of the evaluated data. (orig.)

  8. Electron attachment cross sections obtained from electron attachment spectroscopy

    International Nuclear Information System (INIS)

    Popp, P.; Baumbach, J.I.; Leonhardt, J.W.; Mothes, S.

    1988-01-01

    Electron capture detectors have a high sensitivity for substances with high thermal electron attachment cross sections. The electron attachment spectroscopy makes it possible to change the mean electron energy in such a way that the maximum for dissociative electron attachment is reached. Thus, best operation modes of the detection system as well as significant dependencies of electron attachment coefficients are available. Cross sections for electron attachment as a function of the electron energy are obtained with the knowledge of electron energy distribution functions from Boltzmann equation analysis by a special computer code. A disadvantage of this electron attachment spectroscopy is the superposition of space charge effects due to the decrease of the electron drift velocity with increasing mean electron energy. These influences are discussed. (author)

  9. Resonance structure of 32S+n from measurements of neutron total and capture cross sections

    International Nuclear Information System (INIS)

    Halperin, J.; Johnson, C.H.; Winters, R.R.; Macklin, R.L.

    1980-01-01

    Neutron total and capture cross sections of 32 S have been measured up to 1100 keV neutron energy [E/sub exc/( 33 S) =9700 keV]. Spin and parity assignments have been made for 28 of the 64 resonances found in this region. Values of total radiation widths, reduced neutron widths, level spacings, and neutron strength functions have been evaluated for s/sub 1/2/, p/sub 1/2/, p/sub 3/2/, and d/sub 5/2/ levels. Single particle contributions using the valency model account for a significant portion of the total radiation width only for the p/sub 1/2/-wave resonances. A significant number of resonances can be identified with reported levels excited in 32 S(d,p) and 29 Si(α,n) reactions. A calculation of the Maxwellian average cross section appropriate to stellar interiors indicates an average capture cross section at 30 keV, sigma-bar approx. = 4.2(2) mb, a result that is relatively insensitive to the assumed stellar temperature. Direct (potential) capture and the s-wave resonance capture contributions to the thermal capture cross section do not fully account for the reported thermal cross section (530 +- 40 mb) and a bound state is invoked to account for the discrepancy

  10. Multitrajectory eikonal cross sections

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation

  11. Investigation of the 10B(n,t) reaction cross-section in the subthreshold energy region

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Balitskij, A.V.; Baryba, V.Ya.; Druzhnin, V.I.; Kagalenko, A.B.; Kharitonov, A.K.

    1991-01-01

    The 10 B(n,t) reaction cross-section has been measured at incident neutron energies of 0.025 eV, 420 KeV and 5 MeV. A detailed description of the experimental technique and the Monte Carlo simulation is given. It was confirmed that the cross-section of this reaction in the subthreshold region is non-zero. The recommended value of the 10 B(n,t) reaction cross-section at thermal is 8.5±2.0 mb. (author). 16 refs, 3 figs

  12. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  13. Determination of the thermal neutron absorption cross section for rock samples by a single measurement of the time decay constant

    International Nuclear Information System (INIS)

    Krynicka, E.

    1993-01-01

    A calibration method for the determination of the thermal neutron macroscopic mass absorption cross section for rock samples is presented. The standard deviation of the final results is discussed in detail. A big advantage of the presented method is that the calibration curves have been found using the results obtained for a variety of natural rock samples of different stratigraphies and lithologies measured by Czubek's methods. An important part of the paper is a through analysis of the standard deviation of the final result. (author). 13 refs, 11 figs, 5 tabs

  14. Neutron total cross section measurements on 249Cf

    International Nuclear Information System (INIS)

    Carlton, R.F.; Harvey, J.A.; Hill, N.W.; Pandey, M.S.; Benjamin, R.W.

    1979-01-01

    Neutron total cross section measurements were performed on a sample of 249 Cf (5.65 mg total weight) with the ORELA as a source of pulsed neutrons. The sample, the inverse thickness of which was 1542 barns/atom, consisted of 85.3% 249 Cf and 14.4% 249 Bk, and was cooled to liquid nitrogen temperature. Analyses were also made of data from a thin sample (l/n = 17430) of 65% 249 Cf in the region of the large fission resonance at 0.7 eV. Fifty-five resonances in 249 Cf were observed and analyzed over the energy range 0.1 eV to 90 eV by use of an R-matrix multilevel formalism. The resonance parameters obtained were used to determine the level spacing and the s-wave neutron and fission strength functions. Thermal total cross section measurements were also performed. 5 figures, 3 tables

  15. Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code

    International Nuclear Information System (INIS)

    Hart, Shane W.D.; Celik, Cihangir; Maldonado, G. Ivan; Leal, Luiz

    2016-01-01

    Highlights: • A quick method of Doppler broadening one- and two-dimensional cross sections has been added to KENO. • The method uses a finite difference method to broaden data to user defined temperatures. • Various problems and benchmarks were run to showcase results. • Results with the Doppler broadened cross sections are closer to benchmark results. - Abstract: This paper introduces a quick method for improving the accuracy of Monte Carlo simulations by generating one- and two-dimensional cross sections at a user-defined temperature before performing transport calculations. A finite difference method is used to Doppler-broaden cross sections to the desired temperature, and unit-base interpolation is done to generate the probability distributions for double differential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature. The accuracy of these methods is tested using a variety of contrived problems. In addition, various benchmarks at elevated temperatures are modeled, and results are compared with benchmark results. The problem-dependent cross sections are observed to produce eigenvalue estimates that are closer to the benchmark results than those without the problem-dependent cross sections.

  16. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1976-09-01

    A comparison of some integral cross-section values for several cross-section libraries in the SAND-II format is presented. The integral cross-section values are calculated with the aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross-section libraries used have all the SAND-II format. Discrepancies between cross-sections in the different libraries are indicated but not discussed

  17. Actinide Capture and Fission Cross Section Measurements Within the Mini-Inca Project

    International Nuclear Information System (INIS)

    Letourneau, A.

    2006-01-01

    Full text of publication follows: The Mini-INCA project is devoted to precise description of the transmutation chain of Actinides within high thermal neutron fluxes. It uses the High Flux Reactor of ILL (Laue Langevin Institute) as an intense thermal neutron source to measure capture and fission cross sections. Two irradiation channels are dedicated for those measurements offering a diversity of fluxes ranging from pure thermal neutrons to 15% epithermal neutrons with intensities as high as 1*10 15 n/cm 2 /s. Standard nuclear techniques for measurements, such as α and γ-spectroscopy of irradiated samples, have been extended in order to stand all constraints due to the irradiation in high fluxes. In particular new types of fission micro-chambers have been developed to follow online the evolution of one actinide and to measure its fission cross section in reference to 235 U(n,F) standard reaction. This type of neutron detector will be used within the MEGAPIE target to on-line characterise the neutron flux and to study the potentiality of such target in terms of incineration. (author)

  18. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  19. SB2. Experiment on secondary gamma-ray production cross sections arising from thermal-neutron capture in each of 14 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections arising from thermal-neutron capture in iron, nitrogen, sodium, aluminum, copper, titanium, calcium, potassium, chlorine, silicon, ickel, zinc, barium, sulfur and a type 321 stainless steel. 1 figure, 30 tables

  20. C4P cross-section libraries for safety analyses with SIMMER and related studies

    International Nuclear Information System (INIS)

    Rineiski, A.; Sinitsa, V.; Gabrielli, F.; Maschek, W.

    2011-01-01

    A code and data system, C 4 P, is under development at KIT. It includes fine-group master libraries and tools for generating problem-oriented cross-section libraries, primarily for safety studies with the SIMMER code and related analyses. In the paper, the 560-group master library and problem oriented 40-group and 72-group cross-section libraries, for thermal and fast systems, respectively, are described and their performances are investigated. (author)

  1. Summary of the Workshop on Neutron Cross Section Covariances

    International Nuclear Information System (INIS)

    Smith, Donald L.

    2008-01-01

    A Workshop on Neutron Cross Section Covariances was held from June 24-27, 2008, in Port Jefferson, New York. This Workshop was organized by the National Nuclear Data Center, Brookhaven National Laboratory, to provide a forum for reporting on the status of the growing field of neutron cross section covariances for applications and for discussing future directions of the work in this field. The Workshop focused on the following four major topical areas: covariance methodology, recent covariance evaluations, covariance applications, and user perspectives. Attention was given to the entire spectrum of neutron cross section covariance concerns ranging from light nuclei to the actinides, and from the thermal energy region to 20 MeV. The papers presented at this conference explored topics ranging from fundamental nuclear physics concerns to very specific applications in advanced reactor design and nuclear criticality safety. This paper provides a summary of this workshop. Brief comments on the highlights of each Workshop contribution are provided. In addition, a perspective on the achievements and shortcomings of the Workshop as well as on the future direction of research in this field is offered

  2. Thermal neutron absorption cross-section measured on rock samples and brines in the Institute of Nuclear Physics

    International Nuclear Information System (INIS)

    Czubek, J.A.; Drozdowicz, K.; Krynicka-Drozdowicz, E.; Igielski, A.; Woznicka, U.

    1983-01-01

    In consecutive measurements the rock sample (having a fixed and well known shape -in our case it is a sphere or a cylinder and the sample is powdered or liquid) is enveloped in shells of a plexiglass moderator (the neutron parameters of which are known) of variable thickness and irradiated with the pulsed beam of fast neutrons. The die-away rate of thermal neutrons escaping from the whole system is measured. The absorption cross-section of the sample is found as the intersection of the experimental curve (i.e. die -away rate vs thickness of the moderator) with the theoretical one. The theoretical curve is calculated for a given moderator under the assumption of a constant value of the neutron flux inside the sample. This method is independent of the value of the transport cross-section of the sample. It has been checked on artificial materials with a well known elemental composition (liquid or solid) and on the natural brines and rock samples (basalts and dolomite). A special method of calculation of the variance of the measurement has been established. It is based on the multiple computer simulations of all experimental data used in the computation. The one standard deviation of our methods is of the order of 1 up to 3 capture units (1 c.u. = 10 -3 cm -1 ). The volume of the sample needed is of the order of 500ccm. (author)

  3. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  4. Neutron importance calculation in an equivalent cell using the age approximation and differential thermalization models. Determination of the cross section sensitivity to the parameters of a differential model in the thermal range

    International Nuclear Information System (INIS)

    Sidorenko, V.D.

    1978-01-01

    The equations are discussed for calculating the importance of neutron function in heterogeneous media obtained with the integral transport theory method. The thermalization effect in the thermal range is described using the differential model. The account of neutron slowing-down in the epithermal range is accomplished in the age approximation. The fast range is described in the 3-group approximation. On the basis of the equations derived the share of delayed neutrons and lifetimes of prompt neutrons are calculated and compared with available experimental data. In the thermal range the sensitivity of cross sections to some parameters of the differential model is analyzed for reactor cells typical for WWER type reactor cores. The models and approximations used are found to be adequate for the calculations

  5. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  6. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1978-01-01

    A comparison of some integral cross section values for several cross section libraries in the SAND-II format is presented. The integral cross section values are calculated with aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross section libraries used have all the SAND-II format. (author)

  7. Thermal neutron calibration of a tritium extraction facility using the 6Li(n,t)4He/197Au(n,γ)198Au cross section ratio for standardization

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Smith, D.L.

    1980-08-01

    Absolute tritium activities in a neutron-activated metallic lithium samples have been measured by liquid scintillation methods to provide data needed for the determination of capture-to-fission ratios in fast breeder reactor spectra and for recent measurements of the 7 Li(n,n't) 4 He cross section. The tritium extraction facility used for all these experiments has now been calibrated by measuring the 6 Li(n,t) 4 He/ 197 Au/n,γ) 198 Au activity ratio for thermal neutrons and comparing the result with the well-known cross sections. The calculated-to-measured activity ratio was found to be 1.033 +- 0.018. 2 figures, 20 tables

  8. Stellar neutron capture cross sections of the Ba isotopes

    International Nuclear Information System (INIS)

    Voss, F.; Wisshak, K.; Guber, K.; Kaeppeler, F.; Reffo, G.

    1994-03-01

    The neutron capture cross sections of 134 Ba, 135 Ba, 136 Ba, and 137 Ba were measured in the energy range from 5 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the 7 Li(p,n) 7 Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4π Barium Fluoride Detector. Several runs have been performed under different experimental conditions to study the systematic uncertainties, which resulted mainly from the large ratios of total to capture cross sections of up to 400. The cross section ratios were determined with an overall uncertainty of ∼3%, an improvement by factors of five to eight compared to existing data. Severe discrepancies were found with respect to previous results. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT=10 keV and 100 keV. These stellar cross sections were used in an s-process analysis. For the s-only isotopes 134 Ba and 136 Ba the N s ratio was determined to 0.875±0.025. Hence, a significant branching of the s-process path at 134 Cs can be claimed for the first time, in contrast to predictions from the classical approach. This branching yields information on the s-process temperature, indicating values around T 8 =2. The new cross sections are also important for the interpretation of barium isotopic anomalies, which were recently discovered in SiC grains of carbonaceous chondrite meteorites. Together with the results from previous experiments on tellurium and samarium, a general improvement of the N s systematics in the mass range A=120 to 150 is achieved. This allows for a more reliable separation of s- and r-process yields, resulting in an improved assignment of the respective contributions to elemental barium that is required for comparison with stellar observations. (orig.) [de

  9. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  10. Electron collision cross sections of mercury

    International Nuclear Information System (INIS)

    Suzuki, Susumu; Kuzuma, Kiyotaka; Itoh, Haruo

    2006-01-01

    In this paper, we propose a new collision cross section set for mercury which revises the original set summarized by Hayashi in 1989. Hanne reported three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) determined from an electron beam experiment in 1988. As a matter for regret, no attentive consideration was given to combining these three excitation cross sections with the cross section set of Hayashi. Therefore we propose a new set where these three excitation cross sections are included. In this study, other two excitation cross sections (6 1 P 1 , 6 3 D 3 ) except for the three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) are taken from the original set of Hayashi. The momentum transfer cross section and the ionization collision cross section are also taken from Hayashi. A Monte Carlo Simulation (MCS) technique is applied for evaluating our new cross section set. The present results of the electron drift velocity and the ionization coefficient are compared to experimental values. Agreement is secured in relation to the electron drift velocity for 1.5 Td 2 ) is the reduced electric field, E (V/cm) is the electric field, N (1/cm 3 ) is the number density of mercury atoms at 0degC, 1 Torr, E/N is also equal to 2.828 x 10 -17 E/p 0 from the relation of the ideal gas equation, p 0 (Torr) is gas pressure at 0degC, 1 Torr=1.33322 x 10 -2 N/cm -2 and 10 -17 V/cm 2 is called 1 Td. Thus it is ensured that our new cross section set is reasonable enough to be used up to 100 eV when considering with the electron drift velocity and the ionization coefficient. (author)

  11. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    Yamamoto, Toshihisa

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  12. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1975-11-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  13. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1976-05-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  14. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  15. MICROX-2 cross section library based on ENDF/B-VII

    International Nuclear Information System (INIS)

    Hou, J.; Ivanov, K.; Choi, H.

    2012-01-01

    New cross section libraries of a neutron transport code MICROX-2 have been generated for advanced reactor design and fuel cycle analyses. A total of 386 nuclides were processed, including 10 thermal scattering nuclides, which are available in ENDF/B-VII release 0 nuclear data. The NJOY system and MICROR code were used to process nuclear data and convert them into MICROX-2 format. The energy group structure of the new library was optimized for both the thermal and fast neutron spectrum reactors based on Contributon and Point-wise Cross Section Driven (CPXSD) method, resulting in a total of 1173 energy groups. A series of lattice cell level benchmark calculations have been performed against both experimental measurements and Monte Carlo calculations for the effective/infinite multiplication factor and reaction rate ratios. The results of MICROX-2 calculation with the new library were consistent with those of 15 reference cases. The average errors of the infinite multiplication factor and reaction rate ratio were 0.31% δk and 1.9%, respectively. The maximum error of reaction rate ratio was 8% for 238 U-to- 235 U fission of ZEBRA lattice against the reference calculation done by MCNP5. (authors)

  16. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  17. Measurements of the effective total and resonance absorption cross sections for zircaloy-2 and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A; Markovic, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-04-15

    Zirconium and zircaloy-2 alloy, as constructive materials, have found wide application in reactor technology, especially in heavy water systems for two reasons: a) low neutron absorption cross section, b) good mechanical properties. The thickness of the zirconium and zircaloy-2 for different applications varies from several tenths of a millimeter to about ten millimeters. Therefore, to calculate reactor systems it is desirable to know the effective neutron absorption cross section for the range of thicknesses mention above. The thermal neutron cross sections for these materials are low and no appreciable variation of the effective neutron cross section occurs even for the largest thicknesses. However, this is not true for effective resonance absorption. On the other hand, due to the lack of detailed knowledge of the zirconium resonances, calculations of the effective resonance integrals cannot be performed. Therefore it is necessary to measure the effective total and resonance absorption cross section for zirconium (author)

  18. Evaluated cross section libraries

    International Nuclear Information System (INIS)

    Maqurno, B.A.

    1976-01-01

    The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report

  19. Comparison of Hansen--Roach and ENDF/B-IV cross sections for 233U criticality calculations

    International Nuclear Information System (INIS)

    McNeany, S.R.; Jenkins, J.D.

    1976-01-01

    A comparison is made between criticality calculations performed using ENDF/B-IV cross sections and the 16-group Hansen-- Roach library at ORNL. The area investigated is homogeneous systems of highly enriched 233 U in simple geometries. Calculations are compared with experimental data for a wide range of H/ 233 U ratios. Results show that calculations of k/sub eff/ made with the Hansen--Roach cross sections agree within 1.5 percent for the experiments considered. Results using ENDF/B-IV cross sections were in good agreement for well-thermalized systems, but discrepancies up to 7 percent in k/sub eff/ were observed in fast and epithermal systems

  20. The l-mixing cross section of Rydberg states of atomic Rb and the scaling LAW

    International Nuclear Information System (INIS)

    Liu Hong; Chen Aiqiu; Li Baiwen

    1991-01-01

    On the basis of impulse approximate method, a kind of analytical wavefunctions based on a potential model was used to calculate the l mixing cross section of thermal collision of Rydberg states of atomic Rb with rare gas (He, Ne). The results were compared with the experimental results and other theoretical values. These results show that there exists a kind of scaling law for the l mixing cross section of Rydberg alkali atoms

  1. Nuclear Forensics and Radiochemistry: Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  2. Illusion thermodynamics: A camouflage technique changing an object into another one with arbitrary cross section

    International Nuclear Information System (INIS)

    He, Xiao; Wu, Linzhi

    2014-01-01

    The previously reported magical thermal devices, such as the thermal invisible cloak and the thermal concentrator, are generalized into one general case named here thermal illusion device. The thermal illusion device is displayed by the design of a thermal reshaper which can reshape an arbitrary thermal object into another one with arbitrary cross section. General expressions of the material parameters for the thermal reshaper are derived unambiguously to greatly facilitate the design of general thermal illusion device. We believe that this work will broaden the current research and pave a path to the thermal invisibility. Numerical simulations show good agreement with the analytical results of the thermal illusion device

  3. Illusion thermodynamics: A camouflage technique changing an object into another one with arbitrary cross section

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao; Wu, Linzhi, E-mail: wlz@hit.edu.cn [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China)

    2014-12-01

    The previously reported magical thermal devices, such as the thermal invisible cloak and the thermal concentrator, are generalized into one general case named here thermal illusion device. The thermal illusion device is displayed by the design of a thermal reshaper which can reshape an arbitrary thermal object into another one with arbitrary cross section. General expressions of the material parameters for the thermal reshaper are derived unambiguously to greatly facilitate the design of general thermal illusion device. We believe that this work will broaden the current research and pave a path to the thermal invisibility. Numerical simulations show good agreement with the analytical results of the thermal illusion device.

  4. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  5. Calculation of actual cross sections and thermalization of neutrons; Calcul des sections efficaces effectives et thermalisation des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, R.

    1963-05-15

    This report gathers and presents in a simple way results of studies performed at the CEA on issues of spectra in thermal reactors. It is in fact a synthesis of results eventually published in different documents. It first presents the notion of actual cross section as it was introduced by Westcott to characterize the dependence of neutron behaviour on speed distribution. It addresses the case of a homogeneous medium with a conventional model, with the heavy gas model, and with the hydrogen gas model. It generalizes the approach by the differential model. The next part addresses the case of a heterogeneous medium, and the case of presence of moderator nuclei within the fuel [French] Le present rapport a pour objet de rassembler et de presenter de maniere simple les resultats des etudes effectuees au CE.A. sur les problemes de spectres dans les reacteurs thermiques. Ces resultats se trouvaient disperses dans plusieurs documents, ou n'etaient pas encore rediges, et bien que les etudes se poursuivent, il a paru utile d'en faire une synthese provisoire. On a cherche d'autre part a en donner une presentation elementaire, accessible aux lecteurs peu familiarises avec les problemes de thermalisation; dans cet esprit l'expose a une forme didactique, et comporte des rappels de notions bien connues comme par exemple le formalisme de Westcott. (auteur)

  6. Measurement of thermal neutron cross-section and resonance integral for the 165Ho(n,γ) 166gHo reaction using electron linac-based neutron source

    Science.gov (United States)

    Nguyen, Van Do; Pham, Duc Khue; Kim, Tien Thanh; Kim, Guinyun; Lee, Manwoo; Kim, Kyung Sook; Kang, Heung-Sik; Cho, Moo-Hyun; Ko, In Soo; Namkung, Won

    2011-01-01

    The thermal neutron cross-section and the resonance integral of the 165Ho(n,γ) 166gHo reaction have been measured by the activation method using a 197Au(n,γ) 198Au monitor reaction as a single comparator. The high-purity natural Ho and Au foils with and without a cadmium shield case of 0.5 mm thickness were irradiated in a neutron field of the Pohang neutron facility. The induced activities in the activated foils were measured with a calibrated p-type high-purity Ge detector. The correction factors for the γ-ray attenuation ( Fg), the thermal neutron self-shielding ( Gth), the resonance neutron self-shielding ( Gepi) effects, and the epithermal neutron spectrum shape factor ( α) were taken into account. The thermal neutron cross-section for the 165Ho(n,γ) 166gHo reaction has been determined to be 59.7 ± 2.5 barn, relative to the reference value of 98.65 ± 0.09 barn for the 197Au(n,γ) 198Au reaction. By assuming the cadmium cut-off energy of 0.55 eV, the resonance integral for the 165Ho(n,γ) 166gHo reaction is 671 ± 47 barn, which is determined relative to the reference value of 1550 ± 28 barn for the 197Au(n,γ) 198Au reaction. The present results are, in general, good agreement with most of the previously reported data within uncertainty limits.

  7. Activation cross section data file, (1)

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro; Iijima, Shungo.

    1989-09-01

    To evaluate the radioisotope productions due to the neutron irradiation in fission of fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10 -5 to 20 MeV. The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format. (author)

  8. Neutron cross-section determination in geological samples (U)

    International Nuclear Information System (INIS)

    Harris, J.M.; McDaniel, P.J.

    1982-01-01

    The Prompt Gamma Neutron Activation Analysis (PGAA) technique yields elemental composition data which can be used to calculate the macroscopic cross section for any sample. The Small Sample Reactivity Measurements (SSRM) technique yields the macroscopic thermal absorption directly. Experimentally, PGAA is somewhat more difficult because of the calibration and data handling than is SSRM. However, SSRM requires a mathematical model of the reactor which means a rather complicated analysis. Once the model and calibration are completed, data analysis is routine. The SSRM technique is production oriented. 9 figures

  9. Utilization of cross-section covariance data in FBR core nuclear design and cross-section adjustment

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1994-01-01

    In the core design of large fast breeder reactors (FBRs), it is essentially important to improve the prediction accuracy of nuclear characteristics from the viewpoint of both reducing cost and insuring reliability of the plant. The cross-section errors, that is, covariance data are one of the most dominant sources for the prediction uncertainty of the core parameters, therefore, quantitative evaluation of covariance data is indispensable for FBR core design. The first objective of the present paper is to introduce how the cross-section covariance data are utilized in the FBR core nuclear design works. The second is to delineate the cross-section adjustment study and its application to an FBR design, because this improved design method markedly enhances the needs and importance of the cross-section covariance data. (author)

  10. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-02-01

    Multigroup cross sections (66 neutron groups and 22 photon groups) are described for neutron energies from thermal to 400 MeV. The elements considered are hydrogen, 10 B, 11 B, carbon, nitrogen, oxygen, sodium, magnesium, aluminum, silicon, sulfur, potassium, calcium, chromium, iron, nickel, tungsten, and lead. The cross section data presented are a revision of similar data presented previously. In the case of iron, transport calculations using the earlier and the revised cross sections are presented and compared, and significant differences are found. The revised cross sections are available from the Radiation Shielding information Center of the Oak Ridge National Laboratory. 32 refs., 5 figs., 3 tabs

  11. Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1979-01-01

    It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references

  12. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  13. MOX Cross-Section Libraries for ORIGEN-ARP

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2003-01-01

    The use of mixed-oxide (MOX) fuel in commercial nuclear power reactors operated in Europe has expanded rapidly over the past decade. The predicted characteristics of MOX fuel such as the nuclide inventories, thermal power from decay heat, and radiation sources are required for design and safety evaluations, and can provide valuable information for non-destructive safeguards verification activities. This report describes the development of computational methods and cross-section libraries suitable for the analysis of irradiated MOX fuel with the widely-used and recognized ORIGEN-ARP isotope generation and depletion code of the SCALE (Standardized Computer Analyses for Licensing Evaluation) code system. The MOX libraries are designed to be used with the Automatic Rapid Processing (ARP) module of SCALE that interpolates appropriate values of the cross sections from a database of parameterized cross-section libraries to create a problem-dependent library for the burnup analysis. The methods in ORIGEN-ARP, originally designed for uranium-based fuels only, have been significantly upgraded to handle the larger number of interpolation parameters associated with MOX fuels. The new methods have been incorporated in a new version of the ARP code that can generate libraries for low-enriched uranium (LEU) and MOX fuel types. The MOX data libraries and interpolation algorithms in ORIGEN-ARP have been verified using a database of declared isotopic concentrations for 1042 European MOX fuel assemblies. The methods and data are validated using a numerical MOX fuel benchmark established by the Organization for Economic Cooperation and Development (OECD) Working Group on burnup credit and nuclide assay measurements for irradiated MOX fuel performed as part of the Belgonucleaire ARIANE International Program

  14. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  15. 17O(n,α)14C cross section from 25 meV to approximately 1 MeV

    International Nuclear Information System (INIS)

    Koehler, P.E.; Graff, S.M.

    1991-01-01

    We have measured the 17 O(n,α) 14 C cross section from thermal energy to approximately 1 MeV. A bump in the data near 3 keV could be fitted by a state whose properties are consistent with a known subthreshold J π =1 - level at E x =8.039 MeV. The cause of the 1/v cross section near thermal energy could not be determined although the known 2 + state at 8.213 MeV was found to be too narrow to contribute much to the thermal cross section. Our data are compared to measurements made via the inverse reaction. There are many differences between the two sets of data. The astrophysical reaction rate was calculated from the measured cross section. This reaction plays a role in the nucleosynthesis of heavy elements in nonstandard big-bang models. At big-bang temperatures, the experimental rate was found to be in fair agreement with the rate estimated from the previously known properties of states of 18 O in this region. Furthermore, using the available information from experiments, it was estimated that the 17 O(n,α) 14 C rate is approximately a factor of 10 3 --10 4 times larger than the 17 O(n,γ) 18 O rate at big-bang temperatures. As a result, there may be significant cycling between 14 C and 17 O resulting in a reduction of heavy-element nucleosynthesis

  16. Doppler broadening of cross sections

    International Nuclear Information System (INIS)

    Buckler, P.A.C.; Pull, I.C.

    1962-12-01

    Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)

  17. Comparison between temperature distributions of an annular fuel rod of circular cross-section and of a hemoglobin shaped cross-section rod for PWR reactors in steady state conditions

    International Nuclear Information System (INIS)

    Oliveira, Maria Vitória A. de; Alvim, Antônio Carlos Marques

    2017-01-01

    The objective of this work is to make a comparison between the temperature distributions of an annular fuel rod of circular cross-section and a hemoglobin shaped cross-section for PWR reactors in steady state conditions. The motivation for this article is due to the fact that the symmetric form of the red globules particles allows the O 2 gases to penetrate the center of the cell homogeneously and quickly. The diffusion equation of gases in any environment is very similar to the heat diffusion equation: Diffusion - Fick's Law; Heat Flow - Fourier; where, the temperature (T) replaces the concentration (c). In previous works the comparison between the shape of solid fuel rods with circular section, and a with hemoglobin-shaped cross-section has proved that this new format optimizes the heat transfer, decreasing the thermal resistance between the center of the UO 2 pellets and the clad. With this, a significant increase in the specific power of the reactor was made possible (more precisely a 23% increase). Currently, the advantages of annular fuel rods are being studied and recent works have shown that 12 x 12 arrays of annular fuel rods perform better, increasing the specific power of the reactor by at least 20% in relation to solid fuel rods, without affecting the safety of the reactor. Our proposal is analyzing the temperature distribution in annular fuel rods with cross sections with red blood cell shape and compare with the theoretical results of the annular fuel rods of circular cross section, initially in steady state. (author)

  18. Comparison between temperature distributions of an annular fuel rod of circular cross-section and of a hemoglobin shaped cross-section rod for PWR reactors in steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria Vitória A. de; Alvim, Antônio Carlos Marques, E-mail: moliveira@con.ufrj.br, E-mail: alvim@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The objective of this work is to make a comparison between the temperature distributions of an annular fuel rod of circular cross-section and a hemoglobin shaped cross-section for PWR reactors in steady state conditions. The motivation for this article is due to the fact that the symmetric form of the red globules particles allows the O{sub 2} gases to penetrate the center of the cell homogeneously and quickly. The diffusion equation of gases in any environment is very similar to the heat diffusion equation: Diffusion - Fick's Law; Heat Flow - Fourier; where, the temperature (T) replaces the concentration (c). In previous works the comparison between the shape of solid fuel rods with circular section, and a with hemoglobin-shaped cross-section has proved that this new format optimizes the heat transfer, decreasing the thermal resistance between the center of the UO{sub 2} pellets and the clad. With this, a significant increase in the specific power of the reactor was made possible (more precisely a 23% increase). Currently, the advantages of annular fuel rods are being studied and recent works have shown that 12 x 12 arrays of annular fuel rods perform better, increasing the specific power of the reactor by at least 20% in relation to solid fuel rods, without affecting the safety of the reactor. Our proposal is analyzing the temperature distribution in annular fuel rods with cross sections with red blood cell shape and compare with the theoretical results of the annular fuel rods of circular cross section, initially in steady state. (author)

  19. Analysis of benchmark experiments for testing the IKE multigroup cross-section libraries based on ENDF/B-III and IV

    International Nuclear Information System (INIS)

    Keinert, J.; Mattes, M.

    1975-01-01

    Benchmark experiments offer the most direct method for validation of nuclear cross-section sets and calculational methods. For 16 fast and thermal critical assemblies containing uranium and/or plutonium of different compositions we compared our calculational results with measured integral quantities, such as ksub(eff), central reaction rate ratios or fast and thermal activation (dis)advantage factors. Cause of the simple calculational modelling of these assemblies the calculations proved as a good test for the IKE multigroup cross-section libraries essentially based on ENDF/B-IV. In general, our calculational results are in excellent agreement with the measured values. Only with some critical systems the basic ENDF/B-IV data proved to be insufficient in calculating ksub(eff), probably due to Pu neutron data and U 238 fast capture cross-sections. (orig.) [de

  20. Cross section measurements of fissile nuclei for slow neutrons; Mesures de sections efficaces de noyaux fissiles pour les neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, J M; Hubert, P; Joly, R; Vendryes, G; Jacrot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1955-07-01

    It presents the experimental measurements of cross section of fissile nuclei for slow neutrons to improve the understanding of some heavy nuclei of great importance in the study of nuclear reactors. The different experiments are divided in three categories. In the first part, it studied the variation with energy of the cross sections of natural uranium, {sup 233}U, {sup 235}U and {sup 239}Pu. Two measurement techniques are used: the time-of-flight spectrometer and the crystal spectrometer. In a second part, the fission cross sections of {sup 233}U and {sup 239}Pu for thermal neutrons are compared using a neutron flux from EL-2 going through a double fission chamber. The matter quantity contained in each source is measured by counting the {alpha} activity with a solid angle counter. Finally, the average cross section of {sup 236}U for a spectra of neutrons from the reactor is measured by studying the {beta} activity of {sup 237}U formed by the reaction {sup 236}U (n, {gamma}) {sup 237}U in a sample of {sup 236}U irradiated in the Saclay reactor (EL-2). (M.P.)

  1. NSLINK, Coupling of NJOY Cross-Sections Generator Code to SCALE-3 System

    International Nuclear Information System (INIS)

    De Leege, P.F.A

    1991-01-01

    1 - Description of program or function: NSLINK (NJOY - SCALE - LINK) is a set of computer codes to couple the NJOY cross-section generation code to the SCALE-3 code system (using AMPX-2 master library format) retaining the Nordheim resolved resonance treatment option. 2 - Method of solution: The following module and codes are included in NSLINK: XLACSR: This module is a stripped-down version of the XLACS-2 code. The module passes all l=0 resonance parameters as well as the contribution from all other resonances to the group cross-sections, the contribution from the wings of the l=0 resonances, the background cross-section and possible interference for multilevel Breit-Wigner resonance parameters. The group cross-sections are stored in the appropriate 1-D cross-section arrays. The output file has AMPX-2 master format. The original NJOY code is used to calculate all other data. The XLACSR module is included in the NJOY code. MILER: This code converts NJOY output (GENDF format) to AMPX-2 master format. The code is an extensively revised version of the original MILER code. In addition, the treatment of thermal scattering matrices at different temperatures is included. UNITABR: This code is a revised version of the UNITAB code. It merges the output of XLACSR and MILER in such a way that contributions from the bodies of the l=0 resonances in the resolved energy range, calculated by XLACSR, are subtracted from the 1-D group cross-section arrays for fission (MT=18) and neutron capture (MT=102). The l=0 resonance parameters and the contributions from the bodies of these resonances are added separately (MT=1023, 1022 and 1021). The total cross-section (MT=1), the absorption cross- section (MT=27) and the neutron removal cross-section (MT=101) values are adjusted. In the case of Bondarenko data, infinite dilution values of the cross-sections (MT=1, 18 and 102) are changed in the same way as the 1-D cross-section. The output file of UNITABR is in AMPX-2 master format and

  2. Cross-sectional anatomy for computed tomography

    International Nuclear Information System (INIS)

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations

  3. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    Saussure, G. de; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters

  4. Interim report on research between Oak Ridge National Laboratory and Japan Nuclear Cycle Development Institute on neutron-capture cross sections by long-lived fission product nuclides

    International Nuclear Information System (INIS)

    Furutaka, Kazuyoshi; Nakamura, Shoji; Harada, Hideo

    2004-03-01

    Neutron capture cross sections of long-lived fission products (LLFP) are important quantities as fundamental data for the study of nuclear transmutation of radioactive wastes. Previously obtained thermal-neutron capture gamma-ray data were analyzed to deduce the partial neutron-capture cross sections of LLFPs including 99 Tc, 93 Zr, and 107 Pd for thermal neutrons. By comparing the decay gamma-ray data and prompt gamma-ray data for 99 Tc, the relation between the neutron-capture cross section deduced by the two different methods was studied. For the isotopes 93 Zr and 107 Pd, thermal neutron-capture gamma-ray production cross sections were deduced for the first time. The level schemes of 99 Tc, 93 Zr, and 107 Pd have also been constructed form the analyzed data and compared with previously reported levels. This work has been done under the cooperative program 'Neutron Capture Cross Sections of Long-Lived Fission products (LLFPs)' by Japan Nuclear Cycle Development Institute (JNC) and Oak Ridge National Laboratory (ORNL). (author)

  5. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  6. Density-dependent expressions for photoionization cross-sections

    International Nuclear Information System (INIS)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-01-01

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function

  7. Density-dependent expressions for photoionization cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-06-07

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.

  8. Preliminary assessment of Geant4 HP models and cross section libraries by reactor criticality benchmark calculations

    DEFF Research Database (Denmark)

    Cai, Xiao-Xiao; Llamas-Jansa, Isabel; Mullet, Steven

    2013-01-01

    Geant4 is an open source general purpose simulation toolkit for particle transportation in matter. Since the extension of the thermal scattering model in Geant4.9.5 and the availability of the IAEA HP model cross section libraries, it is now possible to extend the application area of Geant4......, U and O in uranium dioxide, Al metal, Be metal, and Fe metal. The native HP cross section library G4NDL does not include data for elements with atomic number larger than 92. Therefore, transuranic elements, which have impacts for a realistic reactor, can not be simulated by the combination of the HP...... models and the G4NDL library. However, cross sections of those missing isotopes were made available recently through the IAEA project “new evaluated neutron cross section libraries for Geant4”....

  9. Measurements of the total neutron cross-sections of poly- and mono-germanium crystals at neutron energies below 1 eV

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; Abdel-Kawy, A.; Abbas, Y.; Habib, N.; Adib, M.; Hamouda, I.

    1983-12-01

    Total neutron cross-section measurements have been performed for poly and mono-germanium crystals in the energy range from 2 meV-1eV. The measurements were performed using two TOF and a double axis crystal spectrometer installed at the ET-RR-1 reactor. The obtained neutron cross-sections were analyzed using the single level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the total neutron cross-section of Ge and the analysis of its neutron diffraction pattern. The incoherent and thermal diffuse scattering cross-sections of Ge were estimated from the analysis of the total cross-section data obtained for Ge mono-crystal

  10. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  11. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Bringer, O.

    2007-10-01

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of 241 Am and 237 Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the 241 Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  12. Studies of the Effective Total and Resonance Absorption Cross Sections for Zircaloy 2 and Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, E; Lindahl, G; Lundgren, G

    1961-06-15

    Using pile oscillator technique, the total absorption cross section for zircaloy 2 plates has been determined in the neutron spectrum of the reactor R1. The plate thickness was varied in six steps from 0. 2 mm to 6. 4 mm. The thermal cross section for the alloy was calculated from cross section data and the known composition of the alloy. By subtracting this value from the measured cross sections and dividing by the factor {alpha}=2/{radical}({pi}) x r x {radical}(T/T{sub 0}) the effective resonance integrals were obtained. After subtraction of a constant amount for resonance contributions from hafnium, tin etc., effective resonance integrals for zirconium could be evaluated. An extrapolated value of 0.85 {+-} 0.15 b was obtained for the infinitely dilute integral (l/v part excluded). The ratio of the resonance integral at plate thicknesses 0.2 and 6.4 mm came out as 1.65 {+-} 0.25.

  13. In-plane and cross-plane thermal conductivities of molybdenum disulfide

    International Nuclear Information System (INIS)

    Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)

  14. Differences between LASL- and ANL-processed cross sections

    International Nuclear Information System (INIS)

    Kidman, R.B.; MacFarlane, R.E.; Becker, M.

    1978-03-01

    As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC 2 -2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis

  15. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  16. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    International Nuclear Information System (INIS)

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-01-01

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4πBaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer

  17. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    de Saussure, G.; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters. 25 refs., 4 figs., 5 tabs

  18. MIRANDA - a module based on multiregion resonance theory for generating cross sections within the AUS neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1985-12-01

    MIRANDA is the cross-section generation module of the AUS neutronics code system used to prepare multigroup cross-section data which are pertinent to a particular study from a general purpose multigroup library of cross sections. Libraries have been prepared from ENDF/B which are suitable for thermal and fast fission reactors and for fusion blanket studies. The libraries include temperature dependent data, resonance cross sections represented by subgroup parameters and may contain photon as well as neutron data. The MIRANDA module includes a multiregion resonance calculation in slab, cylinder or cluster geometry, a homogeneous B L flux solution, and a group condensation facility. This report documents the modifications to an earlier version of MIRANDA and provides a complete user's manual

  19. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  20. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  1. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  2. BUGLE-96: A revised multigroup cross section library for LWR applications based on ENDF/B-VI Release 3

    International Nuclear Information System (INIS)

    White, J.E.; Ingersoll, D.T.; Slater, C.O.; Roussin, R.W.

    1996-01-01

    A revised multigroup cross-section library based ON ENDF/B-VI Release 3 has been produced for light water reactor shielding and reactor pressure vessel dosimetry applications. This new broad-group library, which is designated BUGLE-96, represents an improvement over the BUGLE-93 library released in February 1994 and is expected to replace te BUGLE-93 data. The cross-section processing methodology is the same as that used for producing BUGLE-93 and is consistent with ANSI/ANS 6.1.2. As an added feature, cross-section sets having upscatter data for four thermal neutron groups are included in the BUGLE-96 package available from the Radiation Shielding Information Center. The upscattering data should improve the application of this library to the calculation of more accurate thermal fluences, although more computer time will be required. The incorporation of feedback from users has resulted in a data library that addresses a wider spectrum of user needs

  3. Graphs of the cross sections in the recommended Monte Carlo cross-section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Soran, P.D.; Seamon, R.E.

    1980-05-01

    Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ν, the average number of neutrons per fission, are also given

  4. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  5. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  6. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-06-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  7. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Trocsanyi, Z. [CERN, Geneva (Switzerland)

    2010-06-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  8. NNLO jet cross sections by subtraction

    CERN Document Server

    Somogyi, Gabor; Trocsanyi, Zoltan

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of [1-4], over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  9. Differential cross sections and cross-section ratios for the electron-impact excitation of the neon 2p53s configuration

    International Nuclear Information System (INIS)

    Khakoo, M. A.; Wrkich, J.; Larsen, M.; Kleiban, G.; Kanik, I.; Trajmar, S.; Brunger, M.J.; Teubner, P.J.O.; Crowe, A.; Fontes, C.J.; Clark, R.E.H.; Zeman, V.; Bartschat, K.; Madison, D.H.; Srivastava, R.; Stauffer, A.D.

    2002-01-01

    Electron-impact differential cross-section measurements for the excitation of the 2p 5 3s configuration of Ne are reported. The Ne cross sections are obtained using experimental differential cross sections for the electron-impact excitation of the n=2 levels of atomic hydrogen [Khakoo et al., Phys. Rev. A 61, 012701-1 (1999)], and existing experimental helium differential cross-section measurements, as calibration standards. These calibration measurements were made using the method of gas mixtures (Ne and H followed by Ne and He), in which the gas beam profiles of the mixed gases are found to be the same within our experimental errors. We also present results from calculations of these differential cross sections using the R-matrix and unitarized first-order many-body theory, the distorted-wave Born approximation, and relativistic distorted-wave methods. Comparison with available experimental differential cross sections and differential cross-section ratios is also presented

  10. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  11. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  12. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  13. Graphs of the cross sections in the Alternate Monte Carlo Cross Section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Seamon, R.E.; Soran, P.D.

    1980-06-01

    Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes

  14. Unsteady thermal field in bars of doubly connected cross section with heat generation

    International Nuclear Information System (INIS)

    Ercoli, L.; Laura, P.A.A.; Grossi, R.O.; Sanchez Sarmiento, G.

    1985-01-01

    The title problem is approximately solved by means of a variational formulation. It is shown that in the case of complicated boundary shapes of the cross section, the technique of conformal mapping is, sometimes, quite advantageous. The analytical predictions are compared with the results obtained by means of the finite element method and, in general, good engineering agreement is shown to exist. (orig.)

  15. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  16. Atlas of photoneutron cross sections obtained with monoenergetic photons

    International Nuclear Information System (INIS)

    Dietrich, S.S.; Berman, B.L.

    1988-01-01

    Photoneutron cross-section and integrated cross-section data obtained with monoenergetic photons are presented in a uniform format. All of the measured partial photoneutron cross sections, the total photoneutron cross section, and the photoneutron yield cross section are plotted as functions of the incident photon energy, as are the integrated photoneutron cross sections and their first and second moments. The values of the integrated cross sections and the moments of the integrated total cross section up to the highest photon energy for which they were measured are tabulated, as are the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A>50). This compilation is current as of June 1987. copyright 1988 Academic Press, Inc

  17. Cross-Sectional Analysis of Longitudinal Mediation Processes.

    Science.gov (United States)

    O'Laughlin, Kristine D; Martin, Monica J; Ferrer, Emilio

    2018-01-01

    Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.

  18. Parametric equations for calculation of macroscopic cross sections

    International Nuclear Information System (INIS)

    Botelho, Mario Hugo; Carvalho, Fernando

    2015-01-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  19. CSRL-V: processed ENDF/B-V 227-neutron-group and pointwise cross-section libraries for criticality safety, reactor, and shielding studies

    International Nuclear Information System (INIS)

    Ford, W.E. III; Diggs, B.R.; Petrie, L.M.; Webster, C.C.; Westfall, R.M.

    1982-01-01

    A P 3 227-neutron-group cross-section library has been processed for the subsequent generation of problem-dependent fine- or broad-group cross sections for a broad range of applications, including shipping cask calculations, general criticality safety analyses, and reactor core and shielding analyses. The energy group structure covers the range 10 -5 eV - 20 MeV, including 79 thermal groups below 3 eV. The 129-material library includes processed data for all materials in the ENDF/B-V General Purpose File, several data sets prepared from LENDL data, hydrogen with water- and polyethyelene-bound thermal kernels, deuterium with C 2 O-bound thermal kernels, carbon with a graphite thermal kernel, a special 1/V data set, and a dose factor data set. The library, which is in AMPX master format, is designated CSRL-V (Criticality Safety Reference Library based on ENDF/B-V data). Also included in CSRL-V is a pointwise total, fission, elastic scattering, and (n,γ) cross-section library containing data sets for all ENDF/B-V resonance materials. Data in the pointwise library were processed with the infinite dilute approximation at a temperature of 296 0 K

  20. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  1. Group cross-section processing method and common nuclear group cross-section library based on JENDL-3 nuclear data file

    International Nuclear Information System (INIS)

    Hasegawa, Akira

    1991-01-01

    A common group cross-section library has been developed in JAERI. This system is called 'JSSTDL-295n-104γ (neutron:295 gamma:104) group constants library system', which is composed of a common 295n-104γ group cross-section library based on JENDL-3 nuclear data file and its utility codes. This system is applicable to fast and fusion reactors. In this paper, firstly outline of group cross-section processing adopted in Prof. GROUCH-G/B system is described in detail which is a common step for all group cross-section library generation. Next available group cross-section libraries developed in Japan based on JENDL-3 are briefly reviewed. Lastly newly developed JSSTDL library system is presented with some special attention to the JENDL-3 data. (author)

  2. Neutron-capture cross sections from indirect measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2012-02-01

    Full Text Available Cross sections for compound-nuclear reactions reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f reactions, but need to be improved upon for applications to capture reactions.

  3. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  4. 26Al(n,p)26Mg and 26Al(n,α)23Na cross sections from thermal energy to approximately 50 keV

    International Nuclear Information System (INIS)

    Koehler, P.E.; Gledenov, Yu.M.; Popov, Yu.P.

    1993-01-01

    Understanding the origin of 26 Al is important because it is one of the very few radioactive products of stellar nucleosynthesis to be observed directly by γ-ray telescopes. 26 Al has also been observed indirectly as a 26 Mg anomaly in some meterorites. The 26 Al(n,p) 26 Mg and 26 Al(n,α) 23 Na reactions are thought to be the major means for the destruction of 26 Al in some astrophysical environments, so a knowledge of the cross sections for these reactions is important for a better understanding of the origin of 26 Al. The authors have measured the 26 Al(n,p 1 ) 26 Mg and 26 Al(n,α 0 ) 23 Na cross sections from thermal energy to approximately 50 keV. Most of this energy range has not been explored by previous measurements. The measurements were made at the white neutron source of the Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) using a ΔE-E solid-state detector telescope. Several resonances were observed. This data will be compared to previous measurements and the effect of the new data on the calculated nucleosynthesis of 26 Al will be discussed

  5. High ET jet cross sections at CDF

    International Nuclear Information System (INIS)

    Flaugher, B.

    1996-08-01

    The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown

  6. A comparative study of cross sections at few energy groups for thermal reactors fuel cells

    International Nuclear Information System (INIS)

    Claro, L.H.; Prati, A.

    1992-01-01

    A comparative study of nuclear constant calculated with LEOPARD and WIMSD-4 codes using a typical PWR cell was done. Few groups macroscopic cross section, spectral index burnup and power distribution were analyzed. (author)

  7. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    2001-01-01

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However, it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy

  8. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  9. Recommended activation detector cross sections (RNDL-82)

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1984-01-01

    The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)

  10. Dissociative Recombination and Excitation of CH+5 : Absolute Cross Sections and Branching Fractions

    International Nuclear Information System (INIS)

    Semaniak, J.; Larson, A.; Le Padellec, A.; Stroemholm, C.; Larsson, M.; Rosen, S.; Peverall, R.; Danared, H.; Djuric, N.; Dunn, G.H.; Datz, S.

    1998-01-01

    The heavy-ion storage ring CRYRING was used to measure the absolute dissociative recombination and dissociative excitation cross sections for collision energies below 50 eV. Deduced thermal rates coefficients are consistent with previous beams data but are lower by a factor of 3 than the rates measured by means of the flowing afterglow Langmuir probe technique. A resonant structure in dissociative recombination cross section was found at 9 eV. We have determined the branching fractions in DR of CH + 5 below 0.2 eV. The branching is dominated by three-body CH 3 + H + H and CH 2 + H 2 + H dissociation channels, which occur with branching ratios of ∼0.7 and ∼0.2, respectively; thus methane is a minor species among dissociation products. Both the measured absolute cross sections and branching in dissociative recombination of CH + 5 can have important implications for the models of dense interstellar clouds and abundance of CH 2 , CH 3 and CH 4 in these media. copyright copyright 1998. The American Astronomical Society

  11. Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu

    Science.gov (United States)

    Luo, Junhua; Jiang, Li; Li, Suyuan

    2017-10-01

    The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  12. Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on {sup 132,134}Ba

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Hexi Univ., Zhangye (China). Inst. of New Energy; Wu, Chunlei; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Li, Suyuan [Hexi Univ., Zhangye (China). Inst. of New Energy

    2017-07-01

    Cross sections of the {sup 132}Ba(n,2n){sup 131m,g}Ba and {sup 134}Ba(n,2n){sup 133m,g}Ba reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} have been measured by means of the activation technique at three neutron energies in the range 13-15 MeV. BaCO{sub 3} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The quasimonoenergetic neutrons beam were produced via the {sup 3}H(d,n){sup 4}He reaction at the Pd-300 Neutron Generator of the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  13. Production of a {sup 44} Ti target and its cross section of thermal neutron capture; Producao de um alvo de {sup 44} Ti e sua secao de choque para captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Ejnisman, R

    1994-12-31

    A study of the production of a {sup 44} Ti target was carried out aiming the determination of its thermal neutron capture cross-section. With this purpose, the cross-section of the reaction {sup 45} Sc(p,2 n) {sup 44} Ti was determined in the energies 16-, 18-, 20-22- and 45 MeV. The cross-section of the reactions (p,n) {sup 45} Ti, (p,pn) {sup 44m} Sc, (p,pn) {sup 44g} Sc and (p,p2n){sup 43} Sc were also measured. The results in the low energy region are in good agreement with a previous work by McGee et al. On the other hand, the cross-section at 45 MeV is different from McGee`s result and indicates the existence of an abnormal behavior of the excitation function at higher energies. Furthermore, a radiochemical separation method was developed in order to eliminate Sc from the {sup 44} Ti target which was irradiated with neutrons. It was possible to determine an upper limit for the cross-section of the reaction {sup 44} Ti (n, {gamma}) of 4 x 10{sup 3} b. At last, it is presented a discussion of the results obtained and their possible astrophysical implications. (author) 94 refs.

  14. Dielectronic recombination cross sections for H-like ions

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Badnell, N.R.; Griffin, D.C.

    1990-01-01

    Dielectronic recombination cross sections for several H-like atomic ions are calculated in an isolated-resonance, distorted-wave approximation. Fine-structure and configuration-interaction effects are examined in detail for the O 7+ cross section. Hartree-Fock, intermediate-coupled, multiconfiguration dielectronic recombination cross sections for O 7+ are then compared with the recent experimental measurements obtained with the Test Storage Ring in Heidelberg. The cross-section spectra line up well in energy and the shape of the main resonance structures are comparable. The experimental integrated cross sections differ by up to 20% from theory, but this may be due in part to uncertainties in the electron distribution function

  15. Comparative analysis among several cross section sets

    International Nuclear Information System (INIS)

    Caldeira, A.D.

    1983-01-01

    Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author) [pt

  16. Nuclear reactions cross section measurement using Z-pinch technology

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, T; Bystritskij, V; Mesyats, G A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics; and others

    1997-12-31

    Direct experimental estimate of the upper limit of the d + d {yields} {sup 3}He + n cross-section at deuteron energies below the keV region was obtained for the first time. The experiment was performed at the Pulsed Ion Beam Accelerator of the High-Current Electronics Institute in Tomsk, using high intensity, radially converging deuteron beams, generated during implosion of liner plasma. A two-jet liner made of 17% D{sub 2} + 83% N{sub 2} gas was used, with the inner jet serving as the target. The dd-fusion neutrons were registered by time-of-flight scintillator spectrometers and BF{sub 3} detectors of thermal neutrons placed in a polyethylene moderator. The upper limit obtained for the d + d {yields} {sup 3}He + n cross-section for a deuteron energy of 440 eV is {sigma} < 2 x 10{sup -34} cm{sup 2} at the 90% confidence level. The result demonstrates that the liner implosion technique can be used in the investigation of nuclear reactions between light nuclei at infra low energies, previously not accessible in experiments with classical beam accelerators. (author). 7 refs.

  17. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  18. Partial cross sections near the higher resonances

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-07-01

    As a continuation of the report given at the 10. Rochester Conference, recent measurements of charge-exchange cross section and π 0 production in π - -p interactions are presented here. Section 1 gives a summary of the known results for the elastic, inelastic, and charge-exchange cross sections. Section 2 presents the behavior of the cross sections in the T=1/2 state, in order to discuss the resonances at 600 and 890 MeV. Section 3 discusses the charge-exchange scattering and the interference term between the T=1/2 and T=3/2 states. Section 4 presents some comments on inelastic processes. This report is reprinted from 'Reviews of Modern Physics', Vol. 33, No. 3, 362-367, July, 1961

  19. Classical scattering cross section in sputtering transport theory

    International Nuclear Information System (INIS)

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  20. Energy-differential cross section measurement for the 51V(n,α)48Sc reaction

    International Nuclear Information System (INIS)

    Kanno, I.; Meadows, J.W.; Smith, D.L.

    1984-07-01

    The activation method was used to measure cross sections for the 51 V(n,α) 48 Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard 235 U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard 252 Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references

  1. Cross section data for ionization of important cyanides

    International Nuclear Information System (INIS)

    Kaur, Jaspreet; Antony, Bobby

    2015-01-01

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  2. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  3. Accurate Cross Sections for Microanalysis

    OpenAIRE

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...

  4. The total neutron cross-section of Nb at different temperatures for neutrons with energies below 1 eV

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Maayouf, R.M.A.; Fayek, M.; Mostafa, M.; Hamouda, I.

    1981-09-01

    Total neutron cross-section measurements have been performed for natural Nb at liquid nitrogen, room and 425 0 K temperatures in the energy range from 2 MeV - 1 eV. The measurements were performed using two time-of-flight spectrometers installed in front of two of the ET-RR-1 reactor horizontal channels. The neutron diffraction pattern of Nb, at room temperature, was obtained using a double axis crystal spectrometer installed also at the ET-RR-1 reactor. The obtained total neutron cross-sections were analyzed using the single level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the total neutron cross-section of Nb and the analysis of its neutron diffraction pattern. The incoherent and thermal inelastic scattering cross-sections of Nb were determined from the analysis of the total cross-section of Nb beyond the cut-off wavelength. The following results have been obtained: sigmasub(t) = (6.30+-0.20)b; sigmasub(coh) = (6.0+-0.3)b; sigmasub(incoh) = (2.0+-1.0)b; bsub(coh) = (6.91+-0.08)fm

  5. Photoreactivities and thermal properties of psoralen cross-links

    International Nuclear Information System (INIS)

    Yeung, A.T.; Jones, B.K.; Chu, C.T.

    1988-01-01

    The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link

  6. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig

  7. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  8. Radiochemical determination of the neutron capture cross sections of {sup 241}Am irradiated in the JMTR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, N.; Hatsukawa, Y.; Hata, K.; Kohno, N. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The thermal neutron capture cross section {sigma}{sub 0} and Resonance integral I{sub 0} of {sup 241}Am leading to the production of {sup 242m}Am and {sup 242g}Am were measured by radiochemical method. The cross sections obtained in this study are {sigma}{sub 0}=60.9 {+-} 2.6 barn, I{sub 0}=213 {+-} 13 barn for {sup 241}Am(n,{gamma}){sup 242m}Am and {sigma}{sub 0}=736 {+-} 31 barn, I{sub 0}=1684 {+-} 92 barn for {sup 241}Am(n,{gamma}){sup 242g}Am. (author)

  9. Methodology series module 3: Cross-sectional studies

    Directory of Open Access Journals (Sweden)

    Maninder Singh Setia

    2016-01-01

    Full Text Available Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case–control studies (participants selected based on the outcome status or cohort studies (participants selected based on the exposure status, the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design.

  10. Methodology Series Module 3: Cross-sectional Studies.

    Science.gov (United States)

    Setia, Maninder Singh

    2016-01-01

    Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case-control studies (participants selected based on the outcome status) or cohort studies (participants selected based on the exposure status), the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design.

  11. Compilation of cross-sections. Pt. 1

    International Nuclear Information System (INIS)

    Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1983-01-01

    A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  12. Compilation of cross-sections. Pt. 4

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Ezhela, V.V.; Lugovsky, S.B.; Tolstenkov, A.N.; Yushchenko, O.P.; Baldini, A.; Cobal, M.; Flaminio, V.; Capiluppi, P.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra, P.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1987-01-01

    This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and K L 0 . It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  13. Plasma-based radar cross section reduction

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  14. Evaluation of fusion-evaporation cross-section calculations

    Science.gov (United States)

    Blank, B.; Canchel, G.; Seis, F.; Delahaye, P.

    2018-02-01

    Calculated fusion-evaporation cross sections from five different codes are compared to experimental data. The present comparison extents over a large range of nuclei and isotopic chains to investigate the evolution of experimental and calculated cross sections. All models more or less overestimate the experimental cross sections. We found reasonable agreement by using the geometrical average of the five model calculations and dividing the average by a factor of 11.2. More refined analyses are made for example for the 100Sn region.

  15. NDS multigroup cross section libraries

    International Nuclear Information System (INIS)

    DayDay, N.

    1981-12-01

    A summary description and documentation of the multigroup cross section libraries which exist at the IAEA Nuclear Data Section are given in this report. The libraries listed are available either on tape or in printed form. (author)

  16. Papers presented at the IAEA specialists` meeting on the development of an international nuclear decay data and cross-section database

    Energy Technology Data Exchange (ETDEWEB)

    Lemmel, H D [ed.

    1994-12-01

    The present report contains 20 papers presented at the IAEA meeting on the Development of an International Nuclear Decay Data and Cross-Section Database, Vienna, 24-28 October 1994, covering the following topics: Wall-charts of nuclides, PC systems presenting nuclear data, nuclear decay-data and uncertainties, nuclear spectroscopy, thermal neutron cross-sections and resonance-integrals, reactor-neutron activation analysis, nuclear data standards. (author). Refs, figs and tabs.

  17. Papers presented at the IAEA specialists' meeting on the development of an international nuclear decay data and cross-section database

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1994-12-01

    The present report contains 20 papers presented at the IAEA meeting on the Development of an International Nuclear Decay Data and Cross-Section Database, Vienna, 24-28 October 1994, covering the following topics: Wall-charts of nuclides, PC systems presenting nuclear data, nuclear decay-data and uncertainties, nuclear spectroscopy, thermal neutron cross-sections and resonance-integrals, reactor-neutron activation analysis, nuclear data standards. (author). Refs, figs and tabs

  18. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  19. Validation of the WIMSD4M cross-section generation code with benchmark results

    International Nuclear Information System (INIS)

    Deen, J.R.; Woodruff, W.L.; Leal, L.E.

    1995-01-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section libraries for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D 2 O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented

  20. Validation of the WIMSD4M cross-section generation code with benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Deen, J.R.; Woodruff, W.L. [Argonne National Lab., IL (United States); Leal, L.E. [Oak Ridge National Lab., TN (United States)

    1995-01-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section libraries for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.

  1. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  2. Neutron cross section standards and instrumentation: Annual report

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report from the National Bureau of Standards contains a summary of the results of the Neutron Cross Section Standards and Instrumentation Program. The technical measurements for the past year are given along with the proposed program and budget needs for the next three years. The neutron standards measurements have concentrated on the most important 235 U(n,f) cross section in the thermal to 20 MeV energy range along with the development of neutron detectors required for these measurements. The NBS measurements have made a significant contribution to the improvement in the understanding of this reaction. Measurements were performed with numerous neutron detectors at overlapping energies and at different neutron sources in order to reduce the systematic errors to achieve the required accuracy in this important neutron standard. Significant progress was also made in the development of a detector to utilize the 3 He(n,p) reaction as a standard in the eV to MeV energy region. Improvements in data acquisition systems as well as additional studies of advanced neutron sources were accomplished. Contacts with private industry were maintained and coordination of the neutron standards evaluation was continued. The report also includes biographical listings of the research staff along with copies of a few of our recent publications. 13 figs., 1 tab

  3. Model cross section calculations using LAHET

    International Nuclear Information System (INIS)

    Prael, R.E.

    1992-01-01

    The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented

  4. Total cross sections for electron scattering by He

    International Nuclear Information System (INIS)

    De Heer, F.J.; Jansen, R.H.J.

    1977-01-01

    A set of total cross sections for scattering of electrons by He has been evaluated over the energy range of zero to 3000 eV by means of the analysis of experiments and theories on total cross sections for elastic scattering, ionisation and excitation, and on differential cross sections for elastic and inelastic scattering. Between 0 and 19.8 eV, where no inelastic processes occur, the total cross sections for scattering are equal to those for elastic scattering. Above 19.8 eV total cross sections for scattering of electrons have been evaluated by adding those for ionisation, excitation and elastic scattering. The total cross sections thus obtained are probably accurate to about 5% over a large part of the energy range. They appear to be in very good agreement with the recent experimental results of Blaauw et al. (J. Phys. B.; 10:L299 (1977)). The present results have already proved useful for application in the dispersion relation for forward scattering in electron-helium collisions. (author)

  5. Cross Sections for Inner-Shell Ionization by Electron Impact

    Energy Technology Data Exchange (ETDEWEB)

    Llovet, Xavier, E-mail: xavier@ccit.ub.edu [Centres Científics i Tecnològics, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain); Powell, Cedric J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States); Salvat, Francesc [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Jablonski, Aleksander [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  6. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  7. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  8. Effective cross section values for well-moderated thermal reactor spectra

    Energy Technology Data Exchange (ETDEWEB)

    Westcott, C H

    1970-11-15

    This document replaces the earlier versions (CRRP-680 and CRRP-787) and now employs the {sigma} (E) information contained in Supplement 1 (1960) of the 2nd edition of BNL-325 and other data privately collected to a cut-off date of April 1, 1960. The compilation is also enlarged to include higher temperatures (thus superseding CRRP-862) and for the first time also includes s-factors calculated using the epithermal cut-off functions exhibiting a maximum at just above the cut-off energy, which have recently been indicated by Swedish and U.K. measurements, as well as by analysis of some calculated spectra. As in the earlier compilation, the notation of the author's Geneva Conference (1958) paper is used, the effective cross section {sigma} being given in terms of the 2200 m/sec. value {sigma}{sub o} by the relation {sigma} {sigma}{sub o} (g + rs), where g and s are the factors listed in this compilation and r is a measure of the proportion of epithermal neutrons in the reactor spectrum. (author)

  9. Effective cross section values for well-moderated thermal reactor spectra

    Energy Technology Data Exchange (ETDEWEB)

    Westcott, C.H

    1970-11-15

    This document replaces the earlier versions (CRRP-680 and CRRP-787) and now employs the {sigma} (E) information contained in Supplement 1 (1960) of the 2nd edition of BNL-325 and other data privately collected to a cut-off date of April 1, 1960. The compilation is also enlarged to include higher temperatures (thus superseding CRRP-862) and for the first time also includes s-factors calculated using the epithermal cut-off functions exhibiting a maximum at just above the cut-off energy, which have recently been indicated by Swedish and U.K. measurements, as well as by analysis of some calculated spectra. As in the earlier compilation, the notation of the author's Geneva Conference (1958) paper is used, the effective cross section {sigma} being given in terms of the 2200 m/sec. value {sigma}{sub o} by the relation {sigma} {sigma}{sub o} (g + rs), where g and s are the factors listed in this compilation and r is a measure of the proportion of epithermal neutrons in the reactor spectrum. (author)

  10. Effective cross section values for well-moderated thermal reactor spectra

    International Nuclear Information System (INIS)

    Westcott, C.H.

    1970-11-01

    This document replaces the earlier versions (CRRP-680 and CRRP-787) and now employs the σ (E) information contained in Supplement 1 (1960) of the 2nd edition of BNL-325 and other data privately collected to a cut-off date of April 1, 1960. The compilation is also enlarged to include higher temperatures (thus superseding CRRP-862) and for the first time also includes s-factors calculated using the epithermal cut-off functions exhibiting a maximum at just above the cut-off energy, which have recently been indicated by Swedish and U.K. measurements, as well as by analysis of some calculated spectra. As in the earlier compilation, the notation of the author's Geneva Conference (1958) paper is used, the effective cross section σ being given in terms of the 2200 m/sec. value σ o by the relation σ σ o (g + rs), where g and s are the factors listed in this compilation and r is a measure of the proportion of epithermal neutrons in the reactor spectrum. (author)

  11. Transport cross section for small-angle scattering

    International Nuclear Information System (INIS)

    D'yakonov, M.I.; Khaetskii, A.V.

    1991-01-01

    Classical mechanics is valid for describing potential scattering under the conditions (1) λ much-lt α and (2) U much-gt ℎυ/α, where λ is the de Broglie wavelength, α is the characteristic size of the scatterer, U is the characteristic value of the potential energy, and υ is the velocity of the scattered particle. The second of these conditions means that the typical value of the classical scattering angle is far larger than the diffraction angle λ/α. In this paper the authors show that this second condition need not hold in a derivation of the transport cross section. In other words, provided that the condition λ much-lt α holds, it is always possible to calculate the transport cross section from the expressions of classical mechanics, even in the region U approx-lt ℎυ/α, where the scattering is diffractive,and the differential cross section is greatly different from the classical cross section. The transport cross section is found from the classical expression even in the anticlassical case U much-lt ℎυ/α, where the Born approximation can be used

  12. Nonelastic-scattering cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1980-06-01

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  13. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  14. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  15. Vibrational enhancement of total breakup cross sections

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1984-01-01

    This paper considers the role of multi-two-body bound states, namely vibrational excitations, on total three-body breakup cross-sections. Total cross-sections are usually easy to measure, and they play a fundamental role in chemical kinetics. (orig.)

  16. Effects of temperature and input energy on a quasi-three-level emission cross section of Nd3+:YAG pumped by a flashlamp

    International Nuclear Information System (INIS)

    Pourmand Seyed Ebrahim; Bidin Noriah; Bakhtiar Hazri

    2012-01-01

    The influence of temperature and input energy on the fluorescence emission cross section of Nd 3+ :YAG crystal is studied. The stimulated emission cross sections of quasi-three-level systems are determined in a temperature range from −30 to 60°C and an input energy range from 18 to 75 J. The cross section is found to be decreased when the temperature and the input energy are increased. This is attributed to the thermal broadening mechanism of the emission line. This study is relevant for the development of laser design

  17. Target dependence of K+-nucleus total cross sections

    International Nuclear Information System (INIS)

    Jiang, M.F.; Ernst, D.J.; Chen, C.M.

    1995-01-01

    We investigate the total cross section and its target dependence for K + -nucleus scattering using a relativistic momentum-space optical potential model which incorporates relativistically normalized wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi averaging integral. The definition of the total cross section in the presence of a Coulomb interaction is reviewed and the total cross section is calculated in a way that is consistent with what is extracted from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calculated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections on the details of the theory. The model dependence of the first-order optical potential calculations is investigated. The theoretical results are found to be systematically below all existing data

  18. Tables of RCN-2 fission-product cross section evaluation

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1979-05-01

    This report (continuation of ECN-13 and ECN-33) describes the third part of the RCN-2 evaluation of neutron cross sections for fission product nuclides in KEDAK format. It contains evaluated data for nine nuclides, i.e. 142 Nd, 143 Nd, 144 Nd, 145 Nd, 146 Nd, 147 Nd, 148 Nd, 150 Nd and 147 Pm. Most emphasis has been given to the evaluation of the radiative capture cross section, in order to provide a data base for adjustment calculations using results of integral measurements. Short evaluation reports are given for this cross section. The evaluated capture cross sections are compared with recent experimental differential and integral data. Graphs are given of the capture cross sections at neutron energies above 1 keV, in which also adjusted point cross sections, based upon integral STEK and CFRMF data have been plotted. Moreover, the results are compared with those of the well-known ENDF/B-IV evaluation for fission product nucleides. Finally, evaluation summaries are given, which include tables of other important neutron cross sections, such as the total, elastic scattering and inelastic scattering cross sections

  19. Evaluation of the 237Np neutron cross sections in the energy range from 10-5 eV to 5 MeV

    International Nuclear Information System (INIS)

    Derrien, H.; Fort, E.

    1979-01-01

    The 237 Np neutron cross-sections have been evaluated in the energy range from thermal to 5 MeV. A set of resonance parameters including a negative level, is recommanded after examination of the available experimental data. This set is used 1) to calculate the cross-sections from the thermal region to 150 ev, and 2) to provide the statistical parameters suitable to the calculations in the unresolved region. At higher energies, the transmission coefficients Te are calculated by the coupled channel optical model code ECIS. They are then used as input in the statistical model code FISINGA. The optical model parameters, including the deformation parameters, are those used by Lagrange for the Pu isotopes, slightly modified to reproduce at 40 KeV the total cross-sections obtained from the pure statistical parameters. The recommendations of Lynn concerning the level density parameters have been used. In this paper we describe the various steps of the evaluation

  20. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  1. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  2. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  3. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  4. Assessment of the available {sup 233}U cross-section evaluations in the calculation of critical benchmark experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.; Wright, R.Q.

    1996-10-01

    In this report we investigate the adequacy of the available {sup 233}U cross-section data for calculation of experimental critical systems. The {sup 233}U evaluations provided in two evaluated nuclear data libraries, the U.S. Data Bank [ENDF/B (Evaluated Nuclear Data Files)] and the Japanese Data Bank [JENDL (Japanese Evaluated Nuclear Data Library)] are examined. Calculations were performed for six thermal and ten fast experimental critical systems using the S{sub n} transport XSDRNPM code. To verify the performance of the {sup 233}U cross-section data for nuclear criticality safety application in which the neutron energy spectrum is predominantly in the epithermal energy range, calculations of four numerical benchmark systems with energy spectra in the intermediate energy range were done. These calculations serve only as an indication of the difference in calculated results that may be expected when the two {sup 233}U cross-section evaluations are used for problems with neutron spectra in the intermediate energy range. Additionally, comparisons of experimental and calculated central fission rate ratios were also made. The study has suggested that an ad hoc {sup 233}U evaluation based on the JENDL library provides better overall results for both fast and thermal experimental critical systems.

  5. Assessment of the Available (Sup 233)U Cross Sections Evaluations in the Calculation of Critical Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.

    1993-01-01

    In this report we investigate the adequacy of the available {sup 233}U cross-section data for calculation of experimental critical systems. The {sup 233}U evaluations provided in two evaluated nuclear data libraries, the U. S. Data Bank [ENDF/B (Evaluated Nuclear Data Files)] and the Japanese Data Bank [JENDL (Japanese Evaluated Nuclear Data Library)] are examined. Calculations were performed for six thermal and ten fast experimental critical systems using the Sn transport XSDRNPM code. To verify the performance of the {sup 233}U cross-section data for nuclear criticality safety application in which the neutron energy spectrum is predominantly in the epithermal energy range, calculations of four numerical benchmark systems with energy spectra in the intermediate energy range were done. These calculations serve only as an indication of the difference in calculated results that may be expected when the two {sup 233}U cross-section evaluations are used for problems with neutron spectra in the intermediate energy range. Additionally, comparisons of experimental and calculated central fission rate ratios were also made. The study has suggested that an ad hoc {sup 233}U evaluation based on the JENDL library provides better overall results for both fast and thermal experimental critical systems.

  6. Calculation of atom displacement cross section for structure material

    International Nuclear Information System (INIS)

    Liu Ping; Xu Yiping

    2015-01-01

    The neutron radiation damage in material is an important consideration of the reactor design. The radiation damage of materials mainly comes from atom displacements of crystal structure materials. The reaction cross sections of charged particles, cross sections of displacements per atom (DPA) and KERMA are the basis of radiation damage calculation. In order to study the differences of DPA cross sections with different codes and different evaluated nuclear data libraries, the DPA cross sections for structure materials were calculated with UNF and NJOY codes, and the comparisons of results were given. The DPA cross sections from different evaluated nuclear data libraries were compared. And the comparison of DPA cross sections between NJOY and Monte Carlo codes was also done. The results show that the differences among these evaluated nuclear data libraries exist. (authors)

  7. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    Science.gov (United States)

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  8. Fission cross sections of some thorium, uranium, neptunium and plutonium isotopes relative to /sup 235/U

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J W

    1983-10-01

    Earlier results from the measurements, at this Laboratory, of the fission cross sections of /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, /sup 240/Pu, and /sup 242/Pu relative to /sup 235/U are reviewed with revisions to include changes in data processing procedures, alpha half lives and thermal fission cross sections. Some new data have also been included. The current experimental methods and procedures and the sample assay methods are described in detail and the sources of error are presented in a systematic manner. 38 references.

  9. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    Science.gov (United States)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  10. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  11. Positive Scattering Cross Sections using Constrained Least Squares

    International Nuclear Information System (INIS)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-01-01

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented

  12. Heisenberg rise of total cross sections

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Yushchenko, O.P.

    1988-01-01

    It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs

  13. FENDL/E-2.0. Evaluated nuclear data library of neutron-nucleus interaction cross sections and photon production cross sections and photon-atom interaction cross sections for fusion applications. Version 1, March 1997. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.

    1998-01-01

    This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron-nucleus interaction cross sections, photon production cross sections and photon-atom interaction cross sections for fusion applications. It is part of the evaluated nuclear data library for fusion applications FENDL-2. The data are available cost-free from the Nuclear Data Section upon request. The data can also be retrieved by the user via online access through international computer networks. (author)

  14. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.

    2011-01-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  15. ENEA-Bologna production and testing of JEF-2.2 multi-group cross section libraries for nuclear fission applications

    International Nuclear Information System (INIS)

    Pescarini, M.; Orsi, R.; Martinelli, T.; Sinitsa, V.; Blokhin, A.I.

    2005-01-01

    The ENEA-Bologna Nuclear Data Group produced the VITJEF22.BOLIB (NEA-1699/01 ZZ VITJEF22.BOLIB) and MATJEF22.BOLIB (NEA-1740/01 ZZ MATJEF22.BOLIB) fine-group coupled neutron and photon (199 n + 42 γ) cross section libraries for nuclear fission applications, respectively in AMPX and MATXS format and based on the JEF-2.2 European nuclear data file. Both the libraries were produced from the same set of cross section files in GENDF format, generated with the NJOY-94.66 nuclear data processing system. The present libraries can be considered as European counterparts of the VITAMIN-B6 (DLC-0184 ZZ VITAMIN-B6) American library in AMPX format, based on the ENDF/B-VI Release 3 American nuclear data file. In fact they have the same general features and the same neutron and photon energy group structures as VITAMIN-B6. In particular, all these libraries are pseudo-problem-independent and based on the Bondarenko (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. Each ENEA-Bologna library contains a set of 133 nuclide cross section files processed at 4 temperatures (300 K, 600 K, 1000 K and 2100 K) and obtained for the most part with 6 to 8 values of the background cross section σ 0 . Thermal scattering cross sections were processed at all the temperatures available in the JEF-2.2 thermal scattering law data file for 5 additional bound nuclides: H-1 in light water, H-1 in polyethylene, H-2 in heavy water, C in graphite and Be in beryllium metal. Collapsed working libraries of self-shielded cross sections in the formats used by the deterministic transport codes of the DANTSYS and DOORS systems can be generated from VITJEF22.BOLIB and MATJEF22.BOLIB through, respectively, further problem-dependent data processing with the AMPX or SCAMPI nuclear data processing systems and with the TRANSX code. (authors)

  16. Thermal conductivity of carbon nanotube cross-bar structures

    International Nuclear Information System (INIS)

    Evans, William J; Keblinski, Pawel

    2010-01-01

    We use non-equilibrium molecular dynamics (NEMD) to compute the thermal conductivity (κ) of orthogonally ordered cross-bar structures of single-walled carbon nanotubes. Such structures exhibit extremely low thermal conductivity in the range of 0.02-0.07 W m -1 K -1 . These values are five orders of magnitude smaller than the axial thermal conductivity of individual carbon nanotubes, and are comparable to the thermal conductivity of still air.

  17. Cross sections for hadron and lepton production processes

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    1976-01-01

    Charged heavy lepton production in proton-proton collisions is studied. Motivated by recent experimental results from the Stanford Linear Accelerator Center a parton model analysis is given of the reaction p + p → L + + L - + x → μ +- + e/ -+ / + neutrinos + x. Results are presented for the total cross section and the differential cross sections with respect to the invariant mass squared of the final charged leptons and the transverse momenta of each one of them. The two-photon mechanism for pair production in colliding beam exeriments is considered. Through the use of mapped invariant integration variables, a reliable exact numerical calculation of the cross section for the production of muon and pion pairs by the two-photon mechanism is provided. Results are given for the exact total cross sections and also the differential cross sections with respect to the invariant mass squared of the pair. These are compared to the results obtained from the equivalent photon approximation method

  18. Photofission Cross Sections for 237Np in the Energy Interval from 5.27 to 10.83 MeV

    International Nuclear Information System (INIS)

    Geraldo, L.P.; Semmler, R.; Goncalez, O. L.; Mesa, J.; Arruda-Neto, J.D.T.; Garcia, F.; Rodriguez, O.

    2000-01-01

    Photofission cross sections for 237 Np have been measured as a function of energy, in the interval from 5.27 to 10.83 MeV. The gamma-ray spectra were those produced by thermal neutron capture, in 30 different target materials, at a tangential beam hole of the Instituto de Pesquisas Energeticas e Nucleares IEA-R1 2-MW research reactor. The set of experimental data has been unfolded employing least-squares methods and the covariance matrix methodology. The determined photofission cross sections for 237 Np, together with the complete correlation matrix for the involved errors, are presented and are compared with previous measurements reported in the literature. A statistical calculation for the 237 Np photofission cross sections was performed, and the results are compared with the experimental data

  19. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  20. Distorted eikonal cross sections: A time-dependent view

    International Nuclear Information System (INIS)

    Turner, R.E.

    1982-01-01

    For Hamiltonians with two potentials, differential cross sections are written as time-correlation functions of reference and distorted transition operators. Distorted eikonal differential cross sections are defined in terms of straight-line and reference classical trajectories. Both elastic and inelastic results are obtained. Expressions for the inelastic cross sections are presented in terms of time-ordered cosine and sine memory functions through the use of the Zwanzig-Feshbach projection-operator method

  1. Discussion of electron cross sections for transport calculations

    International Nuclear Information System (INIS)

    Berger, M.J.

    1983-01-01

    This paper deals with selected aspects of the cross sections needed as input for transport calculations and for the modeling of radiation effects in biological materials. Attention is centered mainly on the cross sections for inelastic interactions between electrons and water molecules and the use of these cross sections for the calculation of energy degradation spectra and of ionization and excitation yields. 40 references, 3 figures, 1 table

  2. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  3. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  4. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Trocsanyi, Z. [CERN PH-TH, on leave from University of Debrecen and Institute of Nuclear Research of HAS, H-4001 P.O.Box 51 (Hungary)

    2010-08-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  5. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  6. A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Hak; Nam, Seok Ho; Lee, Je Yull; Song, Seung Hyun; Jeon, Hae Ryong; Baek, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

  7. FENDL/E. Evaluated nuclear data library of neutron nuclear interaction cross-sections and photon production cross-sections and photon-atom interaction cross sections for fusion applications. Version 1.1 of November 1994

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.; Ganesan, S.; McLaughlin, P.K.

    1996-01-01

    This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron nuclear interaction cross-sections and photon production cross-sections and photon-atom interaction cross-sections for fusion applications. It is part of FENDL, the evaluated nuclear data library for fusion applications. The nuclear data are available cost-free for distribution to interested scientists upon request. The data can also be retrieved by the user via online access through international computer networks. (author). 11 refs, 1 tab

  8. Average cross sections for the 252Cf neutron spectrum

    International Nuclear Information System (INIS)

    Dezso, Z.; Csikai, J.

    1977-01-01

    A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables

  9. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    KAUST Repository

    Es-sebbar, Et-touhami

    2014-01-01

    Propylene, a by-product of biomass burning, thermal cracking of hydrocarbons and incomplete combustion of fossil fuels, is a ubiquitous molecule found in the environment and atmosphere. Accurate infrared (IR) cross-sections and integrated band intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500cm-1 and at gas temperatures between 296 and 460K. We recorded these spectra at spectral resolutions ranging from 0.08 to 0.5cm-1 and measured the integrated band intensities for a number of vibrational bands in certain spectral regions. We then compared the integrated band intensities measured at room temperature with values derived from the National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) databases. Our results agreed well with the results reported in the two databases with a maximum deviation of about 4%. The peak cross-sections for the primary bands decreased by about 20-54% when the temperature increased from 296 to 460K. Moreover, we determined the integrated band intensities as a function of temperature for certain features in various spectral regions; we found no significant temperature dependence over the range of temperatures considered here. We also studied the effect of temperature on absorption cross-section using a Difference Frequency Generation (DFG) laser system. We compared the DFG results with those obtained from the FTIR study at certain wavenumbers over the 2850-2975cm-1 range and found a reasonable agreement with less than 10% discrepancy. © 2013 Elsevier Ltd.

  10. Measurement of thermal neutron cross section and resonance integral of the reaction {sup 135}Cs(n,{gamma}){sup 136}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio; Nakamura, Shoji; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro; Kobayashi, Katsutoshi; Motoishi, Shoji; Tanase, Masakazu

    1997-03-01

    The thermal neutron(2,200 m/s neutron) capture cross section({sigma}{sub 0}) and the resonance integral(I{sub 0}) of the reaction {sup 135}Cs(n,{gamma}){sup 136}Cs were measured by an activation method. Targets of radioactive cesium, which include {sup 135}Cs, {sup 137}Cs and stable {sup 133}Cs, were irradiated with reactor neutrons within or without a Cd shield case. The ratio of the number of nuclei of {sup 135}Cs to that of {sup 137}Cs was measured with a quadrupole mass spectrometer. This ratio and the ratio of activity of {sup 136}Cs to that of {sup 137}Cs were used for deduction of the {sigma}{sub 0} and the I{sub 0} of {sup 135}Cs. The {sigma}{sub 0} and the I{sub 0} of the reaction {sup 135}Cs(n,{sigma}){sup 136}Cs were 8.3 {+-} 0.3 barn and 38.1 {+-} 2.6 barn, respectively. (author)

  11. Cross section library DOSCROS77 (in the SAND-II format)

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.; Borg, N.J.C.M. van der.

    1977-08-01

    The dosimetry cross section library DOSCROS77 is documented with tables, plots and cross section values averaged over a few reference spectra. This library is based on the ENDF/B-IV dosimetry file, supplemented with some other evaluations. The total number of reaction cross section sets incorporated in this library is 49 (+3 cover cross sections sets). The cross section data are available in a format which is suitable for the program SAND-II

  12. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  13. JSD1000: multi-group cross section sets for shielding materials

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    A multi-group cross section library for shielding safety analysis has been produced by using ENDF/B-IV. The library consists of ultra-fine group cross sections, fine-group cross sections, secondary gamma-ray production cross sections and effective macroscopic cross sections for typical shielding materials. Temperature dependent data at 300, 560 and 900 K have been also provided. Angular distributions of the group to group transfer cross section are defined by a new method of ''Direct Angular Representation'' (DAR) instead of the method of finite Legendre expansion. The library designated JSD1000 are stored in a direct access data base named DATA-POOL and data manipulations are available by using the DATA-POOL access package. The 3824 neutron group data of the ultra-fine group cross sections and the 100 neutron, 20 photon group cross sections are applicable to shielding safety analyses of nuclear facilities. This report provides detailed specifications and the access method for the JSD1000 library. (author)

  14. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  15. The total collision cross section in the glory region

    International Nuclear Information System (INIS)

    Biesen, J.J.H. van den.

    1982-01-01

    Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)

  16. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  17. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  18. Electron-impact ionization cross section of rubidium

    International Nuclear Information System (INIS)

    Kim, Y.; Migdalek, J.; Siegel, W.; Bieron, J.

    1998-01-01

    A theoretical model for electron-impact ionization cross section has been applied to Rb and the theoretical cross section (from the threshold to 1 keV in incident energy) is in good agreement with the recent experimental data obtained using Rb atoms trapped in a magneto-optical trap. The theoretical model, called the binary-encounter endash dipole (BED) model, combines a modified Mott cross section with the high-energy behavior of Born cross sections. To obtain the continuum dipole oscillator strength df/dE of the 5s electron required in the BED model, we used Dirac-Fock continuum wave functions with a core polarization potential that reproduced the known position of the Cooper minimum in the photoionization cross section. For inner-shell ionization, we used a simpler version of df/dE, which retained the hydrogenic shape. The contributions of the 4p→4d, 5s, and 5p autoionizing excitations were estimated using the plane-wave Born approximation. As a by-product, we also present the dipole oscillator strengths for the 5s→np 1/2 and 5s→np 3/2 transitions for high principal quantum numbers n near the ionization threshold obtained from the Dirac-Fock wave functions with the same core polarization potential as that used for the continuum wave functions. copyright 1998 The American Physical Society

  19. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  20. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  1. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  2. The total neutron cross-sections of 151Eu, 153Eu and Eu below 1 eV

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Ashry, A.; Hamouda, I.

    1981-01-01

    Total neutron cross-section measurements have been carried out for natural Eu and its stable isotopes in the energy range from 3 meV to 1 eV. The measurements were performed using two time-of-flight spectrometers installed in front of two of the horizontal channels of the ET-RR-1 reactor. The following results have been obtained: sigmasub(a) ( 151 Eu) = (9180 +- 150) b at 0.0253 eV, sigmasub(s) ( 153 Eu) = (375 +- 20) b at 0.0253 eV, sigmasub(d) (Eu) = (4600 +- 120) b at 0.0253 eV. The contribution of the resonance to the total neutron cross-sections, in the thermal region, was calculated using the single-level Breit-Wigner formula. (orig.)

  3. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  4. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  5. View-CXS neutron and photon cross-sections viewer

    International Nuclear Information System (INIS)

    Subbaiah, K.V.; Sunil Sunny, C.

    2004-01-01

    A graphical user-friendly interface is developed in Visual Basic (VB)-6 to view the variation of neutron and photon interaction cross-sections of different isotopes as a function of energy. VB subroutines developed read the binary data files of cross-sections created in MCNP-ACE (Briesmeister, J.F., 1993. MCNP - a general purpose Monte Carlo N-Particle Transport code. Version 4A. LANL, USA), ANISN-DLC (Engle W.W. Jr., 1967, A User's Manual for ANISN, K-1693; ORNL, 1974. 100 group neutron cross section data based on ENDF/B-III. Oak Ridge National Laboratory, USA) and KENO-AMPX (Petrie, L.M., Landers, N.F., 1984 KENO-Va- An Improved Monte Carlo Criticality Program with Super Grouping. RSICC-CCC-548, USA) formats using LAHEY-77 Fortran Compiler. The information on isotopes present in each library will be displayed with the help of database files prepared using Micro-Soft ACESS. The cross-section data can be viewed in different presentation styles namely, line graphs, bar graphs, histograms etc., with different color and symbol options. The cross-section plots generated can be saved as Bit-Map file to embed in any other text files. This software enables inter comparison of cross-sections from different type of libraries for isotopes as well as mixtures. Provision is made to view the cross-sections for nuclear reactions such as (n,γ), (n,f), (n,α), etc. The software can be obtained from Radiation Safety Information and Computational Centre (RSICC), ORNL, USA with the code package identification number PSR-514. The software package needs a hard disk space of about 80 MB when installed and works in WINDOWS-95/98/2000 operating systems

  6. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  7. Pion-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1990-01-01

    The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab

  8. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  9. Fission-neutron displacement cross sections in metals

    International Nuclear Information System (INIS)

    Takamura, Saburo; Aruga, Takeo; Nakata, Kiyotomo

    1985-01-01

    The sensitivity damage rates for 22 metals were measured after fission-spectrum neutron irradiation at low temperature and the experimental damage rates were compared with the theoretical calculation. The relation between the theoretical displacement cross section and the atomic weight of metals can be written by two curves; one is for fcc and hcp metals, and another is for bcc metals. On the other hand, the experimental displacement cross section versus atomic weight is shown approximately by a curve for both fcc and bcc metals, and the cross section for hcp metals deviates from the curve. The defect production efficiency is 0.3-0.4 for fcc metals and 0.6-0.8 for bcc metals. (orig.)

  10. Compact fitting formulas for electron-impact cross sections

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1992-01-01

    Compact fitting formulas, which contain four fitting constants, are presented for electron-impact excitation and ionization cross sections of atoms and ions. These formulas can fit experimental and theoretical cross sections remarkably well, when resonant structures are smoothed out, from threshold to high incident electron energies (<10 keV), beyond which relativistic formulas are more appropriate. Examples of fitted cross sections for some atoms and ions are presented. The basic form of the formula is valid for both atoms and molecules

  11. Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility

    CERN Document Server

    Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Alvarez-Velarde, F; Cano-Ott, D; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Villamarin, D; Vicente, M C; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Kadi, Y; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Heil, M; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured using the n_TOF white neutron source at CERN, Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at n_TOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of 233U, 245Cm and 243Am from thermal to 20 MeV are here reported, together with preliminary results for 241Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of 235U, measured simultaneously with the same detector.

  12. Thermal-hydraulic feedback model to calculate the neutronic cross-section in PWR reactions; Modelo termohidraulico para realimentacao do calculo de secoes de choque neutronicas em reatores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Daniela Maiolino Norberto

    2011-07-01

    In neutronic codes,it is important to have a thermal-hydraulic feedback module. This module calculates the thermal-hydraulic feedback of the fuel, that feeds the neutronic cross sections. In the neutronic co de developed at PEN / COPPE / UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. We used the finite volume technique of discretized the equation of temperature distribution, while calculation the moderator coefficient of heat transfer, was carried out using the ASME table, and using some of their routines to our program. The model allows one to calculate an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the neutronic code. The results were compared with to the empirical model. Our results show that for the fuel elements near periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. The proposed model was validated by the neutronic simulator developed in the PEN / COPPE / UFRJ for analysis of PWR reactors. (author)

  13. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  14. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)

    2011-07-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  15. Characterization of Thermal Cross-talk in a γ-ray Microcalorimeter Array

    International Nuclear Information System (INIS)

    Jethava, N.; Ullom, J. N.; Bennett, D. A.; Irwin, K. D.; Horansky, R. D.; Beall, J. A.; Hilton, G. C.; Vale, L. R.; Hoover, A.; Bacrania, M. K.; Rabin, M. W.

    2009-01-01

    We present experimental data describing cross-talk within an array of gamma-ray microcalorimeters during gamma-ray irradiation. The microcalorimeters consist of Mo/Cu transition-edge sensors (TESs) with attached Sn absorbers. We observe both thermal and electrical cross-talk with peak cross-talk amplitudes as large as 0.4%. We have developed an analytical model for thermal cross-talk and make a preliminary comparison to data. Cross-talk must be understood and minimized for high resolution spectroscopy at high input count rates.

  16. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  17. Research on Fast-Doppler-Broadening of neutron cross sections

    International Nuclear Information System (INIS)

    Li, S.; Wang, K.; Yu, G.

    2012-01-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as 238 U, 235 U) to an order of magnitude of 1∼2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  18. MXS cross-section preprocessor user's manual

    International Nuclear Information System (INIS)

    Parker, F.; Ishikawa, M.; Luck, L.

    1987-03-01

    The MXS preprocessor has been designed to reduce the execution time of programs using isotopic cross-section data and to both reduce the execution time and improve the accuracy of shielding-factor interpolation in the SIMMER-II accident analysis program. MXS is a dual-purpose preprocessing code to: (1) mix isotopes into materials and (2) fit analytic functions to the shelf-shielding data. The program uses the isotope microscopic neutron cross-section data from the CCCC standard interface file ISOTXS and the isotope Bondarenko self-shielding data from the CCCC standard interface file BRKOXS to generate cross-section and self-shielding data for materials. The materials may be a mixture of several isotopes. The self-shielding data for the materials may be the actual shielding factors or a set of coefficients for functions representing the background dependence of the shielding factors. A set of additional data is given to describe the functions necessary to interpolate the shielding factors over temperature

  19. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  20. NNLO jet cross sections by subtraction

    Science.gov (United States)

    Somogyi, G.; Bolzoni, P.; Trócsányi, Z.

    2010-08-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 06, 024 (2005), arXiv:hep-ph/0502226; G. Somogyi and Z. Trócsányi, (2006), arXiv:hep-ph/0609041; G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 01, 070 (2007), arXiv:hep-ph/0609042; G. Somogyi and Z. Trócsányi, JHEP 01, 052 (2007), arXiv:hep-ph/0609043] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  1. Neutron capture cross-section measurements for 238U between 0.4 and 1.4 MeV

    Science.gov (United States)

    Krishichayan, Fnu; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Neutron-induced radiative-capture cross-section data of 238U are crucial for fundamental nuclear physics as well as for Stewardship Science, for advanced-fuel-cycle calculations, and for nuclear astrophysics. Based on different techniques, there are a large number of 238U(n, γ) 239U cross-section data available in the literature. However, there is a lack of systematic and consistent measurements in the 0.1 to 3.0 MeV energy range. The goal of the neutron-capture project at TUNL is to provide accurate 238U(n, γ) 239U cross-section data in this energy range. The 238U samples, sandwiched between gold foils of the same size, were irradiated for 8-14 hours with monoenergetic neutrons. To avoid any contribution from thermal neutrons, the 238U and 197Au targets were placed inside of a thin-walled pill-box made of 238U. Finally, the whole pill-box was wrapped in a gold foil as well. After irradiation, the samples were gamma-counted at the TUNL's low-background counting facility using high-efficient HPGe detectors. The 197Au monitor foils were used to calculate the neutron flux. The experimental technique and 238U(n, γ) 239U cross-section results at 6 energies will be discussed during the meeting.

  2. Pile oscillator measurements of thermal absorption cross sections of Al, Mg, Fe and Cu

    International Nuclear Information System (INIS)

    Carre, J.C.; Vidal, R.

    1964-01-01

    The phase oscillation technique used at ZOE has the property of reducing of a marked factor the effect of neutron scattering by the sample. The absorption cross sections of poorly absorbing and highly scattering materials have been measured; for neutrons of 2,200 m/s, the following values are obtained: 229 ± 3 mb for Al; 64.2 ± 1.5 mb for Mg, 2.53 ± 0.03 b for Fe and 3.74 ± 0.04 b for Cu. (authors) [fr

  3. ENDF/B Thermal Data Testing

    CERN Document Server

    McCrosson, F J

    2001-01-01

    The thermal data testing group is concerned with establishing the merit of ENDF/B cross sections for the analysis of thermal systems. The integral experiments used in the testing are designed to analyze each of the phenomena identified in the familiar four-factor formula. For brevity, only the testing of the cross sections in uranium systems is described in this report.

  4. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  5. THERMAL: A routine designed to calculate neutron thermal scattering

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1995-01-01

    THERMAL is designed to calculate neutron thermal scattering that is isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the center of mass system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy

  6. Development of an international nuclear decay data and cross-section database. Summary report of an IAEA specialists` meeting, Vienna, 24-28 October 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lemmel, H D [ed.

    1994-12-01

    An IAEA Specialists` Meeting proposes procedures describing how an internationally accepted database of high-priority nuclear decay data and thermal neutron cross-sections can be developed through a network of experts coordinated by the IAEA Nuclear Data Section. (author).

  7. Development of an international nuclear decay data and cross-section database. Summary report of an IAEA specialists' meeting, Vienna, 24-28 October 1994

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1994-12-01

    An IAEA Specialists' Meeting proposes procedures describing how an internationally accepted database of high-priority nuclear decay data and thermal neutron cross-sections can be developed through a network of experts coordinated by the IAEA Nuclear Data Section. (author)

  8. LHCb cross-section measurements with heavy flavour jets

    CERN Multimedia

    Michielin, Emanuele

    2017-01-01

    Cross-section measurements of jets originating from the hadronization of beauty ($b$) and charm ($c$) quarks at LHCb give the unique opportunity to probe Parton Distribution Functions (PDFs) at low and large momentum fraction and to test the Standard Model in the forward region. In this poster the production of $t\\bar{t}$ pairs in the forward region, the measurement of the $W+b\\bar{b}$ and $W+c\\bar{c}$ cross-section and the measurement of the $Z\\rightarrow b\\bar{b}$ cross-section are presented.

  9. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    International Nuclear Information System (INIS)

    OH, S.Y.; CHANG, J.; MUGHABGHAB, S.

    2000-01-01

    Neutron cross section evaluations of the fission-product isotopes, 95 Mo, 99 Tc, 101 Ru, 103 Rh, 105 Pd, 109 Ag, 131 Xe, 133 Cs, 141 Pr, 141 Nd, 147 Sm, 149 Sm, 150 Sm, 151 Sm, 152 Sm, 153 Eu, 155 Gd, and 157 Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of 155 Gd and 157 Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations

  10. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  11. Developing Scientific Reasoning Through Drawing Cross-Sections

    Science.gov (United States)

    Hannula, K. A.

    2012-12-01

    Cross-sections and 3D models of subsurface geology are typically based on incomplete information (whether surface geologic mapping, well logs, or geophysical data). Creating and evaluating those models requires spatial and quantitative thinking skills (including penetrative thinking, understanding of horizontality, mental rotation and animation, and scaling). However, evaluating the reasonableness of a cross-section or 3D structural model also requires consideration of multiple possible geometries and geologic histories. Teaching students to create good models requires application of the scientific methods of the geosciences (such as evaluation of multiple hypotheses and combining evidence from multiple techniques). Teaching these critical thinking skills, especially combined with teaching spatial thinking skills, is challenging. My Structural Geology and Advanced Structural Geology courses have taken two different approaches to developing both the abilities to visualize and to test multiple models. In the final project in Structural Geology (a 3rd year course with a pre-requisite sophomore mapping course), students create a viable cross-section across part of the Wyoming thrust belt by hand, based on a published 1:62,500 geologic map. The cross-section must meet a number of geometric criteria (such as the template constraint), but is not required to balance. Each student tries many potential geometries while trying to find a viable solution. In most cases, the students don't visualize the implications of the geometries that they try, but have to draw them and then erase their work if it does not meet the criteria for validity. The Advanced Structural Geology course used Midland Valley's Move suite to test the cross-sections that they made in Structural Geology, mostly using the flexural slip unfolding algorithm and testing whether the resulting line lengths balanced. In both exercises, students seemed more confident in the quality of their cross-sections when the

  12. Applications of the BEam Cross section Analysis Software (BECAS)

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the gener......A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used...... for the generation of beam finite element models which correctly account for effects stemming from material anisotropy and inhomogeneity in cross sections of arbitrary geometry. These type of modelling approach allows for an accurate yet computationally inexpensive representation of a general class of three...

  13. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  14. Cross-section crushing behaviour of hat-sections (Part II: Analytical modelling)

    NARCIS (Netherlands)

    Hofmeyer, H.

    2005-01-01

    Hat-sections are often used to experimentally investigate building sheeting subject to a concentrated load and bending. In car doors, hat-sections are used for side-impact protection. Their crushing behaviour can partly be explained by only observing their cross-sectional behaviour [1]. This

  15. Asymptotic behaviour of pion-pion total cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Greynat, David [Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II”,Via Cintia, 80126 Napoli (Italy); Rafael, Eduardo de [Aix-Marseille Université, CNRS,CPT, UMR 7332, 13288 Marseille (France); Université de Toulon, CNRS,CPT, UMR 7332, 83957 La Garde (France); Vulvert, Grégory [Departament de Física Teórica, IFIC,CSIC - Universitat de València, Apt. Correus 22085, E-46071 València (Spain)

    2014-03-24

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log{sup 2} s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π{sup +}π{sup −}, π{sup ±}π{sup 0} and π{sup 0}π{sup 0} scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N{sub c} and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N{sub c} QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N{sub c} counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ{sub π{sup ±}π{sup 0total}}(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N{sub c} Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections.

  16. Asymptotic behaviour of pion-pion total cross-sections

    International Nuclear Information System (INIS)

    Greynat, David; Rafael, Eduardo de; Vulvert, Grégory

    2014-01-01

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log 2  s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π + π − , π ± π 0 and π 0 π 0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N c and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N c QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ π ± π 0 total (s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections

  17. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  18. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  19. Total cross sections for heavy flavour production at HERA

    CERN Document Server

    Frixione, Stefano; Nason, P; Ridolfi, G; Frixione, S; Mangano, M L; Nason, P; Ridolfi, G

    1995-01-01

    We compute total cross sections for charm and bottom photoproduction at HERA energies, and discuss the relevant theoretical uncertainties. In particular we discuss the problems arising from the small-x region, the uncertainties in the gluon parton density, and the uncertainties in the hadronic component of the cross section. Total electroproduction cross sections, calculated in the Weizs\\"acker-Williams approximation, are also given.

  20. Heavy flavour hadro-production cross-sections

    CERN Document Server

    Wöhri, H K

    2003-01-01

    Hadro-production data on charm and beauty absolute cross-sections, collected by experiments at CERN, DESY and Fermilab, are reviewed. The measurements, corrected for the 'time evolution' of the branching ratios, are compared to calculations done with Pythia, as a function of the collision energy, using the latest parametrizations of the parton densities. We then estimate some charm and beauty production cross-sections relevant for future measurements, including nuclear effectes in the PDFs. We finish by briefly addressing the relevance, in heavy-ion collisions, of beauty production as feed-down for J/psi production.

  1. Evaluated activation cross-sections and intercomparison of the ...

    Indian Academy of Sciences (India)

    mental data cross-section with the theoretical codes, to study the quality of the theoretical ... the cross-section, angular distribution, double differential data, gamma ..... TALYS. TENDL. Figure 6. Excitation function of the 87Sr(p, 2n)86Y reaction.

  2. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    Science.gov (United States)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  3. Neutron standard cross sections in reactor physics - Need and status

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1990-01-01

    The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community

  4. Evaluation of kerma in carbon and the carbon cross sections

    International Nuclear Information System (INIS)

    Axton, E.J.

    1992-02-01

    A preliminary simultaneous least squares fit to measurements of kerma in carbon, and carbon cross sections taken from the ENDF/B-V file was carried out. In the calculation the shapes of the total cross section and the various partial cross sections were rigid but their absolute values were allowed to float in the fit within the constraints of the ENDF/B-V uncertainties. The construction of the ENDF/B-V file imposed improbable shapes, particularly in the case of the (12)C(n,n'3(alpha)) reaction, which were incompatible with direct measurements of kerma and of the reaction cross sections. Consequently a new evaluation of the cross section data became necessary. Since the available time was limited the new evaluation concentrated particularly on those aspects of the ENDF/B-V carbon file which would have most impact on kerma calculations. Following the new evaluation of cross sections new tables of kerma factors were produced. Finally, the simultaneous least squares fit to measurements of kerma and the new cross section file was repeated

  5. single-top quark production cross section using the ATLAS detector

    CERN Document Server

    Feng, Cunfeng; The ATLAS collaboration

    2014-01-01

    Measurements of single top-quark production cross section in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. For this process, for the first time a fiducial cross section measured within the detector acceptance is presented and the modelling uncertainty when extrapolating to the total inclusive cross section is assessed with a large number of different Monte Carlo generators. The result is in good agreement with the most up-to-date theory predictions. Furthermore, the single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. Differential cross sections are measured as a function of the transverse momentum and the absolute value of the rapidity of top and anti-top quarks. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. The s-channel production is explored and l...

  6. Effects of cross-section on mechanical properties of Au nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Vazinishayan, Ali; Yang, Shuming, E-mail: shuming.yang@mail.xjtu.edu.cn; Duongthipthewa, Anchalee; Wang, Yiming [State Key Laboratory for manufacturing system engineering, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2016-02-15

    The aim of this paper is study of the effects of multiple cross-section of Au nanowire on mechanical properties. Different cross-section models of Au nanowires including circular, hexagonal, pentagonal and rectangular were simulated by finite element modeling using ABAQUS. In this study, the bending technique was applied so that both ends of the model were clamped with mid-span under loading condition. The cross-sections had the length of 400 nm and the diameter of 40 nm, except the circular cross-section while the rest of the cross-sections had an equivalent diameter. Von Misses stresses distribution were used to define the stress distribution in the cross-section under loading condition, and elastic deformation was analyzed by the beam theory. The results disclosed that the circular and the rectangular models had highest and lowest strengths against plastic deformation, respectively.

  7. Invisible anti-cloak with elliptic cross section using phase complement

    International Nuclear Information System (INIS)

    Yang Yu-Qi; Zhang Min; Yue Jian-Xiang

    2011-01-01

    Based on the theory of phase complement, an anti-cloak with circular cross section can be made invisible to an object outside its domain. As the cloak with elliptic cross section is more effective to make objects invisible than that with circular cross section, a scaled coordinate system is proposed to design equivalent materials of invisible anti-cloak with elliptic cross section using phase complement. The cloaks with conventional dielectric and double negative parameters are both simulated with the geometrical transformations. The results show that the cloak with elliptic cross section through phase complement can effectively hide the outside objects. (classical areas of phenomenology)

  8. Methods for calculating anisotropic transfer cross sections

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yixin.

    1985-01-01

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  9. Photoionization cross sections: present status and future needs

    International Nuclear Information System (INIS)

    Manson, S.T.

    1988-01-01

    The existing experimental data situation for photoionization cross section of ground-state atoms, excited states and positive ions is reviewed. The ability of theory to predict these cross sections is also discussed. The likely progress for the near future is presented [pt

  10. Neutrino-nucleus cross sections for oscillation experiments

    Science.gov (United States)

    Katori, Teppei; Martini, Marco

    2018-01-01

    Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams

  11. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    Science.gov (United States)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  12. Priority cross-sections. Joint Nordic analyses of important cross-sections in the Nordel system. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Nordic Grid Master Plan 2002 shed light on the energy and power balance for the Nordel area but with special focus on 2005. There was a lot to suggest that the tradi-tional transport patterns with frequent southbound transports would change and be more frequently replaced by northbound transports. Against this background, a number of cross-sections were identified within the Nordel area where expansion is expected to have considerable significance for the Nordic elec-tricity market. The present report 'Priority Cross-sections' concludes the work which was started with the grid master plan. The priority cross-sections are subjected to a technical and socio-economic analysis. The analysis aims to understand the transports in the Nordel system and to support Nor-del when prioritizing forthcoming initiatives. The market price is the driving force for the initiatives which will be carried out on the supply and demand side. The commissioning and decommissioning of commercial pro-duction capacity is determined by the market players, and the task of the transmission system operators (TSOs) is to ensure a robust infrastructure for the smooth operation of the electricity market. (au)

  13. 238U subthreshold neutron induced fission cross section

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; De Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1976-01-01

    High resolution measurements of the 238 U neutron induced fission cross section are reported for neutron energies between 600 eV and 2 MeV. The average subthreshold fission cross section between 10 and 100 keV was found to be 44 +- 6 μb

  14. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  15. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  16. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  17. Damage energy and displacement cross sections: survey and sensitivity

    International Nuclear Information System (INIS)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended

  18. Cross section recondensation method via generalized energy condensation theory

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2011-01-01

    Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development

  19. Poster - 18: New features in EGSnrc for photon cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, David W.O. [The Ottawa Hospital Cancer Centre, National Research Council Canada, Carleton University (Canada)

    2016-08-15

    Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministic calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.

  20. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  1. MINERvA - neutrino nucleus cross section experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Recent results from MINERvA, a neutrino cross section experiment at Fermilab, are presented. MINERVA has the goal of providing precision results which will have important impact on oscillation experiments.  Initial data runs for muon neutrino and antineutrino beams of ~3.5 GeV have produced a large number of new results. This seminar will introduce the experiment and describe results for quasielastic, pion production, and inclusive cross sections.

  2. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1980-01-01

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  3. Evaluation of cross sections for neutron-induced reactions in sodium

    International Nuclear Information System (INIS)

    Larson, D.C.

    1980-09-01

    An evaluation of the neutron-induced cross sections of 23 Na has been done for the energy range from 10 -5 eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables

  4. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  5. Thermalization of positronium in helium: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, S.; Suvakov, M. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Engbrecht, J.J. [Saint Olaf College, Northfield, MN 55057 (United States); Petrovic, Z.Lj., E-mail: zoran@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2012-05-15

    In this paper we present a numerical study of positronium (Ps) thermalization in pure helium (He). Recent measurements of Ps thermalization yielded data that were analyzed to produce the scattering cross-sections in helium by using energy balance equations with an assumption of a Maxwell-Boltzmann distribution (MBD) function for Ps. We have applied a Monte Carlo code to test the cross-sections. As our code was developed without any approximations for the energy distribution function we have effectively also tested the assumptions and the validity of the simple theory based on Maxwellian distributions. We present the simulation results using the simulation technique that is limited only by the accuracy of the available cross-sections. We calculate thermalization profiles for several theoretical and measured cross-sections. Also, the temporal evolution of energy distributions has been shown along with diffusion coefficients and spatial ranges of penetration. Thermalization of the initial distribution is rapid and the data follow relatively closely, those calculated in recent experiment, which supports the choice of MBD and the obtained cross-section. However the distribution function most of the time deviates from the MBD due to strong scattering. Finally, we applied the same procedure to analyze Ps thermalization in water vapor.

  6. Positron total scattering cross-sections for alkali atoms

    Science.gov (United States)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  7. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    Energy Technology Data Exchange (ETDEWEB)

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  8. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    International Nuclear Information System (INIS)

    Yoon, Woo Y.; Nigg, David W.

    2008-01-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  9. pp production cross sections and the constraint method

    International Nuclear Information System (INIS)

    Anjos, J.C.; Santoro, A.F.S.; Souza, M.H.G.

    1983-01-01

    A method of constructing production cross sections that satisfy the constraints represented by the first few moments is shown to give an excellent account of the data when applied to the high energy pp production cross section ν sub(n) (s) plotted as functions of n. (Author) [pt

  10. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  11. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  12. Electron collision cross section sets of TMS and TEOS vapours

    Science.gov (United States)

    Kawaguchi, S.; Takahashi, K.; Satoh, K.; Itoh, H.

    2017-05-01

    Reliable and detailed sets of electron collision cross sections for tetramethylsilane [TMS, Si(CH3)4] and tetraethoxysilane [TEOS, Si(OC2H5)4] vapours are proposed. The cross section sets of TMS and TEOS vapours include 16 and 20 kinds of partial ionization cross sections, respectively. Electron transport coefficients, such as electron drift velocity, ionization coefficient, and longitudinal diffusion coefficient, in those vapours are calculated by Monte Carlo simulations using the proposed cross section sets, and the validity of the sets is confirmed by comparing the calculated values of those transport coefficients with measured data. Furthermore, the calculated values of the ionization coefficient in TEOS/O2 mixtures are compared with measured data to confirm the validity of the proposed cross section set.

  13. The role of charge-exchange cross-section for pickup protons and neutrals in the inner heliosheath

    Science.gov (United States)

    Chalov, S. V.

    2018-06-01

    The process of deceleration of the solar wind downstream of the termination shock is studied on the basis of a one-dimensional multi-component model. It is assumed that the solar wind consists of thermal protons, electrons and interstellar pickup protons. The protons interact with interstellar hydrogen atoms by charge-exchange. Two cases are considered. In the first one, the charge-exchange cross-section for thermal protons and hydrogen atoms is the same as for pickup protons and atoms. Under this condition, there is a strong dependence of the solar wind velocity on the downstream temperature of pickup protons. When the proton temperature is close to 10 keV, the change in the velocity with the distance from the termination shock is similar to that measured on the Voyager 1 spacecraft: linear velocity decrease is accompanied by an extended transition region with near-zero velocity. However, with a more careful approach to the choice of the charge-exchange cross-section, the situation changes dramatically. The strong dependence of the solar wind speed on the pickup proton temperature disappears and the transition region in the heliosheath disappears as well, at least at reasonable distances from the TS.

  14. Neutron spectra and cross sections for ice and clathrate generated from the synthetic spectrum and synthetic model for molecular solids

    International Nuclear Information System (INIS)

    Petriw, S; Cantargi, F; Granada, R

    2006-01-01

    We present here a Synthetic Model for Molecular Solids, aimed at the description of the interaction of thermal neutrons with this kind of systems.Simple representations of the molecular dynamical modes are used, in order to produce a fair description of neutron scattering kernels and cross sections with a minimum set of input data. Using those spectra, we have generated thermal libraries for M C N P [es

  15. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  16. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  17. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  18. Calculated Cross Sections for the Electron Impact Ionization of Molecular Ions

    Science.gov (United States)

    Deutsch, H.; Becker, K.; Defrance, P.; Onthong, U.; Parajuli, R.; Probst, M.; Matt-Leubner, S.; Maerk, T.

    2002-10-01

    We report the results of the application of the semi- classical Deutsch-Märk (DM) formalism to the calculation of the absolute electron-impact ionization cross section of the molecular ions H2+, N2+, O2+, CD+, CO+, CO2+, H3O+, and CH4+ for which experimental data have been reported . Where available, we also compare our calculated cross sections with calculated cross sections using the BEB method of Kim and co-workers. The level of agreement between the experimentally determined and calculated cross section is satisfactory in some cases. In all cases, the calculated cross sections exceed the measured cross sections which is not surprising in view of the experimental complications in measuring ionization cross sections of molecular ions due to the presence of competing channels such as ionization dissociative ionization, and dissociative excitation. Work supported in part by FWF, OEAW, and NASA.

  19. Meeting cross-section requirements for nuclear-energy design

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; de Saussure, G.; Santoro, R.T. (Oak Ridge National Lab., TN (USA)); Gilai, T. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1982-01-01

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs.

  20. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  1. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  2. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  3. Production, separation and target preparation of 171Tm an 147Pm for neutron cross section measurements

    CERN Document Server

    Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Guerrero, C; Köster, U; Tessler, M; Paul, M; Halfon, S

    2015-01-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg 171Tm from 240 mg 170Er2O3 and 72 µg 147Pm from 100 mg 146Nd2O3 irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at n_TOF CERN and the SARAF-LiLiT facility.

  4. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  5. Q.C.D. estimates of hadronic cross sections

    International Nuclear Information System (INIS)

    Navelet, H.; Peschanski, R.

    1983-03-01

    Estimates for hadron-hadron cross-sections are made using the leading log approximation of Q.C.D. The rise of the total inelastic pp cross-sections at high energy is reproduced, thanks to the competition between the small parton-parton interaction and the large multiplicity of gluons predicted by Q.C.D

  6. Impact of New Gadolinium Cross Sections on Reaction Rate Distributions in 10 * 10 BWR Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G.; Murphy, M.F.; Jatuff, F.; Chawla, R. [Paul Scherrer Inst, CH-5232 Villigen, (Switzerland); Sublet, J.Ch.; Bouland, O. [DEN, Commissariat Energie Atom, F-13108 St Paul Les Durance, (France); Chawla, R. [Ecole Polytech Fed Lausanne, CH-1015 Lausanne, (Switzerland)

    2009-07-01

    Radial distributions of the total fission rate and the {sup 238}U-capture-to-total-fission (C{sub 8}/F{sub tot}) ratio were measured in SVEA-96+ and SVEA-96 Optima2 assemblies during the LWR-PROTEUS program. Fission rates predicted using MCNPX with JEFF-3.1 cross sections underestimated the measured values in the gadolinium-poisoned pins of the SVEA-96 Optima2 assembly; similarly, C{sub 8}/F{sub tot} ratios were overestimated in some gadolinium-poisoned pins of the SVEA-96+ assembly. A considerable effort was invested at the Paul Scherrer Institut to explain the discrepancies in gadolinium pins, without success. Recently, gadolinium cross sections were measured at the Rensselaer Polytechnic Institute by Leinweber et al. and differed significantly from current library values. ENDF/B-VII.0 gadolinium cross sections have currently been modified to include the new measurements, and these data have been processed with NJOY to yield files usable by MCNPX. Fission rates in the gadolinium-poisoned fuel pins of the SVEA-96 Optima2 pins were increased by 1.4 to 2.0% using the newly produced cross sections, yielding to a better agreement with the experimental values. Predicted C{sub 8}/F{sub tot} ratios were decreased on average by 1.7% in both clustered and un-clustered groups of gadolinium-poisoned fuel pins of the SVEA-96+ assembly correcting the over predictions previously reported in the clustered gadolinium pins. Earlier reported discrepancies observed in PROTEUS integral experiments, between measured and calculated reaction rates in the gadolinium-poisoned pins, might thus be due to inaccurate gadolinium cross sections. The PROTEUS results support the new thermal and epithermal gadolinium data measured by Leinweber et al. (authors)

  7. Measurements of Electron Proton Elastic Cross Sections for 0.4

    International Nuclear Information System (INIS)

    Christy, M.E.; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin Mcilhany; David Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 distinct kinematic settings covering a range in momentum transfer of 0.4 < Q2 < 5.5 (GeV/c)2. These measurements represent a significant contribution to the world's cross section data set in the Q2 range, where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab. This data set shows good agreement with previous cross section measurements, indicating that if a heretofore unknown systematic error does exist in the cross section measurements, then it is intrinsic to all such measurements

  8. Electron capture cross sections by O+ from atomic He

    International Nuclear Information System (INIS)

    Joseph, Dwayne C; Saha, Bidhan C

    2009-01-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  9. Electron capture cross sections by O+ from atomic He

    Science.gov (United States)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  10. Photoproton cross section for /sup 19/F

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, H [Tohoku Univ., Sendai (Japan). Coll. of General Education; Kawamura, N; Oikawa, S; Uegaki, J I

    1975-02-01

    Proton energy spectra have been measured at 90/sup 0/ for the /sup 19/F(e,e'p)/sup 18/O reaction in the giant resonance region. The (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) differential cross sections are extracted from the proton energy spectra by using virtual-photon spectra. The integrated differential cross section of the (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) reactions are 1.80+-0.27 and 0.50+-0.45 MeV-mb/sr, respectively. The results are discussed with the shell model theory by comparing with the (..gamma..,p/sub 0/) cross section of the neighboring 4n-nucleus /sup 20/Ne. A significant increase of the proton yield leaving the non-ground states is found at 25 MeV of the incident electron energy. This is discussed in terms of the core excitation effect.

  11. Electron-collision cross sections for iodine

    International Nuclear Information System (INIS)

    Zatsarinny, O.; Bartschat, K.; Garcia, G.; Blanco, F.; Hargreaves, L.R.; Jones, D.B.; Murrie, R.; Brunton, J.R.; Brunger, M.J.; Hoshino, M.; Buckman, S.J.

    2011-01-01

    We present results from a joint experimental and theoretical study of elastic electron scattering from atomic iodine. The experimental results were obtained by subtracting known cross sections from the measured data obtained with a pyrolyzed mixed beam containing a variety of atomic and molecular species. The calculations were performed using both a fully relativistic Dirac B-spline R-matrix (close-coupling) method and an optical model potential approach. Given the difficulty of the problem, the agreement between the two sets of theoretical predictions and the experimental data for the angle-differential and the angle-integrated elastic cross sections at 40 eV and 50 eV is satisfactory.

  12. The neutron capture cross section of the ${s}$-process branch point isotope $^{63}$Ni

    CERN Multimedia

    Neutron capture nucleosynthesis in massive stars plays an important role in Galactic chemical evolution as well as for the analysis of abundance patterns in very old metal-poor halo stars. The so-called weak ${s}$-process component, which is responsible for most of the ${s}$ abundances between Fe and Sr, turned out to be very sensitive to the stellar neutron capture cross sections in this mass region and, in particular, of isotopes near the seed distribution around Fe. In this context, the unstable isotope $^{63}$Ni is of particular interest because it represents the first branching point in the reaction path of the ${s}$-process. We propose to measure this cross section at n_TOF from thermal energies up to 500 keV, covering the entire range of astrophysical interest. These data are needed to replace uncertain theoretical predicitons by first experimental information to understand the consequences of the $^{63}$Ni branching for the abundance pattern of the subsequent isotopes, especially for $^{63}$Cu and $^{...

  13. Habit, Production, and the Cross-Section of Stock Returns

    OpenAIRE

    Chen, Andrew Y.

    2014-01-01

    Solutions to the equity premium puzzle should inform us about the cross-section of stock returns. An external habit model with heterogeneous firms reproduces numerous stylized facts about both the equity premium and the value premium. The equity premium is large, time-varying, and linked with consumption volatility. The cross-section of expected returns is log-linear in B/M, and the slope matches the data. The explanation for the value premium lies in the interaction between the cross-section...

  14. Drell-Yan cross section in the jet calculus scheme

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu; Kobayashi, Hirokazu

    2009-01-01

    We calculate factorized cross sections for lepton pair production mediated by a virtual photon in hadron-hadron collisions using the jet calculus scheme, in which a kinematical constraint due to parton radiation is taken into account. This method guarantees a proper phase space boundary for subtraction terms. Some properties of the calculated cross sections are examined. We also discuss matching between the hard scattering cross sections and parton showers at the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). (author)

  15. Testing of cross section libraries for TRIGA criticality benchmark

    International Nuclear Information System (INIS)

    Snoj, L.; Trkov, A.; Ravnik, M.

    2007-01-01

    Influence of various up-to-date cross section libraries on the multiplication factor of TRIGA benchmark as well as the influence of fuel composition on the multiplication factor of the system composed of various types of TRIGA fuel elements was investigated. It was observed that keff calculated by using the ENDF/B VII cross section library is systematically higher than using the ENDF/B-VI cross section library. The main contributions (∼ 2 20 pcm) are from 235 U and Zr. (author)

  16. Cross-section sensitivity analyses for a Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Simmons, E.L.; Gerstl, S.A.W.; Dudziak, D.J.

    1977-09-01

    The objectives of this report were (1) to determine the sensitivity of neutronic responses in the preliminary design of the Tokamak Experimental Power Reactor by Argonne National Laboratory, and (2) to develop the use of a neutron-gamma coupled cross-section set in the calculation of cross-section sensitivity analysis. Response functions such as neutron plus gamma kerma, Mylar dose, copper transmutation, copper dpa, and activation of the toroidal field coil dewar were investigated. Calculations revealed that the responses were most sensitive to the high-energy group cross sections of iron in the innermost regions containing stainless steel. For example, both the neutron heating of the toroidal field coil and the activation of the toroidal field coil dewar show an integral sensitivity of about -5 with respect to the iron total cross sections. Major contributors are the scattering cross sections of iron, with -2.7 and -4.4 for neutron heating and activation, respectively. The effects of changes in gamma cross sections were generally an order of 10 lower

  17. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  18. Implementation of the rapid cross section adjustment approach at General Electric

    International Nuclear Information System (INIS)

    Cowan, C.L.; Kujawski, E.; Protsik, R.

    1978-01-01

    The General Electric rapid cross section adjustment approach was developed to use the shielding factor method for formulating multigroup cross sections. In this approach, space- and composition-dependent cross sections for a particular reactor or shield design are prepared from a generalized cross section library by the use of resonance self-shielding factors, and by the adjustment of elastic scattering cross sections for the local neutron flux spectra. The principal tool in the cross section adjustment package is the data processing code TDOWN. This code was specified to give the user a high degree of flexibility in the analysis of advanced reactor designs. Of particular interest in the analysis of critical experiments is the ability to carry out cell heterogeneity self-shielding calculations using a multiregion equivalence relationship, and the homogenization of the cross sections over the specified cell with the flux weighting obtained from transport theory calculations. Extensive testing of the rapid cross section adjustment approach, including comparisons with Monte Carlo methods, indicated that this approach can be utilized with a high degree of confidence in the design analysis of complex fast reactor systems. 2 figures, 1 table

  19. Total neutron cross-sections of /sup 151/Eu, /sup 153/Eu and Eu below 1 eV

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Ashry, A.; Hamouda, I.

    1981-01-01

    Total neutron cross-section measurements have been carried out for natural Eu and its stable isotopes in the energy range from 3 meV to 1 eV. The measurements were performed using two time-of-flight spectrometers installed in front of two of the horizontal channels of the ET-RR-1 reactor. The following results have been obtained: sigmasub(a) (/sup 151/Eu) = (9180 +- 150) b at 0.0253 eV, sigmasub(s) (/sup 153/Eu) = (375 +- 20) b at 0.0253 eV, sigmasub(d) (Eu) = (4600 +- 120) b at 0.0253 eV. The contribution of the resonance to the total neutron cross-sections, in the thermal region, was calculated using the single-level Breit-Wigner formula.

  20. Reference Cross Sections for Charged-particle Monitor Reactions

    Science.gov (United States)

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Tárkányi, F. T.; Verpelli, M.

    2018-02-01

    Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard for cross-section measurements that are performed over a very broad energy range in accelerators in order to produce particular radionuclides for industrial and medical applications. The requirements for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research project was launched in December 2012 to establish or improve the nuclear data required to characterise charged-particle monitor reactions. An international team was assembled to recommend more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-particles. Recommended beam monitor reaction data with their uncertainties are available at the IAEA-NDS medical portal http://www-nds.iaea.org/medical/monitor_reactions.html.

  1. Total and partial recombination cross sections for F6+

    International Nuclear Information System (INIS)

    Mitnik, D.M.; Pindzola, M.S.; Badnell, N.R.

    1999-01-01

    Total and partial recombination cross sections for F 6+ are calculated using close-coupling and distorted-wave theory. For total cross sections, close-coupling and distorted-wave results, which include interference between the radiative and dielectronic pathways, are found to be in good agreement with distorted-wave results based on a sum of independent processes. Total cross sections near zero energy are dominated by contributions from low-energy dielectronic recombination resonances. For partial cross sections, the close-coupling and distorted-wave theories predict strong interference for recombination into the final recombined ground state 1s 2 2s 21 S 0 of F 5+ , but only weak interference for recombination into the levels of the 1s 2 2s2p configuration. copyright 1999 The American Physical Society

  2. Absolute cross-section measurements of inner-shell ionization

    Science.gov (United States)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  3. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    Science.gov (United States)

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  4. From ZZ to ZH: How Low Can These Cross Sections Go or Everybody, Let's Cross Section Limbo

    International Nuclear Information System (INIS)

    Strauss, Emanuel Alexandre

    2009-01-01

    We report on two searches performed at the D0 detector at the Fermi National Laboratory. The first is a search for Z di-boson production with a theoretical cross section of 1.4 pb. The search was performed on 2.6 fb -1 of data and contributed to the first observation of ZZ production at a hadron collider. The second is a search for a low mass Standard Model Higgs in 4.2 fb -1 of data. The Higgs boson is produced in association with a Z boson where the Higgs decays hadronically and the Z decays to two leptons. The ZZ search was performed in both the di-electron and di-muon channels. For the ZH search, we will focus on the muonic decays where we expanded the traditional coverage by considering events in which one of the two muons fails the selection requirement, and is instead reconstructed as an isolated track. We consider Higgs masses between 100 and 150 GeV, with theoretical cross sections ranging from 0.17 to 0.042 pb, and set upper limits on the ZH production cross-section at 95% confidence level

  5. Measurement of the (33)S(n,α) cross-section at n_TOF(CERN): Applications to BNCT.

    Science.gov (United States)

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, (33)S, in order to solve existing discrepancies. (33)S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of (33)S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. A new measurement of the (33)S(n,α)(30)Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to (33)S in addition to (10)B and those of a standard four-component ICRU tissue. MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of (33)S.

  6. Measurement of the 235U/238U fission cross section ratio in the 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Bagheri-Darbandi, M.

    1983-06-01

    Fission cross section ratio of 235 U to 238 U has been measured in the fast neutron field generated by the 235 U fission plate installed on the thermal column of the Tehran Research Reactor (TRR) with a Makrofol solid state nuclear track detector. The experiments were carried out with a set of total six enriched 235 U and depleted 238 U deposits with different masses and Makrofol films of 0.025mm and 0.060mm thicknesses. The chemically etched tracks were counted by an optical microscope. No significant differences were observed with the thin and the thick films. The results showed that the average fission cross section ratio is 3.83+-0.25. (author)

  7. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  8. Measurement of 76Se and 78Se (γ, n) cross sections

    International Nuclear Information System (INIS)

    Kitatani, Fumito; Harada, Hideo; Goko, Shinji; Utsunomiya, Hiroaki; Akimune, Hidetoshi; Toyokawa, Hiroyuki; Yamada, Kawakatsu

    2011-01-01

    The (γ, n) cross sections of Se isotopes ( 76 Se, 78 Se) were measured to supply fundamental data for estimating the inverse reaction cross section, i.e., the 79 Se(n, γ) 80 Se cross section. The enriched samples and a reference 197 Au sample were irradiated with laser-Compton scattering (LCS) γ-rays. The excitation function of each (γ, n) cross section was determined for the energy range from each near neutron separation energy to the threshold energy of (γ, 2n) reaction. The energy point corresponding to each cross section was deduced using the accurately determined energy distribution of LCS γ-rays. Systematic (γ, n) cross sections for Se isotopes including 80 Se were compared with those calculated by using a statistical model calculation code TALYS. (author)

  9. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    Energy Technology Data Exchange (ETDEWEB)

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  10. Can cross sections be accurately known for priori?

    International Nuclear Information System (INIS)

    Pigni, M.T.; Dietrich, F.S.; Herman, M.; Oblozinsky, P.

    2008-01-01

    Distinct maxima and minima in the neutron total cross section uncertainties were observed in our large scale covariance calculations using a spherical optical potential. In this contribution we investigate the physical origin of this oscillating structure. Specifically, we analyze the case of neutron reactions on 56 Fe, for which total cross section uncertainties are characterized by the presence of five distinct minima at 0.1, 1.1, 5, 25, and 70 MeV. To investigate their origin, we calculated total cross sections by perturbing the real volume depth V v by its expected uncertainty ±ΔV v . Inspecting the effect of this perturbation on the partial wave cross sections we found that the first minimum (at 0.1 MeV) is exclusively due to the contribution of the s-wave. On the other hand, the same analysis at 1.1 MeV showed that the minimum is the result of the interplay between s-, p-, and d-waves; namely the change in the s-wave happens to be counterbalanced by changes in the p- and d-waves. Similar considerations can be extended for the third minimum, although it can be also explained in terms of the Ramsauer effect as well as the other ones (at 25 and 70 MeV). We discuss the potential importance of these minima for practical applications as well as the implications of this work for the uncertainties in total and absorption cross sections

  11. Models for Pooled Time-Series Cross-Section Data

    Directory of Open Access Journals (Sweden)

    Lawrence E Raffalovich

    2015-07-01

    Full Text Available Several models are available for the analysis of pooled time-series cross-section (TSCS data, defined as “repeated observations on fixed units” (Beck and Katz 1995. In this paper, we run the following models: (1 a completely pooled model, (2 fixed effects models, and (3 multi-level/hierarchical linear models. To illustrate these models, we use a Generalized Least Squares (GLS estimator with cross-section weights and panel-corrected standard errors (with EViews 8 on the cross-national homicide trends data of forty countries from 1950 to 2005, which we source from published research (Messner et al. 2011. We describe and discuss the similarities and differences between the models, and what information each can contribute to help answer substantive research questions. We conclude with a discussion of how the models we present may help to mitigate validity threats inherent in pooled time-series cross-section data analysis.

  12. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  13. Double-differential heavy-ion production cross sections

    International Nuclear Information System (INIS)

    Miller, T. M.; Townsend, L. W.

    2004-01-01

    Current computational tools used for space or accelerator shielding studies transport energetic heavy ions either using a one-dimensional straight-ahead approximation or by dissociating the nuclei into protons and neutrons and then performing neutron and proton transport using Monte Carlo techniques. Although the heavy secondary particles generally travel close to the beam direction, a proper treatment of the light ions produced in these reactions requires that double-differential cross sections should be utilised. Unfortunately, no fundamental nuclear model capable of serving as an event generator to provide these cross sections for all ions and energies of interest exists currently. Herein, we present a model for producing double-differential heavy-ion production cross sections that uses heavy-ion fragmentation yields produced by the NUCFRG2 fragmentation code coupled with a model of energy degradation in nucleus-nucleus collisions and systematics of momentum distributions to provide energy and angular dependences of the heavy-ion production. (authors)

  14. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  15. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  16. Neutron cross sections for fusion

    International Nuclear Information System (INIS)

    Haight, R.C.

    1979-10-01

    First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references

  17. Development of automatic cross section compilation system for MCNP

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Sakurai, Kiyoshi

    1999-01-01

    A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)

  18. EDDIX--a database of ionisation double differential cross sections.

    Science.gov (United States)

    MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H

    2011-02-01

    The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure.

  19. Dependence of the Ratio between the Resonance Integral and Thermal Neutron Cross Section on the Deviation of the Epithermal Neutron Spectrum from the 1/E Law

    International Nuclear Information System (INIS)

    Soliman, N.F.

    2012-01-01

    In k 0 - Neutron Activation Analysis (k 0 -NAA), the conversion from the tabulated Q 0 (ratio of the resonance integral to thermal neutron cross-section)to Q 0 (α) (α is the shape factor of the epithermal neutron flux, indicating the deviation of the epithermal neutron spectrum from the ideal 1/E shape) are calculated using a FORTRAN program. The calculations are done for most elements that can be detected by neutron activation using different values of the parameter (α) ranging from -0.1≤α≤+0.1. The obtained data are used to study the dependence of the values (α) on the irradiation position factor in (k 0 -NAA)equation for some selected isotopes differ in their resonance energy and its Q 0 values. The results show that, the irradiation factor is affective mainly for low thermal tro epithermal flux ratio f especially for Q 0 value greater than 50. so consequently determining the irradiation parameters α value is not needed for irradiation positions that rich with thermal neutron. But for high f values the irradiation position factor should be taken into account. On the other hand the constructed FORTRAN program can be used to calculate the value Q 0 (α) directly for different value of α

  20. Distribution of two-phase flow thermal and hydraulic parameters over the cross-section of channels with a rod bundle

    International Nuclear Information System (INIS)

    Mironov, Yu.V.; Shpanskij, S.V.

    1975-01-01

    The paper describes PUCHOK-2, a program for thermohydraulic calculation of a channel with a bundle of smooth fuel elements. The pro.gram takes into consideration the non-uniformity of flow parameter distributions over the channel cross-section. The channel cross-section was divided into elementary cells, within which changes in flow parameters (mass velocity, heat- and steam content) were disregarded. The bundle was considered to be a system of parallel interconnected channels. Accounting for equal pressure drops in all the cells, the above model led to a system of non-linear algebraic equations. The system of equations was solved by the method of successive approximations. Theoretical results were compared with experimental data

  1. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties Report of the LHC Higgs Cross Section Working Group

    CERN Document Server

    Heinemeyer, S; Passarino, G; Tanaka, R; Andersen, J R; Artoisenet, P; Bagnaschi, E A; Banfi, A; Becher, T; Bernlochner, F U; Bolognesi, S; Bolzoni, P; Boughezal, R; Buarque, D; Campbell, J; Caola, F; Carena, M; Cascioli, F; Chanon, N; Cheng, T; Choi, S Y; David, A; de Aquino, P; Degrassi, G; Del Re, D; Denner, A; van Deurzen, H; Diglio, S; Di Micco, B; Di Nardo, R; Dittmaier, S; Dührssen, M; Ellis, R K; Ferrera, G; Fidanza, N; Flechl, M; de Florian, D; Forte, S; Frederix, R; Frixione, S; Gangal, S; Gao, Y; Garzelli, M V; Gillberg, D; Govoni, P; Grazzini, M; Greiner, N; Griffiths, J; Gritsan, A V; Grojean, C; Hall, D C; Hays, C; Harlander, R; Hernandez-Pinto, R; Höche, S; Huston, J; Jubb, T; Kadastik, M; Kallweit, S; Kardos, A; Kashif, L; Kauer, N; Kim, H; Klees, R; Krämer, M; Krauss, F; Laureys, A; Laurila, S; Lehti, S; Li, Q; Liebler, S; Liu, X; Logan, E; Luisoni, G; Malberti, M; Maltoni, F; Mawatari, K; Maierhoefer, F; Mantler, H; Martin, S; Mastrolia, P; Mattelaer, O; Mazzitelli, J; Mellado, B; Melnikov, K; Meridiani, P; Miller, D J; Mirabella, E; Moch, S O; Monni, P; Moretti, N; Mück, A; Mühlleitner, M; Musella, P; Nason, P; Neu, C; Neubert, M; Oleari, C; Olsen, J; Ossola, G; Peraro, T; Peters, K; Petriello, F; Piacquadio, G; Potter, C T; Pozzorini, S; Prokofiev, K; Puljak, I; Rauch, M; Rebuzzi, D; Reina, L; Rietkerk, R; Rizzi, A; Rotstein-Habarnau, Y; Salam, G P; Sborlini, G; Schissler, F; Schönherr, M; Schulze, M; Schumacher, M; Siegert, F; Slavich, P; Smillie, J M; Stål, O; von Soden-Fraunhofen, J F; Spira, M; Stewart, I W; Tackmann, F J; Taylor, P T E; Tommasini, D; Thompson, J; Thorne, R S; Torrielli, P; Tramontano, F; Tran, N V; Trócsányi, Z; Ubiali, M; Vazquez Acosta, M; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Wagner, C; Walsh, J R; Wang, J; Weiglein, G; Whitbeck, A; Williams, C; Yu, J; Zanderighi, G; Zanetti, M; Zaro, M; Zerwas, P M; Zhang, C; Zirke, T J E; Zuberi, S

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered p...

  2. Highlights of top quark cross-section measurements at ATLAS

    Directory of Open Access Journals (Sweden)

    Berta Peter

    2017-01-01

    Full Text Available The highlights of the measurements of top quark production in proton-proton collisions at the Large Hadron Collider with the ATLAS detector are presented. The inclusive measurements of the top-pair production cross section have reached high precision and are compared to the best available theoretical calculations. The differential cross section measurements, including results using boosted top quarks, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers. Measurements of the single top quark production cross section are presented in the t-channel and s-channel, and with associated production with a W boson. For the t-channel production, results on the ratio between top quark and antitop quark production cross sections and differential measurements are also included.

  3. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions

    CERN Document Server

    Dittmaier, S; Passarino, G; Tanaka, R; Alekhin, S; Alwall, J; Bagnaschi, E A; Banfi, A; Blumlein, J; Bolognesi, S; Chanon, N; Cheng, T; Cieri, L; Cooper-Sarkar, A M; Cutajar, M; Dawson, S; Davies, G; De Filippis, N; Degrassi, G; Denner, A; D'Enterria, D; Diglio, S; Di Micco, B; Di Nardo, R; Ellis, R K; Farilla, A; Farrington, S; Felcini, M; Ferrera, G; Flechl, M; de Florian, D; Forte, S; Ganjour, S; Garzelli, M V; Gascon-Shotkin, S; Glazov, S; Goria, S; Grazzini, M; Guillet, J -Ph; Hackstein, C; Hamilton, K; Harlander, R; Hauru, M; Heinemeyer, S; Hoche, S; Huston, J; Jackson, C; Jimenez-Delgado, P; Jorgensen, M D; Kado, M; Kallweit, S; Kardos, A; Kauer, N; Kim, H; Kovac, M; Kramer, M; Krauss, F; Kuo, C -M; Lehti, S; Li, Q; Lorenzo, N; Maltoni, F; Mellado, B; Moch, S O; Muck, A; Muhlleitner, M; Nadolsky, P; Nason, P; Neu, C; Nikitenko, A; Oleari, C; Olsen, J; Palmer, S; Paganis, S; Papadopoulos, C G; Petersen, T C; Petriello, F; Petrucci, F; Piacquadio, G; Pilon, E; Potter, C T; Price, J; Puljak, I; Quayle, W; Radescu, V; Rebuzzi, D; Reina, L; Rojo, J; Rosco, D; Salam, G P; Sapronov, A; Schaarschmidt, J; Schonherr, M; Schumacher, M; Siegert, F; Slavich, P; Spira, M; Stewart, I W; Stirling, W J; Stockli, F; Sturm, C; Tackmann, F J; Thorne, R S; Tommasini, D; Torrielli, P; Tramontano, F; Trocsanyi, Z; Ubiali, M; Uccirati, S; Acosta, M Vazquez; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Warsinsky, M; Weber, M; Wiesemann, M; Weiglein, G; Yu, J; Zanderighi, G

    2012-01-01

    This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.

  4. High-energy behaviour of e--H scattering cross section

    International Nuclear Information System (INIS)

    Saha, B.C.; Chaudhuri, J.; Ghosh, A.S.

    1976-01-01

    An integral form of the close coupling equation has been employed to investigate the high energy behaviour of the elastic and 2s excitation cross sections of hydrogen atom by electron impact retaining the 1s and 2s states. The results, with and without exchange, for both the total and the differential cross sections are presented. The effects of exchange as well as of couplings to the 1s-2s states on the elastic cross section have been studied. The FBA results for the elastic cross section differ from the present results appreciably in the energy range 100 to 200 eV where FBA is considered to be valid. On the other hand, the present 1s-2s excitation results are very close to the corresponding FBA results in the said energy region. (auth.)

  5. State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Witt, J.

    1980-01-01

    State-to-state differential cross sections for rotational transitions of Na 2 in collisions with He are measured in the electronic and vibrational ground state at thermal collision energies using a new laser technique. Single rotational levels j/sub i/ are labelled by modulation of their population via laser optical pumping using a dye laser. The modulation of the fluorescence induced by an Ar + laser tuned to the level j/sub f/=28 is proportional to the cross section for collisional transfer j/sub i/→j/sub f/ and is detected at the scattering angle theta. A single optical fiber and a fiber bundle provide a flexible connection between the detector and the laser and photomultiplier, respectively. Transitions as large as Δj=20 are observed. At small angles elastic scattering is dominant, but rotationally inelastic processes become increasingly important at larger scattering angles. Rotational rainbow structure causing a steep onset of the cross section with the scattering angle theta (at fixed Δj) or a sharp cutoff with Δj (at fixed theta) is found. Preliminary results on rotational energy transfer in v=1 indicates that vibrational motion of the molecule favors larger rotational quantum jumps. semiclassical picture for the scattering of a hard ellipsoid gives a

  6. Numerical simulation of thermal-dynamic characteristics through a helical coiled tube with annular cross section for laminar flow

    International Nuclear Information System (INIS)

    Wu Shuangying; Chen Sujun; Li Yourong; Li Longjian

    2009-01-01

    A numerical method for simulating three-dimensional laminar forced convective heat transfer in a helical coiled passage with annular cross section under uniform wall temperature condition is presented. The helical coiled passage is fabricated by bending a 0.03 m inner diameter and 0.05 m outer diameter straight tube into a helical-coil of two turns. The results presented in this paper cover a Reynolds number range of 200 ∼ 1000, a pitch range of 0.1 ∼ 0.2 and a curvature ratio range of 0.1 ∼ 0.3. The numerical computations reveal the development and distribution of heat transfer and flow fields in the helical coiled passage when the inner annular wall is heated and the outer annular wall is insulated. In addition, the effects of Reynolds number, curvature ratio, and coil pitch on the average friction factor, average Nusselt number at different axial cross-section have been discussed. The results show that the secondary flow is weak and can be neglected at the entrance region, but the effect of the secondary flow is enhanced, the maximum velocity perpendicular to axial cross section shifts toward the outer side of helical coiled passage. Furthermore, the average Nusselt number and friction factor at every different axial location present different characteristics when the Reynolds number, curvature ratio and pitch change. Compared with the curvature ratio, the pitch has relatively little influence on the heat transfer and flow performance. (authors)

  7. T-junction cross-flow mixing with thermally driven density stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: jkickhofel@gmail.com [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2016-12-01

    Highlights: • Mesh sensor for realistic nuclear thermal hydraulic scenarios is demonstrated. • Flow temperature behavior across a wide range of Richardson numbers measured. • Upstream stratified flow in the T-junction results in a thermal shock scenario. • Large, stable near-wall thermal gradients exist in spite of turbulent flows. - Abstract: As a means of further elucidating turbulence- and stratification-driven thermal fatigue in the vicinity of T-junctions in nuclear power plants, a series of experiments have been conducted at the high temperature high pressure fluid–structure interaction T-junction facility of the University of Stuttgart with novel fluid measurement instrumentation. T-junction mixing with large fluid temperature gradients results in complex flow behavior, the result of density driven effects. Deionized water mixing at temperature differences of up to 232 K at 7 MPa pressure have been investigated in a T-junction with main pipe diameter 71.8 mm and branch line diameter 38.9 mm. The experiments have been performed with fixed flow rates of 0.4 kg/s in the main pipe and 0.1 kg/s in the branch line. A novel electrode-mesh sensor compatible with the DN80 PN100 pipeline upstream and downstream of the T-junction has been utilized as a temperature sensor providing a high density information in the pipe cross-section in both space and time. Additionally, in-flow and in-wall thermocouples quantify the damping of thermal fluctuations by the wall material. The results indicate that large inflow temperature differences lead to strong turbulence damping, and ultimately stable stratification extending both downstream and upstream of the T-junction resulting in large local thermal gradients.

  8. Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe

    International Nuclear Information System (INIS)

    Wang Shuangfeng; Chen Jinjian; Hu Yanxin; Zhang Wei

    2011-01-01

    Flat plate heat pipes (FPHPs) are one of the available technologies to deal with the high density electronic cooling problem due to their high thermal conductivity, reliability, and low weight penalty. A series of experiments were performed to investigate the effect of evaporation and condensation length on thermal performance of flat plate heat pipes. In the experiments, the FPHP had heat transfer length of 255 mm and width of 25 mm, and pure water was used as the working fluid. The results show that comparing to vapor chamber, the FPHP could realize long-distance heat transfer; comparing to the traditional heat pipe, the FPHP has large area contact with heat sources; the thermal resistance decreased and the heat transfer limit increased with the increase of evaporation section length; the FPHP would dry out at a lower heating power with the increase of condensation section length, which indicated that the heat transfer limit decreased, but the evaporator temperature also decreased; when the condensation section length approached to evaporation section length, the FPHP had a better thermal performance. - Highlights: → A strip sintered FPHP is proposed and tested. → The total heat transfer length reaches 255 mm → The efficiency of heat transport reaches 94.4%. → When the condensation section length approached to evaporation section length, the FPHP has better overall performance.

  9. Collision processes of Li3+ with atomic hydrogen: cross section database

    International Nuclear Information System (INIS)

    Murakami, I.; Janev, R.K.; Kato, T.; Yan, J.; Sato, H.; Kimura, M.

    2004-08-01

    Using the available experimental and theoretical data, as well as established cross section scaling relationships, a cross section database for excitation, ionization and charge exchange in collisions of Li 3+ ion with ground state and excited hydrogen atoms has been generated. The critically assessed cross sections are represented by analytic fit functions that have correct asymptotic behavior both at low and high collision energies. The derived cross sections are also presented in graphical form. (author)

  10. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    Science.gov (United States)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  11. Neutron-induced capture cross sections via the surrogate reaction method

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.

    2011-01-01

    The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)

  12. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  13. Second order effects in adjustment processes of cross sections

    International Nuclear Information System (INIS)

    Silva, F.C. da; D'Angelo, A.; Gandini, A.; Rado, V.

    1982-01-01

    An iterative processe, that take in account the non linear effects of some integral quantities in relation to cross sections, is used to execute an adjustment of cross sections of some elements that constitute the fast reactors shielding. (E.G.) [pt

  14. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  15. Elastic neutron-proton differential cross section at 647 MeV

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-04-01

    The differential cross section for n-p elastic scattering in the angular range 51 0 was measured with high statistical accuracy using the 647 MeV monoenergetic neutron beam of the Los Alamos Meson Physics Facility. A proton recoil magnetic spectrometer was used for momentum analysis of the charge exchange protons from the reaction n+p→p+n. Absolute normalization of the cross section was established to within 7% using existing cross section data for the reaction p+p→π + +d. The results differ significantly from previous Dubna and PPA cross sections but agree well with recent Saclay data except at extreme backward angles. 41 references

  16. Adjustement of multigroup cross sections using fast reactor integral data

    International Nuclear Information System (INIS)

    Renke, C.A.C.

    1982-01-01

    A methodology for the adjustment of multigroup cross section is presented, structured with aiming to compatibility the limitated number of measured values of integral parameters known and disponible, and the great number of cross sections to be adjusted the group of cross section used is that obtained from the Carnaval II calculation system, understanding as formular the sets of calculation methods and data bases. The adjustment is realized, using the INCOAJ computer code, developed in function of one statistical formulation, structural from the bayer considerations, taking in account the measurement processes of cross section and integral parameters defined on statistical bases. (E.G.) [pt

  17. Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration

    OpenAIRE

    Wisse, L.E.M.; Das, S.R.; Davatzikos, C.; Dickerson, B.C.; Xie, S.X.; Yushkevich, P.A.; Wolk, D.A.

    2018-01-01

    Introduction: Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect “active” neurodegeneration and might be more tightly linked to prognosis. We compare neurodegeneration defined by cross-sectional ‘hippocampal volume’ only (SNAP/L−) versus both cross-sectional and ...

  18. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    International Nuclear Information System (INIS)

    Smith, L.A.; Gallmeier, F.X.; Gehin, J.C.

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are ∼ 13%, while the average differences are < 8%

  19. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    Energy Technology Data Exchange (ETDEWEB)

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  20. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    International Nuclear Information System (INIS)

    Yoon, Woo Y.; Nigg, David W.

    2009-01-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  1. Neutrino-carbon cross section in QRPA models

    International Nuclear Information System (INIS)

    Samana, Arturo R.; Krmpotic, Francisco; Bertulani, Carlos A.; Paar, Nils

    2009-01-01

    Full text follows. The ν/ν-bar - 12 C cross sections are calculated in the projected quasiparticle random phase approximation (PQRPA) [1,2] and the relativistic quasiparticle random phase approximation (RQRPA) [3,4]. We compare these cross section as a function of the incident neutrino energy and the number of shells used in the nuclear structure calculation. Additional comparison with other RPA models are performed. A guide to find an upper limit of the incident neutrino energy as a function of the number of shell is implemented. Important consequences on the extrapolation of the cross section to higher neutrino energies is discussed. The formalism obtained in Ref. [1] for the neutrino interaction is extended for antineutrino scattering. This formalism includes the effect of the violation of the Conserved Vector Current by the Coulomb field. It is furthermore simplified by classifying the nuclear matrix elements in natural and unnatural parities. The distribution of cross sections averaged with the Michel spectrum as well as with other estimated fluxes for future experiments are compared for ν e and ν-bar e . Some astrophysical implications are addressed. References [1] F. Krmpotic, A. Mariano and A. Samana, Phys.Lett. B541, 298 (2002). [2] F. Krmpotic, A. Mariano and A. Samana, Phys. Rev. C 71, 044319 (2005). [3] N. Paar, T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 69, 054303 (2004). [4] N. Paar, D. Vretenar, T. Marketin and P. Ring, Phys. Rev. C 77, 024608 (2008)

  2. Update to the R33 cross section file format

    International Nuclear Information System (INIS)

    Vickridge, I.C.

    2003-01-01

    In September 1991, in response to the workshop on cross sections for Ion Beam Analysis (IBA) held in Namur (July 1991, Nuclear Instruments and Methods B66(1992)), a simple ascii format was proposed to facilitate transfer and collation of nuclear reaction cross section data for Ion Beam Analysis (IBA) and especially for Nuclear Reaction Analysis (NRA). Although intended only as a discussion document, the ascii format - referred to as the R33 (Report 33) format - has become a de facto standard. In the decade since this first proposal there have been spectacular advances in computing power and in software usability, however the cross-platform compatibility of the ascii character set has ensured that the need for an ascii format remains. Nuclear reaction cross section data for Nuclear Reaction analysis has been collected and archived on internet web sites over the last decade. This data has largely been entered in the R33 format, although there is a series of elastic cross sections that are expressed as the ratio to the corresponding Rutherford cross sections that have been entered in a format referred to as RTR (ratio to Rutherford). During this time the R33 format has been modified and added to - firstly to take into account angular distributions, which were not catered for in the first proposal, and more recently to cater for elastic cross sections expressed as the ratio-to- Rutherford, which it is useful to have for some elastic scattering programs. It is thus timely to formally update the R33 format. There also exists the large nuclear cross section data collections of the Nuclear Data Network - of which the core centres are the OECD NEA Nuclear Data Bank, the IAEA Nuclear Data Section, the Brookhaven National Laboratory National Nuclear Data Centre and CJD IPPE Obninsk, Russia. The R33 format is now proposed to become a legal computational format for the NDN. It is thus also necessary to provide an updated formal definition of the R33 format in order to provide

  3. Radar cross sections for mesospheric echoes at Jicamarca

    Directory of Open Access Journals (Sweden)

    G. A. Lehmacher

    2009-07-01

    Full Text Available Radar cross sections (RCS of mesospheric layers at 50 MHz observed at Jicamarca, Peru, range from 10−18 to 10−16 m−1, three orders of magnitudes smaller than cross sections reported for polar mesospheric winter echoes during solar proton events and six orders of magnitude smaller than polar mesospheric summer echoes. Large RCS are found in thick layers around 70 km that also show wide radar spectra, which is interpreted as turbulent broadening. For typical atmospheric and ionospheric conditions, volume scattering RCS for stationary, homogeneous, isotropic turbulence at 3 m are also in the range 10−18 to 10−16 m−1, in reasonable agreement with measurements. Moreover, theory predicts maximum cross sections around 70 km, also in agreement with observations. Theoretical values are still a matter of order-of-magnitude estimation, since the Bragg scale of 3 m is near or inside the viscous subrange, where the form of the turbulence spectrum is not well known. In addition, steep electron density gradients can increase cross-sections significantly. For thin layers with large RCS and narrow spectra, isotropic turbulence theory fails and scattering or reflection from anisotropic irregularities may gain relevance.

  4. Partial wave analysis for folded differential cross sections

    Science.gov (United States)

    Machacek, J. R.; McEachran, R. P.

    2018-03-01

    The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.

  5. Nuclear Data Processing for Generation of Stainless Steel Cross-Sections Data

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2007-01-01

    Stainless steel has been used as important material in nuclear reactor and also in non nuclear industries. Nuclear data processing for generation of composite mixture cross-sections from several nuclides have been made. Provided evaluated nuclear data file (ENDF) such as ENDF/B- VI.8, JEFF-3.1 and JENDL-3.3 files were employed. Raw nuclear data cross-sections on file ENDF should be prepared and processed before it used in calculation. Sequence of nuclear data processing for generation of mixture cross-sections data from several nuclides is started from LINEAR, RECENT, SIGMA1 and MIXER codes taken from PREPR02000 utility code. Nuclear data processing is started from linearization of nuclear cross-sections data by using LINEAR code and counting background contribution of resonance parameter (MF2) with RECENT code (0 K) at energy ranges from 10 -5 to 10 7 eV. Afterward, the neutron cross-sections data should be processed and broadened to desire temperature (300 K) by using SIGMA1 code. Consistency of each cross-sections which used in nuclear data processing is checked and verified using FIXUP code. The next step is to define the composite mixture density (gr/cm 3 ) of stainless steel SUS-310 and weight fraction of each nuclide composition prior used it in MIXER code. All of the stainless steel SUS-310 cross sections are condensed to 650 energy groups structure (TART-energy structure) by using GROUPIE code to evaluate, analysis and review it more easily. The total, elastic scattering, non-elastic scattering and capture cross- sections of stainless steel SUS-310 have been made of ENDF/B-VI.8, JEFF-3.1 and JENDL-3.3 files. The stainless steel cross-sections made of ENDF/B- VI.8 file was taken as reference during validation process. The validation result of total cross-sections for stainless steel SUS-310 is clearly observed that the differences of total cross-sections error in nuclear data processing is relatively low than 0.01%. (author)

  6. A survey of cross-section sensitivity analysis as applied to radiation shielding

    International Nuclear Information System (INIS)

    Goldstein, H.

    1977-01-01

    Cross section sensitivity studies revolve around finding the change in the value of an integral quantity, e.g. transmitted dose, for a given change in one of the cross sections. A review is given of the principal methodologies for obtaining the sensitivity profiles-principally direct calculations with altered cross sections, and linear perturbation theory. Some of the varied applications of cross section sensitivity analysis are described, including the practice, of questionable value, of adjusting input cross section data sets so as to provide agreement with integral experiments. Finally, a plea is made for using cross section sensitivity analysis as a powerful tool for analysing the transport mechanisms of particles in radiation shields and for constructing models of how cross section phenomena affect the transport. Cross section sensitivities in the shielding area have proved to be highly problem-dependent. Without the understanding afforded by such models, it is impossible to extrapolate the conclusions of cross section sensitivity analysis beyond the narrow limits of the specific situations examined in detail. Some of the elements that might be of use in developing the qualitative models are presented. (orig.) [de

  7. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Sun Weiguo; Cheng Yansong

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  8. Review of multigroup nuclear cross-section processing

    Energy Technology Data Exchange (ETDEWEB)

    Trubey, D.K.; Hendrickson, H.R. (comps.)

    1978-10-01

    These proceedings consist of 18 papers given at a seminar--workshop on ''Multigroup Nuclear Cross-Section Processing'' held at Oak Ridge, Tennessee, March 14--16, 1978. The papers describe various computer code systems and computing algorithms for producing multigroup neutron and gamma-ray cross sections from evaluated data, and experience with several reference data libraries. Separate abstracts were prepared for 13 of the papers. The remaining five have already been cited in ERA, and may be located by referring to the entry CONF-780334-- in the Report Number Index. (RWR)

  9. Cross sections for charm production by neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ushida, N [Aichi Univ. of Education, Kariya (Japan). Dept. of Physics; Kondo, T [Fermi National Accelerator Lab., Batavia, IL (USA); Fujioka, G; Fukushima, J; Takahashi, Y; Tatsumi, S; Yokoyama, C [Kobe Univ. (Japan). Dept. of Physics; Homma, Y; Tsuzuki, Y [Kobe Univ. (Japan). Coll. of Liberal Arts; Bahk, S

    1983-02-03

    The production of charmed particles has been measured using a hybrid emulsion spectrometer in the Fermilab wide-band neutrino beam. The relative cross section for charged current charmed particle production is sigma(v -> ..mu../sup -/c)/sigma(v -> ..mu../sup -/) = 6.5 +- 1.9/1.8%, and the energy dependence of the cross section is presented. One event with charm pair production was observed. A limit of sigma(v -> ..mu..canti c)/sigma(v -> ..mu..c) < 6% (90% CL) is found for the ratio of charged current pair and single charm production.

  10. Damage energy and displacement cross sections: survey and sensitivity. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.

  11. Quantifying uncertainties in the high-energy neutrino cross-section

    Indian Academy of Sciences (India)

    2012-11-10

    Nov 10, 2012 ... Corresponding author. E-mail: s.sarkar@physics.ox.ac.uk .... i.e. cross-sections in the present case, modern PDF sets provide not only the best-fit PDF, but also .... However, any power-law rise in the cross-section will eventu-.

  12. Use of nuclear reaction models in cross section calculations

    International Nuclear Information System (INIS)

    Grimes, S.M.

    1975-03-01

    The design of fusion reactors will require information about a large number of neutron cross sections in the MeV region. Because of the obvious experimental difficulties, it is probable that not all of the cross sections of interest will be measured. Current direct and pre-equilibrium models can be used to calculate non-statistical contributions to neutron cross sections from information available from charged particle reaction studies; these are added to the calculated statistical contribution. Estimates of the reliability of such calculations can be derived from comparisons with the available data. (3 tables, 12 figures) (U.S.)

  13. ATLAS-ALFA measurements on the total cross section and diffraction

    CERN Document Server

    Mortensen, Simon Stark; The ATLAS collaboration

    2015-01-01

    The measurement of the total pp cross section at the LHC at $\\sqrt{s}=7$ TeV with the ALFA subdetector of ATLAS is presented in this talk. In a special run with $\\beta^*=90$ m beam optics corresponding to an integrated luminosity of 80 $\\text{mb}^{-1}$ the differential elastic cross section is measured in the range from $-t=0.0025\\text{ GeV}^2$ to $-t=0.38\\text{ GeV}^2$. The total cross section $\\sigma(pp\\rightarrow X)$ is extracted using the Optical Theorem by extrapolation of the differential elastic cross section to $t=0\\text{ GeV}^2$. Prospects for diffractive measurements using ALFA to detect the intact proton(s) is also discussed.

  14. Comparative study of few energy group of cross sections for fuel cells of thermal reactors

    International Nuclear Information System (INIS)

    1991-08-01

    A comparative study of nuclear constants calculated with LEOPARD and WIMSD-4 codes using a typical PWR cell was done. Few groups macroscopic cross section, spectral index, burnup and power distribution were analyzed. (author) and safety concern with the transport of radioactive materials, looking for the control of eventual exposure of radiation to men, properties and environment, that is: specification of radioactive materials to be transported; choice of loaded materials; specification of requisites of loaded materials; general specification for any way of transport (earth, water and air), and responsibilities and administrative requisites. (author)

  15. Neutron cross-section libraries in the AMPX master interface format for thermal and fast reactors

    International Nuclear Information System (INIS)

    Bjerke, M.A.; Webster, C.C.

    1981-12-01

    Neutron cross-section libraries in the AMPX master interface format have been created for three reactor types. Included are an 84-group library for use with light-water reactors, a 27-group library for use with heavy-water CANDU reactors and a 126-group library for use with liquid metal fast breeder reactors. In general, ENDF/B data were used in the creation of these libraries, and the nuclides included in each library should be sufficient for most neutronic analyses of reactors of that type. Each library has been used successfully in fuel depletion calculations

  16. Validity of Hansen-Roach cross sections in low-enriched uranium systems

    International Nuclear Information System (INIS)

    Busch, R.D.; O'Dell, R.D.

    1991-01-01

    Within the nuclear criticality safety community, the Hansen-Roach 16 group cross section set has been the ''standard'' for use in k eff calculations over the past 30 years. Yet even with its widespread acceptance, there are still questions about its validity and adequacy, about the proper procedure for calculating the potential scattering cross section, σ p , for uranium and plutonium, and about the concept of resonance self shielding and its impact on cross sections. This paper attempts to address these questions. It provides a brief background on the Hansen-Roach cross sections. Next is presented a review of resonances in cross sections, self shielding of these resonances, and the use of σ p to characterize resonance self shielding. Three prescriptions for calculating σ p are given. Finally, results of several calculations of k eff on low-enriched uranium systems are provided to confirm the validity of the Hansen-Roach cross sections when applied to such systems

  17. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  18. Validity of Hansen-Roach cross sections in low-enriched uranium systems

    International Nuclear Information System (INIS)

    Busch, R.D.; O'Dell, R.D.

    1991-01-01

    Within the nuclear criticality safety community, the Hansen-Roach 16 group cross section set has been the standard for use in k eff calculations over the past 30 years. Yet even with its widespread acceptance, there are still questions about its validity and adequacy, about the proper procedure for calculating the potential scattering cross section, σ p , for uranium and plutonium, and about the concept of resonance self shielding and its impact on cross sections. This paper attempts to address these questions. It provides a brief background on the Hansen-Roach cross sections. Next is presented a review of resonances in cross sections, self shielding of these resonances, and the use of σ p to characterize resonance self shielding. Three prescriptions for calculating σ p are given. Finally, results of several calculations of k eff on low-enriched uranium systems are provided to confirm the validity of the Hansen-Roach cross sections when applied to such systems. (Author)

  19. SENSIT: a cross-section and design sensitivity and uncertainty analysis code

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.

    1980-01-01

    SENSIT computes the sensitivity and uncertainty of a calculated integral response (such as a dose rate) due to input cross sections and their uncertainties. Sensitivity profiles are computed for neutron and gamma-ray reaction cross sections of standard multigroup cross section sets and for secondary energy distributions (SEDs) of multigroup scattering matrices. In the design sensitivity mode, SENSIT computes changes in an integral response due to design changes and gives the appropriate sensitivity coefficients. Cross section uncertainty analyses are performed for three types of input data uncertainties: cross-section covariance matrices for pairs of multigroup reaction cross sections, spectral shape uncertainty parameters for secondary energy distributions (integral SED uncertainties), and covariance matrices for energy-dependent response functions. For all three types of data uncertainties SENSIT computes the resulting variance and estimated standard deviation in an integral response of interest, on the basis of generalized perturbation theory. SENSIT attempts to be more comprehensive than earlier sensitivity analysis codes, such as SWANLAKE

  20. Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

    International Nuclear Information System (INIS)

    Leal, Luiz C; Derrien, Herve; Dunn, Michael E; Mueller, Don

    2007-01-01

    Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the

  1. Measurement of the 33S(n,α) cross-section at n_TOF(CERN): Applications to BNCT

    Science.gov (United States)

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    Aim The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, 33S, in order to solve existing discrepancies. Background 33S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of 33S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. Materials and methods A new measurement of the 33S(n,α)30Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. Results In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to 33S in addition to 10B and those of a standard four-component ICRU tissue. Conclusions MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of 33S. PMID:26933393

  2. RESEND, Infinitely Dilute Point Cross-Sections Calculation from ENDF/B Resonance Parameter. ADLER, ENDF/B Adler-Adler Resonance Parameter to Point Cross-Sections with Doppler Broadening

    International Nuclear Information System (INIS)

    Bhat, M.R.; Ozer, O.

    1982-01-01

    1 - Description of problem or function: RESEND generates infinitely- dilute, un-broadened, point cross sections in the ENDF format by combining ENDF File 3 background cross sections with points calculated from ENDF File 2 resonance parameter data. ADLER calculates total, capture, and fission cross sections from the corresponding Adler-Adler parameters in the ENDF/B File 2 Version II data and also Doppler-broadens cross sections. 2 - Method of solution: RESEND calculations are done in two steps by two separate sections of the program. The first section does the resonance calculation and stores the results on a scratch file. The second section combines the data from the scratch file with background cross sections and prints the results. ADLER uses the Adler-Adler formalism. 3 - Restrictions on the complexity of the problem: RESEND expects its input to be a standard mode BCD ENDF file (Version II/III). Since the output is also a standard mode BCD ENDF file, the program is limited by the six significant figure accuracy inherent in the ENDF formats. (If the cross section has been calculated at two points so close in energy that only their least significant figures differ, that interval is assumed to have converged, even if other convergence criteria may not be satisfied.) In the unresolved range the cross sections have been averaged over a Porter-Thomas distribution. In some regions the calculated resonance cross sections may be negative. In such cases the standard convergence criterion would cause an unnecessarily large number of points to be produced in the region where the cross section becomes zero. For this reason an additional input convergence criterion (AVERR) may be used. If the absolute value of the cross section at both ends of an interval is determined to be less than AVERR then the interval is assumed to have converged. There are no limitations on the total number of points generated. The present ENDF (Version II/III) formats restrict the total number of

  3. MPI version of NJOY and its application to multigroup cross-section generation

    Energy Technology Data Exchange (ETDEWEB)

    Alpan, A.; Haghighat, A.

    1999-07-01

    Multigroup cross-section libraries are needed in performing neutronics calculations. These libraries are referred to as broad-group libraries. The number of energy groups and group structure are highly dependent on the application and/or user's objectives. For example, for shielding calculations, broad-group libraries such as SAILOR and BUGLE with 47-neutron and 20-gamma energy groups are used. The common procedure to obtain a broad-group library is a three-step process: (1) processing pointwise ENDF (PENDF) format cross sections; (2) generating fine-group cross sections; and (3) collapsing fine-group cross sections to broad-group. The NJOY code is used to prepare fine-group cross sections by processing pointwise ENDF data. The code has several modules, each one performing a specific task. For instance, the module RECONR performs linearization and reconstruction of the cross sections, and the module GROUPR generates multigroup self-shielded cross sections. After fine-group, i.e., groupwise ENDF (GENDF), cross sections are produced, cross sections are self-shielded, and a one-dimensional transport calculation is performed to obtain flux spectra at specific regions in the model. These fluxes are then used as weighting functions to collapse the fine-group cross sections to obtain a broad-group cross-section library. The third step described is commonly performed by the AMPX code system. SMILER converts NJOY GENDF filed to AMPX master libraries, AJAX collects the master libraries. BONAMI performs self-shielding calculations, NITAWL converts the AMPX master library to a working library, XSDRNPM performs one-dimensional transport calculations, and MALOCS collapses fine-group cross sections to broad-group. Finally, ALPO is used to generate ANISN format libraries. In this three-step procedure, generally NJOY requires the largest amount of CPU time. This time varies depending on the user's specified parameters for each module, such as reconstruction tolerances

  4. MPI version of NJOY and its application to multigroup cross-section generation

    International Nuclear Information System (INIS)

    Alpan, A.; Haghighat, A.

    1999-01-01

    Multigroup cross-section libraries are needed in performing neutronics calculations. These libraries are referred to as broad-group libraries. The number of energy groups and group structure are highly dependent on the application and/or user's objectives. For example, for shielding calculations, broad-group libraries such as SAILOR and BUGLE with 47-neutron and 20-gamma energy groups are used. The common procedure to obtain a broad-group library is a three-step process: (1) processing pointwise ENDF (PENDF) format cross sections; (2) generating fine-group cross sections; and (3) collapsing fine-group cross sections to broad-group. The NJOY code is used to prepare fine-group cross sections by processing pointwise ENDF data. The code has several modules, each one performing a specific task. For instance, the module RECONR performs linearization and reconstruction of the cross sections, and the module GROUPR generates multigroup self-shielded cross sections. After fine-group, i.e., groupwise ENDF (GENDF), cross sections are produced, cross sections are self-shielded, and a one-dimensional transport calculation is performed to obtain flux spectra at specific regions in the model. These fluxes are then used as weighting functions to collapse the fine-group cross sections to obtain a broad-group cross-section library. The third step described is commonly performed by the AMPX code system. SMILER converts NJOY GENDF filed to AMPX master libraries, AJAX collects the master libraries. BONAMI performs self-shielding calculations, NITAWL converts the AMPX master library to a working library, XSDRNPM performs one-dimensional transport calculations, and MALOCS collapses fine-group cross sections to broad-group. Finally, ALPO is used to generate ANISN format libraries. In this three-step procedure, generally NJOY requires the largest amount of CPU time. This time varies depending on the user's specified parameters for each module, such as reconstruction tolerances, temperatures

  5. GROUPIE2007, Bondarenko Self-Shielded Cross sections from ENDF/B

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of problem or function - GROUPIE reads evaluated data in ENDF/B Format and uses these to calculate unshielded group averaged Cross sections, Bondarenko self-shielded Cross sections, and multiband parameters. The program allows the user to specify arbitrary energy groups and an arbitrary energy-dependent neutron spectrum (weighting function). IAEA0849/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. 2 - Modifications from previous versions: Groupie VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased page size from 120,000 to 600,000 points. 3 - Method of solution: All integrals are performed analytically; in no case is iteration or any approximate form of integration used. GROUPIE reads either the 0 deg. Kelvin Cross sections or the Doppler broadened Cross sections to calculate the self-shielded Cross sections and multiband parameters for 25 values of the 'background' Cross sections (representing the combined effects of all other isotopes and of leakage). 4 - Restrictions on the complexity of the problem: GROUPIE requires that the energy-dependent neutron spectrum and all Cross sections be given in tabular form, with linear interpolation between tabulated values. There is no limit to the size of the table used to describe the spectrum, so the spectrum may be described in as much detail as required. - If only unshielded averages are calculated, the program can handle up to 3000 groups. If self-shielded averages and/or multiband parameters are calculated, the program can handle up to 175 groups. These limits can easily be extended. - The program only uses the

  6. Bodies with noncircular cross sections and bank-to-turn missiles

    Science.gov (United States)

    Jackson, C. M., Jr.; Sawyer, W. C.

    1992-01-01

    A development status evaluation is presented for the aerodynamics of missile configurations with noncircular cross-sections and bank-to-turn maneuvering systems, giving attention to cases with elliptical and square cross-sections, as well as bodies with variable cross-sections. The assessment of bank-to-turn missile performance notes inherent stability/control problems. A summary and index are provided for aerodynamic data on monoplanar configurations, including those which incorporate airbreathing propulsion systems.

  7. Quality Quantification of Evaluated Cross Section Covariances

    International Nuclear Information System (INIS)

    Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.

    2015-01-01

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations

  8. Some problem areas in capture cross-section measurements

    International Nuclear Information System (INIS)

    Moxon, M.C.; Gayther, D.B.; Sowerby, M.G.

    1975-01-01

    This paper outlines some of the problems that have been encountered and are envisaged in the measurement and evaluation of capture cross-sections. Particular emphasis is placed on the cross-sections of the structural materials (Fe, Ni, Cr) used in fast reactors. The topics considered are the influence of scattered neutrons in capture detectors, the determination of background, sample thickness corrections, and the theoretical representation of resonance parameters. (author)

  9. Scattering cross-section of an inhomogeneous plasma cylinder

    International Nuclear Information System (INIS)

    Jiaming Shi; Lijian Qiu; Ling, Y.

    1995-01-01

    Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated

  10. An Ada environment for relativistic cross section calculations

    International Nuclear Information System (INIS)

    Nilsson, E.

    1990-01-01

    We have developed an Ada environment adapted to relativistic cross section calculations. Objects such as four-vectors, γ- matrices and propagators are defined as well as operations between these objects. In this environment matrix elements can be expressed in a compact and readable way as Ada code. Unpolarized cross sections are calculated numerically by explicitly summing and averaging over spins and polarizations. A short presentation of the technique is given

  11. OSMOSE: An experimental program for the qualification of integral cross sections of actinides

    International Nuclear Information System (INIS)

    Hudelot, J. P.; Klann, R.; Fougeras, P.; Jorion, F.; Drin, N.; Donnet, L.

    2004-01-01

    The accurate integral cross sectional reaction rates in representative spectra for the actinides are discussed at OSMOSE program. The first step in obtaining better nuclear data consists of measuring accurate integral data and comparing it to integrated energy dependent data: this comparison provides a direct assessment of the effect of deficiencies in the differential data. The OSMOSE program includes a complete analytical program associated with experimental measurement program and aims at understanding and resolving discrepancies between calculated and measured values. The measurement covers a wide range of neutron spectra, from over-moderate thermal spectra to fast spectra. (authors)

  12. Measurement of multinucleon transfer cross-sections

    Indian Academy of Sciences (India)

    Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.

  13. Macrosegregation Resulting from Directional Solidification Through an Abrupt Change in Cross-Sections

    Science.gov (United States)

    Lauer, M.; Poirier, D. R.; Ghods, M.; Tewari, S. N.; Grugel, R. N.

    2017-01-01

    Simulations of the directional solidification of two hypoeutectic alloys (Al-7Si alloy and Al-19Cu) and resulting macrosegregation patterns are presented. The casting geometries include abrupt changes in cross-section from a larger width of 9.5 mm to a narrower 3.2 mm width then through an expansion back to a width of 9.5 mm. The alloys were chosen as model alloys because they have similar solidification shrinkages, but the effect of Cu on changing the density of the liquid alloy is about an order of magnitude greater than that of Si. The simulations compare well with experimental castings that were directionally solidified in a graphite mold in a Bridgman furnace. In addition to the simulations of the directional solidification in graphite molds, some simulations were effected for solidification in an alumina mold. This study showed that the mold must be included in numerical simulations of directional solidification because of its effect on the temperature field and solidification. For the model alloys used for the study, the simulations clearly show the interaction of the convection field with the solidifying alloys to produce a macrosegregation pattern known as "steepling" in sections with a uniform width. Details of the complex convection- and segregation-patterns at both the contraction and expansion of the cross-sectional area are revealed by the computer simulations. The convection and solidification through the expansions suggest a possible mechanism for the formation of stray grains. The computer simulations and the experimental castings have been part of on-going ground-based research with the goal of providing necessary background for eventual experiments aboard the ISS. For casting practitioners, the results of the simulations demonstrate that computer simulations should be applied to reveal interactions between alloy solidification properties, solidification conditions, and mold geometries on macrosegregation. The simulations also presents the

  14. Electron-impact-excitation cross sections of hydrogenlike ions

    International Nuclear Information System (INIS)

    Fisher, V.I.; Ralchenko, Y.V.; Bernshtam, V.A.; Goldgirsh, A.; Maron, Y.; Vainshtein, L.A.; Bray, I.; Golten, H.

    1997-01-01

    Convergent close-coupling (CCC) and Coulomb-Born with exchange and normalization (CBE) methods are used to study electron-impact excitation of hydrogenlike ions. The nl→n ' l ' cross sections demonstrate (i) good agreement between the CCC and CBE results, (ii) a scaling over ion nuclear charge z, (iii) a domination of the dipole (l ' =l±1) contributions in total n→n ' cross sections, and (iv) significant effect of electron exchange in the energy range x n,n ' ). For ions with z>5 the n→n ' cross sections obtained in the CCC and CBE approximations agree with each other to better than 10% for any x. An accuracy of the cross sections scaling over z 4 depends on z: for z=6 endash 18 the scaling is accurate to better than 10% (quantitative analysis is done for n ' 4 scaling more significantly (at x about unity). The n→n ' cross sections are presented by a formula which fits our CCC and CBE results with an accuracy to better than 10% (for transitions with n ' 5). The new Gaunt factor G(x) suggested for the widely used Van Regemorter formula [Astrophys. J. 136, 906 (1962)] makes this formula accurate to better than 50% in the x>3 range and to better than 20% in the x>100 range. It is shown that the semiempirical formula by Vainshtein, Sobelman, and Yukov provides an accuracy to better than 50% for any incident electron energy. For x<2 this formula is accurate to better than 30%. These accuracy assessments are based on a comparison with our CCC and CBE results. copyright 1997 The American Physical Society

  15. Group cross-section processing at ECN, Petten (comparison of AMPX, NJOY and GROUPXS results)

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Nierop, D.; Peihua, Y.

    1989-01-01

    Results of group cross-section processing with the AMPX, NJOY and GROUPXS codes are intercompared. The interfacing codes CRECTJ5 and MILER were used, in addition to the processing codes. In general there is quite good agreement between the AMPX and NJOY results, if the correct input parameters are used. Non-standard input is required for AMPX to obtain the same results as NJOY for thermal scattering. A comparison between GROUPXS and NJOY (version 87.1) was performed to test the processing of recent data files with MF6 of the ENDF-VI Format

  16. CASTHY, Statistical Model for Neutron Cross-Sections and Gamma-Ray Spectra

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti; Fukahori, Tokio

    1998-01-01

    Description of program or function: CASTHY calculates neutron cross sections of total, shape elastic scattering and compound nucleus formation with the optical model, and compound elastic, inelastic and capture cross sections by the statistical model. The other cross sections, such as (n,2n), (n,p), (n,f) reactions are treated as cross sections of competing processes, and their sum is given through input data. Capture gamma-ray spectra can also be calculated. The branching ratio for primary transition can be treated in a particular way, if required

  17. Absolute photoionization cross-section of the propargyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  18. Light stops emerging in WW cross section measurements?

    International Nuclear Information System (INIS)

    Rolbiecki, Krzysztof

    2013-03-01

    Recent ATLAS and CMS measurements show a slight excess in the WW cross section measurement. While still consistent with the Standard Model within 1-2σ, the excess could be also a first hint of physics beyond the Standard Model. We argue that this effect could be attributed to the production of scalar top quarks within supersymmetric models. The stops of m t 1 ∝200 GeV has the right cross section and under some assumptions can significantly contribute to the final state of two leptons and missing energy. We scan this region of parameter space to find particle masses preferred by the WW cross section measurements. Taking one sample benchmark point we show that it can be consistent with low energy observables and Higgs sector measurements and propose a method to distinguish supersymmetric signal from the Standard Model contribution.

  19. Inclusive cross sections in AA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.

    1988-01-01

    Inclusive cross sections in AA collisions at high energies are considered in the Glauber multiple scattering theory taking into account many-nucleon collisions. Correspondence is found between the AA amplitude and the effective action of the two-dimensional quantum field theory with exponential interaction. The tree and one-loop contributions are calculated in this formalism. The rules are derived, which relate the absorption part of the AA-collision amplitudes associated with various inclusive cross sections to the absorption parts of NN amplitudes. These rules generalize the well-known Agranowsky-Gribov-Kanchelli rules for hh and hA collisions. Formulas are written for single and double inclusive cross sections in AA collisions

  20. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham; Guthrey, Harvey; Fetzer, C. M.; King, Richard

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.